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Abstract. Consider an Itô equation for a scalar-valued process that is controlled through a
dynamic and adaptive choice of its diffusion coefficient. Such a control is called a variance control
and is said to degenerate when it becomes zero. We consider the problem of choosing a control
to minimize a discounted, infinite-horizon cost that penalizes state values close to an equilibrium
point of the drift and also imposes a control cost. Admissible controls are required to take values in
the closed, bounded interval [0, σ0], where σ0 > 0; in particular, the control can be degenerate. In
general, there will be a bang-bang optimal control that takes the value σ0 in some open set and is zero
otherwise. We discuss the existence and properties of solutions to stochastic differential equations
with such controls and characterize the value function and optimal control in more detail, in the case
of both linear and nonlinear drift. Employing the Hamilton–Jacobi–Bellman equation and results
of [N. V. Krylov, Theory Probab. Appl., 17 (1973), pp. 114–131] and [P.-L. Lions, Comm. Pure
Appl. Math., 34 (1981), pp. 121–147], we derive sufficient conditions for the existence of single-region
optimal controls, construct examples of multiple-region controls, and provide bounds on the number
and size of the regions in which the optimal control is positive.
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1. Introduction. The simplest model for a scalar diffusion with variance control
is the stochastic differential equation

Xu
x (t) = x +

∫ t

0

b(Xu
x (s)) ds +

∫ t

0

u(s) dW (s).(1.1)

This paper analyzes the problem of control to minimize the discounted cost

J(x, u) = E

[∫ ∞

0

e−αt
[
c(Xu

x (t)) + λu2(t)
]
dt

]
,(1.2)

where the state dynamics, the location cost c, and the controls have the following spe-
cial structure. First, the differential equation ẋ = b(x), corresponding to zero variance
control, has a unique, global, asymptotically stable equilibrium point, set arbitrarily
at x = 0. Second, c is a bounded function that achieves its unique maximum at the
equilibrium point x = 0 and decreases as x moves away from x = 0. The precise
definition of an admissible control is given at the beginning of section 3. The main
point is that the control is bounded and allowed to degenerate to the value zero; that
is,

0 ≤ u(t) ≤ σ0 for all t,(1.3)

where σ0 is a given constant. Throughout, λ is a given positive constant. To lend
the problem a simplifying symmetry, we shall also assume throughout that c is an
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even function and that b is odd. Our work was motivated by the desire to understand
qualitative properties of optimal controls when degeneration is allowed, and the special
structure assumed here allows some intuition that gives insight into this question. A
recent, specific example with similar cost and dynamic structure, but with a long run
average criterion and potentially unbounded (σ0 =∞) controls, appears in a dynamic
sampling application in Assaf [1].

Early specific examples of degenerate variance control problems appear in Genis
and Krylov [7] and Krylov [12]. In particular, they find that the value function is C1

and piecewise C2. General (previscosity solution) theory for degenerate problems is
established in Krylov [12] and Lions [13] and shows under what hypothesis the value
function for degenerate control problems is C1.

When the cost c and drift b have the structure specified above, there are two
opposing tendencies. If zero variance control (u=0) is applied, no control cost is
incurred, but the state moves monotonically to regions of higher and higher location
cost. On the other hand, if positive control is exercised, it will spread the state out
in an average sense and so tend to stall its progression toward the equilibrium. This
effect will be of greatest advantage in a region about the equilibrium point, where
c is concave. Conversely, when the state is far away from 0 in a region where c is
reasonably flat or convex, one expects that the advantage of a positive diffusion control
either does not exist or is outweighed by the control cost. Intuition thus suggests that
single-region bang-bang feedback controls, which set u = σ0 when |x| < a and u = 0
when x ≥ a for some a, should provide good candidates for optimal controls. This
control structure is evident in the example in Assaf [1]. The same intuition also applies
in the example of Genis and Krylov [7].

This paper addresses the following questions. First, bang-bang, degenerate con-
trols give rise to stochastic differential equations with discontinuous diffusion coeffi-
cients. Do solutions exist for such equations, and how do they behave? In section
2, it is shown that a weak solution will always exist in some probability space if the
diffusion coefficient has the form 1G(x), where G is the indicator function of set G,
as long as G is open, and the behavior of the solutions is described. Second, what
conditions suffice to imply the existence of single-region optimal controls and how can
the optimal region be characterized? More generally, what factors determine where
positive diffusion control should be exercised? In this paper, we analyze in some detail
how the C1 condition and the Hamilton–Jacobi–Bellman (HJB) equation determine
the optimal value function and how the structure of b and c determine where the
regions of degeneracy for the optimal control occur. Section 3 recalls the theory of
the HJB equation for the value function and develops the extensions and refinements
which are needed to study problem (1.1)–(1.3). Section 4 analyzes this problem when
the drift is linear, which is treated separately since our results in this case are more
complete. It is shown that the decisive factor for turning on the diffusion is the degree
of concavity of c. To illustrate, sufficient conditions are given for the optimal control
to be single-region and a class of problems with multiple-region optimal controls are
constructed. In section 5, sufficient conditions are derived for single-region control in
the more delicate case of nonlinear drift b.

Several assumptions in (1.1)–(1.3) can be generalized without changing the re-
sults. For example, the constraint (1.3) is equivalent to |u(t)| ≤ σ0 because of the
symmetry of Brownian motion. Also, the particular form u2(t) of the control cost
could be replaced by �(u), where �(u) is any strictly increasing function satisfying
�(0) = 0. Because the optimal controls turn out to be bang-bang, taking values ei-
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ther 0 or σ0, the results in either case will be qualitatively the same and will depend
quantitatively only on �(σ0).

Several authors have studied variance control problems with nondegenerate con-
trols. McNamara [15] considers maximization of terminal reward for a drift-less diffu-
sion with feedback controls u satisfying σ1 ≤ u(t) ≤ σ2 for strictly positive constants
σ1 and σ2. In [16] he considers controls which switch between two drift-diffusion
pairs, both nonsingular in the diffusion term. A simple variance control problem is
treated as an example in Rogers and Williams [18]. Dorroh, Ferreyra, and Sundar [3]
treat problems with control in both drift and noise when the control is allowed to be
unbounded.

2. Stochastic differential equations with bang-bang diffusion. A formal
analysis of the HJB equation (see section 3) for the problem (1.1)–(1.3) suggests that
optimal controls will have a feedback form σ01G(x), where 1G(x) is the indicator
function of a subset G inR. To make sense of such controls, it is necessary to show
that (1.1) admits a solution when u is replaced by 1G(X(t)). The assumption made
in section 1 that ẋ = b(x) has a unique stable equilibrium point is irrelevant to this
problem; thus, in this section we consider the one-dimensional equation

dX(t) = f(X(t)) dt + σ01G(X(t)) dW (t), X(0) = x0,(2.1)

where it is assumed only that

f is locally Lipschitz; and(2.2)

sup
R

xf(x) < K(1 + |x|2) for some constant K <∞ and all x.(2.3)

By a solution to (2.1), we always mean a weak solution with continuous paths and
almost surely (a.s.) infinite lifetimes defined on some probability space (Ω,F , P ) with
a filtration {Ft} and an {Ft}-Wiener process W . The condition (2.3) implies that
lifetimes of solutions to (2.1) are infinite, once existence is established locally; see
Friedman [6, p. 125].

Solutions to (2.1) do not exist for arbitrary G. For example, the equation dX(t) =
1[0,∞)(X) dW , X(0) = 0, does not admit a solution even in a weak sense. If a solution
did exist, it would clearly have to remain in [0,∞) for all time. This would imply
that dX = dW , and hence that X = W . However, Brownian motion exits [0,∞)
with probability one in any time interval [0, ε) for any ε > 0, and so a contradiction
is obtained. On the other hand, dX = 1(0,∞)(X) dW , X(0) = x0, is easy to solve
for any x0; if x0 ≤ 0, then X(t) ≡ x0 is the solution; if x0 > 0, a solution is
X(t) = x0 + W (t ∧ τ), where τ is the first time x0 + W (t) hits 0.

That the removal of the boundary point 0 from [0,∞) changes an unsolvable
equation into a solvable one reflects the main result, Theorem 2.3, of this section: if
G is open, then (2.1) admits a weak solution. This is a useful piece of information
for the control problem. The HJB equation by itself does not indicate whether the
boundary points should be included in the optimal G. The analysis of this section
shows that they should be excluded in the construction of optimal feedback controls.

Solutions to (2.1) with open G are not unique in general. For example, both
X ≡ W and X ≡ 0 solve dx = 1G(X)dW , X(0) = 0, where G = R − {0}, because
the Lebesgue measure of the total time a Brownian motion spends at the origin is
zero. For the control problem, solutions that are guided strictly by the drift when the
diffusion is zero are preferred. We shall say that a continuous process X passes through
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a point y in one direction if the event that there are times 0 ≤ t1 < t2 < t3 such that
either X(t1) < y, X(t2) > y, X(t3) < y, or X(t1) > y, X(t2) < y, X(t3) > y, has
probability zero. Theorem 2.3 shows that weak solutions to (2.1) for open G may be
constructed to pass through points of Gc in one direction only.

The proof for general open G ultimately reduces to the case in which G is simply
an open interval. This case is studied carefully in Lemma 2.1 and Theorem 2.2, which
are stated separately from Theorem 2.3 because of their particular importance to the
control problem. After deriving Theorem 2.3 in the first version of the paper, we
learned of the recent book of Assing and Schmidt [2], which provides very general
theorems about strong Markov processes on the real line from which the existence
of solutions to (2.1) can be deduced. The direct proof here relies only on standard
methods.

It will be convenient to let φ denote the flow associated to the drift f when no

diffusion term is present; φ(t, x), t ≥ 0, x ∈R, solves ∂φ(t,x)
∂t = f(φ(t, x)), φ(0, x) = x.

Lemma 2.1. Let G = (r, q). Then (2.1) admits a unique weak solution. If
f(r) > 0 and f(q) < 0 and if the solution enters (r, q), it will remain in (r, q) for all
future time. If f(r) ≤ 0 (respectively, if f(q) ≥ 0), the solution will exit (r, q) never
to return, once it hits r (respectively, q).

Proof. Without loss of generality, set σ0 = 1. There are three cases to treat,
depending on the signs of the drift at the endpoints of (r, q). In the first case, f(r) ≤ 0
and f(q) ≥ 0; we say that the drift points out of (r, q) at each endpoint. Then, if
x0 �∈ (r, q), the solution φ(t, x0) to ż = f(z), z(0) = x0, never enters (r, q) and thus
solves (2.1) for G = (r, q). If x0 ∈ (r, q), let X̃x0

denote the solution starting at x0 to
dX̃ = f(X̃) dt + dW . Then a solution to (2.1) is constructed by first following X̃(t)
until the first time τ that it exits (r, q) and then following φ(t − τ, X̃(τ)). Strong
uniqueness of the solution is obvious, at least until the first time, if any, that Xx0

reaches either r or q. So it remains to establish uniqueness starting from the boundary
points. For example, let Xr(t) be any solution starting from r. We want to show
Xr(t) = φ(t, r). For this, apply the generalized Itô rule of problem 7.3 on p. 209 in
Karatzas and Shreve [11] to (Xr(t)− r)+ and take expectations. Then, if τε = inf{t ∣∣
Xr(t) �∈ (r − ε, r + ε)},

E
[
(Xr(t)− r)

+
]

= E

[∫ t∧τε

0

f(Xr(s))1(r,q)(Xr(s)) ds

]
.(2.4)

By the local Lipschitz property of f , there is an ε > 0 and K <∞ so that for s ≤ τε,
(f(Xr(s))− f(r))1(r,q)(Xr(s)) ≤ K (Xr(s)− r)

+
. Thus, using the fact that f(r) ≤ 0

and some rearrangement of terms, it follows that

E
[
(Xr(t)− r)

+
]
≤ KE

[∫ t∧τε

0

(Xr(s)− r)
+

ds

]
.(2.5)

The Gronwall–Bellman inequality then implies that 0 ≤ E [(Xr(t)− r)
+

] ≤ 0 for all
t. Hence the solution X does not enter (r, q) a.s., which means that dXr(t)/dt =
f(Xr(t)), t ≥ 0, as desired.

To handle the remaining cases, it will be enough to consider G = (r,∞) when
f(r) > 0; here, f points into G at r. The result is an immediate application of
Theorem 7.1 in Chapter 4 of Ikeda and Watanabe [8], taking d = 1. We briefly sketch
the construction for the insight it affords. Let B be a Brownian motion with filtration
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{F̃t} and let x0 ≥ r. Then the diffusion process Z that reflects at r and has drift f(·)
and diffusion coefficient σ2

0 satisfies

Z(t) = x0 +

∫ t

0

f(Z(s)) ds +

∫ t

0

σ01(r,∞)(Z(s)) dB(s) + L(t),

where L is the local time of the process Z at r. Now define T (t) = t + (L(t)/f(r)),
and let B∗ be a Brownian motion independent of B. Set W (t) = B(T−1(t)) +∫ t
0
1{r}

(
Z(T−1(s))

)
dB∗(s), X(t) = Z(T−1(t)), and Ft := F̃T−1(t) ∧ σ{B∗(s); s ≤ t}.

Then W is an {Ft}-Brownian motion and (X,W ) is a weak solution of (2.1). Indeed
X is a Markov process with a sticky boundary at r; the set of times that X spends at
r has positive Lebesgue measure but contains no open interval. If x0 �∈ [r,∞), then
the solution is constructed by following the flow φ(t, x0) until the time S when the
flow hits r, if finite, and then following Xr(t− S).

Now suppose that G = (r, q), where f(r) > 0 and f(q) ≥ 0. To construct the
solution, simply follow the solution with the same drift f , but G = (r,∞) until it hits
[q,∞) and from that time onward, follow the solution φ to the deterministic equation.

Finally, suppose that G = (r, q) and that the drift points in at both boundaries,
i.e., f(r) > 0 and f(q) < 0. If x0 < q, construct Xx0 by first following the solution
to (2.1) with G replaced by (r,∞) until the first time it hits q, and then switch to
an independent solution to (2.1) with G replaced by (−∞, q). Follow this solution
until it hits r, then switch to an independent solution of (2.1) with G = (r,∞), and
so forth. For x0 ≥ q, start instead with the solution to (2.1) for G = (−∞, q) and
continue in the same way. Notice that once this solution enters [r, q], it stays there
forever. Weak uniqueness is a simple consequence of the analytic characterization of
this process, which is given in the next result.

Theorem 2.2. Let G= (r, q) and assume f(r) > 0 and f(q) < 0.
(a) If r ≤ x0 ≤ q, the solution Xx0 to (2.1) is a Markov diffusion in [r, q] whose

conservative, Feller transition semigroup is generated by the operator

A = (σ2
0/2)

d2

dx2
+ f(x)

d

dx
on the domain

D(A) = {ψ ∈ C2[r, q];ψ′′(r) = 0, ψ′′(q) = 0}.
(b) For any constants α > 0, λ > 0, and function c ∈ C[r, q],

Az(x)− αz(x) + σ2
0λ + c(x) = 0, z ∈ C2[r, q],(2.6)

z′′(r) = −2λ, z′′(q) = −2λ(2.7)

has the unique solution

z(x) = E

[∫ ∞

0

e−αt
(
c(Xx(t)) + λσ2

01(r,q)(Xx(t))
)
dt

]
, r ≤ x ≤ q.(2.8)

Proof. To prove part (a), apply Theorem 4 on page 44 of Mandl [14] to conclude
that the operator A on D(A) generates a unique, conservative, Feller transition semi-
group on C[r, q]. Now let Xx0 solve (2.1) for r ≤ x0 ≤ q. Then an application of Itô’s
lemma shows that Xx0 solves the martingale problem for (A,D(A)). We leave the
calculation to the reader; note only that, because ψ′′(r) = ψ′′(q) = 0 for ψ ∈ D(A),

σ2
0

2
1(r,q)(Xx0(t))ψ′′(Xx(t)) + f(Xx0(t))ψ′(Xx0(t)) = Aψ(Xx0(t)) for all t.
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It follows by a general theorem—see, for example, Theorem 4.1 in Ethier and Kurtz
[4]—that Xx0 is a Markov process generated by (A,D(A)), as claimed. This conclusion
also proves the uniqueness in law of the solution.

Next, consider part (b). If z ∈ C2[r, q] satisfies (2.6)–(2.7), then the representation
(2.8) is derived using Itô’s rule in the usual way. To show the existence of a solution
to (2.6)–(2.7), apply standard o.d.e. theory, as expressed, for example, in Mandl [14,
Lemma 5, p. 43] for the case λ = 0. If λ �= 0, let u solve Au(x) − αu(x) = −c(x) +
2λ(x− q)f(x)−αλ(x− q)2, u′′(r) = 0, u′′(q) = 0; then z(x) = u(x)−λ(x− q)2 solves
(2.7).

We turn now to the case of a general open set G. We intend to construct a weak
solution to (2.1) in the path space C[0,∞).

Theorem 2.3. Let G ⊂ R be an open set. Equation (2.1) admits a weak solution
Xx0 with the property that it passes through points of Gc in one direction.

Proof. Let {(ri, qi); i ∈ I} denote the countable collection of connected compo-
nents of G; thus G = ∪i∈I(ri, qi). When I is finite, it is easy to construct a solution to
(2.1). Suppose the initial point x lies in (rj , qj). Take a solution X(j) to (2.1) when G
is replaced by (rj , qj) and follow this solution until the first time, if any, that it enters
a different interval [ri, qi]. Then switch to a solution X(i) of (2.1), initialized at the
point of entry into [ri, qi], when G is replaced by (ri, qi). Continue in this manner,
switching to a solution X(k) corresponding to (rk, qk) each time a new interval [rk, qk]
is entered.

The same technique works easily when G has an infinite number of components
as long as only a finite number of them intersect any compact set. For general open
sets, a patching method can still be used, but care must be taken when X crosses
an infinite number of intervals of G in finite time. Instead, we complete the proof by
using martingale problem theory and taking weak limits.

For an open set G, let AG = 1
2σ

2
01G(x) d2

dx2 + f(x) d
dx . Let ξ be the canonical

process on the space Ω := C([0,∞)) of continuous, real-valued paths, let Ft denote
the filtration generated by ξ, and set F := F∞. A solution to the martingale problem
for AG and initial value x0 (in the sense of Stroock and Varadhan [19]) is a probability

measure Px0 on Ω such that P (ξ(0) = x0) = 1 and ψ(ξ(t)) − ∫ t
0
AGψ(ξ(s)) ds is a

Px0
-martingale for any ψ ∈ C2

0 , the twice continuously differentiable functions with
compact support. As is well known, the existence of a solution to the martingale
problem for AG is equivalent to the existence of a weak solution to (2.1).

Without loss of generality, we may assume that the initial value x0 lies in Gc and
satisfies f(x0) > 0 and (x0,∞) ∩G �= ∅. Indeed, if x0 is in the component (rj , qj) of
G, we may follow the solution X(j) until it exits (rj , qj) and then solve (2.1) from the
exit point, which is not in G. If f(x0) > 0 but (x0,∞) ∩G = ∅, then X(t) = φ(t, x0)
solves (2.1), while if x0 ∈ Gc and f(x0) = 0, then X(t) ≡ x0 solves (2.1), so we need
not treat these cases. Finally, an argument analogous to the one below handles the
case f(x0) < 0. For convenience, we assume also that

x1 := inf{y ∈ Gc; f(y) ≤ 0} <∞.(2.9)

This will be removed later. Notice that x1 ∈ Gc and f(x1) ≤ 0, because Gc

is closed and f is continuous. Therefore, the solution we construct will not take
values beyond x1, and hence it can be assumed that G ⊂ [x0, x1]. Now define
Gn = ∪{(ri, qi) ; qi − ri ≥ 1

n

}
. Since G is contained in a bounded set by our as-

sumptions, Gn is a finite union of disjoint open intervals. Thus for each n, there is a
solution to (2.1) with G replaced by Gn, and hence a solution Qn to the martingale
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problem for AGn starting from x0. Because f(x0) > 0 and f(x1) ≤ 0, Qn(x0 ≤ ξ ≤ x1,
for all t ≥ 0) = 1 for each n. Since sup[x0,x1] |f(x)| < ∞, it is an immediate conse-
quence of Theorem 1.4.6 in [19], for example, that the sequence {Qn} is tight as a
family of probability measures on Ω. Let Q denote a weak limit of some subsequence
Qn′ . The aim is to show that Q solves the martingale problem for AG and initial
condition x0.

We first show that for any ψ ∈ W 2,∞ such that 1G(x)ψ′′(x) has a continuous
version, the process

θψ(t) := ψ(ξ(t))−
∫ t

0

AGψ(ξ(s)) ds is a martingale on (Ω,F , Q).(2.10)

For this, it suffices to show that

EQ [H (θψ(t)− θψ(s))] = 0(2.11)

for any s < t and for any function H on Ω which is bounded, continuous (in the
topology of uniform convergence on compact time intervals), and Fs measurable.
Because ψ has been constrained so that AGψ is continuous, the integrand H(θψ(t)−
θψ(s)) is a continuous function of ξ, and thus the expectation in (2.11) is equal to
the limit of EQn′ [H(θψ(t)− θψ(s))] as n′ →∞. However, since Itô’s rule is valid for
ψ ∈W 2,∞(R) (see Karatzas and Shreve [11, p. 219]), its application shows that

EQn′ [H (θψ(t)− θψ(s))] = EQn′
[
H

∫ t

s

σ2
0

2
1G−Gn(ξ(v))ψ′′(ξ(v)) dv

]
.

Under the measure Qn′ , ξ solves ξ′(t) = f(ξ(t)) when ξ(t) ∈ G − Gn′ . Thus,∫ x1−δ
x0

1G−Gn(z) 1
f(z) dz represents the total time ξ spends in G − Gn ∩ [xo, x1 − δ].

Hence

E

[∣∣∣∣∫ t

s

1G−Gn(ξ(v))ψ′′(ξ(v)) dv

∣∣∣∣] ≤ ‖ψ′′‖∞
∫ x1−δ

x0

1G−Gn(z)

f(z)
dz.(2.12)

However, the definition of x1 and the continuity of f imply that the quantity � :=
inf{f(x); x ∈ [x0, x1 − δ] ∩ Gc} > 0. Since f is uniformly continuous on [x0, x1], it
follows that there is an Nδ such that

inf{f(x); x ∈ [x0, x1 − δ] ∩ (G−Gn)} > �/2 for n ≥ Nδ,

because any point in [x0, x1 − δ] ∩ (G−Gn) is within a distance of 1/n from Gc.
Therefore

lim
n→∞

∫ x1−δ

x0

1G−Gn(z)
1

f(z)
dz = 0,

which shows by (2.12) that EQn′ [H (θψ(t)− θψ(s))]→ 0 as n′ →∞, thus completing
the proof of (2.11).

Now let ψ ∈ C2
0 . For any positive integer m, define

ρm(z) =

{
ψ′′(z), if z ∈ (G ∪ [x1 −m−1, x1)])c,
ψ′′(z)

(
m · dist

(
z,Gc ∪ [x1 −m−1, x1]

) ∧ 1
)

otherwise.

For a point a such that support(ψ) ⊂ (a,∞), define ψm(z) =
∫ x
a

∫ y
a
ρm(z) dz dy.

From the definition, it is evident that 1G(z)ρm(z) = 1G(z)ψ′′
m(z) is continuous and
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that ψ′′
m(z) = 0 on [x1−m−1, x1]. Thus θψm is a martingale on (Ω,F , Q) for every m.

Moreover, limm→∞ ρm(z) = ψ′′(z) for all z �= x1, and the functions ρm(z), m ≥ 1 are
uniformly bounded. It follows that ψ is the bounded pointwise limit of the sequence
{ψm} and Aψ is the bounded pointwise limit of {Aψm}. Taking limits as m → ∞,
θψ is also a martingale on (Ω,F , Q), as we needed to prove.

If (2.9) fails, if G is bounded, and if x1 is an upper bound of G, the same con-
struction works, but now with δ = 0, to produce a solution up to the hitting time of
x1. If (2.9) fails and G contains a component (r,∞), one can first solve the problem
for AG−(r,∞) and then patch to the solution of dX = f(X) dt + σ0 dW when it hits
r, because the solution will stay in (r,∞) after this hitting time. If (2.9) fails, G is
unbounded, and there is a sequence of points {ai}, x0 = a0 < a1 < · · · such that
ai ∈ Gc for every i, the martingale problem for AG can be solved by successively
patching together the solutions for AG∩[ai−1,ai].

Fix a y ∈ Gc and assume that f(y) ≥ 0. To show that paths pass through y in
the positive direction only with Q-probability one, it suffices to show that

EQ[φ(ξ(t)− y)φ(y − ξ(s1))φ(y − ξ(s2))] = 0

for any bounded, continuous function φ which is strictly positive on (0,∞) and 0 on
(−∞, 0] and for any times 0 ≤ s1 < t < s2. But by construction, the set of paths that
pass through y in one direction only has Qn-probability one. Hence EQn [φ(ξ(t) −
y)φ(y − ξ(s1))φ(y − s2)] = 0 for each n. Taking limits along a subsequence of Qn

converging weakly to Q gives the result. This has been done for a single y ∈ Gc.
However, by taking a countable dense subset of Gc, it is true with probability one for
all y ∈ Gc.

3. The HJB equation for the value function. In this section, we discuss the
HJB equation for the value function of the control problem (1.1)–(1.3). The results
stated here are used in sections 4 and 5.

First, it is necessary to give a rigorous definition of an admissible control. An ad-
missible control consists of a probability space (Ω,F , P ) endowed with a right contin-
uous, complete filtration, {Ft}, an {Ft}-Wiener process W , and an {Ft}-progressively
measurable process u satisfying the constraint (1.3), where σ0 is a fixed constant. The
class of admissible controls is denoted by U . We shall abuse terminology slightly by
speaking of an admissible control u, without explicit mention of the underlying space
or Brownian motion, and with the understanding that different spaces and Brownian
motions may be attached to different u. A function α : [0,∞)×R → [0, σ0] is called
an admissible feedback control from x if the equation

dXx(t) = b(X(t)) dt + α(t,Xx(t)) dW, Xx(0) = x,

admits a weak solution. In this case, u(t) = α(t,Xx(t)) is an admissible control.
We assume without further mention that b is at least locally Lipschitz and satisfies

(2.3). Additional hypotheses will be placed on b in the theorem statements. However,
these minimal assumptions imply that, given any admissible control, (1.1) admits a
unique, continuous, {Ft}t≥0-adapted solution Xu

x (t), t ≥ 0, for all x ∈ R; see Theorem
5.1 and problem 1 in Chapter 5 of Friedman [6]. This fact makes our definition of
admissible control the same as that in Lions [13].

The value function for the control problem is V (x) := infu∈U J(x, u), where
J(x, u) is defined in (1.2). The formal HJB equation for V is

inf
u∈[0,σ0]

u2

2
(V ′′(x) + 2λ) + b(x)V ′(x)− αV (x) + c(x) = 0.(3.1)
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The rigorous interpretation of this equation requires specifying the appropriate class
of functions to which the solution belongs. This issue was resolved by Krylov [12] for
control problems with possibly degenerate diffusion coefficients; he showed in some
generality that the value function is a solution in the Sobolev space W 2,p for all p ≥ 1
to its HJB equation. Lions [13] improved the regularity to W 2,∞. In this theory, the
value function satisfies the HJB equation for (Lebesgue) almost everywhere (a.e.) x.
We apply Lions’s theorem to (3.1) in Theorem 3.2.

The first result, Theorem 3.1, restates (3.1) in a convenient form, presents a
verification theorem for suitably regular solutions, and derives an optimal control
from this solution. Theorem 3.2 states the converse, namely that the value function
is indeed a solution of (3.1). These two results are stated separately here because we
wish to distinguish them when used in the subsequent analysis; many of the results in
sections 4 and 5 are proved by direct construction and application of the verification
theorem, which is elementary, while Theorem 3.2 requires a sophisticated theoretical
result; see [13]. Theorem 3.3 elaborates on how C1 and C2 smooth fit conditions help
determine V . The final lemmas establish some general qualitative facts about the
optimal control.

Theorem 3.1. Assume that b is C2 and that c is a bounded C2 function. Suppose
V̄ ∈ L∞ ∩ C1 is piecewise C2 and is a solution of

σ2
0

2
1G(x)

(
V̄ ′′(x) + 2λ

)
+ b(x)V̄ ′(x)− αV̄ (x) + c(x) = 0 for all x,(3.2)

and

V̄ ′′(x) ≥ −2λ a.e. on Gc,(3.3)

where G is the open set {x ; b(x)V̄ ′(x) − αV̄ (x) + c(x) > 0}. Then V̄ = V and the
solution X∗

x of

X∗
x(t) = x +

∫ t

0

b(X∗
x(s)) ds + σ0

∫ t

0

1G(X∗
x(s)) dW (s),(3.4)

using the feedback control u(t) = σ01G(X∗
x(s)), is the optimal process.

Remark 3.1. On each bounded, connected component (ri, qi) of G, V̄ is a C4

solution of

σ2
0

2

(
V̄ ′′(x) + 2λ

)
+ b(x)V̄ ′(x)− αV̄ (x) + c(x) = 0, ri < x < qi,(3.5)

V̄ ′′(ri+) = −2λ, V̄ ′′(qi−) = −2λ.(3.6)

This is an easy consequence of the assumption that V̄ ∈ C1 and that b ∈ C2 and
c ∈ C2.

Remark 3.2. The general theory (see Theorem 3.2) states that V solves the HJB
equation in the sense that (3.1) holds for a.e. x. However, V ∈ W 2,∞

loc implies that
V ∈ C1 and V ′ is absolutely continuous, and once this is known it is not hard to show
that V must satisfy (3.2) everywhere. The proof is omitted.

Proof of Theorem 3.1. The proof follows the usual method for verification lemmas.
Because V is piecewise C2, one can still apply Itô’s lemma to V (Xu

x (t)); see [11,
p. 209]. Let u be an admissible control such that u(s) ≥ δ > 0 for all s and some
positive δ, and recall that J(x, u) is its corresponding cost function. Then, if A is
any set of zero Lebesgue measure, E

[∫∞
0
1A(Xu

x (t)) dt
]

= 0. (This is a consequence
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of the existence of a local time process {Λt(a) ; t ≥ 0, a ∈ R} for Xu
x and the identity∫ t

0
g(Xu

x (s))u2(s) ds = 2
∫∞
−∞ g(a)Λt(a) da, a.s. for bounded, measurable g; see [11,

p. 218].) Then, by (3.3),

inf
u∈[0,σ0]

u2

2

(
V̄ ′′(Xu

x (t)) + 2λ
)

=
σ2

0

2
1G(Xu

x (t))
(
V̄ ′′(Xu

x (t)) + 2λ
)

for a.e. t.

Now apply Itô’s lemma to V̄ (Xu
x (t))e−αt, use (3.2), take expectations, and let t→∞

in the usual way to conclude that V̄ (x) ≤ J(x, u).

If u is a given control, let un(t) = n−11{u(t)≤1/n} + u(t)1{u(t)>1/n}. Then

E[
∫ T
0

(un(t) − u(t))2 dt] → 0 as n → ∞. From this, one can deduce by standard
methods that E[sup[0,T ] |Xu

x (t) − Xun
x (t)|2] → 0 as n → ∞ for every T > 0. As a

consequence, J(x, u) = limn→∞ J(x, un) ≥ V̄ (x). Since u was an arbitrary admissible
control, V (x) ≥ V̄ (x).

Using Itô’s rule and (3.2), one finds easily that

V̄ (x) = E

[∫ ∞

0

e−αt
[
c(X∗

x(t)) + λσ2
01G(X∗

x(t))
]
dt

]
,

and thus X∗
x is an optimal process, and V̄ = V .

The next result states that the value function must indeed be a sufficiently regular
solution of the HJB equation (3.1). It is a minor extension of a result of Lions [13]
for multidimensional, degenerate control. Lions’s theorem allows the drift b and the
cost c to have linear growth. For the purposes of sections 4 and 5, we wish instead to
assume

(B.1) b ∈ C3, xb(x) < 0 for all x �= 0, and b is decreasing,

(C.1) c ∈ C2
b .

(C2
b is the set of C2 functions whose derivatives of order 0 to 2 are bounded

functions.) In condition (B.1), b may admit more than linear growth, but since (B.1)
implies (2.3), the solutions to (1.1) have infinite lifetimes and bounded moments. One
could relax assumption (B.1), but it allows a simple proof of the regularity of V .

Theorem 3.2. Assume (B.1) and (C.1). Then the value function V is in W 1,∞∩
W 2,∞

loc
and is the unique such function solving

inf
u∈[0,σ0]

u2

2
(V ′′(x) + 2λ) + b(x)V ′(x)− αV (x) + c(x) = 0 for a.e. x.(3.7)

Proof of Theorem 3.2. The uniqueness claim is proved in Theorem 3.1 because it
is shown that if V does solve (3.7), it must be the value function.

For a given drift b, let Vb denote the associated value function. To prove that
Vb is the solution of (3.7), we start with the case that b ∈ C2

b . Without additional
assumptions on b, Lions [13] establishes a general, multidimensional result which
implies Theorem 3.2 for any α > α0, where α0 is a constant such that J(x, u) ∈W 2,∞

for any admissible control. To prove the theorem for b ∈ C2
b we need to show that

α0 = 0 if (B.1) holds. This requires showing J(·, u) ∈ W 2,∞ for any α > 0. To this
end, let u be a fixed admissible control. First, elementary estimates show that

||Vb(x)||∞ ≤ ‖J(x, u)‖∞ ≤ 1

α
(‖c‖∞ + λσ2

0).
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Next, following a computation similar to [13], we observe that the solution Xu
x (t) to

(1.1) has a version which is a.s. C0,2([0,∞)×R) as a function of t and x. Furthermore,
the first and second partial derivatives satisfy

∂xX
u
x (t) = 1 +

∫ t

0

b′(Xu
x (s))∂xX

u
x (s) ds,(3.8)

∂2
xX

u
x (t) =

∫ t

0

b′′(Xu
x (s))(∂xX

u
x (s))2 + b′(Xu

x (s))∂2
xX

u
x (s) ds.(3.9)

Since (B.1) requires b to be decreasing, b′ ≤ 0, and thus (3.8) implies ∂xX
u
x (t) ≤ 1

for all t a.s. Using (B.1), the assumption that b is decreasing, and the boundedness
of b′′, there is a constant K such that E[∂2

xX
u
x (t)] ≤ Kt. In view of these estimates,

it is easy to prove that J(x, u) is twice continuously differentiable for any α > 0. For
example, ∂xJ(x, u) = E

[∫∞
0

e−αtc′(Xu
x (t))∂xX

u
x (t) dt

]
, from which follows

‖∂xJ(·, u)‖∞ ≤ ‖c
′‖∞
α

.(3.10)

Similarly,

∂2
xJ(x, u) = E

[∫ ∞

0

e−αt
(
c′(Xu

x (t))∂2
xX

u
x (t) + c′′(Xu

x (t))(∂xX
u
x (t))2

)
dt

]
,

from which follows the estimate

|∂2
xJ(x, u)| ≤ α−1‖c′′‖∞ + Kα−2‖c′‖∞.

Thus α0 = 0 and Theorem 3.2 is valid when b ∈ C2
b . In addition, from (3.10), as in

Lions [13],

‖V ′
b ‖∞ ≤

‖c′‖∞
α

.(3.11)

Now let b satisfy only (B.1). For each positive integer n, choose a bn ∈ C2
b such

that bn also satisfies (B.1) and agrees with b on [−n, n]. Let Jn(x, u) and Vn(x) be the
cost and optimal value functions when the drift is bn, and let Jb(x, u) and Vb(x) be the
corresponding functions for drift b. Let Gn = {x ; bn(x)V ′

n(x)− αVn(x) + c(x) > 0}.
Then we know from Theorems 3.1 and 3.2 for b ∈ C2 (see Remark 3.2) that 1Gn(x) is
the optimal feedback control, and that Vn solves the HJB equation with b replaced by
bn. We show that for every compact K ⊂ R, there is an N such that Vb(x) = Vn(x)
on K for all n ≥ N . Theorem 3.2 for b then follows easily.

The following facts will be used:
(a) For any admissible control u and any x, J(x, u) = limn→∞ Jn(x, u).
(b) There is a positive constant M (independent of n) such that any interval of

length M contains a point zn in Gc
n for every n.

We first complete the proof assuming these facts. Let n > M , where M is as
in (b). Then for each m ≥ n and x ∈ [−n + M,n −M ], let X∗

x,m be the optimal
process when the drift coefficient is bm. The corresponding optimal control is given
by u∗

m(t) = 1Gm(X∗
x,m(t)). From (b) the set Gc

m has nonempty intersections with
[−n,−n + M ] and [n −M,n], and therefore, by Theorem 2.3, the process X∗

x,m(t)
stays in the set [−n, n] for all time. But on the set [−n, n], bm ≡ bn ≡ b, u∗

m(t) =
1Gm∩[−n,n](X

∗
x,m(t)) and u∗

m is an admissible control for bn as well as b. Therefore
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Vm(x) ≥ Vn(x) and Vm(x) ≥ Vb(x) for x in [−n + M,n − M ]. Similarly, u∗
n is

admissible for bm and Vn(x) ≥ Vm(x) on [−n + M,n −M ]. Consequently, for all
m ≥ n, Vm(x) = Vn(x) ≥ Vb(x) for all x in [−n + M,n − M ]. However, from
(a), Jb(x, u) = limn→∞ Jn(x, u) ≥ lim supn→∞ Vn(x). Thus, taking an infimum over
admissible u gives Vb(x) ≥ lim supn→∞ Vn(x). In conclusion, Vb(x) = Vm(x) for all
m ≥ n and x in [−n + M,n−M ].

It remains to prove (a) and (b). Fact (a) is a straightforward consequence of the
following: for any x, admissible control u, and T > 0, limn→∞ P (τn ≤ T ) = 0, where
τn is the first time that Xu

x exits [−n, n].
To prove fact (b), let b ∈ C2

b and let (r, q) be any connected component of Gb,
where Gb is as in Theorem 3.1. Because V ′′

b (x) < −2λ on Gb, Vb(q) − Vb(r) ≤
V ′
b (r)(q − r)− λ(q − r)2. Since |V ′

b (r)(q − r)| ≤ (λ/4)(q − r)2 + |V ′
b (r)|2/λ, it follows,

using (3.11), that

3

4
λ(q − r)2 ≤ Vb(r)− Vb(q) + |V ′

b (r)|2/λ ≤ 2

α
(‖c‖∞ + λσ2

0) +
‖c′‖2∞
α2λ

.

Thus the length of any component of G is bounded by a constant independent of b,
and this establishes (b).

Although the value function V is a C1 function, as shown by Theorems 3.1 and
3.2, it is not in general C2; the second derivative may have jumps at boundary points
of G. However, the fact that V is C1 and satisfies (3.2) determines how the second
derivative jumps at boundary points of G. In particular, the next theorem will show
that C2 smooth fit must hold at an endpoint of a component of G if the drift points
into G at that endpoint. As above, G = ∪i∈I(ri, qi) is the decomposition of G into
its connected components.

Theorem 3.3. Assume b ∈ C2 satisfies xb(x) < 0 for all x �= 0, let c ∈ C2
b ,

and suppose that V̄ and G are as in Theorem 3.1. For each i ∈ I such that qi > 0,
V̄ ′ is differentiable at qi and V̄ ′′′(qi−) = 0. For each i ∈ I such that ri < 0, V̄ ′ is
differentiable at ri and V̄ ′′′(ri+) = 0.

Remark 3.3. The assumption that xb(x) < 0 is made for convenience only. The
extension to more general b follows from the same arguments.

Proof. Recall that V̄ satisfies (3.5) on (ri, qi) and V̄ ′′(ri+) = V̄ ′′(qi−) = −2λ.
Suppose that qi is an isolated point of Gc, and, equivalently, that qi = rj for some j.
Then V̄ ′′(qi−) = −2λ = V̄ ′′(qi+), and so V̄ ′′ is defined and continuous at qi. Since V̄
satisfies (3.5) on both sides of qi, it is actually a solution of (3.5) in a neighborhood
of qi, and hence, because of the smoothness of b and c, V̄ is C4 in a neighborhood of
qi. Since V̄ ′′ has a local maximum at qi, it follows that V̄ ′′′(qi) = 0.

Suppose now qi > 0, so that b(qi) < 0. We need some preliminary observations.
If x ∈ Gc is not an isolated point of Gc, and if V̄ ′ is differentiable at x, then

(b′(x)− α) V̄ ′(x) + c′(x) = −b(x)V̄ ′′(x),(3.12)

because on Gc, bV̄ ′ − αV̄ + c = 0.
Suppose qi is not an isolated point of Gc. Observe first that V̄ ′′′(qi−) ≥ 0,

because V̄ ′′ < −2λ on (ri, qi) and V̄ ′′(qi−) = −2λ. By differentiation of (3.5) and
then evaluation at qi−,

(b′(qi)− α) V̄ ′(qi) + c′(qi) = b(qi)2λ− σ2
0

2
V̄ ′′′(qi−) ≤ b(qi)2λ.(3.13)

By comparing (3.12) to (3.13), it is clear that if V̄ ′ is differentiable at qi, then
V̄ ′′′(qi−) = 0.
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Let η be a version of the distributional second derivative V̄ ′′, which, because
V̄ ∈ W 2,∞

loc
, is a locally bounded function. To prove that V̄ ′ is differentiable at qi it

suffices to show that there is a set A of zero Lebesgue measure such that

lim
xn↓qi,xn �∈A

η(xn) = −2λ.(3.14)

Let A consist of those points x at which either V̄ ′ is not differentiable, V̄ ′′ and η are
not equal, x is an isolated point of Gc or x ∈ Gc, but V̄ ′′(x) < −2λ. Since V̄ ′ is
absolutely continuous, it is differentiable a.e., and its derivative coincides a.e. with η.
Also we know V̄ ′′(x) ≥ −2λ a.e. on Gc, and isolated points of G are in the countable
set {ri, qi ; i ∈ I}. Thus A has measure zero. Now, because b(qi) < 0,

−b(qi)2λ ≥ lim
xn↓qi,xn∈Gc∩Ac

b(xn)η(xn) = −(b′(qi)− α)V̄ ′(qi)− c(qi) ≥ −b(qi)2λ,

where we have used (3.12) and the continuity of (b′−α)V̄ ′− c, and the last inequality
comes from (3.13). Thus limxn↓qi,xn∈Gc∩Ac η(xn) = −2λ. On the other hand, if xn ∈
G, V̄ ′′(xn) = 2

σ2
0

[−b(xn)V̄ ′(xn) + αV̄ (xn)− c(xn) + σ2
0λ
]
, and, since the right-hand

side is continuous and equal to V̄ ′′(qi−) = −2λ at qi, limxn↓qi,xn∈G∩Ac V̄ ′′(xn) = −2λ
also. Thus, we have shown (3.14).

Remark 3.4. Suppose 0 < ri < qi for some component (ri, qi) of G. The value
function V is determined on (ri, qi) by the differential equation (3.5) and the values
of V (ri) and V ′(ri). The values of V (ri) and V ′(ri) are constrained first by the
requirement that ri ∈ Gc, which implies b(ri)V

′(ri)−αV (ri)+c(ri) = 0. The smooth
fit condition of V ′ at qi imposes a second rigid constraint; V (ri) and V ′(ri) must be
so related that V ′′′ equals 0 at the first q after r at which V ′′(q) = −2λ. This fact is
very useful in understanding how to piece together a solution of the HJB equation. In
fact, the third derivative condition is sufficient as well as necessary for a C2 smooth
fit. We state this explicitly for later use. Suppose that q �= 0. Let S be a function on
a neighborhood of (q − δ, q + δ) satisfying

σ2
0

2 (S′′ + 2λ) + bS′ − αS + c = 0 for x ∈ (q−δ, q) (resp., x ∈ (q, q+δ)),
bS′ − αS + c = 0 for x ∈ (q, q+δ) (resp., x ∈ (q−δ, q)).

(3.15)

Assume that S is C1 on (q − δ, q + δ) and that S′′ is continuous except possibly at q.
Then

S′′ is continuous at q iff S′′′(q−) = 0 (resp., S′′′(q+) = 0).(3.16)

Indeed, by differentiating (3.15) on both sides of q and using the continuity of S and
S′,

b(q)[S′′(q−)− S′′(q+)] = −σ2
0

2 S′′′(q−)(
resp., b(q)[S′′(q+)− S′′(q−)] = −σ2

0

2 S′′′(q+)
)
.

(3.17)

Hence (3.16) follows.
In the sections that follow, the cost function c will be even and decreasing on

(0,∞) in addition to belonging to C2
b , and b will be odd. Here are some general facts

concerning V and G under these assumptions.
Lemma 3.4. Assume that c is a bounded, even function decreasing on (0,∞).

Assume that b is an odd function satisfying (B.1). Then V is even and decreasing on
(0,∞).
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Proof. Let u be an admissible control. Suppose 0 < y < z. Let Xy and Xz

be the solutions to (1.1) using the same control u, and define τ = inf{t > 0 ; Xy =

−Xz}. The difference Z = Xz −Xy satisfies Ż = b(Xz) − b(Xy) and hence remains
nonnegative for all time. Thus, using the evenness and unimodality of c, c(Xz) ≤
c(Xy) if t ≤ τ . Define a new process X̃z(t) = Xz(t) if t ≤ τ and X̃z(t) = −Xy(t) if

t > τ . Then, using the oddness of b, X̃z solves (1.1) with Brownian motion W̃ (t) :=
W (t)1{t≤τ} + (W (τ)− (W (t)−W (τ)))1{t>τ} and the same control u. To emphasize

that the Brownian motion is a different one in X̃z than in Xy, let us denote the control

for X̃z by ũ. Clearly c(X̃z(t)) ≤ c(Xy(t)) for all t. Hence J(z, ũ) ≤ J(y, u). As this
construction is valid for any admissible u, it follows that V (z) ≤ V (y).

Lemma 3.5. Let b be an odd function satisfying (B.1).
(a) If c ∈ C2

b is even and positive, and if G contains a connected component of

the form (−a, a), then a <
√

c(0)/λα.
(b) If c ∈ C2

b is even, positive, and decreasing on (0,∞), and if G = ∪i(ri, qi)
is the decomposition of G into disjoint connected components, then

∑
i(qi − ri)

2 <
4c(0)/λα.

Proof. V is even, positive, and C1. Thus V ′(0) = 0. Clearly V (0) ≤ c(0)/α, since
if zero control is applied starting from x = 0, the solution of (1.1) remains at 0, and
then J(0, 0) = c(0)/α. Because V ′′ < −2λ on (−a, a),

0 < V (a) = V (0) +

∫ a

0

∫ y

0

V ′′(z) dz dy <
c(0)

α
− λa2.

The inequality a2 < c(0)/λα is immediate.
Lemma 3.4 implies that V decreases on (0,∞). If (r, q) is a connected component

of (0,∞) ∩ G, it follows that V ′ ≤ 0 and V ′′ < −2λ on (r, q). Hence V (q) − V (r) <
−λ(q − r)2. Thus if qi > 0,

0 ≤ V (qi) ≤ V (0) +
∑

j,0≤qj≤qi
V (qj)− V (rj ∨ 0) <

c(0)

α
− λ

∑
j,0≤qj≤qi

(qj − (rj ∨ 0))2.

Combining this with a similar inequality for negative qi and letting |qi| → supj |qj |
gives the result.

4. Linear drift. In this section we consider the stochastic control problem (1.1)–
(1.3) when the drift is a linear function b(x) = −θx, with θ > 0. Thus b satisfies (B.1)
and there is a unique equilibrium point at x = 0 for (1.1) when u ≡ 0. The class of
admissible controls is defined precisely at the beginning of section 3. For convenience,
we set λ = 1; all results can be restated for a general λ by rescaling the cost c.

The work of this section was motivated by a conjecture that the optimal control
will be a single-region feedback control of the form u(t) = 1(−a,a)(X(t)), if the cost c
satisfies (C.1) and the following additional hypotheses.
(C.2) c is even.
(C.3) c is continuous, positive, and decreasing on (0,∞).
We discovered instead that the location of regions of positive control action is deter-
mined by the behavior of the function

ĉ(x) := c′′(x) + 2(2θ + α),(4.1)

and hence by convexity properties of c. We know from section 3 that the optimal
feedback control has the form 1G(x), where G is open. The main point of this section
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is that the number and location of the components of G are constrained by the set
{x; ĉ(x) < 0}. Theorem 4.1 shows that positivity of ĉ implies optimality of u ≡
0. Theorem 4.2 establishes a sufficient condition for the optimality of single-region
feedback controls in terms of ĉ. Lemma 4.5 shows in general how the number of
components of G can be bounded using the number of component intervals of the set
{ĉ < 0}. Theorem 4.7 provides a class of examples for which c satisfies (C.1), (C.2),
and (C.3), but for which the optimal control is not of single-region form, contradicting
the original conjecture. In Theorem 4.2, an interesting connection is made between
the optimal control problem (1.1)–(1.3) and an optimal stopping problem.

Theorem 4.1. Assume that c ∈ C2, and, for some positive K and m, |c(x)| ≤
K(1+|x|m). If ĉ(x) ≥ 0 for all x, then the control u ≡ 0 is optimal, and Z∗(t) = xe−θt

is the optimal process.
Remark 4.1. A particular case occurs when c′′(x) ≥ 0 for all x, so that c is convex.

In fact, if c is convex, whether it is differentiable or not, u ≡ 0 is optimal. Indeed, for
any admissible control E[Xu

x (t)] = Z∗(t), and so, for convex c, E[c(Xu
x (t))] ≥ c(Z∗(t))

by Jensen’s inequality for any t ≥ 0. Hence Z∗ is optimal.
Proof of Theorem 4.1. When u ≡ 0, Xu

x (t) = Z∗(t) = xe−θt, and the correspond-
ing payoff is Q(x) =

∫∞
0

e−αtc(xe−θt) dt. The following properties are immediate.

(a) Q is a C2 function, and |Q(x)| ≤ K̃(1 + |x|m) for some K̃ <∞.
(b) θxQ′(x) + αQ(x) = c(x).

Moreover, nonnegativity of ĉ implies Q′′(x) ≥ −2 for all x. Thus Q is a C2 solution
to the HJB equation (3.1). Next, one can apply Itô’s lemma together with standard
verification-theorem arguments from stochastic control [5, pp. 145–146] to verify that
Q is the value function. This proves Theorem 4.1.

The next theorem discusses optimality of single-region feedback controls. For its
statement, it is useful to define Ṽa to be the solution to{

σ2
0

2 (Ṽ ′′
a (x) + 2)− θxṼ ′

a(x)− αṼa(x) + c(x) = 0,

Ṽ ′′
a (−a) = Ṽ ′′

a (a) = −2.
(4.2)

Theorem 4.2. Assume (C.1)–(C.2). Suppose that there exists an open interval
(−�, �) such that

{x; ĉ(x) < 0} = (−�, �).(4.3)

Let

a∗ = sup
{
a ; Ṽ ′′

a (x) < −2 for −a < x < a
}
.(4.4)

Then a∗ > � and the solution to Z∗
x(t) = x−∫ t

0
θZ∗

x(s) ds+
∫ t
0
σ01(−a∗,a∗)(Z

∗
x(s)) dW (s)

is an optimal process for the control problem (1.1)–(1.2) for every x.
Examples. (a) Let c(x) = (1+x2)−1. Note that c also satisfies (C.3). If (2θ+α) ≥

1, then ĉ(x) ≥ 0 for all x and u ≡ 0 is optimal. If 2θ + α < 1, then there is an � > 0
so that (4.3) holds, and hence it will be optimal to turn on the diffusion in an interval
about 0.

(b) More generally, (4.3) will hold for a function c satisfying (C.1)–(C.2) if c
admits only one positive inflection point z and c′′ is increasing on (0, z).

We first prove Theorem 4.2 by direct construction of a solution V ∗ to (3.2) and
(3.3) with G = (−a∗, a∗), where G is defined as in Theorem 3.1. Later, we give an
alternate derivation using developments based on Theorem 3.2.
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To present the construction of V ∗, it is convenient and interesting to convert
the original problem of minimizing J(x, u) to an optimal stopping problem. Given a
Brownian motion W on any probability space, let Yx denote the Ornstein–Uhlenbeck
process solving

Yx(t) = x−
∫ t

0

θYx(s) ds + σ0W (t).(4.5)

Let

U(x) = inf
τ

E

[∫ τ

0

e−(2θ+α)tĉ(Yx(t)) dt

]
,(4.6)

where the infimum is taken over all {FWt } stopping times, {FWt } being the filtration
generated by W , and ĉ is given by (4.1). It will turn out that U is related to the optimal
value function V by U(x) = (V ′′(x) + 2)1{V ′′(x)+2<0}. The connection between value
functions of optimal control and optimal stopping problems is a common theme of
stochastic control. For example, see [9] and [10] and references therein.

Consider next a particular class of stopping times for the optimal stopping prob-
lem. For a ≥ |x|, define

τxa := inf{t ≥ 0 ; |Yx(t)| ≥ a}.(4.7)

If |x| > a, set τxa = 0. For any a, τxa is finite a.s. since Yx satisfies (4.5). Define the
function Ua on [−a, a] by

Ua(x) = E

[∫ τxa

0

e−(2θ+α)tĉ(Yx(t)) dt

]
, |x| ≤ a.(4.8)

Then Ua satisfies the differential equation

σ2
0

2 U ′′
a − θxU ′

a − (2θ + α)Ua + ĉ = 0 for |x| < a,
Ua(−a) = Ua(a) = 0.

}
(4.9)

For each positive a, Ua can be extended to R so that it satisfies the differential equation
everywhere, and henceforth we represent this extension by Ua. Notice that each Ua
is an even function, because ĉ is even and the boundary conditions are symmetrical.
Thus U ′

a(0) = 0.
The next result contains the technical work necessary for constructing an optimal

policy for the stopping problem.
Lemma 4.3. Assume (C.1) and (C.2). Then
(a) There exists a point a∗ > � such that Ua∗ , the solution of (4.9) for a = a∗,

also satisfies

U ′
a∗(a∗) = U ′

a∗(−a∗) = 0.(4.10)

(b) The point a∗ > 0, and hence the solution Ua∗ satisfying (4.10), are unique.
Also, if A := {a > 0 ; Ua(x) < 0, x in (−a, a)}, then A is nonempty and a∗ = supA.

Proof. We indicate the idea of the proof and omit elementary details.
Let � be given by (4.5); then � ∈ A and U ′(�) > 0. This follows from the boundary

point lemma [17]. Consider the solution φ to the homogeneous equation

σ2
0

2
φ′′ − θxφ′ − (2θ + α)φ = 0, φ(0) = 1, φ′(0) = 0.(4.11)
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Then φ is a nonnegative, even function. Also, U(x) defined in (4.6) satisfies

U(x) ≥ infy ĉ(y)

2θ + α
.(4.12)

In particular, Ua(x) also satisfies (4.12) for |x| ≤ a, for each a ∈ A. For each t > 0,
we consider U*(x) − tφ(x), which solves (4.9). Introduce the set T := {t > 0 ; ∃a >
�, U*(a)− tφ(a) = 0}. Then T is nonempty since U ′

*(�) > 0, and (4.12) implies that T
is bounded. Let t∗ := supT , and introduce a∗ = inf{a > 0 ; U*(a)−t∗φ(a) = 0}. Then
a∗ ∈ A and elementary arguments show that A = (0, a∗], Ua∗(a∗) = 0, U ′

a∗(a∗) = 0,
and U(x) < 0 for a∗ > x ≥ 0. Hence, a∗ satisfies the conditions in the lemma. Since
A = (0, a∗], uniqueness of a∗ also follows.

Lemma 4.3 allows us to solve the optimal stopping problem and calculate U .
Theorem 4.4. Assume (C.1) and (C.2). Let a∗ be defined as in Lemma 4.3, and

τxa as in (4.7). Then τxa∗ is the optimal stopping policy for the problem (4.5)–(4.6) and

U(x) =

{
Ua∗(x) if |x| ≤ a∗,
0 if |x| > a∗.

Proof. Let U∗(x) = Ua∗(x)1[−a∗,a∗](x). Certainly, U∗(x) ≥ U(x), so we need
only to verify the opposite inequality. By Lemma 4.3, U∗ is a C1 function and the
second derivative of U∗ is continuous everywhere except at ±a∗. But we may apply
Itô’s rule to U∗(Yx(t))e−(2θ+α)t (see [11, p. 219]) and use (4.9) to verify that U∗(x) ≤
U(x).

Proof of Theorem 4.2. We will show that Theorem 4.2 holds when a∗ is defined as
in Lemma 4.3. For this a∗, let Z∗

x be the process defined in the statement of Theorem
4.2. The existence of Z∗

x and its uniqueness in law are treated in Theorem 2.2. Let
V ∗ be the payoff from Z∗;

V ∗(x) = E

[∫ ∞

0

e−αt
(
c(Z∗

x(t)) + σ2
01(−a∗,a∗)(Z

∗
x(t))

)
dt

]
.(4.13)

We intend to employ Theorem 3.1. Observe that V ∗ satisfies (3.2) for all x �= ±a∗,
with G = (−a∗, a∗) and λ = 1. This follows from Theorem 2.2 and the fact that
Z∗
x(t) is the solution of the deterministic equation ẋ = b(x), as long as it remains in

(−∞,−a∗) ∪ (a∗,∞). In particular, Theorem 2.2 shows that

(V ∗)′′(−a∗+) = (V ∗)′′(a∗−) = −2.(4.14)

Now let Û := (V ∗)′′ + 2. By differentiating the differential equation for V ∗ on
(−a∗, a∗) and using the boundary conditions (4.14), it follows that Û satisfies (4.9)
on (−a∗, a∗). Thus, (V ∗)′′(x)+2 = Ua∗(x) on (−a∗, a∗), and since a∗ ∈ A, by Lemma
4.3, (V ∗)′′(x) + 2 < 0 on (−a∗, a∗). By Lemma 4.3, it follows that, (V ∗)′′′(−a∗+) =
(V ∗)′′′(a∗−) = U ′

a∗(±a∗) = 0. Hence, condition (3.16) applies, implying that V ∗ is a
C2 function. Direct differentiation and the continuity of (V ∗)′′ imply

θxÛ ′ + (2θ + α)Û = ĉ for x > a∗, Û(a∗) = (V ∗)′′(a∗) + 2 = 0.(4.15)

By directly solving this equation and using the fact that ĉ > 0 on (a∗,∞), (V ∗)′′+2 =
Û > 0 on (a∗,∞). By symmetry, (V ∗)′′ + 2 > 0 for |x| > a∗. Hence all the conditions
of Theorem 3.1 are fulfilled, which completes the proof.
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The proof of Theorem 4.2 relied on direct construction and an application of
the verification lemma of Theorem 3.1 We now invoke Theorem 3.2 to show that
the characterization of a∗ in Theorem 4.2 and the relation of the set {ĉ < 0} to
(−a∗, a∗) reflects deeper and more general facts about the optimal value function.
Let G := {x ; −θxV ′(x)− αV (x) + c(x) > 0} as in Theorem 3.1. General bounds on
the size of the components of G are presented in Lemmas 3.4 and 3.5. The following
result bounds the number of connected components of G. Note that it implies that
G consists of at most one interval, symmetric about zero, under the assumptions of
Theorem 4.2.

Lemma 4.5. Let c satisfy (C.1) and (C.2), and suppose the open set {x ; ĉ(x) < 0}
has N connected components. Then G contains at most N + 1 connected components.
If G contains a connected component of the form (−δ, δ), then G has at most N
connected components.

Proof. We intend to show that
(a) each connected component of G intersects with a connected component of the

set {x ; ĉ(x) < 0}, and that
(b) each connected component of {x ; ĉ(x) < 0} intersects with at most one con-

nected component of G.
The proof of the lemma is an easy consequence of these facts.

Let (r, q) be a connected component of G with q > 0. Then V is a C4 solution
of (3.5) and (3.6) on (r, q) by Theorems 3.1 and 3.2. Let U := V ′′ + 2. Then U < 0
on (r, q) and there is an x0 in (r, q) such that U(x0) = min(r,q) U . By differentiating
(3.5) twice and applying (3.6), U is a solution of

σ2
0

2 U ′′ − θxU ′ − (2θ + α)U + ĉ = 0 for x ∈ (r, q),
U(r) = U(q) = 0.

}
(4.16)

From (4.16), it follows that ĉ(x0) < 0. This proves (a). Also, ĉ(q) cannot be negative
by (4.16) and the boundary point lemma. If (a1, a2) is a connected component of
(0,∞) ∩ {ĉ < 0} such that (a1, a2) ∩ (r, q) �= ∅, then q �∈ (a1, a2), and (b) follows.

If G contains zero, then the above argument shows that G contains at most N
connected components.

The next result shows that the characterization of a∗ in Theorem 4.2 defines the
limits of the connected component of G containing 0, in the general case.

Theorem 4.6. Let c satisfy (C.1) and (C.2), and define a∗ by (4.6) and the
set A as in Lemma 4.3. Assume that A is nonempty. Then (−a∗, a∗) is one of the
connected components of G.

Proof. Let a ∈ A and let Ṽa be the payoff function associated with the feedback
control 1(−a,a)(X(t)). By Theorem 2.2, Ṽa(x) solves (4.2). Because Ṽa is even, Ṽ ′

a(0) =

0, and by definition of A, Ṽ ′′
a + 2 < 0 on (−a, a). Hence, evaluation of (4.2) at 0 gives

αV (0) ≤ αVa(0) = c(0) + σ2
O(V ′′

a (0) + 2) < c(0).

Since V ′(0) = 0 and V is even, it follows that 0 ∈ G. Thus there is a connected
component (−ā, ā) of G. Consequently, by (4.2) and Theorem 3.1, we deduce V (x) =
Vā(x) for |x| ≤ ā. Therefore ā ∈ A and ā ≤ a∗. To show a∗ ≤ ā, let a ∈ A. If
x ∈ [−a, a] and if u is an admissible control that keeps the process Xu

x in [−a, a]
for all time, then a verification-lemma-type argument shows that Ṽa(x) ≤ J(x, u) for
|x| ≤ a. In particular, Ṽa2(x) ≤ Ṽa1(x) for all x in [−a1, a1] whenever 0 < a1 < a2

and a1 and a2 belong to A. If u∗ denotes the optimal feedback control 1G(X(t)) and
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(−ā, ā) is the connected component of G containing 0, V (x) = Vā(x) for |x| ≤ ā.
Thus, if ā ≤ a and a ∈ A, then Ṽa(x) = V (x) for |x| ≤ a, and it follows that a = ā.
In summary, a ∈ A and ā ≤ a imply ā = a. Consequently, ā ≥ supA = a∗, which
completes the proof.

Remark 4.2. Lemma 4.5 and Theorem 4.6 together show that if {ĉ < 0} is an
interval (−�, �) and A is nonempty, then G = (−a∗, a∗) with a∗ > 0. Using the simple
proof of the nonemptiness of A derived above in Lemma 4.3 yields an alternative proof
of Theorem 4.2.

In the rest of this section, we consider cost functions c which satisfy (C.1), (C.2),
and (C.3), and positive constants θ and α such that the set {x ; ĉ(x) < 0} is the union
of three disjoint intervals. Under the additional assumption (C.4), (C.5), and (C.6)
listed below, it will be shown that the optimal strategy is bang-bang and consists
of multiple switchings of the control. This is rather technical but the intuition is
simple. Since c satisfies (C.3), it is decreasing on (0,∞). Now suppose that at some
very large value of x0, c suddenly decreases to a fraction of the value c(x0) in a short
interval beyond x0. If the state process starts above x0 and no control is exercised,
it decreases, passing quickly through x0 into a region of much higher cost. However,
using positive diffusion control in a region near or above x0 will delay arrival at x0

and, despite the control cost, this might be worthwhile.
Because of Theorem 4.3, the value function is C2 in a problem with a single-region

optimal control. For multiple-region optimal controls, such as those constructed here,
C2 smoothness will fail at some of the switching points. See Remark 4.3 below.

Here are the precise hypotheses placed on c, θ, and α, in addition to (C.1)–(C.3).
(C.4) {x ; ĉ(x) < 0} = (−δ0, δ0) ∪ (δ1, δ2)I2 ∪ (−δ2,−δ1), where 0 < δ0 < δ1 < δ2.
(C.5) There exists a z0, with

√
c(0)/α ≤ δ0 < z0 < δ1, such that

∫ x
δ0

ĉ(u) du > 0
if δ0 < x < z0.

(C.6)
∫ δ2
δ0

u1+α/θ ĉ(u) du < 0.

Assumptions (C.4)–(C.6) guarantee the multiple switching of the optimal control.
Example. The idea is to start with a function c satisfying the assumptions of

Theorem 4.2 and then to modify it far away from 0 by a sudden dip. The location
and width of the dip are controlled by defining a “dip” function ρ and scaling it
appropriately. Choose a function ρ such that (a) ρ is C∞, decreasing, and odd; (b)
ρ(x) = 1 if x ≤ −1, and ρ(x) = −1 if x ≥ 1; (c) ρ′′(x) ≤ 0 if x < 0, and ρ′′(x) ≥ 0
if x ≥ 0; and (d) ρ′′ admits a single local maximum and a single local minimum.
Notice that ρ′′(x) = 0 at x = 0 and for |x| ≥ 1. Condition (d) on ρ is imposed so
that if max[0,1] ρ

′′ = −min[−1,0] ρ
′′ = k > 0, then {ρ′′ < 0} is an interval (s1, s2) with

−1 < s1 < s2 < 0. For ε > 0 define scaled versions ρε of ρ by ρε(x) := ρ(x/ε). Assume
that γ := 2θ + α < 1. Fix an R >

√
c(0)/α, and let cε be an even, nonnegative, C3

function which satisfies

cε(x) = 1− x2 if |x| ≤ 1/2,
cε(x) = 1/2 if 1 ≤ |x| ≤ R,
cε(x) = 1/4 + (1/4)ρε (|x| − (R+ε)) if |x| > R.

Assume also that cε is decreasing on (0,∞) and that c ∨ (1/2) satisfies the condition
(4.3) of Theorem 4.2. Then (−R,R)∩{ĉ < 0} is a single interval of the form (−δ0, δ0)
contained in (−1, 1). Clearly, (C.5) is satisfied for this construction.

We shall show that ε may be chosen to satisfy (C.4) and (C.6) as well. Observe
that c′′(x) = ε−2ρ((x−R− ε)/ε) when x > R. Therefore, when max[0,1] ρ

′′ > ε22γ, it
follows from the shape of ρ′′ that (R,∞)∩{ĉ < 0} = (δ1(ε), δ2(ε)), where R < δ1(ε) <
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δ2(ε) < R + ε. In fact (δi − R − ε)/ε = zi(ε), where z1(ε) and z2(ε) are the solutions
of ρ′′(x) = −2ε2γ. This verifies (C.4). It is easy to see that z1(ε) ↓ −1 and z2(ε) ↑ 0
as ε ↓ 0. A calculation and using change of variables shows that∫ δ2

δ0

u1+α/θ ĉ(u) du ≤ K + ε−1

∫ z2(ε)

z1(ε)

ρ′′(u)(R + ε(u + 1))1+α/θ du,

where K is a positive constant independent of ε. Therefore, since ρ′′ is negative
on (−1, 0), the last integral can be made as negative as desired by choosing ε small
enough. Hence (C.6) will be satisfied for small enough ε.

Theorem 4.7. Assume (C.1)–(C.6). Then there exist 0 < a∗0 < a∗1 < a∗2 such
that the optimal control is determined by the feedback function σ01G(x), where

G := (−a∗2,−a∗1) ∪ (−a∗0, a∗0) ∪ (a∗1, a
∗
2).

Moreover, δ0 < a∗0 < z0 and a∗1 < δ2 < a∗2, where δ0, z0, and δ2 are as defined in
(C.4)–(C.6).

Proof. Let a∗0 = supA, where A is defined as in Theorem 4.2. Then we know
from Theorem 4.6 that (−a∗0, a∗0) is a connected component of G. By Lemma 3.5 and
the proof of Lemma 4.5, we know that δ0 < a∗0 < z0. Suppose that G contains no
more components. Then on |x| > a∗0, V satisfies (3.7) and hence U = V ′′ + 2 satisfies
(4.15). The solution of (4.15) is

U(x) =
1

θ

1

(a∗0)2+α/θ

∫ x

a0

u1+α/θ ĉ(u) du.

However, this becomes negative by (C.6) in some interval about δ2. Since U(x) ≥ 0
a.e. on Gc, we obtain a contradiction to the assumption that (−a∗0, a∗0) is the single
component of G. Therefore G must contain at least two other components, symmet-
rically placed about 0. By Lemma 4.5 it can contain no more components. By the
proof of Lemma 4.5, the additional positive component (a∗1, a

∗
2) must intersect (δ1, δ2),

and it must be true that δ2 < a∗2.
Remark 4.3. In this example, the value function V is an even function which is

C2 everywhere except at ±a∗1. At x = a1, (σ2
0/2)V ′′′(a∗1+) + θa∗1(V ′′(a∗1−) + 2) = 0.

This condition can be easily verified by differentiating (3.2) near a∗1 and using the
continuity of V ′.

5. Nonlinear drift. In this section we consider problem (1.1)–(1.3) when the
drift b is nonlinear. In the treatment of linear drift, the function ĉ defined in (4.1)
played a crucial role. The generalization of this function, which we continue to denote
by ĉ, is

ĉ(x) = c′′(x) + 2 (α− 2b′(x)) ,(5.1)

and this coincides with ĉ defined in (4.1) when the drift is linear. The nonlinearity of
b will make itself felt through a second auxiliary function gc defined as

gc(x) = ĉ(x) +
b′′(x) (c′(x)− 2b(x))

α− b′(x)
.(5.2)

The first result is a generalization of Theorem 4.1. It is proved in the same way,
and so the proof is omitted.
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Theorem 5.1. Assume that b ∈ C2 is decreasing and xb(x) < 0 if x �= 0. Assume
that c ∈ C2 and there exist constants K and m such that 0 ≤ c(x) ≤ K(1 + |x|m) for
all x. If

gc(x) ≥ 0 for all x,

then u ≡ 0 is the optimal control for problem (1.1)–(1.3).
For the rest of the section it is a standing assumption that c satisfies (C.1)–(C.3),

b satisfies (B.1), and

(B.2) b is odd.

Again, by adding a constant to c, we may and do make the harmless assumptions
that c is nonnegative and, in fact, lim|x|→∞ c(x) = 0. Also, without loss of generality,
λ = 1.

For each a > 0, let Va denote the cost from the control strategy defined by
u(t) = σ01(−a,a)(Xx(t)). Then by Theorem 2.2, on (−a, a), the function Va satisfies

σ2
0

2
(V ′′

a + 2) + b(x)V ′
a − αVa + c(x) = 0, V ′′(−a+) = −2, V ′′(a−) = −2,(5.3)

and for |x| > a, b(x)V ′
a(x)−αVa(x)+c(x) = 0. Hence Va solves (3.2) with G = (−a, a)

for x �= ±a, but it does not in general satisfy (3.3). Our next concern is to find
conditions under which a single-region control is optimal. In this section we take a
direct approach. We verify directly that Va is a solution to (3.2)–(3.3) for a suitable
choice of a when b and c satisfy certain conditions; then application of Theorem 3.1
proves optimality of the single-region control.

Define the set A exactly as in section 4: A := {a > 0 ; V ′′
a + 2 < 0 on (−a, a)}.

Lemma 5.2. Assume that A is nonempty. Let a ∈ A and assume that

V ′′′
a (a−) = 0 and V ′′

a (x) + 2 > 0 for |x| > a.(5.4)

Then Va is a C2 solution to (3.2)–(3.3) and σ01(−a,a)(x) defines an optimal feedback
control.

Proof. The argument is very similar to the proof of Theorem 4.2. It was shown in
(5.3) that Va satisfies (3.2) with G = (−a, a) for all x �= ±a. Condition (5.4) asserts
both that (3.3) is satisfied and that Va is a C2 function (see Remark 3.4 in section 3).
Hence, Theorem 3.2 can be applied.

To establish when the conditions of 5.2 are true, define again Wa = V ′′
a + 2. This

function is not necessarily defined at ±a, but it will have limits from the left and right
at these points. By differentiating (5.3) twice, we find

LWa = −gc(x), Wa(−a+) = Wa(a−) = 0,(5.5)

where L is the differential operator

L =
σ2

0

2

d2

dx2
+

(
b(x) +

σ2
0b

′′(x)

2(α− b′(x))

)
d

dx
−
[
(α− 2b′(x))− b(x)b′′(x)

α− b′(x)

]
.

On |x| > a, a similar derivation shows

b(x)W ′
a −

(
α− 2b′(x)− b(x)b′′(x)

α− b′(x)

)
Wa = −gc(x).(5.6)
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The following facts are needed. First, for any a > 0, any continuous function g,
and any constant η,{

σ2
0

2 (Z ′′ + 2) + b(x)Z ′ − αZ + g(x) = 0 for x ∈ (−a, a),
Z ′′(−a) = Z ′′(a) = η

(5.7)

has a unique solution. This is an immediate consequence of part (b) of Theorem 2.2.
Second, V ′′

a (x) is continuous in a for |x| < a. This can be deduced from elementary
o.d.e. arguments. The next lemma generalizes the characterization of a∗ in section 4.

Lemma 5.3. (a) Assume that ĉ(0) < 0. Then the set A is nonempty.
(b) Assume that A is nonempty. Then A is a closed, bounded set. If a∗ = supA,

then V ′′′
a∗ (a∗−) = 0.

Proof. Observe that gc(0) = ĉ(0) < 0 by assumption. We pick ε small enough so
that gc(x) < 0 on (−ε, ε) and α− 2b′(x) > b(x)b′′(x)/(α− b′(x)) for all x in (−ε, ε).
Now we pick any a such that 0 < a < ε. Then Wa(±a) = 0 and from (5.5) we have
LWa > 0 on (−a, a). Thus, Wa < 0 on (−a, a) by applying the maximum principle
to (5.5). Hence a ∈ A.

Consider now part (b). To show A is bounded we follow the proof of Lemma 3.5.
To show that a∗ ∈ A, first let a1 < a2, where both a1, a2 ∈ A. Then, since Wa1

and Wa2 both solve the same differential equation in (5.5) on [−a1, a1], it follows that
V ′′
a2

(x) < V ′′
a1

(x) on [−a1, a1]. Now let an → a∗, where all the an are in A. Then
if |x| < a∗, V ′′

a∗(x) = limn→∞ V ′′
an(x) < −2, where we have used the continuity in a

noted above. Thus a∗ ∈ A.
Since a∗ ∈ A, V ′′′

a∗ (a∗−) ≥ 0. We show that if a ∈ A and V ′′′
a (a) > 0, then a < a∗.

This will complete the proof of part (b). Let Ṽa denote the function which satisfies
(5.3) for all x and coincides with Va on [−a, a]. If we assume that V ′′′

a (a−) > 0,
then V ′′

a (x) > −2 in an interval (a, a + ε) for some positive ε. Consider Va1 for some
a < a1 < a + ε. Then V ′′

a1
(a1) = −2 < Ṽa(a1). By uniqueness of solutions to (5.7), it

then follows that V ′′
a1

(x) < Ṽ ′′
a (x) for all x. In particular V ′′

a1
(x) < −2 on [−a, a]. Let

a2 = inf{x ; V ′′
a1

(x) ≥ −2}. Then a1 ≥ a2 > a and a2 ∈ A because Va1
and Va2

will
coincide on [−a2, a2]. Thus a < a∗, as claimed.

According to Lemma 5.2, Va∗ is the optimal value function if the second condition
in (5.4) holds. This requires further conditions on b and c. We state and prove two
theorems in this vein. Define the conditions: for some δ0 > 0 and some x0 > 0,
(H.1) {ĉ < 0} = (−δ0, δ0) and ĉ increases on [0, δ0],
(H.2) c′(x) ≥ 2b(x) for x ≥ x0,
(H.3) b′′′(x) < 0 on [0, δ0] and b′′(x) ≤ 0 on [0, x0], and
(H.4) gc has exactly one zero in [0, δ0].

Remark 5.1. The assumption (H.2) is not very restrictive when b is negative and
decreasing on (0,∞), since, typically, lim|x|→∞ c′(x) = 0.

In regard to (H.4), observe that (H.1) implies gc(0) = ĉ(0) < 0. If we assume
c′(x) − 2b′(x) is negative on [0, δ0], it follows from (H.1) and (H.3) that gc(δ0) > 0,
and hence gc has at least one zero on (0, δ0).

Theorem 5.4. Assume (H.1)–(H.4) in addition to (B.1)–(B.2) and (C.1)–(C.3).
Then A is nonempty, Va∗ is the optimal value function, and u(x) = σ01(−a∗,a∗)(x) is
an optimal feedback control.

The proof is established through several lemmas. Using the assumptions (C.1)
and (C.2) and applying the maximum principle [17], one can easily show that for each
a > 0, V ′

a(x) ≤ 0 for all x > 0. This will be used in the following proofs.
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Lemma 5.5. Assume (H.1), (H.2), and (H.3) as well as (B.1)–(B.2) and (C.1)–
(C.3). Then

(a) Wa∗(x) ≥ 0 on [x0,∞) where x0 is defined in (H.2),

(b) A is nonempty and a∗ = supA ≤ x0, and

(c) V ′′′
a∗ (x) ≥ 0 on [0, a∗).

Proof. On |x| > a, differentiate the equality b(x)V ′
a(x) − αVa(x) + c(x) = 0 to

derive

b(x)Wa∗(x) = (α− b′(x))V ′
a∗(x)− (c′(x)− 2b(x)) , |x| > a.(5.8)

Since V ′
a(x) ≤ 0 for x ≥ 0, and, by (B.2), b(x) < 0 for x > 0, and, by (H.2),

c′(x) − 2b(x) ≥ 0 for |x| ≥ x0, conclusion (a) follows. The assumption ĉ(0) < 0 in
(H.1) implies that A is nonempty, as in Lemma 5.3. Also, Wa∗(x) < 0 for |x| < a∗,
and hence a∗ ≤ x0. The proof of part (c) follows from the maximum principle applied
to LW ′

a∗ = − [ĉ′ + 3b′′Wa∗ + b′′′Va∗ ] in [0, a∗) and W ′
a∗(0) = W ′

a∗(a∗−) = 0.

The final lemma finishes the proof of Theorem 5.4 by verifying (5.4).

Lemma 5.6. Let the assumptions of Theorem 5.4 hold. Then V ′′
a∗ + 2 ≥ 0 on

[a∗,∞).

Proof. Because of the previous lemma, it suffices to show that Wa∗ ≥ 0 on [a∗, x0].
Introduce ξ in [a∗, x0] by Wa∗(ξ) = min[a∗,x0] Wa∗(x). Assume that Wa∗(ξ) < 0. Then
a∗ < ξ < x0 since Wa∗(x0) ≥Wa∗(a∗) = 0. By differentiation of (5.8),

bW ′
a∗ − (α− 2b′)Wa∗ = −ĉ− b′′V ′

a∗ for |x| > a∗.(5.9)

Evaluating at x = ξ implies ĉ(ξ) + b′′(ξ)V ′
a∗(ξ) < 0. But since V ′

a∗ ≤ 0 on (0,∞) and
b′′(x) ≤ 0 on [0, x0], we must have ĉ(ξ) < 0, and therefore a∗ < ξ < x0 ≤ δ0. However,
this is not possible. By (H.4), gc has exactly one zero in [0, δ0], and gc(0) = ĉ(0) < 0,
gc(a

∗) ≥ 0. Therefore, gc > 0 on (a∗, x0]. For all x > a, Wa∗ satisfies (5.6) and
Wa∗(a∗) = 0. Also, b(x) < 0 for x > 0, and hence (5.6) implies that Wa∗ > 0
on (a∗, δ0]. This contradicts Wa∗(ξ) < 0 for a∗ < ξ < δ0. Hence Wa∗ ≥ 0 on
[a∗, x0].

In the next theorem, we show optimality of one-region control under hypotheses
that require b′′ ≥ 0 on (0, x0), rather than (H.3).

Theorem 5.7. Assume that (B.1), (B.2), (C.1)–(C.3), and (H.2) hold and that
ĉ(0) < 0. Assume also that b′′′ ≥ 0, b′′ ≥ c′′′/6, and b′′ > 0 on (0, x0), where x0 is as
in (H.2). Then the conclusions of Theorem 5.4 hold.

Proof. Because we assume ĉ(0) < 0, we know that A is nonempty, and we
conclude from Lemma 5.1 and the smooth fit condition (3.16) that Va∗ is a bounded,
C2 function. Thus, we need only to verify Wa∗ ≥ 0 on (a∗,∞). Using (H.2), we can
follow the proof of Lemma 5.5 to conclude that Wa∗ ≥ 0 on [x0,∞). Hence it remains
to show that Wa∗ is nonnegative on [a∗, x0]. By differentiating (5.9) on the interval
(a∗, x0) once more, we obtain

−bW ′′
a∗ + (α− 3b′)W ′

a∗ − 3b′′Wa∗ = c′′′ − 6b′′ + b′′′V ′
a∗ .(5.10)

We also know Wa∗(a∗) = 0, and Wa∗(x0) ≥ 0. The maximum principle applied to
(5.10) on the interval [a∗, x0], using the assumptions placed on b′′ and b′′′, implies
that Wa∗ cannot admit a strictly negative minimum in (a∗, x0). This completes the
proof.
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6. Conclusion. We have derived some explicit characterizations of the optimal
control and optimal value functions in scalar problems with possibly degenerate vari-
ance control in which the variance is used to keep the diffusion away from regions of
high running cost.

Throughout our analysis the discount rate α and the control cost multiplier λ
were fixed. It is interesting to ask how the solutions behave as either λ → ∞ or
α→ 0, with appropriate scaling of the cost. When α→ 0 and the cost is scaled by α,
one expects a limit which corresponds to an average cost control problem. The paper
of Assaf [1] treats an example of average cost minimization using unbounded variance
control directly.
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Abstract. Given a locally defined, nondifferentiable but Lipschitz Lyapunov function, we employ
it in order to construct a (discontinuous) feedback law which stabilizes the underlying system to any
given tolerance. A converse result shows that suitable Lyapunov functions of this type exist under
mild assumptions. We also establish that the feedback in question possesses a robustness property
relative to measurement error, despite the fact that it may not be continuous.

Key words. asymptotic stabilizability, discontinuous feedback law, system sampling, locally
Lipschitz Lyapunov function, nonsmooth analysis, robustness
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1. Introduction. Consider a standard control system of the form

ẋ(t) = f(x(t), u(t)) almost everywhere (a.e.), u(t) ∈ U ,(1.1)

and let V be a smooth Lyapunov function for the system; thus we have

V (x) ≥ 0, V (x) = 0 iff x = 0, V (x)→∞ as ‖x‖ → ∞

and (for some function W ) the infinitesimal decrease condition

min
u∈U

〈∇V (x), f(x, u)〉 ≤ −W (x) < 0, x �= 0.(1.2)

It is well known (but true) that the existence of such a “control-Lyapunov function”
(V,W ) (a framework introduced by Eduardo Sontag) implies (open-loop) asymptotic
controllability to the origin: for every α ∈ R

n, there is a control u(t) such that the
solution x(·) of (1.1) with initial condition x(0) = α satisfies x(t)→ 0 as t→∞. (In
addition, convergence to 0 takes place in a certain uniform and stable manner that
we will not dwell upon here.) A related and important goal in many situations is to
produce a state feedback k(·) : R

n → U which stabilizes the system, i.e., such that
the system ẋ = f(x, k(x)) is globally asymptotically stable. This article explores the
question of how to define such a feedback law through the use of a given Lyapunov
function V .

The ideal case, a well-known heuristic useful for motivational purposes, is the one
in which we can find a continuous function k(x) that selects a value of u ∈ U attaining
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Villeurbanne, France (clarke@desargues.univ-lyon1.fr, rifford@desargues.univ-lyon1.fr).
‡Steklov Institute of Mathematics, Moscow 117966, Russia (ledyaev@math-stat.wmich.edu). The

research of this author was supported in part by Russian Fund for Fundamental Research grant 96-
01-00219. Current address: Department of Mathematics, Western Michigan University, Kalamazoo,
MI 49008.

§Department of Mathematics and Statistics, Concordia University, Montreal, Quebec H4B 1R6,
Canada (stern@vax2.concordia.ca). The research of this author was supported by the Natural Sci-
ences Engineering Research Council of Canada and Fonds pour la Formation de Chercheurs et l’Aide
à la Recherche du Québec.
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(or almost) the minimum in (1.2):

〈∇V (x), f(x, k(x))〉 ≤ −W (x) ∀x �= 0.

Then any solution of ẋ = f(x, k(x)) is such that

d

dt
V (x(t)) = 〈∇V (x(t)), ẋ(t)〉 ≤ −W (x(t)) < 0,

a monotonicity conclusion that, together with the growth property of V , assures that
x(t)→ 0 as t→∞.

There are two fundamental difficulties with this ideal picture, and both concern
regularity issues. The first is that a differentiable Lyapunov function may not exist,
and the second is that even when a smooth V exists, the continuous selection k(·)
does not generally exist. If we have recourse to a discontinuous feedback k(·), then the
issue arises of how to interpret the discontinuous differential equation ẋ = f(x, k(x)).

The primary goal of this article is to give a general answer to the problem of
defining a (discontinuous) stabilizing feedback based upon a given (nondifferentiable)
Lyapunov function, one for which a nonsmooth version of infinitesimal decrease is
known to hold only on a restricted set. The construction is described in section 1,
while section 2 establishes the converse result that under mild conditions, a Lyapunov
function of the type required in the previous section always exists. In the final section,
we address the issue of robustness of the feedback with respect to measurement error
and small perturbations of the dynamics, a particularly important issue when discon-
tinuity is present. Some works and general references related to this article include
[2, 3, 8, 11, 12, 13, 15, 17, 18, 20, 23, 24, 26, 27, 28, 29, 31, 32]. We proceed now to
situate our results with respect to the literature.

The possible nonexistence of continuous stabilizing feedback was brought to light
in the seminal work of Sontag and Sussmann [30] and of Brockett [4]. The latter de-
veloped a necessary condition for continuous stabilizability and adduced the following
example, the “nonholonomic integrator”:

ẋ1 = u1,
ẋ2 = u2,
ẋ3 = x1u2 − x2u1,

(u1, u2) ∈ B̄ =: U .

This system is globally asymptotically controllable yet fails to admit a continuous
stabilizing feedback (by Brockett’s condition). In considering the use of discontinuous
feedback laws k(·), one could have recourse to the Filippov solution concept [14]: x is
said to be a solution of ẋ = f(x, k(x)) =: g(x) provided that we have

ẋ ∈
⋂
δ>0

meas(Ω)=0

cl co(g([x+ δB] \ Ω)).

However, as shown by Ryan [25] and by Coron and Rosier [12], Brockett’s condition
continues to hold for this solution concept, so that the nonholonomic integrator (for
example) cannot be stabilized by a discontinuous feedback in the Filippov sense.

In [6] it was shown that any globally asymptotically controllable system is sta-
bilizable by a (possibly discontinuous) feedback if the trajectory x(·) associated to
the feedback is defined in a natural way that involves discretizing the control law
(closed-loop system sampling) in a manner similar to that used in differential games
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by Krasovskii and Subbotin [19]. We proceed now to describe this concept, which is
the one used in this article.

Let π = {ti}i≥0 be a partition of [0,∞), by which we mean a countable, strictly
increasing sequence ti with t0 = 0 such that ti → ∞ as i → ∞. The diameter of π,
denoted diam(π), is defined as supi≥0(ti+1 − ti). Given an initial condition x0, the
π-trajectory x(·) corresponding to π and an arbitrary feedback law k : R

n → U are
defined in a step-by-step fashion as follows. Between t0 and t1, x is a classical solution
of the differential equation

ẋ(t) = f(x(t), k(x0)), x(0) = x0, t0 ≤ t ≤ t1.

(Of course in general we do not have uniqueness of the solution, nor is there necessarily
even one solution, although nonexistence will be ruled out by the feedback constructed
in section 1, which will preclude blow-up of the solution in finite time.) We then set
x1 := x(t1) and restart the system with control value k(x1):

ẋ(t) = f(x(t), k(x1)), x(t1) = x1, t1 ≤ t ≤ t2,

and so on in this fashion. The resulting trajectory x is a physically meaningful one
that corresponds to a natural sampling procedure and piecewise constant controls; the
smaller diam(π), the greater the sampling rate. Since our results are couched in terms
of π-trajectories, the issue of defining a solution concept for discontinuous differential
equations is effectively sidestepped. Our approach will lead to precise estimates of
how small the step size diam(π) must be for a prescribed stabilization tolerance to
ensue, and of the resulting stabilization time, in terms of the given data.

The next major point to address concerns the nonsmoothness of the Lyapunov
function V . An early and important result of Artstein [1] implies in particular that the
nonholonomic integrator fails to admit a smooth V (see [7] for related results). It has
been shown by Sontag [26], however, that globally asymptotically controllable systems
always admit a continuous Lyapunov function V satisfying the following nonsmooth
version of the infinitesimal decrease condition:

inf
u∈U

DV (x; f(x, u)) ≤ −W (x) < 0, x �= 0,(1.3)

where the lower Dini derivate DV is defined by

DV (x; v) := lim inf
t↓0

v′→v

V (x+ tv′)− V (x)

t
.(1.4)

Among the several important ways in which the theory of nonsmooth analysis inter-
venes in this article is that of asserting the equivalence to (1.3) of another, and for
our purposes more useful, form of the infinitesimal decrease condition:

inf
u∈U
〈f(x, u), ζ〉 ≤ −W (x) < 0 ∀x �= 0, ∀ζ ∈ ∂PV (x).(1.5)

Here ∂PV (x) refers to the proximal subdifferential of V at x (which may very well be
empty); ζ belongs to ∂PV (x) iff there exist σ and η > 0 such that

V (y)− V (x) + σ‖y − x‖2 ≥ 〈ζ, y − x〉 ∀y ∈ x+ ηB.

(B denotes the open unit ball, and the open ball of radius r centered at x is written as
either x+ rB or B(x, r).) The equivalence of (1.3) and (1.5) is a consequence of Sub-
botin’s theorem, which links Dini derivates to proximal calculus (see for example [6]
or [9], our principal sources for the theory of nonsmooth analysis).
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The essential reason for which proximal calculus is well suited to our approach
has to do with its relation to metric projection onto sets, upon which is based the
“proximal aiming” method that we employ. The crux is this: when x(ti) = x lies
outside a level set S = S(c) := {V ≤ c} and admits closest point (or projection)
s in S, then x − s is a “proximal normal” to S at s, and for some λ > 0 we have
λ(x − s) ∈ ∂PV (s). Then (1.5) can be invoked at s to find a suitable value of the
control u which moves the state toward S, in the sense that the Euclidean distance
dS decreases at a certain positive rate ∆:

dS(x(t))− dS(x(ti)) ≤ −∆(t− ti), ti ≤ t ≤ ti+1,

provided x(ti) is close enough to S to start with and provided diam(π) is small enough.
A sequence of such feedbacks is amalgamated in the first section to produce the
stabilizing feedback k(·) that is sought.

Our approach requires the Lyapunov function V to be Lipschitz (in the zone under
consideration). In the case of a system which is globally asymptotically controllable
to the origin, which has received considerable attention, it is not known whether a
suitable V exists that is Lipschitz near 0, but that is somewhat beside the point in the
setting in which we work. Theorem 2.1 derives finite-time stabilizability, to a close
approximation of some level set S(a), as a consequence of the supposed existence of a
Lipschitz Lyapunov function. When applied to the special case of global asymptotic
controllability, this requires only a Lipschitz V defined on the complement of a small
ball around the origin, and the stabilization takes place not asymptotically to the
origin, but rather in finite time to a small neighborhood of it. (This has been called
“practical” stabilization.) In contrast, [6] obtains asymptotic stabilizability to the ori-
gin (the case S(a) = {0}); the proof uses the Moreau–Yosida inf convolution to make
a continuous Lyapunov function Lipschitz as an intermediate step. This methodology
was also employed earlier [10], in a differential game setting. The direct use of a Lips-
chitz Lyapunov function, when it is possible, leads to a far more transparent feedback
construction with direct stabilization estimates and has the important consequence
of yielding robustness, as we discuss presently. The fact that under mild assumptions
suitable Lipschitz Lyapunov functions do exist leading to practical stabilization to
any required tolerance is proven in section 2.

Ledyaev and Sontag [22] have recently proved that there is a close relationship
between the issues of “how regular a Lyapunov function does the system admit” and
“how robust a stabilizing feedback does the system admit.” Consider, for example, a
perturbed equation ẋ = f(x, k(x+ p)), where p represents a measurement error. Full
robustness of the feedback k is taken to mean that for any ε, there is a δ > 0 such
that whenever the perturbation p(t) satisfies ‖p(t)‖ ≤ δ for all t, then stabilization
to the ε-ball takes place. Then [22] asserts that the system admits a fully robust
stabilizing feedback iff it admits a smooth (C1 or C∞) Lyapunov function. Thus the
nonholonomic integrator, which can be stabilized by a discontinuous feedback (in view
of [6]), does not admit a fully robust stabilizing feedback. It is possible to recover
robustness, however, through the use of a dynamic feedback; see [21]. The issue of
the robustness of discontinuous feedbacks with respect to measurement error seems
to have been raised first by Hermes [16].

The concept of full robustness, unrelated as it is to the system sampling method
that we employ, is not the one discussed in this article. Instead, we introduce a type
of relative robustness in which we require the size of the measurement error to be
limited as a function of the maximum step size δ of the underlying partition. This
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step size δ must still be small enough (for stabilization), but at the same time the
individual steps must be big enough to preclude a possible chattering phenomenon,
even in the presence of small errors. This consideration, which leads us to specify
“reasonably uniform” sampling in section 3, appears to be new in this context. The
term “reasonably uniform” is taken here to mean that the following holds:

δ

2
≤ ti+1 − ti ≤ δ ∀i ≥ 0,

although it is possible to replace the factor 1/2 by any constant in (0, 1).
To conclude with the nonholonomic integrator, then, it turns out that the system

does admit a relatively robust stabilizing feedback to within any prescribed tolerance
r, in the sense that for all initial conditions in a bounded set, we will have ‖x(t)‖ ≤ r
for all t ≥ T , whenever x is a π-trajectory, if π is a reasonably uniform partition whose
diameter is sufficiently small, and whenever measurement and external error do not
exceed a critical level related to the sampling rate. It is possible to exhibit a Lipschitz
Lyapunov function for the system, and to make explicit the resulting feedback, as will
be shown in a forthcoming article.

2. A feedback construction. For a given function V : R
n −→ (−∞,∞], we

shall deal frequently with the sublevel sets S(r) defined as follows:

S(r) := {x ∈ R
n : V (r) ≤ r}.

In addition, the following sets are considered:

S(a, b) := {x ∈ R
n : a ≤ V (x) ≤ b}.

Let a and b be two given numbers with a < b. The following hypotheses are made
concerning the function V and the system function f .
(H1) V is lower semicontinuous, S(b) �= ∅, and for some η > 0, V is Lipschitz of

rank LV on S(a, b) + ηB:

|V (x)− V (y)| ≤ LV ‖x− y‖ ∀(x, y) ∈ S(a, b) + ηB.

(H2) There exists δ1 ∈ (0, b− a) and δ2 > 0 such that

S(a+ δ1) + δ2B ⊂ S(b).

(H3) f(x, u) is continuous on S(b) + ηB as a function of x for each u ∈ U , and
there exists m > 0 such that

‖f(x, u)‖ ≤ m ∀x ∈ S(b) + ηB, ∀u ∈ U .

(H4) f is Lipschitz in x of rank Lf on S(a, b) + ηB:

‖f(x, u)− f(y, u)‖ ≤ Lf‖x− y‖ ∀(x, y) ∈ S(a, b) + ηB, ∀u ∈ U .

(H5) There exists ω > 0 such that, for every x ∈ S(a, b) + ηB, we have

inf
v∈cof(x,U)

DV (x; v) ≤ −ω.
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Remark 2.1. We do not require that f and V be defined except on S(b) +
ηB; the Lipschitz conditions on these functions, as well as the infinitesimal decrease
condition (H5), are posited only on a neighborhood of S(a, b). No hypotheses are
made concerning the abstract set U , nor on the nature of the dependence of f on
the control variable. It is shown in section 2 that (H2) automatically holds when
S(b) is compact and V is continuous on S(b) + ηB; see Lemma 2.9. The set S(a) is
not assumed to be nonempty a priori, but that fact is a consequence of the following
theorem.

Theorem 2.1. For any γ > 0 sufficiently small, there exist positive numbers
δ, T , and a feedback k : S(b) + ηB −→ U such that whenever a partition π satisfies
diam(π) < δ, then any π-trajectory x(·) having x(0) ∈ S(b) + γB satisfies

x(t) ∈ S(b) + γB ∀t ≥ 0,

x(t) ∈ S(a) + γB ∀t ≥ T.

Remark 2.2. Thus we almost recover the conclusion of the “ideal case” discussed
in the Introduction (with {0} replaced by the more general S(a)), but in approximate
terms (to tolerance γ), with a discontinuous feedback, and for a nonsmooth Lyapunov
function satisfying only local hypotheses. The proof is constructive and provides
explicit estimates of γ, δ, and T in terms of the given data.

Remark 2.3. Taking W (x) = ω for purposes of comparison, note that (H5) is an
apparently weaker hypothesis than (1.3); in fact, each is equivalent to (1.5). Because
V is Lipschitz and f continuous in x near the points in question, this in turn is
equivalent to the following:

inf
u∈U
〈ζ, f(x, u)〉 ≤ −ω ∀x ∈ S(a, b) + ηB, ∀ζ ∈ ∂LV (x),

where ∂LV is the limiting subdifferential of V (see [9]).
Proof of Theorem 2.1. The proof of Theorem 2.1 is based upon defining a feedback

control via projections. The first two lemmas below guarantee that the projections
lie in the set where the hypotheses are active.

Lemma 2.2. Let ε lie in [0, δ1] and suppose that x is a point in the set

[S(a+ ε) + min{δ2, η}B] \ S(a+ ε).

Then x ∈ S(a, b), and if s ∈ proj(x, S(a+ ε)), then s ∈ S(a, b) + ηB.
Proof. Since we have S(a+ δ1) + δ2B contained in S(b) by hypothesis, it follows

that x lies in S(b). Since x does not belong to S(a+ε), we deduce x ∈ S(a, b). Finally,
we have

‖s− x‖ < min{δ2, η} ≤ η,

whence s ∈ S(a, b) + ηB.
Lemma 2.3. Let 0 < γ < η/2, and suppose that for some r′ and r with a ≤

r′ < r ≤ b we have x ∈ [S(r) + γB] \ [S(r′) + γB]. Then x ∈ S(a, b) + γB, and if
s ∈ proj(x, S(r)), then s ∈ S(a, b) + ηB.

Proof. There exists y ∈ S(r) having ‖y − x‖ < γ. Since x does not belong to
S(r′) + γB, we have V (y) > r′ necessarily. Thus y ∈ S(a, b) and x ∈ S(a, b) + γB.
Finally, we note ‖x− s‖ < γ, whence ‖y − s‖ < 2γ and s lies in S(a, b) + ηB.
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The next “solvability” result is central to our approach. The notation u+ stands
for max{u, 0}.

Lemma 2.4. For any r ∈ [a, b], for any x ∈ S(a, b), we have

d(x, S(r)) ≤ m

ω
(V (x)− r)+.

Proof. We shall invoke results (and terminology) from [9] to give a short proof of
this result, whose proof from first principles would be lengthy.

We define a lower semicontinuous function g : R
n −→ [0,∞] as follows:

g(x) := (V (x)− r)+ + IS(b)(x),

where IS(b)(·) is the indicator function of the set S(b). At any point x in the open
set C := {y : g(y) > 0} at which g is finite, we have x ∈ S(a, b), and the infinitesimal
decrease condition implies that

inf{Dg(x; v) : v ∈ cof(x,U)} ≤ −ω.
It follows from this that for any ε > 0, for any x ∈ C, for any ζ ∈ ∂P g(x), there exists
u ∈ U such that

〈ζ, f(x, u)〉 ≤ −ω + ε.

Since ‖f(x, u)‖ ≤ m and since ε > 0 is arbitrary, we derive ‖ζ‖ ≥ ω/m. This verifies
the hypothesis of the solvability theorem [9, Theorem 3.3.1] (with the sets labeled
there as V and Ω both taken to be R

n), whose conclusion is precisely the desired
one since S(r) = {x : g(x) = 0}. We remark that an alternate proof can be based
upon weak monotonicity: the infinitesimal decrease condition implies the existence
of a trajectory x with x(0) = x and along which V (x(t)) + tω is decreasing (see [9,
Theorem 4.5.7]), which implies the result.

We now proceed to fix γ > 0 such that

γ < min

{
δ1,

η

2
,

ω

12LfLV

}
,(2.1)

and we define

β := min

{
δ1,

(b− a)

2
,
γω

4m

}
.(2.2)

Let N be the first integer such that

b−Nβ > a ≥ b− (N + 1)β.

Note thatN ≥ 1 since β < b−a. We proceed to define certain sets Ωi(i = 0, 1, . . . , N+
1) that lie at the heart of our construction.

For 0 ≤ i ≤ N − 1, we set

Ωi := [S(b− iβ) + γB] \ [S(b− (i+ 1)β) + γB];

for i = N we set

ΩN := [S(b−Nβ) + γB] \
[
S(b−Nβ) +

γ

4
B
]
;



32 CLARKE, LEDYAEV, RIFFORD, AND STERN

and finally, we define

ΩN+1 := S(b−Nβ) +
γ

4
B.

We now gather some facts about these sets.
Lemma 2.5.
(a) The Ωi are disjoint, and Ωi is contained in S(a, b) + γB for i ≤ N .

(b)
⋃N+1
i=0 Ωi = S(b) + γB.

(c) If x ∈ Ωi for some i ∈ {0, 1, . . . , N} and s ∈ proj(x, S(b − iβ)), then s ∈
S(a, b) + ηB.

(d) S(b− iβ) + γ
4B ⊂ S(b− (i+ 1)β) + γB(i = 0, 1, . . . , N − 1).

(e) For every i ∈ {0, 1, . . . , N},∀x ∈ Ωi, we have γ
4 ≤ d(x, S(b− iβ)) < γ.

(f) S(b−Nβ) + γ
2B ⊂ S(a) + γB, so that ΩN+1 ⊂ S(a) + γB.

Proof.
(a) That the Ωi are disjoint is evident; that they lie in S(a, b) + γB for i ≤ N

follows from Lemma 2.3 for i < N and from Lemma 2.2 for i = N (recall
that b−Nβ − a ≤ β ≤ δ1 and γ < δ2).

(b) Evident.
(c) Direct from Lemma 2.3 (i < N) or Lemma 2.2 (i = N).
(d) Let x lie in S(b − iβ) + γ/4B, and let s ∈ S(b − iβ) satisfy ‖x − s‖ < γ/4.

Then V (s) ≤ b− iβ, and if V (s) ≤ b− (i+ 1)β the conclusion is immediate.
Otherwise we have

V (s) > b− (i+ 1)β > a,

so that s ∈ S(a, b). By Lemma 2.4 there exists y ∈ S(b− (i+ 1)β) such that

‖s− y‖ ≤ m

ω
[V (s)− b+ (i+ 1)β] ≤ mβ

ω
≤ γ

2

in view of (2.2). Then

‖x− y‖ ≤ ‖x− s‖+ ‖s− y‖ < γ

4
+

γ

2
< γ,

which establishes the desired conclusion.
(e) For i = N , this is immediate from the definition of ΩN ; for i < N , it is a

consequence of (d).
(f) Let x belong to S(b−Nβ)+γ/2B, and let s ∈ S(b−Nβ) satisfy ‖x−s‖ < γ/2.

If V (s) ≤ a, then x ∈ S(a)+γB. Otherwise, s belongs to S(a, b), and Lemma
2.4 implies the existence of y ∈ S(a) such that

‖y − s‖ ≤ m

ω
[V (s)− a] ≤ m

ω
[b−Nβ − a] ≤ mβ

ω
≤ γ

2
.

But then ‖x− y‖ < γ, so again x ∈ S(a) + γB.
Lemma 2.6. Let x ∈ Ωi (i = 0, 1, . . . , N), and let s ∈ proj(x, S(b − iβ)). Then

there exists u ∈ U such that

〈x− s, f(s, u)〉 ≤ −ω
2LV
‖x− s‖.

Proof. By definition, x − s lies in the proximal normal cone NP (s, S(b − iβ)).
Note that s lies in S(a, b) + ηB (by Lemma 2.3 for i < N , by Lemma 2.2 for i = N),
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so that V is Lipschitz of rank LV in a neighborhood of s. A basic calculus result [9,
1.11.26] yields the existence of λ > 0 such that λ(x − s) ∈ ∂LV (s) and necessarily
λ‖x− s‖ ≤ LV . In accord with Remark 2.1, there exists u ∈ U such that

〈λ(x− s), f(s, u)〉 ≤ −ω
2

.

The result follows.

Defining the feedback. We now define a feedback k(·) on S(b)+γB as follows.
If x ∈ Ωi for some i ∈ {0, 1, . . . , N}, then we set k(x) = u, where u is one of the
points corresponding to x (and a projection s) as in Lemma 2.6. There remain the
points x in ΩN+1 to consider (see Lemma 2.5(b)). For such x, we define k(x) to be
any point in U . (We remark that we have phrased the definition of k(x) in such a
way that the choice of u as indicated above is made once and for all, but in fact a
different choice could be made if the same state x recurred subsequently, without at
all affecting what follows; this fact is relevant for real-time control.)

The remainder of the proof consists in establishing that for suitably small mesh
size, any π-trajectory generated by k(·) with initial condition in S(b) + γB remains
in S(b) + γB, enters S(a) + γB within a certain (uniform) time and then remains in
that set subsequently.

We consider countable partitions {tj} such that t0 = 0, limj→∞ tj =∞, and such
that 0 < tj+1 − tj ≤ δ for all j ≥ 0, where δ is any positive number satisfying

δ < min

{
γ

4m
,

ω

6mLfLV
,

γω

48m2LV
, 1

}
.(2.3)

For such a partition, let x0 be any point in S(b) + γB, and let x(·) be a π-trajectory
with x(0) = x0. We denote x(tj) by xj , and we set

∆ :=
ω

60LV
.

Lemma 2.7. For some tj ∈ π, suppose that xj ∈ Ωi, i ∈ {0, 1, . . . , N}. Then
x(t) ∈ S(b) + γB ∀t ∈ [tj , tj+1], and

d(x(t), S(b− iβ)) ≤ d(xj , S(b− iβ))−∆(t− tj) ∀t ∈ [tj , tj+1].

Proof. We have xj ∈ S(a, b) + γB by Lemma 2.5(a) and ‖ẋ(t)‖ ≤ m while x(t)
lies in S(b) + ηB. Since δm < γ/4 by (2.3) and γ < η/2, it follows that x(t) lies in
S(a, b)+ηB for t ∈ [tj , tj+1], as does the point s that figures in the definition of k(xj);
this was pointed out in the proof of Lemma 2.6, where we also deduced the inequality

〈xj − s, f(s, k(xj))〉 ≤ −ω
2LV
‖xj − s‖.(2.4)

We fix t ∈ (tj , tj+1) and set

Ψ :=
x(t)− s

‖x(t)− s‖ .

Note that x(t) �= s, since ‖xj − s‖ ≥ γ/4 by Lemma 2.5(e) and since

‖x(t)− xj‖ < δm <
γ

4
.
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We now observe two inequalities:

d(x(t), S(b− iβ)) ≤ ‖x(t)− s‖ = 〈Ψ, x(t)− s〉,

d(xj , S(b− iβ)) = ‖xj − s‖ ≥ 〈Ψ, xj − s〉.
These together imply

d(x(t), S(b− iβ))− d(xj , S(b− iβ)) ≤ 〈Ψ, x(t)− xj〉
= τ〈Ψ, fj〉,(2.5)

where we introduce the notation τ := t− tj ,

x(t) = xj + τfj , fj :=
1

τ

∫ t

tj

f(x(r), k(xj))dr.

We also set

f̂j := f(s, k(xj)) =
1

τ

∫ t

tj

f(s, k(xj))dr.

Note that

‖fj − f̂j‖ ≤ 1

τ

∫ t

tj

Lf‖x(r)− s‖dr

(the Lipschitz condition holds since we are in S(a, b) + ηB)

≤ 1

τ

∫ t

tj

Lf (‖x(r)− xj‖+ ‖xj − s‖)dr

≤ Lf (τm+ d(xj , S(b− iβ))).

It follows from this and (2.4) that we have

〈xj − s, fj〉 = 〈xj − s, f̂j + fj − f̂j〉
≤ −ω

2LV
‖xj − s‖+ Lfd(xj , S(b− iβ)){τm+ d(xj , S(b− iβ))}

≤ d(xj , S(b− iβ))

[ −ω
2LV

+ Lfδm+ γLf

]
(since τ < δ and d(xj , S(b− iβ)) ≤ γ)

≤ d(xj , S(b− iβ))

[ −ω
2LV

+
ω

6LV
+

ω

6LV

]
(we have invoked (2.3) and (2.1))

≤ − γω

24LV
(since d(xj , S(b− iβ)) ≥ γ/4 by Lemma 2.5(e)).

We shall use this bound on 〈xj − s, fj〉 to derive one on 〈x(t)− s, fj〉 as follows:
〈x(t)− s, fj〉 = 〈xj + τfj − s, fj〉 ≤ 〈xj − s, fj〉+ τ‖fj‖2

≤ −γω
24LV

+ δm2 ≤ −γω
48LV

(2.6)
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(in light of (2.3)). We also have

‖x(t)− s‖ = ‖xj + τfj − s‖ ≤ ‖xj − s‖+ τ‖fj‖ ≤ γ + δm

<
5γ

4
(by (2.3)).

Combining this with (2.6) we arrive at

〈Ψ, fj〉 =
〈

x(t)− s

‖x(t)− s‖ , fj
〉
≤ −γω

48LV

/
5γ

4
= −∆.

Together with (2.5), this gives the inequality asserted by the lemma. Since this
inequality evidently implies

d(x(t), S(b− iβ)) < γ,

it also follows that x(t) ∈ S(b) + γB.
Lemma 2.8. If xj ∈ Ωi where 0 ≤ i ≤ N , then xj+1 lies in Ωi′ for some i′ ≥ i.
Proof. Since xj ∈ Ωi, we have d(xj , S(b − iβ)) < γ, and (by Lemma 2.7)

d(xj+1, S(b − iβ)) < γ. Now let 1 ≤ k < i. Since S(b − iβ) ⊂ S(b − (k + 1)β),
we deduce d(xj+1, S(b − (k + 1)β)) < γ. But then xj+1 /∈ Ωk by definition of Ωk.
Since xj+1 ∈ S(b) + γB by Lemma 2.7, we must have xj+1 ∈ Ωi′ for some i′ ≥ i, in
view of Lemma 2.5(b).

Lemma 2.9. If x(τ) ∈ ΩN+1 for some τ ∈ π, then x(t) ∈ S(a) + γB ∀t ≥ τ .
Proof. We know that x(τ) lies in the interior of S(a) + γB by Lemma 2.5(f). For

t > τ , as long as d(x(t), S(b−Nβ)) does not attain or exceed γ/2, then x(t) remains
in S(a) + γB. Thus ‖ẋ(t)‖ remains bounded by m and no blow-up occurs (i.e., x(t)
is well defined).

It suffices therefore to prove that the continuous function

g(t) := d(x(t), S(b−Nβ))

does not become greater than or equal to γ/2 for some t0 > τ . We have g(τ) < γ/4.
Since we have chosen δ to satisfy δm < γ/4, at the next node τ1 following τ we

have g(τ1) < γ/2, and two cases arise. The first is when γ/4 ≤ g(τ1) < γ/2; in that
case, x(τ1) belongs to ΩN , and Lemma 2.7 shows that at the next node τ2, g(τ2) will
have decreased relative to g(τ1). The other case is when g(τ1) < γ/4; but then we are
in the same situation as we were with τ . The conclusion is that g(t) never exceeds
γ/2, as required.

One last lemma and the proof is complete. We set

T :=

(
1 +

b− a

β

)(
1 +

45γLV
ω

)
.

Lemma 2.10.

x(t) ∈ S(a) + γB ∀t ≥ T.

Proof. In view of Lemma 2.9 and Lemma 2.5(f), it suffices to prove that there is
a node τ ∈ π with τ ≤ T for which x(τ) ∈ ΩN+1. Note that x(0) belongs to some
Ωi(0 ≤ i ≤ N + 1) by Lemma 2.5(b); if i = N + 1 we are done, so assume i ≤ N .
Since δ < 1 by (2.3), there is a node τ1 lying in the open interval (σ, σ + 1), where
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σ := (3γ)/(4∆). By Lemma 2.8, x(τ1) belongs either to Ωi or to Ωi′ for some i′ > i.
In the former case, it follows that x(t) lies in Ωi for every node t ∈ π lying between 0
and τ1, and the inequality of Lemma 2.7 applies to give

d(x(τ1), S(b− iβ)) ≤ d(x(0), S(b− iβ))−∆τ1

< γ − 3γ

4
=

γ

4
.

However, the left side is no less than γ/4 by Lemma 2.5(e). This contradiction shows
that, in fact, x(τ1) must belong to some Ωi′ for an index i′ > i. If i′ = N + 1, we are
done; otherwise, the same argument, beginning now at (τ1, x(τ1)), yields the existence
of a node τ2 ∈ π with τ2 ≤ 2σ + 2 such that x(τ2) belongs to Ωi′′ , where i′′ > i′.
Continuing in this manner, we find that (since there are at most N +1 steps as above
prior to landing in ΩN+1), there is a node τ ∈ π with τ ≤ (N + 1)(σ + 1) such that
x(τ) ∈ ΩN+1. But N < (b − a)/β implies that T as defined above is greater than
(N + 1)(σ + 1).

Remark 2.4. It is a consequence of the construction that for suitably small δ > 0,
the set A := S(a + δ) is attained in a time that approaches 0 as x(0) approaches A.
This is the key property that is needed in the converse Lyapunov theorem that we
now proceed to develop.

3. Construction of a Lyapunov function. We show in this section that under
reasonable assumptions, there always exist Lyapunov functions having the properties
required for the feedback construction of the preceding section and giving rise to
practical feedback stabilization of an arbitrarily prescribed range. While the result
below appears to be new and the approach to proving it has some novel features,
there is a familiar heuristic at work: the Lyapunov function is constructed as the
value function associated with a parametrized family of optimal control problems.

The function f(x, u) describing the dynamics is supposed in this section to satisfy
much the same regularity conditions as before. Specifically, we require that for any
bounded subset S of R

n, there exist constants m = m(S) and L = L(S) such that

‖f(x, u)‖ ≤ m ∀x ∈ S, ∀u ∈ U ,

‖f(x, u)− f(y, u)‖ ≤ L‖x− y‖ ∀x, y ∈ S, ∀u ∈ U .
(As before, U is just an abstract set, and no hypotheses are made concerning the
nature of the dependence of f on u.)

In addition, we require “nice” controllability to a given compact set A via relaxed
trajectories. Let us now proceed to make this precise. We define a multifunction Γ
on R

n by

Γ(x) := cl co{f(x, u) : u ∈ U}.
By “trajectory” (or “Γ-trajectory”) we mean an absolutely continuous function x(·)
on an interval [0, T ] such that

ẋ(t) ∈ Γ(x(t)) a.e. t ∈ [0, T ].
Given α ∈ R

n, we define TA(α) as the least time required for a trajectory to go from
α to the set A:

TA(α) := inf{T ≥ 0 : x(·) is a trajectory on [0, T ], x(0) = α, x(T ) ∈ A}.
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The controllability hypothesis that we make is that every α admits a trajectory steer-
ing it to A in finite time, a time which goes to 0 as α approaches A.
Equivalently,

(CH) TA(α) <∞ ∀α ∈ R
n, and lim

d(α,A)↓0
TA(α) = 0.

We remark that proximal criteria exist ensuring that A satisfies (CH); see [9,
4.6.7]. Now fix a point a0 ∈ A. Below, diam(A) refers to the usual diameter of A as
a subset of R

n.
Theorem 3.1. For any r > 0 and R > diam(A)+r, there exist numbers a, b, γ, η,

and a function V : R
n −→ R such that

S(a) + γB ⊂ A+ rB ⊂ B̄(a0, R) ⊂ S(b) + γB

and such that all the hypotheses of Theorem 2.1 are satisfied and, in addition, S(b) is
compact. The feedback defined in Theorem 2.1 stabilizes S(b) + γB to A+ rB.

The following addresses the issue of practical semiglobal stabilization of globally
asymptotically controllable systems.

Corollary 3.2. Let the system be globally asymptotically controllable to the
origin. Then, for any 0 < r < R, there exists a feedback of the type constructed in
Theorem 2.1 which is defined on a neighborhood of B̄(0, R), and which stabilizes every
initial point in B(0, R) to the ball B(0, r).

Proof. It is known that a continuous global Lyapunov function exists for the
problem of stabilization to the origin [26], and every level set S(a) for a > 0 of
that function satisfies (CH) [9, 4.6.7]. It suffices now to take such a level set A
contained in the ball B(r/2, 0), and to apply Theorem 3.1 with r := r/2 and a0 := 0.

Proof of Theorem 3.1. We begin the proof by defining another multifunction Γ̃
(more useful than Γ for being uniformly bounded):

Γ̃(x) := cl co

{
v

1 + ‖v‖ : v ∈ Γ(x)
}
.

We set

T̃A(α) := inf{T ≥ 0 : x(·) is a Γ̃-trajectory on [0, T ], x(0) = α, x(T ) ∈ A}.
Evidently (or by convention) we have T̃A = 0 on A.

Lemma 3.3.
(a) Γ̃ is locally Lipschitz and has nonempty convex compact values in B̄(0, 1).
(b) T̃A(α) is finite ∀α ∈ R

n.
(c) limd(α,A)↓0 T̃A(α) = 0.
(d) There exists a positive number ε such that whenever α ∈ A+εB, and whenever

the Γ̃-trajectory x(·) has x(0) = α and x(T ) ∈ A for some T ≤ T̃A(α) + ε,
then we have ‖x− a0‖∞ ≤ diam(A) + 1. We can suppose ε < 1, ε < r, and

sup{T̃A(α) : α ∈ A+ εB} < r2

4(1 + diam(A))
.(3.1)

Proof. We omit the routine proof of (a). For (b), let α ∈ R
n be given. By

assumption, there is a Γ-trajectory x on an interval [0, T ] such that x(0) = α, x(T ) ∈
A. We set

T̃ :=

∫ T

0

(1 + ‖ẋ(t)‖)dt
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and we define a function x̃ on [0, T̃ ] by

x̃(τ) := x(t),

where t = t(τ) is determined in [0, T ] by

τ =

∫ t

0

(1 + ‖ẋ(r)‖)dr.

(This change of variables or time scale is known as the Erdmann transform.) Then

dx̃

dτ
=

ẋ(t)

1 + ‖ẋ(t)‖ ∈ Γ̃(x̃(τ)) a.e.

so that x̃ is a Γ̃-trajectory. Hence T̃A(α) ≤ T̃ <∞.
We turn now to (c). Let αi be a sequence for which d(αi, A) decreases to 0. Then

TA(αi)→ 0 by assumption. Letm be such that ‖f(x, u)‖ ≤ m for (x, u) ∈ (A+B̄)×U .
Then, as soon as TA(αi) is strictly less than 1/m, there is a Γ-trajectory xi on an
interval [0, Ti] such that

xi(0) = αi, xi(Ti) ∈ A, Ti <
1

m
, Ti < TA(αi) +

1

i
.

It follows that xi(t) ∈ A+ B̄ for t ∈ [0, Ti]. Now let x̃i be the Erdmann transform of
xi as given above. Then

T̃A(αi) ≤ T̃i =

∫ Ti

0

(1 + ‖ẋi(t)‖)dt ≤ (1 +m)Ti < (1 +m)

(
TA(αi) +

1

i

)
.

It follows that T̃A(αi)→ 0, as required.
We now examine (d). If the assertion is false, there exists a sequence αi with

d(αi, A) ↓ 0 and corresponding Γ̃-trajectories xi with xi(0) = αi, xi(Ti) ∈ A such that

Ti ≤ T̃A(αi) +
1

i
, ‖xi − a0‖∞ > diam(A) + 1.

Since T̃A(αi) → 0 by (c), we have Ti → 0. On the other hand, there is a subinterval
of [0, Ti] in which ‖xi − a0‖ goes from being diam(A) + 1 to at most diam(A), and
since ‖ẋi(t)‖ ≤ 1 the length of that subinterval (and hence, Ti) is at least 1. This
contradiction establishes the first part of (d); the rest follows immediately by shrinking
ε as required, in light of (c).

Defining a value function. We proceed now to define a new multifunction
F (x) whose effect is to enlarge the set Γ̃(x) for d(x,A) < ε. We set

F (x) :=

{
Γ̃(x) for d(x,A) ≥ ε,

Γ̃(x) + 2[ ε−d(x,A)
ε ]B̄ for d(x,A) ≤ ε.

Having done this, we define a value function V (·) on R
n in terms of the trajectories

of F as follows:

V (α) := inf

{∫ T

0

‖x(t)− a0‖dt : T ≥ 0, x(0) = α, ẋ ∈ F (x) a.e., x(T ) ∈ A

}
.

We stress that T is a choice variable here, in this free time problem.
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Lemma 3.4.
(a) F is compact and convex-valued, uniformly bounded, and locally Lipschitz.
(b) V (·) is nonnegative, finite-valued, and lower semicontinuous, and the infimum

defining V (α) is attained for every α.
(c) V (α) = 0 iff α ∈ A, and limd(α,A)↓0 V (α) = 0.
(d) The sublevel sets S(b) := {α : V (α) ≤ b} of V are compact.
Proof. The assertions of (a) are immediate. Since F (x) is uniformly bounded,

the attainment and the lower semicontinuity asserted in (b) follow from standard
“compactness of trajectories” arguments; see [9, Chapter 4] for details. The first
assertion of (c) is clear, and the other one stems from Lemma 3.3 as follows.

Let α ∈ A + εB, and let the Γ̃-trajectory x satisfy x(0) = α, x(T ) ∈ A, and
T ≤ T̃A(α) + δ, for some δ ∈ (0, ε). Then ‖x− a0‖∞ ≤ diam(A) + 1 (by choice of ε),
and we deduce

V (α) ≤
∫ T

0

‖x(t)− a0‖dt ≤ (T̃A(α) + δ)(diam(A) + 1).

Since T̃A(α) ↓ 0 as d(α,A) ↓ 0, (c) follows.
Finally we turn to (d). If ‖α − a0‖ > diam(A) + ε, then the time required for

a trajectory x to go from x = α to the boundary of A + εB is at least ‖α − a0‖ −
diam(A) − ε. But then V (α) ≥ ε(‖α − a0‖ − diam(A) − ε). This implies assertion
(d).

The next step invokes Hamiltonian conditions for optimal control and uses the
lower Hamiltonian h associated with F :

h(x, p) := min{〈p, v〉 : v ∈ F (x)}.
Lemma 3.5. Let ζ ∈ ∂PV (α), where α does not lie in A. Let x be a trajectory

solving the problem that defines V (α) with associated time T . Then there exists an
absolutely continuous function p on [0, T ] such that(

−ṗ− x− a0

‖x− a0‖ , ẋ
)
∈ ∂Ch(x, p) a.e. t ∈ [0, T ],(3.2)

p(0) = ζ,(3.3)

h(x(t), p(t)) + ‖x(t)− a0‖ = 0 ∀t ∈ [0, T ].(3.4)

Proof. By definition of ∂PV (α), we have for some σ ≥ 0 and for all α′ near α

V (α′) + σ‖α′ − α‖2 − 〈ζ, α′〉 ≥ −〈ζ, α〉.
Let x′ be a trajectory near x (in the L∞ norm), put α′ = x′(0) and α = x(0), and
rearrange to derive that x′(·) = x(·) solves locally the problem of minimizing∫ T ′

0

‖x′(t)− a0‖dt− 〈ζ, x′(0)〉+ σ‖x′(0)− x(0)‖2

over the trajectories x′ for F satisfying x′(T ′) ∈ A. (Here T ′ and x′(0) are free.)
We apply the corollary of Theorem 3.6.1 of [5] (with time reversed) to deduce the
existence of an absolutely continuous function q on [0, T ] satisfying

(−q̇, ẋ) ∈ ∂C [H(x, q)− ‖x− a0‖](x, q) a.e. t ∈ [0, T ],(3.5)

q(0) = −ζ,(3.6)

H(x(t), q(t)) = ‖x(t)− a0‖, t ∈ [0, T ],(3.7)
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where H(x, p) is the function −h(x,−p) and ∂C denotes the generalized gradient. The
Hamiltonian inclusion above implies(

q̇ − x− a0

‖x− a0‖ , ẋ
)
∈ ∂Ch(x,−q) a.e., t ∈ [0, T ].

Now putting p := −q gives to these conclusions the form asserted in the statement of
the lemma.

Lemma 3.6. For any constant c > 0, there is a constant Mc with the following
property. If α ∈ S(c) and if the trajectory x on [0, T ] attains the infimum defining
V (α), then ‖x− a0‖∞ ≤Mc, T ≤Mc.

Proof. If ‖x−a0‖∞ > c+diam(A)+1, then the time required for ‖x−a0‖ to attain
the value diam(A)+1 exceeds c (since ‖ẋ‖ ≤ 1). But then V (α) ≥ (1+diam(A))c > c.
This shows that ‖x − a0‖∞ is bounded by c + diam(A) + 1. By Lemma 3.3(c),
limd(α,A)↓0 T̃A(α) = 0. So there exists ρ > 0 such that

T̃A(x) ≤ 1 ∀x ∈ A+ ρB̄.

Now take α outside A+ρB̄, and let τρ denote the first time t that x(t) attains A+ρB̄.
Then V (α) ≥ ρτρ, whence τρ ≤ c/ρ for α ∈ S(c).

We deduce that

T̃A(α) ≤ τρ + 1 (by choice of ρ)

≤ c

ρ
+ 1.

If α ∈ A+ ρB̄, the same bound evidently holds. It suffices now to set

Mc := max

{
c

ρ
+ 1, c+ diam(A) + 1

}
.

Lemma 3.7. V is locally Lipschitz on R
n.

Proof. We prove first that V is locally Lipschitz on the open set {V > 0} =
comp(A). Let α0 belong to this set; take any δ > 0 such that δ < d(α0, A), and any
element ζ ∈ ∂PV (α), where

‖α− α0‖ < δ, V (α) ≤ V (α0) + δ =: c.(3.8)

The conclusions of Lemma 3.6 are available for any trajectory solving the V (α) prob-
lem. If K is a Lipschitz constant for F on the ball B(0,Mc + 1 + ‖a0‖) (where Mc

comes from Lemma 3.6), then the Hamiltonian inclusion (3.2) implies

‖ṗ‖ ≤ K‖p‖+ 1.(3.9)

The condition (3.4) at t = T gives ‖p(T )‖ ≤ diam(A) since x(T ) ∈ A and since
F (x(T )) = Γ̃(x(T )) + 2B̄ ⊃ B̄. This, together with (3.9) and Gronwall’s Lemma,
leads to

‖ζ‖ = ‖p(0)‖ ≤ eKT ‖p(T )‖+
∫ T

0

eK(T−s)ds

≤ diam(A)eKT +
eKT − 1

K

≤ diam(A)eKMc +
eKMc − 1

K
,
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since T ≤Mc by Lemma 3.6. This establishes a uniform bound on elements of ∂PV (α)
whenever α satisfies (3.8), which proves that V is Lipschitz on a neighborhood of α0

[9, 1.11.11]. Thus V is locally Lipschitz on the set where it is strictly positive.
There is a neighborhood N of A on which V is bounded above, in view of Lemma

3.4(c). The argument above therefore yields a bound L on elements of ∂PV (α) for all
α ∈ N \A, so that V is uniformly Lipschitz of rank L on α ∈ N \A by [9, Theorem
1.7.3]. Of course, V = 0 on A and is continuous at each point of A in view again of
Lemma 3.4(c). That V is Lipschitz on N , and hence locally Lipschitz on R

n, now
follows.

Lemma 3.8.

sup{V (α) : α ∈ A+ εB} < inf{V (α) : d(α,A) ≥ r}

Proof. Let d(α,A) < ε, fix δ ∈ (0, ε), and let the trajectory x on [0, T ] satisfy
x(0) = α, x(T ) ∈ A, T < T̃A(α) + δ. Then by Lemma 3.3 we have ‖x − a0‖∞ ≤
diam(A) + 1 and so

V (α) ≤
∫ T

0

‖x(t)− a0‖dt ≤ (T̃A(α) + δ)(diam(A) + 1).

We derive V (α) ≤ (diam(A) + 1)T̃A(α), and (from (3.1))

V (α) ≤ sup{T̃A(α) : d(α,A) ≤ ε}(diam(A) + 1) <
r2

4
.

Now let d(α,A) ≥ r, and let x solve the problem defining V (α). There is an interval
of length at least r/2 during which ‖x(t)− a0‖ ≥ r/2 (since ‖ẋ‖ ≤ 1), whence

V (α) >
r2

4
.

The result follows.
Lemma 3.9. There exist positive numbers a, b, η with a < b such that

S(a) + ηB ⊂ A+ rB ⊂ B̄(a0, R) ⊂ S(b)

and

S(a, b) + ηB ⊂ {α : d(α,A) > ε}.

Proof. Pick a number a > 0 lying between the two quantities in the statement of
Lemma 3.8. Then evidently the compact set S(a) satisfies

S(a) ⊂ comp{d(α,A) ≥ r} = A+ rB,

whence S(a) + ηB ⊂ A + rB for η > 0 suitably small. It also follows that (for any
b > a) the compact set S(a, b) is contained in the open set {α : d(α,A) > ε}. Any
b suitably large will satisfy B̄(a0, R) ⊂ S(b), since V is bounded on bounded sets.
Finally, by shrinking η further if necessary, we will have the final conclusion of the
lemma as well.

Lemma 3.10. The infinitesimal decrease condition (H5) of section 1 holds on
S(a, b) + ηB, with ω := ε.
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Proof. As pointed out in Remark 2.3, it suffices to show that for any α ∈ S(a, b)+
ηB, for any ζ ∈ ∂PV (α), one has

inf{〈ζ, f(α, u)〉 : u ∈ U} ≤ −ε.(3.10)

Let x be a trajectory solving the problem defining V (α). Then, by Lemma 3.5, we
have (at t = 0)

h(α, ζ) + ‖α− a0‖ = 0.

Since d(α,A) > ε by Lemma 3.9, we have F (α) = Γ̃(α), so that the preceding equality
yields, for any δ > 0, the existence of some element v ∈ Γ(α) such that〈

ζ,
v

1 + ‖v‖
〉
≤ −‖α− a0‖+ δ < −ε+ δ.

For δ small enough, the right side is negative, whence

〈ζ, v〉 < −ε+ δ.

Given that Γ(α) := cl cof(α,U), this yields the existence of u ∈ U for which

〈ζ, f(α, u)〉 < −ε+ 2δ.

Since δ is arbitrarily small, (3.10) ensues.
Since S(b) is compact, f is Lipschitz in x and bounded on S(b) + ηB, in accord

with hypotheses (H3) and (H4) of section 1. When the level sets are compact and V
is continuous, (H2) always holds. The verification of this fact is the last property to
confirm.

Lemma 3.11. Hypothesis (H2) holds.
Proof. If (H2) fails, then there exist sequences αi ∈ R

n, εi ↓ 0, and ui ∈ B(0, 1)
such that

V (αi) ≤ a+ εi and V (αi + εiui) > b.

Since S(b) is compact, we can suppose by passing to a subsequence that αi → α0.
Then, since V is continuous, we have V (α0) ≥ b > a ≥ V (α0), a contradiction.

The setting of Theorem 2.1 is established, and Theorem 3.1 is proved.

4. Robustness. We prove in this section that the feedback constructed in sec-
tion 1 is robust with respect to small measurement error and persistent external
disturbance, in a precise sense that requires two stipulations. The first is that the
measurement error must not exceed in order of magnitude the step size of the un-
derlying discretization, a condition which appears to be rather natural. The second
requirement is perhaps more surprising and surfaces from the nature of the feedback
construction. It dictates that each step be “big enough” (while continuing to be “small
enough”) so as to counteract the measurement error by means of the attractive effect
inherent in the construction. Thus the partitions used to discretize the effect of the
control are taken to be “reasonably uniform.”

Our perturbed system is modeled by

ẋ = f(x, k(x+ p)) + q,
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where the external disturbance q : [0,∞) −→ R
n is a bounded measurable function:

‖q(t)‖ ≤ Eq, t ≥ 0 a.e.

Given a partition π = {ti}i≥0 of [0,∞) and the initial condition x0, the resulting
π-trajectory of our perturbed system is defined by successively solving the differential
equation

ẋ(t) = f(x(t), k(x(ti) + pi)) + q(t), t ∈ [ti, ti+1],

with x(0) = x0. The continuous function x(t) is the real state of the system, while the
sequence {x(ti) + pi} corresponds to the inexact measurements used to select control
values.

Theorem 4.1. The feedback k : S(b) + γB → U constructed in Theorem 2.1 is
robust in the sense that there exist positive numbers δ0, T , and Eq such that, for every
δ ∈ (0, δ0) there exists Ep(δ) > 0 having the following property: for any partition
π = {ti}i≥0 having

δ

2
≤ ti+1 − ti ≤ δ, i ≥ 0,

where 0 < δ < δ0, for any set of measurement errors {pi}i≥0 having

‖pi‖ ≤ Ep(δ), i ≥ 0,

for any initial condition x0 such that x0 + p0 ∈ S(b) + γB, for any disturbance q
having ‖q‖∞ ≤ Eq, the resulting π-trajectory x satisfies

x(ti) + pi ∈ S(b) + γB ∀i ≥ 0,

x(t) ∈ S(b) + 2γB ∀t ≥ 0,

x(t) ∈ S(a) + γB ∀t ≥ T.

Remarks 4.1.
(a) Note that unlike T and Eq, the maximum admissible measurement error Ep

depends on δ. Also note that (in contrast to Theorem 2.1) x(t) may not lie
in S(b) + γB ∀ t, although for large t it must do so. We prove, however, that
the “observed values” of the state, namely the values x(ti)+pi(i ≥ 0), all fall
in S(b) + γB, the domain of definition of k.

(b) Certain other kinds of error, for example a disturbance d(·) entering into the
dynamics in the form ẋ = f(x, k(x)+d), can be reduced to that of an external
disturbance by positing suitable continuity of f in the control variable.

(c) The maximum admissible disturbance measure Eq will be seen to be propor-
tional to ω/LV . This has a natural physical meaning, as can easily be seen
in the case of smooth V and a continuous feedback k(x) such that

〈∇V (x), f(x, k(x))〉 ≤ −W (x).

Then we see that the perturbed system

ẋ = f(x, k(x)) + q

is stabilized by k if ‖q‖∞ < W (x)/‖∇V (x)‖ for every x, a bound akin to that
involving ω/LV .
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Proof of Theorem 4.1. We adapt the proof of Theorem 2.1, whose first five lemmas
hold with no change whatever, as does the definition of k(·). Recall that γ, β, and N
were introduced earlier; see (2.1) and (2.2). We now define our upper bound for δ:

δ0 := min

{
6γLV
ω

, 1,
γω

24LV (m+ ω
6LV

+ 1)2
,

γ

20m

}
,(4.1)

Eq :=
ω

6LV
,(4.2)

T :=

(
1 +

b− a

β

)(
1 +

81γLV
ω

)
(4.3)

(this T differs slightly from the one in Theorem 2.1), and we let π = {ti}i≥0 be a par-
tition as described in the statement of Theorem 4.1, with corresponding measurement
errors {pi}i≥0 having ‖pi‖ ≤ Ep for some Ep > 0 satisfying

Ep < min

{
3γ

80
, δ,

δω

432LV

}
.(4.4)

We also admit any disturbance q(·) for which ‖q‖∞ ≤ Eq, and we take x0 such that
x0 + p0 ∈ S(b) + γB. We shall show that the corresponding π-trajectory has the
required properties. We introduce the notation

xi := x(ti), yi := xi + pi

for the actual and the measured state values at time ti and proceed to develop modified
versions of the four last lemmas figuring in the proof of Theorem 2.1. We set

∆̃ :=
ω

108LV
.

Lemma 4.2. For some tj ∈ π, suppose that yj ∈ Ωi, i ∈ {0, 1, . . . , N}. Then
x(t) ∈ S(b) + 2γB ⊂ S(b) + ηB, tj ≤ t ≤ tj+1,

yj ∈ S(b) + γB, yj+1 ∈ S(b) + γB,

d(yj+1, S(b− iβ)) ≤ d(yj , S(b− iβ))− ∆̃(tj+1 − tj).

Proof. Note that yj ∈ S(b) + γB by Lemma 2.5; it will follow from the last
conclusion of the current lemma that yj+1 ∈ S(b)+γB. Also, ‖xj−yj‖ = ‖pj‖ ≤ Ep,
together with ‖x(t)− xj‖ ≤ δm, yield

x(t) ∈ S(a, b) + γB + (Ep + δm)B ⊂ S(b) + 2γB,

since Ep + δm < γ in view of (4.1) and (4.4). Since 2γ < η by (2.1), this gives
x(t) ∈ S(b) + ηB. By Lemma 2.6 we have

〈yj − s, f(s, k(yj))〉 ≤ − ω

2LV
‖yj − s‖,(4.5)

where s ∈ proj(yj , S(b− iβ)). Fix t ∈ (tj , tj+1) and set

Ψ :=
x(t)− s

‖x(t)− s‖ .
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Note that x(t) �= s since ‖yj − s‖ ≥ γ/4 by Lemma 2.5(e), while

‖yj − x(t)‖ ≤ ‖yj − xj‖+ ‖xj − x(t)‖ < Ep + δm <
γ

4
,

as already noted. We observe the relations

d(x(t), S(b− iβ)) ≤ ‖x(t)− s‖ = 〈Ψ, x(t)− s〉,
d(yj , S(b− iβ)) = ‖yj − s‖ ≥ 〈Ψ, yj − s〉,

whence

d(x(t), S(b− iβ))− d(yj , S(b− iβ)) ≤ 〈Ψ, x(t)− yj〉
= 〈Ψ, xj + τ(fj + qj)− yj〉
≤ τ〈Ψ, fj + qj〉+ ‖pj‖,(4.6)

where we have introduced

τ := t− tj ,

fj :=
1

τ

∫ t

tj

f(x(r), k(yj))dr,

qj :=
1

τ

∫ t

tj

q(r)dr.

We also set f̂j := f(s, k(yj)); note ‖f̂j‖ ≤ m. We have

‖fj − f̂j‖ ≤ 1

τ

∫ t

tj

Lf‖x(r)− s‖dr ≤ Lf
τ

∫ t

tj

(‖x(r)− xj‖+ ‖xj − s‖)dr

≤ Lf (δm+ ‖xj − yj‖+ ‖yj − s‖)
≤ Lf (δm+ Ep + γ) ≤ 5

4
Lfγ.(4.7)

We deduce

〈x(t)− s, fj + qj〉 = 〈xj + τ(fj + qj)− s, fj + qj〉
= 〈yj − s− pj , fj + qj〉+ τ‖fj + qj‖2
≤ 〈yj − s, fj〉+ Ep(m+ Eq) + δ(m+ Eq)

2

= 〈yj − s, f̂j〉+ 〈yj − s, fj − f̂j〉+ (m+ Eq)[δm+ δEq + Ep]

≤ − ω

2LV
‖yj − s‖+ 5

4
‖yj − s‖Lfγ + (m+ Eq)[δm+ δEq + Ep]

(where we have used (4.5) and (4.7))

≤ d(yj , S(b− iβ))

[
− ω

2LV
+

ω

6LV

]
+ δ[m+ Eq + 1]2

(by (2.1), and since Ep < δ by (4.4))

≤ γ

4

[
− ω

3LV

]
+

γω

24LV
= − γω

24LV

(since d(yj , S(b− iβ)) ≥ γ/4 by Lemma 2.5, and since δ < δ0 defined by (4.1)).
Note also that

‖x(t)− s‖ = ‖yj − pj + τ(fj + qj)− s‖
≤ γ + Ep + δ(m+ Eq) ≤ 5γ

4
+ δEq <

9γ

4
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(note δEq < γ because of δ < δ0, in view of (4.1) and (4.2)).
It follows that

〈Ψ, fj + qj〉 =
〈

x(t)− s

‖x(t)− s‖ , fj + qj

〉
≤ − (γω)/(24LV )

(9γ)/4
= − ω

54LV
.

Substituting into (4.6) leads to

d(x(t), S(b− iβ))− d(yj , S(b− iβ)) ≤ −2∆̃(t− tj) + Ep.

We obtain from this

d(yj+1, S(b− iβ))− d(yj , S(b− iβ)) ≤ ‖yj+1 − x(tj+1)‖ − 2∆̃(t− tj) + Ep

≤ −∆̃(tj+1 − tj) + [2Ep − ∆̃(tj+1 − tj)]

≤ −∆̃(tj+1 − tj),

by (4.4), and since tj+1 − tj ≥ δ/2.
Lemma 4.3. If yj ∈ Ωi, where i ≤ N , then yj+1 lies in Ωk for some k ≥ i.
Proof. We know that yj+1 ∈ Ωk for some k, since yj+1 belongs to S(b) + γB by

Lemma 4.2. Suppose that k < i. We have d(yj , S(b − iβ)) < γ by definition of Ωi,
and Lemma 4.2 implies d(yj+1, S(b − iβ)) < γ. But S(b − iβ) ⊂ S(b − (k + 1)β), so
that d(yj+1, S(b− (k + 1)β)) < γ. But then yj+1 /∈ Ωk by definition of Ωk (note that
k ≤ N). This contradiction proves the lemma.

Lemma 4.4. If τ ∈ π is such that y(τ) ∈ ΩN+1, then

x(t) ∈ S(a) + γB ∀t ≥ τ.

Proof. We first establish

d(y(τ ′), S(b−Nβ)) ≤ 2γ

5
∀ nodes τ ′ ≥ τ.(4.8)

We consider first τ ′ = τ + 1. We have d(y(τ), S(b−Nβ)) ≤ γ/4, whence

d(y(τ + 1), S(b−Nβ)) ≤ d(x(τ + 1), S(b−Nβ)) + Ep

≤ d(x(τ), S(b−Nβ)) + Ep +mδ

≤ d(y(τ), S(b−Nβ)) + 2Ep +mδ

<
γ

4
+

3γ

20
=

2γ

5
(by (4.4)).

If d(y(τ + 1), S(b−Nβ)) is in fact ≤ γ/4, then this same argument yields

d(y(τ + 2), S(b−Nβ)) ≤ 2γ

5
.

If however d(y(τ + 1), S(b−Nβ)) > γ/4, then y(τ + 1) lies in ΩN by definition, and
Lemma 4.2 again yields d(y(τ + 2), S(b − Nβ)) < 2γ/5. Continuing in this way, we
obtain (4.8) for all nodes τ ′ ≥ τ .

We use (4.8) to argue as follows: let t ≥ τ , and let τ ′ ≥ τ be a node adjacent to
t; then

d(x(t), S(b−Nβ)) ≤ d(x(τ ′), S(b−Nβ)) + δm

≤ d(y(τ ′), S(b−Nβ)) + Ep + δm

<
2γ

5
+

γ

10
=

γ

2
(by (4.4)).
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This gives x(t) ∈ S(a) + γB by Lemma 2.5(f).

Lemma 4.5. Let

T :=

(
1 +

b− a

β

)(
1 +

81γLV
ω

)
.

Then x(t) ∈ S(a) + γB ∀t ≥ T .

Proof. In view of Lemma 4.4, it suffices to prove that some node τ ∈ π with τ ≤ T
is such that y(τ) ∈ ΩN+1. The argument is identical to that used to prove Lemma
2.9, with ∆ replaced by ∆̃ and applied to the yi rather than the xi.
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Abstract. First, we define the notion of almost sure efficiency for a decreasing stepsize stochas-
tic algorithm, and then we show that the averaging method, which gives asymptotically efficient
algorithms, also gives asymptotically almost surely efficient algorithms. Moreover, we prove that the
averaged algorithm also satisfies a law of the iterated logarithm, as well as an almost sure central
limit theorem.
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1. Introduction. Many vectorial algorithms are written in the form

Zn+1 = Zn + γn [F (Zn, ηn+1)] ,

where the gain (γn)n≥0 is a nonrandom sequence decreasing to 0 with
∑

γn = ∞
and the observed quantity at time n + 1 is F (Zn, ηn+1), ηn+1 being a stochastic
disturbance. Such an algorithm is often studied when rewritten as an algorithm used
for the search of zeros of a function h,

Zn+1 = Zn + γn [h (Zn) + en+1] ,(1)

where (en) is a “small disturbance” and h (Zn) corresponds to a mean effect of
F (Zn, ηn+1), given the past. The classical Robbins–Monro algorithm is obtained
when (ηn) is a sequence of independent identically distributed random variables and
h(z) = E[F (z, η)]. Extensions to a Markovian disturbance (ηn) are developed in [1].

Throughout this paper, the algorithm (1) is considered in the following frame-
work: (en) is a sequence of d-dimensional random vectors defined on a probability
space (Ω,A, P ), adapted to a filtration F = (Fn)n≥0, and Z0 is F0-measurable. The

function h is defined on R
d and R

d-valued, and z∗ is a zero of h such that, on a
neighborhood of z∗,

h(z) = H (z − z∗) + O (‖z − z∗‖a) ,

where a > 1 and H is a stable matrix (i.e., all the real parts of the eigenvalues of H
are strictly negative).

Many criteria ensure the almost sure convergence or the convergence with a
strictly positive probability of (Zn) towards z∗ (see among many others [1], [9], [12],
and [18]). In order to ensure their applications to various cases, our results are con-
ditional with respect to the event Γ (z∗) = {Zn → z∗}.
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It was proved, under some local assumptions stated in section 2, that if P [Γ (z∗)] >
0, then the sequence (Zn) satisfies a conditional central limit theorem (CLT):

given Γ (z∗) , Ψn =

√
1

γn
(Zn − z∗)

D→N (0,Σ),(2)

with
D→ denoting the convergence in distribution, N denoting the Gaussian distri-

bution, and Σ being a positive definite matrix (see, for instance, [1], [12], [18], [19]
for the case P [Γ (z∗)] = 1 and [9] or [20] for the case P [Γ (z∗)] > 0). (Equation (2)
means that the asymptotic conditional law of Ψn with respect to Γ (z∗) is N (0,Σ).)

Moreover, the sequence (Zn) is known to fulfill the three following almost sure
properties ([21], [22]), where Σ is the limit covariance matrix of (2), δx denotes the
point mass at x, and =⇒ is the weak convergence. (Throughout the paper, we say that
a property P holds almost surely (a.s.) on Γ (z∗) if there exists a subset N ⊂ Γ (z∗)
such that P (N) = 0 and P holds ∀ω ∈ Γ (z∗) \N .)

• A quadratic strong law of large numbers:

a.s. on Γ (z∗) , lim
n→∞

1∑n
k=1 γk

n∑
k=1

(Zk − z∗)(Zk − z∗)
T

= Σ.(3)

• A law of the iterated logarithm: for any eigenvector of HT , w ∈ R
d,

a.s. on Γ (z∗) , lim sup
n→∞

1

2γn ln (
∑n

k=1 γk)
wT (Zk − z∗)(Zk − z∗)

T
w = wTΣw.

(4)

• An almost sure central limit theorem (a.s.CLT):

a.s. on Γ (z∗) ,
1∑n

k=1 γk

n∑
k=1

γkδ√ 1
γk

(Zk−z∗)
=⇒ N (0,Σ),(5)

i.e., there exists a P -null set N ⊂ Γ (z∗) such that ∀ω ∈ Γ (z∗) \N ,

1∑n
k=1 γk

n∑
k=1

γkδ√ 1
γk

(Zk(ω)−z∗)
=⇒ N (0,Σ).

The optimal weak convergence rate of (1) given Γ (z∗) is reached when γn = γ0/n
with 2Lγ0 > 1 (−L denoting the greatest real part of the eigenvalues of H), since (2)
is then equivalent to

Given Γ (z∗) ,
√
n (Zn − z∗)

D→N (0, γ0Σ) .

The question arises as to what the optimal covariance matrix is. For that, let us
consider the following class of algorithms:

Zn+1 = Zn +
A

n
[h (Zn) + en+1] ,(6)

where A is an invertible d×d matrix such that AH+I/2 is stable. For such algorithms
(see [9]), it follows from (2) that

Given Γ (z∗) ,
√
n (Zn − z∗)

D→N (0,Σ(A)) ,
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where Σ(A) is the solution of the Lyapunov equation[
AH +

I

2

]
Σ(A) + Σ(A)

[
HTAT +

I

2

]
= −ACAT ,

with C = limn→+∞E
(
en+1e

T
n+1|Fn

)
a.s. on Γ (z∗). The optimal choice of the matrix

A in (6) is A = −H−1, which leads to Σ(A) = H−1C(H−1)
T

, since it minimizes the
covariance Σ(A) (with respect to the order of the symmetric matrices).

When A is replaced by H−1, (6) is Newton’s algorithm, which thus has an asymp-
totically optimal behavior in distribution. Unfortunately, it is often impossible to use
this algorithm, the matrix H being generally unknown.

These considerations lead us to set the following definition.
Definition 1. If (Yn)n≥0 is given by a stochastic algorithm used for the search

of zeros of a function h observable only together with a disturbance (en), h and (en)
satisfying the assumptions previously given and y∗ being a zero of h, we say that the
algorithm is asymptotically efficient given {Yn → y∗} if

Given {Yn → y∗} , √n (Yn − y∗)
D→N (0, H−1C(H−1)

T
).

The averaging method, simultaneously introduced by Polyak [23] and Ruppert
[25], is known to give asymptotically efficient algorithms (see among others Delyon–
Juditsky [5], [6], Dippon–Renz [7], Kushner–Yang [13], Polyak–Juditsky [24], and Yin
[31]).

The averaged algorithm is built up in the following way; each iteration requires
two steps.

Step 1. Zn+1 is found from the algorithm (1) where the gain γn is “slow;” typically

γn =
γ0

nα
,

1

2
< α < 1.

Step 2. We compute the empirical mean of all the previous observations,

Zn+1 =
1

n + 1

n+1∑
k=1

Zk.

Note that Zn+1 can be recursively written as

Zn+1 = Zn +
1

n + 1

(
Zn+1 − Zn

)
.

The aim of this paper is to prove that, conditionally on the set of consistency
Γ (z∗), the averaged algorithm is not only asymptotically efficient, but that it also
satisfies the almost sure properties (3), (4), and (5) with the optimal rate and the
optimal covariance matrix Σ. Moreover, the law of the iterated logarithm (4) is
obtained for any vector w (and not only for eigenvectors of HT ).

Before stating our main results, let us first introduce the almost sure version of
the notion of asymptotic efficiency. When γn = γ0/n with 2Lγ0 > 1, (3) is equivalent
to

a.s. on Γ (z∗) , lim
n→∞

1

lnn

n∑
k=1

(Zk − z∗) (Zk − z∗)
T

= γ0Σ,(7)
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and, for slower gains γn =
γ0

nα
,

1

2
< α < 1, to

a.s. on Γ (z∗) , lim
n→∞

1− α

n1−α

n∑
k=1

(Zk − z∗) (Zk − z∗)
T

= γ0Σ.

Thus, the sum of the “squared” differences between Zk and the estimated param-

eter z∗ is optimal when (7) is fulfilled with γ0Σ = H−1C(H−1)
T

. By analogy with
the definition of the asymptotic efficiency, and taking up the terminology introduced
by Touati [28] for statistical problems, we introduce the following definition.

Definition 2. If (Yn) is given by a stochastic algorithm used for the search of
zeros of a function h observable only together with a disturbance (en), h and (en)
satisfying the assumptions previously given and y∗ being a zero of h, we say that the
algorithm is asymptotically almost surely efficient on {Yn → y∗} if

a.s. on {Yn → y∗} , lim
n→∞

1

lnn

n∑
k=1

(Yk − y∗) (Yk − y∗)
T

= H−1C(H−1)
T
.

We shall prove that the averaged algorithm is a.s. efficient on Γ (z∗), i.e., that

a.s. on Γ(z∗), lim
n→∞

1

lnn

n∑
k=1

(Zk − z∗)(Zk − z∗)
T

= H−1C(H−1)
T
.

We shall also show that the averaged algorithm fulfills the following law of the iterated
logarithm,

a.s. on Γ (z∗) , ∀w ∈ R
d,

lim sup
n→∞

n

2 ln (lnn)
wT
(
Zn − z∗

)(
Zn − z∗

)T
w = wTH−1C

(
H−1

)T
w,

and the following a.s.CLT:

a.s. on Γ (z∗) ,
1

lnn

n∑
k=1

1

k
δ√k(Zk−z∗) =⇒ N (0, H−1C(H−1)

T
).

In fact, we shall extend our framework and study the more general algorithm
(including the Kiefer–Wolfowitz algorithm [9])

Zn+1 = Zn + γn [h (Zn) + rn+1] + σnεn+1,(8)

where (εn) is a noise (i.e., a sequence of martingale increments), (rn) a residual term,
and (σn) a nonrandom sequence decreasing to 0 such that γn = O (σn); the algorithm
(1) corresponds then to the particular case γn = σn and en = rn + εn.

Our results are precisely stated in section 2. In section 3, we give an application
to efficient recursive estimators. Finally, section 4 is devoted to the proofs.

2. Assumptions and main results. We first precise the required assumptions
on (8).

Assumption (A1) about the function h: There exist a > 1, a stable matrix H, and
a neighborhood U of z∗, such that for any z in U ,

h(z) = H (z − z∗) + O (‖z − z∗‖a) .
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Assumption (A2) about the noise (εn):
(i) There exist M > 0 and b > 2 such that a.s.

E (εn+1|Fn) 1{‖Zn−z∗‖≤M} = 0 and sup
n≥0

E(‖εn+1‖b|Fn)1{‖Zn−z∗‖≤M} <∞.

(ii) There exists a nonrandom symmetric positive definite matrix C such that
limn→∞ Cn = C a.s. on Γ (z∗), where Cn = E

(
εn+1ε

T
n+1|Fn

)
.

Assumption (A3) about the gains: There exist two decreasing positive functions
γ and σ, defined over [0,+∞[ such that γn = γ(n) and σn = σ(n) ∀ integer n. We
define the function v by v(t) = γ(t)/σ2(t) and assume there exist two positive real
numbers α and β such that the following conditions are fulfilled.

(i) v is a differentiable increasing function, v(∞) = ∞, and its differential v′

varies regularly with exponent (β − 1) (i.e., limt→∞ v′(tx)/v′(t) = xβ−1; see
[11] or [26]).

(ii) γ is differentiable, varies regularly with exponent (−α), and θ = (1/γ)′ is
decreasing and varies regularly with exponent (α− 1).

(iii) One of the two following conditions (A3.a) or (A3.b) holds.
(A3.a) min{ 1

2 ,
2
b} < α < 1 and 1−α

a−1 < β ≤ 1,

(A3.b) 1
2 < α < 1 and 1−α

a−1 (1 + 2a
b ) < β ≤ 1.

Assumption (A4) about the residual term (rn): We set

J(t) =

∫ t

0

1

γ(s)v(s)
ds,(9)

and assume rn+1 = r
(1)
n+1 + r

(2)
n+1 with

(i) r
(2)
n+1 = O (‖Zn − z∗‖a) a.s.,

(ii) the weak assumption (A4.w) or the stronger one (A4.s) is fulfilled:
(A4.w) There exists M > 0 such that

‖r(1)
n+1‖1{‖Zn−z∗‖≤M} = O([

√
J(n)γnv(n)]

−1
)

a.s.;

(A4.s) There exist M > 0 and ρ > 1
2 (1+β−α) such that ‖r(1)

n+1‖1{‖Zn−z∗‖≤M}
= O (n−ρ) a.s.

Comments on the assumptions.
(a) Our assumptions are local. Thus, the results stated below can be applied

as soon as P [Γ (z∗)] > 0, whatever the behavior of (Zn) outside of Γ (z∗) may be.
In particular, they apply to algorithms obtained by projection or truncation in the
framework of [3] or [12].

(b) Since the function s �→ √
J(s)γ(s)v(s) varies regularly with exponent (1 +

β − α)/2, assumption (A4.s) implies (A4.w).
(c) Assumptions (A2) about the noise and (A4) about the residual term can be

applied to Markovian disturbances in the framework of [1], whose application to the
averaged method is precised in [6].

(d) When the conditional moment of order 4 of the noise (εn) is bounded (i.e.,
when b ≥ 4), assumption (A3)(iii) reduces to

1

2
< α < 1 and

1− α

a− 1
< β ≤ 1;

thus, the condition (A3.b) is useful only in the case 2 < b < 4.
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(e) In most cases, the function h is regular enough so that assumption (A1) holds
with a = 2. In this case, assumption (A3) is fulfilled, for instance, by the gains

γn =
γ0

nα
, σn =

σ0√
nα+β

(γ0 > 0, σ0 > 0),

with
2

3
≤ α < 1 and 3(1− α) ≤ β ≤ 1.

For these gains, we have

v(n) =
γ0n

β

σ2
0

, J(n) =
σ2

0n
1+α−β

γ2
0(1 + α− β)

,

and assumption (A4.w) can be rewritten as:

there exists M > 0 such that ‖r(1)
n+1‖1{‖Zn−z∗‖≤M} = O(

√
n1−α+β) a.s.

The Robbins–Monro algorithm is given by (8) with γn = σn and rn = 0; we have
then β = α, J(n) = n, and, if (A1) holds with a = 2, assumptions (A3) and (A4) are
fulfilled, for instance, by the gains

γn = σn =
γ0

nα
(γ0 > 0) with

3

4
≤ α < 1.

The Kiefer–Wolfowitz algorithm corresponds to the case h = −∇V , where the
function V is observable only together with a noise. This algorithm can be written

as (8) with γn =
γ0

nα
(γ0 > 0), 1/2 < α ≤ 1, and σn = nτγn, 0 < τ < α/2. We

have then β = α − 2τ and J(n) = n1+2τ/(1 + 2τ). Since (n2τrn+1) is known to
converge a.s. on Γ (z∗) toward a deterministic, usually nonzero constant, assumption
(A4.w) (respectively, (A4.s)) requires 1/6 ≤ τ < α/2 (respectively, 1/6 < τ < α/2).
Consequently, if (A1) holds with a = 2, our assumptions (A3) and (A4) are fulfilled
by the gains

γn =
γ0

nα
, σn = nτγn,

with γ0 > 0,
3

4
+

τ

2
≤ α < 1, and


1

6
≤ τ <

α

2
for (A4.w),

1

6
< τ <

α

2
for (A4.s).

(10)

Our first main result is the following quadratic strong law of large numbers.
Theorem 3 (quadratic strong law of large numbers). Assume (A1), (A2), (A3),

and (A4.s) hold. Then, a.s. on Γ (z∗),

lim
n→∞

1

lnn

n∑
k=1

k[J(k)]−1
(
Zk − z∗

) (
Zk − z∗

)T
= H−1C

(
H−1

)T
.

Corollary 4 (almost sure efficiency). Assume that (A1), (A2), (A3), and (A4.s)
hold and that γn = σn. Then, a.s. on Γ (z∗),

lim
n→∞

1

lnn

n∑
k=1

(
Zk − z∗

) (
Zk − z∗

)T
= H−1C

(
H−1

)T
and the almost sure asymptotic efficiency is obtained.
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Remarks and examples.
(a) Under the assumptions of Theorem 3, Duflo [9] proved the following condi-

tional CLT:

given Γ (z∗) , Yn = n[J(n)]−1/2
(
Zn − z∗

) D→N (0, H−1C(H−1)
T

).(11)

Moreover, the quadratic strong law of large numbers can clearly be rewritten as:

a.s. on Γ (z∗) ,

lim
n→∞

1

lnn

n∑
k=1

1

k

[
k[J(k)]−1/2(Zk − z∗)

][
k[J(k)]−1/2(Zk − z∗)

]T
= H−1C

(
H−1

)T
.

Thus, the quadratic strong law of large numbers ensures that the logarithmic average
of the YkY

T
k converges a.s. toward the covariance matrix of the asymptotic distribution

of (11).
(b) The averaged Robbins–Monro algorithm is asymptotically a.s. efficient on

Γ (z∗).
(c) In the case of the Kiefer–Wolfowitz algorithm, assumption (A4.s) requires that

the parameter τ in (10) satisfies τ > 1/6, and we then have

a.s. on Γ (z∗) , lim
n→∞

1 + 2τ

lnn

n∑
k=1

1

k2τ

(
Zk − z∗

) (
Zk − z∗

)T
= H−1C

(
H−1

)T
.

However, we failed in proving a quadratic strong law of large numbers when τ = 1/6.
In view of remark (a), it is not surprising since, in this case, n[J(n)]−1/2

(
Zn − z∗

)
is known to converge weakly to a N (m,H−1C(H−1)

T
) distribution, where m is a

deterministic, usually nonzero constant.
The following corollary gives an estimator of the asymptotic covariance matrix

H−1C
(
H−1

)T
, Zn standing for z∗ in Theorem 3.

Corollary 5 (strongly consistent estimator of the asymptotic covariance). Set

Σ̂n =
1

lnn

n∑
k=1

k[J(k)]−1
(
Zk − Zn

) (
Zk − Zn

)T
.

Under assumptions (A1), (A2), (A3), and (A4.s), Σ̂n is a strongly consistent estimator

of H−1C
(
H−1

)T
on Γ (z∗).

Remark. The combination of (11) and Corollary 5 implies the following condi-
tional CLT:

given Γ (z∗) , n[J(n)]−1/2Σ̂−1/2
n

(
Zn − z∗

) D→N (0, I) ,

which permits the construction of confidence regions for z∗.
Our second main result is the following law of the iterated logarithm.
Theorem 6 (law of the iterated logarithm). Assume (A1), (A2), (A3), and

(A4.w) hold. Then, for any vector u of R
d, we have, a.s. on Γ (z∗),

lim sup
n→∞

n√
2J(n) ln (lnn)

uT
(
Zn − z∗

)
= − lim inf

n→∞
n√

2J(n) ln (lnn)
uT
(
Zn − z∗

)
=

√
uTH−1C(H−1)

T
u.
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Moreover, we have, a.s. on Γ (z∗),

∀u ∈ R
d, lim sup

n→∞
n2

2J(n) ln (lnn)
uT
(
Zn− z∗

)(
Zn − z∗

)T
u=uTH−1C

(
H−1

)T
u.

(12)

Remarks.
(a) Referring to the order of the symmetric matrices, property (12) can be written

as:

a.s. on Γ (z∗), lim sup
n→∞

n2

2J(n) ln (lnn)

(
Zn − z∗

)(
Zn − z∗

)T
= H−1C

(
H−1

)T
.

(b) When γn = σn (in particular, for the Robbins–Monro algorithm), we obtain

a.s. on Γ (z∗), lim sup
n→∞

n

2 ln (lnn)

(
Zn − z∗

)(
Zn − z∗

)T
= H−1C

(
H−1

)T
.

We see again that the asymptotic almost sure convergence rate of the averaged al-
gorithm is optimal since the rate (2 ln(lnn))/n is known to be optimal and the limit

covariance matrix H−1C
(
H−1

)T
is the smallest one (with respect to the order of the

symmetric matrices).
(c) In the case of the Kiefer–Wolfowitz algorithm, we have

a.s. on Γ (z∗), lim sup
n→∞

(1 + 2τ)n1−2τ

2 ln (lnn)

(
Zn − z∗

) (
Zn − z∗

)T
= H−1C

(
H−1

)T
for any τ satisfying (10), and here we can choose τ = 1/6, which ensures the optimal
convergence rate of the averaged Kiefer–Wolfowitz algorithm.

(d) Theorems 3 and 6 extend previous results of Le Breton [15] and Le Breton
and Novikov [16], [17]. They obtained Theorem 3 under the restriction that h is
linear; under the same restriction, they obtained Theorem 6 in the unidimensional
case (d = 1), whereas they obtained only an upper bound of

(
Zn − z∗

)
when d > 1.

Our last main result is the following a.s.CLT.
Theorem 7 (a.s.CLT). Assume (A1), (A2), (A3), and (A4.s) hold. Then, a.s.

on Γ (z∗),

1

lnn

n∑
k=1

1

k
δk[J(k)]−1/2(Zk−z∗) =⇒ N (0, H−1C(H−1)

T
).

The following corollary is a straightforward consequence of Theorems 3 and 7.
Corollary 8 (logarithmic strong law of large numbers). Assume (A1), (A2),

(A3), and (A4.s) hold. Let φ : R
d → R be an almost everywhere continuous function

such that, for a positive constant K, |φ(x)| ≤ K(1 + ‖x‖2). Then, a.s. on Γ (z∗),

lim
n→∞

1

lnn

n∑
k=1

1

k
φ
[
k[J(k)]

−1/2
(Zk − z∗)

]
=

∫
φ(x)dF (x),

where F is the N (0, H−1C(H−1)
T

) distribution.
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3. Application to efficient recursive estimation. Let (Yk) be a sequence of
independent identically distributed random vectors absolutely continuous with respect
to some positive σ-finite measure λ. Let us denote by f(θ, .) the probability density
of Yk, where θ ∈ Θ, Θ is an open subset of R

d, and assume this statistical model to
be regular [4].

According to the classical asymptotic theory, the maximum likelihood estimator
θ∗n, which maximizes the likelihood of the sample (Y1, . . . , Yn), is strongly consistent
and asymptotically efficient, i.e.,

θ∗n → θ a.s. and
√
n (θ∗n − θ)

D→N (0, [I(θ)]
−1

),

where I (θ) = Eθ([∇ ln f (θ, Yk)] [∇ ln f (θ, Yk)]
T

) is the Fisher information of the
model. Touati [28] proved that θ∗n is also a.s. asymptotically efficient, i.e.,

1

lnn

n∑
k=1

(θ∗k − θ) (θ∗k − θ)
T a.s.→ [I (θ)]

−1
.

However, the explicit computation of the maximum likelihood estimator is often
impossible or very complicated and some approximation procedure is then necessary.
For instance, Newton’s recursive estimator is given by

θ̂∗n+1 = θ̂∗n +

[
I(θ̂∗n)

]−1

n
∇(ln f(θ̂∗n, Yn+1)),(13)

i.e.,

θ̂∗n+1 = θ̂∗n +
1

n

[
h(θ̂∗n) + εn+1

]
,

where h(t) = [I(t)]−1
∫ ∇ (ln f (t, x)) dFθ(x).

Let us assume that there exists a constant b > 2 such that the function

t �→
∫
‖∇(ln f(t, x))‖bdFθ(x)

exists and is bounded in the neighborhood of θ for each θ ∈ Θ.
It follows from a straightforward application of (2) and (3) (see [9, p. 168]) that

given {θ̂∗n → θ}, √n(θ̂∗n − θ)
D→N (0, [I(θ)]

−1
),

and

a.s. on {θ̂∗n → θ}, 1

lnn

n∑
k=1

(θ̂∗k − θ)(θ̂∗k − θ)
T → [I(θ)]

−1
.

Thus, as soon as Newton’s estimater is strongly consistent, it is also asymptotically
efficient and a.s. asymptotically efficient.

However, the algorithm (13) requires at each step the computation of the inverse
of the Fisher information matrix [I(.)]−1. The use of an averaged algorithm does not

require such a computation; for that, we proceed as follows. We determine (θ̂∗n) from
the gradient algorithm

θ̂∗n+1 = θ̂∗n +
1

nα
∇(ln f(θ̂∗n, Yn+1)),

3

4
≤ α < 1,
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and we compute the empirical mean θ
∗
n = 1

n

∑n
k=1 θ̂

∗
k. It follows from a straightfor-

ward application of (11) and Theorem 3 that θ
∗
n has the same asymptotic properties

as the θ̂∗n given by (13); more precisely, given the event {θ̂∗n → θ}, θ∗n is a strongly con-
sistent estimator, asymptotically efficient and a.s. asymptotically efficient. Moreover,
applying Theorems 6 and 7, we also have

a.s. on {θ̂∗n → θ}, lim sup
n→∞

n

2 ln (lnn)
(θ

∗
n − θ)(θ

∗
n − θ)

T
= [I(θ)]

−1

and

a.s. on {θ̂∗n → θ}, 1

lnn

n∑
k=1

1

k
δ√k(θ∗k−θ) =⇒ N (0, [I(θ)]

−1
).

4. Proofs. In view of assumptions (A1) and (A4), the algorithm (8) can be
rewritten as

Zn+1 = Zn + γnH (Zn − z∗) + γnrn+1 + σnεn+1,

and we have

H(Zn − z∗) =
1

γn
[(Zn+1 − z∗)− (Zn − z∗)]− rn+1 − σn

γn
εn+1.

Let us define the sequences (Tn), (Tn), (Mn), and (Kn) by

Tn = Zn − z∗, Tn =
1

n

n∑
k=1

Tk, Mn+1 =

n∑
k=1

σk
γk

εk+1,

Kn = −T1

γ1
+

Tn+1

γn
−

n∑
k=2

Tk

[
1

γk
− 1

γk−1

]
.

Then we have

nHTn = Kn −Mn+1 −
n∑

k=1

rk+1.(14)

The proofs of the results stated in section 2 are constructed in the following
way. First we establish the almost sure asymptotic properties (a quadratic strong law
of large numbers, a law of the iterated logarithm, and an a.s.CLT) of the sequence
(Mn). Then we show that (Kn) and (

∑n
k=1 rk+1) are small enough on Γ (z∗) so that

the properties obtained for (Mn) are also satisfied by the sequence
(
nHTn

)
.

Let us first show how we can strengthen assumptions (A2) and (A4.w).
Note that in order to establish an almost sure property on Γ (z∗), it is suffi-

cient to prove it a.s. on ΓN = Γ (z∗) ∩ {supn≥N ‖Zn − z∗‖≤M} for any N such that
P (ΓN ) �= 0.

Let ΓN,K be the set of the trajectories of ΓN such that, for a positive integer K,

sup
n≥N

E(‖εn+1‖b|Fn) ≤ K and sup
n≥N

(
√
J(n)γnv(n)‖r(1)

n+1‖) ≤ K.
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Since ΓN equals ∪KΓN,K up to a negligible set, it is sufficient to establish a property
a.s. on ΓN,K for each K such that P (ΓN,K) �=0, in order to prove it on ΓN .

According to a technique often used by Lai and Wei (see [14], for instance), we
modify the algorithm (8), without changing it on ΓN,K , in order to have, a.s. on the
whole set Ω,

E (εn+1|Fn) = 0, sup
n≥N

E(‖εn+1‖b|Fn) ≤ K, and sup
n≥N

(
√
J(n)γnv(n)‖r(1)

n+1‖) ≤ K.

(15)

To this end, we replace r
(1)
n+1 by r̃

(1)
n+1 = r

(1)
n+1.1√J(n)γnv(n)

∥∥∥r(1)n+1

∥∥∥≤K
and εn+1 by

ε̃n+1 = εn+11Bn with

Bn = {E(εn+1|Fn) = 0 and E(‖εn+1‖b|Fn) ≤ K}.
From now on, we shall assume that these modifications have been made. More-

over, substituting (Zn) for (Z ′
n) = (Zn+N ), we shall assume that (15) is fulfilled with

N = 0, i.e., that the following condition holds: there exists K > 0 such that, a.s. on
Ω,

E (εn+1|Fn) = 0, sup
n≥0

E(‖εn+1‖b|Fn) ≤ K, and sup
n≥0

(
√
J(n)γnv(n)‖r(1)

n+1‖) ≤ K.

In the same way, we strengthen assumption (A4.s) and assume that there exists

ρ > (1− α + β)/2 such that supn≥0(nρ‖r(1)
n+1‖) ≤ K a.s. on Ω.

We now state the three lemmas, which give the almost sure properties of the
square-integrable martingale (Mn); Lemmas 9 and 10 give, respectively, a law of the
iterated logarithm and a quadratic strong law of large numbers for (Mn), whereas
Lemma 11 establishes an a.s.CLT for the unidimensional sequence

(
uTMn

)
for any

vector u of R
d.

Lemma 9 (law of the iterated logarithm for (Mn)). Assume (A2) and (A3).
Then, for any vector u ∈ R

d,

lim sup
n→∞

[2J(n) ln (lnn)]
−1/2

uTMn = − lim inf
n→∞ [2J(n) ln (lnn)]

−1/2
uTMn =

√
uTCu a.s.

In particular, ‖Mn‖2 = O (J(n) ln (lnn)) a.s.
Lemma 10 (quadratic strong law of large numbers for (Mn)). Assume (A2) and

(A3). Then,

lim
n→∞

1

lnn

n∑
k=1

[kJ(k)]−1MkM
T
k = C a.s.

Lemma 11 (a.s.CLT for (uTMn)). Assume (A2) and (A3). Then, for any vector
u ∈ R

d,

1

lnn

n∑
k=1

1

k
δ[J(k)]−1/2uTMk

=⇒N (
0, uTCu

)
a.s.

Our proofs are now organized as follows. First, we show in section 4.1 how
Theorems 3, 6, and 7 can be deduced from Lemmas 9, 10, and 11. Then, Corollary 5
is established in section 4.2. Finally, section 4.3 is devoted to the proofs of Lemmas 9,
10, and 11.

Throughout the proofs, L denotes a generic, increasing, and slowly varying func-
tion.
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4.1. Proof of Theorems 3, 6, and 7. In the case assumptions (A2) and (A3.b)

hold, we have 1
b < min{ 1

2 ; 1
2a [ (a−1)β

1−α − 1]}; throughout this subsection, we then set
δ such that

1

b
< δ < min

{
1

2
;

1

2a

[
(a− 1)β

1− α
− 1

]}
.(16)

4.1.1. Preliminaries. In this subsection, we establish two lemmas we shall use
in the proofs of Theorems 3, 6, and 7.

Lemma 12. Assume (A1), (A2), and (A4.w) hold. Then, we have, a.s. on Γ (z∗),

(i) under (A3.a), ‖Kn‖ = O[(1 + nα−
β
2 )L(n)] and

n∑
k=1

‖r(2)
k+1‖ = O

[
(1 + n1− aβ

2 )L(n)
]
,

(ii) under (A3.b), ‖Kn‖ = O[(1 + nδ(1−α)− β
2 +α)L(n)] and

∑n
k=1 ‖r(2)

k+1‖ =

O[(1 + n1+ a
2 [2δ(1−α)−β])L(n)], where δ is given by (16).

Proof of Lemma 12. In view of assumption (A3)(ii), we have

‖Kn‖ = O

[
1 +

‖Tn+1‖
γn

+

n∑
k=2

‖Tk‖ θ(k)

]

with θ = (1/γ)′. Let us apply the following result proved in [21].
Result 1 (almost sure upper bounds of (Zn − z∗) on Γ (z∗)). Assume (A1),

(A2), and (A4.w) hold. Then, we have

(i) under (A3.a), ‖Zn − z∗‖ = O([v(n)]−1/2[ln(
∑n

k=1 γk)]
1/2

) a.s. on Γ(z∗),

(ii) under (A3.b), for any ζ such that ζ > 1
b , ‖Zn−z∗‖ = O([v(n)]−1/2(

∑n
k=1 γk)

ζ
)

a.s. on Γ(z∗).
It follows that, under assumption (A3.a), we have

‖Kn‖ = O

1 +
[ln(

∑n+1
k=1 γk)]

1/2

γn
√
v(n + 1)

+

n∑
k=2

[ln(
∑n

k=1 γk)]
1/2

θ(k)√
v(k)


= O

[
(1 + nα−

β
2 )L(n)

]
a.s. on Γ(z∗)

and, under assumption (A3.b),

‖Kn‖ = O

1 +
(
∑n+1

k=1 γk)
δ

γn
√
v(n + 1)

+

n∑
k=2

(
∑k

j=1 γj)
δ
θ(k)√

v(k)


= O

[
(1 + nδ(1−α)+α− β

2 )L(n)
]

a.s. on Γ(z∗).

On the other hand, since ‖r(2)
k+1‖ = O (‖Zk − z∗‖a), we deduce from Result 1 that,

under assumption (A3.a),

n∑
k=1

‖r(2)
k+1‖ = O

[
n∑

k=1

([ln (
∑k

j=1 γj)]
a/2

[v(k)]−a/2)

]
= O[(1 + n1− aβ

2 )L(n)] a.s. on Γ(z∗)
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and, under assumption (A3.b),

n∑
k=1

‖r(2)
k+1‖ = O

[
n∑

k=1

([
∑k

j=1 γj ]
aδ

[v(k)]−a/2)

]
= O[(1 + n1+ a

2 [2δ(1−α)−β])L(n)] a.s. on Γ(z∗),

which concludes the proof of Lemma 12.
Lemma 13. Assume (A1), (A2), and (A3) hold. Then,
(i) under (A4.w), we have [J(n)]−1/2 (‖Kn‖+

∑n
k=1 ‖rk+1‖) = O(1) a.s. on

Γ (z∗),
(ii) under (A4.s), there exists c > 0 such that [J(n)]−1/2 (‖Kn‖+

∑n
k=1 ‖rk+1‖) =

O (n−c) a.s. on Γ (z∗).
Proof of Lemma 13. The application of Lemma 12 leads to the following almost

sure upper bounds on Γ (z∗):

Sequence Under assumption (A3.a)

[J(n)]−1/2 ‖Kn‖ O[(n− 1
2
(1−β+α) + n− 1

2
(1−α))L(n)]

[J(n)]−1/2
∑n

k=1 ‖r(2)k+1‖ O[(n− 1
2
(1−β+α) + n

1
2
[(1−α)−(a−1)β])L(n)]

Sequence Under assumption (A3.b)

[J(n)]−1/2 ‖Kn‖ O[(n− 1
2
(1−β+α) + n(δ−

1
2
)(1−α))L(n)]

[J(n)]−1/2
∑n

k=1 ‖r(2)k+1‖ O[(n− 1
2
(1−β+α) + n

1
2
[(1+2aδ)(1−α)−(a−1)β])L(n)]

.

Since all the exponents are strictly negative, there exists c1 > 0 such that

[J(n)]−1/2

(
‖Kn‖+

n∑
k=1

‖r(2)
k+1‖

)
= O(n−c1) a.s. on Γ(z∗).(17)

Now, under assumption (A4.w), we have

[J(n)]−1/2
n∑

k=1

‖r(1)
k+1‖ = O

(
[J(n)]−1/2

n∑
k=1

[√
J(k)γkv(k)

]−1

)
a.s. on Γ(z∗).

Since the function s �→ [
√
J(s)γ(s)v(s)]

−1
varies regularly with exponent −(1− α +

β)/2 > −1, we have [11, p. 281]

lim
t→∞

t
[√

J(t)γ(t)v(t)
]−1∫ t

0

[√
J(s)γ(s)v(s)

]−1 =
1

2
[(1− β) + α],

1

2
[(1− β) + α] �= 0.

It follows that
n∑

k=1

[√
J(k)γkv(k)

]−1
= O

(
n
[√

J(n)γnv(n)
]−1)

and [J(n)]−1/2
n∑

k=1

‖r(1)
k+1‖ = O(n[J(n)γnv(n)]

−1
) a.s. on Γ(z∗).

However, the function s �→ γ(s)v(s) varies regularly with exponent α− β > −1; thus

t[γ(t)v(t)]
−1

J(t)
→ (1− β) + α �= 0,
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which implies that

[J(n)]−1/2
n∑

k=1

‖r(1)
k+1‖ = O(1) a.s. on Γ(z∗).(18)

The first part of Lemma 13 then follows from the combination of (17) and (18).
Now, under assumption (A4.s), we have

[J(n)]−1/2
n∑

k=1

‖r(1)
k+1‖ = O

(
[J(n)]−1/2

n∑
k=1

k−ρ

)
= O(n− 1

2 (1+α−β)L(n)[n1−ρ + lnn])

= O([n
1
2 (1−α+β)−ρ + n− 1

2 (1+α−β)]L(n))

= O(n−c2) with c2 > 0,(19)

and the second part of Lemma 13 follows from the combination of (17) and (19).

4.1.2. Proof of Theorem 6. In view of (14) and Lemma 13 (i), we have, for
any u ∈ R

d,

uTnHTn√
2J(n) ln (lnn)

=
−uTMn+1√

2J(n) ln (lnn)
+

uT (Kn −
∑n

k=1 rk+1)√
2J(n) ln (lnn)

=
−uTMn+1√

2J(n) ln (lnn)
+ o(1) a.s.

It then follows from Lemma 9 that, a.s. on Γ (z∗),

lim sup
n→∞

nuTH
(
Zn − z∗

)√
2J(n) ln (lnn)

= − lim inf
n→∞

nuTH
(
Zn − z∗

)√
2J(n) ln (lnn)

=
√
uTCu

and, replacing u by [(HT )
−1

u] (HT is nonsingular), we deduce that, a.s. on Γ (z∗),

lim sup
n→∞

nuT
(
Zn − z∗

)√
2J(n) ln (lnn)

= − lim inf
n→∞

nuT
(
Zn − z∗

)√
2J(n) ln (lnn)

=

√
uTH−1C(HT )

−1
u,(20)

which concludes the proof of the first assertion of Theorem 6.
Now, (20) implies that for any u ∈ R

d, a.s. on Γ (z∗),

lim sup
n→∞

n2

2J(n) ln (lnn)
uT
(
Zn − z∗

) (
Zn − z∗

)T
u = uTH−1C

(
HT

)−1
u

and, Q being a countable set, there exists a P -null set N such that ∀ω ∈ Γ (z∗) \N ,
∀u ∈ Q

d,

lim sup
n→∞

n2

2J(n) ln (lnn)
uT
(
Zn(ω)− z∗

) (
Zn(ω)− z∗

)T
u = uTH−1C

(
HT

)−1
u.(21)

To conclude the proof of Theorem 6, we have to show that for any ω0 ∈ Γ (z∗) \ N
and any v ∈ R

d

lim sup
n→∞

vTΣnv = vTΣv,(22)
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where Σn =
n2
(
Zn(ω0)− z∗

) (
Zn(ω0)− z∗

)T
2J(n) ln (lnn)

and Σ = H−1C(HT )
−1

.

Set ε > 0 and u ∈ Q
d such that ‖v − u‖ ≤ ε; we have

vT (Σn − Σ) v ≤ uT (Σn − Σ)u +
∥∥(v − u)T (Σn − Σ) v + uT (Σn − Σ) (v − u)

∥∥ ,
lim sup
n→∞

vT (Σn − Σ) v ≤ lim sup
n→∞

uT (Σn − Σ)u

+ lim sup
n→∞

[‖v − u‖ (‖Σn‖+ ‖Σ‖) (‖u‖+ ‖v‖)] ,
≤ lim sup

n→∞
[ε (‖Σn‖+ ‖Σ‖) (ε + 2‖v‖)] in view of (21).

However, (21) implies that ‖Zn(ω0)− z∗‖ = O(1); thus

lim sup
n→∞

vT (Σn − Σ) v ≤ εC(ε + 2‖v‖), where C > 0.

It follows that lim supn→∞ vTΣnv ≤ vTΣv.

On the other hand, (21) implies that there exists a sequence of integers (t(n)) and
n0 ∈ N such that limn→∞ t(n) = ∞ and ∀n ≥ n0, ‖uT (Σt(n) − Σ)u‖ ≤ ε. We then
have, ∀n ≥ n0,

∥∥vT (Σt(n) − Σ
)
v
∥∥ ≤ εC(ε + 2‖v‖).

Thus limn→∞vTΣt(n)v = vTΣv and (22) is proved.

4.1.3. Proof of Theorem 3. In view of (14), we have

n2HTnT
T

nH
T =

(
Kn −Mn+1 −

n∑
k=1

rk+1

)(
Kn −Mn+1 −

n∑
k=1

rk+1

)T

= MnM
T
n + R̃n,

where R̃n = n2HTnT
T

nH
T −Mn+1M

T
n+1; thus

1

lnn

n∑
k=1

k[J(k)]−1HT kT
T

kH
T =

1

lnn

n∑
k=1

[kJ(k)]−1MkM
T
k +

1

lnn

n∑
k=1

[kJ(k)]−1R̃k.

Lemmas 9 and 12 and assumption (A4.s) lead to the following almost sure upper
bounds on Γ (z∗):
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Sequence Under assumption (A3.a)

[J(k)]−1‖Kk‖2 O[(k−(1−β+α) + k−(1−α))L(k)]
[J(k)]−1‖∑k

j=1 r
(1)
j+1‖

2
O[(k−(1−β+α) + k(1+β−α)−2ρ)L(k)]

[J(k)]−1‖∑k
j=1 r

(2)
j+1‖

2
O[(k−(1−β+α) + k(1−α)−(a−1)β)L(k)]

[J(k)]−1‖Kk‖‖Mk‖ O[(k−
1
2
(1+α−β) + k−

1
2
(1−α))L(k)]

[J(k)]−1‖∑k
j=1 r

(1)
j+1‖‖Mk‖ O[(k−

1
2
(1+α−β) + k

1
2
(1+β−α)−ρ)L(k)]

[J(k)]−1‖∑k
j=1 r

(2)
j+1‖‖Mk‖ O[(k−

1
2
(1+α−β) + k

1
2
[(1−α)−(a−1)β])L(k)]

Sequence Under assumption (A3.b)

[J(k)]−1‖Kk‖2 O[(k−(1−β+α) + k(2δ−1)(1−α))L(k)]
[J(k)]−1‖∑k

j=1 r
(1)
j+1‖

2
O[(k−(1−β+α) + k(1+β−α)−2ρ)L(k)]

[J(k)]−1‖∑k
j=1 r

(2)
j+1‖

2
O[(k−(1−β+α) + k(1+2aδ)(1−α)−(a−1)β)L(k)]

[J(k)]−1‖Kk‖‖Mk‖ O[(k−
1
2
(1+α−β) + k(δ−

1
2
)(1−α))L(k)]

[J(k)]−1‖∑k
j=1 r

(1)
j+1‖‖Mk‖ O[(k−

1
2
(1+α−β) + k

1
2
(1+β−α)−ρ)L(k)]

[J(k)]−1‖∑k
j=1 r

(2)
j+1‖‖Mk‖ O[(k−

1
2
(1+α−β) + k

1
2
[(1+2aδ)(1−α)−(a−1)β])L(k)]

Since all the exponents are strictly negative, we deduce that
∑

[kJ(k)]−1‖R̃k‖ < ∞
a.s. on Γ (z∗), and thus

1

lnn

n∑
k=1

k[J(k)]−1HT kT
T

kH
T =

1

lnn

n∑
k=1

[kJ(k)]−1MkM
T
k + o(1) a.s. on Γ (z∗) .

Lemma 10 then implies

lim
n→∞

1

lnn

n∑
k=1

k[J(k)]−1HT kT
T

kH
T = C a.s. on Γ (z∗)

and thus

lim
n→∞

1

lnn

n∑
k=1

k[J(k)]−1
(
Zk − z∗

) (
Zk − z∗

)T
= H−1C

(
H−1

)T
a.s. on Γ (z∗) .

4.1.4. Proof of Theorem 7. We have to prove that there exists a P -null set
N such that ∀ω ∈ Γ (z∗) \N

1

lnn

n∑
k=1

1

k
δk[J(k)]−1/2(Zk(ω)−z∗) =⇒ N (0, H−1C(H−1)

T
).

We first study the behavior of the characteristic functions of the random measures
1

lnn

∑n
k=1

1
k δk[J(k)]−1/2(Zk−z∗).

Let u be any vector of R
d. In view of (14), we have

1

lnn

n∑
k=1

1

k
exp[i[J(k)]−1/2uT (kHT k)]

=
1

lnn

n∑
k=1

1

k
exp

[
i[J(k)]−1/2uT

(
−Mk+1 + Kk −

k∑
j=1

rj+1

)]
.
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Applying Lemma 13 (ii), it follows that, a.s. on Γ(z∗),

1

lnn

n∑
k=1

1

k
exp[i[J(k)]−1/2uT (kHT k)]

=
1

lnn

n∑
k=1

1

k
exp[−i[J(k)]−1/2uTMk+1 + O(k−c)]

=
1

lnn

n∑
k=1

1

k
exp[−i[J(k)]−1/2uTMk+1] + o(1).

Thus, in view of Lemma 11,

lim
n→∞

1

lnn

n∑
k=1

1

k
exp[i(HTu)

T
(k[J(k)]−1/2T k)] = exp

[−uTCu

2

]
.

It follows that, for any vector u in R
d, we have, a.s. on Γ(z∗),

lim
n→∞

1

lnn

n∑
k=1

1

k
exp[iuT (k[J(k)]−1/2(Zk − z∗))] = exp

[
−uTH−1C

(
H−1

)T
u

2

]
.

Since Q is a countable set, there exists a P -null set N ⊂ Γ(z∗) such that ∀ω ∈
Γ(z∗) \N , ∀u ∈ Q

d,

lim
n→∞

1

lnn

n∑
k=1

1

k
exp[iuT (k[J(k)]−1/2(Zk(ω)− z∗))] = exp

[
−uTH−1C

(
H−1

)T
u

2

]
.

(23)

Let us now set ω0 ∈ Γ(z∗) \N and prove that the sequence of the deterministic
measures (µn(ω0)) defined by

µn(ω0) =
1

lnn

n∑
k=1

1

k
δk[J(k)]−1/2(Zk(ω0)−z∗)

converges weakly to the N (0, H−1C(H−1)T ) distribution.
Let µ0 be a closure point of (µn (ω0)) and µp(n) (ω0) a subsequence such that

µp(n) (ω0) =⇒ µ0. Since (µp(n)(ω0)) is a bounded sequence of measures, µ0 is a
bounded measure; let φ0 (respectively, φp(n)) be the characteristic function of µ0

(respectively, µp(n) (ω0)). We then have limn→∞ φp(n)(u) = φ0(u) for any u ∈ R
d, and,

in view of (23), φ0(u) = exp[−uTH−1C(H−1)
T
u/2] for any u ∈ Q

d. However, the

function φ0 is continuous, thus φ0(u) = exp[−uTH−1C(H−1)
T
u/2] for any u ∈ R

d.

We finally deduce that µ0 is the N (0, H−1C(H−1)
T

) distribution and µn (ω0) =⇒
N (0, H−1C(H−1)

T
), which concludes the proof of Theorem 7.

4.2. Proof of Corollary 5. The estimator Σ̂n can be written as

Σ̂n =
1

lnn

n∑
k=1

k[J(k)]−1
(
Zk − z∗

) (
Zk − z∗

)T
+

1

lnn

n∑
k=1

k[J(k)]−1
(
Zn − z∗

) (
Zn − z∗

)T
− 1

lnn

n∑
k=1

k[J(k)]−1
(
Zk − z∗

) (
Zn − z∗

)T − 1

lnn

n∑
k=1

k[J(k)]−1
(
Zn − z∗

) (
Zk − z∗

)T
.



66 MARIANE PELLETIER

Applying Theorem 6, we have, a.s. on Γ (z∗),(
n∑

k=1

k[J(k)]−1

)∥∥Zn − z∗
∥∥2

= O

[(∫ n

1

s[J(s)]−1ds

)
J(n) ln (lnn)

n2

]
.

Since the function s �→ s[J(s)]−1 varies regularly with exponent β−α > −1, we have

lim
n→∞

n2[J(n)]−1∫ n
1
s[J(s)]−1ds

= 1 + β − α, 1 + β − α �= 0;

thus, a.s. on Γ (z∗), (
n∑

k=1

k[J(k)]−1

)∥∥Zn − z∗
∥∥2

= O[ln (lnn)]

and

lim
n→∞

1

lnn

n∑
k=1

k[J(k)]−1
(
Zn − z∗

) (
Zn − z∗

)T
= 0.

On the other hand, applying Theorem 6 again, we obtain, a.s. on Γ (z∗),(
n∑

k=1

k[J(k)]−1
∥∥Zk − z∗

∥∥)∥∥Zn − z∗
∥∥

= O

[(
n∑

k=1

[J(k)]−1/2
√

ln (ln k)

) √
J(n) ln (lnn)

n

]

= O

[(∫ n

1

[J(s)]−1/2
√

ln (ln s)ds

) √
J(n) ln (lnn)

n

]
.

Since the function s �→ [J(s)]−1/2
√

ln (ln s) varies regularly with exponent − 1
2 (1 +

α− β) < 1, we have

lim
n→∞

n[J(n)]−1/2
√

ln lnn∫ n
1

[J(s)]−1/2
√

ln (ln s)ds
=

1

2
(1− α + β),

1

2
(1− α + β) �= 0.

Thus, a.s. on Γ (z∗),(
n∑

k=1

k[J(k)]−1
∥∥Zk − z∗

∥∥)∥∥Zn − z∗
∥∥ = O(ln lnn)

and

lim
n→∞

[
1

lnn

n∑
k=1

k[J(k)]−1
(
Zk − z∗

) (
Zn − z∗

)T
+

1

lnn

n∑
k=1

k[J(k)]−1
(
Zn − z∗

) (
Zk − z∗

)T]
= 0.

Applying Theorem 3, we finally deduce that limn→∞ Σ̂n = H−1C
(
H−1

)T
a.s. on

Γ (z∗).



AVERAGED STOCHASTIC ALGORITHMS AND EFFICIENCY 67

4.3. Proof of Lemmas 9, 10, and 11. Throughout this subsection, Tr(A)

denotes the trace of a matrix A, and 〈M̃〉n the increasing process of a square-integrable

martingale (M̃n). Recall that 〈M̃〉0 = I and E((M̃n+1 − M̃n)(M̃n+1 − M̃n)
T |Fn) =

〈M̃〉n+1 − 〈M̃〉n.

4.3.1. Proof of Lemma 9. The proof of Lemma 9 is based upon the following
adaptation of the law of the iterated logarithm of Stout [27] (see [8] or [10]).

Result 2 (law of the iterated logarithm for unidimensional martingales). Let
(ηn) be a sequence of unidimensional random variables adapted to a filtration F such
that

E(ηn+1|Fn) = 0 ∀n ≥ 0, lim sup
n→∞

E(|ηn+1|2|Fn) = c2 <∞, and

∃ξ ∈]0, 1[ s.t. sup
n≥0

E(|ηn+1|2(1+ξ)|Fn) < +∞ a.s.

Let (Φn) be a sequence of unidimensional random variables adapted to F and set
τn =

∑n
k=0 Φ2

k; if τ∞ = +∞, ∑Φ2+2ξ
n τ−1−ξ

n < +∞ and Φ2
n = o(τn(ln ln τn)−1/ξ)

a.s.; then

lim sup
n→∞

[2τn ln (ln τn)]
−1/2

n∑
k=0

Φkηk+1 = − lim inf
n→∞ [2τn ln (ln τn)]

−1/2
n∑

k=0

Φkηk+1 = c a.s.

Set u ∈ R
d; the application of Result 2 with Φn = σnγ

−1
n and ηn+1 = uT εn+1

leads to

lim sup
n→∞

∑n
k=1 σkγ

−1
k uT εk+1[

2
(∑n

k=1 σ
2
kγ

−2
k

)
ln ln

(∑n
k=1 σ

2
kγ

−2
k

)]1/2
= − lim inf

n→∞

∑n
k=1 σkγ

−1
k uT εk+1[

2
(∑n

k=1 σ
2
kγ

−2
k

)
ln ln

(∑n
k=1 σ

2
kγ

−2
k

)]1/2
=
√
uTCu a.s.

However, σ2
kγ

−2
k = [γkv(k)]

−1
; thus

∑n
k=1 σ

2
kγ

−2
k ∼ J(n) and we obtain

lim sup
n→∞

[2J(n) ln (lnn)]
−1/2

uTMn = − lim inf
n→∞ [2J(n) ln (lnn)]

−1/2
uTMn =

√
uTCu a.s.

4.3.2. Proof of Lemma 10. The proof of Lemma 10 is based upon the following
martingale version of a result established by Wei [30] for regressive sequences.

Lemma 14 (a strong law of large numbers for martingales). Let (M̃n) be a
d-dimensional, square-integrable martingale with respect to a filtration F .

Set

Hn =

n∑
k=1

M̃T
k [〈M̃〉−1

k−1 − 〈M̃〉
−1

k ]M̃k,

fn = Tr(〈M̃〉−1/2

n+1 [〈M̃〉n+1 − 〈M̃〉n]〈M̃〉−1/2

n+1 ) = d− Tr(〈M̃〉n〈M̃〉
−1

n+1),
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Fn = f0 + · · ·+ fn,

and assume there exists a constant a > 1 such that

sup
n

E(([M̃n+1 − M̃n]
T 〈M̃〉−1

n+1[M̃n+1 − M̃n])
a

|Fn) <∞ a.s.

Then, a.s. on {Fn → +∞},

lim
n→∞

M̃T
n 〈M̃〉

−1

n M̃n + Hn

Fn
= 1.

Let us first take up briefly the outlines of the proof of Lemma 14. Setting Vn =

M̃T
n 〈M̃〉

−1

n M̃n, we have

Vn+1 = [M̃n + (M̃n+1 − M̃n)]
T 〈M̃〉−1

n+1[M̃n + (M̃n+1 − M̃n)]

= Vn −An + Bn+1 + Dn + DT
n

with An = M̃T
n (〈M̃〉−1

n − 〈M̃〉−1

n+1)M̃n, Bn+1 = (M̃n+1 − M̃n)
T 〈M̃〉−1

n+1(M̃n+1 − M̃n),

and Dn = (M̃n+1 − M̃n)
T 〈M̃〉−1

n+1M̃n. We deduce that

Vn+1 = V1 −Hn +

n∑
k=1

Bk+1 +

n∑
k=1

(
DT

k + Dk

)
.

Under the moment assumption, limn→∞ (
∑n

k=1 Bk+1) /Fn = 1 a.s. on {Fn → +∞}.
On the other hand,

E(|Dn+1|2|Fn) = M̃T
n 〈M̃〉

−1

n+1[〈M̃〉n+1 − 〈M̃〉n]〈M̃〉−1

n+1M̃n = O(An).

Thus the series
∑∞

k=1(DT
k + Dk) converges a.s. on {Hn < +∞} and

∑n
k=1(DT

k +Dk)
= o(Hn) a.s. on {Hn → +∞}. It follows that, a.s. on {Fn → +∞},

lim
n→∞

Vn+1 + Hn + o (Hn) 1{Hn→+∞}
Fn

= 1

and thus

lim
n→∞

Vn+1 + Hn

Fn
= 1,

which concludes the proof of Lemma 14.
We now prove Lemma 10. Let u be any nonzero vector of R

d, and set Wn =
uTMn; (Wn) is a square-integrable martingale, whose increasing process 〈W 〉n+1 =

Σn
k=1σ

2
kγ

−2
k uTCku = Σn

k=1[γkv(k)]−1uTCku satisfies

〈W 〉n+1 ∼ J(n)uTCu.(24)

We have

[Wn+1 −Wn]
T 〈W 〉−1

n+1[Wn+1 −Wn] =
[
uT (Mn+1 −Mn)

]2〈W 〉−1
n+1

=

(
1

γnv(n)

)[
uT εn+1

]2〈W 〉−1
n+1.
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Thus,

E(([Wn+1 −Wn]
T 〈W 〉−1

n+1[Wn+1 −Wn])
b/2|Fn)

=

(
1

γnv(n)

)b/2

〈W 〉−b/2
n+1 E(|uT εn+1|b|Fn)

and, in view of (24),

E(([Wn+1 −Wn]
T 〈W 〉−1

n+1[Wn+1 −Wn])
b/2|Fn) = O([γnv(n)J(n)]

−b/2
)(25)

= O[n−b/2L(n)].

Since b > 2, (Wn) fulfills the moment assumption of Lemma 14, and we deduce that,

a.s. on {Σn
k=1(1− 〈W 〉k〈W 〉−1

k+1) → +∞},

lim
n→∞

WT
n 〈W 〉−1

n Wn +
∑n

k=1 W
T
k [〈W 〉−1

k−1 − 〈W 〉−1
k ]Wk∑n

k=1(1− 〈W 〉k〈W 〉−1
k+1)

= 1.(26)

Now, in view of (24), (1− 〈W 〉k〈W 〉−1
k+1) ∼ 1− J(k − 1)[J(k)]−1. Since J ′ varies

regularly with exponent α−β, we have J(k − 1)[J(k)]−1 = 1−(α−β+1)k−1+o(k−1);
thus

1− 〈W 〉k〈W 〉−1
k+1 ∼

(α− β + 1)

k
(27)

and

n∑
k=1

(1− 〈W 〉k〈W 〉−1
k+1)∼(α− β + 1) lnn.(28)

On the other hand, Lemma 9 gives ‖Wn‖2 = O(J(n) ln (lnn)) a.s. Using (24)

again, we obtain ‖WT
n 〈W 〉−1

n+1Wn‖ = O(ln (lnn)) and, in view of (28),

WT
n 〈W 〉−1

n+1Wn = o

[
n∑

k=1

(1− 〈W 〉k〈W 〉−1
k+1)

]
.(29)

Finally,

n∑
k=1

WT
k [〈W 〉−1

k−1 − 〈W 〉−1
k ]Wk =

n∑
k=1

〈W 〉−1
k−1[1− 〈W 〉k−1〈W 〉−1

k ]WkW
T
k

and, in view of (24) and (27),

n∑
k=1

WT
k [〈W 〉−1

k−1 − 〈W 〉−1
k ]Wk ∼ (α− β + 1)

uTCu

n∑
k=1

[kJ(k)]−1uTMkM
T
k u.(30)

It follows from the combination of (26), (28), (29), and (30) that

lim
n→∞

1

lnn

n∑
k=1

[kJ(k)]−1uTMkM
T
k u = uTCu a.s.(31)
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Let us define Σn by

Σn =
1

lnn

(
n∑

k=1

[kJ(k)]−1MkM
T
k

)
− C

and denote by Σ
(i,j)
n the coefficient of the ith line and jth column of Σn. Let

(e1, . . . , ed) be the canonical basis of R
d. It is easy to see that, for i, j ∈ {1, . . . , d},

Σ(i,j)
n =

1

2
[(ei + ej)

T
Σn(ei + ej)− eTi Σnei − eTj Σnej ].

Applying (31) to the three terms of the right-hand side of this equation, it follows

that limn→∞ Σ
(i,j)
n = 0 a.s. and thus limn→∞ Σn = 0 a.s., which completes the proof

of Lemma 10.

4.3.3. Proof of Lemma 11. The proof of Lemma 11 is based upon the following
result proved by Chaabane [2].

Result 3 (an a.s.CLT for unidimensional martingales). Let (M̃n) be an unidi-
mensional square integrable martingale with respect to a filtration F and assume there
exists a > 1 such that∑

n≥1

E(([M̃n+1 − M̃n]
T 〈M̃〉−1

n+1[M̃n+1 − M̃n])
a

|Fn) <∞ a.s.

Then,

1

ln 〈M̃〉n

n∑
k=1

〈M̃〉k − 〈M̃〉k−1

〈M̃〉k
δ〈M̃〉−1/2

k M̃k
=⇒ N (0, 1) a.s.

Set u ∈ R
d, u �= 0, and Wn = uTMn. In view of (25), (Wn) satisfies the

assumption of Result 3. It follows that

1

ln 〈W 〉n

n∑
k=1

[1− 〈W 〉k−1〈W 〉−1
k ]δ〈W 〉−1/2

k Wk
=⇒ N (0, 1) a.s.

Then, in view of (24) and (27),

1

(α− β + 1) lnn

n∑
k=1

α− β + 1

k
δ[uTCuJ(k)]−1/2uTMk

=⇒N (0, 1) a.s.

and thus

1

lnn

n∑
k=1

1

k
δ[J(k)]−1/2uTMk

=⇒N (
0, uTCu

)
a.s.

This last property is also clearly satisfied by u = 0, and thus the proof of Lemma 11
is completed.
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Abstract. In a financial market consisting of a nonrisky asset and a risky one, we study the
minimal initial capital needed in order to superreplicate a given contingent claim under a gamma
constraint. This is a constraint on the unbounded variation part of the hedging portfolio. We first
consider the case in which the prices are given as general Markov diffusion processes and prove a
verification theorem which characterizes the superreplication cost as the unique solution of a quasi-
variational inequality. In the context of the Black–Scholes model (i.e., when volatility is constant),
this theorem allows us to derive an explicit solution of the problem. These results are based on a
new dynamic programming principle for general “stochastic target” problems.

Key words. stochastic control, viscosity solutions, stochastic analysis, superreplication, gamma
constraint
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1. Introduction. We study the problem of superreplicating a contingent claim
under a gamma constraint. This is a constraint on the unbounded part of the hedging
portfolio.

To explain this constraint and the idea of superreplication, let us first consider
the classical Black–Scholes framework with one riskless asset which is normalized to
S0 = 1 and one risky asset whose price process evolves according to the stochastic
differential equation dS(t)/S(t) = µdt+ σdW (t). Then given a European contingent
claim of the type g(S(T )), the unconstrained superreplication cost vBS(0, S(0)) is
defined as the minimal initial capital which allows us to hedge g(S(T )) through some
portfolio strategy on the assets S0 and S. It is known that the solution of this problem
coincides with the Black–Scholes arbitrage price of g(S(T )) and therefore it is given
by vBS(t, s) = EQ[g(S(T ))|S(t) = s]. Here EQ(.) is the expectation operator under
the equivalent martingale measure, i.e., Q is the probability measure equivalent to P
under which the process S is a martingale. Then the optimal hedging strategy consists
of holding ∆(t, S(t)) := vBSs (t, S(t)) units of the risky asset at each time t ∈ [0, T ].

In practice, traders are faced with shortselling, borrowing, or another type of con-
straint. These restrictions render this optimal strategy impossible to use in practice,
and the notion of superreplication is introduced to replace the no-arbitrage price of
Black and Scholes, in the presence of such constraints. We refer to Jouini and Kallal
(1995) and Cvitanic̀ and Karatzas (1993) for the superreplication problem with general
portfolio constraints. They provide a characterization of the minimal superreplica-
tion cost as the value of a stochastic optimal control problem. Broadie, Cvitanic̀,
and Soner (1998) observe that, for a contingent claim of the type g(S(T )), this con-
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trol problem can be explicitly solved by proving that the minimal superreplication
cost is the unconstrained Black–Scholes price of a modified claim. For the stochastic
volatility model, a similar explicit solution is provided in Cvitanic̀, Pham, and Touzi
(1999).

Another problem which in practice faces traders is the variation of the optimal
hedging strategy. The gamma associated to the optimal hedging strategy is defined
by γ(t, S(t)) := vBSss (t, S(t)) and describes the variation of the holdings in S, in the
optimal hedging strategy, with respect to an infinitesimal change of the process S.
Since traders act only in discrete-time, a large γ induces an important risk exposure
between two transaction dates. This problem was raised by Broadie, Cvitanić, and
Soner (1998) who provided an upper bound for the superreplication cost under gamma
constraint, as well as the associated hedging strategy. However, they did not formulate
a precise statement of the problem.

The chief goals of this paper are first to define the superreplication problem under
a gamma constraint and then to obtain an explicit solution.

Formulation of the problem is obtained by observing that the gamma constraint
is equivalent to a bound on the variation of the hedging portfolio. We then provide
a simple solution to this problem. To describe this solution, let ĝ be the smallest
function greater than g which satisfies the gamma constraint. Then the minimal
superreplicating cost with a gamma constraint solves a variational inequality with
terminal condition ĝ. When the volatility is a given constant, the solution of the
problem is given by EQ[ĝ(S(t))], i.e., the Black and Scholes no-arbitrage price of the
contingent claim ĝ(S(T )). We explicitly calculate the ĝ function for several standard
options such as European calls, puts, and digital options.

Previously, the convex duality argument was used to characterize the minimal su-
perreplicating cost. In this approach, the dual formulation of the problem is obtained
by suitable changes of measure. However, in the case of gamma constraints, it seems
that the diffusion coefficients need to be modified in order to follow a similar tech-
nique. Since this cannot be accomplished by equivalent changes of measure, we were
not able to use the convex duality arguments. Instead, we introduce a dynamic pro-
gramming argument to identify the superreplication cost as the viscosity solution of a
differential inequality. To our knowledge, this is the first use of dynamic programming
in this context. We believe that this is a powerful tool in analyzing “stochastic target”
problems and establishing the connection between the backward-forward stochastic
differential equations and viscosity solutions as developed in an accompanying paper
by the authors Soner and Touzi (2000).

A technical contribution of this paper is a result on the behavior of double stochas-
tic integrals with respect to Brownian motion. This is needed because our formulation
of the problem involves a nonclassical constraint on the unbounded variation part of
the portfolio process, which is itself the integrand of the martingale part of the state
process.

This paper is organized as follows. Section 2 describes the general problem. We
introduce the modified terminal data in section 3 and state the assumptions in section
4. After stating the dynamic programming in section 5, we state and prove the main
result in section 6. Section 7 focuses on the constant coefficient (i.e., the Black–
Scholes) case, and several examples are discussed in section 8. The remainder of
the paper is devoted to technical results: section 9 proves the viscosity property, a
comparison result is proved in section 10, and finally a property of stochastic double
integrals is proved in section 11.
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2. Problem. We consider a financial market which consists of one bank account,
with constant price process S0(t) = 1 for all t ∈ [0, T ], and one risky asset with price
process evolving according to the following stochastic differential equation:

St,s(t) = s and
dSt,s(u)

St,s(u)
= µ(u, St,s(u))dt+ σ(u, St,s(u))dW

0(u), t ≤ u ≤ T.

Here W 0 is a standard Brownian motion in R defined on a complete probability space
(Ω,F , P 0). We shall denote by F = {F(t), 0 ≤ t ≤ T} the P 0-augmentation of the
filtration generated by W 0. The drift and the volatility functions sµ(t, s) and sσ(t, s)
satisfy the usual Lipschitz and linear growth conditions in order for the process St,s
to be well defined; we also assume that σ(t, s) > 0 for all (t, s) ∈ [0, T ]× (0,∞) and

EP
0

[
E
(
−
∫ T

0

µ(t, S0,s(t))

σ(t, S0,s(t))
dW 0(t)

)]
= 1,

where EP
0

(.) is the expectation operator under the probability measure P 0 and E(.)
is the Doléans–Dade exponential martingale, i.e.,

E
(∫ T

0

b(t)dW 0(t)

)
= exp

(∫ T

0

b(t)dW 0(t)− 1
2

∫ T

0

b2(t)dt

)
.

As usual, the assumption that the interest rate of the bank account is zero can
be easily dispensed with by appropriate discounting.

Consider now an economic agent, endowed with an initial capital x at time t,
who invests at each time u ∈ [t, T ] an amount Y (u)S(u) of his wealth in the risky
asset and the remaining wealth in the bank account. The process Y = {Y (u), t ≤
u ≤ T} represents the number of shares of risky asset S held by the agent during the
time interval [t, T ]. Then, by the self-financing condition, the wealth process evolves
according to the stochastic differential equation

X(t) = x and dX(u) = Y (u)dS(u), t ≤ u ≤ T.
The purpose of this paper is to introduce constraints on the variations of the hedging
portfolio Y . We consider portfolios which are continuous semimartingales with respect
to the filtration F. Since F is the Brownian filtration, we define the controlled portfolio
strategy Y α,γt,s,y by

Y α,γt,s,y(t) = y,(2.1)

dY α,γt,s,y(u) = α(u)du+ γ(u)
dSt,s(u)

St,s(u)
, t ≤ u ≤ T,

where y ∈ R is the initial portfolio and the control pair (α, γ) takes values in

Dt := (L∞([t, T ]× Ω; Lebesgue⊗ P 0))2.

Hence a trading strategy is defined by the triple (y, α, γ) with y ∈ R and (α, γ) ∈ Dt.
Then the associated wealth process, denoted by Xα,γ

t,x,s,y, satisfies

Xα,γ
t,x,s,y(u) = x+

∫ u

t

Y α,γt,s,y(r)dSt,s(r), t ≤ u ≤ T.(2.2)
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We shall formulate the gamma constraint by requiring that the process γ be
bounded from above. Before making this definition precise, we give a formal discus-
sion. Formally, we expect the hedging portfolio to satisfy

Y (u) = vs(u, St,s(u)),

where v is the minimal superreplication cost. Indeed, this is true in the classical Black–
Scholes theory as well as in the case of portfolio constraints; see Broadie, Cvitanic̀,
and Soner (1998). Assuming enough regularity, we apply the Itô formula. The result
is

dY (u) = A(u)du+ σ(u, St,s(u))St,s(u)vss(u, St,s(u))dW
0(u),

where A(u) is given in terms of derivatives of v. Compare this equation with (2.1) to
conclude that

γ(u) = St,s(u) vss(u, St,s(u)).

Therefore a bound on the process γ translates to a bound on svss. Notice that, by
changing the definition of the process γ in (2.1), we may bound vss instead of svss.
However, we choose to study svss because it is a dimensionless quantity, i.e., if all the
parameters in the problem are increased by the same factor, svss remains unchanged.

We now formulate the gamma constraint in the following way. Let Γ be a constant
fixed throughout the paper. Given some initial capital x > 0, a trading strategy
(y, α, γ) is said to be x-admissible if it satisfies the gamma constraint γ(u) ≤ Γ
for all t ≤ u ≤ T almost surely (a.s.) and the associated wealth process Xα,γ

t,x,s,y is
nonnegative. We shall denote by

At,s(x) :=
{
(y, α, γ) ∈ R×Dt : γ(.) ≤ Γ and Xα,γ

t,x,s,y(.) ≥ 0
}

the set of all admissible trading strategies.
We consider a European-type contingent claim g(St,s(T )) defined by the terminal

payoff function g. Given such a contingent claim, we then consider the infimum v(t, s)
of initial capitals x which induce a wealth process Xα,γ

t,x,s,y through some admissible
trading strategy (y, α, γ) such that Xα,γ

t,x,s,y hedges g(St,s(T )), i.e.,

v(t, s) = inf
{
x : ∃ (y, α, γ) ∈ At,s(x), Xα,γ

t,x,s,y(T ) ≥ g(St,s(T )) a.s.
}
.(2.3)

Note that if g is convex so is v in the s-variable; hence, in this case, gamma is bounded
from below as well.

Our goal is to prove that function v(t, s) solves a variational inequality and that
its terminal value is given by some function ĝ dominating g. When we focus on the
constant volatility case, these observations allow us to derive an explicit solution of
the hedging problem (2.3): v(t, s) is the (unconstrained) Black and Scholes price of
the modified contingent claim ĝ(St,s(T )). This function ĝ can be easily computed and
several examples are provided in section 7.

Throughout this paper, we shall introduce a probability measure P ∼ P 0 defined
by

P (A) = EP
0

[
1AE

(
−
∫ T

0

µ(t, S0,s(t))

σ(t, S0,s(t))
dW 0(t)

)]
for all A ∈ F .
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We shall denote by E(.) the expectation operator under the probability measure P .
By Girsanov’s theorem, the process W defined by

W (u) :=W 0(u) +

∫ u

t

µ(r, St,s(r))

σ(r, St,s(r))
dr, t ≤ u ≤ T,

is a Brownian motion under P . In terms of the Brownian motion W , the risky asset
price process is defined by

St,s(t) = s and
dSt,s(u)

St,s(u)
= σ(u, St,s(u))dW (u), t ≤ u ≤ T.(2.4)

3. Modified terminal data. Due to the constraint, the limit of the value func-
tion v(t, s) of (2.3), as t tends to the terminal time T , may not be equal to the con-
tingent claim g. Indeed the determination of this limit is an important step toward
the solution of the problem.

We will show in the following sections that the following function ĝ is equal to
the limit

ĝ(s) := hconc(s) + Γs ln (s), s > 0,

where h(s) = g(s)− Γs ln (s) and hconc is the concave envelope of h, i.e., the smallest
concave function greater than h. In other words, function ĝ(s)−Γs ln (s) is the concave
envelope of function g(s) − Γs ln (s). The chief property of ĝ that we will use is the
following.

Lemma 3.1. ĝ is the smallest function satisfying the following two conditions:
(i) ĝ ≥ g and (ii) ĝ(s)− Γs ln (s) is concave.

Proof. Clearly, ĝ satisfies these conditions. Let u be another function satisfying
both of them. Set w(s) := u(s) − Γs ln (s). Clearly w ≥ h. Since w is concave and
w ≥ h, by the definition of the concave envelope of h, w ≥ hconc. Therefore,

u(s) = w(s) + Γs ln (s) ≥ hconc(s) + Γs ln (s) = ĝ(s).

In section 6 below, we will show that the terminal data of the minimal super-
replicating cost are equal to ĝ. The formal reason for this is that if v is sufficiently
smooth, we formally expect v(t, s) to satisfy the gamma constraint svss(t, s) ≤ Γ.
This is equivalent to the statement that v(t, s) + Γs ln(s) is concave. Therefore we
formally expect the terminal data limt↑T v(T, s) to be the smallest function satisfying
the two conditions of the previous lemma.

4. Assumptions. We always assume that

function g is nonnegative and lower semicontinuous.(4.1)

We start with several assumptions on the payoff function g and ĝ. In sections 7
and 8 below, we will verify that all these assumptions are satisfied by standard claims
in the Black–Scholes model, i.e., in the case of a constant volatility function σ(t, s);
see section 7 below.

Assumption 4.1. We assume that ĝ is finite and there exists a nonnegative,
strictly concave function φ ∈ C2 with lims→∞ φ(s) = ∞ such that

lim sup
s→∞

ĝconc(s)− E [ĝconc(St,s(T ))]

φ(s)
<∞.(4.2)
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Remark 4.2. Any function g which is growing at most linearly at infinity satisfies
ĝconc(.) < ∞. Indeed in this case, h(s) ≤ H(s) := K − Γs ln(s)/2 for some constant
K. Since H is concave, hconc ≤ H, and therefore ĝ is finite.

The main use of Assumption 4.1 is to prove a comparison result. The statement
and the proof of this result are given in section 10.

Our final assumption is the existence of a smooth solution to the variational
inequality

min {−Lu; Γ− suss} (t, s) = 0 on [0, T )× (0,∞)(4.3)

together with the terminal condition

u(T, s) = ĝ(s) for all s > 0,(4.4)

where L is the parabolic operator related to the infinitesimal generator of the stock
price process,

L := ∂

∂t
+
1

2
σ2(t, s)s2

∂2

∂s2
.

We will prove in section 6 that this solution is equal to the minimal superreplication
cost.

Assumption 4.3. The variational inequality (4.3)–(4.4) has a C1,2 ([0, T ), (0,∞))
solution v̂ satisfying

(i) v̂(t, 0) = ĝ(0) for all t ∈ [0, T ],
(ii) v̂ is polynomially growing in its s variable at infinity,
(iii) sv̂ss, Lv̂ are bounded,
(iv) vs is a W

1,2 function with generalized derivatives satisfying Lv̂s bounded.
In section 7, for the constant volatility model, we verify this assumption by pro-

viding an explicit solution.
Remark 4.4. By a classical comparison theorem for the equation Lv = 0 (see, for

instance, Friedman (1964)), we see that v̂(t, s) ≥ E[ĝ(St,s(T ))]. Since g is nonnegative,
so is ĝ; therefore we have

v̂(t, s) ≥ E [ĝ(St,s(T ))] ≥ 0 for all (t, s) ∈ [0, T ]× (0,∞).
5. Dynamic programming. The following is the analogue of the principle of

dynamic programming which is standard in the theory of stochastic optimal control
theory first proved by R. Bellman.

Lemma 5.1. Let (t, s) ∈ [0, T )× [0,∞) and consider an arbitrary stopping time
θ valued in [t, T ]. Suppose that Xα,γ

t,x,s,y(T ) ≥ g(St,s(T )) P -a.s. for some (α, γ) ∈
At,s(x), y ∈ R, and initial wealth x ∈ R. Then, for the value function v of (2.3), we
have

Xα,γ
t,x,s,y(θ) ≥ v (θ, St,s(θ)) , P -a.s.

Proof. Let x, y, θ, and (α, γ) be as in the above statement. Set x̂ = Xα,γ
t,x,s,y(θ),

ŝ = St,s(θ), ŷ = Y α,γt,s,y(θ). Clearly Yt,s,y = Yθ,ŝ,ŷ. By definition of the wealth process
(2.2), this provides

Xα,γ
t,x,s,y(T ) = X

α,γ
θ,x̂,ŝ,ŷ(T ).

Also, by uniqueness of the solution for the stochastic differential equation defining
the stock price S, we have St,s = Sθ,ŝ. Since X

α,γ
θ,x̂,ŝ,ŷ(T ) = Xα,γ

t,x,s,y(T ) ≥ g (St,s(T ))
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= g (Sθ,ŝ(T )), it follows that x̂ ≥ v(θ, ŝ) by definition of the control problem
v(θ, ŝ).

Remark 5.2. As in optimal control theory, the second part of the dynamic pro-
gramming is also available. A systematic study of dynamic programming is given in
an accompanying paper by the authors. Since we do not need the second part of the
dynamic programming in this paper, we refer the reader to Soner and Touzi (2000)
for a discussion of the full dynamic programming.

6. Main result. Let v̂ be the solution of the variational inequality (4.3)–(4.4)
introduced in Assumption 4.3.

Theorem 6.1. Let Assumptions 4.1 and 4.3 hold. Then, the value function v
of the hedging problem (2.3) is equal to the unique smooth solution of the variational
inequality (4.3)–(4.4), i.e.,

v = v̂.

Notice that the variational inequality (4.3)–(4.4) was not assumed to have a
unique solution satisfying the requirement of Assumption 4.3. Uniqueness is obtained
as a consequence of the above theorem.

Let v∗ be the lower semicontinuous envelope of v:

v∗(t, s) := lim inf
(t′,s′)→(t,s)

v(t, s).(6.1)

We prove the theorem after assuming two properties of the value function v.
P1. Function s �−→ v∗(t, s)− Γs ln (s) is concave for all t ∈ [0, T ).
P2. v∗ is a viscosity supersolution of the equation −Lu = 0 on [0, T )× (0,∞).
These properties will be verified in section 9 below.
Proof. We start with the inequality v ≤ v̂. For t ≤ u ≤ T , set

y = v̂s(t, s), α(u) = Lv̂s(u, S(u)), γ(u) = St,s(u)v̂ss(u, S(u)).

Since Lv̂ ≤ 0,

g (St,s(T )) ≤ ĝ (St,s(T )) = v̂ (T, St,s(T ))

= v̂(t, s) +

∫ T

t

Lv̂(u, St,s(u))du+ v̂s(u, St,s(u))dSt,s(u)

≤ v̂(t, s) +
∫ T

t

Y α,γt,y (u)dSt,s(u);

in the last step we applied the generalized Itô’s formula to vs ∈ W 1,2. (See Krylov
(1980, Theorem 1, p. 122) for Itô’s formula with generalized derivatives.) By Assump-
tion 4.3, (α, γ) ∈ Dt. Furthermore, since v̂ solves the variational inequality (4.3), γ(u)
≤ Γ for all u ∈ [t, T ]. By Remark 4.4, v̂(u, St,s(u)) = Xα,γ

t,x,s,y(u) ≥ 0 with x = v̂(t, s).
Hence (y, α, γ) ∈ At,s(v̂(t, s)), and by the definition of the minimal replicating price,
we conclude that v ≤ v̂.

We now prove the reverse inequality. Fix (t, s) ∈ (0, T ) × (0,∞), and δ > 0. By
the definition of v, there exist an initial wealth x ∈ [v(t, s), v(t, s) + δ) and a trading
strategy (yt, αt, γt) ∈ At,s(x) satisfying

Xαt,γt

t,x,s,yt(T ) ≥ g (St,s(T )) P -a.s.
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Therefore,

δ + v(t, s) +

∫ T

t

Y α
t,γt

t,s,yt (u)dSt,s(u) ≥ g (St,s(T )) P -a.s.

By the definition of At,s(x), the local martingale {
∫ u
t
Y α

t,γt

t,s,yt (r)dSt,s(r), u ≥ t} is
bounded from below and is therefore a supermartingale. We take the expected value
in the last inequality and then use this fact. The result is

δ + v(t, s) ≥ E [g(St,s(T ))] .
Since δ > 0 is arbitrary and g is lower semicontinuous, Fatou’s lemma yields

v∗(T, s) = lim inf
(t,s′)→(T,s)

v(t, s′) ≥ g(s) for all s > 0.

In view of the property P1, v∗(T, ·) satisfies both conditions stated in Lemma 3.1, and
therefore v∗(T, s) ≥ ĝ(s).

By dynamic programming, for any (y, α, γ) ∈ At,s(x) satisfying Xα,γ
t,x,s,y(T ) ≥

g(St,s(T )),

Xα,γ
t,x,s,y(u) ≥ v(u, St,s(u)) for all u ∈ [t, T ].

Since we have shown that v∗(T, s) ≥ ĝ(s), by taking the limit as u tends to T , we
conclude that

Xα,γ
t,x,s,y(T ) ≥ ĝ(St,s(T )).

Therefore, any strategy that dominates g also dominates ĝ. Since ĝ ≥ g, this provides
v(t, s) = inf

{
x : ∃ (y, α, γ) ∈ At,s(x), Xα,γ

t,x,s,y(T ) ≥ ĝ(St,s(T )) a.s.
}
,(6.2)

i.e., v is the minimal superreplication cost for the claim ĝ. By definition, the Black–
Scholes price (i.e., unconstrained superreplication cost) is always smaller than the
superreplication cost with gamma constraint,

v(t, s) ≥ E [ĝ(St,s(T ))] for all (t, s) ∈ [0, T )× (0,∞).(6.3)

Moreover, by (6.2), v(t, 0+) = ĝ(0) for all t ∈ [0, T ). Therefore, v∗(t, 0) ≤ v(t, 0) =
ĝ(0). Also (6.3) together with Fatou’s lemma yield v∗(t, 0) ≥ ĝ(0). Hence v∗(t, 0) =
ĝ(0).

In view of Lemma 9.2 below, v∗ is a lower semicontinuous viscosity supersolution
of (4.3)–(4.4). By Theorem 10.1, v∗ ≥ v̂. This completes the proof of the theorem
since v ≥ v∗.

Remark 6.2. In the first part of the above proof, the optimal hedging strat-
egy (y, α, γ) is expressed explicitly in terms of the derivatives of the minimal super-
replication cost function v̂.

Remark 6.3. In the proof above, it is shown (without appealing to Theorem 10.1)
that the (unconstrained) Black and Scholes price of ĝ(St,s(T )) is a trivial lower bound
for v

v(t, s) ≥ E [ĝ(St,s(T ))] for all (t, s) ∈ [0, T )× (0,∞).
We shall use this lower bound in the proof of the comparison Theorem 10.1.
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7. The Black and Scholes model. In this section, we focus on a discussion of
the Black and Scholes model in which the volatility function σ(t, s) is constant, i.e.,
σ(t, s) = σ for all (t, s) ∈ [0, T ]× (0,∞).

We shall provide an explicit solution to the hedging problem (2.3) under the
following condition.

Assumption 7.1. Function s �−→ hconc(s) − Cs ln (s) is convex for some con-
stant C.

Remark 7.2. Suppose that function g is such that s �−→ g(s)+As ln (s) is convex
for some constant A. Then, since h(s) = g(s) + As ln (s)− (Γ + A)s ln (s), it follows
from the construction of the concave envelope that Assumption 7.1 is satisfied by C
= Γ +A.

Theorem 7.3. Let Assumptions 4.1 and 7.1 hold. Then, Assumption 4.3 holds
and the value function v of the hedging problem (2.3) is simply the unconstrained Black
and Scholes price v̂ of the contingent claim ĝ(St,s(T )), i.e.,

v(t, s) = v̂(t, s) = E [ĝ(St,s(T ))] for all (t, s) ∈ [0, T ]× (0,∞).
Proof. Denote ṽ(t, s) := E [ĝ(St,s(T ))]. Then ṽ is a classical solution to the

equation

−Lu = 0 on [0, T )× (0,∞) and u(T, s) = ĝ(s), s > 0.

Furthermore, by the definition of ĝ,

ṽ(t, s)− Γs ln (s) = E [hconc(St,s(T ))] +
1

2
σ2(T − t)Γs.(7.1)

Since hconc is concave and St,s(T ) is linear in s, this proves that for all t ∈ [0, T ],
function s → ṽ(t, s)− Γs ln (s) is concave, and therefore sṽss(t, s) ≤ Γ for all (t, s) ∈
[0, T )× (0,∞). A similar argument using Assumption 7.1 shows that sṽss(t, s) ≥ C.

Consequently ṽ = v̂ is a classical solution of the variational inequality (4.3)–
(4.4). By Friedman (1964, Theorem 10, p. 72), function v̂s is C

1,2, which provides
all the regularity required in Assumption 4.3, except the property (iii). To verify
Assumption 4.3 (iii), we differentiate the equation Lv̂ = v̂t(t, s) + σ2s2v̂ss(t, s) = 0 to
obtain Lv̂s(t, s) = σ2sv̂ss(t, s). Since we have already proved that sv̂ss is bounded, so
is Lv̂.

Remark 7.4. Observe that Assumption 4.1 is only used in the proof of the com-
parison Theorem 10.1 which is needed to show that v̂ ≤ v. Since in the Black and
Scholes case v̂(t, s) = E[ĝ(St,s(T ))], the variational inequality (4.3) reduces to the lin-
ear equation −Lv = 0. Then we can appeal to the standard comparison theorem for
this equation, and Assumption 4.1 can be relaxed by requiring only that ĝ(.) <∞.

8. Examples.

European call option. Let g(s) = (s − K)+, s > 0. Since g is convex, As-
sumption 7.1 is satisfied; see Remark 7.2. Next, it is easily checked that the concave
envelope of function h(s) = (s−K)+ − Γs ln (s) is given by

hconc(s) =

{
h(s), s ∈ (0,∞) \ [s1, s2],
h(s1) + h

′(s1)(s− s1), s ∈ [s1, s2],
i.e., hconc coincides with h outside the interval [s1, s2] and is defined by a straight line
in [s1, s2]. The values s1 and s2 are characterized by

s1 < K < s2 h
′(s1) = h′(s2) and h(s2) = h(s1) + h

′(s1)(s2 − s1).
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A direct calculation yields

s1 =
K

Γ(e1/Γ − 1) and s2 =
Ke1/Γ

Γ(e1/Γ − 1) .

Therefore,

ĝ(s) =

{
(s−K)+, s ∈ (0,∞) \ [s1, s2],
Γ
(
s ln s

s1
+ s1 − s

)
, s ∈ [s1, s2].

Since ĝconc(s) = s for all s > 0, Assumption 4.1 is clearly satisfied and Theorem 7.3
applies.

European put option. We now consider the case g(s) = (K − s)+, s > 0. As
in the previous example, g is convex, and therefore Assumption 7.1 is satisfied. The
concave envelope of function h(s) = (K − s)+ − Γs ln (s) is given by

hconc(s) =

{
h(s), s ∈ (0,∞) \ [s1, s2],
h(s1) + h

′(s1)(s− s1), s ∈ [s1, s2],
i.e., hconc coincides with h outside the interval [s1, s2] and is defined by a straight line
in [s1, s2]. The values s1 and s2 are characterized by

s1 < K < s2 h
′(s1) = h′(s2) and h(s2) = h(s1) + h

′(s1)(s2 − s1).
We directly calculate that

s1 =
K

Γ(e1/Γ − 1) and s2 =
Ke1/Γ

Γ(e1/Γ − 1)
(the same values as in the first example) and

ĝ(s) =

{
(K − s)+, s ∈ (0,∞) \ [s1, s2],
K − s+ Γ

(
s ln s

s1
+ s1 − s

)
, s ∈ [s1, s2].

Since ĝ is bounded, Assumption 4.1 holds and therefore Theorem 7.3 applies.

Straddle option. We now study the contingent claim defined by g(s) = (s−K)+
+ (K − s)+, s > 0. The same argument as in the previous examples yields

ĝ(s) =

{
(s−K)+ + (K − s)+, s ∈ (0,∞) \ [s1, s2],
K − s+ Γ

(
s ln s

s1
+ s1 − s

)
, s ∈ [s1, s2],

where s1 =
2K

Γ(e2/Γ−1)
and s2 = s1e

2/Γ.

Digital option. Our last example is the contingent claim defined by g(s) =
1{s>K}, s > 0. Then, it is easily seen that the concave envelope of function h(s) =
1s>K − Γs ln(s) is given by

hconc(s) =

{
h(s), s ∈ (0,∞) \ [s∗,K],
h(s∗) + h′(s∗)(s− s∗), s∗≤ s ≤ K,

where s∗ is the unique solution of

0 < s∗ < Γ and s∗ −K ln (s∗) = K −K ln (K) + 1

Γ
.
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Clearly, the above function satisfies Assumption 7.1. This provides the candidate for
the hedging problem under the gamma constraint:

ĝ(s) =


0, s ≤ s∗,
Γs ln (s) + h(s∗) + h′(s∗)(s− s∗), s∗≤ s ≤ K,
1, s ≥ K.

Since ĝ ≤ 1, we have ĝconc ≤ 1 and Assumption 4.1 holds. Then, Theorem 7.3 again
applies.

9. Viscosity property. In this section, we prove properties P1 and P2 of sec-
tion 6.

Theorem 9.1. v∗ is a viscosity supersolution of the variational inequality

min {−Lu(t, s), Γ− suss(t, s)} = 0(9.1)

on (0, T )× (0,∞).
Proof. For ε ∈ (0, 1], set

Aεt,s(x) :=
{
(y, α, γ) ∈ At,s(x) : |α(.)|+ |γ(.)| ≤ ε−1

}
,

and

vε(t, s) = inf
{
x : ∃ (y, α, γ) ∈ Aεt,s(x), Xα,γ

t,x,s,y(T ) ≥ g(St,s(T )) a.s.
}
.

Let vε∗ be the lower semicontinuous envelope of v
ε; cf. (6.1). It is clear that vε also

satisfies the dynamic programming equation of Lemma 5.1.
First we will show that vε∗ is a viscosity supersolution of (9.1). Let ϕ ∈ C∞(R2)

and (t0, s0) ∈ (0, T )× (0,∞) satisfy
(vε∗ − ϕ)(t0, s0) = min

(t,s)∈(0,T )×(0,∞)
(vε∗ − ϕ)(t, s).

We need to show that

−Lϕ(t0, s0) ≥ 0 and s0ϕss(t0, s0) ≤ Γ.(9.2)

We may assume that (vε∗ − ϕ)(t0, s0) = 0 so that vε∗ ≥ ϕ.
Choose (tn, sn)→ (t0, s0) so that v

ε(tn, sn) converges to v
ε
∗(t0, s0). For each n, by

the definition of vε and the dynamic programming, there are xn ∈ [vε(tn, sn), vε(tn, sn)+
1/n] hedging strategies (yn, αn, γn) ∈ Aεtn,sn(xn) satisfying

Xαn,γn
tn,xn,sn,yn(tn + t)− vε(tn + t, Stn,sn(tn + t)) ≥ 0

for every t > 0. Since vε ≥ vε∗ ≥ ϕ,

xn +

∫ tn+t

tn

Y αn,γntn,sn,yn(u)dStn,sn(u)− ϕ(tn + t, Stn,sn(tn + t)) ≥ 0.

Set

βn := xn − ϕ(tn, sn)
and observe that βn → 0 as n → ∞, since ϕ(tn, sn) → ϕ(t0, s0) = vε∗(t0, s0), |xn −
vε(tn, sn)| ≤ 1/n, and vε(tn, sn) −→ vε∗(t0, s0).
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By Itô’s lemma,

Mn(t) ≤ Dn(t) + βn(9.3)

for every t ≥ 0, where

Mn(t) =

∫ t

0

[
ϕs(tn + u, Stn,sn(tn + u))− Y αn,γntn,sn,yn(tn + u)

]
dStn,sn(tn + u),

Dn(t) = −
∫ t

0

Lϕ(tn + u, Stn,sn(tn + u))du.

For some sufficiently large positive constant λ, define the stopping time tn + θn by

θn := inf {u > 0 : |ln (Stn,sn(tn + u)/sn)| ≥ λ}
and observe that the sequence of stopping times (θn) satisfies

lim inf
n→∞ t ∧ θn ≥ 1

2
t ∧ θ0 P -a.s.

for all t > 0; see Remark 11.2. By the smoothness of Lϕ, the integrand in the
definition of Mn is bounded up to the stopping time θn and therefore, taking the
expectation in (9.3) provides

−E
[∫ t∧θn

0

Lϕ(tn + u, Stn,sn(tn + u))du
]
≥ −βn.

By sending n to infinity, we obtain

−E
[∫ t∧θ0

0

Lϕ(t0 + u, St0,s0(t0 + u))du
]
≥ 0

by dominated convergence and continuity of Lϕ. Then, dividing by t and taking the
limit as t↘ 0, we get by dominated convergence

−Lϕ(t0, s0) ≥ 0,
which is the first part of (9.2). It remains to prove the second inequality.

By another application of Itô’s lemma, it follows that

Mn(t) =

∫ t

0

(
zn +

∫ u

0

an(r)dr +

∫ u

0

bn(r)dStn,sn(tn + r)

)
dStn,sn(tn + u),

where

zn = ϕs(tn, sn)− yn,
an(r) = Lϕs(tn + r, Stn,sn(tn + r))− αn(tn + r),
bn(r) = ϕss(tn + r, Stn,sn(tn + r))−

γn(tn + r)

Stn,sn(tn + r)
.

Observe that the processes an(.∧ θn) and bn(.∧ θn) are bounded uniformly in n since
Lϕs and ϕss are smooth functions. By (9.3),

Mn(t ∧ θn) ≤ Dn(t ∧ θn) + βn ≤ Ct ∧ θn + βn
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for some positive constant C. We now apply the results of Propositions 11.5 and 11.6
to the martingales Mn. The result is

lim
n→∞ yn = ϕs(t0, y0) and lim inf

n→∞, t↘0
b(t) ≤ 0,

where b is the L2 weak limit of the sequence (bn). The remaining inequality in (9.2)
is obtained after recalling that γn(t) ≤ Γ.

Hence vε∗ is a viscosity supersolution of (9.1). Since

v∗(t, s) = lim inf∗ vε(t, s) = lim inf
ε→0,(t′,s′)→(t,s)

vε∗(t
′, s′),

the Barles–Perthame technique implies that v∗ is a viscosity supersolution of (9.1) as
well.

The following result completes the proof of the properties P1 and P2 of section 6.
Lemma 9.2. Let f be a lower semicontinuous function defined on (0,∞). Then, f

is a viscosity supersolution of Γ−sfss(s) ≥ 0 if and only if f(s)−Γs ln(s) is concave.
Proof. Suppose that h(s) := f(s) − Γs ln(s) is a concave function and a smooth

test function ϕ and s0 > 0 satisfy

0 = (f − ϕ)(s0) = min { (f − ϕ)(s) : s ≥ 0 }.
Set ψ(s) := ϕ(s)− Γs ln(s), so that for any δ > 0,

ψ(s0 + δ) + ψ(s0 − δ)− 2ψ(s0) ≤ h(s0 + δ) + h(s0 − δ)− 2h(s0) ≤ 0.
We divide by δ2 and let δ go to zero. The result is ϕss(s0) ≤ Γ/s0. Hence, f is a
viscosity supersolution of −sfss(s) + Γ ≥ 0.

Now suppose that f is a viscosity supersolution of −sfss(s) + Γ ≥ 0. We need to
show that

h(s+ δ) + h(s− δ)− 2h(s) ≤ 0
for any δ > 0. Suppose that there exist s0 and δ > 0 such that

α := h(s0 + δ) + h(s0 − δ)− 2h(s0) > 0.
Set

ψ(s) := h(s0) +
h(s0 + δ)− h(s0 − δ)

2δ
(s− s0) + α

4δ2
(s− s0)2.

Then, (h− ψ)(s0) = 0 and

(h− ψ)(s0 ± δ) = 1

2
[h(s0 + δ) + h(s0 − δ)− 2h(s0)]− α

4
=
α

4
.

Hence, (h−ψ) attains a local minimum in (s0− δ, s0+ δ). Set ϕ(s) := ψ(s)+Γs ln(s)
so that (f −ϕ) attains a local minimum in the same interval, say at s∗. We calculate
that

Γ− s∗ϕss(s∗) = −s∗ α
2δ2

< 0.

This contradicts the supersolution property of f .
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10. The comparison result. This section is devoted to the proof of a compar-
ison theorem which was used in the proof of our main result. We refer to Crandall,
Ishii, and Lions (1992) and Fleming and Soner (1993) for the definition and the prop-
erties of viscosity solutions.

Theorem 10.1. Let Assumption 4.1 hold. Suppose that the variational inequality
(4.3)–(4.4) has a solution v̂ ∈ C1,2([0, T ]× (0,∞)) which is polynomially growing and
has bounded Lv̂. Let u be a lower semicontinuous viscosity supersolution of (4.3)
satisfying u(T, ·) ≥ ĝ, u(·, 0) ≥ v̂(·, 0), and u(t, s) ≥ E [ĝ(St,s(T )]. Then,

u ≥ v̂ on [0, T ]× (0,∞).
We start with deriving an upper bound for the solution v̂ of (4.3)–(4.4).
Lemma 10.2. For all (t, s) ∈ [0, T ]× (0,∞), v̂(t, s) ≤ ĝconc(s).
Proof. To prove this result, we first show that v̂ is related to some stochastic con-

trol problem. Let N be the set of all bounded nonnegative progressively measurable
processes. For all ν ∈ N , consider the controlled process Sνt,s defined by

dSνt,s(u)

Sνt,s(u)
=

[
ν(u)

1 + Sνt,s(u)
+ σ2

(
t, Sνt,s(u)

)]1/2
dW (u).

Notice that the random function s �−→ s
[
ν(1 + s)−1 + σ2(t, s)

]1/2
is Lipschitz uni-

formly in t and therefore the process Sν is well defined. Next, for some small parameter
η > 0, define the stochastic control problem

u(t, s) := sup
ν∈N

E

[
ĝ(Sνt,s(T ))−

1

2
(Γ− η)

∫ T

t

ν(u)
Sνt,s(u)

1 + Sνt,s(u)
du

]
and consider the approximating problems

un(t, s) := sup
ν∈Nn

E

[
ĝ(Sνt,s(T ))−

1

2
(Γ− η)

∫ T

t

ν(u)
Sνt,s(u)

1 + Sνt,s(u)
du

]
with Nn consisting of elements in N which are bounded by n. Clearly, for every n
we have un(t, s) ≤ u(t, s) for all (t, s) ∈ [0, T ]× (0,∞). By classical arguments, it is
easily checked that un is a viscosity solution of the Hamilton–Jacobi–Bellman (HJB)
equation

− sup
0≤ν≤n

{
wt +

1

2
s2
(
σ2(t, s) +

ν

1 + s

)
wss − 1

2
(Γ− η)ν s

1 + s

}
= 0

which can be written as

−Lw − 1
2
n

s

1 + s
[swss − (Γ− η)]+ = 0 on [0, T )× (0,∞).(10.1)

Now recall that v̂ is a classical solution to (4.3).
Case 1. sv̂ss < Γ, then Lv̂ = 0 and therefore −Lv̂− 1

2n
s

1+s [sv̂ss − (Γ− η)]+ ≤ 0.
Case 2. sv̂ss = Γ, then Lv̂ ≥ 0 and −Lv̂− 1

2n
s

1+s [sv̂ss−(Γ−η)]+ ≤ −Lv̂− 1
2nη

s
1+s≤ 0 for sufficiently large n; recall that Lv̂ is assumed to be bounded uniformly in (t, s).

We have then proved that v̂ is a subsolution of the HJB equation (10.1) for
sufficiently large n. Since v̂(T, s) = un(T, s) = ĝ(s), it follows from the comparison
theorem (which will be verified at the end of this proof) that v̂ ≤ un and therefore

v̂(t, s) ≤ u(t, s) for all (t, s) ∈ [0, T ]× (0,∞).
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We then have

v̂(t, s) ≤ sup
ν∈N

E
[
ĝ(Sνt,s(T ))

] ≤ sup
ν∈N

E
[
ĝconc(Sνt,s(T ))

]
.

By the Jensen inequality and the martingale property of the process Sνt,s, this provides

v̂(t, s) ≤ sup
ν∈N

ĝconc
(
E
[
Sνt,s(T )

])
= ĝconc(s).

It remains to prove the comparison theorem for (10.1). Let m be the growth rate
of v̂, i.e., v̂(t, s) ≤ C(1+sm) for some constant C. Take some λ ≥ m(m+1)σ2(t, s)/2
(recall that s �−→ sσ(t, s) is Lipschitz uniformly in t and therefore σ is bounded).
Choose a minimizer at (t0, s0) of

ψ(t, s) = eλtun(t, s)− eλtv̂(t, s) + εsm+1,

where ε is a small positive parameter. Since un ≥ 0 and v̂ is growing at the rate
m, φ attains its minimum. If s0 = 0 or t0 = T , then ψ(t0, s0) ≥ 0 by the boundary
conditions. Now, suppose that s0 > 0 and t0 < T . Since u

n is a viscosity solution of
(10.1) and v̂ is a classical subsolution of (10.1), it follows that

λeλt0 [un(t0, s0)− v̂(t0, s0)] + ε1
2
σ2(t0, s0)m(m+ 1)s

m(m+1)
0

≥ eλt0 n
2

s0
1 + s0

{
[s0v̂ss(t0, s0)− Γ]+ − [s0v̂ss(t0, s0)− e−λt0Γ− εm(m+ 1)sm0 ]+

}
≥ 0.

Then ψ(t0, s0) ≥ 0 from the choice of the parameter λ. By sending ε to zero, we
obtain the comparison result for (10.1).

Proof of Theorem 10.1. Fix some positive scalar λ and set ŵ(t, s) = v̂(t, s)e−λt

and w(t, s) = u(t, s)e−λt for all (t, s) ∈ [0, T ]×(0,∞). Then ŵ is a C1,2([0, T )×(0,∞))
solution of the variational inequality

min
{
λŵ − Lŵ; Γe−λt − sŵss

}
= 0 on [0, T )× (0,∞),

ŵ(T, s) = ĝ(s)e−λT , s > 0,(10.2)

and w is a lower semicontinuous viscosity supersolution of the above equation. Given
ε > 0, define the test function

ϕ(t, s) = ŵ(t, s)− εφ(s), (t, s) ∈ [0, T )× (0,∞),
where φ is the function introduced in Assumption 4.1; recall that φ is positive, C2

is strictly concave, and lims→∞ φ(s) = +∞. By Remark 6.3, we have v(t, s) ≥
E [ĝ(St,s(T ))]. Moreover, since g is nonnegative, we have ĝ ≥ 0 and by the definition
of the concave envelope, it follows that ĝ ≥ ĝconc − C for some positive constant C.
Then, from Lemma 10.2 together with condition (4.2), we can conclude that

lim inf
s→∞ (w − ϕ)(t, s) ≥ lim inf

s→∞ {E [ĝ(St,s(T ))]− ĝconc(s) + εφ(s)} = +∞

for all t ∈ [0, T ]. Then there exists (t0, s0) ∈ [0, T ]× [0,∞) such that
(w − ϕ)(t0, s0) = min

[0,T ]×[0,∞)
(w − ϕ).
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In order to prove the required result, we have to show that

(w − ϕ)(t0, s0) ≥ 0,(10.3)

which implies that w(t, s)− ŵ(t, s) + εφ(s) ≥ 0 for all (t, s) ∈ [0, T ]× (0,∞) and the
result of the theorem follows by sending ε to zero.

Inequality (10.3) is trivially satisfied if s0 = 0 or t0 = T . We then concentrate on
the case t0 < T and s0 > 0. Since (t0, s0) is an interior minimum, it follows from the
viscosity supersolution property of w that

λw(t0, s0)− Lϕ(t0, s0) ≥ 0 and Γe−λt0 − s0ϕss(t0, s0) ≥ 0.(10.4)

Recalling the definition of ϕ, the second inequality provides

Γe−λt0 − s0ŵss(t0, s0) ≥ −εφss(s0) > 0.
By (10.2), we then see that Lŵ(t0, s0) = λŵ(t0, s0). Plugging this into the first
inequality of (10.4) provides

λ(w − ϕ)(t0, s0) ≥ ε
[
λφ(s0)− 1

2
σ2(t0, s0)φss(t0, s0)

]
≥ 0,

which is the required inequality (10.3).

11. Appendix: Properties of stochastic integrals. In this section we prove
several properties of double stochastic integrals with respect to Brownian motion.
The key idea in our analysis was provided by Professor F. Delbaen. Our main result
is Proposition 11.6 below.

It is known that if∫ t∧θ

0

h(u)dW (u) ≤ Ct ∧ θ for all t ≥ 0,(11.1)

for some continuous adapted process h(·), standard Brownian motion W (·), positive
stopping time θ, and a constant C, then h(0) = 0. This result is contained in Soner,
Shreve, and Cvitanic̀ (1995).1

In the analysis of gamma constraints, in particular in proving the viscosity prop-
erty of the value function in section 9, we are led to study a similar situation for
double stochastic integrals such as∫ t

0

∫ u

0

b(r)dW (r) dW (u) ≤ Ct.(11.2)

In this section, we analyze several inequalities of the type (11.2) ordered by increasing
difficulty.

First, suppose that the process b(·) in (11.2) is equal to a constant b0. Then,
b0
2
[W 2(t)− t] =

∫ t

0

∫ u

0

b(r)dW (r) dW (u) ≤ Ct.
1Here is an alternative simple proof of this result. Given an arbitrary ν ∈ R, introduce the

exponential martingale Zν = E(νW ). Then, multiplying both sides of (11.1) by Zν(t ∧ θ), and

taking expectations, it follows from the optional sampling theorem that νE[Zν(t∧θ)
∫ t∧θ

0
h(u)du] ≤

CE[Zν(t∧θ)(t∧θ)]. Dividing by t, sending t to zero, and recalling that the process h(.) is continuous,
and the stopping time θ is positive P -a.s., we see that νh(0) ≤ C. By arbitrariness of ν, this proves
that h(0) = 0.
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Hence, b0 ≤ 0 by the law of iterated logarithm.
Next, suppose that b is a bounded, progressively measurable process and (11.2)

holds for all t ∈ [0, η] where η is a positive constant. Delbaen proved the following:

P

[
inf

0≤u≤t
b(u) ≥ c

]
< 1 for all c > 0, t ≤ η.(11.3)

Suppose to the contrary, i.e., suppose that there are c > 0, t ≤ η such that b(u) ≥ c
for all u ∈ [0, t]. Let Zν(t) := exp (νW (t)− (ν2t/2)

)
. A direct calculation shows that

E

[
Zν(t)

∫ t

0

∫ u

0

b(v)dW (v)dW (u)

]
= ν2E

[∫ t

0

∫ u

0

b(v)Zν(v)dvdu

]
≥ cν2t2/2.

By (11.2),

E

[
Zν(t)

∫ t

0

∫ u

0

b(v)dW (v)dW (u)

]
≤ Ct.

Hence, cν2t2/2 ≤ Ct for all ν, which cannot happen. This proves (11.3).
We continue the analysis when (11.2) holds only up to a stopping time.
Lemma 11.1. Let θ be some bounded positive stopping time and {b(t), t ≥ 0} be

a bounded progressively measurable process satisfying (11.2) for all t ≤ θ. Then,

lim inf
t↘0

b(t) ≤ 0.(11.4)

Proof. Suppose to the contrary. Then, there exist a positive stopping time τ and
a constant c > 0 such that b(t ∧ τ) ≥ c for all t. Rename the stopping time τ ∧ θ to
be θ.

Step 1. We employ a time change and then use standard properties of Brownian
motion to obtain a contradiction. Set

h(t) :=

∫ t

0

[b(u)2 + 1{u>θ}]du, t ≥ 0,

so that h is a continuous strictly increasing function on [0, θ]. Let

Ŵ (t) :=

∫ h−1(t)

0

b(u)dW (u), t ≥ 0,

and G = {Gt, t ≥ 0} be given by Gt := Fh−1(t). Then the time-changed process (Ŵ ,G)
is a standard Brownian motion. By the time-change formula (see, e.g., Karatzas and
Shreve (1991, Proposition 4.8, p. 176)), we rewrite (11.2) as

Ct ∧ θ ≥
∫ t∧θ

0

∫ u

0

b(r) dW (r) dW (u) =

∫ t∧θ

0

Ŵ (h(u)) dW (u)

=

∫ h(t∧θ)

0

φ(u)Ŵ (u) dŴ (u)

=
1

2

∫ h(t∧θ)

0

φ(u)d[Ŵ (u)2]− 1
2

∫ h(t∧θ)

0

φ(u)du,
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where φ(u) := 1/b(h−1(u)). Since b is bounded away from zero, φ is bounded and∫ h(t∧θ)

0

φ(u)d[Ŵ (u)2] ≤ C ′t ∧ θ, t ≥ 0,(11.5)

for some constant C ′.
Step 2. By the law of iterated logarithm, there exists a sequence of bounded

positive F-stopping times (τn)n converging to zero such that

Ŵ (τn)
2

τn
−→ +∞ P -a.s.

Set

θn := θ ∧ h−1(τn) .

Since θ is positive, for sufficiently large n, h(θn) = h(h
−1(τn)) = τn. Hence,

Ŵ (h(θn))
2

h(θn)
−→ +∞ P -a.s.(11.6)

Step 3. Choose M so that |b| < M . Let φ be as in Step 1. Since b > 0 on [0, θ],
we have φ > 1/M on this interval.

Set 9 := lim inft↓0 2
t

∫ t
0
[φ(u)− 1

M ]d[W
2(u)], and let (ζn)n be a sequence of positive

stopping times converging to zero P -a.s. such that∫ ζn

0

[
φ(u)− 1

M

]
d[W 2(u)] ≤ 9ζn.

Direct calculation provides

9 E[ζn] ≥ E
[∫ ζn

0

[
φ(u)− 1

M

]
d[W 2(u)]

]
= E

[∫ ζn

0

[
φ(u)− 1

M

]
du]

]
≥ 0.

This proves that 9 ≥ 0, and consequently

lim inf
t↓0

∫ t
0
φ(u)d[Ŵ (u)2]

Ŵ (t)2
≥ 1

M
.

Let θn be the sequence constructed in Step 2. Since θn tends to zero as n ap-
proaches to zero,

lim inf
n→∞

∫ h(θ∧τn)

0
φ(u)d[Ŵ (u)2]

Ŵ (h(θ ∧ τn))2
≥ 1

M
.(11.7)

Step 4. Since b(θ ∧ t) ≥ c, the definition of h implies that

lim
n→∞

h(θn)

θn
≥ c2.

Combining this inequality with (11.6) and (11.7), we arrive at

lim sup
n→∞

h(θn)

θn

Ŵ (h(θn))
2

h(θn)

∫ h(θn)

0
φ(u)d[Ŵ (u)2]

Ŵ (h(θn))
2 = +∞.



SUPERREPLICATION UNDER GAMMA CONSTRAINTS 91

Step 5. By (11.5), we have

h(θn)

θn

Ŵ (h(θn))
2

h(θn)

∫ h(θn)

0
φ(u)d[Ŵ (u)2]

Ŵ (h(θn))
2 ≤ C ′ θn

θn
.

Clearly this is in contradiction with the previous step.
Our next generalization is to replace W in (11.2) by the stock price process.
We introduce some notation that will be used throughout this section. Let (tn, sn)

be a sequence converging to some (t0, s0) ∈ [0, T )× (0,∞). To simplify the notation,
we set

Sn(t) := Stn,sn(t) and σ̄n(t) := Stn,sn(t)σ (t, Stn,sn(t)) .

Since the processes Sn may take very large values, we need to introduce a sequence
of stopping times defined as follows. For a large constant λ > 0 let

τ̄n := inf {t > tn : |ln (Sn(t)/sn)| ≥ λ} .(11.8)

In our notation, we do not show the dependence of τ̄n on λ.
Remark 11.2. The sequence of stopping times (τ̄n)n satisfies

lim inf
n→∞ t ∧ τ̄n ≥ 1

2
t ∧ τ̄0 P -a.s.

Indeed, since (tn, sn) −→ (t0, s0), it follows from Protter (1990, Theorem 37, p. 246)
that for almost everywhere (a.e.) ω ∈ Ω, we have

Stn,sn −→ St0,s0 uniformly on [t0, t0 + t],

which implies the announced claim.
Lemma 11.3. Let b, θ, C be as in Lemma 11.1. Suppose that∫ t∧θ

0

∫ r

0

b(r) dS0(r) dS0(u) ≤ Ct ∧ θ for all t ≥ 0.

Then, b satisfies 11.4.
Proof. We follow the proof of Lemma 11.1. We replace θ by the stopping time

θ̄ := θ ∧ τ̄0 and the time-change function h by

h̄(t) :=

∫ t

0

[b(u)2σ̄(u)2 + 1{u>θ̄}]du.

We define the time-changed Brownian motion Ŵ in the obvious way. Then, the
time-change formula implies that∫ t∧θ̄

0

∫ u

0

b(r)dS0(r) dS0(u) =

∫ t∧θ̄

0

Ŵ (u) dS0(u) =

∫ h(t∧θ̄)

0

φ̄(u)Ŵ (u)dŴ (u),

where φ̄ = 1/[b̄(h̄−1)]. We then proceed as in Lemma 11.1.
Remark 11.4. The conclusion of Lemma 11.1 is still valid if t is substituted for

t∧θ in the right-hand side of inequality (11.2). This is easily checked by going through
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the proof. The same observation prevails for Lemma 11.3.

Finally, we provide two results which deal with a slightly general double integral:

Mn(t∧θn) :=
∫ tn+t∧θn

tn

(
zn +

∫ u

tn

an(r)dr +

∫ u

tn

bn(r)dSn(r)

)
dSn(u) ≤ βn+Ct.

(11.9)
We will first show that if βn tends to zero, then zn also converges to zero. This is a
slight generalization of the result on single stochastic integrals stated in the beginning
of this section. The second result provides information on the limit behavior of the
sequence (bn)n.

Proposition 11.5. Let ({an(u), u ≥ 0})n and ({bn(u), u ≥ 0})n be two se-
quences of real-valued, progressively measurable processes that are uniformly bounded
in n. Suppose that (11.9) holds with real numbers (zn)n, (βn)n, and stopping times
(θn)n. Assume further that, as n tends to zero,

βn −→ 0 and t ∧ θn −→ t ∧ θ0 P -a.s.,

where θ0 is a strictly positive stopping time. Then

lim
n→∞ zn = 0.

Proof. For each n ≥ 0, define the stopping time

τn := 1 ∧ τ̄n ∧ θn.

By Remark 11.2, lim infn t∧ τn ≥ t∧ τ0/2 with probability one. Let ν be an arbitrary
real parameter and define the local martingales Zνn by

Zνn(t) = E
(∫ t

0

νdW (u)

σ̄n(u)

)
, t ≥ 0.

By the definition of τn in (11.8), the process {Zνn(t ∧ τn), t ≥ 0} is a P -martingale.
We then define the probability measure P νn equivalent to P by its density process
{Zνn(t ∧ τn), t ≥ 0} with respect to P . We shall denote by Eνn the expectation
operator under P νn . By Girsanov’s theorem, the process W

ν
n (. ∧ τn) defined by

W ν
n (t) =W (t)−

∫ t

0

ν du

σ̄n(u)
, t ≥ 0,

is a Brownian motion under P νn . We also define the local martingale Z
ν by

Zν(t) = E
(∫ t

0

νdW (u)

σ̄0(u)

)
, t ≥ 0.

By the same argument as above, the process {Zν(t ∧ τ0), t ≥ 0} is a P -martingale
and is therefore the density process of some probability measure P ν equivalent to P .
We shall denote by Eν the expectation operator under P ν . It is easily checked that
Zνn(.) −→ Zν(.) P -a.s. Then, since t ∧ τ0/2 ≤ lim infn t ∧ τn ≤ lim supn t ∧ τn ≤ t, it
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follows from the continuity of Zνn and Z
ν that

Zν∞ := lim inf
n→∞ Zνn(t ∧ τn) > 0.(11.10)

Rewrite Mn(t ∧ τn) in terms of W ν
n ,

Mn(t ∧ τn) = mart(P νn ) + νznt ∧ τn + ν
∫ tn+t∧τn

tn

∫ u

tn

an(r)drdu

+ νt ∧ τn
∫ tn+t∧τn

tn

bn(r)σ̄n(r)dW
ν
n (r) + ν

2

∫ tn+t∧τn

tn

∫ u

tn

bn(r)drdu,

where mart(P νn ) is a martingale under P
ν
n starting from zero. Take the expectation

under P νn , apply the Cauchy–Schwartz inequality for the third term on the right-hand
side, and also utilize the bounds on (an)n and (bn)n to obtain

νznE
ν
n[t ∧ τn] ≤ βn + C ′

(
Eνn[t ∧ τn] + (|ν|+ ν2)Eνn[(t ∧ τn)2]3/4

)
≤ βn + C ′

(
t+ (|ν|+ ν2)t3/4

)
.

Let 9 denote either lim infn zn or lim supn zn, and restrict ν to have the same sign as
9, so that ν9 ≥ 0. Now, let n go to infinity. Then, it follows from Fatou’s lemma
together with (11.2) and (11.10) that

1

2
ν9E[t ∧ τ0Zν∞] ≤ C ′

(
t+ (|ν|+ ν2)t3/4

)
.

We now divide by t and take the limit as t↘ 0. Since τ0 and Z
ν
∞ are positive P (and

then P ν)-a.s., we get by dominated convergence

ν9 ≤ C ′ for all ν ∈ R.

Since ν is arbitrary, we conclude that lim infn zn = lim supn zn = 0.
The following result is a stronger version of Lemma 11.1 which was used in sec-

tion 9. We shall denote by H
2 the Hilbert space of all progressively measurable

Lebesgue(0,T)⊗P -square integrable processes.
Let (bn)n be as in Lemma 11.5. By assumption, (bn)n is bounded in L

∞(Le-
besgue(0, T )⊗P ). Then it is bounded in H

2 and, therefore, converges weakly to some
b, possibly along a subsequence.

Proposition 11.6. Assume the hypothesis of Lemma 11.5. Let b be as above.
Then

lim inf
u↘0

b(u) ≤ 0.

Proof. Define the stopping times τn as in the proof of Lemma 11.5. To simplify
the notation, we rename process bn(t)1tn≤t≤tn+t∧τn by bn(t). By Mazur’s lemma,
there exists a sequence of coefficients (λnk , k ≥ n)n with λ

n
k ≥ 0 and

∑
k≥n λ

n
k = 1

such that

b̂n :=
∑
k≥n

λnkbk −→ b strongly in H
2.(11.11)
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Integrating by parts and using the bound on an and Sn(. ∧ τn) provide

Mn(t ∧ τn) = zn[Sn(tn + t ∧ τn)− sn]

+ Sn(tn + t ∧ τn)
∫ tn+t∧τn

tn

an(r)dr −
∫ tn+t∧τn

tn

Sn(u)an(u)du

+

∫ tn+t∧τn

tn

∫ u

tn

bn(r)dSn(r)dSn(u)

≥ −C ′t ∧ τn − |zn|sn(eλ − 1) +
∫ tn+t∧τn

tn

∫ u

tn

bn(r)dSn(r)dSn(u).

Set β̂n := βn + |zn|sn(eλ − 1). Then, from Lemma 11.5, β̂n −→ 0 as n→∞ and we
get from the inequality satisfied by Mn∫ tn+t∧τn

tn

∫ u

tn

bn(r)dSn(r)dSn(u) ≤ β̂n +Kt ∧ τn(11.12)

for some positive constant K. Set

εn(t) :=

∫ tn+t∧τn

tn

∫ u

tn

bn(r)dSn(r)dSn(u)−
∫ t0+t∧τ0

t0

∫ u

t0

bn(r)dS0(r)dS0(u).

We shall later prove that

εn(t) −→ 0 P -a.s.(11.13)

possibly along a subsequence. Take convex combinations in (11.12) to conclude that

∑
k≥n

λnkεk(t) +

∫ t0+t∧τ0

t0

∫ u

t0

b̂n(r)dS0(r)dS0(u) ≤
∑
k≥n

λnk

(
β̂k +Kt ∧ τk

)
.(11.14)

We directly calculate that

E

[(∫ t0+t∧τ0

t0

∫ u

t0

(
b̂n(r)− b(r)

)
dS0(r)dS0(u)

)2
]

= E

[∫ t0+t∧τ0

t0

(∫ u

t0

(
b̂n(r)− b(r)

)
dS0(r)

)2

σ̄0(u)
2du

]

≤ C1 E

[∫ t0+t

t0

(∫ u

t0

(
b̂n(r)− b(r)

)
dS0(r)

)2

du

]

≤ C2 E

[∫ t0+t

t0

∫ u

t0

(
b̂n(r)− b(r)

)2

drdu

]
≤ C3t‖b̂n − b‖2H2 ,

where Ci’s are constants independent of n. This proves that∫ t0+t∧τ0

t0

∫ u

t0

b̂n(r)dS0(r)dS0(u) −→
∫ t0+t∧τ0

t0

∫ u

t0

b(r)dS0(r)dS0(u) as n→∞
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in L2(P ), and therefore P -a.s. along some subsequence. Then, taking a.s. limits in
(11.14) and using (11.13), we get∫ t0+t∧τ0

t0

∫ u

t0

b(r)dS0(r)dS0(u) ≤ Kt.

Since the limit process b inherits the bound on bn, we apply the result of Lemma 11.3
to complete the proof; see also Remark 11.4.

It remains to prove the convergence result stated in (11.13). Set ζn = tn + t ∧ τn
for n ≥ 0. By Itô’s lemma,

εn(t) = An +Bn + Cn,

where

An = [Sn(ζn)− sn]
∫ ζn

tn

bn(u)dSn(u)− [S0(ζ0)− s0]
∫ ζ0

t0

bn(u)dS0(u),

Bn = −
∫ ζn

tn

bn(u)Sn(u)dSn(u) +

∫ ζ0

t0

bn(u)S0(u)dS0(u),

Cn = −
∫ ζn

tn

bn(u)σ̄n(u)
2du+

∫ ζ0

t0

bn(u)σ̄0(u)
2du.

It suffices to prove that An, Bn, and Cn converge to zero P -a.s. along some sub-
sequence. We prove only the convergence of An; the remaining claims are proved
similarly.

(i) To simplify the presentation, set σ̄(.) = 0 outside the stochastic interval [tn, ζn]
and observe that

Sn(ζn)− S0(ζ0) = sn +

∫ ζn

tn

σ̄n(u)dW (u).

Since σ̄n is bounded inside the stochastic interval [tn, ζn], by dominated convergence,

E

(∫ ζn

tn

σ̄n(u)dW (u)−
∫ ζ0

t0

σ̄0(u)dW (u)

)2


= E

[∫ ζ0∨ζn

t0∧tn
(σ̄n(u)− σ̄0(u))

2
du

]
−→ 0.

This proves that

Sn(ζn) −→ S0(ζ0) P -a.s.

along some subsequence.
(ii) Recall that we have set bn(.) = 0 outside the interval [tn, ζn]. Thus,∫ ζn

tn

bn(u)dSn(u)−
∫ ζ0

t0

bn(u)dS0(u) =

∫ t0∨tn

tn

bn(u)dS0(u) +

∫ ζn

ζ0∧ζn
bn(u)dS0(u)

+

∫ ζ0∧ζn

t0∨tn
bn(u) (σ̄n(u)− σ̄0(u)) dW (u).
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From the bound on bn, the first two terms on the right-hand side converge to zero in
L2(P ) and therefore P -a.s. along some subsequence. As for the third term,

E

(∫ ζ0∧ζn

t0∨tn
bn(u) (σ̄n(u)− σ̄0(u)) dW (u)

)2


= E

[∫ ζ0∧ζn

t0∨tn
bn(u)

2 (σ̄n(u)− σ̄0(u))
2
du

]
≤ C1E

[∫ ζ0∧ζn

t0∨tn
(σ̄n(u)− σ̄0(u))

2
du

]

≤ C2E

[∫ ζ0

t0

(σ̄n(u)− σ̄0(u))
2
du

]
,

where Ci’s are constants and we have set σn(.) = 0 outside the stochastic interval
[tn, ζn]. Since σ̄n is bounded, we see by dominated convergence that the third term
of interest converges to zero in L2(P ) and therefore P -a.s. along some subsequence.
This proves that∫ tn+t∧τn

tn

bn(u)dSn(u)−
∫ t0+t∧τ0

t0

bn(u)dS0(u) −→ 0 P -a.s.

along some subsequence.
By (i) and (ii), An → 0 P -a.s. along some subsequence.
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Abstract. This paper discusses Hamiltonian necessary conditions for a nonsmooth multiobjec-
tive optimal control problem with endpoint constraints involving a general preference. The transver-
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1. Introduction. Practical decision problems often involve many factors and
can be described by a vector-valued decision function whose components describe
several competing objectives. The comparison between different values of the decision
function is determined by a preference of the decision maker. The main purpose of this
paper is to derive Hamiltonian necessary conditions for a nonsmooth multiobjective
optimal control problem with the dynamics governed by a differential inclusion.

Historically, the concept of a preference first appeared in the value theory of eco-
nomics. In the early studies of the value theory a preference is often defined by a utility
function. One of the central questions in the value theory was: given a preference,
is it always possible to define a utility function (with good analytic properties) that
determines the preference? In terms of multiobjective optimal control problems this
amounts to asking whether it is possible to reduce a multiobjective optimal control
problem to an optimal control problem with a reasonable single objective function. In
[13], Debreu proved a celebrated theorem which asserts that a preference ≺ is deter-
mined by a continuous utility function if and only if ≺ is continuous in the sense that,
for any x, the sets {y : x ≺ y} and {y : y ≺ x} are closed. While this theorem plays a
central role in the value theory, it is not of much help to us for the following reasons.
First, Debreu’s theorem is an existence theorem. It does not provide methods for
determining the utility function for a given preference. Second, even if one can find a
continuous utility function that determines the preference, an optimal control prob-
lem with a continuous decision function and endpoint constraints is not easily subject
to analysis. Finally, some useful preference relations (e.g., the preference determined
by the lexicographical order of the vectors) are not continuous. For these reasons we
shall pursue the multiobjective optimal control problem directly.

In the area of multiobjective optimization and optimal control much research has
been devoted to the weak Pareto solution and its generalizations. The preference
relation for two vectors x, y ∈ Rm in a weak Pareto sense is defined by x ≺ y if and
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only if xi ≤ yi, i = 1, . . . ,m, and at least one of the inequalities is strict. In other
words, x ≺ y if and only if x − y ∈ K := {z ∈ Rm : z has nonpositive components}
and x �= y. More generally, one can use other cones K in the definition of the
preference relations. Necessary optimality conditions for (generalized) weak Pareto
solutions were derived for optimization problems in [1, 8, 11, 25, 29, 35, 36, 39, 40]
(see also the survey paper [14] for more information), for linear-quadratic and H∞

optimal control problems in [16], and for an abstract optimal control problem in [6]. A
common key step in deriving necessary conditions for generalized Pareto solutions is
to apply a separation theorem to a tangent cone of the attainable set and a translate
of the cone −K, where K is the cone that generates the preference. In this paper
we take a different approach. We use a normal cone condition similar to that in the
extremal principle [24, 26, 28] at the optimal point in terms of the normal cones to the
attainable set and a level set of the preference. This approach enables us to handle
more general preference relations: they are not necessarily defined by a cone and are
not even necessarily continuous. Necessary optimality conditions for the weak Pareto
solution and its generalizations can be derived and refined by using our necessary
conditions.

The technical implementation of our proof relies on recent results in nonsmooth
analysis, in particular, on the calculus for smooth subdifferentials of lower semicon-
tinuous functions [2, 4, 5, 9, 10, 19], the methods for proving the extremal principle
[24, 26, 28], and techniques in handling the Hamiltonians for a differential inclusion
[10, 19]. To avoid technical distractions we prove here Hamiltonian necessary condi-
tions that extend the classical Hamiltonian necessary conditions for optimal control
problems derived by Clarke (see [8]). There are several recent significant refinements of
the Hamiltonian necessary conditions for optimal control problems with a single objec-
tive function [18, 19, 20, 34]. It is an interesting question to what extent the methods
of this paper can be used to generalize these refined Hamiltonian necessary conditions
to multiobjective optimal control problems. There are also many other types of nec-
essary conditions for optimal control problems, in particular, those that refine and
generalize the maximum principle (see, e.g., [21, 22, 23, 27, 30, 31, 33, 37, 38, 41]).
Whether those necessary conditions can be extended to multiobjective optimal control
problems in our general setting represents a more challenging open problem.

The remainder of the paper is arranged as follows. Section 2 contains definitions
and preliminary results in subdifferential calculus. We state our main result in sec-
tion 3 along with some examples and discussions. The technical proofs are given in
section 4.

2. Preliminaries. Let X be a real reflexive Banach space with closed unit ball
BX and with topological real dual X∗. Note that X has an equivalent Fréchet smooth
norm and we will use this norm as the norm of X unless otherwise stated. Let
f : X → R̄ := R ∪ {+∞} be an extended-valued function. We denote by dom f :=
{x ∈ X : f(x) ∈ R} the effective domain of f . We assume all our functions are proper
in that they take some finite values: dom f �= ∅. Let us now recall the definitions of
subdifferentials and normal cones (see [5] for greater details and historical comments).

Definition 2.1. Let f : X → R̄ be a lower semicontinuous function and C
a closed subset of X. We say f is Fréchet-subdifferentiable and x∗ is a Fréchet-
subderivative of f at x if there exists a concave C1 function g such that g′(x) = x∗

and f−g attains a local minimum at x. We denote the set of all Fréchet-subderivatives
of f at x by DF f(x). We define the Fréchet-normal cone of C at x to be NF (C, x) :=
DF δC(x), where δC is the indicator function of C defined by δC(x) := 0 for x ∈ C
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and ∞ otherwise.
In the following definition, w∗ − lim represents the weak-star limit. In a reflexive

Banach space it coincides with the weak limit. In this paper, we only use limiting
subdifferentials and normal cones in finite dimensional Euclidean spaces where the
weak-star limit coincides with the usual limit.

Definition 2.2. Let f : X → R̄ be a lower semicontinuous function. Define

∂f(x) := {w∗ − lim
i→∞

vi : vi ∈ DF f(xi), (xi, f(xi))→ (x, f(x))}

and

∂∞f(x) := {w∗ − lim
i→∞

tivi : vi ∈ DF f(xi), ti → 0+, (xi, f(xi))→ (x, f(x))},

and call ∂f(x) and ∂∞f(x) the limiting subdifferential and singular subdifferential of
f at x, respectively.

Now let C be a closed subset of X and

N(C, x) := {w∗ − lim
i→∞

vi : vi ∈ NF (C, xi), C � xi → x},

and call N(S, x) the limiting normal cone of S at x.
We shall also need to use the Clarke subdifferential ∂C which is derived by taking

the weak-star closed convex hull of the sum of the limiting and singular subdifferen-
tials, i.e.,

∂Cf(x) := cl∗ co[∂f(x) + ∂∞f(x)].

We conclude this section with a sum rule and a chain rule for the Fréchet sub-
differential. They can be viewed as nonsmooth versions of the corresponding calculus
rules for derivatives. We start with the sum rule. The prototypes of this result
appeared first in [17]. We use the following version, derived in [4], which refines
similar results in [2, 19].

Definition 2.3 (uniform lower semicontinuity). Let f1, . . . , fN : X → R̄ be
lower semicontinuous functions and E a closed subset of X. We say that (f1, . . . , fn)
is uniformly lower semicontinuous on E if

inf
x∈E

N∑
n=1

fn(x) ≤ lim
η→0

inf

{
N∑
n=1

fn(xn) : ‖xn − xm‖ ≤ η, xn, xm ∈ E, n,m = 1, . . . , N

}
.

We say that (f1, . . . , fN ) is locally uniformly lower semicontinuous at x ∈ ∩Nn=1dom(fn)
if (f1, . . . , fN ) is uniformly lower semicontinuous on every closed ball centered at x in
a neighborhood of x.

Theorem 2.4 (sum rule). Let f1, . . . , fN : X → R̄ be lower semicontinuous
functions. Suppose that (f1, . . . , fN ) is locally uniformly lower semicontinuous at

x̄ and
∑N
n=1 fn attains a local minimum at x̄. Then, for any ε > 0, there exist

xn ∈ x̄ + εB and x∗n ∈ DF fn(xn), n = 1, . . . , N such that |fn(xn) − fn(x̄)| < ε, n =
1, 2, . . . , N , diam(x1, . . . , xN ) ·max(‖x∗1‖, . . . , ‖x∗N‖) < ε, and∥∥∥∥∥

N∑
n=1

x∗n

∥∥∥∥∥ < ε.
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Following the argument of [10, Theorem 9.1], one can deduce the following Fréchet
subdifferential chain rule for Lipschitz functions from the sum rule of Theorem 2.4.

Theorem 2.5 (chain rule). Let X and Y be reflexive Banach spaces. Let Φ :
X → Y and f : Y → R be locally Lipschitz mappings. Then for any x∗ ∈ DF (f ◦Φ)(x̄)
and any ε > 0 there exist x ∈ x̄+ εBX , y ∈ Φ(x̄) + εBY , and y

∗ ∈ DF f(y) such that
‖Φ(x)− Φ(x̄)‖ < ε and

x∗ ∈ DF 〈y∗,Φ〉(x) + εBX .

3. The main results. Let ≺ be a (nonreflexive) preference for vectors in Rm.
We consider the following multiobjective optimization problem with endpoint con-
straints.

P Minimize φ(y(1))

subject to ẏ(t) ∈ F (y(t)) almost everywhere (a.e.) in [0, 1], y(0) = α0,(3.1)

y(1) ∈ E.(3.2)

Here, φ = (φ1, . . . , φm) is a Lipschitz vector function on Rn, E is a closed subset of
Rn, and F is a multifunction from Rn to Rn satisfying the following conditions.

(H1) For every x, F (x) is a nonempty compact convex set.
(H2) F is Lipschitz with rank LF , i.e., for any x, y,

F (x) ⊂ F (y) + LF ‖x− y‖BRn .

We say that y is a feasible trajectory for problem P if y is absolutely continuous and
satisfies relations (3.1) and (3.2). We say x is a solution to problem P provided that
it is a feasible trajectory for P and there exists no other feasible trajectory y such
that φ(y(1)) ≺ φ(x(1)). For any r ∈ Rm, we write l(r) := {s ∈ Rm : s ≺ r}. We will
need the following regularity assumptions on the preference.

Definition 3.1. We say that a preference ≺ is closed provided that
(A1) for any r ∈ Rm, r ∈ l(r);
(A2) for any r ≺ s, t ∈ l(r) implies that t ≺ s.
We say that ≺ is regular at r̄ ∈ Rm provided that

(A3) for any sequences rk, θk → r̄ in Rm,

lim sup
k→∞

N(l(rk), θk) ⊂ N(l(r̄), r̄).

Our main result is the following theorem.
Theorem 3.2. Let x be a solution to the multiobjective optimal control problem

P. Suppose that the preference ≺ is regular at φ(x(1)). Then there exist an absolutely
continuous mapping p : [0, 1]→ Rn, a vector λ ∈ N(l(φ(x(1))), φ(x(1))) with ‖λ‖ = 1,
and a scalar λ0 = 0 or 1 satisfying λ0 + ‖p(t)‖ �= 0 ∀ t ∈ [0, 1] such that

(−ṗ(t), ẋ(t)) ∈ ∂CH(x(t), p(t)) a.e. in [0, 1],

−p(1) ∈ λ0∂〈λ, φ〉(x(1)) +N(E, x(1)).

Moreover, one can always choose λ0 = 1 when x(1) ∈ int E.
Here H is the Hamiltonian corresponding to F defined by

H(x, p) := max{〈p, v〉 : v ∈ F (x)}.
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Remark 3.3. Observing that H is positive homogeneous in p, we can scale p or,
alternatively, λ in Theorem 3.2 by a positive constant.

In the remainder of this section we will examine a few examples. The proof of
Theorem 3.2 is postponed to the next section.

Example 3.4 (a single objective problem). When m = 1 and r ≺ s ⇐⇒ r < s,
Theorem 3.2 reduces to the classical Hamiltonian necessary conditions for an optimal
control problem [8]. Thus, the necessary conditions in Theorem 3.2 are true general-
izations of the Hamiltonian necessary conditions for single objective optimal control
problems.

Example 3.5 (the weak Pareto optimal control problem). In a weak Pareto
optimal control problem we define the preference by r ≺ s if and only if ri ≤ si, i =
1, . . . ,m, and at least one of the inequalities is strict. It is easy to check that ≺
defined this way satisfies assumptions (A1) and (A2) in Definition 3.1 at any r ∈ Rm.
Moreover, for any r ∈ Rm, l(r) = r + Rm− , where Rm− := {s ∈ Rm : si ≤ 0, i =

1, . . . ,m}. It follows that, for any r, θ ∈ Rm, we have N(l(r), θ) ⊂ Rm+ := −Rm− .

Since N(l(r), r) = Rm+ , we can see that ≺ also satisfies assumption (A3) at any
r ∈ Rm and, therefore, it is regular at any r ∈ Rm. Combining Theorem 3.2 and
Remark 3.3, we obtain the following corollary.

Corollary 3.6. Let x be a weak Pareto solution to the multiobjective optimal
control problem P. Then there exist an absolutely continuous mapping p : [0, 1]→ Rn,
a vector λ ∈ Rm+ with

∑m
i=1 λi = 1, and a scalar λ0 = 0 or 1 satisfying λ0 + ‖p(t)‖ �=

0 ∀ t ∈ [0, 1] such that

(−ṗ(t), ẋ(t)) ∈ ∂CH(x(t), p(t)) a.e. in [0, 1],

−p(1) ∈ λ0∂〈λ, φ〉(x(1)) +N(E, x(1)).

Moreover, one can always choose λ0 = 1 when x(1) ∈ int E.

Remark 3.7 (the strong Pareto optimal control problem). Problem P, with
the preference defined by r ≺ s if and only if ri < si, is a strong Pareto optimal
control problem. We can also check that this preference is regular at any r ∈ Rm.
Thus, Theorem 3.2 can also yield a necessary condition for the strong Pareto optimal
control problem. However, simple calculation yields l(r) = r+Rm− , which is the same
as the corresponding result for a weak Pareto optimal problem. This means that
the necessary conditions deduced from Theorem 3.2 for both weak and strong Pareto
optimal control problems are the same. Clearly this loss of precision is due to the
closure operation on the level sets l(r).

We point out that if x is a weak Pareto optimal solution to problem P, then
it is a solution to the following single objective optimal control problem: minimize
max(φ1(y(1)) − φ1(x(1)), . . . , φm(y(1)) − φm(x(1))) subject to constraints (3.1) and
(3.2). Then we can deduce Corollary 3.6 by combining the Hamiltonian necessary
conditions for a single objective problem and the subdifferential chain rule for the
max function. However, this method does not apply without additional assumptions
to the following generalized weak Pareto optimal solution [1].

Example 3.8 (a generalized weak Pareto optimal control problem). Let K ⊂ Rm

be a closed cone. We now define the preference by r ≺ s if and only if r − s ∈ K
and r �= s. Multiobjective optimal control problems with this preference are called
generalized weak Pareto optimal control problems. When K = Rm− , we get the weak
Pareto problem. Note that we do not assume any convexity on K. Similarly to
the last example, we can check that the preference ≺ defined here is regular at any
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r ∈ Rm. Moreover, N(l(r), r) = K− := {s ∈ Rm : 〈s, t〉 ≤ 0, t ∈ K}. In particular,
N(l(φ(x(1))), φ(x(1))) = K−. Thus, we have the following corollary.

Corollary 3.9. Let x be a solution to the generalized weak Pareto multiobjective
optimal control problem P with the preference defined by a closed cone K. Then there
exist an absolutely continuous mapping p : [0, 1]→ Rn, a vector λ ∈ K− with ‖λ‖ = 1,
and a scalar λ0 = 0 or 1 satisfying λ0 + ‖p(t)‖ �= 0 ∀ t ∈ [0, 1] such that

(−ṗ(t), ẋ(t)) ∈ ∂CH(x(t), p(t)) a.e. in [0, 1],

−p(1) ∈ λ0∂〈λ, φ〉(x(1)) +N(E, x(1)).

Moreover, one can always choose λ0 = 1 when x(1) ∈ int E.
Example 3.10 (a preference determined by a utility function). Let u be a con-

tinuous utility function that determines the preference, i.e., s ≺ r if and only if
u(s) < u(r). We need an additional assumption to ensure the regularity of ≺ which
we summarize in the following lemma. We will use d(S, r) := inf{‖s− r‖ : s ∈ S} to
denote the distance between a set S and a point r.

Lemma 3.11. Let u be a continuous utility function determining the preference
≺. Suppose that

lim inf
s→r

d(DFu(s), 0) > 0.(3.3)

Then ≺ is regular at r and

N(l(r), r) = ∂∞u(r)
⋃(⋃

a>0

a∂u(r)

)
.

Proof. It follows from (3.3) that l(r) is nonempty. Then conditions (A1) and (A2)
in Definition 3.1 follow from the continuity of u. It remains to show that ≺ satisfies
assumption (A3). First we observe that, for r′ sufficiently close to r, l(r′) = {s ∈
Rm : u(s)− u(r′) ≤ 0}. Thus, DFu(r

′) ⊂ NF (l(r′), r′). Taking limits, we have

∂∞u(r)
⋃(⋃

a>0

a∂u(r)

)
⊂ N(l(r), r).(3.4)

Let rk, θk, and ξk be sequences satisfying rk, θk → r, ξk ∈ N(l(rk), θk), and ξk → ξ.
We need to show that ξ ∈ N(l(r), r). By the definition of the limiting normal cone, and
without loss of generality, we may assume that ξk ∈ NF (l(rk), θk). Since N(l(r), r)
always contains 0, we consider the interesting case when ξ �= 0. Then, when n is
sufficiently large, we have ξk �= 0. Since NF (l(rk), θk) is empty when u(θk) > u(rk)
and {0} when u(θk) < u(rk), we must have u(θk) = u(rk), i.e., NF (l(rk), θk) =
NF (l(θk), θk) = NF ({s : u(s) − u(θk) ≤ 0}, θk). Applying [5, Theorem 3.4] (see also
[3, 32]), we conclude that there exist ak > 0 and ζk ∈ DFu(θk) such that ‖akζk−ξk‖ <
1/n. It follows that

lim
k→∞

akζk = ξ.

Since ζk is bounded away from 0, ak is bounded. Passing to a subsequence if necessary,
we may assume that ak → a. If a �= 0, then ζk converges to an element of ∂u(r) and,
therefore, ξ ∈ a∂u(r). If a = 0, then, by definition, ξ ∈ ∂∞u(r). In view of (3.4) we
have shown that ≺ is regular at r. The formula for N(l(r), r) also follows.
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Using Lemma 3.11 and Remark 3.3, we have the following corollary of Theorem
3.2.

Corollary 3.12. Let ≺ be a preference determined by a utility function u.
Suppose that u satisfies the condition of Lemma 3.11. Let x be a solution to the
multiobjective optimal control problem P. Then there exist an absolutely continuous
mapping p : [0, 1] → Rn, a nonzero vector λ ∈ ∂∞u(φ(x(1))) ∪ ∂u(φ(x(1))), and a
scalar λ0 = 0 or 1 satisfying λ0 + ‖p(t)‖ �= 0 ∀ t ∈ [0, 1] such that

(−ṗ(t), ẋ(t)) ∈ ∂CH(x(t), p(t)) a.e. in [0, 1],

−p(1) ∈ λ0∂〈λ, φ〉(x(1)) +N(E, x(1)).

Moreover, one can always choose λ0 = 1 when x(1) ∈ int E.
Here we derived necessary conditions for an optimal control problem with a con-

tinuous decision function. This example also shows that, under favorable conditions,
necessary optimality conditions in terms of a preference and its utility function are
the same. However, the condition in terms of the normal cone of the level sets of the
preference is intrinsic. In fact, if u is a (smooth) utility function corresponding to
preference ≺, then so is v(r) = (u(r) − u(x(1)))3. But v has a derivative 0 at x(1).
Thus, using v as a decision function, the necessary optimality conditions in Corollary
3.12 will yield no useful information.

Our next example considers the preference determined by the lexicographical
order. This preference does not correspond to any real utility function [12, p. 72].

Example 3.13 (the preference determined by the lexicographical order). Write
r ≺ s if there exist an integer q ∈ {0, 1, . . . ,m − 1} such that ri = si, i = 1, . . . , q,
and rq+1 < sq+1. It is easy to check that ≺ satisfies assumptions (A1) and (A2)

in Definition 3.1. Straightforward calculation yields l(r) = {s = (s1, . . . , sm) ∈
Rm : s1 ≤ r1}. It follows that, for any r, θ ∈ Rm, N(l(r), θ) = {ae1 : a ≥ 0}.
Here e1 = (1, 0, . . . , 0) ∈ Rm. Thus, ≺ is regular at any r ∈ Rm. Moreover,
N(l(φ(x(1))), φ(x(1))) = {ae1 : a ≥ 0}. Combining Theorem 3.2 and Remark 3.3, we
have the following corollary.

Corollary 3.14. Let x be a solution to the multiobjective optimal control prob-
lem P with the lexicographical preference. Then there exist an absolutely continuous
mapping p : [0, 1]→ Rn and a scalar λ0 = 0 or 1 satisfying λ0 +‖p(t)‖ �= 0 ∀ t ∈ [0, 1]
such that

(−ṗ(t), ẋ(t)) ∈ ∂CH(x(t), p(t)) a.e. in [0, 1],

−p(1) ∈ λ0∂φ1(x(1)) +N(E, x(1)).

Moreover, one can always choose λ0 = 1 when x(1) ∈ int E.
Intuitively this tells us that since objective φ1 is much more important than

the other objectives, the necessary conditions for a multiobjective optimal control
problem with the lexicographical preference are the same as the necessary conditions
for an optimal control problem with a single objective function φ1. To get further
information one can add an additional endpoint constraintD = {y : φ1(y) = φ1(x(1))}
to obtain the following necessary conditions: there exist an absolutely continuous
mapping p : [0, 1]→ Rn and a scalar λ0 = 0 or 1 satisfying λ0 + ‖p(t)‖ �= 0 ∀ t ∈ [0, 1]
such that

(−ṗ(t), ẋ(t)) ∈ ∂CH(x(t), p(t)) a.e. in [0, 1],

−p(1) ∈ λ0∂φ2(x(1)) +N(E ∩D,x(1)).
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This process can be continued. Note that the adjoint arcs p and scalars λ0 in this
sequence of necessary conditions are not necessarily the same. Of course, these nec-
essary conditions can also be derived by directly combining the above argument with
necessary conditions for single-valued optimal control problems. What is interesting
here is that this problem can be put into the framework of Theorem 3.2 along with
many other problems although its preference cannot be characterized by a utility
function.

We should point out that while Theorem 3.2 provides a uniform treatment of
many different kinds of multiobjective optimal control problems, the cost we pay
is the loss of precision in some special cases. We have briefly discussed this point
in Remark 3.7. Now we can see that a similar loss of precision also occurs in the
necessary conditions derived for multiobjective optimal control problems defined by a
lexicographical order. As discussed in Remark 3.7, to improve the precision one has
to use a normal cone concept that can distinguish level sets with an identical closure.
This appears to be an interesting direction for further investigation.

4. Proof of Theorem 3.2. We divide the proof into several steps.
Step 1. Converting the multiobjective optimal control problem into an abstract

optimization problem. The method we use here develops a conversion for the single
objective problem that can be traced back to [7] (see also [8, 10]). The way we handle
the multiobjective preference is suggested by the proof of the extremal principle in
[24, 26, 28]. Let A := {y(1) : y is a solution to (3.1)}, and let Γ := {φ(w) : w ∈
A∩E}. We can see that Γ is the set of “the attainable values” of this multiobjective
optimal control problem. Since A is compact (see [8, section 3.1]) and E is closed,
Γ is a closed (compact) set. Let ε be an arbitrary positive number, and let η ∈
(0,min(1, ε)/8(Lφ + 1)), where Lφ is the Lipschitz rank of φ. Choose γη ≺ φ(x(1))

such that ‖γη−φ(x(1))‖ < η2 and write Θ := l(γη). Here Θ is the closure of the level
set of ≺ at γη. This is an approximation of l(φ(x(1)), the level set of the optimal
solution x. We need this approximation because the intersection of l(φ(x(1)) and Γ
is nonempty (contains at least φ(x(1))), yet

Γ ∩Θ = ∅.(4.1)

In fact, it follows from condition (A2) on ≺ that Γ∩Θ �= ∅ implies that there exists a
solution y of (3.1) with y(1) ∈ E such that φ(y(1)) ≺ φ(x(1)), which is a contradiction.

Next we use a method similar to that in [24, 26, 28] for proving the extremal
principle to derive a necessary condition for a series of abstract minimization problems
that approximate our original multiobjective optimal control problem. Note that the
extremal principle in the above references cannot be directly applied here for two
reasons: (a) the separation in (4.1) is derived by moving (the closure of) the level
sets of ≺. In order to apply the extremal principle, the move of the level sets of
≺ must be a translate, which only occurs in some special cases such as in a single
objective problem or in a weak Pareto optimal problem. (b) Even in the cases when
the extremal principle is applicable, applying it to the sets Γ and l(φ(x(1)) will not
give us necessary control on the locations of the “approximate” optimal solutions. In
what follows, the definition of the auxiliary function f is similar to that in the proof
of an extremal principle. We bring the solution of the differential inclusion into the
picture by using two sets C and K defined below. Their intersection C ∩K describes
the solution set of (3.1) in L2 × L2.

Let

f(γ, θ) := ‖γ − θ‖+ δΓ(γ) + δΘ(θ).
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Then, for any (γ, θ) ∈ R2m, f(γ, θ) > 0 and f(φ(x(1)), γη) = ‖φ(x(1)) − γη‖ < η2.
Let

C := {(u, v) ∈ L2([0, 1], Rn)× L2([0, 1], Rn) : v(t) ∈ F (u(t)) a.e. in [0, 1]}

and

K :=

{
(α, u, v) ∈ Rn × L2([0, 1], Rn)× L2([0, 1], Rn) :

α = α0 +

∫ 1

0

v(s)ds and u(t) = α0 +

∫ t

0

v(s)ds

}
.

Then for any γ = (γ1, . . . , γm), α, u, and v we have

δΓ(γ) ≤
m∑
i=1

δgraph φi(α, γi) + δE(α) + δK(α, u, v) + δC(u, v).

In fact, if γ ∈ Γ, this inequality is trivial. When γ �∈ Γ it is clear that the indicator
functions on the right-hand side cannot be all zero. Moreover, since x is a solution of
problem P, we have

0 = δΓ(φ(x(1))) =

m∑
i=1

δgraph φi(x(1), φ(x(1))) + δE(x(1)) + δK(x(1), x, ẋ) + δC(x, ẋ).

Now we introduce another auxiliary function similar to f which brings the solution
of (3.1) into the picture. Let

ψ(γ, θ, α, u, v) := ‖γ−θ‖+δΘ(θ)+

m∑
i=1

δgraph φi(α, γi)+δE(α)+δK(α, u, v)+δC(u, v).

It is easy to check that ψ > 0 and ψ(φ(x(1)), γη, x(1), x, ẋ) = ‖φ(x(1)) − γη‖ < η2.
Moreover, since all the functions in ψ are either Lipschitz functions or indicator func-
tions for a closed set, ψ is lower semicontinuous. By virtue of the Ekeland variational
principle [15], there exist γ̃ ∈ φ(x(1)) + ηBRm , θ̃ ∈ (γη + ηBRm) ∩ Θ ⊂ (φ(x(1)) +
2ηBRm)∩Θ, α̃ ∈ (x(1)+ ηBRn)∩E, ũ ∈ x+ ηBL2([0,1],Rn), and ṽ ∈ ẋ+ ηBL2([0,1],Rn)

such that

ψ(γ, θ, α, u, v) + η‖(γ, θ, α, u, v)− (γ̃, θ̃, α̃, ũ, ṽ)‖

attains a minimum at (γ, θ, α, u, v) = (γ̃, θ̃, α̃, ũ, ṽ).
We turn to the task of decoupling information. To simplify notation we write

z := (γ, θ, α, u, v) and Z := R2m+n × L2([0, 1], Rn)× L2([0, 1], Rn). Define functions

f1(z) := ‖γ − θ‖+ δΘ(θ) +

m∑
i=1

δgraph φi(α, γi) + δE(α),

f2(z) := δK(α, u, v),

f3(z) := δC(u, v),
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and

f4(z) := η‖(γ, θ, α, u, v)− (γ̃, θ̃, α̃, ũ, ṽ)‖.
Then, f1, f2, f3, f4 are lower semicontinuous and f1 + f2 + f3 + f4 attains a minimum
at z̃ over a closed neighborhood U of z̃ in Z. Our next step is to apply a fuzzy sum
rule to convert this into subdifferential information on fi, i = 1, 2, 3, 4.

Step 2. Applying the sum rule. To do so, we need to check that (f1, f2, f3, f4)
is uniformly lower semicontinuous around z̃. The argument is similar to that of [19]
but somewhat simpler because of the weaker condition required in the sum rule of
Theorem 2.4 (see [42] for the case of single objective problems). Let zk1 , z

k
2 , z

k
3 , z

k
4 ∈ U

be four sequences satisfying

diam(zk1 , z
k
2 , z

k
3 , z

k
4 )→ 0, as k →∞,(4.2)

such that

lim
n→∞

4∑
i=1

fi(z
k
i ) = lim inf

h→0

{
4∑
i=1

fi(zi),diam(z1, z2, z3, z4) ≤ h

}
.

Then we must have (uk3 , v
k
3 ) ∈ C, i.e.,

vk3 (t) ∈ F (uk3(t)) a.e. in [0, 1].(4.3)

Since zk3 ∈ U , uk3 is a bounded sequence in L2([0, 1], Rn). Since F is Lipschitz with
values that are compact sets, vk3 is also a bounded sequence in L2([0, 1], Rn). Without
loss of generality, we may assume that vk3 converges weakly to v̄ in L2([0, 1], Rn).
Then it follows from relation (4.2) that vk2 also converges weakly to v̄ in L2([0, 1], Rn).

Since (αk2 , u
k
2 , v

k
2 ) ∈ K, we have αk2 = α0 +

∫ 1

0
vk2 (s)ds and uk2(t) = α0 +

∫ t
0
vk2 (s)ds.

Thus, we may assume that αk2 converges to ᾱ = α0 +
∫ 1

0
v̄(s)ds and uk2 converges to

ū(t) = α0 +
∫ t
0
v̄(s)ds in L2([0, 1], Rn). By (4.2), uk3 converges to ū in L2([0, 1], Rn).

It follows from (4.3) that, for almost all t ∈ [0, 1],

〈v∗, vk3 (t)〉 ≤ sup{〈v∗, v〉 : v ∈ F (uk3(t))} ∀v∗ ∈ Rn.
Taking limits as k →∞ yields, for almost all t ∈ [0, 1],

〈v∗, v̄(t)〉 ≤ sup{〈v∗, v〉 : v ∈ F (ū(t))} ∀v∗ ∈ Rn.
Thus, v̄(t) ∈ F (ū(t)) a.e. in [0, 1]. The convergence of αk2 to ᾱ combined with (4.2)
implies that αk1 also converges to ᾱ. Passing to a subsequence, if necessary, we may
assume that the bounded sequences γk1 and θk1 converge to γ̄ and θ̄, respectively. Write
z̄ := (γ̄, θ̄, ᾱ, ū, v̄). Since f2(z

k
2 ) = f3(z

k
3 ) = 0 for sufficiently large k, since f1 is lower

semicontinuous, and since f4 is weakly lower semicontinuous, we have

lim
k→∞

4∑
i=1

fi(z
k
i ) ≥ f1(z̄) + f4(z̄) =

4∑
i=1

fi(z̄) ≥
4∑
i=1

fi(z̃).

This verifies that (f1, f2, f3, f4) is uniformly lower semicontinuous at z̃.

Now we can apply the fuzzy sum rule of Theorem 2.4 to
∑4
i=1 fi at z̃. Noticing

that f4 is Lipschitzian with rank η, we conclude that there exist z1, z2, z3 ∈ z̃ + ηBZ
and z∗i ∈ DF fi(zi), i = 1, 2, 3, such that

‖z∗1 + z∗2 + z∗3‖ < 2η.(4.4)
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Since f1 does not depend on u and v, we have z∗1 = (γ∗, θ∗, α∗, 0, 0). Similarly, we
may write z∗2 = (0, 0, β∗, u∗, v∗) and z∗3 = (0, 0, 0, q, p). Our next task is to calculate
z∗i , i = 1, 2, 3.

Step 3. Calculating z∗1 .
Let z1 = (γ, θ, α, u1, v1), and let g be a concave C1 function on Rm×Rm×Rn such

that g′(γ, θ, α) = (γ∗, θ∗, α∗) and f1− g attains a minimum at (γ, θ, α). In particular,
let γ′ = φ(α′), and we have that

‖φ(α′)− θ′‖ − g(φ(α′), θ′, α′) + δE×Θ(α′, θ′)(4.5)

attains a minimum at (θ, α).
We apply the sum rule of Theorem 2.4 and the chain rule of Theorem 2.5 to the

functions in (4.5). With some straightforward (yet somewhat tedious) calculation we
conclude that there exist θ0 ∈ (θ+ ηBRm)∩Θ, α1 ∈ α+ ηBRn , α2 ∈ (α+ ηBRn)∩E,
and λ ∈ NF (Θ, θ0) with ‖λ‖ ∈ (1− 3η, 1 + 3η) such that

α∗ ∈ DF 〈λ, φ〉(α1) +NF (E,α2) + ηBRn .(4.6)

Step 4. Calculating z∗2 .
Let z∗2 = (0, 0, β∗, u∗, v∗) and z2 = (γ2, θ2, β, u, v). Then (β∗, u∗, v∗) ∈ NF (K, (β, u, v)).

The useful information for us is summarized in the following lemma.
Lemma 4.1. Let (β∗, u∗, v∗) ∈ NF (K, (β, u, v)). Then

β∗ + v∗(t) +

∫ 1

t

u∗(s)ds = 0 a.e. in [0, 1].

Proof. Since K is convex, the Fréchet normal cone of K coincides with the convex
normal cone. Thus,

〈β′ − β, β∗〉+ 〈u′ − u, u∗〉+ 〈v′ − v, v∗〉 ≤ 0 ∀(β′, u′, v′) ∈ K.
By the definition of K we have that, for any v′ ∈ L2([0, 1], Rn),〈

β∗,
∫ 1

0

(v′(t)− v(t))dt
〉

+

∫ 1

0

〈
u∗(t),

∫ t

0

(v′(s)− v(s))ds
〉
dt

+

∫ 1

0

〈v∗(t), v′(t)− v(t)〉dt ≤ 0.

Integration by parts yeilds that, for any v′ ∈ L2([0, 1], Rn),∫ 1

0

〈
β∗ +

∫ 1

t

u∗(s)ds+ v∗(t), v′(t)− v(t)
〉
dt ≤ 0.

Thus, β∗ +
∫ 1

t
u∗(s)ds+ v∗(t) = 0 a.e. in [0, 1].

Step 5. Calculating NF (C, (u, v)).
Combining (4.4), (4.6), and Lemma 4.1, we conclude that, for any ε > 0, there

exist γε ∈ φ(x(1)) + εBRm , θ0 ∈ (θ+ ηBRm)∩ l(γε) ⊂ (φ(x(1)) + εBRm)∩ l(γε), α1 ∈
α+ηBRn ⊂ x(1)+εBRn , α2 ∈ (α+ηBRn)∩E ⊂ (x(1)+εBRn)∩E, λ ∈ NF (l(γε), θ0)
with ‖λ‖ ∈ (1− ε, 1 + ε), α∗

2 ∈ NF (E,α2), and

α∗ ∈ DF 〈λ, φ〉(α1) + α∗
2 + εBRn ,(4.7)
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such that there exist (u, v) ∈ (x, ẋ) + εBL2([0,1],Rn)×L2([0,1],Rn), (q, p) ∈ NF (C, (u, v)),
and u∗ ∈ L2([0, 1], Rn) satisfying∥∥∥∥(u∗,−α∗ −

∫ 1

·
u∗(s)ds

)
− (q, p)

∥∥∥∥ < ε.(4.8)

Now we need to calculate the normal cone NF (C, (u, v)). This calculation is
similar to [10, Lemma 9.4].

Lemma 4.2. Let (q, p) ∈ NF (C, (u, v)). Then

(−q(t), v(t)) ∈ ∂CH(u(t), p(t)) a.e. in [0, 1].

Proof. Since (q, p) ∈ NF (C, (u, v)), there exists a C1 concave function w on
L2([0, 1], Rn) × L2([0, 1], Rn) with w(u, v) = 0 and w′(u, v) = 0 such that, for any
(u′, v′) ∈ C,

〈q, u′ − u〉+ 〈p, v′ − v〉+ w(u′, v′) ≤ 0.(4.9)

Let B := (0, 1) ∩ {the Lebesgue points of u and v}. Then B has measure 1. For any
t ∈ B, (x, ν) ∈ Graph F , and h > 0, let

u′h(s) :=

{
x if s ∈ [t− h, t+ h],
u(t) otherwise,

and

v′h(s) :=

{
ν if s ∈ [t− h, t+ h],
v(t) otherwise.

Then ‖u′h − u‖ = O(h), ‖v′h − v‖ = O(h), and w(u′h, v
′
h) = o(h). Setting (u′, v′) =

(u′h, v
′
h) in (4.9), dividing by 2h, and taking limits yields

〈q(t), x− u(t)〉+ 〈p(t), ν − v(t)〉 ≤ 0 ∀(x, ν) ∈ Graph F.(4.10)

In particular, setting x = u(t), we have

〈p(t), ν − v(t)〉 ≤ 0 ∀ν ∈ F (u(t)).(4.11)

That is to say

〈p(t), v(t)〉 = sup
ν∈F (u(t))

〈p(t), ν〉 = H(u(t), p(t)).(4.12)

Let

g(x, p) := 〈p(t)− p, v(t)〉+ ‖p(t)− p‖2
+〈q(t), x− u(t)〉+H(x, p).

Then g is Lipschitz and strictly convex in p for each x. Let U be a ball around u(t),
and let K be a uniform bound for F (x) over U . Then |H(x, p)| ≤ K‖p‖ for x ∈ U .
Thus for all x ∈ U , the function p → g(x, p) attains a unique minimum at p = p(x)
and ‖p(x)‖ ≤ c for some constant c. We claim that

(i) p→ g(u(t), p) attains a local minimum at p = p(t), and
(ii) x→ minp g(x, p) attains a local maximum at x = u(t).
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Then it follows from [10, Lemma 9.5] that (0, 0) ∈ ∂Cg(u(t), p(t)), i.e.,

(−q(t), v(t)) ∈ ∂CH(u(t), p(t)).

It remains to verify claims (i) and (ii). By the minimax theorem we have

min
p
g(x, p) = min

p
{〈p(t)− p, v(t)〉+ ‖p(t)− p‖2

+〈q(t), x− u(t)〉+H(x, p)}
= min

p
max
ν∈F (x)

{〈p(t)− p, v(t)〉+ ‖p(t)− p‖2(4.13)

+〈q(t), x− u(t)〉+ 〈p, ν〉}
= max
ν∈F (x)

min
p
{〈p, ν − v(t)〉+ ‖p(t)− p‖2

+〈q(t), x− u(t)〉+ 〈p(t), v(t)〉}
= max
ν∈F (x)

{〈p(t), ν − v(t)〉 − ‖ν − v(t)‖2/4
+〈q(t), x− u(t)〉+ 〈p(t), v(t)〉}.

In particular, when x = u(t), we have, by (4.11) and (4.12),

min
p
g(u(t), p) = max

ν∈F (u(t))
{〈p(t), ν − v(t)〉 − ‖ν − v(t)‖2/4 + 〈p(t), v(t)〉}

= 〈p(t), v(t)〉 = g(u(t), p(t)).

This verifies (i). On the other hand, combining (4.10) and (4.13), we have

min
p
g(x, p) ≤ 〈p(t), v(t)〉 = g(u(t), p(t)) = min

p
g(u(t), p),

which verifies (ii).
Step 6. Taking limits.
Let ε = 1/k for k = 1, 2, . . . . By (4.7) and (4.8) there exist sequences γk, θk0 →

φ(x(1)), αk1 , α
k
2 → x(1), λk ∈ NF (l(γk), θk0 ) with ‖λk‖ → 1, α∗k

2 ∈ NF (E,αk2),

α∗k ∈ DF 〈λk, φ〉(αk1) + α∗k
2 + (1/k)BRn ,(4.14)

(uk, vk) → (x, ẋ) in L2([0, 1], Rn) × L2([0, 1], Rn), (qk, pk) ∈ NF (C, (uk, vk)), and
u∗k ∈ L2([0, 1], Rn) such that∥∥∥∥(u∗k,−α∗k −

∫ 1

·
u∗k(s)ds

)
− (qk, pk)

∥∥∥∥ < 1/k.(4.15)

We consider the limiting processes for the following two cases.
The Good Case: ‖α∗k

2 ‖ is bounded. Passing to a subsequence, we may assume
that α∗k

2 converges to α∗
2 ∈ N(E, x(1)). Since φ is Lipschitzian and ‖λk‖ → 1, taking

subsequences if necessary, we may assume that α∗k converges to

α∗ ∈ ∂〈λ, φ〉(x(1)) +N(E, x(1)),

where λ ∈ N(l(φ(x(1))), φ(x(1))) and ‖λ‖ = 1 by (A3).
By Lemma 4.2, (qk, pk) ∈ NF (C, (uk, vk)) implies that

(−qk(t), vk(t)) ∈ ∂CH(uk(t), pk(t)) a.e. in [0, 1].(4.16)
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Since F is Lipschitz of rank LF , H(u, p) is Lipschitz with respect to u of rank LF ‖p‖.
It follows from (4.16) that

‖qk(t)‖ ≤ l‖pk(t)‖.(4.17)

Combining (4.15) and (4.17), we have

‖u∗k(t)‖ ≤ LF

(∫ 1

t

‖u∗k(s)‖ds+ ‖α∗k‖+ 2/k

)
.

Invoking Gronwall’s inequality, we may conclude that u∗k(t) is uniformly bounded
on [0, 1], and, therefore, u∗k is a bounded sequence in L2([0, 1], Rn). Again, taking
a subsequence if necessary, we may assume that u∗k converges weakly to, say, q, in
L2([0, 1], Rn). Then, by (4.15), qk weakly converges to q and pk strongly converges to

p = −α∗ − ∫ 1

· q(s)ds in L2([0, 1], Rn). Taking limits in (4.16) as k →∞ yields

(−ṗ(t), ẋ(t)) ∈ ∂CH(x(t), p(t)) a.e. in [0, 1].

It is obvious that −p(1) = α∗ ∈ ∂〈λ, φ〉(x(1)) + N(E, x(1)). Thus, we derived the
necessary condition in Theorem 3.2 corresponding to the case when λ0 = 1.

The Bad Case: ‖α∗k
2 ‖ is unbounded. Without loss of generality, we may assume

that ‖α∗k
2 ‖ → ∞. Dividing sequences α∗k, α∗k

2 , u∗k, qk, and pk by ‖α∗k
2 ‖ and taking

limits as before yield that there exists an absolutely continuous function p satisfying

(−ṗ(t), ẋ(t)) ∈ ∂CH(x(t), p(t)) a.e. in [0, 1]

with −p(1) = α∗ = limk→∞ α∗k/‖α∗k
2 ‖ = limk→∞ α∗k

2 /‖α∗k
2 ‖ ∈ N(E, x(1)). Observ-

ing that ‖α∗‖ = 1, we have ‖p(t)‖ > 0 for all t ∈ [0, 1]. This corresponds to the
necessary condition in Theorem 3.2 when λ0 = 0.

Finally, we observe that if x(1) ∈ int E, then when k is sufficiently large α∗k
2 = 0,

so that the good case always applies.
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Abstract. A new approach to error control and mesh adaptivity is described for the discretiza-
tion of optimal control problems governed by elliptic partial differential equations. The Lagrangian
formalism yields the first-order necessary optimality condition in form of an indefinite boundary
value problem which is approximated by an adaptive Galerkin finite element method. The mesh
design in the resulting reduced models is controlled by residual-based a posteriori error estimates.
These are derived by duality arguments employing the cost functional of the optimization problem
for controlling the discretization error. In this case, the computed state and costate variables can be
used as sensitivity factors multiplying the local cell-residuals in the error estimators. This results in
a generic and simple algorithm for mesh adaptation within the optimization process. This method
is developed and tested for simple boundary control problems in semiconductor models.
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tation, model reduction
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1. Introduction. In this article, we develop an adaptive Galerkin finite element
method for optimal control problems governed by elliptic partial differential equations.
The main goal is the derivation of a posteriori error estimates as basis for guiding the
mesh adaptation and for controlling the error in this model reduction. The problems
considered have the form

J(u, q) → min!, A(u) = f +B(q),(1.1)

where A is an elliptic differential operator for the state variable u , B an impact
operator for the control variable q , and J is a cost functional. As prototypical
examples, we will consider problems of boundary control in semiconductor models.
Our approach utilizes the classical Lagrangian framework for reformulating the op-
timal control problem (1.1) as a boundary value problem for stationary points of
the associated first-order necessary optimality condition. Introducing the Lagrangian
functional

L(u, λ, q) := J(u, q) + 〈λ,A(u, q)−B(q)− f〉,(1.2)

with the costate variable λ (Lagrangian multiplier), the solutions of (1.1) are among
the stationary points of L , determined by the system of equations

∇L(u, λ, q) = 0.(1.3)
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We use a standard finite element method for discretizing this saddle-point problem
which results in finite dimensional problems

∇L(uh, λh, qh) = 0,(1.4)

for the “discrete” states uh , controls qh , and costates λh . As long as the dis-
cretization procedure uses a pure Galerkin approach the discrete problem actually
corresponds to a formulation of the original minimization problem on the discrete
state space. Since discretization in partial differential equations is expensive, at least
for praxis-relevant models, the question of how this “model reduction” affects the
quality of the optimization result is crucial for a cost-efficient computation. The need
for a posteriori error control is therefore evident.

The discretization of the state equation generally leads to approximate solutions
{uh, qh} which are not admissible in the strict sense for the original constrained min-
imization problem. Let S denote the solution operator which associates the state
variable u = u(q) to a given control function. The optimal control minimizes the
functional j(q) := J(S(q), q) for all controls. Then, discretization of the state equa-
tion also changes the functional. Denoting by Sh the discrete solution operator, the
discrete optimal control qh solves

jh(qh) := J(Sh(qh), qh) → min!.(1.5)

If we want to perform numerical computation with controlled accuracy, we have to
substitute the notion of an “admissible solution” by an error estimate for the state
equation. Of course, the distance between the numerical and the exact solution should
be measured with respect to the specific needs of the optimization problem, i.e.,
its effect on the functional to be minimized. This asks for a sensitivity analysis
for the optimization problem with respect to perturbations in the state equation,
particularly perturbations resulting from discretization. In this sense, our a posteriori
error estimation aims to control the error due to replacing the infinite dimensional
problem (1.1) by its finite dimensional analogue. The crucial question is now which
quality measure is appropriate for controlling the discretization error. In general,
forcing this error to be small uniformly in the whole computational domain, as is often
required in ODE models, is not feasible for partial differential equations. Therefore,
we need to develop control of the discretization error in accordance with the sensitivity
properties of the optimization problem.

Our approach to this problem uses the general method developed in [3] and [4]
for error control in the Galerkin finite element discretization of differential equations
of the general form A(u) = f . Employing the linearized dual problem

A′(uh)∗z = F (·)(1.6)

for an arbitrary output functional F , an a posteriori error estimate

|F (u)− F (uh)| ≤ ηω(uh) :=
∑
T∈Th

ρT (uh)ωT (z)(1.7)

can be derived. On a computational mesh Th = {T} consisting of cells T , the local
consistency errors, expressed in terms of residuals ρT (uh) , are multiplied by weights
ωT (z) involving the “dual solution” z . These weights describe the dependence of the
error on variations of the local residuals, i.e., on the local mesh size. In general the
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estimate (1.7) has to be approximated by numerically solving the dual problem (1.6).
This results in a feedback process for generating successively more and more accurate
error bounds and solution-adapted meshes. In applying this approach to saddle-point
problems arising from optimal control problems, it seems natural to base the error
control on the given cost functional, i.e., to choose F := J . In this particular case the
corresponding approximate dual solution can be expressed in terms of the computed
solution {uh, λh, qh} . Hence, the evaluation of the corresponding a posteriori error
estimate

|J(u, q)− J(uh, qh)| ≤ ηω(uh, λh, qh)(1.8)

does not require much extra work and a posteriori error estimation is almost for free.
This leads to a generic and simple strategy for mesh adaptation in discretizing optimal
control problems.

It may be seen as a drawback that in this approach the accuracy in the dis-
cretization of the state equation is only controlled with respect to its effect on the
cost functional. This can lead to discrete models which approximate the original op-
timization problem with minimal cost but the obtained discrete states and controls
are “admissible” only in a very weak sense, possibly insufficient for the particular
application. If satisfaction of the state equation is desired in a stronger sense, we can
combine our method with traditional “energy-error control” leading to an a posteriori
error estimate of the form

|J(u, q)− J(uh, qh)|+ β ‖A(uh)− f −B(qh)‖∗ ≤ ηω,E(uh, λh, qh),(1.9)

where ‖ · ‖∗ denotes the dual of the natural “energy norm” corresponding to the
operator A′(u) , and β is a tuning factor. For a discussion of adaptive finite ele-
ment methods using residual-based a posteriori error estimates, we refer to the survey
papers [1], [14], [8], and [12].

First, we develop our approach within a general setting in order to abstract from
inessential technicalities. Then, all steps are made concrete for a linear model problem
of boundary control. Despite its simplicity this problem represents the main structure
of optimal control and is chosen in order to clarify the idea underlying the proposed
procedure. Some numerical results illustrate the main features of the adaptive al-
gorithm particularly in comparison to more conventional methods based on global
error control for the state equation. At the end, we extend our method to problems
with nonlinear state equations with an example of boundary control in semiconductor
models.

2. A linear model situation. We consider an abstract setting for optimal
control: Let Q , V , and H be Hilbert spaces for the control variable q ∈ Q , the
state variable u ∈ V , and given observations c0 ∈ H . The inner product and norm
of H are (·, ·) and ‖ · ‖, respectively. The state equation is given in the form

a(u, ϕ) = (f, ϕ) + b(q, ϕ) ∀ϕ ∈ V,(2.1)

where the bilinear form a(·, ·) represents a linear elliptic operator and the bilinear
form b(·, ·) expresses the action of the control. The goal is to minimize the cost
functional

J(u, q) = 1
2‖cu− c0‖2 + 1

2n(q, q),(2.2)
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where c : V → H is a linear bounded observation operator. For simplicity, we assume
that a(·, ·) and n(·, ·) induce norms on the spaces V and Q denoted by ‖ · ‖a and
‖ · ‖n , respectively. This guarantees the existence of a unique solution of the optimal
control problem and the classical regularity theory for elliptic equations applies (see,
e.g., [11]).

Introducing a Lagrangian parameter λ ∈ V and the Lagrangian function L(u, q, λ) ,
L(u, q, λ) := J(u, q) + a(u, λ)− b(q, λ)− (f, λ),

the first-order necessary conditions (Euler–Lagrange equations) of the optimization
problem,

∇L(u, q, λ)(v, µ, r) = 0 ∀{v, µ, r} ∈ V × V ×Q(2.3)

have the explicit form

a(v, λ) + (cu− c0, cv) = 0 ∀v ∈ V,

a(u, µ)− b(q, µ) = (f, µ) ∀µ ∈ V,(2.4)

−b(r, λ) + n(q, r) = 0 ∀r ∈ Q.

This system has the usual saddle-point structure

(cu, cv) + a(v, λ) = (c0, cv) ∀v ∈ V,

a(u, µ)− b(q, µ) = (f, µ) ∀µ ∈ V,(2.5)

−b(r, λ) + n(q, r) = 0 ∀r ∈ Q.

Introducing operators A, B, C, N which represent the corresponding bilinear forms,
system (2.5) can also be written in matrix form asC AT 0

A 0 −B
0 −BT N

uλ
q

 =

c0f
0

 .(2.6)

Below, we will consider the following realization of the foregoing abstract setting
which represents the case of an elliptic linear state equation subjected to boundary
control. Let Ω ⊂ R

2 be an open bounded domain with Lipschitz boundary ∂Ω
which is decomposed into a homogeneous Neumann part ΓN and a control part ΓC
on which the control acts ( ∂Ω = ΓC ∪ ΓN ),

−∆u+ u = f in Ω,(2.7)

∂nu = 0 on ΓN , ∂nu = q on ΓC .

The observations are given on a part ΓO of the boundary and the associated cost
functional is

J(u, q) = 1
2‖u− c0‖2ΓO + α

2 ‖q‖2ΓC(2.8)

with a regularization parameter α > 0. In this case the natural choice for the function
spaces is V = H1(Ω) , the first-order Sobolev Hilbert-space over Ω , and H = L2(ΓO),
Q = L2(ΓC), the usual Lebesgue Hilbert-spaces over ΓC and ΓO , respectively. The
bilinear forms a(·, ·) , b(·, ·) and n(·, ·) are given by

a(u, v) = (∇u,∇v)Ω + (u, v)Ω, b(q, v) = (q, v)ΓC , n(q, r) = α(q, r)ΓC ,
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where (·, ·)Σ denotes the L2-inner product on the set Σ. The operator c in the cost
functional is the trace operator, cu = u|ΓO . Then, the necessary optimality condition
∇L(u, λ, q) = 0 reads as follows:

(u, v)ΓO − (c0, v)ΓO + (∇v,∇λ)Ω + (v, λ)Ω = 0 ∀v ∈ V,

(∇u,∇µ)Ω + (u, µ)Ω − (f, µ)Ω − (q, µ)ΓC = 0 ∀µ ∈ V,(2.9)

α(q, r)ΓC − (λ, r)ΓC = 0 ∀r ∈ Q.

3. A priori error estimate. For simplicity of notation, we introduce the prod-
uct space X = V ×V ×Q , with elements of the form x = {u, λ, q} , which is equipped
with the natural norm

‖x‖X :=
(‖u‖2a + ‖λ‖2a + ‖q‖2n

)1/2
.

Furthermore, we define a bilinear form A(·, ·) on X by

A(x, y) = A({u, λ, q}, {v, µ, r}) := (cu, cµ) + a(u, v)− b(q, v) + a(µ, λ)− b(r, λ) + n(q, r).

Using this notation, system (2.5) can be written in compact form as

A(x, y) = F (y) ∀y ∈ X,(3.1)

with the linear functional F (·) defined by

F (y) = F ({v, µ, r}) := (c0, cµ) + (f, v).

In order to simplify the analysis, we impose the following conditions:

|A(x, y)| ≤ cA‖x‖X‖y‖X ,(3.2)

|b(r, v)| ≤ cb‖r‖n‖v‖a.(3.3)

The second condition, which relies on the presence of the regularization term n(·, ·)
(requiring that α > 0 in the above example), is rather strong. It can be substituted by
an “inf-sup” condition for b(·, ·) under which the regularization could be omitted; see
Remark 3.1, below. The bilinear form A(·, ·) satisfies the following stability condition.

Proposition 3.1. Under the assumptions (3.2) and (3.3), there exists a constant
γ > 0 such that

inf
x∈X

{
sup
y∈X

A(x, y)

‖x‖X‖y‖X

}
≥ γ.(3.4)

Proof. For any fixed x = {u, λ, q} , we choose the test triple y = {v, µ, r} :=
{u, λ, q} to obtain

A(x, y) = ‖cu‖2 + ‖u‖2a + ‖λ‖2a + ‖q‖2n − b(q, λ)− b(q, u)

≥ ‖cu‖2 + ‖u‖2a + ‖λ‖2a + ‖q‖2n − 1
4‖q‖2n − 3

4‖λ‖2a − 1
4‖q‖2n − 3

4‖u‖2a
≥ ‖cu‖2 + 1

4‖u‖2a + 1
4‖λ‖2a + 1

2‖q‖2n.

We conclude the asserted estimate by noting that ‖y‖ = ‖x‖.
We consider the discretization of the variational equation (3.1) by a standard

Galerkin method using trial spaces Xh := Vh×Vh×Qh ⊂ X . For each x ∈ X , there
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shall exist an interpolation ihx ∈ Xh , such that ‖x − ihx‖X → 0 (h → 0) . Then,
approximations xh ∈ Xh are determined by

A(xh, yh) = F (yh) ∀yh ∈ Xh.(3.5)

This discretization is automatically stable since a discrete analogue of (3.4) is fulfilled
by the same argument as used above,

inf
xh∈Xh

{
sup
yh∈Xh

A(xh, yh)

‖xh‖X‖yh‖X

}
≥ γ > 0.(3.6)

Combining (3.5) and (3.1), we get the Galerkin orthogonality

A(x− xh, yh) = 0, yh ∈ Xh.(3.7)

This leads us to the following abstract a priori error estimate.
Proposition 3.2. For the Galerkin approximation in Xh ⊂ X, there holds

‖u− uh‖a+‖λ− λh‖a + ‖q − qh‖n(3.8)

≤ c
{

inf
µh∈Vh

‖u− µh‖a + inf
vh∈Vh

‖λ− vh‖a + inf
rh∈Qh

‖q − rh‖n
}
.

Proof. The stability estimate (3.6) implies that

γ‖ihx− xh‖ ≤ sup
yh∈Xh

A(ihx− xh, yh)

‖yh‖X = sup
yh∈Xh

A(ihx− x, yh)

‖yh‖X ≤ cA‖ihx− x‖X .

Here, we have used the Galerkin relation (3.7) and the continuity estimate (3.2).
Remark 3.1. Of course, more precise error estimates could be given exploiting

the structure of the underlying problem. For instance, it may be possible to equip
the space Q with a different norm than the one induced by n(·, ·) , in order to get
robustness with respect to the regularization. This requires us to replace (3.3) by the
following weaker inf-sup condition

inf
q∈Q

{
sup
v∈V

b(q, v)

‖v‖a

}
≥ κ > 0.

We note that for the model example with boundary control and boundary observations
given above the conditions (3.2) and (3.3) are satisfied.

4. A posteriori error estimate. In this section, we derive an a posteriori error
estimate for the model control problem. As discussed above, the error estimator to
be derived should control the value of the cost functional. First, we carry out the
analysis in the abstract functional analytic setting. Recalling the definition of the
Lagrange functional L ,

L(x) = L(u, λ, q) = J(u, q) + a(u, λ)− (f, λ)− b(q, λ),

the continuous and discrete optimal control solutions x = {u, λ, q} ∈ X and xh =
{uh, λh, qh} ∈ Xh satisfy

∇L(x)(ϕ) = 0, ϕ ∈ X, ∇L(xh)(ϕh) = 0, ϕh ∈ Xh.(4.1)
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This implies the Galerkin orthogonality relation

∇2L(x− xh, ϕh) = 0, ϕh ∈ Xh,(4.2)

for which it is essential that L is quadratic. Since the solutions u and uh satisfy
the corresponding state equations, the cost functional and the Lagrangian functional
are related by

J(u, q)− J(uh, qh) = L(x)− L(xh).(4.3)

Further, there holds

L(x)− L(xh) = ∇L(x)(x− xh)− 1
2∇2L(x− xh, x− xh).(4.4)

The first term on the right-hand side vanishes since x is a stationary point of L. Using
the Galerkin orthogonality relation (4.2) in the second term, we obtain for arbitrary
ϕh ∈ Xh that

∇2L(x− xh, x− xh) = ∇2L(x− xh, x− xh − ϕh) = −∇L(xh)(x− xh − ϕh).(4.5)

Therefore, choosing ϕh = ihx− xh , we get the following error representation.
Proposition 4.1. For the abstract model problem with linear state equation and

quadratic cost functional, the following error identity holds:

J(u, q)− J(uh, qh) = 1
2∇L(xh)(x− ihx).(4.6)

In order to convert the abstract error identity (4.6) into a form which can be
evaluated, we need to be more specific about the setting of the underlying problem
and its discretization. As an example, we demonstrate this for the linear Neumann
control problem described by (2.7) and (2.8). Here, the Galerkin finite element dis-
cretization of the saddle-point problem (2.9) uses subspaces Vh ⊂ V = H1(Ω) and
Qh ⊂ Q = L2(ΓC) of piecewise polynomial functions defined on regular decompo-
sitions Th = {T} of the domain Ω into cells T (triangles or quadrilaterals); for a
detailed description of such a setting see, e.g., Brenner and Scott [5]. Here, we use
quadrilateral meshes where on each cell T the local shape functions are constructed
by mapping bilinear functions defined on a reference square to the cell T . This ansatz
is referred to as the “isoparametric” bilinear finite element. We assume that the space
Qh of discrete controls is given by the traces along ΓC of the finite element functions
of Vh . This is not necessary for our results but simplifies the notation. In order to
avoid the technicalities caused by curved boundaries, we suppose the domain Ω to
be polygonal. We use the notation hT := diam(T ) and hΓ := diam(Γ) for the width
of a cell T ∈ Th and a corresponding cell edge Γ ⊂ ∂T . In order to ease local mesh
refinement and coarsening, “hanging nodes” are allowed, but at most one per cell
edge; see Figure 4.1. The degree of freedom at such a hanging node is eliminated by
interpolation in order to keep the discretization “conforming” (see, e.g., [6] and [3]).

First, we turn (4.6) into a residual based a posteriori estimate as follows.
Proposition 4.2. For error control with respect to the cost functional J , there

holds the weighted a posteriori error estimate

|J(u, q)− J(uh, qh)| ≤ ηω(uh, λh, qh) =
∑
T∈Th

ηT (uh, λh, qh),(4.7)
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K

Fig. 4.1. Quadrilateral mesh patch with a “hanging node.”

with the local error indicators

ηT (uh, λh, qh) := ρ
(u)
T ω

(λ)
T + ρ

(u)
∂T ω

(λ)
∂T + ρ

(λ)
T ω

(u)
T + ρ

(λ)
∂T ω

(u)
∂T + ρ

(q)
∂T ω

(q)
∂T

and the cellwise residuals and weights

ρ
(u)
T := ‖R(u)

h ‖T , ω
(λ)
T := ‖λ− ihλ‖T ,

ρ
(u)
∂T := ‖r(u)

h ‖∂T , ω
(λ)
∂T := ‖λ− ihλ‖∂T ,

ρ
(λ)
T := ‖R(λ)

h ‖T , ω
(u)
T := ‖u− ihu‖T ,

ρ
(λ)
∂T := ‖r(λ)

h ‖∂T , ω
(u)
∂T := ‖u− ihu‖∂T ,

ρ
(q)
∂T := ‖r(q)

h ‖∂T∩ΓC , ω
(q)
∂T := ‖q − jhq‖∂T∩ΓC .

The “cell residuals” R
(u)
h , R

(λ)
h and the “edge residuals” r

(u)
h , r

(λ)
h , r

(q)
h are on cells

T and cell edges Γ defined by

R
(u)
h|T := −∆uh + uh − f, R

(λ)
h|T := −∆λh + λh, r

(q)
h|Γ := αqh − λh if Γ ⊂ ΓC ,

r
(u)
h|Γ :=


1
2h

−1/2
Γ [∂nϕh] if Γ⊂∂T \ ∂Ω,

h
−1/2
Γ ∂nuh if Γ⊂∂Ω\ΓC ,

h
−1/2
Γ (∂nuh − qh) if Γ⊂ΓC ,

r
(λ)
h|Γ :=


1
2h

−1/2
Γ [∂nϕh] if Γ⊂∂T \ ∂Ω,

h
−1/2
Γ ∂nλh if Γ⊂∂Ω\ΓO,

h
−1/2
Γ (c0 − uh + ∂nλh) if Γ⊂ΓO.

Here, [∂nϕh] denotes the jump of the normal derivative of ϕh across the interelement
edges Γ, the boundary components ΓC , ΓO are the control and observation bound-
ary, respectively, and ih, jh denote some local interpolation operators into the finite
element spaces.

Proof. From the abstract error identity (4.6), we obtain that

J(u, q)− J(uh, qh) = 1
2∇L(xh)(x− ihx)

= 1
2 (c0 − uh, u− ihu)ΓO + 1

2a(u− ihu, λh)

+ 1
2a(uh, λ− ihλ)− 1

2 (f, λ− ihλ)− 1
2b(qh, λ− ihλ)

+ 1
2n(qh, q − jhq)− 1

2b(q − jhq, λh)

=: Iλ + Iu + Iq.

Recalling the definition of the bilinear forms and integrating cellwise by parts, the
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first term Iλ is rewritten as follows:

2Iλ = (c0 − uh, u− ihu)ΓO + a(u− ihu, λh)

= (c0 − uh, u− ihu)ΓO + (∇(u− ihu),∇λh) + (u− ihu, λh)

= (c0 − uh + ∂nλh, u− ihu)ΓO + (u− ihu, ∂nλh)∂Ω\ΓO

+
∑
T∈Th

{
(u− ihu,−∆λh + λh)T + (u− ihu, ∂nλ)∂T\∂Ω

}
= (c0 − uh + ∂nλh, u− ihu)ΓO + (u− ihu, ∂nλh)∂Ω\ΓO

+
∑
T∈Th

{
(u− ihu,−∆λh + λh)T + 1

2 (u− ihu, [∂nλ])∂T\∂Ω

}
.

Hence using the definition of the residuals r
(λ)
h and R

(λ)
h , we find

2Iλ = (u− ihu, r
(λ)
h )∂Ω +

∑
T∈Th

{
(u− ihu,R

(λ)
h )T + (u− ihu, r

(λ)
h )∂T\∂Ω

}
=
∑
T∈Th

{
(u− ihu,R

(λ)
h )T + (u− ihu, r

(λ)
h )∂T

}
,

and, consequently by the Cauchy–Schwarz inequality,

2|Iλ| ≤
∑
T∈Th

{
‖u− ihu‖T ‖R(λ)

h ‖T + ‖u− ihu‖∂T ‖r(λ)
h ‖∂T

}
.

In the same way, we get for the other terms Iλ and Iq :

2Iu = a(uh, λ− ihλ)− (f, λ− ihλ)− b(qh, λ− ihλ)

= (∇uh,∇(λ− ihλ)) + (uh, λ− ihλ)− (f, λ− ihλ)− (qh, λ− ihλ)ΓC

=
∑
T∈Th

{
(−∆uh + uh − f, λ− ihλ)T + 1

2 ([∂nuh], λ− ihλ)∂T\∂Ω

}
+ (∂nuh, λ− ihλ)∂Ω\ΓC + (∂nuh − qh, λ− ihλ)ΓC

=
∑
T∈Th

{
(R

(u)
h , λ− ihλ)T + (r

(u)
h , λ− ihλ)∂T\∂Ω

}
+ (r

(u)
h , λ− ihλ)∂Ω\ΓC + (r

(u)
h , λ− ihλ)ΓC

=
∑
T∈Th

{
(R

(u)
h , λ− ihλ)T + (r

(u)
h , λ− ihλ)∂T

}
,

2Iq = n(qh, q − jhq)− b(q − jhq, λh) = (αqh − λh, q − jhq)ΓC

=
∑

Γ⊂ΓC

(r
(q)
h , q − jhq)Γ,

and, consequently,

2|Iu| ≤
∑
T∈Th

{
‖R(u)

h ‖T ‖λ− ihλ‖T + ‖r(u)
h ‖∂T ‖λ− ihλ‖‖∂T

}
,

2|Iq| ≤
∑

Γ⊂ΓC

‖r(q)
h ‖Γ ‖q − jhq‖Γ .
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Collecting these estimates implies the asserted result.
Remark 4.1. We note that in the a posteriori error estimate (4.7), the residual

of the state equation is weighted by terms involving the adjoint variable λ from the
original equation (2.5). This has a natural interpretation as it is well known from
sensitivity analysis that the adjoint variable is a measure for the influence of pertur-
bations on the cost functional. Since discretization can be interpreted as a special kind
of perturbation, the appearance of λ in the estimator is not surprising. The special
form of the weights involving the interpolation ihz is a characteristic feature of the
Galerkin discretization.

Remark 4.2. The a posteriori error estimate (4.7) is easier to understand if one
recalls the model situation of approximating the boundary value problem

−∆u = f in Ω, u = 0 on ∂Ω,

by a Galerkin finite element method. The natural variational formulation of this
problem is equivalent to an unconstraint optimization problem, namely, the minimiza-
tion of the “energy functional” J(u) := 1

2‖∇u‖2Ω − (f, u)Ω over the solution space
V := H1

0 (Ω) . In this context, in view of the identity

J(u)− J(uh) = − 1
2‖∇e‖2Ω,

error control with respect to the energy functional is equivalent to control of the error
in the energy norm, ‖∇e‖Ω . It is well known that the latter can be achieved without
referring to an additional dual problem since in this case the corresponding dual solu-
tion coincides with the error e itself; see [3] for a discussion of energy-error control
in the context of “duality techniques.”

Evaluation of error estimators. The a posteriori error estimate (4.7) still
involves the continuous solutions {u, λ, q} . As proposed in [4], we use the computed

solutions {uh, λh, qh} for approximating the weights ω
(·)
∂T and ω

(·)
T . To this end, we

recall the well-known local approximation properties of finite elements, e.g.,

‖u− ihu‖T + h
1/2
Γ ‖u− ihu‖Γ ≤ cIhT ‖∇2u‖T ,(4.8)

where Γ ⊂ ∂T , and ih is the generic operator of cellwise nodal interpolation into
Vh , with interpolation constant usually in the range cI ∼ 0.1−1; for details of the
interpolation theory for finite elements, we refer to [5]. Analogous estimates hold for
the terms involving q and λ . Then, the derivatives are approximated by suitable
difference quotients, e.g.,

‖∇2u‖T ≈ ‖∇2
huh‖T .(4.9)

For a more detailed discussion of this evaluation of weights and some of its alternatives,
we refer to [4]. We emphasize that the proposed procedure for evaluating the a
posteriori error estimate (4.7) uses only information in terms of the already computed
solution {uh, λh, qh}.

Error control for the state variable. The estimate (4.7) provides control of
the error with respect to the cost functional which is the quantity of primary interest
in the optimization problem. But this does not include control of the error in the

state equation. Though the corresponding residuals ρ
(u)
T and ρ

(u)
∂T are present in the

error estimator, they are weighted according to their effect on the cost functional. In
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case that the discrete state uh is required to be admissible in a stronger sense, the
error estimate (4.7) can be extended to also include control of the error in satisfying
the state equation measured in the natural energy norm

‖u‖E :=
(‖u‖2 + ‖∇u‖2)1/2.

The standard a posteriori error analysis for the boundary value problem

−∆u+ u = f in ΓC , ∂nu = 0 on ΓN , ∂nu = q on ΓC ,(4.10)

for frozen control q, yields the following bound for the “energy error”:

‖u− uh‖2E ≤ ηE(uh) := c
∑
T∈Th

{
ρ
(u)2
T + ρ

(u)2
∂T

}
,(4.11)

with the residuals as defined in Proposition 4.2. For the derivation of this estimate see,
for example, [14], [4], and the literature cited therein. We see that all terms of ηE(uh)
appear also in ηω(uh, λh, qh), but are weighted in terms of the adjoint variable. The
effect of this modification will be illustrated below by a numerical test. In practice, we
may use a combination of our weighted error estimator and the energy-error estimator
ηω,E(uh, λh, qh) := ηω(uh, λh, qh) + βηE(uh) , with a suitable weighting factor β ≥ 0 .

Strategies for mesh adaptation. Several strategies are possible for mesh adap-
tation on the basis of a posteriori error estimators η as developed above. Usually, a
certain tolerance TOL for the error in the quantity J(u, q) and an upper bound for
the complexity of the discrete model, i.e. the maximum number of mesh cells Nmax,
are given. It is assumed that an “optimal” mesh-size distribution is achieved if the
local error indicators ηT are equilibrated over the mesh Th . This suggests use of the
“error-balancing strategy”; i.e., we cycle through the mesh and try to equilibrate the
local error indicators ηT according to ηT ≈ TOL/N . This process requires iteration
with respect to the number of mesh cells N and eventually results in η ≈ TOL .
However, this strategy may lead to very slow mesh refinement and is very delicate to
use. More robust is the “fixed-fraction strategy” in which we order the cells according
to the size of ηT and refine a certain threshold X% of cells with largest ηT (or those
cells which contribute to a certain percentage of the error estimator η ). A certain
fraction Y% of cells with small ηT may be coarsened. By this strategy, one can
achieve a prescribed rate of increase of N (or keep it constant as may be desirable in
nonstationary computations). In the test computations described below the second
version of the “Fixed-Fraction Strategy” has been used with threshold 30% .

5. Numerical results—linear case. We present a linear model problem as
described in (2.7), where Ω is a T-shaped domain with maximum side length one;
see Figure 5.1 (left). In this example the control acts along the lower boundary ΓC ,
whereas the observation is taken along the upper boundary ΓO. The cost functional
is chosen as

J(u, q) := 1
2‖u− c0‖2ΓO + α

2 ‖q‖2ΓC ,

with c0 ≡ 1.0 and α = 1.0. In this case, the regularization term α
2 ‖q‖2ΓC may be

viewed as part of the cost functional with its own physical meaning. We perform
computations on a series of locally refined meshes. On each mesh, the system of
the first-order necessary condition (2.5) is discretized by the Galerkin finite element
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Fig. 5.1. Configuration of the boundary control model problem on a T-domain (Ginzburg–
Landau model): configuration 1 (left), configuration 2 (right).

Table 5.1
Linear test (configuration 1): Efficiency of the weighted error estimator.

N 320 1376 4616 11816 23624 48716
Eh 1.0e− 3 3.5e− 4 3.2e− 5 1.6e− 5 6.4e− 6 2.8e− 6
Ieff 1.1 0.7 0.7 1.0 0.8 0.7

method described above. The resulting discrete saddle-point problems are solved
iteratively by a GMRES method with multigrid preconditioning. The adaptive mesh
refinement is based on an a posteriori error estimator. The weights in the error
estimator (4.7) are evaluated using the strategy indicated in (4.8) and (4.9), with an
interpolation constant set to CI = 0.1 . The mesh refinement uses the “fixed-fraction
strategy” described above.

Table 5.1 shows the quality of the error estimator (4.7) for quantitative error
control. The efficiency index is defined by Ieff := Eh/ηh , where Eh := |J(u, q) −
J(uh, qh)| is the error in the cost functional and ηh := η(uh, qh) the value of the error
estimator used. The reference value is obtained on a mesh with more than 200, 000
cells. We compare the weighted error estimator with a simple ad hoc approach based
on the standard energy-error estimator (4.11) for the state equation. Figure 5.2 shows
the computed “optimal” states over the meshes generated by the two different error
estimators.

The two meshes are quite different: The energy-error estimator overemphasizes
the steep gradients near the control boundary and it leaves the mesh too coarse along
the observation boundary. The more selective weighted error estimator concentrates
the mesh cells where they are needed for the optimization process. The quantitative
effects on the mesh efficiency of these two different refinement criteria is shown in
Figure 5.3 (Eh versus N in log/log-scale).

Finally, we check how well the approximation {uh, λh, qh} obtained by the weighted
error estimator (4.7) actually satisfies the state equation; for this the global energy-
error estimator (4.11) is taken as quality measure. Table 5.2 shows a comparison
of the two sequences of meshes generated by the weighted error estimator ηω =
ηω(uh, λh, qh) (“ω-meshes”) and the energy-error estimator ηE = ηE(uh) (“E-meshes”).
The first and second columns contain the values of ηω and ηE on ω-meshes, while
the third and fourth columns contain the values of ηω and ηE on E-meshes.
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Fig. 5.2. Linear test: Comparison of discrete solutions obtained by the weighted error estimator
(left,N ∼ 1600 cells) and the energy-error estimator (right,N ∼ 1700 cells).
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Fig. 5.3. Linear test (configuration 1): Comparison of the efficiency of the meshes generated
by the weighted error estimator (symbol ✷ ) and the energy-error estimator (symbol × ) in log / log
scale.

We see that the energy-norm error bound ηE for the state equation on the ω-
meshes is slightly larger than on the E-meshes. This is not surprising since the
ω-meshes are not so much refined in the regions where the state variable has a steep
gradient. The cells are rather concentrated along the control and observation bound-
aries which seems to be more effective for the optimization process. Indeed, the ap-
proximate solution {uh, λh, qh} obtained by the weighted error estimator ηω achieves
a much smaller value (factor ∼ 0.1 ) of the cost functional. However, for other data,
e.g., c0 = cos(2x) and α = 0.0001 , the discrepancy between the two kinds of meshes
with respect to the satisfaction of the state equation may be more significant. In
those cases it would be advisable to use the combined error estimator ηω,E described
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Table 5.2
Linear test (configuration 1): Values of the two error estimators ηω and ηE obtained on

“ω-meshes” and on “E-meshes.”

N ≈ ηω on ω-meshes ηE on ω-meshes ηω on E-meshes ηE on E-meshes
140 0.0040205 0.0193270 0.0043245 0.0162589
300 0.0022030 0.0157156 0.0026536 0.0112183
750 0.0008330 0.0092718 0.0020437 0.0074801

3700 0.0001660 0.0049598 0.0004870 0.0034197
11000 0.0000532 0.0026208 0.0002199 0.0019036
21000 0.0000317 0.0020740 0.0001189 0.0014285
28000 0.0000239 0.0016294 0.0001088 0.0012403
48000 0.0000108 0.0013373 0.0000722 0.0009399

145000 0.0000037 0.0006950 0.0000328 0.0005466

above, if stronger “admissibility” of the discrete state uh is required.

6. The nonlinear case. Now, we consider a nonlinear analogue of the abstract
linear model problem (2.1), (2.2),

a(u)(ϕ) = (f, ϕ) + b(q, ϕ) ∀ϕ ∈ V,(6.1)

where a(·)(·) is a semilinear form on the Hilbert space V . The cost functional J(·, ·)
is the same as in the linear case. The corresponding Lagrange functional

L(u, q, λ) := J(u, q) + a(u)(λ)− b(q, λ)− (f, λ),

leads to the first-order necessary optimality condition

a′(u)(v, λ) + (cu− c0, cv) = 0 ∀v ∈ V,

a(u)(µ)− b(q, µ) = (f, µ) ∀µ ∈ V,(6.2)

−b(r, λ) + n(q, r) = 0 ∀r ∈ Q,

where a′(u)(·, ·) denotes the tangent form of a(·)(·) at u . As in the linear case, the
discrete approximations {uh, λh, qh} are determined as solutions of the saddle-point
problem

a′(uh)(vh, λh) + (cuh − c0, cv) = 0 ∀vh ∈ Vh,

a(uh)(µh)− b(qh, µh) = (f, µh) ∀µh ∈ Vh,(6.3)

−b(rh, λh) + n(qh, rh) = 0 ∀rh ∈ Qh,

where the discretization is the same as in the linear case. We will use again the
notation x = {u, λ, q} and xh = {uh, λh, qh} for points in the spaces X := V ×V ×Q
and Xh := Vh × Vh ×Qh , respectively.

The a posteriori error estimation in the case of a nonlinear state equation follows
the same pattern as in the linear case. First, we state an abstract result.

Proposition 6.1. For the Galerkin finite element approximation (6.3) of the ab-
stract model problem (6.2) with nonlinear state equation and quadratic cost functional
there holds

J(u, q)− J(uh, qh) = 1
2∇L(xh)(x− ihx) +R(x, xh) ,(6.4)

where the remainder term R(x, xh) can be estimated by

|R(x, xh)| ≤ sup
x̂∈[xh,x]

|∇3L(x̂)(x− xh, x− xh, x− xh)|.(6.5)
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Proof. The Galerkin orthogonality relation now reads

∇2L(xxh)(x− xh, ϕh) = ∇L(x)(ϕh)−∇L(xh)(ϕh) = 0, ϕh ∈ Xh,(6.6)

with the abbreviating notation

L(xxh) :=

∫ 1

0

L(x+ t(xh − x)) dt.

Since the solutions u and uh satisfy the corresponding state equations, there holds
again

J(u, q)− J(uh, qh) = L(x)− L(xh).

By Taylor expansion, there holds

rclL(x)− L(xh) = ∇L(x)(x− xh)− 1
2∇2L(x)(x− xh, x− xh)

+ 1
6∇3L(x̃)(x− xh, x− xh, x− xh),

where x̃ lies between x and xh . Since x is a stationary point of L , the first term on
the right vanishes. In order to relate the second term to the Galerkin relation (6.6),
we use again Taylor expansion,

∇2L(x)(x− xh, x− xh) = ∇2L(xxh)(x− xh, x− xh) +∇3L(x̂)(x− xh, x− xh, x− xh),

where x̂ is another point between x and xh . In view of the identity

∇2L(xxh)(x− xh, ·) = ∇L(x)(·)−∇L(xh)(·) = −∇L(xh)(·),

and the Galerkin relation (6.6), we conclude that

L(x)− L(xh) = − 1
2∇2L(xxh)(x− xh, x− xh) +R(x, xh)

= − 1
2∇2L(xxh)(x− xh, x− xh − ϕh) +R(x, xh)

= 1
2∇L(xh)(x− xh − ϕh) +R(x, xh),

with an arbitrary ϕh ∈ Xh , and the remainder term

R(x, xh) = ∇3L(x̂)(x− xh, x− xh, x− xh) + 1
6∇3L(x̃)(x− xh, x− xh, x− xh).

Taking here ϕh = ihx− xh eventually results in

L(x)− L(xh) = 1
2∇L(xh)(x− ihx) +R(x, xh),

which completes the proof.
We note that if the cost functional J(·) is quadratic and the control form b(·, ·)

bilinear, then the only nonzero terms in ∇3L are

∂3L
∂λ∂2u

(x) = a′′(u)(·, ·, ·), ∂3L
∂3u

(x) = a′′′(u)(·, ·, ·, λ).

Further, if additionally the state equation is linear, then the remainder term R(x, xh)
vanishes.
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We will apply this abstract result for a nonlinear problem of optimal control in
the “Ginzburg–Landau model” of superconductivity in semiconductors; for references
see Du, Gunzburger, and Peterson [7], Itô and Kunish [10], and also Tinkham [13]. It
has the same structure as the linear model problem considered above,

−∆u+ s(u) = f in Ω,(6.7)

∂nu = 0 on ΓN , ∂nu = q on ΓC ,

with the nonlinearity s(u) := u3 − u , and the quadratic cost functional

J(u, q) = 1
2‖u− c0‖2ΓO + α

2 ‖q‖2ΓC .
The corresponding first-order necessary condition (6.2) uses the notation

a(u)(v) = (∇u,∇v)Ω + (s(u), v)Ω, b(q, v) = (q, v)ΓC , n(q, r) = α(q, r)ΓC ,

and is approximated by the scheme (6.3). The well-posedness of this optimization
problem, the existence of the adjoint variable λ, as well as a priori error estimates for
its discretization have been discussed by Gunzburger and Hou [9]. From Proposition
6.1, we conclude the following a posteriori result.

Proposition 6.2. For error control with respect to the cost functional J , there
holds the weighted a posteriori error estimate

|J(u, q)− J(uh, qh)| ≤ ηω(uh, λh, qh) +R({u, λ, q}, {uh, λh, qh}),(6.8)

where the local error indicators ηT (uh, λh, qh) in the linearized error estimator

ηω(uh, λh, qh) :=
∑
T∈Th

ηT (uh, λh, qh)(6.9)

are defined as in the linear case (Proposition 4.2), here with the “cell residuals”

R
(u)
h|T := −∆uh + s(uh)− f, R

(λ)
h|T := −∆λh + s′(uh)λh,

(6.10)
r
(q)
h|Γ := αqh − λh, if Γ ⊂ ΓC .

For the remainder term, there holds the a priori estimate

∣∣R({u, λ, q}, {uh, λh, qh})
∣∣ ≤ 6

∫
Ω

{
max{|u|, |uh|}|u− uh|3 + |u− uh|2|λ− λh|

}
dx.

(6.11)

As in the linear case, the weights are evaluated numerically using the approx-
imations {uh, λh, qh}, but now the weighted error estimator contains an additional
linearization error represented by the remainder R . Theory as well as practical ex-
perience show that, in the present case, this additional error is of higher order on
well-adapted meshes and can therefore be neglected. In fact, assuming sufficient
smoothness of the solution {u, λ, q} , there holds∣∣R({u, λ, q}, {uh, λh, qh})

∣∣ ≤ c(u, uh)h
6
max,(6.12)

with the maximum step size hmax of the mesh. The proof of this order-optimal
estimate employing techniques from L∞-error analysis of finite elements would be
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Fig. 7.1. Nonlinear test (configuration 2, α=0): Comparison of discrete solutions obtained by
the weighted error estimator (left,N ∼ 5000 cells) and the energy-error estimator (right,N ∼ 4800
cells).

Table 7.1
Nonlinear test (configuration 2, α=0): Efficiency of the weighted error estimator in the

case ΓC = ΓO .

N 596 1616 5084 8648 15512
Eh 2.56e-04 2.38e-04 8.22e-05 4.21e-05 3.99e-05
Ieff 0.34 0.81 0.46 0.29 0.43

rather lengthy and is therefore omitted. In view of this observation, we neglect the
remainder term in the a posteriori error estimate (6.8) and base the mesh adaptation
on its main part ηω(uh, λh, qh) .

The discrete problems (6.3) are solved by a quasi-Newton iteration which is de-
rived from a corresponding scheme formulated on the continuous level. On each
discrete level the Newton iteration is carried to the limit before the error estimator is
applied for mesh refinement. The results of this process may significantly differ from
those obtained if each Newton step is discretized separately, mixing iteration and dis-
cretization errors together; see the preceding publication [2] for the latter approach.

7. Numerical results—nonlinear case. We again compare the weighted er-
ror estimator with a simple ad hoc energy-error estimator of the form (4.11) using
the modified cell residuals (6.2). For illustrating our approach, we consider two dif-
ferent choices for the boundaries of control and observation shown in Figure 5.1 as
configuration 1 and configuration 2. The notation Ieff , Eh , and ηh is as defined
above.

(i) First test: First, we consider configuration 2 in which the same boundary
is taken for control and observation, ΓC = ΓO (lower boundary of the T-shaped
domain) and set α = 0 . In this configuration, we do not expect any need for strong
mesh refinement “far away” from this boundary if we only want to deal with the
optimization problem.

The observations are taken as c0(x) = sin(0.19x). Table 7.1 shows the quality
of the weighted error estimator for quantitative error control for this nonlinear test
case. The reference value for the objective function J(u, q) is computed on a refined
mesh with about 130, 000 cells. Due to the special choice ΓC = ΓO , the adjoint
variable λ equals zero almost everywhere away from ΓC , i.e., the weighted error
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Fig. 7.2. Nonlinear test (configuration 2, α=0): Comparison of efficiency of meshes generated
by the two estimators ηω (broken line) and ηE (solid line) in log /log scale.

Table 7.2
Nonlinear test (configuration 1, α= 0.1): Efficiency of the weighted error estimator for com-

puting a secondary stationary point.

N 512 15368 27800 57632 197408
Eh 9.29e-05 8.14e-07 4.86e-07 2.31e-07 4.58e-08
Ieff 1.32 0.56 0.35 0.42 0.32

Table 7.3
Nonlinear test (configuration 1, α=1): Efficiency of the weighted error estimator for computing

a secondary stationary point.

N 512 8120 25544 42608 126284
Eh 2.08e-03 4.35e-05 9.26e-06 5.95e-06 8.94e-07
Ieff 0.52 0.73 0.88 1.21 0.98

Fig. 7.3. Nonlinear test (configuration 1, α= 0.1): Distributions of local error indicators in
the weighted error estimator ηω (left) and the energy-error estimator ηE (right).

estimator pays attention only to the neighborhood of the control boundary. The
energy-error estimator mainly recognizes the singularities in the primal solution at
the two reentrant corners (see Figure 7.1).

In Figure 7.2, we compare the efficiency of the meshes generated by the two
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Fig. 7.4. Nonlinear test (configuration 1, α=0.1): Comparison of discrete solutions obtained
by the weighted error estimator ηω (left, N ∼ 3000 cells) and the energy-error estimator ηE (right,
N ∼ 3300 cells).

Fig. 7.5. Nonlinear test (configuration 1, α=0.1): Comparison of efficiency of meshes gener-
ated by the two error estimators: ηω (broken line) and ηE (solid line) in log /log scale.

estimators. We see that in this situation, the solution of the optimization problem
is approximated with significantly less cells using the weighted error estimator which
exploits the “extreme” feature ΓC = ΓO of this problem.

(ii) Second test: Now, we consider configuration 1 in which the control and the
observation are taken on opposite boundaries, ΓC ∩ ΓO = ∅ . In this case, we ex-
pect better results for the energy-error estimator than in configuration 1, because
the information must pass from the control to the observation boundary and the
corner singularities will have a stronger effect. Nevertheless, the weighted error esti-
mator should perform better since it also considers the critical control and observation
boundaries.

We take the observation as c0 ≡ 1 , as in the linear case, and set α = 0.1. In
this configuration, there exist several stationary points of L(u, q, λ), which can be
obtained by varying the starting values for the Newton iteration. One trivial solution
(actually the global minimum) is a constant equal to c0 , with q ≡ 0 . In this case,
we have J(u, q) = 0 (up to round-off error) and match the observations already
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on a very coarse mesh. We do not show the results of this computation. The two
other stationary points are symmetric to each other with respect to the center plane
{x = 0} . Tables 7.2 and 7.3 show the quality of the weighted error estimator for
quantitative error control for one of these local minima. The reference values for
J(u, q) are obtained on an adaptive mesh with about 550, 000 cells. The numerical
results demonstrate the correct qualitative behavior of the weighted error estimator.
For the choice α = 1 , we get slightly better results than for α = 0.1 because of
higher stability in the optimization problem.

Next, Figure 7.3 shows the distribution of the cell error indicators ηT in the
weighted error estimator ηω and in the energy-error estimator ηE for α = 0.1. We
clearly see the different ways in which these error estimators put their weight: ηω
observes the control and observation boundary which is critical for the optimization
process while ηE emphasizes the corner singularities. Figure 7.4 shows the resulting
meshes together with the computed discrete solutions. Finally, in Figure 7.5, we
see the faster convergence toward the minimum of the objective functional using the
weighted error estimator compared to the energy-error estimator.
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Abstract. It is well known that a crucial property for the effective identification of time-varying
systems is that the data carry continual information on the parameters to be estimated. As a matter
of fact, only in this case can the identification algorithm rely on fresh information in forming a
reliable estimate of the current value of these parameters. This concept has been formalized in the
system identification literature under the name of persistence of excitation.

In this paper, the persistence of excitation property is studied for a class of time-varying systems
(that includes the standard autoregressive model as a particular case) and conditions for it to hold
are derived.
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identification
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1. Introduction. In the last two decades, a considerable effort has been put
into the comprehension of identification methods for the estimation of time-varying
systems.

A huge stream of research has been devoted to situations that somehow reduce
to the problem of estimating constant unknown parameters. This is, for instance,
the case of the so-called random coefficient autoregressive models; see, e.g., Nicholls
and Quinn (1982), Chow (1983), and Beran and Hall (1992). These models are
characterized by parameters which are randomly fluctuating according to the law
ϑ(t) = ϑ̄ + δ(t), δ(t) being an independent sequence. In this framework the main
concern is the consistent estimation of the mean value ϑ̄. Another kind of time-
varying systems which has attracted interest in recent years are the so-called nearly
nonstationary autoregressive models. In this case, the time-varying parameters are
asymptotically convergent and the corresponding asymptotic invariant model exhibits
singularities on the unit circle. The limiting distribution of the estimation error when
the identification is performed via the standard least squares algorithm is studied,
e.g., in Cox and Llatas (1991); see also Cox (1991).

In the above literature, the fact that the estimated parameters are in fact constant
makes the estimation task simpler than in truly time-varying situations. As a matter
of fact, when the parameters are constant, the same unknowns are estimated through
time and it is expected that a consistent estimate can be formed under the sole
condition that data carry enough information in the long run. On the other hand,
when the goal is that of estimating truly time-varying parameters, one has to somehow
guarantee that a certain amount of information is available over any finite interval of
time. As a matter of fact, only in this way can the identification algorithm rely on
fresh information in forming a reliable estimate of the current value of the parameters.
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This idea is well known in the identification literature under the name of persistence
of excitation.

Letting ϕ(·) be the observation vector, a persistence of excitation condition which
has been widely used in the literature takes the form

pr

(
λmin

{
t+s−1∑
i=t

ϕ(i)ϕ(i)′

1 + ‖ϕ(i)‖2
}
≥ k1

∣∣∣∣∣ σt−1

)
≥ k2 ∀t,(1)

where λmin denotes the minimum eigenvalue and σt is the so-called σ-algebra of the
past, that is, the σ-algebra generated by all system processes up to time t. Roughly,
this condition requires that, whatever the past evolution of the system might have
been, the information carried by data over the next s time points spans the entire
parameter space with a finite nonzero probability.

Condition (1) was first introduced in Guo (1990) in a form that is slightly dif-
ferent from but equivalent to (1), and has henceforth been used in many different
contributions.

Under (1), Guo (1990) proves stability and convergence results for a Kalman
filter based algorithm used in the estimation of time-varying parameters generated
by a random-walk–type equation. In the paper of Bittanti and Campi (1994) it is
proven that a forgetting factor least squares identification algorithm provides bounded
estimates if condition (1) is met and the forgetting factor is chosen to be larger than a
certain threshold. Another contribution using the persistence of excitation condition
(1) is Campi (1994). There, an explicit expression for the asymptotic estimation
error is given for a forgetting factor based least squares algorithm. This bound shows
the dependence of the estimation error on the speed of the time variability of the
parameters and the variance of noise.

There are many more contributions on system identification where significant
properties are proven under conditions related to (1). Among others, we cite Bit-
tanti and Campi (1991a, 1991b); Guo, Ljung, and Priouret (1993); Guo and Ljung
(1995a, 1995b); and Campi (1997). An additional interesting paper is Ravikanth and
Meyn (1999), where a lower bound for the estimation error valid for any identification
algorithm is worked out.

In all of the above-mentioned contributions, condition (1) is taken for granted
or proven only in certain specific situations. In the present paper we address the
problem of verifying that such a condition is in fact satisfied for a class of time-
varying systems which includes, but is not limited to, autoregressive systems. In this
way, all the results proven in these contributions can in fact be applied to this class
of models.

The paper is organized as follows. In section 2 the system class is introduced.
The persistence of excitation condition is then discussed in section 3.

2. The system. Let us consider a time-varying state variable system described
by the equation

ϕ(t) = G(t)ϕ(t− 1) + v(t).(2)

In (2), ϕ(t) ∈ R
n is the so-called observation vector and it is a measurable signal,

and v(t) is a remote unmeasurable noise that plays the role of a latent variable in the
generation of ϕ(t). Throughout the paper, it is assumed that matrices G(t) form a
strictly stationary stochastic process.
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The transition matrix associated with G(t) is defined as

Φ(t, s) := G(s)G(s + 1) · · ·G(t).

A typical example of system (2) is a time-varying scalar autoregressive model of the
form

y(t) = a1(t)y(t− 1) + a2(t)y(t− 2) + · · ·+ an(t)y(t− n) + d(t).(3)

In this case, by letting

G(t) =


a1(t) a2(t) · · · an(t)

1

. . .

1

 , ϕ(t) =


y(t)

y(t− 1)

...

y(t− n + 1)

 , v(t) =


d(t)

0

...

0

 ,

system (2) is immediately recovered. Clearly, system (2) can accommodate many
other specific situations than the autoregressive system (3).

The following assumptions are made on system (2).
Assumption 1. v(·) is a zero-mean, bounded independently and identically dis-

tributed (i.i.d.) sequence, independent of G(·).
Assumption 2. ∃ρ: ρ−t‖Φ(t, 0)‖ ≤ α ∀t almost surely.
Clearly, Assumption 2 is an exponential stability condition. It is worthwhile

pointing out that there is a milder stability condition that could be considered.
Assumption 2′. ∃ρ: lim supt→∞ ρ−t‖Φ(t, 0)‖ = 0 almost surely.
Assumption 2′ is a stability assumption of stochastic type that requires ‖Φ(t, 0)‖

to go to zero exponentially fast with asymptotic deterministic rate ρ. On the other
hand, Assumption 2 imposes restrictions for any finite t. It is in fact a truly deter-
ministic stability assumption.

It is easy to see that Assumption 2′ is equivalent to

lim sup
t→∞

t−1 log ‖Φ(t, 0)‖ ≤ −γ < 0 almost surely.(4)

This last condition has been discussed (in a continuous-time setting) by Solo (1994).
Among other things, Solo provides conditions on the eigenvalues of the stochastic
matrix G(t) such that (4) holds true.

Finally, notice that, since G(·) is strictly stationary, Assumption 2 is equivalent
to

‖Φ(t, s)‖ ≤ αρt−s ∀t, s almost surely.

3. Main result: Persistence of excitation condition. In this section, the
persistence of excitation condition is discussed and necessary conditions for it to hold
are derived.

For subsequent use, we introduce the σ-algebra generated by the past of v(·) and
the past, present, and future of G(·):

ζt = σ(v(i), i ≤ t; G(·)).

Notice that ϕ(t) is measurable with respect to ζt.
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For the sake of clarity, we point out that the σ-algebra of the past in condition
(1) is given by

σt = σ(v(j), G(j), j ≤ t).

We start by proving the following proposition which is a law of large numbers of
conditional type for system (2).

Proposition 3.1. Under Assumptions 1 and 2,

E

 ∥∥∥∥∥∥ 1

k

t+k−1∑
i=t

(ϕ(i)ϕ(i)′ − E[ϕ(i)ϕ(i)′ | ζt])
∥∥∥∥∥

2
∣∣∣∣∣∣ ζt
 −→ 0 as k →∞,

uniformly with respect to both time t and probability outcome.
Proof. The following chain of inequalities holds true:

E

 ∥∥∥∥∥∥ 1

k

t+k−1∑
i=t

(ϕ(i)ϕ(i)′ − E[ϕ(i)ϕ(i)′ | ζt])
∥∥∥∥∥

2
∣∣∣∣∣∣ ζt


≤ 1

k2
n

∥∥∥∥∥∥E
t+k−1∑
i,j=t

(ϕ(i)ϕ(i)′ − E[ϕ(i)ϕ(i)′ | ζt])

× (ϕ(j)ϕ(j)′ − E[ϕ(j)ϕ(j)′ | ζt])
∣∣∣∣∣∣ ζt
∥∥∥∥∥∥

(since, for any stochastic matrix M ≥ 0 of dimension n, E[‖M‖] ≤ n‖E[M ]‖)

≤ 1

k2
n

t+k−1∑
i,j=t

‖E[(ϕ(i)ϕ(i)′ − E[ϕ(i)ϕ(i)′ | ζt])

× (ϕ(j)ϕ(j)′ − E[ϕ(j)ϕ(j)′ | ζt]) | ζt]‖

≤ 1

k2
2n

t+k−1∑
i,j=t
j≥i

‖E[(ϕ(i)ϕ(i)′ − E[ϕ(i)ϕ(i)′ | ζt])

× (E[ϕ(j)ϕ(j)′ | ζi]− E[ϕ(j)ϕ(j)′ | ζt]) | ζt]‖.
In this last expression, the norm of (ϕ(i)ϕ(i)′ − E[ϕ(i)ϕ(i)′ | ζt]) is deterministically
bounded in view of the boundedness of v(·) (Assumption 1) and the exponential
stability of the system (Assumption 2).

Therefore, to complete the proof it suffices to prove that the norm of (E[ϕ(j)ϕ(j)′ |
ζi]−E[ϕ(j)ϕ(j)′ | ζt]), j ≥ i ≥ t, is bounded by a deterministic function of j− i only,
which tends exponentially to zero as j − i→∞.

Set ϕ(r | s) := E[ϕ(r) | ζs], r ≥ s. Since v(·) is an independent sequence, we have

ϕ(r | s) =

s+1∑
k=−∞

Φ(r, k)v(k − 1).

Taking into account the exponential stability assumption (Assumption 2) and that
the noise v(·) is bounded (Assumption 1), this last expression shows that ‖ϕ(r | s)‖ is
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bounded by a deterministic function of r − s only, which tends exponentially to zero
as r − s → ∞. The term (E[ϕ(j)ϕ(j)′ | ζi] − E[ϕ(j)ϕ(j)′ | ζt]) can now be handled
as follows:

E[ϕ(j)ϕ(j)′ | ζi]− E[ϕ(j)ϕ(j)′ | ζt]
= E[(ϕ(j | i) + (ϕ(j)− ϕ(j | i)))(ϕ(j | i) + (ϕ(j)− ϕ(j | i)))′ | ζi]
− E[(ϕ(j | t) + (ϕ(j)− ϕ(j | t)))(ϕ(j | t) + (ϕ(j)− ϕ(j | t)))′ | ζt]

= ϕ(j | i)ϕ(j | i)′ − ϕ(j | t)ϕ(j | t)′ −
i+1∑

k=t+2

Φ(j, k)∆φ(j, k)′,

where ∆ := E[v(t)v(t)′]. The thesis follows by observing that the norm of each of
these three terms is bounded by a deterministic function of j − i only, which tends
exponentially to zero as j − i→∞.

Notice that, up to now, no conditions have been introduced guaranteeing that
vector ϕ(·) is somehow exciting (in fact, under Assumptions 1 and 2, v(·) and/or G(·)
may well be identically zero). We now introduce an extra condition (Assumption 3
below) which can be interpreted as an excitation condition. We anticipate that, in
view of Proposition 1, Assumption 3 immediately leads to concluding that ϕ(·) is
persistently exciting in the sense of definition (1) (see Theorem 1 below). The fact
that Assumption 3 holds true in many situations of interest (e.g., for the autoregressive
system (2)) is discussed immediately after the theorem.

Assumption 3. E[ϕ(i)ϕ(i)′ | ζt] ≥ H > 0 ∀i ≥ t + n̄, for some integer n̄.
Theorem 3.2. Under Assumptions 1–3, there exist an integer s and two pos-

itive real numbers k1 and k2 such that the persistence of excitation condition (1) is
satisfied.

Proof. Recalling that, for any pair of positive semidefinite matrices C and D,
λmin[C] ≥ λmin[D]− ‖C −D‖, one obtains

λmin

{
1

k

t+k−1∑
i=t

ϕ(i)ϕ(i)′
}
≥ λmin

{
1

k

t+k−1∑
i=t

E[ϕ(i)ϕ(i)′ | ζt]
}

−
∥∥∥∥∥1

k

t+k−1∑
i=t

(ϕ(i)ϕ(i)′ − E[ϕ(i)ϕ(i)′ | ζt])
∥∥∥∥∥ .

Take now conditional expectation of this last equation with respect to ζt. Thanks to
Assumption 3 and Proposition 1, it is then apparent that there exist an integer s and
a real number β such that

E

[
λmin

{
1

s

t+s−1∑
i=t

ϕ(i)ϕ(i)′
}∣∣∣∣∣ ζt

]
≥ β > 0 ∀t.

Then in view of the boundedness of ϕ(·) (Assumptions 1 and 2), we can conclude that
there exist two positive real numbers k1 and k2 such that

pr

(
λmin

{
t+s−1∑
i=t

ϕ(i)ϕ(i)′

1 + ‖ϕ(i)‖2
}
≥ k1 | ζt

)
≥ k2 ∀t.

Since the σ-algebra generated by v(j) and G(j), j ≤ t − 1, is coarser than ζt, the
thesis follows.
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Next, we show that Assumption 3 holds true in the case of the autoregressive
system (2). Take n̄ = n. Recalling that ϕ(r | s) = E[ϕ(r) | ζs], for any j ∈ [i−n, i−1]
one has

E[ϕ(i)ϕ(i)′ | ζt]
= E[E[(ϕ(i | j) + (ϕ(i)− ϕ(i | j)))(ϕ(i | j) + (ϕ(i)− ϕ(i | j)))′ | ζj ] | ζt]

(since j ≥ t)

≥ E[(ϕ(i)− ϕ(i | j))(ϕ(i)− ϕ(i | j))′ | ζt].

Since ϕ(i)− ϕ(i | j) =
∑i+1
k=j+2 Φ(i, k)v(k − 1), we have (σ2 := E[d(t)2])

• for j = i− 1,

E[ϕ(i)ϕ(i)′ | ζt] ≥ diag(σ2, 0, . . . , 0) =


σ2 0 0 . . . 0
0 0 0 . . . 0
0 0 0 . . . 0
...

...
...

...
0 0 0 . . . 0

 ;

• for j = i− 2,

E[ϕ(i)ϕ(i)′ | ζt] ≥ Φ(i, i) diag(σ2, 0, . . . , 0)φ(i, i)′

=


! ! 0 . . . 0
! σ2 0 . . . 0
0 0 0 . . . 0
...

...
...

...
0 0 0 . . . 0

 ;

(· · ·)
• for j = i− n,

E[ϕ(i)ϕ(i)′ | ζt] ≥ Φ(i, i− n + 2) diag(σ2, 0, . . . , 0)Φ(i, i− n + 2)′

=


! ! ! . . . !
! ! ! . . . !
! ! ! . . . !
...

...
...

...
! ! ! . . . σ2

 ,

where the !’s are random entries, whose value is bounded uniformly with respect
to time t and probability outcome. From the above relations, Assumption 3 easily
follows with n̄ = n.

It is interesting to note that Assumption 3 holds in many extra situations. As a
simple example, if G(·) is deterministic such that Assumption 2 holds, then Assump-
tion 3 is met provided that the very minimal condition E[ϕ(i)ϕ(i)′] > 0 is satisfied.

The analysis has been conducted so far under the stability assumption, Assump-
tion 2. It is, of course, of interest to investigate whether the persistence of excitation
condition (1) still holds under the weaker stability assumption, Assumption 2′. Un-
fortunately, this is not the case, as the following simple example shows.

Example. Suppose that ϕ(t) has two components and let G(t) = diag(g(t), 0).
g(·) is an i.i.d. sequence such that g(t) = 2 with probability 0.5 and g(t) = 0.25 with
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probability 0.5. Finally, v(t) = [v1(t)v2(t)]′, where v1(·) and v2(·) are i.i.d. sequences
independent of each other and of g(·) and take on values −1 and +1 with probability
0.5.

Assumptions 1 and 3 are trivially satisfied in this case. Assumption 2′ is also
satisfied. This is seen as follows. Since ‖Φ(t, 0)‖ = g(0)g(1) · · · g(t), for any given
ρ ∈ (0.1), we have

1

t
log(ρ−t‖Φ(t, 0)‖) = log

1

ρ
+

1

t

t∑
s=0

log g(s).

The second term in the left-hand side tends almost surely to E[log g(t)] = 0.5[log 2 +
log 0.25] = −0.5 log 2. Then, by taking ρ to be a real number such that log 1

ρ −
0.5 log 2 < 0, we have that 1

t log(ρ−t‖Φ(t, 0)‖) tends almost surely to a negative
number. From this, we conclude that lim supt→∞ ρ−t‖Φ(t, 0)‖ = 0 almost surely, that
is, Assumption 2′.

Next, we show that the persistence of excitation condition (1) is not satisfied in
this case.

Given any real number h, let Ah := {|ϕi(0)| > h}, where ϕ1(0) is the first
component of ϕ(0). Since g(t) takes on value 2 with probability 0.5, ϕ(0) has an
unbounded distribution and so pr(Ah) �= 0 ∀h. Moreover, note that if |ϕ1(0)| > h,
then |ϕ1(t)| > (0.25)th− 5/4. (g(t) is either 2 or 0.25 and |v1(t)| = 1.) Now, suppose
by contradiction that (1) holds for certain fixed k1, k2, and s. Since ϕ2(i) = v2(i)
keeps bounded and ‖ϕ(i)‖ ≥ (0.25)sh − 5/4(i ∈ [1, s]), a real number h exists such

that condition λmin{
∑s
i=1

ϕ(i)ϕ(i)′

1+‖ϕ(i)‖2 } ≥ k1 is not satisfied on Ah. So

E

[{
λmin

{
s∑
i=1

ϕ(i)ϕ(i)′

1 + ‖ϕ(i)‖2
}
≥ k1

}
· 1(Ah)

]
= 0 < k2 · 1(Ah)

(where 1(Ah) is the indicator function of set Ah) and this contradicts condition (1).
The above example shows that the persistence of excitation condition (1) does not

hold under Assumption 2′. On the other hand, almost all results in the identification
literature (like those in Guo (1990), Bittanti and Campi (1994), or Campi (1994))
have been worked out under this condition (1). Consequently, at the present state of
the art, it is not clear how to handle situations where the system is only characterized
by a mild stability condition like Assumption 2′. The above observation raises an
interesting conceptual question: one may ask if it is possible to work out a persistence
of excitation condition milder than (1), that holds true under Assumption 2′ and still
permits one to prove boundedness results for the identification algorithms. This issue
is certainly worthy of further investigation.
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Abstract. Domain optimization problems for the two-dimensional stationary Stokes equations
are studied. Fréchet differentiability of a class of cost functionals with respect to the variation of
the shape of the computational domain is established. An embedding domain technique provides
an equivalent formulation of the problem on a fixed domain and, moreover, a simply computable
formula for the derivative of the cost functional with respect to the domain. Existence of a solution
to the class of domain optimization problems is proved. Numerical examples show the reliability of
the derivative formula.

Key words. domain optimization, Stokes equations, embedding domain technique, finite ele-
ment method
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1. Introduction. In this paper we show the differentiability of a certain class
of cost functionals with respect to variations in the shape of the computational do-
main under the constraint of the stationary Stokes equations. We consider domain
optimization problems in incompressible viscous flow at low velocity or high viscosity,
i.e., low Reynolds number. In this case the Stokes equations are an appropriate linear
approximation of the full nonlinear Navier–Stokes equations.

Many optimization techniques are based on gradient information, i.e., they re-
quire information about the derivative of the cost functional with respect to the
control parameters, i.e., here the shape of the domain. Usually this information is
obtained via an adjoint equation. In domain optimization problems this equation
usually incorporates the normal derivative of the state variable along the boundary
which is numerically unstable. In this work we use an embedding domain technique
which provides a formula for the derivative of the cost functional with respect to
domain variations which avoids the evaluation of normal derivatives, is efficient and
numerically stable. Moreover, the embedding domain technique reduces the effort
of discretization and assembling of the discrete systems for the solution of the state
equations on the changing domains during the optimization process.

Embedding (or “fictitious”) domain techniques have been widely applied in the
treatment of PDEs. For Stokes and Navier–Stokes equations on complicated shaped
domains they were studied, e.g., by Börgers [1] and Glowinski, Pan, and Periaux
[2], [3]. Our Lagrange multiplier approach is similar to Glowinski’s. Dankova and
Haslinger [4] used a slightly different one by introducing a distributed Lagrange multi-
plier and applied it on domain optimization problems; see, e.g., [4]. Domain optimiza-
tion for Stokes equations were studied, for example, by Pironneau [5] who computed
the shape of body with minimum drag. Gunzburger and Kim [6] showed existence
of an optimal shape for a minimum drag problem in a channel flow. Simon et al. [7]
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Fig. 2.1. The domain Ωγ in original version (left) and embedded into Ω̂ (right).

proved differentiability of the drag with respect to domain variations in Navier–Stokes
flow.

Here we use the embedding domain technique not only to prove differentiability
of a class of cost functionals (including drag), but moreover to obtain an explicit
formula for the derivative. This formula is a boundary integral which specifically does
not involve normal derivatives of the state variables. This is due to a special choice
of extension for the inhomogeneity of the state equation in the embedding domain
method. Thus the formula is useful and fast in numerical optimization schemes using
derivative information as gradient, quasi-Newton, or SQP methods. By the same
technique Kunisch and Peichl [8] obtained a derivative formula for the scalar Poisson
problem. In this paper we present its analogue for the two-dimensional Stokes problem
with its special saddle-point structure. An extension to the full nonlinear Navier–
Stokes case is possible and might be presented in another paper.

In the next two sections we define a geometric model configuration and sum-
marize the needed results for the Stokes equations. The considered class of domain
optimization problems and the embedding domain technique are presented in the next
two sections. In the sixth section we show the continuous dependence of the solution
of the Stokes system with respect to the variation of the domain. The main result,
the explicit formula for the Fréchet derivative, is presented in section 7. Finally, we
summarize the numerical methods we used and show an example.

2. The geometric model configuration. We now present a model configu-
ration of the geometry of the computational domain. We consider domains Ωγ :=
Ω(γ) ⊂ R

2, where γ is the control parameter describing the shape of the domain. For
all admissible domains the boundary ∂Ωγ shall have two parts: a fixed one denoted by
Γ which consists of the two lateral and the top side of the unit square, i.e., of the three
segments [(0, 0), (0, 1)], [(0, 1), (1, 1)], [(1, 1), (1, 0)], and a variable one denoted by Γγ
which is the graph of a function γ : [0, 1] → [0, 1) with γ(0) = γ(1) = 0; compare
Figure 2.1 left.

A sufficiently high regularity of the solution of the Stokes equations is one neces-
sary condition for our proof of differentiability of the considered cost functionals with
respect to domain variation. We thus need either a smooth or a polygonal bound-
ary, where in the latter case the domain has to be convex. To apply the embedding
domain method we have to combine these two boundary types which will become
clearer later on. By the above definition Γ is a polygon. To represent the variable
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part Γγ we choose functions γ ∈ C2[0, 1]. To preserve the convexity of Ωγ near the
two transition points (0, 0), (1, 0) we assume that γ is linear in neighborhoods of these
points. Working in Sobolev spaces we assure the regularity by choosing γ ∈ H3(I)
with I := (0, 1). To show existence of a solution of the domain optimization problems
we assume boundedness in this space. We define the set of admissible functions γ
defining the variable boundary parts Γγ , and thus the admissible domains Ωγ , by

S := {γ ∈ H3(I) : ‖γ‖H3(I) ≤ c0, γ(0) = γ(1) = 0, c1 ≤ γ|(δ,1−δ) ≤ c2,(2.1)

γ′|(0,δ) = c3, γ
′|(1−δ,1) = c4}.

Here c1, c2 ∈ (0, 1), δ ∈ (0, 1
2 ), c0, c3 ∈ R

+, c4 ∈ R
− are fixed.

3. The Stokes equations. The stationary Stokes problem on Ωγ can be writ-
ten in the following variational form: Find the pair of velocity vector and pressure
(uγ , pγ) ∈ H1(Ωγ)2 × L2

0(Ωγ) such that

ν(∇uγ ,∇v)Ωγ − (pγ ,div v)Ωγ = (fγ ,v)Ωγ for all v ∈ H1
0 (Ωγ)2,

(div uγ , q)Ωγ = 0 for all q ∈ L2
0(Ωγ),

uγ = Φ on Γ,
uγ = 0 on Γγ .

(3.1)

In this dimension-free formulation the parameter ν > 0 represents the inverse of
the Reynolds number. For scalar-valued functions (·, ·)Ωγ denotes the L2(Ωγ) inner
product. Furthermore, we define (u,v)Ωγ :=

∑
i=1,2(ui, vi)Ωγ and (∇u,∇v)Ωγ :=∑

i,j=1,2( ∂ui∂xj
, ∂vi∂xj

)Ωγ . For the inhomogeneity in the first equation which represents ex-

ternal forces we assume fγ ∈ L2(Ωγ)2. The space L2
0(Ωγ) := {q ∈ L2(Ωγ) :

∫
Ωγ

q dx =

0} is chosen to get uniqueness of the pressure.
The homogeneous or inhomogeneous Dirichlet boundary conditions indicate that

physically the boundary represents a wall or a region with prescribed velocity, respec-
tively. The function Φ for the boundary values of the velocity on Γ is assumed to have
a divergence-free extension onto Ωγ which is in H2(Ωγ)2. For this purpose we define

H(Γ) :=
{

Φ ∈ L2(Γ)2 : there is ūγ ∈ H2(Ωγ)2 : div ūγ = 0 in Ωγ , ūγ |Γγ = 0, ūγ |Γ = Φ
}
.

We now slightly modify the standard existence, uniqueness, and regularity results for
the Stokes equations in the following theorem.

Theorem 3.1. Let γ ∈ S, fγ ∈ L2(Ωγ)2, and Φ ∈ H(Γ). Then there exists a
unique solution (uγ , pγ) ∈ H2(Ωγ)2 × [H1(Ωγ) ∩ L2

0(Ωγ)] to (3.1) which satisfies

‖uγ‖H2(Ωγ)2 + ‖pγ‖H1(Ωγ) ≤ C
(‖fγ‖L2(Ωγ)2 + ‖Φ‖L∞(Γ)2

)
with C > 0 independent of γ, fγ , and Φ, i.e., the regularity is uniform in γ.

Proof. Regularity for a smooth boundary and uniqueness are stated, e.g., in
[11, Thm. I.5.4]. For a convex polygonal boundary, regularity is shown in [12], from
which it can be deduced that the regularity remains valid also in our case where
both boundary types are mixed. The uniform regularity for the polygonal part is
stated in the same reference, whereas for the smooth part it can be deduced from [10,
Sect. IV.5].

4. A class of domain optimization problems. We consider domain opti-
mization problems of the following form:

min
γ∈S
J (γ) := min

γ∈S
1

2
‖Auγ − ud‖2L2(ΩC)k such that uγ solves (3.1)(4.1)
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with an observation operator A ∈ L(H1(Ωγ)2, L2(ΩC)k) for k ∈ {1, 2}, some desired
state ud ∈ L2(ΩC)k, and an observation region ΩC satisfying dist (Γγ ,ΩC) > 0 for
all γ ∈ S. The dependence of J on γ is implicit due to the fact that J depends
on uγ which itself depends on γ. The functional J may also include an additional
regularization term which we exclude from our theoretical study because it usually
depends directly on γ and not by means of the solution uγ of the state equations.
Therefore its differentiability is obtained easily. The above definition of the cost
functional is quite general. It includes typical choices as the tracking-type functional

J (γ) :=
1

2
‖uγ − ud‖2L2(ΩC)2

or the minimum drag problem; compare Pironneau [5], Gunzburger and Kim [6]:

J (γ) :=
ν

2
‖∇uγ +∇Tuγ‖2L2(ΩC)2×2 .

A restriction we have to make for our derivative formula is that J does not depend
on the pressure.

5. The embedding domain technique. To solve the domain optimization
problem (4.1) by a classical iterative scheme it is necessary to discretize the domain,
assemble the system matrices, and solve the linear system in each iteration step. To
reduce this effort we introduce a fictitious domain Ω̂ in which all admissible domains
can be embedded, i.e., Ωγ ⊂ Ω̂ for all γ ∈ S. We furthermore assume that the fixed

boundary part Γ is a part of ∂Ω̂ whereas Γγ is replaced by a partition called Γ̂ which

is now fixed as well. Thus we have ∂Ω̂ = Γ̄ ∪ ¯̂
Γ; compare Figure 2.1 right. In our

model problem we take Ω̂ as the unit square and define Ωcγ := Ω̂ \ Ω̄γ .

We now formulate a problem on Ω̂ which is equivalent to (4.1). For this purpose
we introduce a fictitious domain formulation of the state equations. As motivation
we recall that the velocity part uγ of the solution of the Stokes problem (3.1) is the
solution of the constrained minimization problem

min
u∈H1(Ωγ )2

u|Γ=Φ,u|Γγ=0

ν

2
‖∇u‖2L2(Ωγ)2 − (fγ ,u)Ωγ s.t. divu = 0 in Ωγ .

Equations (3.1) are the necessary conditions for a saddle point (uγ , pγ) of the associ-
ated Lagrangian with pγ being the Lagrange multiplier corresponding to the constraint
of zero divergence.

We now denote by f̃γ the extension of fγ by zero onto Ω̂ and consider the problem

min
û∈H1(Ω̂)2

û|Γ=Φ,û|
Γ̂
=0

ν

2
‖∇û‖2

L2(Ω̂)2
− (f̃γ , û)Ω̂ s.t.

{
div û = 0 in Ω̂,

û = 0 on Γγ .
(5.1)

The second constraint is added since Γγ is no longer a part of the boundary of the

computational domain Ω̂ but an inner line. Thus we get a second Lagrange multiplier
gγ which is an element of the dual of

Hγ := H
1/2
00 (Γγ)2 =

{
h ∈ H1/2(Γγ)2 : there is h̃ ∈ H1/2(∂Ωγ)2 : h̃|Γγ = h, h̃|Γ = 0

}
;

compare, e.g., [9, VII, Sect. 2.1, Rem. 1]. The necessary conditions for a saddle point
of the Lagrangian associated with problem (5.1) result in the following equations:
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Find (ûγ , p̂γ , gγ) ∈ H1(Ω̂)2 × L2
0(Ω̂)×H∗

γ such that

ν(∇ûγ ,∇v̂)Ω̂ − (p̂γ ,div v̂)Ω̂ − 〈gγ , τγ v̂〉H∗
γ ,Hγ

= (f̃γ , v̂)Ω̂ for all v̂ ∈ H1
0 (Ω̂)2,

(div ûγ , q̂)Ω̂ = 0 for all q̂ ∈ L2
0(Ω̂),

τγûγ = 0,
uγ = Φ on Γ,

uγ = 0 on Γ̂.

(5.2)

Here τγ denotes the trace operator onto Γγ which is a linear continuous mapping from

H1
0 (Ω̂)2 onto Hγ . The dual pairing between Hγ and its dual is denoted by 〈·, ·〉H∗

γ ,Hγ
.

We can now prove the equivalence of problems (3.1) and (5.2) as follows.
Theorem 5.1. Let γ ∈ S, fγ ∈ L2(Ωγ)2, and Φ ∈ H(Γ). Then (ûγ , p̂γ , gγ) ∈

H1(Ω̂)2 × L2
0(Ω̂)×H∗

γ is a solution of (5.2) if and only if
• (uγ , pγ) := (ûγ , p̂γ)|Ωγ ∈ H2(Ωγ)2 × [H1(Ωγ) ∩ L2

0(Ωγ)] solves (3.1),
• (ûγ , p̂γ)|Ωcγ = (0, 0),

• 〈gγ ,h〉H∗
γ ,Hγ

= (ν
∂uγ
∂nγ
− pγnγ ,h)Γγ for all h ∈ Hγ .

Here nγ denotes the outer (with respect to Ωγ) normal vector on Γγ and

(g,h)Γγ :=

∫
I

g(x, γ(x)) · h(x, γ(x))
√

1 + γ′(x)2 dx

is the inner product on L2(Γγ)2.
Proof. The result is proved by testing (3.1) with appropriate functions that vanish

on Ωcγ , applying the uniqueness result for the Stokes equations and Green’s formula.
Regularity of gγ follows from Theorem 3.1. For the existence of the solution to (5.2)
we need the nonsmooth transition between Γ and Γγ . Otherwise Ωcγ would not even
be Lipschitz. For details see [15, Thms. 2.5 and 3.5].

By the regularity of (uγ , pγ) the functional gγ ∈ H∗
γ can be extended onto L2(Γγ)2

and we get

gγ =

(
ν
∂uγ
∂nγ

− pγnγ
)∣∣∣∣

Γγ

in L2(Γγ)2.(5.3)

This relation is due to the extension of the inhomogeneity fγ by zero onto Ω̂. For an
arbitrary L2 extension gγ equals the jump of the right-hand side of (5.3) on Γγ ; see
also [3]. The equality in (5.3) is essential for the derivative formula presented below.

As a consequence of Theorems 3.1 and 5.1 we now obtain for the solutions on Ω̂.
Corollary 5.2. Let for γ ∈ S denote (ûγ , p̂γ , gγ) a solution of (5.2). Then the

families {(ûγ , p̂γ)}γ∈S , {‖gγ‖H∗
γ
}γ∈S , and {‖gγ‖L2(Γγ)2}γ∈S are uniformly bounded

in H1(Ω̂)2 × L2
0(Ω̂) and R, respectively.

Proof. The estimates for ûγ and p̂γ follow from Theorem 3.1 and the fact that the
solutions vanish on Ωcγ ; those for the Lagrange multiplier follow from its representation
given in Theorem 5.1 and the uniform boundedness of uγ and pγ .

6. Continuous dependence of the solution on the shape of the domain.
To study convergence with respect to γ of the Lagrange multipliers gγ ∈ H∗

γ we intro-
duce for h ∈ Hγ the mapping Iγh(x) := h(x, γ(x)), x ∈ I, which is an isomorphism
between Hγ and

HI :=

{
g ∈ H1/2(I)2 :

∫
I

‖g(x)‖22
x(1− x)

dx <∞
}
.
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A function h ∈ Hγ has to satisfy additional conditions at the transition points between

Γ and Γγ such that its extension h̃ by zero onto ∂Ωγ is in H1/2(∂Ωγ)2: The integral∫
Ĩ

∫
Ĩ

‖h̃(x, γ(x))− h̃(ξ, γ(ξ))‖22
|x− ξ|2 dγ̃(x)dγ̃(ξ)

has to be finite for arbitrary functions γ̃ : Ĩ → γ̃(Ĩ) ⊂ ∂Ωγ that parameterize a part
of the boundary. Critical are parameterizations which contain one of the transition
points between Γ and Γγ . To guarantee the existence of the above integral the ad-
ditional integral condition in the definition of HI has to be satisfied; compare [15,
Thm. 2.4].

We note a result concerning convergence of the transformed trace operators below.
Lemma 6.1. Let γn, γ ∈ S. Then γn → γ in W 1,∞(I) implies Iγnτγn → Iγτγ as

linear operators from {v̂ ∈ H1(Ω̂)2 : v̂|Γ̂ = 0} onto HI .
Proof. See [15, Lem. 2.1].
We define

(I−1
γ

)∗
: H∗

γ → H∗
I , i.e., the adjoint of I−1

γ , by

〈(I−1
γ

)∗
g,g〉H∗

I
,HI := 〈g, I−1

γ g〉H∗
γ ,Hγ , g ∈ H∗

γ , g ∈ HI .

Now we can formulate the following result of continuous dependence.
Theorem 6.2. Let γ, γn ∈ S with γn → γ in W 1,∞(I), f ∈ L∞(Ω̂)2, and fγ :=

f |Ωγ , fγn := f |Ωγn . Then the corresponding solutions of problem (5.2) satisfy

(ûγn , p̂γn) → (ûγ , p̂γ) in H1(Ω̂)2 × L2
0(Ω̂),(I−1

γn

)∗
gγn

∗
⇀

(I−1
γ

)∗
gγ in H∗

I .

Moreover, the mapping γ �→ ûγ is Lipschitz continuous, i.e., there exists L indepen-
dent of γ, γ̄ such that

‖ûγ̄ − ûγ‖H1(Ω̂)2 ≤ L‖γ̄ − γ‖L∞(I) for all γ̄, γ ∈ S.

Proof. By Corollary 5.2 we have for a subsequence (ûγn , p̂γn) ⇀ (û, p̂) weakly in

H1(Ω̂)2 × L2
0(Ω̂) and thus using the first equation of (5.2),

lim
n→∞〈gγn , τγn v̂〉H∗

γn
,Hγn

= ν(∇û,∇v̂)Ω̂ − (p̂,div v̂)Ω̂ − (f̃γ , v̂)Ω̂

for all v̂ ∈ H1
0 (Ω̂)2. For every g ∈ HI there exists v̂ ∈ H1

0 (Ω̂)2 with Iγτγ v̂ = g and

〈(I−1
γn )∗gγn ,g〉H∗

I
,HI = 〈(I−1

γn )∗gγn , Iγτγ v̂ − Iγnτγn v̂〉H∗
I
,HI + 〈gγn , τγn v̂〉H∗

γn
,Hγn ,

where the first term on the right tends to zero by Corollary 5.2 and Lemma 6.1. Thus

lim
n→∞〈(I

−1
γn )∗gγn ,g〉H∗

I
,HI = ν(∇û,∇v̂)Ω̂ − (p̂,div v̂)Ω̂ − (f̃γ , v̂)Ω̂ =: 〈G,g〉H∗

I
,HI .

We define g := I∗γG ∈ H∗
γ . For v̂ ∈ H1

0 (Ω̂)2 we have τγ v̂ ∈ Hγ and thus (û, p̂, g)
satisfies the first equation of (5.2). Green’s formula implies

0 = lim
n→∞(div ûγn , ϕ̂)Ω̂ = − lim

n→∞(ûγn ,∇ϕ̂)Ω̂ = −(û,∇ϕ̂)Ω̂ = (div û, ϕ̂)Ω̂

for all ϕ̂ ∈ C∞
0 (Ω̂)∩L2

0(Ω̂). Thus û solves the second equation of (5.2). Since it can be
shown that also τγû = 0 (see [15, Lem. 2.12]) this implies that (û, p̂, g) is the unique
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solution to problem (5.2) and thus equals (ûγ , p̂γ , gγ). Therefore the limits are valid
for the whole sequence and not only for the chosen subsequence.

To show strong convergence of ûγn in H1(Ω̂)2 we define ûn := ûγn− ûγ ∈ H1
0 (Ω̂)2

which satisfies (div ûn, q̂)Ω̂ = 0 for all q̂ ∈ L2
0(Ω̂). Choosing v̂ := ûn in the first

equation of (5.2) for Ωγn and Ωγ and subtracting both equations we get

ν|ûn|2H1(Ω̂)2
= (f̃γn − f̃γ , ûn)Ω̂ + 〈gγn , τγn ûn〉H∗

γn
,Hγn − 〈gγ , τγûn〉H∗

γ ,Hγ ,(6.1)

where |û|H1(Ω̂)2 := ‖∇û‖L2(Ω̂)2×2 denotes the H1 seminorm. We estimate the terms

on the right of (6.1) separately: First we split up I into

I+ := {x ∈ (0, 1) : γn(x) ≥ γ(x)}, I− := {x ∈ (0, 1) : γn(x) < γ(x)}
and obtain, using the fact that fγ := f |Ωγ with f ∈ L∞(Ω̂)2 for all γ ∈ S, that

(f̃γn − f̃γ , ûn)Ω̂ =

∫
I+

∫ γn

γ

f(x, y) · ûn(x, y) dydx−
∫
I−

∫ γ

γn

f(x, y) · ûn(x, y) dydx.

We denote the first integral on the right byA and use ûn(x, γ(x)) = 0 almost everywhere
(a.e.) in I+:

|A| =
∣∣∣∣∣
∫
I+

∫ γn

γ

f(x, y) · [ûn(x, y)− ûn(x, γ)] dydx

∣∣∣∣∣(6.2)

≤ ‖f‖L∞(Ω̂)2

∫
I+

∫ γn

γ

∫ y

γ

‖ûn,y(x, ξ)‖2 dξdydx

≤ ‖f‖L∞(Ω̂)2

∫
I+

∫ γn

γ

‖ûn,y(x, ξ)‖2(γn − ξ) dx

≤ 1

3
‖f‖L∞(Ω̂)2‖ûn,y‖L2(Ω̂)2‖γn − γ‖3/2L∞(I+) ≤ C|ûn|H1(Ω̂)2‖γn − γ‖3/2L∞(I)

with C independent of γn, γ. The second integral can be estimated in a similar way
using ûn(x, γn(x)) = 0 a.e. in I−. Thus there exists L1 independent of γn, γ with

|(f̃γn − f̃γ , ûn)Ω̂| ≤ L1|ûn|H1(Ω̂)2‖γn − γ‖3/2L∞(I).(6.3)

For the second term in (6.1) we obtain using Theorem 5.1:

|〈gγn , τγn ûn〉H∗
γn
,Hγn
| = |(gγn , τγn ûn)Γγn | ≤ ‖gγn‖L2(Γγn )‖τγn ûn‖L2(Γγn )2 .

The first term on the right-hand side is bounded independently of γn by Theorem 5.2.
For the last term we use ûn(x, γn(x)) = 0 a.e. in I− and ûn(x, γ(x)) = 0 a.e. in I+:

‖τγn ûn‖2L2(Γγn )2 =

∫
I+

‖ûn(x, γn(x))− ûn(x, γ(x))‖22
√

1 + γ′n(x)2 dx

=

∫
I+

∥∥∥∥∫ γn

γ

ûn,y(x, ξ) dξ

∥∥∥∥2

2

√
1 + γ′n(x)2 dx

≤ ‖γn − γ‖2L∞(I)|ûn|2H1(Ω̂)2
‖(1 + ‖γn‖2W 1,∞(I)).

Because S is bounded in H3(I) which is continuously embedded in W 1,∞(I) there
exists L2 independent of γ, γn such that

|〈gγn , τγn ûn〉H∗
γn
,Hγn | ≤ L2|ûn|H1(Ω̂)2‖γn − γ‖L∞(I).(6.4)
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An analogous computation for the third term on the right-hand side of (6.1) shows
the existence of L3 independent of γ, γn with

|〈gγ , τγûn〉H∗
γ ,Hγ | ≤ L3|ûn|H1(Ω̂)2‖γn − γ‖L∞(I).(6.5)

Poincaré’s inequality implies ‖ûn‖H1(Ω̂)2 ≤ c|ûn|H1(Ω̂)2 with c independent of γ, γn
and thus (6.3)–(6.5) give Lipschitz continuity of ûγ with respect to γ.

To show strong convergence pγn → pγ we note that the operator (div, τγ) maps

H1
0 (Ω̂)2 onto L2

0(Ω̂)×Hγ , see [15, Thm. 2.5]. Moreover, the weak divergence operator

is an isomorphism between the orthogonal complement of {v̂ ∈ H1
0 (Ω̂)2 : div v̂ =

0 in Ω̂} and L2
0(Ω̂). Thus there exists v̂n ∈ H1

0 (Ω̂)2 satisfying τγ v̂n = 0,div v̂n =
p̂γn − p̂γ , and ‖v̂n‖H1(Ω̂)2 ≤ c‖p̂γn − p̂γ‖L2(Ω̂). We test the first equation of (5.2)
with v̂n for γ and γn, and subtract both equations. With the uniform boundedness
of {p̂γn}n∈N in L2(Ω̂) we obtain

‖p̂γn − p̂γ‖20,Ω̂ ≤ c
(
ν|ûγn − ûγ |H1(Ω̂)2 + ‖f̃γn − f̃γ‖L2(Ω̂)2

)
+ |〈gγn , τγn v̂n〉H∗

γn
,Hγn
|

with c independent of n. Since ûγn → ûγ in H1(Ωγ)2 and f̃γn → f̃γ in L2(Ω̂)2 the
first term tends to zero. In the second one we may write

〈gγn , τγn v̂n〉H∗
γn
,Hγn = 〈(I−1

γn )∗gγn , Iγnτγn v̂n〉H∗
I
,HI .(6.6)

We already proved that (I−1
γn )∗gγn

∗
⇀ (I−1

γ )∗gγ . Lemma 6.1 implies Iγnτγn → Iγτγ
and since τγ v̂n = 0 for all n also (6.6) tends to zero.

As a consequence of this theorem and the boundedness of S in H3(I) we now
obtain the following.

Corollary 6.3. The domain optimization problem has at least one solution
γ ∈ S.

Proof. This result can be proved by choosing a minimizing sequence and using
the compact embedding of H3(I) in C2(Ī).

7. Fréchet differentiability and derivative formula. To show differentia-
bility we use the solution of the adjoint system of the domain optimization problem
(4.1). We introduce a Lagrangian with two multipliers λγ , µγ for the constraints of
the momentum and continuity equation, respectively. Then we compute the nec-
essary optimality conditions for a saddle point of this Lagrangian which form the
adjoint equations. Since the Stokes equations are linear, the adjoint problem is a
Stokes system with a different inhomogeneity and homogeneous boundary conditions:
Find (λγ , µγ) ∈ H1

0 (Ωγ)2 × L2
0(Ωγ) such that

ν(∇λγ ,∇v)Ωγ − (µγ ,div v)Ωγ = −DuJ (γ)v for all v ∈ H1
0 (Ωγ)2,

(div λγ , q)Ωγ = 0 for all q ∈ L2
0(Ωγ),

(7.1)

where uγ is the velocity component of a solution to (3.1), and DuJ (γ)v denotes the
Fréchet derivative of J with respect to u in direction v. The equivalent fictitious
domain formulation is the following: Find (λ̂γ , µ̂γ , χγ) ∈ H1

0 (Ω̂)2 × L2
0(Ω̂)×H∗

γ such
that

ν(∇λ̂γ ,∇v̂)Ω̂ − (µ̂γ ,div v̂)Ω̂ − 〈χγ , τγ v̂〉H∗
γ ,Hγ = −DuJ (γ)v̂ for all v̂ ∈ H1

0 (Ω̂)2,

(div λ̂γ , q̂)Ω̂ = 0 for all q̂ ∈ L2
0(Ω̂),

τγ λ̂γ = 0.

(7.2)
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For the solution of (7.2) we get similar results of existence, uniqueness, regularity, and
equivalence to (7.1) as for the Stokes equations in Theorems 3.1 and 5.1; see below.

Theorem 7.1. Let γ ∈ S and (uγ , pγ) be the solution of (3.1). Then problem
(7.1) has a unique solution (λγ , µγ) ∈ [H2(Ωγ)2∩H1

0 (Ωγ)2]× [H1(Ωγ)∩L2
0(Ωγ)]. The

regularity is uniform in γ.
Moreover, (λ̂γ , µ̂γ , χγ) ∈ H1(Ω̂)2 × L2

0(Ω̂)×H∗
γ is a solution of (7.2) if and only

if
• (λγ , µγ) := (λ̂γ , µ̂γ)|Ωγ is a solution of (7.1),

• (λ̂γ , µ̂γ)|Ωcγ = (0, 0),

• 〈χγ ,h〉H∗
γ ,Hγ

= (ν
∂λγ
∂nγ
− µγnγ ,h)Γγ for all h ∈ Hγ

and we have

χγ =

(
ν
∂λγ
∂nγ

− µγnγ
)∣∣∣∣

Γγ

in L2(Γγ)2.

We now turn to the differentiability of J with respect to variations in γ. Since
S is closed we consider γ ∈ intS, the interior of S, and define the set of admissible
directions as

S ′ :=
{
γ̄ ∈ H3(I) : γ̄|[0,δ]∪[1−δ,1] = 0

}
.

For every γ ∈ intS and γ̄ ∈ S ′ there exists t0 > 0 such that γ + tγ̄ ∈ intS for
all t ∈ [0, t0). Thus we can properly define a directional derivative. We now define
I+ := {x ∈ I : γ̄(x) ≥ 0}, I− := {x ∈ I : γ̄(x) < 0}, and present three results that
will be used to prove the differentiability of J . Their proofs are given in section 9.

Lemma 7.2. Let f ∈ L∞(Ω̂)2, fγ := f |Ωγ , fγ+tγ̄ := f |Ωγ+tγ̄ , and λ̂γ be a solution
of problem (7.2). Then

lim
t→0

1

t
(f̃γ − f̃γ+tγ̄ , λ̂γ)Ω̂ = 0.

Lemma 7.3. Let χγ be the third component of a solution of (7.2) and ûγ+tγ̄ the
first component of the solution of (5.2) for γ + tγ̄. Then

lim
t→0

1

t
〈χγ , τγûγ+tγ̄〉H∗

γ ,Hγ
= −

∫
I+

χγ(x, γ) · uγ,y(x, γ)γ̄
√

1 + γ′2 dx.

The integral on the right exists because γ̄ ∈ S ′ ⊂ L∞(I) and χγ ∈ L2(Γγ)2.
Furthermore τγuγ,y = uγ,y(x, γ) and also its restriction on the set Γ+

γ := {(x, γ(x)) :
x ∈ I+} ⊂ Γγ are L2 functions since uγ ∈ H2(Ωγ)2. Finally we will use the following.

Lemma 7.4. Let gγ+tγ̄ be the third component of the solution of (5.2) for γ + tγ̄

and λ̂γ the first component of the solution of (7.2). Then

lim
t→0

1

t
〈gγ+tγ̄ , τγ+tγ̄ λ̂γ〉H∗

γ+tγ̄
,Hγ+tγ̄ =

∫
I−
gγ(x, γ) · λγ,y(x, γ)γ̄

√
1 + γ′2 dx.

By arguments analogous to those for Lemma 7.3 the integral on the right exists.
Now we state the main result of this paper, namely the differentiability of the

cost functional with respect to γ and an explicit formula for its derivative.
Theorem 7.5. Let γ ∈ intS, f ∈ L∞(Ω̂)2, and fγ := f |Ωγ . Then J is Fréchet

differentiable with respect to γ and the derivative in γ in direction γ̄ ∈ S ′ satisfies

DγJ (γ)γ̄ =
1

ν

∫
I

[
gγ
(
x, γ(x)

) · χγ(x, γ(x)
)− pγ(x, γ(x)

)
µγ
(
x, γ(x)

)]
γ̄(x) dx.(7.3)
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Proof. A simple computation leads to the identity

1

t
J (γ + tγ̄)− J (γ) =

1

2t
‖A(ûγ+tγ − ûγ)‖2L2(ΩC)k +

1

t

(A(ûγ+tγ − ûγ),Aûγ − ud
)
ΩC

=
1

2t
‖A(ûγ+tγ̄ − ûγ)‖2L2(ΩC)k +

1

t
DuJ (γ)(ûγ+tγ̄ − ûγ).

The first term on the right can be estimated using the boundedness of A and the
Lipschitz continuity of the velocities proved in Theorem 6.2:

1

2t
‖A(ûγ+tγ̄ − ûγ)‖2L2(ΩC)k ≤

C

t
‖ûγ+tγ̄ − ûγ‖2H1(Ω̂)2

≤ Ct‖γ̄‖2L∞(I),

where C is independent of γ, γ̄, and t. Since γ̄ ∈ S ′ ⊂ W 1,∞(I), this term tends to
zero for t→ 0 and we obtain

DγJ (γ)γ̄ = lim
t→0

1

t
DuJ (γ)(ûγ+tγ̄ − ûγ).

We show that this limit equals the right-hand side of (7.3). The first equation of (7.2)
with v̂ = ûγ+tγ̄ − ûγ ∈ H1

0 (Ω̂)2 as test function gives

DuJ (γ)(ûγ+tγ̄ − ûγ) = −ν(∇λ̂γ ,∇(ûγ+tγ̄ − ûγ)
)
Ω̂

+
(
µ̂γ ,div (ûγ+tγ̄ − ûγ)

)
Ω̂

+〈χγ , τγ(ûγ+tγ̄ − ûγ)〉H∗
γ ,Hγ .

As solutions to (5.2) for γ and γ + tγ̄, respectively, the functions ûγ and ûγ+tγ̄ are

weakly divergence free. Since µ̂γ ∈ L2
0(Ω̂) the second term on the right vanishes. With

τγûγ = 0 we obtain

DuJ (γ)(ûγ+tγ̄ − ûγ) = ν(∇λ̂γ ,∇ûγ)Ω̂ − ν(∇λ̂γ ,∇ûγ+tγ̄)Ω̂ + 〈χγ , τγûγ+tγ̄〉H∗
γ ,Hγ

.

For the first two terms on the right we use again the first equation in (5.2) for γ and

γ + tγ̄, respectively, with v̂ = λ̂γ ∈ H1
0 (Ω̂)2. We get

DuJ (γ)(ûγ+tγ̄ − ûγ) = (f̃γ − f̃γ+tγ̄ , λ̂γ)Ω̂ + (p̂γ − p̂γ+tγ̄ ,div λ̂γ)Ω̂ + 〈gγ , τγ λ̂γ〉H∗
γ ,Hγ

−〈gγ+tγ̄ , τγ+tγ̄ λ̂γ〉H∗
γ+tγ̄

,Hγ+tγ̄ + 〈χγ , τγûγ+tγ̄〉H∗
γ ,Hγ

.

The second and third terms on the right both vanish since λ̂γ as solution of (7.2) is

weakly divergence free, p̂γ − p̂γ+tγ̄ ∈ L2
0(Ω̂), and τγ λ̂γ = 0. Thus we obtain

DγJ (γ)γ̄ = lim
t→0

1

t

[
(f̃γ − f̃γ+tγ̄ , λ̂γ)Ω̂ + 〈χγ , τγûγ+tγ̄〉H∗

γ ,Hγ

−〈gγ+tγ̄ , τγ+tγ̄ λ̂γ〉H∗
γ+tγ̄

,Hγ+tγ̄

]
.

Using Lemmas 7.2 to 7.4, this implies

DγJ (γ)γ̄ = −
∫
I+

χγ(x, γ) · uγ,y(x, γ)γ̄
√

1 + γ′2dx−
∫
I−
gγ(x, γ) · λγ,y(x, γ)γ̄

√
1 + γ′2dx.

Because of τγuγ = τγλγ = 0 the partial derivatives times the arc length can be
expressed as normal derivatives along Γγ . This leads to

DγJ (γ)γ̄ =

∫
I+

χγ(x, γ) · ∂uγ(x, γ)

∂nγ
γ̄ dx +

∫
I−
gγ(x, γ) · ∂λγ(x, γ)

∂nγ
γ̄ dx.
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By the representations of gγ and χγ we obtain

gγ · ∂λγ
∂nγ

=
1

ν
(gγ · χγ − pγµγ) + µγ

∂uγ
∂nγ

· nγ =
1

ν
(gγ · χγ − pγµγ).

The term with the normal derivative vanishes because of
∂ûγ
∂nγ
·nγ = div ûγ on Γγ and

since ûγ has zero divergence in Ω̂ and thus on Γγ . Analogously we get

χγ · ∂uγ
∂nγ

=
1

ν
(gγ · χγ − pγµγ).

Summing up we have shown that J has a directional derivative for every γ ∈ intS in
every direction γ̄ ∈ S ′ given by (7.3).

To show that the linear mapping DγJ (γ) : S ′ → R, γ̄ �→ DγJ (γ)γ̄ is a Gâteaux
derivative we show that it is bounded on S ′. At first we have

|DγJ (γ)γ̄| ≤ 1

ν

(∫
I

|gγ(x, γ) · χγ(x, γ)| dx +

∫
I

|pγ(x, γ)µγ(x, γ)| dx
)
‖γ̄‖L∞(I).(7.4)

Since gγ , χγ ∈ L2(Γγ)2 we obtain Iγgγ , Iγχγ ∈ L2(I)2. The first integral in brackets
can be estimated by Hölder’s inequality as∫

I

|gγ(x, γ) · χγ(x, γ)| dx ≤ ‖Iγgγ‖L2(I)‖Iγχγ‖L2(I).

Since γ is fixed the terms on the right are constants with respect to γ̄. Concerning
the second integral in (7.4) we have τγpγ , τγµγ ∈ L2(Γγ) because of pγ , µγ ∈ H1(Ωγ).
Thus it can be estimated analogously by a constant which is independent of γ̄:∫
I

|pγ(x, γ)µγ(x, γ)|dx ≤
∫
I

|pγ(x, γ)µγ(x, γ)|
√

1 + γ′2dx ≤ ‖τγpγ‖L2(Γγ)‖τγµγ‖L2(Γγ).

To prove that DγJ (γ) is a Fréchet derivative we show that the mapping γ �→
DγJ (γ) is continuous from intS to L(S ′,R). We write (7.3) as

DγJ (γ)γ̄ =
1

ν

∫
I

[(Iγgγ)(x) · (Iγχγ)(x)− (Iγτγpγ)(x)(Iγτγµγ)(x)]γ̄ dx.

For all γ ∈ S the functional gγ ∈ H∗
γ can be extended onto L2(Γγ)2; see Theorem 5.1.

Therefore (I−1
γ )∗gγ ∈ H∗

I can be extended onto L2(I)2 by the definition

〈(I−1
γ )∗gγ ,Ψ〉(L2(I)2)∗,L2(I)2 := 〈gγ , I−1

γ Ψ〉(L2(Γγ)2)∗,L2(Γγ)2

= (gγ , I−1
γ Ψ)Γγ = ((I−1

γ )�gγ ,Ψ)I , Ψ ∈ L2(I)2,

where we introduced the Hilbert space adjoint of I−1
γ :

(I−1
γ )� : L2(Γγ)2 → L2(I)2, g �→ g(·, γ(·))

√
1 + γ′(·)2.(7.5)

Since Iγ is an isomorphism between L2(I)2 and L2(Γγ)2 and S is bounded in H3(I)
which is continuously embedded in W 1,∞(I) also {‖(I−1

γ )�‖L(L2(Γγ)2,L2(I)2)}γ∈S is
bounded. This implies that the family {(I−1

γ )�gγ}γ∈S is uniformly bounded in L2(I)2.
Hence for γn → γ in S there exists a weakly convergent subsequence, i.e.,

((I−1
γn )�gγn ,Ψ)I → (g,Ψ)I for all Ψ ∈ L2(I)2
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with some g ∈ L2(I)2. On the other hand, by Theorem 6.2 (I−1
γn )∗gγn converges

weak-∗ in H∗
I to (I−1

γ )∗gγ which means that for n→∞ and all Ψ ∈ HI we have

〈(Iγn)∗gγn ,Ψ〉H∗
I
,HI = ((I−1

γn )�gγn ,Ψ)I → 〈(I−1
γ )∗gγ ,Ψ〉H∗

I
,HI = ((I−1

γ )�gγ ,Ψ)I .

Because HI is dense in L2(I)2 we have g =
(I−1
γ

)�
gγ . By definition of

(I−1
γ

)�
this implies Iγngγn → Iγgγ in L2(I)2. The same arguments hold for χγ . Since Iγ is
continuous we have shown that the mappings γ �→ Iγgγ and γ �→ Iγχγ are continuous
from S to L2(I)2 which implies that γ �→ (Iγgγ)·(Iγχγ) is continuous from S to L1(I).

To show that the mapping γ �→ Iγτγpγ is continuous we recall that the family
{‖pγ‖H1(Ωγ)}γ∈S is bounded. Since the solution p̂γ of (5.2) is not even necessarily in

H1(Ω̂) we extend each pγ to some p̄γ ∈ H1(Ω̂) such that the family {p̄γ}γ∈S is bounded

in H1(Ω̂): We can easily define a family of bijective transformations Tγ : Ωγ → Ω̂
which together with their inverse mappings are uniformly Lipschitz continuous in S.
The family {Tγpγ}γ∈S of transformed functions is uniformly bounded in H1(Ω̂); see
[13, Lem. II.3.2] and the proofs of this lemma and of [13, Lem. II.3.1]. Extending
Tγpγ by reflection to a function p̌γ defined on Ω̌ := (0, 1)× (−1, 1) the family {p̌γ}γ∈S
is uniformly bounded in H1(Ω̌); see [14, Lem. IX.2]. Using [13, Lem. II.3.2] again
we obtain T−1

γ p̌γ ∈ H1(T−1
γ (Ω̌)) and the uniform boundedness of {p̄γ}γ∈S in H1(Ω̂)

for p̄γ := (T−1
γ p̌γ)|Ω̂. For every sequence γn → γ in S ⊂ W 1,∞(I) we thus have

for a subsequence p̄γn ⇀ p̄ weakly in H1(Ω̂) and p̄γn → p̄ strongly in L2(Ω̂). Since

p̂γn → p̂γ strongly in L2(Ω̂) by Theorem 6.2 and p̂γ |Ωγ = pγ = p̄γ |Ωγ this implies

p̄|Ωγ = pγ and by construction p̄ = p̄γ in Ω̂. Therefore we have p̄γn ⇀ p̄γ weakly in

H1(Ω̂) for the whole sequence. Because of τγ p̄γ = τγpγ for all γ ∈ S we now obtain

‖Iγnτγnpγn − Iγτγpγ‖L2(I) = ‖Iγnτγn p̄γn − Iγτγ p̄γ‖L2(I)

≤ ‖(Iγnτγn − Iγτγ)p̄γn‖L2(I) + ‖Iγ‖L(L2(Γγ),L2(I))‖τγ(p̄γn − p̄γ)‖L2(Γγ).

The first term tends to zero because of strong convergence of the transformed trace
operators Iγnτγn ; see [15, Lem. 2.11]. In the second term the first factor is uniformly
bounded for all γ ∈ S, and the second one tends to zero due to the compact embedding
of H1(Ω̂) into L2(Γγ). Thus we have shown that γ �→ Iγτγpγ is continuous from S
to L2(I). Using an analogous argument for µγ we obtain that γ �→ (Iγτγpγ)(Iγτγµγ)
is continuous from S to L1(I). This implies the Fréchet differentiability of J with
respect to γ.

Let us note here that this derivative formula does not include normal derivatives
of the state variables along the domain boundary, but only the Lagrange multipliers
introduced by the embedding domain method.

8. Numerical methods. The numerical example presented below was com-
puted using the formula (7.3) for the derivative and an SQP method (see [16]) for the
optimization. It requires one gradient and at least one cost functional evaluation in
each iteration. Thus the systems (5.2) and (7.2) have to be solved several times for
different γ. Both systems were discretized by stabilized linear finite elements (see [17])
for velocity and pressure and piecewise constant elements for gγ and χγ . To satisfy
the inf-sup condition for the latter we used a coarser mesh size for their discretization
as suggested in [18]. The discretized counterparts of (5.2) and (7.2) then read A BT DT

γ

B C 0
Dγ 0 0

 Uγ
Pγ
Gγ

 =

 Fγ
H
0

 ,(8.1)
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where the matrix C and the vector H appear due to the stabilization. Only the
entities with subscript γ in (8.1) change during the optimization process. Note that Dγ

represents a discrete one-dimensional trace operator and thus is very sparse. Therefore
the effort of rebuilding the system when γ changes is negligible. This is a typical
advantage of embedding domain techniques.

For the solution of the discrete systems we used an Uzawa algorithm with an
outer preconditioned conjugate gradient iteration on the pair (Pγ , Gγ). For the inner
system (a discrete Laplacian) we exploited the fact that the matrix A is fixed for all
γ. Thus we computed its Cholesky factorization only once using a reverse Cuthill–
McKee re-ordering algorithm to obtain a minimal fill-up by the factorization. For
every gradient evaluation the inner system of the Uzawa algorithm thus requires
only solution of two sparse triangular systems. Once the discrete counterparts of
pγ , gγ , µγ , χγ are computed the evaluation of the gradient via (7.3) can be done fast
since it involves only the computation of a one-dimensional integral. Furthermore, this
can be evaluated exactly since for the used basis functions simple integration rules are
exact. Thus no additional discretization error is introduced by the gradient evaluation
and no normal derivatives of the velocities have to be computed. Their values are
implicitly included in gγ , χγ . This fast and stable algorithm is fundamentally based
on the embedding domain technique by which these two Lagrange multipliers were
introduced.

9. Numerical examples. We considered a driven cavity flow as test example to
show feasibility of the embedding domain technique and the derivative formula (7.3).
The effort into the efficiency of the optimization was restricted to the choice of the
regularization type and parameter. The computational domain is a square with edge
length one. On the top edge a constant positive horizontal velocity is prescribed. The
other edges are regarded as walls with homogeneous Dirichlet boundary conditions.
A part of the bottom wall was set to be variable. We considered a tracking type cost
functional with A being the identity. The parameter ν was set to 1

100 . We chose the
observation region as ΩC := [0, 1] × [0.5, 1] and the desired state ud := uγd . The
curve Γγd for the desired state was the graph of a symmetric cubic spline function γd
between y = γd(x) = 0.0 near the lateral walls and y = γd(0.5) = 0.4. The function γ
had 13 degrees of freedom. The starting curve was a straight line at the level y = 0.2.
We used the box constraints γ ∈ [0.1, 0.5] and added a regularization term ε‖γ′‖2L2(I)

with ε = 10−5 to the cost functional J (γ).

As can be seen in Table 9.1 the convergence was very fast: After seven iterations
and nine function evaluations the cost functional was reduced by more than 99 percent.
After another iteration the error, e.g., at the point γ(0.5), is only 1 percent. The
difference at the other points is higher. The influence of the point γ(0.5) is most
important because the flow structure is mostly influenced by the height of the bottom
wall and less by its form. Streamlines and pressure distributions for desired state,
start configuration, and solution are depicted in Figure 9.1.

A comparison between the derivative computed by formula (7.3) and by finite
difference derivatives can be seen in Table 9.2. Here only one point (in the middle) of
γ was variable, the others were fixed at γ = γd with γd as above. A difference in the
magnitude of the derivative computed by (7.3) and the finite difference derivatives
can be seen. The finite difference derivatives differ much depending on their step-size.
The derivative computed by (7.3) represents the behavior of the cost functional on
the whole considered interval, specifically near the optimum γ(0.5) = γd(0.5) = 0.4.
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Fig. 9.1. Streamlines and pressure distribution for the driven cavity test case with Re = 100.
Top: desired state (cubic spline interpolated curve), middle: start curve, bottom: solution. The
observation region ΩC is the upper half of the cavity above the straight line.
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Table 9.1
Convergence behavior for the driven cavity test example. Only 7 of the 13 points of γ are listed.

It./Ev. = number of iterations/function evaluations.

It. Ev. J γ(0.125) γ(0.25) γ(0.375) γ(0.5) γ(0.625) γ(0.75) γ(0.875)
1 6.2999e-04 0.2000 0.2000 0.2000 0.2000 0.2000 0.2000 0.2000

1 2 6.2079e-04 0.1992 0.2003 0.2016 0.2023 0.2016 0.2003 0.1992
2 3 5.2649e-04 0.1000 0.2300 0.4094 0.5000 0.4097 0.2316 0.1000
3 4 4.831e-04 0.1842 0.2042 0.2311 0.2438 0.2312 0.2044 0.1843
4 5 3.2227e-04 0.1688 0.2084 0.2625 0.2875 0.2627 0.2089 0.1688
5 7 5.2006e-06 0.1344 0.2190 0.3399 0.3937 0.3408 0.2201 0.1344
6 9 2.7258e-06 0.1299 0.2204 0.3499 0.4079 0.3509 0.2216 0.1300
7 10 2.5865e-06 0.1312 0.2200 0.3473 0.4044 0.3482 0.2212 0.1312
8 25 2.5865e-06 0.1312 0.2200 0.3473 0.4044 0.3482 0.2212 0.1312
9 27 2.5722e-06 0.1316 0.2200 0.3466 0.4035 0.3475 0.2211 0.1316
10 42 2.5722e-06 0.1316 0.2200 0.3466 0.4035 0.3475 0.2211 0.1316
11 43 2.5665e-06 0.1317 0.2200 0.3466 0.4035 0.3475 0.2212 0.1318
γd 0.1061 0.2694 0.3673 0.4000 0.3673 0.2694 0.1061

Table 9.2
Comparison between derivatives computed by formula (7.3) and by finite differences with dif-

ferent step-sizes h. The only control parameter here was γ(x = 0.5), the other points of the curve
were fixed at γ(x) = γd(x), x �= 0.5. Note the changing of the sign of the analytic derivative and the
finite difference derivative with small step-size near the minimum at γ(0.5) = 0.4.

Derivative DγJ (γ) computed by
Formula Finite differences with step-size

γ(0.5) (7.3) h = 0.2 h = 0.1 h = 0.05 h = 0.02 h = 0.01
0.36 -3.6967e-04 2.9337e-03 2.8154e-04 -6.0385e-05 -9.4314e-05 -1.2357e-04
0.395 -1.2531e-04 4.3284e-03 1.4187e-03 2.0772e-04 -1.4312e-05 -2.7662e-05
0.4 2.6122e-06 4.5469e-03 1.5743e-03 3.1872e-04 4.5478e-05 -4.7811e-06

0.405 7.3862e-05 4.7846e-03 1.6900e-03 4.5924e-04 1.3941e-04 3.7376e-05
0.49 4.1378e-02 9.6293e-03 8.7152e-03 8.6892e-03 7.6160e-03 7.2823e-03

Proof of Lemma 7.2. Since λ̂γ |Ωcγ = 0 and f̃γ = f̃γ+tγ̄ = f on Ωγ ∩ Ωγ+tγ̄ the

integral in (̃fγ − f̃γ+tγ̄ , λ̂γ)Ω̂ has only to be taken over the set Ωγ \ (Ωγ ∩ Ωγ+tγ̄) =
I− × (γ + tγ̄, γ), where I− := {x ∈ I : γ̄(x) < 0}. With τγλγ = 0 we obtain

(f̃γ − f̃γ+tγ̄ , λ̂γ)Ω̂ =

∫
I−

∫ γ

γ+tγ̄

f(x, y) · [λγ(x, γ)− λγ(x, y)] dydx.

Estimating this term analogously to (6.2) we finally get

1

t
|(f̃γ − f̃γ+tγ̄ , λ̂γ)Ω̂| ≤

1

3
‖f‖L∞(Ω̂)2‖λγ‖H1(Ωγ)2t

1/2‖γ̄‖3/2L∞(I).

Since f ∈ L∞(Ω̂)2, λγ ∈ H1(Ωγ)2, and γ̄ ∈ S ′ ⊂ L∞(I) this tends to zero for t→ 0.

Proof of Lemma 7.3. Using Theorem 7.1 we obtain

〈χγ , τγûγ+tγ̄〉H∗
γ ,Hγ =

∫
I

χγ(x, γ) · ûγ+tγ̄(x, γ)
√

1 + γ′2 dx.

By Theorem 5.1 we have ûγ+tγ̄ |Ωc
γ+tγ̄

= 0 which implies ûγ+tγ̄(x, γ) = 0 for x ∈ I−
and ûγ+tγ̄(x, γ) = uγ+tγ̄(x, γ) for x ∈ I+ := I \ I−. With τγ+tγ̄uγ+tγ̄ = 0 we get

〈χγ , τγûγ+tγ̄〉H∗
γ ,Hγ = −

∫
I+

χγ(x, γ) · (uγ+tγ̄(x, γ + tγ̄)− uγ+tγ̄(x, γ))
√

1 + γ′2 dx
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= −
∫
I+

χγ(x, γ) ·
(∫ γ+tγ̄

γ

uγ+tγ̄,y(x, ξ) dξ

)√
1 + γ′2 dx.

Note that uγ+tγ̄,y ∈ H1(Ωγ+tγ̄)2 and thus its trace on the segment {(x, ξ) : ξ ∈
[γ(x), γ(x) + tγ̄(x)]} (for fixed x) is a L2 function. With the same argument the
restriction of τγuγ+tγ̄,y onto Γ+

γ is an L2 function. We show that

C :=
1

t
〈χγ , τγûγ+tγ̄〉H∗

γ ,Hγ
−
∫
I+

χγ(x, γ) · uγ,y(x, γ)γ̄
√

1 + γ′2 dx

tends to zero. Using 1
t

∫ γ+tγ̄
γ

uγ+tγ̄,y(x, γ) dξ = uγ+tγ̄,y(x, γ) γ̄ we obtain

C = C1 + C2 :=

∫
I+

χγ(x, γ) · [uγ+tγ̄,y(x, γ)− uγ,y(x, γ)] γ̄
√

1 + γ′2 dx

+
1

t

∫
I+

χγ(x, γ) ·
(∫ γ+tγ̄

γ

[uγ+tγ̄,y(x, ξ)− uγ+tγ̄,y(x, γ)] dξ

)√
1 + γ′2 dx.

We show that both terms tend to zero for t→ 0: With Hölder’s inequality we get

|C1| ≤ ‖γ̄‖L∞(I)‖χγ‖L2(Γγ)2‖uγ+tγ̄,y − uγ,y‖L2(Γ+
γ )2 .

The first two terms are bounded and we show that the last one tends to zero: The
family {‖uγ+tγ̄‖H2(Ωγ+tγ̄)2} and thus {‖uγ+tγ̄,y‖H1(Ωγ+tγ̄)2} is bounded for t ∈ [0, t0]
with some t0 sufficiently small. For Ω′

γ := Ωγ∩Ωγ+t0γ̄ which is contained in Ωγ+tγ̄ for
all t ∈ [0, t0] the family {uγ+tγ̄,y : t ∈ [0, t0]} is bounded in H1(Ω′

γ)2. This implies that
for every sequence {ti} ⊂ [0, t0] with lim ti = 0 there exists a subsequence {ti′} such
that {uγ+ti′ γ̄,y} is weakly convergent in H1(Ω′

γ)2. This implies strong convergence of
the sequence {uγ+ti′ γ̄,y} in L2(Ω′

γ)2. Theorem 6.2 implies ûγ+tγ̄,y → ûγ,y strongly in

L2(Ω̂)2 for t→ 0 and thus the weak convergence of {uγ+tiγ̄,y} in H1(Ω′
γ)2 is valid for

the whole sequence. We consider the traces of the functions of any sequence on the set
Γ+
γ = Γγ ∩ ∂Ω′

γ = {(x, γ(x)) : x ∈ I+}. By a classical embedding theorem the weak
convergence uγ+tγ̄,y ⇀ uγ,y in H1(Ω′

γ)2 implies strong convergence uγ+tγ̄,y|Γ+
γ
→

uγ,y|Γ+
γ

in L2(Γ+
γ )2. Thus C1 tends to zero for t → 0. Because uγ+tγ̄,yy is an L2

function on Ωγ+tγ̄ and thus also on {(x, y) : x ∈ I+, y ∈ (γ(x), γ(x)+ tγ̄(x))} we write

C2 =
1

t

∫
I+

χγ(x, γ) ·
(∫ γ+tγ̄

γ

∫ ξ

γ

uγ+tγ̄,yy(x, η) dηdξ

)√
1 + γ′2 dx

=
1

t

∫
I+

χγ(x, γ) ·
(∫ γ+tγ̄

γ

uγ+tγ̄,yy(x, η)(γ + tγ̄ − η) dη

)√
1 + γ′2 dx.

For a.e. x ∈ I+ the inner integral exists and can be estimated by Hölder’s inequality:∥∥∥∥∫ γ+tγ̄

γ

uγ+tγ̄,yy(x, η)(γ + tγ̄ − η) dη

∥∥∥∥
2

≤ max
η∈(γ,γ+tγ̄)

|γ + tγ̄ − η|
∫ γ+tγ̄

γ

‖uγ+tγ̄,yy(x, η)‖2 dη

≤ t|γ̄|
(∫ γ+tγ̄

γ

dη

)1/2(∫ γ+tγ̄

γ

‖uγ+tγ̄,yy(x, η)‖22 dη
)1/2

= (t|γ̄|)3/2
(∫ γ+tγ̄

γ

‖uγ+tγ̄,yy(x, η)‖22 dη
)1/2

.
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Thus we obtain

|C2| ≤ 1

t

∫
I+

‖χγ(x, γ)‖2
∥∥∥∥∫ γ+tγ̄

γ

uγ+tγ̄,yy(x, η)(γ + tγ̄ − η) dη

∥∥∥∥
2

√
1 + γ′2 dx

≤ t1/2
∫
I+

‖χγ(x, γ)‖2
(∫ γ+tγ̄

γ

‖uγ+tγ̄,yy(x, η)‖22 dη
)1/2

|γ̄|3/2
√

1 + γ′2 dx

≤ t1/2‖γ̄‖3/2L∞(I+)

√
1 + ‖γ‖2W 1,∞(I+)

∫
I+

‖χγ(x, γ)‖2
(∫ γ+tγ̄

γ

‖uγ+tγ̄,yy(x, η)‖22 dη
)1/2

dx

≤ t1/2‖γ̄‖3/2L∞(I)

√
1 + ‖γ‖2W 1,∞(I)‖χγ‖L2(Γγ)2 ‖uγ+tγ̄‖H2(Ωγ+tγ̄)2 .

Boundedness of {‖uγ‖H2(Ωγ)2}γ∈S ,S ⊂W 1,∞(I), and S ′ ⊂ L∞(I) now imply C2 → 0.

Proof of Lemma 7.4. Theorem 5.1 gives

〈gγ+tγ̄ , τγ+tγ̄ λ̂γ〉H∗
γ+tγ̄

,Hγ+tγ̄ =

∫
I−
gγ+tγ̄(x, γ + tγ̄)·

(∫ γ+tγ̄

γ

λγ,y(x, ξ) dξ

)√
1 + (γ′ + tγ̄′)2dx.

Adding zero in an appropriate way we get for the difference

1

t
〈gγ+tγ̄ , τγ+tγ̄ λ̂γ〉H∗

γ+tγ̄
,Hγ+tγ̄ −

∫
I−
gγ(x, γ) · λγ,y(x, γ)γ̄

√
1 + γ′2 dx

=

∫
I−

(
gγ+tγ̄(x, γ + tγ̄)

√
1 + (γ′ + tγ̄′)2 − gγ(x, γ)

√
1 + γ′2

)
· λγ,y(x, γ)γ̄ dx

+

∫
I−
gγ+tγ̄(x, γ + tγ̄) ·

(∫ γ+tγ̄

γ

[λγ,y(x, ξ)− λγ,y(x, γ)] dξ

)
γ̄
√

1 + (γ′ + tγ̄′)2 dx

=: D1 + D2.

Again we show that both terms tend to zero for t→ 0: We define the function

Ψ(x) :=

{
λγ,y

(
x, γ(x)

)
γ̄(x), x ∈ I−,

0, x ∈ I+
which is in L2(I)2 because λγ ∈ H2(Ωγ)2 and γ̄ ∈ S ′ ⊂ L∞(I). Then we have

D1 =

∫
I

(
gγ+tγ̄(x, γ + tγ̄)

√
1 + (γ′ + tγ̄′)2 − gγ(x, γ)

√
1 + γ′2

)
·Ψ(x) dx.

Using the Hilbert space adjoint of I−1
γ defined in (7.5) we may express D1 as

D1 = 〈((Iγ+tγ̄)−1)∗gγ+tγ̄ − (I−1
γ )∗gγ ,Ψ〉(L2(I)2)∗,L2(I)2 .

It can be shown that HI is dense in L2(I)2. Thus there exists a sequence {ψk}k in
HI with limk→∞ ψk = Ψ in L2(I)2. For fixed k we may hence estimate

|D1| ≤ |〈(Iγ+tγ̄)∗gγ+tγ̄ ,Ψ− ψk〉(L2(I)2)∗,L2(I)2 |
+|〈(Iγ+tγ̄)∗gγ+tγ̄ − (I−1

γ )∗gγ , ψk〉H∗
I
,HI |+ |〈(I−1

γ )∗gγ , ψk −Ψ〉(L2(I)2)∗,L2(I)2 |.
The second term tends to zero since by Theorem 6.2 the Lagrange multipliers are
weak-∗ convergent in H∗

I if γ + tγ̄ → γ in W 1,∞(I) which is the case since γ, γ + tγ̄ ∈
S ⊂W 1,∞(I). For every k ∈ N we thus obtain that

|D1| ≤ |〈((Iγ+tγ̄)−1)∗gγ+tγ̄ ,Ψ− ψk〉(L2(I)2)∗,L2(I)2 + 〈(I−1
γ )∗gγ , ψk −Ψ〉(L2(I)2)∗,L2(I)2 |.
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Both terms on the right tend to zero because ψk → Ψ in L2(I)2 and the family
{(I−1

γ )∗gγ}γ∈S is uniformly bounded in (L2(I)2)∗. Thus D1 tends to zero for t→ 0.
For D2 we use a similar argumentation as for C2 in the proof of Lemma 7.3. We

just replace uγ+tγ̄ by λγ , I+ by I−, and χγ(x, γ)
√

1 + γ′2 by gγ+tγ̄(x, γ)
√

1 + (γ′ + tγ̄′)2.
Because {‖λγ‖H2(Ωγ)2}γ∈S is bounded by Theorem 7.1 we get that D2 tends to zero.
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LINEAR QUADRATIC OPTIMIZATION FOR SYSTEMS IN THE
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Abstract. In this paper the following formulation of the linear quadratic optimal control prob-
lem for dynamical systems in the behavioral setting is proposed: given a linear, time-invariant, and
complete system, find the set of trajectories of the system that optimize a quadratic-type cost func-
tion and that satisfy some linear static constraints. This formulation provides a unifying framework,
where several generalized versions of the classical LQ optimal control can be stated and solved.

The existence of solutions is first discussed. It is shown that a necessary and sufficient condition
for the existence of solutions may be obtained as a by-product of a reduction procedure translating
the problem into an equivalent one of minimum complexity. Such a procedure is based on the theory
of �2-systems in the behavioral setting. Once the complexity is reduced, a parametrization of the
set of optimal solutions is obtained by employing a behavioral realization technique and a two-step
optimization procedure.

Key words. linear quadratic optimal control, behavioral approach, �2-systems, static con-
straints

AMS subject classifications. 49N05, 49N10, 93C05

PII. 0363012999352431

1. Introduction. In the behavioral setting, a system is defined as a triple

Σ = (T,W,B),(1.1)

where T is a time set, W is the alphabet of the system, and the behavior B is the set
of trajectories of the system. This definition of system has been introduced by Jan
C. Willems in the latter half of the 1980s [22, 23] and, starting from these classical
papers, a relevant amount of work has been produced in this direction.

In the above definition, the behavior B is simply the set of trajectories compatible
with the (equations of the) system: the classical distinction of the signal of the system
in inputs, states, and outputs is no longer present. Also, B is a completely arbitrary
set of trajectories which may be described by equations (or inequalities) given in im-
plicit form, and no causality assumptions are made. For these reasons the behavioral
set-up has been revealed to be the most suitable framework to treat modeling and
identification for many physical and economic systems where the above-mentioned
features are crucial.

The contribution of the present paper is to formulate and solve the linear
quadratic (LQ) optimal control problem in the behavioral setting: as it will be clar-
ified in section 2, this formulation encompasses as particular cases the classical LQ
optimal control problem, singular and cheap optimal control problems, and optimal
control for descriptor systems, and allows us to deal with very general dynamic equa-
tions, static constraints, and cost functions. This formulation has the advantage, of a
methodological and practical nature, of providing a unifying and elegant framework
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where a large variety of physical and economic problems can be directly stated and
solved with no need of preliminary manipulations. In particular, in economical sys-
tems, dynamic and algebraic equations are often mixed together, yielding an implicit
dynamic, and nonstandard static constraints are often imposed. Moreover, in such
systems, the distinction of signals in inputs, states, and outputs is sometimes artificial
and not built-in in the physical model, so that it results naturally to avoid an a priori
distinction of such a kind in the mathematical model too.

In recent years some works on the optimal control in the behavioral setting have
been produced [25, 16]. In [25] the behavioral approach to LQ optimal control was
first introduced in the following form: given a system and a quadratic cost function,
find the subsystem whose behavior is constituted by all the trajectories w∗ whose
cost cannot be decreased by a perturbation of finite support. The subbehavior B∗ of
optimal trajectories is obtained by interconnecting the original system with a suitable
“optimal controller.” We recall that in the behavioral setting the interconnection of
systems corresponds to the classical feedback control [24].

In the present paper we propose a different formulation of the LQ optimal control
problem. Such a formulation, in our opinion, is more in the spirit of the classical
optimal control problems, where the optimal solution is not required a priori to be of
feedback type and boundary conditions are assigned. For example, the classical LQ
optimal control problem for systems described by state equations can be expressed
in the following way. Find the set of controls u∗(·) such that the corresponding
trajectories (x∗(·), u∗(·)) (with fixed initial condition x(0) = x0) satisfy

x(t+ 1) = Ax(t) +Bu(t)(1.2)

and minimize the cost function

J(x, u) =

∞∑
t=0

yT (t)y(t),(1.3)

where

y(t) = Cx(t) +Du(t).(1.4)

The search for the optimal solution is performed in the space of all possible controls
and the fact that the optimal solution happens to be of closed-loop type has no
relation with the formulation of the problem and it is only due to the particular
choice of boundary conditions. Note that, if the initial condition x(0) is not fixed, one
of the optimal controls is identically zero, the optimal cost is zero, and the problem
is trivial. The fact that makes the problem meaningful is that x(0) is fixed a priori.

In this paper we address the following optimization problem which appears to be
the direct extension to the behavioral framework of the classical LQ optimal control
problem just described. Given a linear time-invariant and complete (see section 1.1 for
the precise definition) system with behavior B and a quadratic type cost function J(·),
find the set B∗ ⊆ B of trajectories of the behavior which minimize the cost function J
and satisfy a static constraint: for example, we may require that some components of
the trajectory take some fixed values at particular time instants. In the classical LQ
optimal control setting, this static constraint corresponds to the position x(0) = x0,
which fixes the initial state to a certain value x0.

The first issue that we address is the problem solvability, which is shown to be
equivalent to the existence of trajectories of the system satisfying the static constraints
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and giving rise to a finite cost. We then establish a reduction procedure which allows
us to substitute the original system with a system with minimal complexity (i.e., a
linear time-invariant and complete system having the smallest possible set of trajecto-
ries), so that the search of optimal trajectories can be performed among a minimal set.
These issues are shown to be strictly connected to the theory of �2-systems, to which
the first part of the paper is dedicated. In particular, some results on �2-systems,
which appear to be of independent interest, are derived in section 3.

The paper is organized as follows. In subsection 1.1 we fix the notation and
briefly recall some well-known results on behavioral theory of linear systems. In sec-
tion 2 we give a precise mathematical formulation of our LQ optimization problem
for autoregressive (AR) systems. In section 3 we provide a very easy necessary and
sufficient condition for the problem solvability, and we present a procedure to reduce
the complexity of the problem by eliminating from the behavior the trajectories cor-
responding to infinite cost. In section 4 we finally present the solution of our problem.
In section 5 we briefly draw some conclusions.

1.1. Preliminaries. The complete theory of behavioral approach to dynamical
systems is really ponderous, and it is beyond the scope of this paper to illustrate such
a theory; for an illustration of the theory, we refer the reader to [23]. However, for the
ease of the reader and to fix the notation we now detail the class of systems that will
be considered in what follows and some of the very basic properties of the systems in
this class.

We deal with systems of the form (1.1) with the set of integers Z as the time
set (discrete-time systems), with the finite dimensional vector space R

q as the signal
alphabet, and with a behavior that coincides with the set of solutions of a linear
difference equation with (matrix valued) constant coefficients.

More precisely, if σ is the usual backward shift operator, let R[σ, σ−1]l×q be
that set of matrices whose entries are Laurent polynomials in σ (i.e., polynomials
with both positive and negative powers of the indeterminate). A polynomial matrix
in R[σ, σ−1]l×q induces a linear shift-invariant operator from (Rq)Z to (Rl)Z in an
obvious way. This operator is called matrix shift operator. A matrix shift operator
R(σ) in R[σ, σ−1]l×q can be represented in the following way:

R(σ) =

K∑
i=k

Riσ
i,

where k ≤ K and Ri ∈ R
l×q. The kernel of this matrix shift operator has therefore

the following structure:

kerR(σ) =

{
w ∈ (Rq)Z :

K∑
i=k

Riw(t+ i) = 0 ∀t ∈ Z

}
.(1.5)

In this paper we consider dynamical systems whose behaviors coincide with kernels
of matrix shift operators. We recall that the class of AR systems coincides with the
class of systems whose behaviors are linear, shift-invariant, and complete, where a
behavior B is said to be complete if

w ∈ B ⇔ w|[t1,t2] ∈ B|[t1,t2] ∀t1, t2 ∈ Z,

and where the symbol w|[t1,t2] means the restriction of the trajectory w to the interval
[t1, t2].
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Summarizing, we consider the class of dynamical systems Σ = (Z,Rq, kerR(σ)),
where R(σ) is a matrix shift operator in R[σ, σ−1]l×q. These systems are called AR
systems and the representations of the form (1.5) are called AR representations. The
importance and the properties of AR systems and AR representations are widely
investigated, especially in [23].

2. Problem formulation. In this section we give a precise mathematical for-
mulation of our problem. Let B = kerR(σ), R(σ) ∈ R[σ, σ−1]l×q, be the behavior of
an AR system Σ = (Z,Rq,B). Let w be a trajectory of B: we consider a quadratic
cost function J defined by

J(w) := ||w2|[0,+∞)
||22 =

∞∑
t=0

wT2 (t)w2(t),(2.1)

where we have defined w2 := R2(σ)w with R2(σ) ∈ R[σ, σ−1]r×q being a polynomial
matrix. Observe that, since w2 is uniquely specified by w, J(w) is a well-defined
quadratic cost function of w.

Clearly we have J(w) ≥ 0 for all the trajectories w and then the set B0 of trajec-

tories of B which minimize J is trivially B0 = kerR(σ) ∩ kerR2(σ) = ker
[
R(σ)
R2(σ)

]
.

The above minimization may be viewed as the behavioral counterpart of the clas-
sical LQ optimal control problem in the case when the initial state is unconstrained.
As we have seen in the introduction, a static constraint renders the problem mean-
ingful. This happens in the behavioral setting too. A very general linear constraint
is the following:

rhw(h) + rh+1w(h+ 1) + · · ·+ rHw(H) = b,(2.2)

where ri ∈ R
s×q and b ∈ R

s. Defining the polynomial matrix R1(σ) ∈ R[σ, σ−1]s×q as
R1(σ) :=

∑H
i=h riσ

i, and setting w1 := R1(σ)w, the constraint (2.2) may be rewritten
in the more compact form

w1(0) = (R1(σ)w)(0) = b.(2.3)

The main issue of this paper is the analysis and the solution of the following
optimization problem. Find the set T (b) of all trajectories w such that

R(σ)w = 0,
w1(0) = b,
J(w) = ||w2|[0,+∞)||22 is minimal,

(2.4)

where R(σ) ∈ R[σ, σ−1]l×q, R1(σ) ∈ R[σ, σ−1]s×q, R2(σ) ∈ R[σ, σ−1]r×q, w1 :=
R1(σ)w, and w2 := R2(σ)w.

Problem (2.4) presents the following features which are compared with those of
the classical LQ optimal control problem.

The dynamics. The first equation of (2.4) represents a very general linear dynam-
ics. It encompasses, as a special case, the descriptor systems dynamics

Ex(t+ 1) = Ax(t) +Bu(t).(2.5)

In fact, (2.5) may be rewritten in the form R(σ)w = 0, just by setting

w =

[
x
u

]
(2.6)



OPTIMAL CONTROL IN THE BEHAVIORAL APPROACH 163

and R(σ) := R0 + σR1, where R0 := [−A | − B] and R1 := [E | 0]. Moreover,
linear difference equations (without control variables), which are typical of calculus
of variations problems, are included in the dynamics of (2.4) too.

The static constraint. Instead of just fixing the initial condition, a constraint of
the form (2.3) fixes some linear combinations of the values of (some component of)
the trajectory at arbitrary times. As a particular case, (2.3) can force the trajectory
to assume fixed values at fixed times. This possibility is very interesting in many
applications (see, e.g., [4, 3] and references therein); a further example is the landing
problem [20]: a control tower passes to an airplane a collection of way points that are
vectors of position and velocity in R

3 together with times of arrival. This is fitted
very well by the type of constraints (2.3).

The cost function. The cost index (2.1) is remarkably general because R2(σ)
is a Laurent polynomial matrix and this allows us to weigh together values of the
trajectory w(t) at different times and to consider the values of the trajectory w(t)
for t ≥ T with T ∈ Z arbitrarily fixed. Singular optimal control problems may be
naturally formulated into this framework. With reference to the dynamics (2.5), such
problems consist in minimizing a cost function (1.3) with y being given by (1.4) and
R := DTD being singular. It is clear that such a cost function is expressible in the
form (2.1) just by setting w as in (2.6) and R2(σ) = [C | D]. Another interesting
observation is that frequency shaping techniques in classical optimal control theory
(see [1]) can be expressed directly in the time domain, using the generalized cost
function (2.1). Finally, notice that the cost function (2.1) can be seen to be the
discrete-time version of a quadratic differential form, as defined in [28].

The above observations show that formulation (2.4) is pretty general and covers a
variety of optimal control problems. It is particularly useful in problems with implicit
dynamics which are frequent in applications (see, e.g., [5, 13, 2] and references therein).
Moreover, formulation (2.4) suits very well control problems of economic systems (one
of the fields in which the behavioral framework seems more natural) in which the
dynamic is often implicit and it is required that at some time instants T1, T2, . . . , Tr,
some reference variables match exactly their target values. One of these cases is the
Leontief model for which many types of optimization problems have been stated and
studied (see, e.g., [15] and references therein).

A different version of the problem (2.4) is the case of finite time horizon, i.e., the
case when the cost function is

J(w) :=

T∑
t=0

wT2 (t)w2(t).(2.7)

As it will be clear in what follows, the solution of the problem with cost function (2.7)
may be regarded as a subproblem of (2.4). For this reason we will not address the
cost (2.7).

We have defined the dynamic equations of the system over Z, even though the
cost is determined by the values of w2(t) only for t ≥ 0. This choice is based on
the fact that most of the classical literature on behavioral approach to discrete-time
linear systems deals with the biinfinite time axis case, even though the theory for
discrete-time linear systems over the time axis N is quite analogous [22]. On the other
hand, the choice of cost functions depending on the restriction of the signal on the
nonnegative time axis is quite natural in most of the applications.
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In some cases, however, it may be natural to consider the cost function

J(w) :=

∞∑
t=−∞

wT2 (t)w2(t),(2.8)

depending on the whole time axis Z. This choice of considering the whole Z as the
time axis permits us to treat the cost function (2.8) in the same framework. The
corresponding optimization can be solved employing essentially the same techniques
which we propose for problem (2.4).

3. Problem solvability and reduction of complexity. In this section we
provide a procedure to test the solvability of the problem and to reduce its complexity.
To this aim we will derive some interesting results on �2-systems [24, 27, 8].

Define (�2+)
r as the set of all v ∈ (Rr)Z such that

||v|[0,+∞)||22 :=
∞∑
t=0

vT (t)v(t) <∞.

Notice that (�2+)
r is not a Hilbert space, since any trajectory which is zero on the

nonnegative time axis have zero norm. In order to obtain a Hilbert space structure it
is enough to consider equivalent two trajectories if they coincide on the nonnegative
time axis [6, p. 7].

Given the problem (2.4), let

T (b) := {w ∈ (Rq)Z : R(σ)w = 0, w1(0) = b,

and J(w) is finite and minimal}(3.1)

be the set of all optimal trajectories. An important preliminary question is to un-
derstand when the previous problem admits a solution. In other words, we want to
determine the vector space

B = {b ∈ R
s : T (b) �= ∅},(3.2)

that is the set of vectors b for which an optimal solution exists.
It is clear that only trajectories w ∈ kerR(σ) such that R2(σ)w ∈ (�2+)

r are
relevant in problem (2.4). In fact, all the other trajectories give rise to an infinite
cost. Then, define

Bf := {w ∈ kerR(σ) : R2(σ)w ∈ (�2+)r}(3.3)

to be the set of trajectories in B for which the corresponding cost is finite.
This set is linear and shift-invariant. However, it is not complete and thus it

cannot be described by an AR representation.
This can be overcome by introducing the concept of completion of a behavior.

Let B ⊆ (Rq)Z be any behavior. The completion of B is given by the following set of
trajectories:

CP (B) := {w ∈ (Rq)Z : w|[t1,t2] ∈ B|[t1,t2] ∀ t1, t2 ∈ Z},

where B|[t1,t2] is defined in section 1.1. Notice that, if we consider in (Rq)Z the point-
wise convergence topology [23], then the concept of completion just defined coincides
with closure with respect to this topology.
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It is clear that CP (B) is always complete and that, if B is linear and shift-
invariant, then CP (B) is linear, shift-invariant, and complete, and so it can be char-
acterized by an AR representation. In particular, this is the case for the behavior

Br := CP (Bf ),(3.4)

whose importance is clarified by the following proposition.
Proposition 3.1. Let B and Br be defined in (3.2) and in (3.4), respectively.

Then we have

B = {b ∈ R
s : ∃w1 ∈ R1(σ)Br such that w1(0) = b}.(3.5)

Proof. One way is easy. Suppose, conversely, that there exists v ∈ Br such that
(R1(σ)v)(0) = b. Then for all n ∈ N there exists w ∈ kerR(σ) such that R2(σ)w ∈
(�2+)

r and w|[−n,n] = v|[−n,n]. Choosing n big enough, we have that (R1(σ)w)(0) =
(R1(σ)v)(0) = b. The existence of a trajectory satisfying the restrictions and providing
a finite cost implies that T (b) �= ∅.

The previous proposition has the following straightforward corollary which con-
nects the problem solvability with a system-theoretic property: the trimness. We
recall that an AR system Σ = (T,W,B) is called trim if for all α ∈ W there exists
w ∈ B such that w(0) = α, [23, p. 188].

Corollary 3.1. Problem (2.4) is solvable for all b ∈ R
s if and only if the

behavior B1 := R1(σ)Br is trim.
An interesting consequence of Proposition 3.1 is that if we substitute B with Br,

the set of optimal trajectories T (b) does not change. Hence it may be convenient to
perform the search for the optimal trajectories in the set Br since Br ⊆ B, and so this
reduction will cause a simplification of the optimization problem. For these reasons
it becomes interesting to find a procedure which provides an AR representation of
Br starting from R(σ) and R2(σ). We will call the behavior Br the reduction of
B = kerR(σ) with respect to R2(σ). Moreover, we will say that B is reduced with
respect to R2(σ) if it coincides with its reduction with respect to R2(σ). Notice that
B is reduced with respect to R2(σ) if and only if B1 := R2(σ)B is reduced with respect
to the identity or, equivalently, if and only if

B1 = CP (B1 ∩ (�2+)q).
In this case, we will say that the behavior B1 is reduced.

It can be shown that the problem of constructing AR representations of reduced
behaviors is connected with the theory of �2-systems as presented in [24, 27, 12, 8,
11, 17, 21]. In the next subsection we will present some definitions and results of this
theory.

3.1. �2-systems and their properties. A linear shift-invariant system Σ̃ =
(Z,Rq, B̃) is called an �2-system if B̃ is a linear shift-invariant and closed (with respect
to the �2 topology) subspace of

(�2)q :=

{
w ∈ (Rq)Z : ||w||22 :=

+∞∑
t=−∞

wT (t)w(t) < ∞
}

.

A particularly important class of �2-systems is the class of so-called finite dimensional
�2-systems (see [24, p. 280]) which is the set of �2-systems whose behavior B̃ satisfies
the condition

B̃ = CP (B̃) ∩ (�2)q.
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It can be shown that in this case CP (B̃) is always controllable [24]. Moreover, if
Σ = (Z,Rq,B) is a linear shift-invariant complete system, then B̃ := B ∩ (�2)q is the
behavior of a finite dimensional �2-system, and in this case CP (B̃) is the behavior of
the controllable subsystem of Σ (see [24, p. 266]), that is, the system Σc = (Z,Rq,Bc)
such that

Bc = CP ({w ∈ B : w has finite support}),

and which is the largest controllable subsystem of Σ.
Analogous considerations can be done if, instead of taking �2-systems, we consider

�2+-systems. In this case finite dimensional �
2
+-systems are systems Σ̃ = (Z,Rq, B̃) such

that

B̃ = CP (B̃) ∩ (�2+)q.

Also in this case, if Σ = (Z,Rq,B) is a linear shift-invariant complete system, then
B̃ := B ∩ (�2+)q is the behavior of a finite dimensional �2+-system. However, now the

behavior is not controllable, but only stabilizable (see [26]). More precisely, CP (B̃) is
the behavior of the stabilizable subsystem of Σ namely the system Σs = (Z,Rq,Bs)
such that

Bs = CP

({
w ∈ B : lim

t→+∞w(t) = 0

})
which is the largest stabilizable subsystem of Σ. This is a consequence of the following
proposition.

Proposition 3.2. Let R(σ) ∈ R[σ, σ−1]p×q be full row rank and B = kerR(σ).
Moreover, let Fs(σ), Fi(σ) ∈ R[σ, σ−1]p×p, and R′(σ) ∈ R[σ, σ−1]p×q be polynomial
matrices such that detFs(σ) has zeros in C< := {z ∈ C : |z| < 1}, detFi(σ) has
zeros in C≥ := {z ∈ C : |z| ≥ 1}, R′(σ) is left prime, and

R(σ) = Fi(σ)Fs(σ)R
′(σ).(3.6)

Then

CP (B ∩ (�2+)q) = kerFs(σ)R
′(σ).

Proof. We show first that

kerR(σ) ∩ (�2+)q ⊆ kerFs(σ)R
′(σ),

which implies immediately that

CP (B ∩ (�2+)q) ⊆ kerFs(σ)R
′(σ).

Let w ∈ kerR(σ) and w ∈ (�2+)
q. Since R′(σ) is left prime, then there exists a

polynomial matrix X(σ) such that R′(σ)X(σ) = I, where I is the identity matrix.
Then define w1 := X(σ)R′(σ)w and w2 := w − w1. First notice that w2 ∈ kerR′(σ)
and so w2 ∈ kerFs(σ)R

′(σ). Notice, moreover, that w1 ∈ X(σ) kerFi(σ)Fs(σ). Since
w ∈ (�2+)q, then it is clear that

lim
t→+∞w(t) = 0.
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We can argue that limt→+∞ w1(t) = 0. Let v ∈ kerFi(σ)Fs(σ) such w1 = X(σ)v.
Then v = R′(σ)w1 and so limt→+∞ v(t) = 0. Therefore we have Fs(σ)v ∈ kerFi(σ)
and that limt→+∞ Fs(σ)v(t) = 0. It is easy to see that this can happen if and only if
Fs(σ)v = 0. This implies that w1 ∈ kerFs(σ)R′(σ) and so w ∈ kerFs(σ)R′(σ).

Suppose, conversely, that w ∈ kerFs(σ)R′(σ). We want to show that for all n ∈ N

there exists w′ ∈ kerR(σ) ∩ (�2+)q such that w|[−n,n] = w′
|[−n,n]. This implies that

kerFs(σ)R
′(σ) = CP (kerFs(σ)R

′(σ)) ⊆ B.
Fix n ∈ N and let w1 := X(σ)R′(σ)w and w2 := w − w1. Since R′(σ)w ∈ kerFs(σ),
then w1 ∈ (�2+)

q. On the other hand, since w2 ∈ R′(σ) and since kerR′(σ) is con-
trollable, then there exists w′

2 ∈ R′(σ) such that w2|[−n,n] = w′
2|[−n,n] and such that

w′
|[N,+∞) = 0 for N ∈ N big enough. Define w′ := w1 + w′

2. Then it is clear that

w′ ∈ kerR(σ) ∩ (�2+)q and that w|[−n,n] = w′
|[−n,n].

As a corollary of the previous proposition, we obtain an effective characterization
of stabilizable behaviors which has been already proposed in [26]. Its proof easily
follows from the previous proposition and from proposition 4.3 in [23].

Corollary 3.2. Let R(σ) ∈ R[σ, σ−1]p×q be a rank r polynomial matrix. Then
B := kerR(σ) is stabilizable if and only if

rank R(λ) = r

for all λ ∈ C≥.

3.2. Construction of reduced behaviors. Consider again the problem of
constructing AR representations of reduced behaviors. In the particular case when
R2(σ) = I, the reduction may be obtained by employing Proposition 3.2. In order to
extend such a procedure to the general case, we need the following technical lemma.

Lemma 3.1. Let B = kerR(σ), where R(σ) ∈ R[σ, σ−1]l×q, and let R2(σ) ∈
R[σ, σ−1]r×q. If {vn}∞n=0 is a sequence in R2(σ)B, converging in the pointwise conver-
gence topology, then there exists a sequence {wn}∞n=0 in B converging in the pointwise
convergence topology, such that vn = R2(σ)wn.

Proof. We first suppose that B = (Rq)Z and consider the scalar case p = q = 1.
Suppose that

R2(σ) =

L∑
i=l

Riσ
i,

where Rl, RL are nonzero reals. Let {vn}∞n=0 be a sequence in R2(σ)B, and let
{wn}∞n=0 be a sequence of trajectories satisfying

(i) wn(t) = 0 for all n and for all t ∈ [l, L− 1], and
(ii) vn = R2(σ)wn.

It is clear that (i) and (ii) fix uniquely wn. We want to show that if {vn}∞n=0 converges
in the pointwise convergence topology, then the sequence {wn}∞n=0 converges in the
same topology, i.e., for all t̄ ∈ Z the sequence of real numbers {wn(t̄)}∞n=0 converges.
This is clearly true for t̄ ∈ [l, L− 1]. Suppose, by induction, that {wn(t̄)}∞n=0 for all t̄
in an interval [h,H]. Then, since we have

vn(H + 1− L) = Rlwn(H + 1 + l − L) + · · ·+RL−1wn(H) +RLwn(H + 1)

and since vn(H + 1− L), wn(H + 1− L+ l), . . . , wn(H) all converge as sequences in
n, then also wn(H + 1) must converge. In the same way we can show that wn(h− 1)
must converge.
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Consider now the vector case and consider the Smith form [9] of R2(σ),

U(σ)R2(σ)V (σ) =

[
Λ(σ) 0
0 0

]
,

where Λ(σ) is a diagonal matrix and U(σ), V (σ) are unimodular. Take v̄n := U−1(σ)vn.
Since the matrix shift operators are continuous, then {v̄n}∞n=0 converges. Moreover,
since V (σ) is onto, we have that

v̄n ∈ im
[
Λ(σ) 0
0 0

]
.

Using the result obtained in the scalar case, we may argue that there exists a con-
verging sequence {w̄n}∞n=0 such that

v̄n =

[
Λ(σ) 0
0 0

]
w̄n.

Finally letting wn = V −1(σ)w̄n, we have that {wn}∞n=0 converges and vn = R2(σ)wn.
Suppose, finally, that vn ∈ R2(σ)B and that {vn}∞n=0 converges. Then there exists

w′
n ∈ B such that vn = R(σ)w′

n. Letting

R̄(σ) :=

[
R(σ)
R2(σ)

]
,

we have that

R̄(σ)w′
n =

[
R(σ)
R2(σ)

]
w′
n =

[
0
vn

]
converges and hence, by the previous arguments, there exists a convergent sequence
{wn}∞n=0 such that

R̄(σ)wn =

[
R(σ)
R2(σ)

]
wn =

[
0
vn

]
.

This implies that R(σ)w = 0 and that vn = R2(σ)wn.
Remark. The previous lemma is equivalent to the fact that the linear map

R2(σ)|B : B −→ R2(σ)B,
w �→ R2(σ)w

is open [7, p. 221]. In fact, it can be proved that Lemma 3.1 is a particular case of
the open mapping theorem [18].

We are now in position to prove the next proposition.
Proposition 3.3. Let B = kerR(σ), where R(σ) ∈ R[σ, σ−1]l×q, and let R2(σ) ∈

R[σ, σ−1]r×q. Then the reduced behavior Br (defined in (3.4)) is given by the expres-
sion

Br = ker

[
R(σ)

M(σ)R2(σ)

]
,(3.7)

where M(σ) ∈ R[σ, σ−1]g×r is such that kerM(σ) = CP (R2(σ)B ∩ (�2+)r)).



OPTIMAL CONTROL IN THE BEHAVIORAL APPROACH 169

Proof. We first verify that

Br ⊆ B ∩ kerM(σ)R2(σ).

Clearly Br ⊆ B. Moreover, if w ∈ Br, then R(σ)w = 0 and R2(σ)w ∈ (�2+)
r, so that

R2(σ)w ∈ R2(σ)B ∩ (�2+)r ⊆ kerM(σ) or, equivalently, w ∈ ker[M(σ)R2(σ)].
Suppose, conversely, that w ∈ B∩kerM(σ)R2(σ). Let Bf be the behavior defined

in (3.3). We have to show that

w ∈ CP (Bf ).
Since w ∈ kerM(σ)R2(σ), then v := R2(σ)w ∈ kerM(σ) = CP (R2(σ)B ∩ (�2+)

r),
and so there exists a sequence {vn}∞n=0 in R2(σ)B ∩ (�2+)

r converging to v in the
pointwise convergence topology. By the previous lemma we can argue that there
exists a sequence {wn}∞n=0 in B that converges in the pointwise convergence topology
to w′ ∈ B and such that vn = R2(σ)wn and hence, by the continuity of R2(σ), we
have R2(σ)w = R2(σ)w

′. Consider the new sequence {wn − w′ + w}∞n=0 and observe
that its elements are still in B. Moreover, observe that R2(σ)wn = vn ∈ (�2+)r so that
wn ∈ Bf . Consequently, w is in the closure of the previous set, just as we need to
show.

By the previous proposition, an essential step in determining Br is the computa-
tion of an AR representation of CP (R2(σ)B ∩ (�2+)r). To this aim we first look for an
AR representation of R2(σ)B. Since w2 ∈ R2(σ)B if and only if[

I
0

]
w2 =

[
R2(σ)
R(σ)

]
w(3.8)

for some w ∈ (Rq)Z, an AR representation of R2(σ)B,
R2(σ)B = kerN(σ),

can be obtained by eliminating the latent variable w in (3.8) as suggested in [24, p.
265]. After this elimination we are in the range of application of Proposition 3.2.
Therefore, it is possible to obtain an AR representation for CP (R2(σ)B ∩ (�2+)r):

CP (R2(σ)B ∩ (�2+)r) = kerM(σ).

Notice that the previous arguments prove the following result.
Corollary 3.3. The behavior B = kerR(σ) is reduced with respect to R2(σ) if

and only if R2(σ)B is stabilizable.
Therefore, if we want to verify whether B is reduced with respect to R2(σ), we

can simply apply Corollary 3.2 to any AR representation of R2(σ)B.
In view of the previous arguments, from now on, we can assume without loss of

generality that in problem (2.4) the behavior B = kerR(σ) is reduced with respect to
R2(σ).

4. Optimal trajectories in AR systems. In this section we show how the
problem of finding the set of the optimal trajectories of a system Σ can be translated
into an LQ optimization problem for a system in state form. This will be done
employing a driving variable state space representation of Σ. This second optimization
problem is not the classical one, because it has a linear constraint on the initial state
and on the initial input. However, we will give a closed form solution using a two-step
optimization.
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In the next subsection we derive a state space reformulation of problem (4.1).
In subsection 4.2 we describe the state space counterpart of the results of section 3.
More precisely, we derive a necessary and sufficient condition, based on the state space
representation, for the existence of solutions. We also describe a procedure to perform
the reduction described in subsection 3.2 in terms of the state space representation.
These results allow us to derive in subsection 4.3 a parametrization of the set of
optimal trajectories.

4.1. From AR to state space representation. We recall from [23] that given
an AR system Σ = (Z,Rq,B), there exist A ∈ R

n×n, B ∈ R
n×m, C ∈ R

q×n, D ∈ R
q×m

such that w ∈ B if and only if there exist x ∈ (Rn)Z and u ∈ (Rm)Z such that{
x(t+ 1) = Ax(t) +Bu(t),

w(t) = Cx(t) +Du(t)
∀t ∈ Z.(4.1)

The signal x is called state variable while the signal u is called driving variable. The
representation (4.1) of the original system is called driving variable state representa-
tion. This state space representation has been introduced in [23], where the properties
of minimal representations are also analyzed. For our purposes it is sufficient to re-
call that minimal driving variable representations exist, they may be computed by
employing linear algebra techniques, and they have the state trimness property. The
realization (4.1) is said to be state trim [23] if and only if

{x0 ∈ R
n : ∃x ∈ (Rn)Z, u ∈ (Rm)Z, w ∈ B satisfying (4.1)

such that x(0) = x0} = R
n.

(4.2)

The procedure determining the set of all optimal trajectories T (b) proposed in
this paper is based on the driving variable representation. Suppose that we are dealing
with problem (2.4), where we can suppose that B = kerR(σ) is reduced with respect
to R2(σ). Consider the AR system Σ̄ = (Z,Rq+s+r, B̄), where

B̄ = ker

 R(σ) 0 0
R1(σ) −I 0
R2(σ) 0 −I


=


 w
w1

w2

 ∈ (Rq+s+r)Z : R(σ)w = 0, w1 = R1(σ)w, w2 = R2(σ)w

 ,

and consider a driving variable state representation of Σ̄:
x(t+ 1) = Ax(t) +Bu(t),

w(t) = Cx(t) +Du(t),
w1(t) = C1x(t) +D1u(t),
w2(t) = C2x(t) +D2u(t),

t ∈ Z,(4.3)

where x ∈ (Rn)Z is the state variable and u ∈ (Rm)Z is the driving variable. Since
(4.3) is a state representation of the system Σ̄, then (w,w1, w2) ∈ B̄ if and only if
there exists a state trajectory x and a driving variable trajectory u such that (4.3) is
satisfied for all t ∈ Z. The complexity of the solution of our problem will depend on the
dimension n of the state space of the representation (4.3). Hence, it is convenient to
consider a minimal state representation of B̄. For this reason, from now on, without
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loss of generality, we assume that (4.3) is a minimal representation of B̄ and, in
particular, that state trim property (4.2) holds true.

Consider now the following optimization problem. Find the set of trajectories
(x, u) ∈ (Rn+m)N such that

x(t+ 1) = Ax(t) +Bu(t), t ∈ N,
C1x(0) +D1u(0) = b,

J(x, u) :=
∑∞
t=0[x

T (t)uT (t)]

[
CT2 C2 CT2 D2

DT
2 C2 DT

2 D2

] [
x(t)
u(t)

]
is minimal.

(4.4)

The following proposition shows that problem (4.4) is equivalent to problem (2.4).
Proposition 4.1. Let T (b) be the set of optimal trajectories defined in (3.1).

We have that w ∈ T (b) if and only if there exists (x, u) ∈ (Rn+m)N satisfying the
requirements of problem (4.4) and such that

w(t) = Cx(t) +Du(t) ∀t = 0, 1, 2, . . . .

Proof. Suppose that w ∈ T (b). Then there exists (x, u) ∈ (Rn+m)Z satisfying
(4.3) for all t ∈ Z. Let x̄ := x|[0,+∞) and ū := u|[0,+∞). Then (x̄, ū) satisfies problem
(4.4). Actually, the first two equations of (4.4) are clearly satisfied. It remains to
show the minimality of J(x̄, ū). Let (x̄′, ū′) ∈ (Rn+m)N such that{

x̄′(t+ 1) = Ax̄′(t) +Bū′(t),
C1x̄

′(0) +D1ū
′(0) = b.

By trimness of the state representation (4.3), there exists (x′, u′) ∈ (Rn+m)Z such
that x′(t + 1) = Ax′(t) + Bu′(t) for all t ∈ Z and x̄′ = x′

|[0,+∞) and ū′ = u′
|[0,+∞).

Define w′ := Cx′ +Du′, w′
1 := C1x

′ +D1u
′, and w′

2 := C2x
′ +D2u

′. Then it is clear
that R(σ)w′ = 0, w′

1 = R1(σ)w
′, and w′

2 = R2(σ)w
′, and so

J(x̄, ū) = ||w2|[0,+∞)||22 ≤ ||w′
2|[0,+∞)||22 = J(x̄′, ū′),

which shows the minimality of J(x̄, ū).
Suppose, conversely, that (x̄, ū) ∈ (Rn+m)N satisfies the requirements of (4.4) and

that w(t) = Cx(t) + Du(t) for all t = 0, 1, 2, . . .. Then, by trimness of the state
representation (4.3), there exists (x, u) ∈ (Rn+m)Z such that x(t+1) = Ax(t)+Bu(t)
for all t ∈ Z and x̄ = x|[0,+∞) and ū = u|[0,+∞). Define w := Cx + Du, w1 :=
C1x+D1u, and w2 := C2x+D2u. Then it is clear thatR(σ)w = 0, w1 = R1(σ)w, w2 =
R2(σ)w, and w1(0) = b. It remains to show the minimality of ||w2|[0,+∞)||22. Actually,
suppose that w′ is such that R(σ)w′ = 0 and let w′

1 = R1(σ)w
′ and w′

2 = R2(σ)w
′.

Suppose, moreover, that w1(0) = b. Then there exists (x′, u′) ∈ (Rn+m)Z satisfying
(4.3) for all t ∈ Z. Consequently, if we define x̄′ := x′

|[0,+∞) and ū′ := u′
|[0,+∞), then

||w2|[0,+∞)||22 = J(x̄, ū) ≤ J(x̄′, ū′) = ||w′
2|[0,+∞)||22,

and this implies the minimality of ||w2|[0,+∞)||22.
By the previous proposition we can argue that (2.4) is solvable, i.e., T (b) �= ∅ for

all b ∈ R
s if and only if for any b there exists a trajectory (x, u) compatible with the

equations {
x(t+ 1) = Ax(t) +Bu(t), t ∈ N,
C1x(0) +D1u(0) = b,

(4.5)

and such that J(x, u) <∞.
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4.2. Complexity reduction in state space representation. It is possible to
find a very easy necessary and sufficient condition for the solvability of problem (2.4)
based on the representation (4.3). To derive this condition we need some definitions
and a technical lemma.

Given the system {
x(t+ 1) = Ax(t) +Bu(t),
y(t) = Cx(t) +Du(t),

(4.6)

we will denote by V+ the space of states x0 ∈ R
n for which there exists a trajectory u,

x, y compatible with equations of system (4.6) and such that y(t) = 0 for all t ≥ 0 and
x(0) = x0. We will call V+ the weakly unobservable space of (A,B,C,D). Similarly,
we will denote by V− the space of states x0 ∈ R

n for which there exists a trajectory u,
x, y compatible with equations of system (4.6) and such that y(t) = 0 for all t ≤ 0 and
x(0) = x0. V− will be called the backward weakly unobservable space of (A,B,C,D).
The space

Xc := Xs(A) + 〈A|im B〉+ V+,(4.7)

where Xs(A) is the stability space of A, 〈A|im B〉 is the controllability space of
(A,B), and V+ is the weakly unobservable space of (A,B,C,D), is called the output
stabilizability space of (A,B,C,D). We recall from [10] the following result.

Lemma 4.1. The space Xc of (A,B,C2, D2) coincides with the set of initial
condition x(0) such that there exists u yielding to a finite cost J(x, u) in (4.4).

We now prove a technical result concerning the space Xc that will be useful below.
Lemma 4.2. Given the system (4.6), let R = 〈A|im B〉 be its controllability space,

V+ be its weakly unobservable space, and V− be its backward weakly unobservable space.
Then we have

V− ⊆ V+ +R.(4.8)

Proof. Let n be the dimension of the matrix A, and let x̄ be a point of V−. By
definition there exists a trajectory u, x, y compatible with equations of system (4.6)
and such that y(t) = 0 for all t ≤ 0 and x(0) = x̄. This clearly implies that x(−k)
is an element of the set Vk+ of states of system (4.6) which is weakly unobservable
in k steps, i.e., the set of points x0 ∈ R

n for which there exists a trajectory u, x, y
compatible with equations of system (4.6) and such that y(t) = 0 for all 0 ≤ t ≤ k
and x(0) = x0. Since the sequence of sets {Vt+}t=1,2,... is decreasing and for t ≥ n
it becomes stationary [23], we have that for k sufficiently large x(−k) ∈ V+. Hence
there exists a trajectory u+, x+, y+ compatible with equations of system (4.6) and
such that x+(t) = x(t) for t ≤ −k and y+(t) = 0 for t ≥ −k. Then, x+(0) ∈ V+.
Moreover, x+(0)−x̄ ∈ R, since they are both reachable starting from the state x(−k).
Therefore, x̄ ∈ R+ V+, and this concludes the proof.

The following result provides a link between the reduced behaviors setting and
system theoretic properties of the corresponding driving variable representations.

Proposition 4.2. Consider problem (2.4) and the driving variable representation
(4.3). Moreover, let Xc be the output stabilizability space of (A,B,C2, D2). Then,
B = kerR(σ) is reduced with respect to R2(σ) if and only if Xc = R

n.
Proof. Suppose that Xc = R

n. Then for any trajectory w2 ∈ R2(σ)B there exists
a state trajectory x and an input trajectory u such that{

x(t+ 1) = Ax(t) +Bu(t),
w2(t) = C2x(t) +D2u(t),

t ∈ Z.(4.9)
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Then in view of Lemma 4.1 and taking into account the state separation property,
it is clear that there exist w̄2 ∈ R2(σ)B, x̄, and ū satisfying (4.9) and such that
w2(t) = w̄2(t), x(t) = x̄(t), t ≤ 0, and limt→∞ w̄2(t) = 0. This is means, by definition,
that R2(σ)B is stabilizable, or, in view of Corollary 3.3, that B = kerR(σ) is reduced
with respect to R2(σ).

Suppose, conversely, that B = kerR(σ) is reduced with respect to R2(σ), or,
equivalently, that R2(σ)B is reduced, and let R2(σ)B = kerM(σ) with M(σ) full row
rank. Then, by Proposition 3.2, M(σ) = F (σ)M ′(σ) with F (σ) square with stable
determinant and M ′(σ) left prime. Let X(σ) be such that M ′(σ)X(σ) = I. Suppose
that x0 ∈ R

n. Then, by trimness, there exist x,w2 satisfying the state equations in
(4.3) and such that x(0) = x0. Obviously, w2 ∈ R2(σ)B. As in the proof of Proposi-
tion 3.2 define w′

2 := X(σ)M ′(σ)w2 and w′′
2 := w2 − w′

2. Since M ′(σ)w2 ∈ kerF (σ),
then w′

2 ∈ (�2+)r. On the other hand, since w′′
2 ∈ kerM ′(σ) and since kerM ′(σ) is con-

trollable, there exists w̄′′
2 ∈ kerM ′(σ) such that w̄′′

2|(−∞,0] = w′′
2|(−∞,0] and such that

w̄′′
2|[N,+∞) = 0 for N ∈ N big enough. Define w̄2 := w′

2+w̄′′
2 . Then it is clear that w̄2 ∈

R2(σ)B ∩ (�2+)r and that w̄2|(−∞,0] = w2|(−∞,0]. Consider the state trajectory x̄ such
that x̄, w̄2 satisfy the state equations in (4.3). Then it is clear that x̄(0) ∈ Xc. From
Lemma 4.2 it follows that x̄(0)− x0 ∈ Xc, and hence, since Xc is a linear space, that
x0 ∈ Xc.

We are now ready to prove the following corollary which gives an easy necessary
and sufficient condition for the solvability of our problem.

Corollary 4.1. Consider problem (2.4) and the driving variable representation
(4.3). Let T (b) be the set of optimal trajectories defined in (3.1), and let Xc be the
output stabilizability space of (A,B,C2, D2). Then T (b) �= ∅ if and only if

b = C1x+D1u,(4.10)

where x and u are such that Ax+Bu ∈ Xc.
If B = kerR(σ) is reduced with respect to R2(σ), then T (b) �= ∅ if and only if

b ∈ im [C1 D1].(4.11)

Proof. The first part follows from Lemma 4.1. For the second part, notice that if
B = kerR(σ) is reduced with respect to R2(σ), (4.10) reduces to (4.11) since, in view
of Proposition 4.2, Xc = R

n .

Before presenting the solution of the problem, we make a brief remark which is
suggested by the previous proposition. Assume that B = kerR(σ) is not reduced with
respect to R2(σ), and let (4.3) be a driving variable representation of Σ̄. It is clear
that its output stabilizability space Xc is A-invariant and it contains im B. Then by a
suitable change of basis we can transform the representation (4.3) into the following:

x(t+ 1) = Āx(t) + B̄u(t),
w(t) = C̄x(t) + D̄u(t),
w1(t) = C̄1x(t) + D̄1u(t),
w2(t) = C̄2x(t) + D̄2u(t),

(4.12)

where

Ā =

[
A11 A12

0 A22

]
, B̄ =

[
B1

0

]
,
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C̄ = [C1 C2], C̄1 = [C1
1 C2

1 ], C̄2 = [C1
2 C2

2 ], D̄ = D, D̄1 = D1, D̄2 = D2, and where
the output stabilizability space of the reduced driving variable representation

x1(t+ 1) = A11x1(t) +B1u(t),
w1(t) = C1x1(t) +Du(t),
w1

1(t) = C1
1x

1(t) +D1u(t),
w1

2(t) = C1
2x

1(t) +D2u(t),

(4.13)

is the whole state space R
n1 . It is clear that the set of trajectories w1 compatible

with system (4.13) is a subset of B. Actually it is not difficult to show that this set is
exactly the reduction Br of B with respect to R2(σ):

Br = {w1 ∈ (Rq)Z : ∃x1 ∈ (Rn1)Z, u ∈ (Rm)Z such that (4.13) is satisfied ∀t ∈ Z}.

This observation furnishes a procedure to perform the reduction of B with respect
to R2(σ) in terms of the state space representation.

4.3. Computation of optimal solutions. Next we furnish a parametrization
of the set of optimal trajectories T (b), or, equivalently (Proposition 4.1), of the set of
solutions of (4.4). Set Q := CT2 C2, S := CT2 D2, and R := DT

2 D2. Problem (4.4) is
thus equivalent to find

J∗ = min
C1x(0)+D1u(0)=b

{
[xT (0)uT (0)]

[
Q S
ST R

] [
x(0)
u(0)

]

+ min
u|[1,+∞)

∞∑
t=1

[xT (t)uT (t)]

[
Q S
ST R

] [
x(t)
u(t)

]}
.

(4.14)

As we have shown in section 3 or in subsection 4.2, we can assume that B is reduced
with respect to R2(σ). This assumption, in view of Proposition 4.1, implies that, in
the representation (4.3), the output stabilizability space of (A,B,C2, D2) is the whole
space R

n. In turn, this implies that the optimization problem

J∗
1 = min

u|[1,+∞)

∞∑
t=1

[xT (t)uT (t)]

[
Q S
ST R

] [
x(t)
u(t)

]
(4.15)

subject to {
x(t+ 1) = Ax(t) +Bu(t),

x(1) = x1,
(4.16)

admits solutions u which render the cost function J1 finite for all x1 ∈ R
n [10]. Hence

[10] the ARE1

M = Q+ATMA− (S +ATMB)(R+BTMB)�(ST +BTMA)(4.17)

admits a minimum positive semidefinite solution M∞ which can be computed iter-
ating the corresponding difference Riccati equation starting from M(0) = 0 (see [19,
Chapter 4]). Moreover, minimization (4.15) can be performed in closed form yielding

1Given a matrix ∆, ∆� will denote the Moore–Penrose pseudoinverse of ∆.
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J1 = x(1)TM∞x(1), and the set of optimal state and input trajectories are given by
the solution of the following linear system:

x(t+ 1) = Fx(t) + Jv(t),
u(t) = Kx(t) +Gv(t),
x(1) = x1,

(4.18)

where

K := −(R+BTM∞B)�(ST +BTM∞A),(4.19a)

G := I − (R+BTM∞B)�(R+BTM∞B),(4.19b)

F := A+BK,(4.19c)

J := BG,(4.19d)

and v is an arbitrary trajectory parametrizing the set of optimal solutions.
We can now perform the first minimization of (4.14). This reduces (4.14) to the

following form:

min
C1x(0)+D1u(0)=b

[xT (0)uT (0)]

[
Q S
ST R

] [
x(0)
u(0)

]
+ x(1)TM∞x(1)(4.20)

= min
C1x(0)+D1u(0)=b

[xT (0)uT (0)]

[
Q+ATM∞A S +ATM∞B
ST +BTM∞A R+BTM∞B

] [
x(0)
u(0)

]
.

The latter is a static optimization problem which admits solutions if and only if
b ∈ im [C1 D1]. In this case the set of solutions is given by [14, p. 235][

x(0)∗

u(0)∗

]
= Ξb+ Zξ,(4.21)

where ξ is an arbitrary vector and the matrices Ξ and Z are given by

Ξ = (∆ +HTH)�HT [H(∆ +HTH)�HT ]�,
Z = I − (∆ +HTH)�(∆ +HTH),

(4.22)

where H := [C1 D1] and ∆ :=

[
Q+ATM∞A S +ATM∞B
ST +BTM∞A R+BTM∞B

]
.

This static optimization furnishes the set of vectors x(0)∗ and u(0)∗, which min-
imize the cost function. From them, using the state update equation, we find the
optimal x(1). Initializing system (4.18) with this x(1), we have a parametrization of
all the optimal trajectories x, u. Using (4.3), we immediately get a parametrization
of all the optimal trajectories w of B.

In the case when b /∈ im [C1 D1], all the trajectories of the behavior B which
satisfy the static constraint give rise to an infinite cost, or, equivalently, the problem
is not solvable.

5. Concluding remarks. Since in the classical LQ optimization problem, the
optimal control can be expressed as a linear state feedback, the question that naturally
arises is whether or not this form of the solution remains valid in our setup. In the
behavioral approach, feedback control is interpreted as an interconnection of systems
which corresponds to an intersection of behaviors [24]. The previous issue reduces
then to the following question. Does there exist an AR system (controller) Σct =
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(Z,Rq,Bct) such that Bopt = B ∩ Bct, where Bopt = {T (b) : b ∈ R
s}? This can occur

only if the set Bopt is linear shift-invariant and complete. The following examples
show that this is not true in general.

Example 1. Let Σ = (Z,R,B) and B = R
Z, and let w2 = w and w1 = (1 + σ)w.

In this case the optimization problem is

J(w) = min
w(0)+w(1)=b

∞∑
t=0

w2(t) = min
w(0)+w(1)=b

(w(0)2 + w(1)2).(5.1)

The solution is easily w(0) = w(1) = b/2 and Jopt = b2/2. The set of optimal
trajectories, as b spans all the real axis R, is

Bopt = {w ∈ R
Z : w(1) = w(0)}.(5.2)

Clearly this set is not shift-invariant.
One may suspect that the solution may be expressed as linear feedback at least in

particular cases, for example, when the behavior B is autonomous or in correspondence
of a classical LQ problem for descriptor systems. This is not the case as the following
examples show.

Example 2. Let B be described by the following state model:{
x(t+ 1) = Ax(t),

w(t) = x(t),
t ∈ Z,(5.3)

where A = diag(1/2, 1/4). Let w1(t) = C1w(t) and w2(t) = C2w(t), where C1 = [1 1]
and C2 = diag(

√
3/2,
√
15/4). It is easy to see that, as b spans all the real axis R, the

set of optimal trajectories is

Bopt =
{
w(t) = At

[
a
a

]
: a ∈ R

}
.(5.4)

Again, it is immediate to check that this set is not shift-invariant.
Example 3. Let B be described by the following state model:{

0 = x(t) + u(t),
w(t) = x(t),

t ∈ Z.(5.5)

Let w1(t) = w2(t) = w(t). It is easy to see that, as b spans all the real axis R, the set
of optimal trajectories is

Bopt = {bδ(t) : b ∈ R}.(5.6)

Clearly, this set is not shift-invariant.
Observe, moreover, that in the formulation of a practical problem in the form

(2.4), the dimension of the trajectories vector w may be very large. However, the
reduction described in section 3.2 and the fact that the realization (4.3) is assumed
to be state trim insure that the complexity of the resulting Riccati equation is in any
case minimal. In other words, the complexity of the presented method is minimal.

The last observation we want to make concerns our technique for the solution of
the optimization problem. One of the basic philosophies of the behavioral approach is
to express the solution of a problem directly in terms of the data in which the problem
is formulated. In our case the data of the problem are the polynomial matrices R(σ),
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R1(σ), R2(σ), and the vector b, and it would be desirable to describe the optimal
trajectories in terms of these data. In this paper we have not been able to achieve
this goal, since the solution we propose is obtained by passing through intermediate
state space representations. The research of a solution realizing this goal remains a
subject of our present investigation.
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Abstract. Given a sequence of integrands fn : T × X → R (n ≥ 1) which converges in the
sense of the slice-topology to an integrand f , (T,A, µ) being a complete probability space and X
a nonreflexive Banach space with separable dual, we show that the sequence of integral functionals
I(fn) : u →

∫
fn(t, u(t))dµ (n ≥ 1) associated to the (fn) converges to I(f) : u →

∫
f(t, u(t))dµ in

the sense of the slice-topology on Lp(X) and that the sequence of integral functionals associated to

the conjugate integrands (f∗n) converges to I(f∗) : u→
∫
f∗(t, u(t))dµ on Lq(X∗) (with 1 ≤ p < +∞

and p−1 + q−1 = 1). This is an extension of some results which were shown to hold by Joly and de
Thélin for Painlevé–Kuratowski convergence when X is finite dimensional and by Salvadori for Mosco
convergence when X is reflexive. We also need to provide some criteria for functional convergence
in the slice-topology, using the strong epigraphical upper limit.

Key words. integrands, integral functionals, measurable multifunctions, epi-convergence, slice-
topology
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1. Introduction. Epi-convergence was introduced by several authors for the
study of minimization problems. It is known that the important fact about epi-
convergence of a sequence of functions fn : X → R (n ≥ 1) is that, in the presence
of appropriate compactness assumptions (see [At]) this type of convergence entails
nice properties of the infimal values inf{fn(x)/x ∈ X} and of the set of minimizers
Argmin fn. Recall that, moreover, epi-convergence of such a sequence of functions
is a special case of set convergence: it means Painlevé–Kuratowski convergence (see
[Ku, At, Be1]) of the sequence of their epigraphs regarded as subsets of the product
space X ×R. We shall be led to use natural extensions of Painlevé–Kuratowski con-
vergence to infinite dimensional spaces, namely the Mosco type convergences. These
convergences consist in the Painlevé–Kuratowski convergence of sequences of subsets
with respect to, at the same time, two different topologies on a Banach space X: for
example, the weak and strong topologies, which was the case originally considered
by Mosco [Mo1]. Mosco convergence of epigraphs, induces a functional convergence
which is often called Mosco convergence. When X is finite dimensional, Mosco and
Painlevé–Kuratowski convergences coincide on F(X) (the space of all nonempty closed
subsets of X). Further, a topology was introduced on F(X) by Beer [Be1], namely,
the Mosco topology, which is compatible with the original Mosco convergence on
Fc(X) (the space of all nonempty closed convex subsets of X). The most important
properties of Mosco topology hold on Fc(X) when the Banach space X is reflexive
and separable. Another topology was then introduced on Fc(X) (or on F(X)), which
entails a convergence stronger than Mosco’s convergence and whose properties are
interesting even without reflexivity: it is the slice-topology. This topology was first

∗Received by the editors July 22, 1997; accepted for publication (in revised form) May 27, 1999;
published electronically August 17, 2000.

http://www.siam.org/journals/sicon/39-1/32222.html
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considered by Joly and more recently by Sonntag and Zalinescu in a survey arti-
cle (see [SZ]). The slice-topology was in fact intensively studied by Beer [Be2, Be3,
Be4, Be6], who has shown its nice properties. Notice also that the term “slice” is
due to Beer. As for Painlevé–Kuratowski and Mosco convergences, the slice-topology
induces a useful functional convergence. The Painlevé–Kuratowski convergence, as
well as the slice-topology, have interesting variational properties. More precisely, the
polarity, regarded as a map from Fc(X) into the set of w∗-closed convex subsets of
X∗, is bicontinuous with respect to the slice-topology. This continuity property has
already been shown to hold for the Painlevé–Kuratowski convergence by Wijsman
[Wi] when X is finite dimensional and by Mosco when it is reflexive. In turn, for
convex functions identified with epigraphs, this implies the continuity of conjugacy
with respect to epi-convergence, which is most useful for approximating the solutions
of optimization problems (see [At, Be6, Mo1]).

The purpose of this paper is to present some results about the Mosco convergence
and the convergence in the slice-topology for integral functionals. Given an integrand
f , that is an extended real-valued function defined on the product T ×X, where here
(T , A, µ) and X are, respectively, a complete probability space and a Banach space,
we consider the integral functional defined on Lp(X)1 ≤ p ≤ +∞ (the space of all—
equivalence classes—of Bochner integrable functions) by I(f) : u → ∫

f(t, u(t))dµ.
These integral functionals were introduced by Rockafellar in [Ro1, Ro2] and were
studied in many papers (see, for instance, [Ro5, CV, JT, HU, Sa, CH, Cou]). The epi-
convergence of integral functionals associated to a sequence of integrands fn : T×X →
R (n ≥ 1) was first studied by Joly and de Thélin [JT] when X is finite dimensional.
This result was extended for an infinite dimensional reflexive and separable Banach
space X by Salvadori: this author shows (see [Sa, Theorem 3.1]) that when dealing
with a sequence (fn) which Mosco converges to an integrand f , the sequence (I(fn))
of the integral functionals associated to the (fn) Mosco converges to I(f) on L1(X)
and the sequence (I(f∗

n)), where f∗
n denotes the integrand conjugate of fn, Mosco

converges to I(f∗) on L∞(X∗). Our present objective is to provide a similar result
where the Mosco functional convergence is replaced by the one deduced from the
slice-topology. Considering a sequence of integrands fn : T ×X → R (n ≥ 1) which
converges in the sense of the slice-topology to an integrand f , where X is then a
nonreflexive Banach space with separable dual, we show that the sequence of integral
functionals associated to the (fn) converges to I(f) in the sense of the slice-topology
on Lp(X) and that the sequence of integral functionals associated with the conjugate
integrands (f∗

n) converges to I(f∗) on Lq(X∗) (with 1 ≤ p < +∞ and p−1 +q−1 = 1).
The paper is organized as follows. In section 2, we give the needed notations and

preliminaries. In section 3 some criteria for functional convergence in the sense of the
slice-topology are presented. The main results are expressed in section 4. Section 5
deals with some useful properties of integrands and integral functionals, and finally,
section 6 contains the proofs of the main results.

2. Definitions and notations. Throughout this section X will be a separable
Banach space whose norm is ‖ . ‖. We denote by P(X) the space of all subsets of X,
by F(X) (resp., Fc(X), Fcb(X)) the family of all nonempty closed (resp., nonempty
closed convex, nonempty closed convex and bounded) subsets of X for strong topol-
ogy, and by Fc∗(X∗) (resp., Fc∗b(X∗)) the family of nonempty closed convex (resp.,
nonempty closed convex and bounded) subsets of X∗ for weak star topology. The in-
dicator function associated to A ∈ P(X) is the function δ(. , A) such that δ(x,A) = 0
if x ∈ A and δ(x,A) = +∞ if x ∈ A. We write also B(X) for the Borel tribe of X.
The closed ball with center x and radius r is denoted B(x, r).



EPI-CONVERGENCE FOR INTEGRAL FUNCTIONALS 181

The distance function of F ∈ P(X) and its support function are defined, respec-
tively, by

d(x, F ) = inf{‖x− y‖/y ∈ F}, x ∈ X and s(x∗, F ) = sup{〈x∗, x〉/x ∈ F}, x∗ ∈ X∗.

The gap between two subsets F and G of X is defined by

D(F,G) = inf{‖x− y‖/x ∈ F, y ∈ G}.
Let T be an abstract space. A multifunction F is a map from T to P(X). The domain
of F is the following subset of T :

dom F = {t ∈ T/F (t) = ∅}.
A selection of such a multifunction F is a function s : T → X such that for all
t ∈ dom F , s(t) ∈ F (t).

Suppose now that (T,A) is a measurable space. A multifunction F : T → P(X)
is said to be Effros-measurable or measurable (see [Be2, CV, He2, Him]) if for every
open set U in X

F−U ∈ A, where F−U = {t ∈ T/F (t) ∩ U = ∅}.
The Effros sigma algebra is denoted by E(F(X)). It is the smallest sigma algebra of
subsets of F(X) containing all sets of the form {A ∈ F(X)/A∩V = ∅}, where V runs
over the open subsets of X. Notice that when F(X) is equipped with some topology
T (see also section 3), if the Effros tribe coincides with the Borel tribe associated with
T , then a multifunction F : T → F(X) is Effros measurable if and only if it is Borel
measurable.

A measurable multifunction defined on a probability space may be also called a
random set. A measurable selection of a measurable multifunction F is a selection
of F that is (A,B(X))-measurable, and a Castaing representation of F is a sequence
sn : T → X (n ≥ 1) of measurable selections of F satisfying for all t ∈ dom F ,
F (t) = cl{sn(t)/n ≥ 1}. Let f : X → [−∞,+∞] be a function. Its epigraph is the
following subset of X ×R:

épi f = {(x, α) ∈ X ×R/f(x) ≤ α}.
Its domain is dom f = {x ∈ X/f(x) < +∞}. The function f is said to be proper if
for all x ∈ X, f(x) > −∞ and if for some x ∈ X, f(x) < +∞. The conjugate of the
function f is defined by

f∗(x∗) = sup{〈x∗, x〉 − f(x)/x ∈ X}, x∗ ∈ X∗.

Let T be again an abstract space. Every map f : T × X → [−∞,+∞] is called an
integrand. The integrand conjugate of f is f∗ : T ×X∗ → [−∞,+∞] defined by

f∗(t, x∗) = sup{〈x∗, x〉 − f(t, x)/x ∈ X}, (t, x∗) ∈ T ×X∗.

The epigraphical multifunction associated to an integrand f is F : t→ epi f(t, . ). Let
(T,A) be still a measurable space. If the epigraphical multifunction F (t) = epi f(t, . )
is measurable, f is called a normal integrand. Assume that a probability measure µ
is given on (T,A). If for almost every t ∈ T the function f(t, . ) satisfies any property
(P) (for instance f(t, . ) is lower semicontinuous, convex, etc.), the integrand f is said
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to satisfy (P). Let (T,A, µ) be a complete probability space. A lower semicontinuous
(lsc) integrand f : T × X → [−∞,+∞] is normal if and only if it is A ⊗ B(X)-
measurable.

We write L◦(T,A, X), or L◦(X) for the space of (equivalence classes of) (A,B(X))-
measurable functions that are defined on T with values in X. We write also
Lp(T,A, µ,X) or Lp(X) (1 ≤ p ≤ +∞) for the space of (classes of) functions f such
that t → ‖f(t)‖X belongs to Lp(T,A, µ,R). For every multifunction F : T → P(X)
and each p with 1 ≤ p ≤ +∞, let us set

Sp(F,A) = {f ∈ Lp(T,A, µ,X)/f(t) ∈ F (t) almost surely (a.s.).

The integral function associated to a normal and lsc integrand f : T×X → [−∞,+∞]
is the functional defined on Lp(X)(1 ≤ p ≤ +∞) by

I(f) : Lp(T,A, µ,X)→ [−∞,+∞],

u→
∫

f(t, u(t)) dµ.

Let us consider now two functions f , g : X → [−∞,+∞]. The epi-sum (or infimal
convolution) of f and g is the function, denoted by f +e g, defined by

(f +e g)(x) = inf{f(w) + g(x− w)/w ∈ X}, x ∈ X.

An important tool in convex analysis is the method of regularization in which a given
function f is approximated by the epi-sum of f with members of a parametrized
family of smoothing kernels, such that when the parameter approaches zero from
above, the epi-sums “converge” to the initial function. Regularization by kernels of
the form k‖ . ‖ (k > 0) is often called Lipschitz or Baire–Wijsman regularization, and
regularization by kernels of the form (k/2)‖ . ‖2(k > 0) is known as Moreau–Yosida
regularization (see [Be6]). In what follows we need to use regularization by kernels of
the form {k‖ . ‖p/k > 0} with 1 ≤ p < +∞. So we set

fk,p(x) = (f +e k‖ . ‖p)(x) = inf{f(u) + k‖u− x‖p/u ∈ X}.

Proposition 2.1. Let f : T × X → ] − ∞,+∞] be a normal and lsc inte-
grand. The integrand defined for each t ∈ T by fk,p(t, . ) is a normal and continuous
integrand.

As may be well known by the reader, the Lipschitz regularization with parameter
k of some function f is the largest Lipschitz continuous function with constant k
that f majorizes (see [Be6]). Considering the regularization by kernels of the form
{k‖ . ‖p/k > 0} 1 ≤ p < +∞, we have the following result.

Proposition 2.2. Let f : X → ] −∞,+∞] be a proper function, and let k, p
be such that 0 < k < +∞ and 1 ≤ p < +∞. Then for each x and w in X, we have
fk,p(x) ≤ f2p−1k,p(w) + 2p−1k‖x− w‖p.
Proof. Let us fix x and w in X, α arbitrary such that f2p−1k,p(w) < α and choose

z ∈ X with f(z) + 2p−1k‖w − z‖p < α. We compute

fk,p(x) ≤ f(z)+k‖x−z‖p ≤ f(z)+2p−1k‖x−w‖p+2p−1k‖w−z‖p ≤ α+2p−1k‖x−w‖p.

Since α was arbitrary, the wanted result holds.
Throughout this paper (T,A, µ) will be a complete probability space.
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3. The topological concept: Definitions and criteria. Let (Y, ρ) be an
abstract topological space and fn : Y → [−∞,+∞] (n ≥ 1) a sequence of functions.
We denote by V(x) the family of neighborhoods of x ∈ Y relatively to topology ρ.
The following functions are said to be, respectively, the ρ-epigraphical (or ρ-epi) lower
limit and the ρ-epigraphical (or ρ-epi) upper limit of the sequence (fn):

(ρ-liefn)(x) = supV ∈V(x) lim infn≥1 infu∈V fn(u),

(ρ-lsefn)(x) = supV ∈V(x) lim supn≥1 infu∈V fn(u).

When these two functions are equal, the common value is called the ρ-epigraphical
(or ρ-epi) limit of (fn), it is denoted by ρ- lime fn, and the sequence (fn) is said to be
epi-convergent. Moreover, let us notice (see [At, Theorem 1.13]) that if Y is a metric
space whose strong topology is denoted by s, we have

(s-lsefn)(x) = min {lim supn≥1 fn(xn)/(xn) such that x = s-lim xn}.(3.1)

The reader interested in studying more precisely epi-convergence and its nice proper-
ties should refer to [At].

If (Cn) is a sequence in F(Y ), we put

ρ-li Cn = {x ∈ Y/x = ρ- limxn, xn ∈ Cn, n ≥ 1},
ρ-ls Cn = {x ∈ Y/x = ρ- limxk, xk ∈ Cn(k), k ≥ 1}.

ρ-li Cn and ρ-ls Cn are, respectively, the ρ-lower limit and the ρ-upper limit of (Cn).
We say that (Cn) converges in the sense of Painlevé–Kuratowski to C relatively to
the topology ρ, which is denoted by C = ρ-limCn, if the two following equalities are
satisfied:

C = ρ-li Cn = ρ-ls Cn.

Let σ be another topology on Y . The sequence (Cn) is said to be Mosco convergent
to C with respect to ρ and σ, and we write C = M(ρ, σ)-limCn if

C = ρ- limCn = σ- limCn.

In the special case where σ is finer than ρ, these last equalities are equivalent to the
following inclusions: ρ-ls Cn ⊂ C ⊂ σ-li Cn. Let us now denote, respectively, by w
and s the weak and strong topologies of a normed space X. Following Mosco [Mo1],
a subset C is said to be the Mosco limit of a sequence (Cn) in F(X) if C = M(w, s)-
limCn, which may be denoted by C = M -limCn. For more about Mosco convergence,
the reader can refer to [Mo1] or [Be1, Be3]. A sequence of extended real functions
(fn) defined on Y is said to be Mosco convergent to a function f with respect to
the topologies ρ and σ, which is denoted by f = (M(ρ, σ), Y )-lim fn if epi f =
M(ρ, σ)- lim epi fn. Moreover (see [Mo1] or [Be1]), we know that f = (M(ρ, σ), Y )-
lim fn (with ρ ≤ σ) if and only if conditions (3.2) and (3.3) below are satisfied:

for every x ∈ Y , there exists a sequence (xn) in Y with x = σ-limxn such that

lim sup fn(xn) ≤ f(x),(3.2)

for any subsequence (fnk) of (fn), if x ∈ Y is such that x = ρ-limxk, then

lim inf fnk(xk) ≥ f(x).(3.3)
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Let us consider again a separable Banach space X. A slice of a ball is the in-
tersection of a closed ball and a closed half space passing through the interior of the
ball. The slice-topology on F(X) is the weak (or initial) topology determined by
the family {D(B, . )/B is a nonempty slice of a ball}. It is denoted by Ts. About
the properties of this topology the reader can refer to the intensive works of Beer
[Be2, Be3, Be4 and Be6]. Further, from Beer [Be3, Theorem 5.2] we know that the
slice-topology restricted to Fc(X) is the weak topology determined by the family
{D(B, . )/B ∈ Fcb(X)}. The dual slice-topology that is denoted by T ∗

s is the topology
on Fc∗(X∗) generated by the family {D(B, . )/B ∈ Fc∗b(X

∗)}. A sequence of extended
real functions (fn) defined on X is said to be convergent to a function f in the sense
of the slice-topology, which is denoted by f = (Ts, X)-lim fn if epi f = Ts-lim epi fn.

Wijsman’s topology on F(X), which is denoted by Tw, is the topology of point-
wise convergence of distance functions. It was introduced in [Wi] when X is finite
dimensional. A sequence (Cn) of closed sets is said to converge to C in the Wijsman
topology if, for every x ∈ X, one has d(x,C) = lim d(x,Cn). For more about the
nice properties of this topology, see [Wi, Be2, Be4, He2]. A sequence of extended real
functions (fn) defined on X is said to be convergent to a function f in the sense of
the convergence deduced from Wijsman’s topology, which is denoted by f = (Tw, X)-
lim fn if epi f = Tw-lim epi fn. Notice that the slice-topology is the supremum of all
Wijsman’s topologies varying the norm on equivalent norms (see [Be4]).

X being still a Banach space, let us consider the space F(X) equipped with
Wijsman’s topology Tw. Following Hess [He1, Theorem 3.1.1, P1.6], we know that
the Effros tribe E(F(X)) coincides with the Borel tribe associated with Wijsman’s
topology Tw on F(X). That means that a multifunction F : T → F(X) is Effros mea-
surable if and only if it is Borel measurable. Moreover, Beer has shown that if X has
a strongly separable dual X∗, then the Borel tribe associated with the slice-topology
Ts on F(X) still coincides with the Effros tribe (see, for instance, Theorem 5.8 in
[Be2]).

We ought to establish now some criteria for functional convergence in the slice-
topology. They are given in Propositions 3.4 and 3.6, below. Proposition 3.4 is a result
which is easily deduced from the fundamental statement recalled in Proposition 3.1
(Proposition 4.1 of [Be3]). Notice that a more precise result than Proposition 3.4
has been obtained by Attouch and Beer: it is Theorem 3.1 in [AB], where the given
conditions need only to hold at points x in dom ∂f and x∗ in Range ∂f . But for the
convenience of the reader, in what follows, we choose to build easily Proposition 3.4
from Proposition 3.1.

In the following results, X will be a Banach space.

Proposition 3.1. Let f , fn : X → ]−∞,+∞] (n ≥ 1) be proper lsc and convex
functions. Then, the following properties are equivalent.

(a) f = (Ts, X)-lim fn.
(b) For every open subset W of X and each α ∈ R, the condition epi f ∩ {W×

] −∞, α[} = ∅ implies that epi fn ∩ {W×] −∞, α[} = ∅ eventually, and for
every open subset V of X∗ and each α′ ∈ R, the condition epi f∗ ∩ {V×] −
∞, α′[} = ∅ implies that epi f∗

n ∩ {V×]−∞, α′[} = ∅ eventually.
Lemma 3.2 below will be useful for proving Proposition 3.3.

Lemma 3.2. Let (Cn) be a sequence of F(X). The following statements are
equivalent:

(a) C ⊂ s-li Cn;
(b) for each open subset V of X satisfying C∩V = ∅, then Cn∩V = ∅ eventually.



EPI-CONVERGENCE FOR INTEGRAL FUNCTIONALS 185

Proof. The proof of (a) =⇒ (b) follows from the definition of the strong lower
limit. For proving (b) =⇒ (a) let us consider one x ∈ C. Because of assumption (b)
one has for each k ≥ 1, Cn∩B(x, 1/k) = ∅ eventually. Then, one can build a sequence
xn ∈ Cn (n ≥ 1), which converges strongly to x; that is, x ∈ s-li Cn.

Proposition 3.3. Let f , fn : X → ]−∞,+∞] (n ≥ 1) be proper lsc and convex
functions. Then the following properties are equivalent.

(a) For each x ∈ dom f , f(x) ≥ (s-lsefn)(x);
(b) For every open subset W of X and each α ∈ R, the condition epi f ∩ {W×

]−∞, α[} = ∅ implies that epi fn ∩ {W×]−∞, α[} = ∅ eventually.
Proof. First see that statement (b) is equivalent to the following: for every open

subset W of X×R the condition epi f∩W = ∅ implies that epi fn∩W = ∅ eventually.
Thanks to Lemma 3.2, that means epi f ⊂ s-li epi fn. As s− li epi fn = epi (s-lsefn)
(see [At, Theorem 1.36]), that provides the result.

Proposition 3.4. Let f , fn : X → ]−∞,+∞] (n ≥ 1) be proper lsc and convex
functions. Then the following statements are equivalent:

(a) f = (Ts, X)-lim fn;
(b) for each x ∈ dom f , f(x) ≥ (s-lsefn)(x), and for each x

∗ ∈ dom f∗, f∗(x∗) ≥
(s-lsef

∗
n)(x

∗).
In Proposition 3.5 we ought to state some inequality between the strong epigraph-

ical upper limit of some functions and their regularization by kernels of the form
{k‖ . ‖p/k > 0} 1 ≤ p < +∞, the result of which is vital for proving Theorem 4.1. A
similar result was established in [He4] for Lipschitz regularization (p = 1).

Proposition 3.5. Let fn : X → ] −∞,+∞] (n ≥ 1) be a sequence of proper
lsc and convex functions, and let p be such that 1 ≤ p < +∞. Then the following
properties hold.

(1) For every x ∈ X, (s-lsefn)(x) ≥ supk>0 lim supn≥1 fk,pn (x).
(2) If there exists u0 ∈ X and (a, b) ∈ R+∗ × R such that for every x ∈ X,

fn(x) ≥ −a‖x− u0‖ − b, then (s-lsefn)(x) ≤ supk>0 lim supn≥1 fk,pn (x).
Proof. (1) For each p ≥ 1, k > 0, n ≥ 1, and every x ∈ X, one has fn(x) ≥

f2p−1k,p
n (x) so that we can write, using the definition of s-lsefn,

(s-lsefn)(x) = supµ≥1 lim supn≥1 inf{fn(v)/v ∈ B(x, 1/µ)}
≥ supµ≥1 lim supn≥1 inf{f2p−1k,p

n (v)/v ∈ B(x, 1/µ)}.

Using Proposition 2.2, it follows that

supµ≥1 lim supn≥1 inf{fn(v)/v ∈ B(x, 1/µ)}
≥ supµ≥1 lim supn≥1 inf{fk,pn (x)− 2p−1k‖x− v‖p/v ∈ B(x, 1/µ)}
≥ supµ≥1{lim supn≥1(f

k,p
n (x)− 2p−1k/µp)} = lim supn≥1 fk,pn (x).(3.4)

Since (3.4) is true for each k > 0, the wanted inequality holds.
(2) We ought to show that for every x ∈ X,

supµ≥1 lim supn≥1 inf{fn(v)/v ∈ B(x, 1/µ)} ≤ supk>0 lim supn≥1 fk,pn (x).

Let us define for each x ∈ X : w(x) = supk≥1 lim supn≥1 fk,pn (x). So, we wish to prove
that for all x ∈ X (s-lsefn)(x) ≤ w(x), the inequality of which is true if w(x) = +∞.
Else, let us fix p ≥ 1 and α ∈]0, 1[. Consider for each n ≥ 1, k ≥ 1, and p ≥ 1 the
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following statements:

fn(v) + k‖x− v‖p ≥ inf{fn(u) + k‖x− u‖p/u ∈ X}+ α

for all v ∈ B(x, 1/µ)(3.5)

and

fk,pn (x) = inf{fn(v) + k‖x− v‖p/v ∈ B(x, 1/µ)}.(3.6)

Clearly (3.5) implies (3.6). Further, fix k ≥ 1. From the definition of w there exists
n0(k) ≥ 1 such that for all n ≥ n0(k), w(x)+α ≥ fk,pn (x) so that obviously w(x)+2α ≥
fk,pn (x)+α. Our goal is to obtain (3.5) for each n ≥ n0(k) and every k ≥ k0, k0 being
chosen later in the proof. It is readily seen that this objective is reached if

fn(v) + k‖x− v‖p ≥ w(x) + 2α.(3.7)

But we suppose that for all v ∈ X and for all n ≥ 1, fn(v) ≥ −a‖v−u0‖−b. Then, (3.7)
holds if−a‖v−u0‖−b+k‖x−v‖p ≥ w(x)+2α⇔ −a‖v−u0‖+k‖x−v‖p ≥ w(x)+2α+b.
But as v ∈ B(x, 1/µ), we have ‖x− v‖ ≥ 1/µ and −‖u0 − v‖ ≥ −‖x− v‖ − ‖x− u0‖.
Therefore, (3.4) is implied by

k‖x− v‖p − a‖x− v‖ ≥ w(x) + 2α + b + a‖x− u0‖.(3.8)

Consequently, (3.8) is true if k ≥ k0, where

k0 = Integer part of {max{µp−1(µ(w(x) + 2α + b + a‖x− u0‖) + a); aµp−1}}+ 1

Thus, if k ≥ k0, (3.5) is obtained (for each n ≥ n0(k), and every v ∈ B(x, 1/µ)),
which, as described above, entails (3.6):

fk,pn (x) = inf{fn(v) + k‖x− v‖p/v ∈ B(x, 1/µ)}.
Hence, it follows that for every k ≥ k0

w(x) + α ≥ lim supn≥1 fk,pn (x) = lim supn≥1 inf{fn(v) + k‖x− v‖p/v ∈ B(x, 1/µ)}.
This inequality being true for any µ ≥ 1 and any α ∈]0, 1[, then s-lsefn(x) ≤ w(x),
and then s-lsefn(x) ≤ supk>0 lim supn≥1 fk,pn (x), which finishes the proof.

REMARK. Similar inequalities could be stated with the strong epigraphical lower
limit, but the proof is left to the reader.

Proposition 3.4 together with Proposition 3.5 entails Proposition 3.6 below.
Proposition 3.6. Let f , fn : X → ]−∞,+∞] (n ≥ 1) be proper lsc and convex

functions, and let p be such that 1 ≤ p < +∞.
(1) If f = (Ts, X)- lim fn, then, for each x ∈ dom f , f(x) = supk>0 lim supn≥1

fk,pn (x) and for each x∗ ∈ dom f∗, f∗(x∗) = supk>0 lim supn≥1 f∗k,p
n (x∗).

(2) Suppose that there exists (a, b) ∈ R+∗×R and (a′, b′) ∈ R+∗×R satisfying for
each n ≥ 1, each x ∈ X, and each x∗ ∈ X∗, fn(x) ≥ −a‖x‖− b and f∗

n(x
∗) ≥

−a′‖x∗‖ − b′. If for each x ∈ dom f , f(x) ≥ supk>0 lim supn≥1 fk,pn (x)

and for each x∗ ∈ dom f∗, f∗(x∗) ≥ supk>0 lim supn≥1 f∗k,p
n (x∗), then f =

(Ts, X)- lim fn.
Proof. As f = (Ts, X)- lim fn, f

∗ = (T ∗
x , X∗)- lim f∗

n because of the continuity
for the slice-topology of the Young–Fenchel transform (Theorem 4.2 of [Be3]), and we
have f = s- lime fn and f∗ = s- lime f

∗
n. But epi-convergence of a sequence of functions

at some points of the effective domain of the limit implies uniform linear minorization
for the entire sequence (Proposition 3.7 of [Be7]). Then invoking Proposition 3.5 for
f in X and for f∗ in X∗, the wanted result is understood.

(2) is nothing else than Proposition 3.4 together with (2) of Proposition 3.5.
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4. Main results. This section provides the main results of this paper. From
previous section, we know that a sequence of functions (fn) converges to a function
f in the sense of the slice-topology if f ≥ s-lsefn and f∗ ≥ s-lsef

∗
n. The purpose of

Theorem 4.1 is to tell us that if such an inequality between a sequence of integrands
and its strong epigraphical upper limit is almost surely satisfied, then it still holds for
the integral functionals associated to them.

Theorem 4.1. Let X be a separable Banach space, fn : T×X → ]−∞,+∞ ] (n ≥
1) a sequence of normal proper and lsc integrands, f : T ×X → ]−∞,+∞] a proper
integrand, p, q with 1 ≤ p < +∞, and p−1 + q−1 = 1, satisfying the following as-
sumptions:

(a) for almost every t ∈ T and each x ∈ dom f(t, . ), f(t, x) ≥ s-lsefn(t, x);
(b) there exists a sequence (un) in Lp(X) and functions k and k0 in Lp(R), such
that for each n ≥ 1, ‖un(t)‖ ≤ k(t) and fn(t, un(t)) ≤ k0(t) a.s.;

(c) for almost every t ∈ T , each x ∈ X and each n ≥ 1, fn(t, x) ≥ −h(t)‖x‖ −
h0(t), where h and h0 belong to Lq(R) with h(t) > 0 a.s.

Then for every function u in Lp(X), I(f)(u) ≥ s-lseI(fn)(u).

In the three following theorems, the Banach space X will have a separable dual
X∗. In Theorem 4.2 we state that if a sequence of integrands converges in the
sense of the slice-topology on X, then the sequence of associated integral functionals
converges in the sense of the slice-topology on Lp(X) 1 < p < +∞ and the se-
quence of conjugate integral functionals converges in the sense of the slice-topology
on Lq(X∗) (p−1 + q−1 = 1).

Theorem 4.2. Let fn : T ×X → ]−∞,+∞] (n ≥ 1) be a sequence of normal
proper lsc and convex integrands, f : T ×X → ] −∞,+∞] a proper integrand, and
p, q such that 1 < p < +∞ and p−1 + q−1 = 1, satisfying the following assumptions:

(a) for almost every t ∈ T , f(t, . ) = (Ts, X)- lim fn(t, . );
(b) there exists a sequence (un) in Lp(X) and functions k and k0 in LP (R), such
that for each n ≥ 1, ‖un(t)‖ ≤ k(t) and fn(t, un(t)) ≤ k0(t) a.s.;

(c) there exists a sequence (vn) in Lq(X∗) and functions h and h0 in Lq(R), such
that for each n ≥ 1, ‖vn(t)‖ ≤ h(t) and f∗

n(t, vn(t)) ≤ h0(t) a.s.

Then, I(f) = (Ts, Lp(X))- lim I(fn) and I(f∗) = (T ∗
s , Lq(X∗))- lim I(f∗

n).

The following theorem tells us about the special case of convergence for integral
functionals defined on L1(X). Salvadori has shown (see [Sa, Theorem 3.1]) that if a
sequence of integrands fn : T × X → ] − ∞,+∞] (n ≥ 1) Mosco converges to an
integrand f , X being reflexive, then the sequence (I(fn)) Mosco converges to I(f)
on L1(X) with respect to the weak and strong topologies, and the sequence (I∗(fn))
Mosco converges to I∗(f) on L∞(X∗) with respect to the Mackey and weak star
topologies. Theorem 4.3 below is an extension of Salvadori’s property in the nonre-
flexive case; instead of the Mackey topology, the result deals with a stronger topology,
namely, the topology of the uniform, convergence on the uniformly integrable and
bounded subsets of L1(X) (for which we write ρ(L∞(X∗), L1(X)) or ρ). Notice that
because of Dunford’s theorems (see [DU]), the Mackey topology and the topology
ρ(L∞(X∗), L1(X)) coincide when X is reflexive. Moreover, assuming an additional
condition on integrands f and (fn), this result of convergence holds with respect to
the slice-topology.

Theorem 4.3. Let fn : T ×X → ]−∞,+∞] (n ≥ 1) be a sequence of normal
proper lsc and convex integrands, and let f : T × X → ] − ∞,+∞] be a proper
integrand, such that

(a) for almost every t ∈ T , f(t, . ) = (Ts, X)- lim fn(t, . );
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(b) there exists a sequence (un) in L1(X) and functions k and k0 in L1(R), such
that for each n ≥ 1, ‖un(t)‖ ≤ k(t) and fn(t, un(t)) ≤ k0(t) a.s.;

(c) there exists a sequence (vn) in L∞(X∗) and functions h and h0 in L∞(R),
such that for each n ≥ 1, ‖vn(t)‖ ≤ h(t) and f∗

n(t, vn(t)) ≤ h0(t) a.s.

(1) Then, I(f) = (M(w, s), L1(X))- lim I(fn) and I(f∗) = (M(w∗, ρ), L∞(X∗))-
lim I(f∗

n).

(2) Moreover, if for almost every t ∈ T , each x ∈ X and each n ≥ 1, fn(t, x) ≥
f(t, x), then I(f) = (Ts, L1(X))- lim I(fn) and I(f∗) = (T ∗

s , L∞(X∗))- lim I(f∗
n).

Theorem 4.4 is an application of previous theorems that gives some results about
the slice-convergence of sets of integrable selections of randoms sets.

Theorem 4.4. Let F , Fn : T → Fc(X) (n ≥ 1) be multifunctions and let p be
with 1 ≤ p < +∞, such that

(a) for almost every t ∈ T , F (t) = Ts- limFn(t);
(b) the function t→ sup{d(0, Fn(t))/n ≥ 1} belongs to Lp(R);

(1) p = 1. If for almost every t ∈ T , Fn(t) ⊂ F (t) (n ≥ 1), one has S1(F,A) =
Ts- limS1(Fn,A);

(2) 1 < p < +∞. One has Sp(F,A) = Ts- limSp(Fn,A).

5. Some tools about integrands and integral functions. This section is
devoted to some results concerning integrands and integral functionals that will be
useful in the next section for proving the main results. First we wish some properties
of integral functionals to be recalled. For this, the fundamental Proposition 5.1 below,
which is due to Hiai and Umegaki [HU, Theorem 2.2], is useful as an important tool.
It was used in particular in [Cou] for studying easily conjugacy for integral functionals;
that is, if f : T ×X → ]−∞,+∞] is a normal and lsc integrand, where (T,A, µ) is
a complete probability space and X is a separable Banach space, then I∗(f) = I(f∗).
We shall use this result in what follows (it is an extension of some results of [Ro1,
Ro4] where reflexivity was needed). Here we consider a Banach space with separable
dual.

Proposition 5.1. Let f : T ×X → ]−∞,+∞] be a normal and lsc integrand,
let F : T → F(X) be a measurable multifunction, and let p be such that 1 ≤ p < +∞.
If there exists u0 in Sp(F ) satisfying I(f)(u0) < +∞, then inf{I(f)(u)/u ∈ Sp(F )} =∫

inf{f(t, x)/x ∈ F (t)} dµ.
The preceding property entails Proposition 5.2 below, which tells us about regu-

larization of integral functionals by kernels of the form {k‖ . ‖p/k > 0} 1 ≤ p < +∞.

Proposition 5.2. Let f : T ×X → ]−∞,+∞] be a normal and lsc integrand,
and let k, p be such that k > 0 and 1 ≤ p < +∞. If there exists u0 in Lp(X) satisfying
I(f)(u0) < +∞, then Ik,p(f) = I(fk,p).

Proof. I(f) being the integral functional associated to f , for each u ∈ Lp(X) we
compute

Ik,p(f)(u) = inf{I(f)(v) + k(‖u− v‖Lp(X))
p/v ∈ Lp(X)}

= inf

{∫
(f(t, v(t)) + k(‖u(t)− v(t)‖X)p) dµ/v ∈ Lp(X)

}
.

As there exists u0 ∈ Lp(X) satisfying I(f)(u0) < +∞, invoking Proposition 5.1, one
has

Ik,p(f)(u) =

∫
inf{f(t, x) + k(‖u(t)− x‖X)p/x ∈ X} dµ = I(fk,p)(u).
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In the main results, we suppose the integrands to satisfy some assumptions which
were used in [JT] and [Sa]. But as in [Cou], it seems convenient to see them in
Lemma 5.3 below as integrability conditions.

Lemma 5.3. Let f , fn : T ×X → ]−∞,+∞] (n ≥ 1) be proper normal and lsc
integrands satisfying for almost every t ∈ T , f(t, . ) = (Ts, X)- lim fn(t, . ), and let p
be such that 1 ≤ p < +∞. Let us consider the following statements.

(a) There exists a sequence (un) in Lp(X) and functions k and k0 in Lp(R) such
that for each n ≥ 1, ‖un(t)‖ ≤ k(t) and fn(t, un(t)) ≤ k0(t) a.s.

(b) The function t→ sup{d((0, 0); epi fn(t, . ))/n ≥ 1} belongs to Lp(R).
(c) There exists a function u0 in Lp(X) with I(f)(u0) < +∞.

Then we have (a) ⇔ (b) ⇒ (c).
Proof. Let us define the measurable functions t → rn(t) = d((0, 0), epi fn(t, . ))

(n ≥ 1) and t→ r(t) = d((0, 0), epi f(t, . )).
(a)⇒ (b) As rn(t) = inf{‖x‖+f+

n (t, x)/x ∈ X} (see for instance [Cou]), we have

rn(t) ≤ ‖un(t)‖+ f+
n (t, un(t)) ≤ k(t) + k0(t) a.s. n ≥ 1.

(b) ⇒ (a) The measurable selection theorem applied to the multifunctions t →
epi fn(t, . ) ∩ B((0, 0); rn(t) + 1) (n ≥ 1) shows the existence of a sequence (un, αn) :
T → X ×R (n ≥ 1) such that

fn(t, un(t)) ≤ αn(t) and ‖un(t)‖+|αn(t)| ≤ rn(t)+1 ≤ supn≥1rn(t)+1 a.s. n ≥ 1.

The wanted result can then be easily deduced.
(b) ⇒ (c) Since the slice-topology is stronger than Wijsman’s topology, we

have f(t, . ) = (Tw, X)- lim fn(t, . ) a.s.; that is r(t) = limn rn(t). Thus r(t) ≤
supn≥1rn(t) a.s. and r ∈ Lp(R). Therefore, as in the proof of (b) ⇒ (a), one can
easily show the existence of u0 ∈ Lp(X) such that f+( . , u0(. )) ∈ Lp(R).

6. Proofs of the main results. It remains to provide the proofs of the main
results, which is now possible according to previous sections.
Proof of Theorem 4.1. First, let us recall that on Fc(X) Ts is stronger than Tw and

that the convergence induced by Wijsman’s topology implies Painlevé–Kuratowski
convergence. Therefore, see that because of assumptions on the fn (n ≥ 1), f is a
proper and lsc integrand. Second, Proposition 5.2 tells us that Ik,p(f)(u) = I(fk,p)(u)
and Ik,p(fn)(u) = I(fk,pn )(u) for all u ∈ Lp(X), k > 0, n ≥ 1, 1 ≤ p < +∞.

Using assumption (a) and Proposition 3.5, we have for almost every t ∈ T and
each x ∈ X

f(t, x) ≥ s-lsefn(t, x) ≥ supk>0 lim supn≥1 fk,pn (t, x).(6.1)

Then from (6.1) one has f(t, u(t)) ≥ s-lsefn(t, u(t)) ≥ lim supn≥1 fk,pn (t, u(t)) a.s.

for all u ∈ Lp(X) and for all k > 0. Further, we have fk,pn (t, u(t)) ≤ fn(t, un(t)) +
2p−1k{‖u(t)‖p+‖un(t)‖p} ≤ k0(t)+2p−1k{‖u(t)‖p+(k0(t))

p}, and, invoking Fatou’s
lemma, we can write∫

f(t, u(t)) dµ ≥
∫

lim sup fk,pn (t, u(t)) dµ ≥ lim sup

∫
fk,pn (t, u(t)) dµ.(6.2)

Equation (6.2) being true for every k > 0, we have

I(f)(u) ≥ supk>0 lim supn≥1 Ik,p(fn)(u).(6.3)
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In order to apply the second property of Proposition 3.5 to the sequence (I(fn)), we
wish (6.4) to hold for every n ≥ 1 and each u ∈ Lp(X):

I(fn)(u) ≥ −h‖u‖Lp(X) − h0, where (h, h0) ∈ R+∗ ×R.(6.4)

Equation (6.4) can be deduced from assumption (c) and Holder’s inequality. Hence,
this provides the wanted result; that is, for each u ∈ Lp(X)

I(f)(u) ≥ s-lseI(fn)(u).

Proof of Theorem 4.2. On one hand, notice that assumption (c) implies that

fn(t, x) ≥ 〈x, un(t)〉 − f∗
n(t, vn(t)) ≥ −‖x‖h(t)− h0(t), (t, x) ∈ T ×X, n ≥ 1,

and on the other hand that, similarly, assumption (b) implies that

f∗
n(t, x

∗) ≥ −‖x∗‖k(t)− k0(t), (t, x∗) ∈ T ×X∗, n ≥ 1.

Thus, Theorem 4.1 applied with the sequence fn : T ×X → ]−∞,+∞] (n ≥ 1) tells
us that for every u ∈ Lp(X)

I(f)(u) ≥ s-lseI(fn)(u),(6.5)

and, since X∗ is also a separable Banach space, that for every function v ∈ Lq(X∗)

I(f∗)(v) ≥ s-lseI(f
∗
n)(v).(6.6)

Because of properties of conjugacy for integral functionals, we have I∗(f) = I(f∗)
and I∗(fn) = I(f∗

n) (n ≥ 1), so that (6.6) is I∗(f)(v) ≥ s-lseI
∗(fn)(v). The wanted

result is then provided by (6.5), (6.6), and Proposition 3.4.
Let us now give the long proof of Theorem 4.3. It can be found in [Cou]. As

in Theorem 3.1 in [Sa], we shall use for proving part (1) the well-known criteria for
functional Mosco convergence recalled in (3.2) and (3.3); and for proving part (2),
we shall use the criteria for functional convergence in the slice-topology expressed in
section 3 (see also [Cou]). Moreover, we need to deal with Lemma 6.1, but for the
convenience of the reader, we choose to express it after the following proof. Lemma 6.1
is a characterization of topology ρ in terms of measure convergence and may also be
seen as an extension of a similar result for the Mackey topology due to Castaing and
Grothendieck (see [Ca] and [Gr]).
Proof of Theorem 4.3. 1) Following criteria (3.2) and (3.3) for functional Mosco

convergence, we know that I(f) = (M(w, s), L1(X))- lim I(fn) if and only if (6.7) and
(6.8) below hold and that I(f∗) = (M(w∗, ρ), L∞(X∗))- lim I(f∗

n) if we have (6.9)
and (6.10), where

for each function u in L1(X), there exists a sequence (un) in L1(X)

with u = s-limun such that lim sup I(fn)(un) ≤ I(f)(u);(6.7)

for every sequence (un) in L1(X) such that u = σ(L1(X), L∞(X∗))- limun,

then I(f)(u) ≤ lim inf I(fn)(un);(6.8)

for each function v in L∞(X∗), there exists a sequence (wn) in L∞(X∗) with

v = ρ(L∞(X∗),L1(X))- limwn such that lim sup I(f∗
n)(wn) ≤ I(f∗)(v);(6.9)

for every sequence (vn) in L∞(X∗) such that v = σ(L∞(X∗), L1(X))- lim vn,

then I(f∗)(v) ≤ lim inf I(f∗
n)(vn).(6.10)
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Because of Theorem 4.1 and (3.1), (6.7) holds.
We ought to show now that (6.9) holds too. For this, let us consider v ∈ L∞(X∗).

If I(f∗)(v) = +∞, then (6.9) is satisfied. Else, let us define the sequence of proper
normal and lsc integrands (hn) where

hn : (t, x∗)→ [f∗
n(t, x

∗)− f∗(t, v(t))]+ (n ≥ 1)(6.11)

and the sequence of nonempty closed convex and measurable multifunctions Fn with

Fn : t→ {x∗ ∈ B∗(t)/‖v(t)− x∗‖+ hn(t, x
∗)(6.12)

≤ inf[‖v(t)− u∗‖+ hn(t, u
∗)/u∗ ∈ B∗(t)] + 1/n} (n ≥ 1).

B∗ is the multifunction defined by B∗ : t → {x∗ ∈ X∗/‖v(t) − x∗‖ ≤ R}, where
R = Ess sup{‖v(t)‖ + |h(t)|/t ∈ T} (R > 0). For each n ≥ 1, the multifunction
Fn admits a measurable selection wn : T → X∗. The sequence (wn) is bounded in
L∞(X∗) by construction. Moreover, f(t, . ) = (Ts, X)- lim fn(t, . ) a.s., and thanks to
Proposition 3.4 and to (3.1), there exists for almost every t ∈ T a sequence (x∗

n(t)) in
X such that v(t) = s- limx∗

n(t) and f∗(t, v(t)) ≥ lim sup f∗
n(t, x

∗
n(t)). Thus

limhn(t, x
∗
n(t)) = 0.(6.13)

And for almost every t ∈ T , there exists n0(t) such that for every n ≥ n0(t), x
∗
n(t) ∈

B∗(t). So that for each n ≥ n0(t) we have

‖v(t)− wn(t)‖+ hn(t, wn(t)) ≤ ‖v(t)− x∗
n(t)‖+ hn(t, x

∗
n(t)) + 1/n.(6.14)

From (6.13) and (6.14), we can write for almost every t ∈ T

lim[‖v(t)− wn(t)‖+ hn(t, wn(t))] = 0.(6.15)

Because of definition of Fn and invoking the fact that vn(t) ∈ B∗(t) a.s., one can
write ‖v(t)−wn(t)‖+hn(t, wn(t)) ≤ ‖v(t)−vn(t)‖+hn(t, vn(t))+1/n ≤ R+[h0(t)−
f∗(t, v(t))]++1/n ≤ R+h0(t)+‖v(t)‖k(t)+k0(t)+1. This last function is integrable.
With (6.15), this implies that

lim

∫
hn(t, wn(t)) dµ = 0.(6.16)

Hence

lim

[∫
f∗
n(t, wn(t)) dµ−

∫
f∗(t, v(t)) dµ

]+
= 0

⇒ lim sup

∫
f∗
n(t, wn(t)) dµ ≤

∫
f∗(t, v(t)) dµ,

and that provides

lim sup I(f∗
n)(wn) ≤ I(f∗)(v).(6.17)

Since the sequence (wn) is bounded in L∞(X∗) by construction and since lim ‖v(t)−
wn(t)‖ = 0 a.s., which implies that (wn) converges in measure to v, by virtue of
Lemma 6.1 below, (wn) converges to v with respect to topology ρ. This last result,
together with (6.17), is nothing else than (6.9).



192 JÉRÔME COUVREUX

Now we wish to establish (6.10). So let us consider first some functions v and (vn)
in L∞(X∗) (n ≥ 1) such that v = σ(L∞(X∗), L1(X))- lim vn. Second, let us consider,
fixed u ∈ L1(X), a sequence (un) in L1(X) obtained as in (6.7). These functions are
then satisfying I(f)(u) ≥ lim sup I(fn)(un). From the definition of the conjugate of
I(fn), we can write for each n ≥ 1

I∗(fn)(vn) = I(f∗
n)(vn) ≥ 〈vn, un〉 − I(fn)(un).(6.18)

As v = σ(L∞(X∗), L1(X))- lim vn and u = s- limun, we have lim〈vn, un〉 = 〈v, u〉.
Hence

lim inf I(f∗
n)(vn) ≥ 〈v, u〉 − lim sup I(fn)(un)

≥ 〈v, u〉 − I(f)(u),(6.19)

which proves that

lim inf I(f∗
n)(vn) ≥ I(f∗)(v).(6.20)

Finally, we wish to prove (6.8). For this, consider first some functions u and (un) in
L1(X) (n ≥ 1) such that u = σ(L1(X), L∞(X∗))- limun. Second, fixed v in L∞(X∗)
as in (6.9), consider a bounded sequence (wn) in L∞(X∗) converging to v for topology
ρ and such that I(f∗)(v) ≥ lim sup I(f∗

n)(wn). By conjugacy it follows that

I(fn)(un) ≥ 〈un, wn〉 − I(f∗
n)(wn).(6.21)

It is not hard to see that lim〈un, wn〉 = 〈u, v〉. So we have

lim inf I(fn)(un) ≥ 〈u, v〉 − lim sup I(f∗
n)(wn) ≥ 〈u, v〉 − I(f∗)(v),

which implies that

lim inf I(fn)(un) ≥ I(f)(u),

that is (6.8).
2) In order to show that I(f) = (Ts, L1(X))- lim I(fn), we want to establish that

for each u ∈ L1(X) with u ∈ dom I(f), I(f)(u) ≥ s-lseI(fn)(u) and that for every
v ∈ L∞(X∗), with v ∈ dom I(f∗), I(f∗)(v) ≥ s-lseI(f

∗
n)(v). The first inequality holds

thanks to Theorem 4.1. For the second one, let us consider the additional hypothesis;
that is, for almost every t ∈ T and each x ∈ X, fn(t, x) ≥ f(t, x). Then, for each
x∗ ∈ X∗, f∗

n(t, x
∗) ≤ f∗(t, x∗) and for every function v ∈ L∞(X∗),

f∗
n(t, v(t)) ≤ f∗(t, v(t)) ≤ f∗+(t, v(t)) a.s.(6.22)

As I(f∗)(v) < +∞, f∗+(. , v(. )) ∈ L1(R). And from (6.22)

lim sup f∗
n(t, v(t)) ≤ f∗(t, v(t)).(6.23)

Invoking (6.22), (6.23), and then Fatou’s lemma, one has lim sup
∫
f∗
n(t, v(t)) dµ ≤∫

lim sup f∗
n(t, v(t)) dµ ≤

∫
f∗(t, v(t)) dµ, and hence

lim sup I(f∗
n)(v) = lim sup I∗(fn)(v) ≤ I∗(f)(v).(6.24)

Let us deal now with the Lipschitz approximation of the functions I(f∗
n) (n ≥ 1). For

each v ∈ L∞(X∗) and every k > 0, one can write

I(f∗
n)(v) = I∗(fn)(v) ≥ I∗k,1(fn)(v).(6.25)
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From (6.24) and (6.25), it follows that I∗(f)(v) ≥ lim sup I∗k,1(fn)(v) for each k > 0,
which entails

I∗(f)(v) ≥ supk>0 lim supn≥1 I∗k,1(fn)(v).(6.26)

Hypothesis (b) easily implies the existence of some real k and k0 (k0 > 0) such that
I∗(fn) ≥ −k‖v‖L∞ − k0. Thus, part (2) of Proposition 3.5 can be used, which tells
us that s-lseI

∗(fn)(v) ≤ supk>0 lim supn≥1 I∗k,1(fn)(v), and then that

I∗(f)(v) ≥ s-lseI
∗(fn)(v).

As I(f)(v) ≥ s-lseI(fn)(v) and I∗(f)(v) ≥ s-lseI
∗(fn)(v), from Proposition 3.4,

we finally have I(f) = (Ts, L1(X))- lim I(fn) and then I(f∗) = (T ∗
s , L∞(X∗))-

lim I(f∗
n).

Here now is Lemma 6.1.
Lemma 6.1. Let (T,A, µ) be a finite probability space, and let X be a Banach

space with strongly separable dual. Let g, gn : T → X∗ (n ≥ 1) be some functions
such that first the sequence (gn) is bounded and second the sequence (gn) converges
in measure to g. Then, the sequence (gn) converges to g with respect to the topology
of the uniform convergence on the uniformly integrable and bounded subsets of L1(X)
(which is denoted by ρ).
Proof. We can only consider the case where g = 0. Let Γ be a uniformly integrable

subset of L1(X). For each function u ∈ Γ, every a ∈ R+, and each n ≥ 1, we write

〈gn, u〉 =
∫
〈gn(t), u(t)〉dµ = I + J,

where I =
∫
{t/‖u(t)‖≥a}〈gn(t), u(t)〉 dµ and J =

∫
{t/‖u(t)‖<a}〈gn(t), u(t)〉 dµ. On one

hand, see that as by hypothesis there exists M > 0 such that sup{‖gn‖L∞/n ≥ 1} ≤
M , one has

|I| ≤
∫
{t/‖u(t)‖≥a}

‖gn(t)‖X∗‖u(t)‖X dµ ≤M

∫
{t/‖u(t)‖≥a}

‖u(t)‖X dµ.

And lima→+∞
∫
{t/‖u(t)‖≥a} ‖u(t)‖X dµ = 0 uniformly in u. Then, fixed ε > 0, a can

be chosen (we denote it by a(ε)) such that |I| < ε/2 for every u ∈ Γ.
On the other hand:

|J | ≤
∫
{t/‖u(t)‖<a(ε)}

〈gn(t), u(t)〉 dµ

≤ a(ε)

∫
{t/‖u(t)‖<a(ε)}

‖gn(t)‖X∗ dµ ≤ a(ε)

∫
T

‖gn(t)‖X∗dµ.

It is easily seen that the sequence (‖gn‖X∗) converges in measure to 0. As
sup{‖gn‖L∞/n ≥ 1} ≤ M , we can find n0 such that n ≥ n0, |J | ≤ ε/2. Thus,
for n ≥ n0 and u ∈ Γ, 〈gn, u〉 < ε which entails

limn sup

{∫
T

〈gn(t), u(t)〉 dµ/u ∈ Γ

}
= 0.

Proof of Theorem 4.4. The proofs of (1) and (2) being similar, we only give
the second one (see also [Cou]). Let us define the integrands δn : (t, x)→ δ(x, Fn(t))
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(n ≥ 1) and δ : (t, x)→ δ(x, F (t)). According to Beer [Be3, Theorem 3.1], assumption
(a) implies that for almost every t ∈ T

δ( . , F (t)) = (Ts, X)- lim δ( . , Fn(t)).(6.27)

Moreover, applying the measurable selection theorem with the random sets t →
Fn(t) ∩B(0; d(0, Fn(t)) (n ≥ 1), we show the existence of a sequence un ∈ Sp(Fn,A)
(n ≥ 1) with ‖un(t)‖ ≤ k(t) a.s. where k ∈ Lp(R). Then

δ(un(t), Fn(t)) = 0 a.s., n ≥ 1.(6.28)

Moreover, the support function of the random set Fn (n ≥ 1), which is the conjugate
of the indicator function δn, satisfies

s(0, Fn(t)) = 0 a.s., n ≥ 1.(6.29)

As (6.28) and (6.29) are nothing else than, respectively, assumptions (b) and (c) of
Theorem 4.2 with fn = δn and f∗

n = s( . , Fn), one has I(δ) = (Ts, Lp(X))- lim I(δn).
But since for each function u in Lp(X) I(δ)(u) = 0 (resp., I(δn)(u) = 0, n ≥ 1) if
and only if u(t) ∈ F (t) a.s. (resp., u(t) ∈ Fn(t) a.s. n ≥ 1), we have δ( . , Sp(F,A)) =
(Ts, Lp(X))- lim δ( . , Sp(Fn,A)). Thus Sp(F,A) = Ts- limSp(Fn,A).
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plication mesurable, Séminaire d’Analyse Convexe, Montpellier, n◦9, Université de
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DELAY-INDUCED INSTABILITIES IN GYROSCOPIC SYSTEMS∗
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Abstract. It is shown that stable linear gyroscopic systems of the form Mx′′ + Tx′ +Kx = 0
(M > 0) always become unstable when an arbitrarily small delay is introduced in the gyroscopic
term. In the case where K is negative definite, then the system will be unstable for all positive
delays. On the other hand, examples are given showing that some of these systems may actually
become asymptotically stable for larger values of the delay parameter.

Key words. gyroscopic forces, time delays, vibrating systems
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1. Introduction. It is known that certain infinite-dimensional Hamiltonian sys-
tems that have been stabilized via distributed or boundary damping are not robust
with respect to small time delays which might be present in the feedback stabilization
mechanism (see, for example, [DLP, DY, RT]). In these cases, the effect of the intro-
duction of the small delay is to perturb the high frequencies of the (asymptotically)
stable system, giving rise to periodic or even exponentially growing solutions. Clearly
this phenomenon is made possible by the fact that the spectrum of the system with-
out delay has an infinite number of eigenvalues on an unbounded strip parallel to the
imaginary axis.

Another situation where the presence of small delays might be expected to desta-
bilize an otherwise stable system is when there are eigenvalues lying on the imaginary
axis. An example of this type is provided by mechanical systems with gyroscopic
forces which are modelled by systems of differential equations of the form

Mx′′(t) + Tx′(t) +Kx(t) = 0.(1.1)

Here M and K are real symmetric n × n matrices usually referred to as the mass
and stiffness terms, corresponding to inertial and potential forces, respectively. The
mass matrix will be assumed to be positive definite. The matrix T is a real n × n
skew-symmetric matrix which represents the gyroscopic forces.

In order to study the stability of the trivial (zero) solution of (1.1), we look for
solutions of the form x = eλtu, leading to the eigenvalue problem

λ2Mu+ λTu+Ku = 0.

Throughout the paper we consider the usual definitions of different types of stability
that may be found in the literature (for instance, in Chapter 5 of [HL]). The trivial
solution of a system of the form (1.1) will then be stable if and only if all eigenvalues
lie on the imaginary axis and are semisimple, that is, their algebraic and geometric
multiplicities are equal. This is, of course, related to the Hamiltonian symmetry of
the corresponding spectrum. Such a system will always be stable independent of T
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when K is positive definite, in which case all eigenvalues are semisimple [L]. If K is
allowed to have both negative and positive eigenvalues, the system may then, under
certain conditions, be stabilized by using a suitable matrix T . This has been known
for a long time [TT] and, in particular, it is known that a necessary condition for it to
be possible is that the number of negative eigenvalues of K be even. Recently there
have been several papers giving conditions on the matrix T so that the overall system
is stabilized when K is negative definite (see, for instance, [BLM, HKLP]).

In this note, we show that when a small delay parameter is introduced in (1.1),
this will force some of the eigenvalues into the right half of the complex plane indepen-
dently of the gyroscopic, mass, and stiffness matrices, thus making the trivial solution
unstable. Under certain quite general conditions given below, we shall see that the
presence of small delays in the gyroscopic term always destabilizes the mode of the
original system corresponding to the highest frequency. We conjecture that the lowest
frequency mode is actually stabilized, but have only been able to prove this under
special circumstances (K either positive or negative definite). As mentioned above,
this destabilizing effect is not unexpected as all the eigenvalues of the original system
are on the imaginary axis. However, it is not clear a priori whether this will always be
the case or not, irrespective of the matrices M,T , and K. Besides, this seems to be
the first study of a finite-dimensional system where the associated transfer function
is proper and which always becomes unstable when arbitrarily small delays are intro-
duced. For some different approaches and situations, see, for instance, [BCD, GS].
Note that in all of the examples given above the destabilizing effect relies on the fact
that in the absence of delay the underlying system is already infinite-dimensional.

Under some additional restrictions (K < 0), we are able to show that instability
then persists for all values of the delay. More surprisingly, we also show that there
are situations where the system will actually become asymptotically stable for larger
values of the delay parameter—note that although the original system is stable, it is
not asymptotically stable. This stabilizing effect of the delay has been identified in
other systems. See, for instance, [CG], where stability switching sequences for some
second-order scalar differential equations were studied. When n equals two, we give
a full description of these sequences in terms of a set of four positive real numbers.
These are the only possible crossing points of eigenvalues on the imaginary axis in this
case. We then show that although the system might become stable for some values
of τ , it ultimately becomes unstable. In fact, we prove that once there are more than
four unstable eigenvalues the system never stabilizes again for large values of τ .

We begin by indicating the overall hypotheses which are to be assumed throughout
the paper and by presenting the main results in section 2. We then go on to study
some properties of the spectrum associated with this problem, with particular focus
on the derivatives with respect to the delay at purely imaginary eigenvalues. This
is done in section 3. Section 4 deals with the destabilizing effect of delays, and in
section 5 we show that under some circumstances it is possible for the system to
become asymptotically stable for larger values of the delay. This is done by means of
a full description of the 2× 2 case. Finally, in section 6 we briefly discuss the results
obtained.

2. Preliminaries and main results. We shall consider only the case whereM
is positive definite, which implies that system (1.1) can be brought into the form

y′′(t) +Gy′(t) + Cy(t) = 0,(2.1)
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by means of the change of variables x =M−1/2y. Here G =M−1/2TM−1/2 and C =
M−1/2KM−1/2 are real n× n skew-symmetric and symmetric matrices, respectively.
We now introduce a delay in the gyroscopic term in (2.1) to obtain

y′′(t) +Gy′(t− τ) + Cy(t) = 0.(2.2)

Throughout the paper we shall make the following assumptions on (2.2).
H1. In the absence of delay (τ = 0) all eigenvalues are on the imaginary axis and

are simple.
H2. C is nonsingular.
H3. G and C do not have any common invariant spaces.

The reason for assuming H1 has to do with the fact that if the original system has
eigenvalues with positive real parts, then it will always remain unstable for small
delays and there is nothing to prove. As mentioned in the introduction this will
impose certain conditions on the matrices G and C. In order to have stability, it is
also necessary that the eigenvalues are semisimple. To make matters simpler, we shall
assume simplicity of eigenvalues, but similar results can be obtained under the weaker
assumption that they are semisimple, except that the expressions for the derivatives
at a multiple eigenvalue are more complicated.

Note also that H3 may be assumed without loss of generality, as it just means
that system (2.2) cannot be decoupled into two or more independent blocks. If this
is not the case, then we can just apply the present results to each block separately.

The main results of the paper are contained in the following two theorems. The
first concerns the destabilizing effects of the delay.

Theorem 2.1. Assume that system (2.2) satisfies hypothesis H1–H3. Then there
exists a positive number τ1, depending on G and C, such that the trivial solution is
unstable for all τ in (0, τ1). If C is negative definite, then τ1 = +∞; that is, the
system is unstable for all positive values of the delay parameter.

There are, however, cases where the introduction of a delay will also have a
stabilizing effect for larger values of the delay parameter.

Theorem 2.2. There exist systems of the form (2.2) and positive numbers τ1 and
τ2 with τ1 < τ2 such that the trivial solution is stable when there is no delay, unstable
for τ in (0, τ1), and asymptotically stable for τ in (τ1, τ2).

3. Some basic facts about the associated spectrum. In order to study
the stability of the trivial solution of system (2.2), we look for solutions of the form
y(t) = eλtu and obtain the spectral problem

Lτ (λ)u := λ2u+ λe−λτGu+ Cu = 0.(3.1)

This is equivalent to solving the characteristic equation

d(λ, τ) := det
(
λ2I + λe−λτG+ C

)
= 0.(3.2)

Note that, for fixed τ , the function d defined above is analytic in λ. When τ is zero,
this problem will have 2n eigenvalues which, since this system is assumed to be stable,
will lie on the imaginary axis and be semisimple. For positive values of τ , the presence
of the exponential term has the effect of bringing in an infinite number of eigenvalues
from the point at infinity, and also of breaking the Hamiltonian symmetry that is
present when there is no delay.

That these eigenvalues do not accumulate near the imaginary axis is fundamental
in the study of the stability of such problems. This is a consequence of the fact that
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on the one hand the eigenvalues are zeros of an analytic function, and, on the other,
the set of eigenvalues with real part larger than any given number is bounded. These
properties are summarized in the following proposition.

Proposition 3.1. Let α0 and τ0 be given real numbers where τ0 is assumed to be
positive. There exists a constant κ = κ(α0, τ0) such that if Re(λ) > α0 and τ ∈ (0, τ0),
then |λ| < κ. As a consequence, for any given nonnegative value of the delay, there
is only a finite number of eigenvalues with real part larger than α0.

For a proof, see [HL], for instance. Finally, recall that the stability of the trivial
solution is determined by the eigenvalues (See, for instance, [HL, section 7.6]).

3.1. Purely imaginary eigenvalues. The discussion above implies that the
mechanism underlying the changes of stability of the trivial solution is related to
eigenvalues which cross the imaginary axis from the left to the right (increasing the
number of unstable eigenvalues) or from the right to the left (decreasing this number).
Since the system coefficients are real and it is assumed that C is nonsingular, this can
only happen at pairs of purely imaginary eigenvalues. We shall now look for points
of this type in the spectrum.

Letting λ = ωi (ω > 0) in (3.1) gives

−ω2u+ ωie−ωτiGu+ Cu = 0.(3.3)

Taking the inner product with u and assuming the eigenvectors to be normalized by
‖u‖ = 1, we obtain

ω2 + ωe−ωτig − c = 0,

where ig = (Gu, u) and c = (Cu, u). Here (·, ·) denotes the usual (complex) inner
product. Separating this equation into real and imaginary parts yields{

ω2 + ωg cos(ωτ)− c = 0,
ωg sin(ωτ) = 0.

(3.4)

Since C is taken to be nonsingular, ω cannot vanish, and thus we have from the
second equation that either g = 0 or ωτ = kπ. Let’s consider the latter case first.
Substituting in (3.3), we get

−ω2u+ (−1)kωiGu+ Cu = 0.(3.5)

Because the matrices G and C are real, if ωi is an eigenvalue, then the same is true of
−ωi. We thus see that we may omit the factor (−1)k without loss of generality and
look for solutions of

ω2u− iωGu− Cu = 0

instead. Now this is the same as the equation when τ vanishes, and thus we see
that points of this type where eigenvalues may cross the imaginary axis are just the
eigenvalues of the original problem, with the same multiplicities.

At this point we shall not consider eigenvalues where the inner product ig =
(Gu, u) vanishes, except to remark that when this happens we have from the first
equation in (3.4) that ω2 = c. In particular, this implies that such points cannot exist
when the matrix C is negative definite. We shall see below that they exist under other
conditions and that they will play an important role in the stabilization mentioned in
the introduction.
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This discussion suggests the following distinction between two types of crossing
points. If a point on the imaginary axis where eigenvalues may cross from one half-
plane to the other is an eigenvalue of the system at τ equal zero, we shall say that it
is a primary crossing point. Otherwise, it will be called a secondary crossing point.

Assume that when τ is zero the spectrum of system (2.2) consists of the points
±ω1i, . . . ,±ωni, with (0 <)ω1 < · · · < ωn. Then we have that there are eigenvalues
on the imaginary axis at the points ±ωj for τ jk = kπ/ωj , k = 0, 1, . . . , j = 1, . . . , n.
Note that for even k each eigenvalue has the same eigenvector as it did at τ = 0, while
when k is odd the eigenvector is now the complex conjugate of that same eigenvector.

3.2. Derivatives of eigenvalues at primary crossing points. In order to
determine the stability of the trivial solution for τ small, we shall consider the sign
of the derivative of eigenvalues on the imaginary axis when τ is zero. First note that
the derivative of an eigenvalue λ with respect to τ exists provided that λ is a (finite)
semisimple eigenvalue. Thus, if we know the signs of these derivatives when there is
no delay, this together with the properties mentioned at the beginning of this section
will enable us to study the stability for small positive values of the delay parameter.

In order to proceed, we need to consider the adjoint eigenvalue problem L∗
τ (λ)v =

0, where the adjoint operator L∗
τ (λ) is defined by the equality (Lτ (λ)u, v) = (u, L

∗
τ (λ)v)

for all u, v ∈ R
n. This gives

L∗
τ (λ)v = λ

2
v − λe−λτGv + Cv.

We now consider the eigenvalue problems for Lτ+δ(λ) and L∗
τ (λ), that is, Lτ+δ(λ)u =

0 and L∗
τ (λ)v = 0. Taking inner products at τ + δ and τ , we get (Lτ+δ(λ)u, v) =

(L∗
τ (λ)v, u) = 0. Clearly u also depends on τ and δ, but we shall omit this dependence

to keep notation simple. If we now take the complex conjugate in the second equality
and then subtract, we are led to[

λ2(τ + δ)− λ2(τ)
]
(u, v) + [λ(τ + δ)e−λ(τ+δ)(τ+δ) − λ(τ)e−λ(τ)τ ](Gu, v) = 0.

Dividing by δ and letting it go to zero, we finally obtain

λ′(τ) =
λ2(τ)e−λτ (Gu, v)

2λ(τ)(u, v) + [1− τλ(τ)] e−λτ (Gu, v)
.(3.6)

Now note that at a point where λ = ωi and ωτ = kπ, we have

Lτ (ωi)u = −ω2u+ ωie−kπiGu+ Cu = 0

and

L∗
τ (ωi)v = −ω2v + ωiekπiGv + Cv = 0,

so that u and v can actually be taken to be the same. Thus, if we normalize eigenvec-
tors such that (u, u) = 1, we obtain that the derivative at a primary crossing point ω
for the delay τ = kπ/ω is given by

λ′(τ) =
(−1)k+1ω2g

2ω + (1− kπi)(−1)kg ,

where ig = (Gu, u). Since we have

(−1)kg = c

ω
− ω,
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where c = (Cu, u), we finally obtain that

λ′(τ) =
ω2(ω2 − c)

(ω2 + c)2 + k2π2(c− ω2)2
[
(ω2 + c) + ikπ(c− ω2)2

]
.(3.7)

From this, we see that the sign of the real part of the derivative of an eigenvalue at a
primary point ωi is the same as that of the product (ω2 − c)(ω2 + c). Furthermore,
this sign depends only on the value of the crossing point and is actually independent
of the value of τ . These results are summarized in the following proposition.

Proposition 3.2. The sign of the real part of the derivative of an eigenvalue
at a primary crossing point ωi is given for any τ = kπ/ω (k ∈ Z) by the sign of the
product (ω2 − c)(ω2 + c), where c = (Cu, u), with u a normalized unit eigenvector
associated to the corresponding eigenvalue at τ equal to 0.

4. The destabilizing effect of delays. We shall now show that for the largest
(in absolute value) of primary crossing points, the real part of the derivative with
respect to τ is positive. Since, as we have seen, the sign of this derivative does not
depend on the actual value of τ for which the crossing occurs, we may consider τ to
be zero. We shall thus consider the operator L0(λ) for λ = ωi. This gives

L0(ωi) = −ω2I + ωH + C,

where H = iG. As G is skew-symmetric, H will be Hermitian and thus L0(ωi) is
a Hermitian quadratic pencil for real ω. For each real value of ω, there exist n real
eigenvalues (counting multiplicities) of L0(ωi). The functions describing the behavior
of the eigenvalues with respect to the parameter ω are called the eigencurves of the
quadratic pencil. Note that eigenvalues of the original problem correspond to zero
eigenvalues of L0(ωi) and thus to intersections of the eigencurves with the horizontal
axis.

Proposition 4.1. At the largest primary crossing point we have

λ′(0) > 0.

Proof. Begin by noting that τ equal to zero corresponds to k equal to zero also,
and thus from the expression (3.7) for the derivative we see that λ′(0) is actually real.

We shall now consider the auxiliary Hermitian spectral problem

L0(ωi)u = σu,

where ω will be taken to be a real parameter. Denote by c1 ≤ · · · ≤ cn the
eigenvalues of C and assume that a change of basis has been carried out such that
C = diag{c1, . . . , cn}. We have that if |ω| ≥ ωn, then the matrix L0(ωi) is negative
semidefinite. In particular, we get

L0(ωni) = −ω2
nI + ωnH + C ≤ 0,

which implies that the diagonal entries of L0(ωni) are less than or equal to zero. It
thus follows that −w2

n + cn ≤ 0. Since cn ≥ c = (Cu, u) for all u with unit norm,
we have that ω2

n ≥ c. Now equality can hold if and only if c = cn, that is, if u is
the eigenvector corresponding to cn. But as C is in diagonal form, this would mean
that u = (0, . . . , 0, 1), from which we obtain that the entries gjn of G will have to
vanish also for all j = 1, . . . , n. This would make G singular with u as an eigenvector
associated to the zero eigenvalue, which is not possible by H3. Hence ω2

n − c > 0.
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We now observe that from −ω2 + ω(Hu, u) + (Cu, u) = 0 and the fact that
ω2
n − c > 0, we obtain that h := (Hu, u) = ωn − c/ωn is positive.
For the auxiliary spectral problem considered above we have that σ is a differen-

tiable function of the (real) variable ω, and this derivative can easily be seen to be
given by

σ′(ω) = −2ω + h.

Since ωni is the largest (in absolute value) eigenvalue of the original problem, it follows
that σ′(ωn) is less than or equal to zero. (It is actually negative, since we are assuming
that eigenvalues are simple.) This yields that 2ωn ≥ h(> 0) and since

(0 <)2ωn − h = ±
√

h2 + 4c,

we have that for the largest eigenvalue the plus sign should be taken. Hence, 4ω2
n+4c ≥

h2 + 4c > 0, and finally ω2
n + c > 0 as desired.

When C is negative definite, it is possible to improve the result above and to show
that there are other eigenvalues besides that with largest absolute value for which this
derivative is also positive. Keep in mind that if C is negative definite, then it is a
necessary condition that n be even in order for the system without delay to be stable.

Corollary 4.2. Assume that C is negative definite. Then there exist at least
n/2 primary crossing points in the upper half-plane for which the real part of the
derivative with respect to τ of an eigenvalue at these points is positive.

Proof. If C is negative definite, we automatically have that ω2 − c is positive.
On the other hand at ω = 0 all the eigencurves of L0, are below the horizontal axis.
This means that, since eigenvalues are simple (it is actually enough for them to be
semisimple), there must exist n intersections of the eigencurves with the horizontal
axis, of which n/2 have σ′ positive, and the remaining n/2 have σ′ negative. Again,
the derivative cannot be zero since this implies double (nonsimple) eigenvalues in the
original problem. Proceeding as in the proof of the previous result, it is possible to
show that those crossing points which correspond to negative values of σ′ will have
ω2
j + c > 0, and so the derivative with respect to τ at these points is positive.

Proof of Theorem 2.1. The first part of the result follows immediately from the fact
that for the largest eigenvalue λ′(0) is positive, and from the continuity of eigenvalues
with respect to τ .

To prove that the system will always be unstable when C is negative definite, we
begin by noting that in this case there are no secondary crossing points. This follows
from the second equation in (3.4) since if g is not zero we obtain a primary crossing
point, while if it vanishes we get that ω2 = c which is impossible when C is negative
definite. Denote the number of eigenvalues with positive real parts by ν(τ). We have
that ν(τ) is completely determined once we know the primary crossing points and
their derivatives. This can be done by writing down the values τkj for each crossing
point ωji, and then ordering them in increasing order and taking into account the
sign of the respective derivative. We can thus build a table of the form

τ1
n < τ2

n < · · ·
τ1
n−1 < τ2

n−1 < · · ·
...

τ1
1 < τ2

1 < · · · ,
where we also have that τkj < τkj−1. From Corollary 4.2 we have that at least n/2 of
the derivatives are positive. In particular, this is the case for ωni. We can see from
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the table above that the smallest positive value of τ for which there will be a crossing
is given by τ1

n = π/ωn. For τ between zero and τ1
n we know that there exist at least

n eigenvalues with positive real parts and so ν(τ) ≥ n in this interval. After τ1
n and

until we reach the next crossing point we shall have ν(τ) ≥ n+2. We now claim that
the number of primary points which are smaller than a positive number τ and which
have a negative derivative will never exceed by more than one the number of primary
points smaller than τ and for which the derivative is positive.

To prove the claim, notice that it holds on each column of the table above since
when we consider the eigencurves of the auxiliary spectral problem we see that, trav-
elling from the right to the left along the horizontal axis (travelling down a column),
the number of intersections of eigencurves with the horizontal axis which have a neg-
ative derivative cannot be exceeded by those with a positive derivative. This means
that as we travel down a column the difference can never be greater than one. Since
the first point on each column always corresponds to the largest crossing point, the
claim follows.

We end this section with a result on the sign of the derivative of an eigenvalue at
the smallest primary crossing point.

Proposition 4.3. If C is either negative or positive definite, then the derivative
at the primary crossing points with the smallest absolute value has a negative real
part.

Proof. Consider first the case where C is positive definite. Then we have that
L0(ωi) is semipositive definite at ω = ω1. In a similar fashion to the proof of Propo-
sition 4.1, we obtain that ω2

1 ≤ c1. Since now c1 ≤ c = (Cu, u) for all u with unit
norm, we get that w2

1 − c ≤ 0, and, as before, we get that equality cannot hold and
thus w2

1 − c < 0. Since C is positive definite, w2
1 + c > 0 and the result follows.

When C is negative definite, w2
1 − c is always positive. The derivative of the

corresponding eigencurve at this point must now be positive and so σ′(ω1) = −ω1+h >
0. Thus h > ω1(> 0). This implies that 2ω1 − h = −√h2 + 4c, from which we obtain
2ω1+

√
h2 + 4c = h. Taking squares on both sides gives that w2

1+c = −ω1

√
h2 + 4c <

0, which in turn implies that the real part of the derivative is negative.

5. Secondary crossing points and the stabilizing effect of delays. The
analysis of secondary crossing points is much more difficult in general than that of
primary points. There are several reasons why this is so. On the one hand, now we
no longer have that the eigenvectors u and v in the expression (3.6) for the derivative
can be taken to be the same. On the other hand, the equation that gives these points
is also not easy to obtain explicitly in general. However, and as we shall see below,
these points can play a decisive role in the stability of this type of system, and it
would thus be interesting to study them in more detail.

5.1. The case of n = 2. We shall now consider the special case where n is two,
since this is the only case where a complete study of secondary crossing points may
be carried out explicitly. In this case we may assume that

G =

[
0 g
−g 0

]
and C =

[
c1 0
0 c2

]
(with c1 ≤ c2), and so the characteristic function is now given by

d(ωi, τ) = ω4 − (c1 + c2)ω
2 + c1c2 − ω2g2e−2ωτi.
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As before, we are interested in the case of real ω. Separating this equation into real
and imaginary parts, we have{

ω4 − (c1 + c2)ω
2 + c1c2 − ω2g2 cos(2ωτ) = 0,

ω2g2 sin(2ωτ) = 0.

If we assume C to be nonsingular, then ω cannot be zero. On the other hand, g must
also be different from zero, for otherwise there is no gyroscopic term. It then follows
from the second equation that 2ωτ = mπ. For even m, substituting this in the first
equation gives the primary crossing points. We are thus interested in the case of odd
m, which leads to the following equation for the secondary points:

ω4 − (c1 + c2 − g2)ω2 + c1c2 = 0,

from which we obtain that

ω2 =
c1 + c2 − g2 ±

√
(c1 + c2 − g2)2 − 4c1c2
2

.

When c1 and c2 are both negative, we already know that there are no secondary
points. This can also be easily seen from the expression above. If c1c2 < 0, then the
number of negative eigenvalues is odd and thus the system without delay can never
be stable, and so we are left with the case where C is positive definite.

Note first that under these conditions the expression for ω2 given above can only
be positive provided that c1 + c2 − g2 is positive. On the other hand, in order to get
a positive term under the square root, we must have(

c1 + c2 − g2 − 2√c1c2
) (

c1 + c2 − g2 + 2
√
c1c2

)
> 0,

which, because of the condition above, reduces to

c1 + c2 − g2 − 2√c1c2 > 0.

We thus have that a necessary and sufficient condition for the existence of four sec-
ondary points when C is positive definite is that

√
c2 −√c1 > g.

Denote these points by ±ω̃1 and ±ω̃2, with ω̃1 < ω̃2. Clearly, then, ±ω̃1 and ±ω̃2

correspond to the minus and plus signs in the expression for ω2.
The equation giving these roots in λ is

λ4 + (c1 + c2)λ
2 + c1c2 + λ2g2e−2λτ = 0,

from which the following expression for the derivative of λ with respect to τ can be
obtained:

λ′(τ) =
λ2g2e−2λτ

2λ2 + c1 + c2 + g2e−2λτ − λτg2e−2λτ
.

At secondary crossing points λ = ωi and ωτ = mπ/2 with m odd. Hence

λ′(τ) =
ω2g2

−2ω2 + c1 + c2 − g2 +mπg2i/2

=
ω2g2

[
(−2ω2 + c1 + c2 − g2)−mπg2i/2

]
(2ω2 − c1 − c2 + g2)2 +m2π2g4/4

,
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and the sign of the real part of the derivative is the same as that of −2ω2+c1+c2−g2.
On the other hand, we have

2ω2 − c1 − c2 + g2 = ±
√
(c1 + c2 − g2)2 − 4c1c2,

and so the real parts of the derivatives at ±ω̃1 and ±ω̃2 are positive and negative,
respectively. The fact that now the largest of the secondary crossing points has
a negative derivative enables the system to be stabilized for positive values of the
delays. In particular, we have the following proposition.

Proposition 5.1. In the case where n is equal to two and C is positive definite,
there will exist numbers τ1 < τ2 such that the trivial solution of (2.2) is asymptotically
stable on the interval (τ1, τ2) if and only if 2ω̃2 > ω2.

Proof. Denote the values of the delays for which eigenvalues cross the imaginary
axis by τkj and τ̃kj , corresponding, respectively, to ωj and ω̃j , j = 1, 2. From the

previous discussion, we know that τkj = kπ/ωj , while τ̃
k
j = (2k−1)π/(2ω̃j), k = 1, . . ..

The first crossing for positive τ will then occur either at τ1
2 = π/ω2 or at τ̃

1
2 = π/(2ω̃2).

Since, at τ equal to zero, one pair of eigenvalues moved to the right, while the other
went to the left, we have that ν(τ) is two between zero and the first crossing. Clearly,
if this happens at τ̃1

2 , the system becomes stable.
Assume now that the first crossing is at τ1

2 , that is, that 2ω̃2 < ω2. To show that
there will always exist at least one pair of eigenvalues with positive real parts, we
shall use an argument similar to that used in the proof of Theorem 2.1. To this end,
we begin by noting that ω̃1 > ω1:

2(ω̃2
1 − ω2

1) = −2g2 −
√
(c1 + c2 − g2)2 − 4c1c2 +

√
(c1 + c2 + g2)2 − 4c1c2.

This will be positive if and only if

c1 + c2 − g2 >
√
(c1 + c2 + g2)2 − 4c1c2,

which is clearly satisfied for all positive c1 and c2. We shall now build a table similar
to that used in the proof of Theorem 2.1, except that because we need to include
transitions both at primary and secondary points, it is not possible to ensure that
the order of the crossing points in the first column will be the same as in the other
columns. However, since we are assuming that ω2 > 2ω̃2, we get that τ

k
2 = kπ/ω2 >

(2k − 1)π/(2ω̃2) = τ̃k2 for all k. This ensures that the first transition in a column
is always from the left to the right. On the other hand, because ω̃1 > ω1, we have
that τ̃k1 = (2k − 1)π/(2ω̃1) < kπ/ω1 = τk1 . This implies that in each column the last
element is always one corresponding to a transition from the right to the left. The
result now follows in a similar way to the proof of Theorem 2.1.

Finally, note that if 2ω̃2 = ω2, then this cancels out two of the transitions in a
column, reducing it to just two terms. As we have seen that the last term in column
k is always τk1 , we again have instability.

As a corollary to this result, we obtain that if too many eigenvalues are on the
right-hand side for a given value of τ , then the trivial solution cannot become stable
again for larger values of τ .

Corollary 5.2. If ν(τ∗) = ν∗ for some positive τ∗, then ν(τ) ≥ ν∗−4 for all τ >
τ∗. In particular, if ν∗ = 6, the trivial solution is unstable for all τ > τ∗. Furthermore,
it will always become unstable for large enough values of the delay parameter.

Proof. From the proof of the previous result we know that the last element in
column k is always τk1 and so in order to reach it we must go past τ̃

k
1 . On the other
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hand,

2(ω2 − ω̃2) = 2g
2 +

√
(c1 + c2 + g2)2 − 4c1c2 −

√
(c1 + c2 − g2)2 − 4c1c2 > 0,

which gives that

ω2 > ω̃2 >
2k

2k + 1
ω̃2,

and so τ̃k+1
2 > τk2 . This implies that before we reach τ = τ̃k+1

2 we must first pass
through τk2 . In this way, we see that ν can never decrease by more than four.

To prove the second part of the result, just notice that for large enough values of
k we have that the top entry in each column is τk2 , as ω2 > ω̃2. This gives that there
exists τ∗ sufficiently large for which ν(τ∗) is 6 and the result follows.

With these results it is possible to determine all the stability intervals for any
given 2 × 2 system (with simple eigenvalues), together with the associated stability
sequence (the sequence of integers giving the number of eigenvalues with positive real
part as the delay parameter is increased).

Example 5.1. Take c1 = 4, c2 = 16, and g = 1. We then get

ω1 ≈ 1.9233, ω2 ≈ 4.1594, ω̃1 ≈ 2.0920, and ω̃2 ≈ 3.8241.

Clearly, 2ω̃2 > ω2, and in fact there will actually exist three stability intervals:

(τ̃1
2 , τ̃

1
1 ) ≈ (.4108, .7509),

(τ̃3
2 , τ̃

2
1 ) ≈ (2.0538, 2.2526),

and (τ̃5
2 , τ̃

3
1 ) ≈ (3.6969, 3.7543).

The stability sequence in this example is

2, 0, 2, 4, 2, 4, 2, 0, 2, 4, 2, 4, 2, 0, 2, 4, 2, 4, 2, 4, 6, 4, 6, 4, 2, 4, 6, 4, 6, 4, 2 . . . ,

and from Corollary 5.2 we get that these are the only stability intervals.
By changing the coefficients, it is possible to obtain examples with more stable

intervals, and also examples for which, although there exist secondary crossing points,
the system is always unstable.

Example 5.2. Take c1 = 1, c2 = 16, and g = 1/2. Then the stability sequence
is given by

2, 0, 2, 0, 2, 4, 2, 4, 2, 4, 2, 0, 2, 0, 2, 4, 2, 4, 2, 4, 2, 0, 2, 0, 2, 4, 2, 4, 2, 4, 2, 0,
2, 0, 2, 4, 2, 4, 2, 4, 2, 0, 2, 0, 2, 4, 2, 4, 2, 4, 2, 0, 2, 0, 2, 4, 2, 4, 2, 4, 2, 0, 2, 0,
2, 4, 2, 4, 2, 4, 2, 0, 2, 4, 2, 4, 6, 4, 6, 4, 2, 4, 2, 4, 6, 4, 6, 4, 6, 4, 2, 4, 2, 4, . . . .

Example 5.3. Take c1 = 1, c2 = 16, and g = 2.9. Then
√
c2 −√c1 − g = .1, so

that there exist secondary crossing points, but now the stability sequence is

2, 4, 2, 4, 6, 8, 6, 8, 10, 12, 10, 12, 10, 12, 10, 12, 14, 16, 14, 16, 18, 20, 18, . . . ,

and so the system is never stable.
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6. Conclusions. We have shown that the simple model for gyroscopic systems
given by (1.1) is not robust with respect to small delays in the sense that the introduc-
tion of an arbitrarily small delay in the gyroscopic term will make the trivial solution
unstable under a quite general set of hypotheses. This is the case, in particular, when
the gyroscopic term is used to stabilize a system where the matrix K is negative
definite and thus the number of eigenvalues with positive real parts for the system
without feedback is the maximum possible. For this situation we have seen that the
system remains unstable for all values of the delay parameter. It is thus of interest to
know under what conditions these are realistic modelling assumptions and whether
or not more sophisticated models should be taken into account. These models might
include having different delay parameters in the different variables, introducing delays
in the stiffness term, or having distributed delays.
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Abstract. We prove the existence of the limit of the values of finitely repeated (resp., discounted)
absorbing games with incomplete information on one side, as the number of repetitions goes to infinity
(resp., the discount factor goes to zero). The main tool is the study of the Shapley operator, for
which the value of the λ-discounted game is a fixed point, and of its derivative with respect to λ.
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Introduction. We analyze the asymptotic behavior of a class of discounted and
finitely repeated two player zero sum games, namely, absorbing games with incomplete
information on one side. Indeed, for a given discount factor λ or for a given length
n of the game, the existence of the value of the discounted game and of the n-stage
game is known. The question is to provide an asymptotic analysis of the values as the
players become infinitely patient, or as the length of the game increases.

The existence of the limit of the values of the n-stage games vn or of the λ-
discounted games vλ has been proved in two main classes of games. In the case of
absorbing games with complete information (see Kohlberg [5]) or, more generally, in
the case of stochastic games with complete information (see Bewley and Kohlberg [2]
or Mertens and Neyman [8]), these are repeated games in which at each stage the
actions of the players determine not only their payoffs but also the transitions of a
given Markov process; stage payoffs are a function of the pair of actions and of the
state of the Markov process at that stage. And in the case of games with no absorbing
states but with lack of information on one side (see Aumann and Maschler [1]) or on
both sides (Mertens and Zamir [9]), these are repeated games in which the players do
not perfectly know the matrix of the game they are playing; this matrix is drawn with
a given probability among a given set of matrices, and the players only get partial
information on the exact matrix that has been drawn.

The purpose of this paper is to generalize this result to our framework. This
question has been solved by Sorin in [14, 15] for the special case of “big match” with
incomplete information on one side. These are 2×2 games in which one of the players
controls the transition to an absorbing state (see Blackwell and Ferguson [3]).

We analyze the asymptotic behavior of discounted and finitely repeated two player
zero sum absorbing games with incomplete information on one side. The game is
defined by a family of payoff matrices indexed by two parameters: the first one is
private information of player 1 and is kept fixed for the whole interaction; the second
one, named the state, is a Markov process in which the transitions depend on the
actions of the players. This defines a stochastic game with incomplete information
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on one side. In addition, the game is absorbing, meaning that all states but one are
absorbing: a state is said to be absorbing if, independently of the actions of the
players, the probability to leave it once it has been reached is 0. In that framework
we prove the existence of the limit of the values of the λ-discounted games and of the
n-stage games as λ goes to 0 or as n goes to infinity.

The argument used in this paper is an extension of the approach provided in [5].
It consists of studying a mapping T involved in the recursive formula defining the
value of the repeated game. It expresses the total payoff of the repeated game as
a weighted average of the first stage payoff and of a continuation payoff. The value
vλ of the λ-discounted game is the unique fixed point of T (λ, .) (see Shapley [13]).
As the length of the game increases, the weight λ of the first stage payoff tends to
zero. The proof studies an expansion of this map with respect to λ. The heuristic
idea behind this approach is that the most important thing for a player in a long
game is to take care of his future payoffs to keep them above (resp., below) a given
level; such a concern is captured in the control of the main part of the expansion.
Second, given that he guarantees a good future payoff, a player should maintain the
current nonabsorbing payoff above (below) this level; the second term of the expansion
expresses this matter.

1. The model and the result.

1.1. The game. We consider an absorbing game with incomplete information
on one side. It is defined by two finite sets of actions, I (the set of actions of player
1) and J (the set of actions of player 2), a finite set of parameters K (that represents
the private information of player 1), a probability p on K, a finite set of stochas-
tic states Ω = {ω0}

⋃
Ω∗ (Ω∗ is the set of absorbing states and ω0 is the unique

nonabsorbing state), a transition q : Ω× I × J → ∆(Ω), and an initial state ω1 ∈ Ω.
The transition satisfies that for any absorbing state ω∗ ∈ Ω∗, and for any (i, j) ∈ I×J,
q(ω∗|ω∗, i, j) = 1. Note that we defined the transition to be independent of the infor-
mation k. To each pair of actions (i, j) and each state ω ∈ Ω is associated a vector

payoff aωij = (aω,kij )k∈K . We assume without loss of generality that for all k ∈ K,

ω ∈ Ω, i ∈ I, and j ∈ J, aω,kij ∈ [0, 1]. The game is played as follows.

At stage 0, a parameter k ∈ K is drawn according to probability p, and player
1 is informed of the result while player 2 is not. Both players know the probability p
and the initial state ω1.

At stage m ≥ 1, player 1 chooses im ∈ I and player 2 chooses jm ∈ J ; given the
current state ωm, a new state ωm+1 is drawn according to the probability q(.|ωm, im, jm),
and the triple (im, jm, ωm+1) is announced to both players.

We assume perfect recall, i.e., both players remember what they have done and
what they have known in the past. Therefore, by Kuhn’s theorem, without loss of gen-
erality, one can reduce the strategy sets from mixed strategies to behavior strategies.
A behavior strategy of player 1 (resp., of player 2) is a sequence (σ1, . . . , σn, . . .) (resp.,
(τ1, . . . , τn, . . .)) such that σm is a function fromK×Ω×(I×J×Ω)m−1 to ∆(I) (resp.,
τm is a function from Ω× (I×J×Ω)m−1 to ∆(J)). We set Hn = Ω× (I×J×Ω)n and
H∞ = (I×J ×Ω)N. Thus K×H∞ is the set of plays. Each hn ∈ Hn can be identified
with a cylinder set of K × H∞. Therefore, Hn induces a σ-algebra over K × H∞,
which we denote by H2

n (the information of player 2 at stage n). Similarly, we define
H1
n (the information available to player 1 at stage n) as the σ-algebra induced by

K ×Hn over K ×H∞. The probability p, the transition q, and a pair of strategies of
the players (σ, τ) induce a probability Pp,σ,τ over the set of plays.
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Any play determines a stream of stage payoffs (aωm,kimjm
)m∈N which can be evaluated in

different ways.

In the finitely repeated game Gn(p, ω1), the payoff is given by the expectation

(according to the probability Pp,σ,τ ) of the average payoff:
1
n

[∑n
m=1 a

ωm,k
imjm

]
.

In the discounted game Gλ(p, ω1), the payoff is given by the expectation of
the discounted sum of payoffs (according to the probability Pp,σ,τ ):

[∑∞
m=1 λ(1 −

λ)m−1aωm,kimjm

]
.

By the minmax theorem (see [10, part A]), both Gn(p, ω1) and Gλ(p, ω1) have a
value denoted, resp., by vn(p, ω1) and vλ(p, ω1). Our goal is to study the asymptotic
behavior of these quantities as the game becomes very long, namely, as n goes to
infinity or as λ goes to 0.

We denote by NR the subset of ∆(I)K of non revealing strategies, namely the
subset of x ∈ ∆(I)K such that for all (k, k′) ∈ K2 and all i ∈ I, xki = xk

′
i . NR can be

identified with ∆(I). We aim at proving the following theorems.

Theorem 1.1. The family vλ converges uniformly to a function v as λ goes to
0.

Theorem 1.2. The sequence vn converges uniformly to a function v′ as n goes
to infinity.

Theorem 1.3. v = v′.
One could also define the uniform value, the maxmin, and the minmax of the

infinitely repeated game. The maxmin would be the largest quantity that player 1 can
guarantee in all n-stage games for n large enough, with a strategy that is independent
of n (see [10] for an exact definition); similarly, one defines the minmax; the uniform
value exists if the maxmin equals the minmax. In particular, if such a uniform value
exists, one can prove that it is equal both to v and to v′. The existence of such a value
implies Theorems 1.1, 1.2, and 1.3.

In the case of perfect information absorbing games, Kohlberg [5] proves that in-
deed such a value exists. This result has been generalized for finite perfect information
stochastic games by Mertens and Neyman [8]. In the case of games with incomplete
information on one side, the existence of the uniform value has been proved by Au-
mann and Maschler [1]. Nevertheless, in the case of absorbing games with incomplete
information on one side, Sorin [14] proved that the uniform value needs not exist
(the maxmin and the minmax may differ). Here, we prove the weaker result stated in
Theorems 1.1, 1.2, and 1.3. There is a conjecture by Sorin [15] and Mertens [7] stating
that in stochastic games with incomplete information on one side the maxmin exists
and is equal to v and v′. This paper gives no indication about that conjecture in our
framework.

1.2. Basic properties of vλ and vn. A function from ∆(K)× Ω to R is said
to be concave, continuous, Lipschitz, etc. if it is respectively concave, continuous, and
Lipschitz in the first variable for any given ω ∈ Ω.

Let us recall the following properties of the functions vn and vλ.

Lemma 1.4.

1. The functions vn and vλ take their values in [0, 1].
2. The functions vn and vλ are Lipschitz with constant 1 in p.
3. The functions vn and vλ are concave in p.

Proof. As all the payoffs are in [0, 1], so is the value that is computed as a convex
combination of the payoffs in the matrices. The Lipschitz property follows also, and
the concavity expresses the positive value of information in zero sum games. For



ABSORBING INCOMPLETE INFORMATION GAMES 211

detailed proofs, see the splitting lemma ([1, Lemma 5.3, p. 25] and [10, Chapter 5, p.
218]).

We use the following uniform norm on the set of functions from ∆(K) × Ω to
[0, 1]:

‖f‖ = sup
p∈∆(K),ω∈Ω

|f(p, ω)|.

Let B be the set of functions from ∆(K)×Ω to [0, 1] that are Lipschitz with constant 1.
B is a set of uniformly equicontinuous functions, and by Ascoli’s theorem it is compact.
Therefore, both the family vλ and the sequence vn have converging subsequences, and
they converge iff all converging subsequences have the same limit.

Notation. Let v be the limit of a converging subsequence of the family {vλ}.
We are going to prove that such a v is unique.
Proposition 1.5. For any ω∗ ∈ Ω∗, the functions vn(., ω

∗) and vλ(., ω
∗) con-

verge uniformly to the same limit v(., ω∗).
Proof. The game with initial absorbing state ω∗ ∈ Ω∗ is reduced to a nonstochastic

incomplete information game. In [1], Aumann and Maschler prove the convergence for
such games.

The purpose of this paper is to prove that this result generalizes to the nonab-
sorbing state ω0.

2. Basic tools.

2.1. The mapping T . F is the set of continuous concave functions f from
∆(K)×Ω to [0, 1]. Note that the functions in F do not have to be Lipschitz. Actually
all the functions we will use (vλ, vn) are not only continuous but Lipschitz with
constant 1. Nevertheless, we are going to define on F , for each λ and each pair of
strategies x ∈ ∆(I)K and y ∈ ∆(J), a map Txy(λ, .). This operator maps continuous
functions to continuous functions, but it is not clear whether the image of a Lipschitz
function with constant 1 is a Lipschitz function with constant 1.

The proof relies on the following mappings T and φ. We consider, for f ∈ F ,
λ ∈ [0, 1], ω1 ∈ Ω, and p ∈ ∆(K) the normal form game Γ(λ, f)(p, ω1) with strategy
sets ∆(I)K , ∆(J) and where the payoff associated to the pair of strategies (x, y) ∈
∆(I)K ×∆(J) is

Txy(λ, f)(p, ω1) =

λ∑
k∈K

∑
i∈I
j∈J

pkxki yja
ω1,k
ij

+(1− λ)
∑
k∈K

∑
i∈I
j∈J

∑
ω∈Ω

pkxki yjq(ω|ω1, i, j)f(pi, ω)

 ,
with pi ∈ ∆(K) and pki =

pkxki∑
l∈K plxl

i

if
∑
l∈K plxli = 0 and pi = p∗ if

∑
l∈K plxli = 0

(for a given p∗ in ∆(K)).
The above definition of pi as the conditional probability on K given player 1

played action i will be used throughout the paper. Notice that if x is in NR (meaning
that for all k ∈ K, k′ ∈ K, i ∈ I, xki = xk

′
i ), then for all i ∈ I, pi = p.

Γ(λ, f)(p, ω1) is a one shot representation of the repeated game in which the stream
of payoffs from stage 2 on is evaluated through f . The total payoff of the repeated
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game is then the weighted average of the first stage payoff (with weight λ) and the
continuation payoff (with weight 1− λ).
Lemma 2.1. If f is in F , then the functions x �→ Tx,y(λ, f)(p, ω) and y �→

Tx,y(λ, f)(p, ω) defined, resp., on ∆(I)K and ∆(J) are continuous and, resp., concave
and convex.

Proof. y �→ Tx,y(λ, f)(p, ω) is linear and continuous. For x �→ Txy(λ, f)(p, ω), it
is enough to prove that the function

ϕ : x �→
∑
k∈K

∑
i∈I
j∈J

∑
ω′∈Ω

pkxki yjq(ω
′|ω, i, j)f(pi, ω′)

is concave and continuous. The proof is analog to the one in the nonstochastic case
[4].

Assume x = αx1+(1−α)x2 with α ∈ [0, 1]; denote by x̄i the quantity
∑
k∈K pkxki ,

and define similarly x̄1i and x̄2i; then pi = µp1i + (1 − µ)p2i with µ = αx̄1i/x̄i
(µ ∈ [0, 1]) and pk1i = pkxk1i/x̄1i (p1i ∈ ∆(K); p2i is defined in an analogous way).
Concavity of f then implies

ϕ(x) ≤
∑
i∈I
j∈J

∑
ω′∈Ω

µx̄iyjq(ω
′|ω, i, j)f(p1i, ω

′)

+
∑
i∈I
j∈J

∑
ω′∈Ω

(1− µ)x̄iyjq(ω′|ω, i, j)f(p2i, ω
′).

Using µ = αx̄1i/x̄i and 1− µ = (1− α)x̄2i/x̄i, this proves concavity of ϕ.
For continuity of ϕ at point x, fix an ε > 0. For all η > 0, there is an α > 0 such

that ‖x − x1‖ ≤ α implies for all i satisfying x̄i ≥ ε, ‖pi − p1i‖ ≤ η. Continuity of f
therefore implies that if ‖x− x1‖ ≤ α, x̄i ≥ ε, then maxω∈Ω |f(pi, ω)− f(p1i, ω)| ≤ ε.
The result follows.

The sets of strategies ∆(I)K , ∆(J) are compact convex. Therefore, the previ-
ous lemma and the minmax theorem imply the existence of a value T (λ, f)(p, ω1)
for the game Γ(λ, f)(p, ω1) and of optimal strategies for the players. The sets of
optimal strategies of player 1 and of player 2 are denoted, resp., by Xλ[f ](p, ω1)
and Yλ[f ](p, ω1). The following lemma is a restatement of the recursive formula and
the fixed point formula characterizing vλ and vn, in terms of the mapping T . These
formulas justify the introduction of the mappings T .
Lemma 2.2.
(a) For all λ ∈ [0, 1], T (λ, vλ) = vλ.
(b) For all n ∈ N, T ( 1

n+1 , vn) = vn+1.
Proof. These formulas are proved in a more general setup in [10, p. 187].
Remark. In the case of finite perfect information stochastic games, Bewley and

Kohlberg [2] note that these formulas can be restated as:{ ∀ω ∈ Ω, ∀j ∈ J, Txλj(λ, vλ)(ω) ≥ vλ(ω),
∀ω ∈ Ω, ∀i ∈ I, Tiyλ(λ, vλ)(ω) ≤ vλ(ω),

where xλ ∈ Xλ[vλ](p, ω) and yλ ∈ Yλ[vλ](p, ω). This system is a finite number of
polynomial inequalities and hence proves that vλ, xλ, and yλ are semialgebraic in
λ. Therefore they have Puiseux expansions in λ. Together with the fact that these
functions are uniformly bounded, this proves Theorem 1.1. In our framework, under
xλ, the state space can be reduced to a countable subset of ∆(K) × Ω. The algebraic
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approach does not extend because the fixed point formula of Lemma 2.2(a) does not
reduce to a finite number of polynomial inequalities but rather to{ ∀ω, p, ∀j ∈ J, Txλj(λ, vλ)(p, ω) ≥ vλ(p, ω),

∀ω, p, ∀x ∈ ∆(I)K , Txyλ(λ, vλ)(p, ω) ≤ vλ(p, ω).

Indeed, Txyλ(λ, vλ)(p, ω) is no more linear in x.
Let us now define the quantity:

φxy(f)(p, ω1) =
Txy(λ, f)(p, ω1)− Txy(0, f)(p, ω1)

λ
.

Note that φxy(f)(p, ω1) is independent of λ. Indeed, for any λ,

φxy(f)(p, ω1) =
∑
k∈K

∑
i∈I
j∈J

∑
ω∈Ω

pkxki yjq(ω|ω1, i, j)(a
ω1,k
ij − f(pi, ω))

=
∑
k∈K

∑
i∈I
j∈J

pkxki yja
ω1,k
ij − Txy(0, f)(p, ω1).

(2.1)

Let now Γ′(f)(p, ω1) be the game in which the strategy spaces are X0[f ](p, ω1) and
Y0[f ](p, ω1), and the payoff associated to the pair of strategies (x, y) is φxy(f)(p, ω1).
Lemma 2.3. The game Γ′(f)(p, ω1) has a value φ(f)(p, ω1) and optimal strategies

for both players. Moreover,

φ(f)(p, ω1) = lim
λ→0

T (λ, f)(p, ω1)− T (0, f)(p, ω1)

λ
.

Proof. The existence of limλ→0
T (λ,f)(p,ω1)−T (0,f)(p,ω1)

λ and of the value of
Γ′(f)(p, ω1) as well as their equality follow from an extension of Mills’ result [11]
proved in [10, part A, exercise 6, p. 12].

This lemma implies that there are two possible interpretations of the introduction
of φ: the first one is that since T (λ, vλ) = vλ, a local analysis of the mapping T (α, .)
at the point α = 0 should characterize the limit of (vλ). Moreover, this limit is not
completely characterized by the condition T (0, v) = v. That explains the introduction
of φ as the derivative of the map T . Mills’ result implies, moreover, that this derivative
can be viewed as the value of an auxiliary game in which the players take care of their
current payoffs under the constraint that they guarantee the value T (0, v).

2.2. Idea of the proof. The functions vλ are characterized by the fact they are
fixed points of the contracting mappings T (λ, f). Therefore, the properties of vλ, such
as convergence should follow from a study of the mappings themselves. The idea here
is to study an asymptotic expansion of T (λ, f) as λ goes to 0. Actually we will need a
first-order expansion using T (0, f) and the derivative φ(f) with respect to λ. Indeed,
a necessary condition for v to be the limit of vλ is that T (0, v) = v. But this condition
is not sufficient, and we need to go one step further in the expansion. When the values
are real numbers (i.e., when K is a singleton), this idea goes back to Kohlberg [5].

In the case of complete information absorbing games, any limit v of a converging
subsequence of vλ is a fixed point of T (0, .). But Kohlberg points out that being a
fixed point of T (0, .) does not characterize the limit of the family {vλ}. Indeed, T (0, v)
does not depend on nonabsorbing payoffs, and T (0, v) = v implies only that player
1 can guarantee an absorbing payoff of at least v. The control of the nonabsorbing
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payoff is related to the sign of φ(v): the limit v is characterized, in this framework,
by the following system, where w is any function such that w(., ω∗) is equal to the
limit v(., ω∗) of vλ(., ω∗) for all absorbing states ω∗ ∈ Ω∗:{

w > v ⇒ T (0, w) < w or {T (0, w) = w and φ(w) < 0} S1,
w < v ⇒ T (0, w) > w or {T (0, w) = w and φ(w) > 0} S2.

The intuition behind such a system is that if w > v, either T (0, w) < w, and therefore
player 1 cannot maintain the level w, i.e., cannot prevent absorbing with a payoff
smaller than w, or T (0, w) = w, and φ(w) < 0. Due to the definition of the strategy
sets in game Γ′(w)(p, ω1), this means that player 1 cannot simultaneously maintain
the level and guarantee a large enough current payoff (compared to w). Hence player
1 cannot guarantee w in the λ-discounted game for λ close to 0.

In the case of complete information absorbing games [5, 12] and in the case of
incomplete information games with no absorbing states [1, 12], one can prove that
any limit v of a converging subsequence of vλ satisfies the above system (S1,S2) and
that this system has a unique solution, which proves the result.

The problem in the case of incomplete information games is that v is a function
of p, and the study of the equation T (0, v) = v does not reduce to a control of the
absorbing payoffs. On the other hand, unlike in nonstochastic games with incomplete
information, the equation T (0, v) = v cannot be reduced to a concavity property
of v. We are going to prove only that the limit v of any converging subsequence of
vλ satisfies S1 (see section 2.3). The idea is then to prove that this equation indeed
implies that if w > v, player 1 cannot guarantee w in the λ-discounted games for λ
close enough to 0: then this equation implies that v = lim sup vλ, and therefore v is
unique (see section 3). More precisely, in section 3 we prove the following (where ε is
a positive constant and δ a positive strictly concave function of p, ε̄ denotes the real
function on Ω defined by ε̄(ω0) = ε, and for all ω∗ ∈ Ω∗, ε̄(ω∗) = 0).
Proposition 2.4. Let f ∈ F satisfy:

T (0, f + δ + ε̄) ≤ f + δ + ε̄,
T (0, f + δ + ε̄)(p, ω0) = f(p, ω0) + δ(p) + ε ⇒ φ(f + δ + ε̄)(p, ω0) < 0.

Then f ≥ v.

2.3. Properties. Recall that v is the limit of a converging subsequence of {vλ}.
In this section we prove some general properties of T (λ, f). This section aims at prov-
ing S1, namely, that for functions w chosen in some class of functions that always
lie above v, T (0, w) ≤ w and T (0, w)(p, ω) = w(p, ω) implies that φ(w)(p, ω) < 0.
This is the content of Lemmas 2.7 and 2.10. The first lemma is a contracting prop-
erty of T (λ, .) and a regularity property of the correspondences of optimal strategies
Xλ[f ](p, ω) and Yλ[f ](p, ω).
Lemma 2.5.
1. For any f ∈ F and any g ∈ F , for all p ∈ ∆(K), ω ∈ Ω, and λ ∈ [0, 1],

λ′ ∈ [0, 1],

T (λ, f)(p, ω)− T (λ′, g)(p, ω) ≤ (1− λ)max

[
max
q∈∆(K)

ω′∈Ω

{f(q, ω′)− g(q, ω′)} , 0
]

+2|λ− λ′|.
2. For any f ∈ F and any ω ∈ Ω, the correspondences (λ, p)→ Xλ[f ](p, ω) and

(λ, p)→ Yλ[f ](p, ω) are upper semicontinuous.
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Remark. Property 1 implies, in particular, the contracting property of T (λ, .)
and the nonexpansiveness of T (0, .).

‖T (λ, f)− T (λ, g)‖ ≤ (1− λ)‖f − g‖.
Proof. Let (f, g) ∈ F2 and (λ, λ′) ∈ [0, 1]2. Take x ∈ Xλ[f ](p, ω) and y ∈

Yλ′ [g](p, ω); then

T (λ, f)(p, ω)− T (λ′, g)(p, ω) ≤ Txy(λ, f)(p, ω)− Txy(λ′, g)(p, ω).
Using the fact that the payoffs and f take their values in [0,1], one gets

Txy(λ, f)(p, ω)− Txy(λ′, g)(p, ω) ≤ 2|λ− λ′|
+(1− λ)

∑
k∈K

∑
i∈I
j∈J

pkxki yjq(ω
′|ω, i, j) (f(pi, ω′)− g(pi, ω′)) ,

which implies result 1.
Assume λn converges to λ and pn converges to p. Let xn ∈ Xλn [f ](pn, ω). It is

straightforward to check that if x is the limit of a converging subsequence of xn, then
x ∈ X0[f ](p, ω). The argument is similar for Y .
Lemma 2.6. For any accumulation point v of vλ, T (0, v) = v.
Proof. The result is obtained by letting λ go to 0 in the formula of Lemma 2.2

and by using the continuity of T proved in Lemma 2.5 and the uniform convergence
of a subsequence of vλ to v.

From now on, we fix ε > 0, and we denote by ε̄ the function from Ω to [0, ε]
satisfying ε̄(ω0) = ε and for ω∗ ∈ Ω∗, ε̄(ω∗) = 0. Let δ be a fixed 1-Lipschitz strictly
concave function from ∆(K) to [0, ε]. For f ∈ F , the function f+δ+ε̄ therefore satisfies
(f+δ+ ε̄)(p, ω0) = f(p, ω0)+δ(p)+ε, and for ω∗ ∈ Ω∗, (f+δ+ ε̄)(p, ω∗) = f(p, ω∗)+
δ(p). Lemmas 2.7 and 2.8 concern properties of the mappings T and the optimal
strategies correspondences X and Y that are needed to prove the desired property
stated in Lemma 2.10. The idea is that for some functions w > v, T (0, w)(p, ω0) =
w(p, ω0) implies that under optimal strategies X0[w](p, ω0) and Y0[w](p, ω0) there is
no revelation of information and absorption occurs with probability 0. In addition,
in Lemma 2.8 some regularity properties of the correspondences of optimal strategies
are stated.
Lemma 2.7.

∀(x, y) ∈ ∆(I)K ×∆(J), ∀p, ∀f ∈ F ,
Txy(0, f + δ + ε̄)(p, ω0) ≤ Txy(0, f)(p, ω0) + δ(p) + ε.

Assume f ∈ F and p ∈ ∆(K) satisfy T (0, f)(p, ω0) ≤ f(p, ω0); then

T (0, f + δ + ε̄)(p, ω0) ≤ f(p, ω0) + δ(p) + ε.

In particular,

T (0, v + δ + ε̄)(p, ω0) ≤ v(p, ω0) + δ(p) + ε.

Proof. Let x ∈ ∆(I)K and y ∈ ∆(J). Then

Txy(0, f + δ + ε̄)(p, ω0) ≤
∑
k∈K

∑
i∈I
j∈J

∑
ω′∈Ω

pkxki yjq(ω
′|ω0, i, j) (f(pi, ω

′) + δ(pi) + ε)

≤ Txy(0, f)(p, ω) +
∑
k∈K

∑
i∈I
j∈J

pkxki yj (δ(pi) + ε) .
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Therefore, using the concavity of δ, one gets the first assertion. By choosing x ∈
X0[f + δ + ε̄](p, ω0) and y ∈ Y0[f ](p, ω0), one gets the second assertion. Lemma 2.6
implies the third assertion.

This lemma would be a direct consequence of the contracting property of T (λ, v)
if δ were a constant. As δ is a function of p, one has to take care of the splitting that
occurs in Γ(λ, v + δ + ε̄)(p, ω). The concavity of δ then implies that such a splitting
does not increase the payoffs. We denote by Cε(p) the following condition.

Condition Cε(p). p is in the interior of ∆(K) and T (0, v+δ+ ε̄)(p, ω0) = v(p, ω0)+
δ(p) + ε.

The following lemma states a tightness property. The basic tightness property
would be the following: if h is a positive constant and T (0, v)(p, ω0) = v(p, ω0) and
T (0, v+h)(p, ω0) = v(p, ω0)+h, then for any h′ ≤ h, T (0, v+h′)(p, ω0) = v(p, ω0)+h

′.
In Lemma 2.8 we get a more precise result that allows us, in particular, to let p vary.
Lemma 2.8. Under condition Cε(p), we have the following.
(a) X0[v + δ + ε̄](p, ω0) ⊂ NR.
(b) X0[v + δ + ε̄](p, ω0) ⊂ X0[v + δ + ε̄′](p′, ω0), where ε′ < ε and ε̄′ : Ω → [0, ε]

is defined by ε̄′(ω∗) = 0 for ω∗ ∈ Ω∗ and ε̄′(ω0) = ε′; and

|p− p′| =
∑
k∈K
|pk − p′k| ≤ ε− ε′

4
.

Moreover,

T (0, v + δ + ε̄′)(p′, ω0) = v(p′, ω0) + δ(p′) + ε′.

(c) Y0[v + δ + ε̄′](p, ω0) ⊂ Y0[v + δ + ε̄](p, ω0) for ε̄′ defined as above.
Notation. For a pair (x, y) ∈ ∆(I)K × ∆(J) of mixed moves of the players, let

µ∗
xy denote the measure on Ω∗ defined by

µ∗
xy(ω

∗) =
∑
k∈K

∑
i∈I
j∈J

pkxki yjq(ω
∗|ω0, i, j).

µ∗
xy(ω

∗) is the probability to reach state ω∗ if we are in state ω0, and the players play
(x, y). Note that µ∗ is a measure but not a probability distribution on Ω∗.

Proof.
(a) Let x ∈ X0[v+ δ+ ε̄](p, ω0) and y ∈ Y0[v](p, ω0). Condition Cε(p) and Lemma

2.6 imply

v(p, ω0) + δ(p) + ε ≤ Txy(0, v + δ + ε̄)(p, ω0).

The proof of Lemma 2.7 and the definition of y imply

Txy(0, v + δ + ε̄)(p, ω0) ≤ v(p, ω0) +
∑
k∈K
i∈I

pkxki δ(pi) + ε.

These two inequalities lead to ∑
k∈K
i∈I

pkxki δ(pi) ≥ δ(p).

Therefore, by strict concavity of δ, and since p is in the interior of ∆(K), the result
follows.
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(b) Let x ∈ X0[v + δ + ε̄](p, ω0) and y ∈ ∆(J). Condition Cε(p) leads to:
Txy(0, v + δ + ε̄)(p, ω0) ≥ v(p, ω0) + δ(p) + ε.

By (a) and x ∈ NR, this inequality can be rephrased:∑
ω∗∈Ω∗

µ∗
xy(ω

∗) (v(p, ω∗) + δ(p)) ≥
∑
ω∗∈Ω∗

µ∗
xy(ω

∗) (v(p, ω0) + δ(p) + ε) .

By definition of p′ and using the Lipschitz property of δ and v,∑
ω∗∈Ω∗

µ∗
xy(ω

∗) (v(p′, ω∗) + δ(p′)) ≥
∑
ω∗∈Ω∗

µ∗
xy(ω

∗) (v(p′, ω0) + δ(p′) + ε− 4|p− p′|)

≥
∑
ω∗∈Ω∗

µ∗
xy(ω

∗) (v(p′, ω0) + δ(p′) + ε′) .

This implies Txy(0, v+δ+ ε̄
′)(p′, ω0) ≥ v(p′, ω0)+δ(p

′)+ε′. By Lemma 2.7, v(p′, ω0)+
δ(p′) + ε′ ≥ T (0, v + δ + ε̄′)(p′, ω0). Hence

T (0, v + δ + ε̄′)(p′, ω0) ≥ infy∈∆(J) Txy(0, v + δ + ε̄′)(p′, ω0)
≥ v(p′, ω0) + δ(p′) + ε′

≥ T (0, v + δ + ε̄′)(p′, ω0).

This inequality drives the desired result.
(c) Let x ∈ ∆(I)K and y ∈ Y0[v + δ + ε̄′](p, ω0).

Txy(0, v + δ + ε̄)(p, ω0) = Txy(0, v + δ + ε̄′)(p, ω0)

+
∑
k∈K

∑
i∈I
j∈J

pkxki yjq(ω0|ω0, i, j)(ε− ε′)

≤ v(p, ω0) + δ(p) + ε′ + (ε− ε′)
by Lemma 2.7. By condition Cε(p), this last inequality is the result.

Let d(y, y′) = maxj∈J |yj−y′j | for y ∈ ∆(J), y′ ∈ ∆(J). For Y ⊂ ∆(J), d(y, Y ) =
infy′∈Y d(y, y′) is the distance between y and the set Y .
Lemma 2.9. Under condition Cε(p), there is an α > 0 such that for all y ∈ ∆(J),

d (y, Y0[v + δ + ε̄](p, ω0)) ≥ ε/4
⇒

∃x ∈ ∆(I)K , Txy(0, v + δ + ε̄)(p, ω0) ≥ v(p, ω0) + δ(p) + ε+ α.

Proof. This lemma follows from the compactness of ∆(J) and the continuity of
Txy(0, v + δ + ε̄)(p, ω0) in y.

The following is the key lemma.
Lemma 2.10. Under condition Cε(p),

φ(v + δ + ε̄)(p, ω0) < 0.

The idea of the proof is the following. Assume that for some p, the result is false;
then there is a small enough λ such that given any strategy τ of player 2, player 1
has a reply that ensures him a payoff strictly greater than vλ(p, ω0). Indeed, if the
mixed move y of player 2 is far from Y0[v + δ + ε̄](p, ω0), then by Lemma 2.9, player
1 has a reply that strictly increases the level of future payoffs: absorption occurs
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with a positive probability and a high payoff. If, on the other hand, y is close to
Y0[v + δ + ε̄](p, ω0), then the hypothesis that φ(v + δ + ε̄)(p, ω0) ≥ 0 implies that
player 1 has a reply that gives him at the same time a good absorbing and a good
nonabsorbing payoff.

Notation. For a function f ∈ F , let us denote by X̄0[f ](p, ω0) the set of optimal
strategies in Γ′[f ](p, ω0). This is a subset of X0[f ](p, ω0).

Proof. Let us prove the result by contradiction, assuming that for some p, T (0, v+
δ + ε̄)(p, ω0) = v(p, ω0) + δ(p) + ε and φ(v + δ + ε̄)(p, ω0) ≥ 0.

For ε, δ, and p, fix α as in Lemma 2.9. Then choose a λ such that{ ‖vλ − v‖ ≤ β = min(ε/4, α/4),
λ ≤ α/8.

For any y ∈ ∆(J), we will exhibit an x ∈ ∆(I)K with Txy(λ, vλ)(p, ω0) > vλ(p, ω0).
Hence T (λ, vλ)(p, ω0) > vλ(p, ω0), which contradicts Lemma 2.2.

• If d (y, Y0[v + δ + ε̄](p, ω0)) ≥ ε/4, then by Lemma 2.9, there is an x ∈ ∆(I)K

such that

Txy(0, v + δ + ε̄)(p, ω0) ≥ v(p, ω0) + δ(p) + ε+ α.

Hence, by Lemma 2.7,

Txy(0, v)(p, ω0) ≥ v(p, ω0) + α.

Let us now compute Txy(λ, vλ). Lemma 2.5 implies

Txy(λ, vλ)(p, ω0) ≥ Txy(0, v)(p, ω0)− α/4− β
≥ v(p, ω0) + α− α/2
≥ vλ(p, ω0) + α/4.

• If d(y, Y0[v + δ + ε̄](p, ω0) < ε/4, let x ∈ X̄0[v + δ + ε̄](p, ω0). By Lemma 2.8,
x is nonrevealing; thus Txy(0, v + δ + ε̄)(p, ω0) ≥ v(p, ω0) + δ(p) + ε and the
concavity of δ imply∑

ω∗∈Ω∗
µ∗
xy(ω

∗)v(p, ω∗) ≥
∑
ω∗∈Ω∗

µ∗
xy(ω

∗)(v(p, ω0) + ε).

By definition of λ,∑
ω∗∈Ω∗

µ∗
xy(ω

∗)vλ(p, ω∗) ≥
∑
ω∗∈Ω∗

µ∗
xy(ω

∗)(vλ(p, ω0) + ε− 2β),

and therefore

Txy(0, vλ)(p, ω0) ≥ vλ(p, ω0).(2.2)

Define now y0 ∈ Y0[v + δ + ε̄](p, ω0) such that ‖y − y0‖ ≤ ε/4. Then∑
k∈K

∑
i∈I
j∈J

pkxiy0j(a
ω0k
ij − v(p, ω0)− δ(p)− ε) = φxy0(v + δ + ε̄)(p, ω0) ≥ 0.

Thus, by continuity,∑
k∈K

∑
i∈I
j∈J

pkxiyja
ω0k
ij ≥ vλ(p, ω0) + ε− β − ε/4.
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This last inequality and (2.2) imply

Txy(λ, vλ)(p, ω0) ≥ vλ(p, ω0) + λε/2.

• Hence for any y, we have an x such that Txy(λ, vλ)(p, ω0) > vλ(p, ω0), and
this contradicts the recursive formula and proves the result.

3. The proof of Theorem 1.1. Our goal is to prove that v is the unique limit
of a converging subsequence of {vλ}.

If in addition to Lemma 2.10, one had a symmetric result, namely that T (0, v −
ε̄)(p, ω0) ≥ v(p, ω0)−ε, and T (0, v−ε̄)(p, ω0) = v(p, ω0)−ε ⇒ φ(v−ε̄)(p, ω0) > 0, then
uniqueness of such a v would be a consequence of the definition of φ as the derivative
of T, and of the contracting property of T (λ, .) stated in Lemma 2.5. This is the
case for incomplete information games with no absorbing states, and for absorbing
games with complete information (see [5], [12]). In the case of absorbing games with
incomplete information, in order to prove this property by contradiction, one should
assume that for some p, T (0, v − ε̄)(p, ω0) = v(p, ω0) − ε and φ(v − ε̄)(p, ω0) < 0.
But the difficulty in concluding that player 2 has a best response to any strategy of
player 1 that leads to a payoff strictly inferior to vλ in a λ-discounted game arises
from the fact that since the strategies of player 1 may be revealing, the equation
T (0, v − ε̄)(p, ω0) = v(p, ω0)− ε does not lead to a bound on the absorbing payoffs.

But, without such a property Lemma 2.10 implies that player 1 cannot guarantee
v+δ+ ε̄ in a λ-discounted game with λ small, because he cannot simultaneously push
his absorbing and nonabsorbing payoffs above v+δ+ε. More precisely, the intuition for
the end of the proof is the following: the function v+δ+ε̄ is such that for every p, either
T (0, v+ δ+ ε̄)(p, ω0) < v(p, ω0)+ δ(p)+ ε or T (0, v+ δ+ ε)(p, ω) = v(p, ω0)+ δ(p)+ ε,
and φ(v + δ + ε̄)(p, ω0) < 0. By Lemma 2.3, this implies that for λ small enough
(depending on p)

T (λ, v + δ + ε̄)(p, ω0) ≤ v(p, ω0) + δ(p) + ε.

Would such a λ be uniform in p, then such an inequality would prove vλ(p, ω0) ≤
v(p, ω0) + δ(p) + ε. But λ needs not be uniform in p. Nevertheless, the remainder of
the proof aims at establishing that for λ small enough vλ(p, ω0) ≤ v(p, ω0) + δ(p) + ε.
Uniformity of λ is replaced by the following proposition.
Proposition 3.1. For any sequences λn ∈ [0, 1] and pλn ∈ ∆(K) such that λn

converges to 0 as n goes to infinity and pλn converges to p̄ in the interior of ∆(K),

∃N, ∀n ≥ N, T (λn, v + δ + ε̄)(pλn , ω0) < v(pλn , ω0) + δ(pλn) + ε.

Proof. Assume by contradiction that there is a sequence λn converging to 0 and
a sequence pλn converging to p̄ in the interior of ∆(K) such that

∀N, ∃n ≥ N, T (λn, v + δ + ε̄)(pλn , ω0) ≥ v(pλn , ω0) + δ(pλn) + ε.

Note that, by concavity, one always has v(pλn , ω0)+δ(pλn)+ε ≥ T (0, v+δ+ε̄)(pλn , ω0).
In what follows, let us denote by Λ the (infinite) subset of (λn)n∈N satisfying

T (λ, v + δ + ε̄)(pλ, ω0) ≥ v(pλ, ω0) + δ(pλ) + ε ≥ T (0, v + δ + ε̄)(pλ, ω0),(3.1)

and by p̄ the limit of a converging subsequence of (pλ)λ∈Λ. The proposition will be a
consequence of Lemmas 3.2 and 3.3. Indeed, they imply that for some λ, T (0, v+ δ+
ε̄/2)(pλ, ω0) = v(pλ, ω0)+δ(pλ)+ε/2 and φ(v+δ+ ε̄/2)(pλ, ω0) ≥ 0. This contradicts
Lemma 2.10.
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Lemma 3.2.
(a) For λ ∈ Λ, for all xλ ∈ Xλ[v + δ + ε̄](pλ, ω0), yλ ∈ Y0[v + δ + ε̄](pλ, ω0),

φxλyλ(v + δ + ε̄)(pλ, ω0) ≥ 0.

(b) For ε′ ≤ ε,

T (0, v + δ + ε̄′)(p̄, ω0) = v(p̄, ω0) + δ(p̄) + ε′.

(c) For all ε′ satisfying ε/8 ≤ ε′ < ε, there is a λ∗ such that for λ ∈ Λ, λ ≤ λ∗,

T (0, v + δ + ε̄′)(pλ, ω0) = v(pλ, ω0) + δ(pλ) + ε′,

X0[v + δ + ε̄](p̄, ω0) ⊂ X0[v + δ + ε̄′](pλ, ω0).

Proof.
(a)

φxλyλ(v + δ + ε̄)(pλ, ω0) =
Txλyλ(λ, v + δ + ε̄)(pλ, ω0)− Txλyλ(0, v + δ + ε̄)(pλ, ω0)

λ
.

Therefore inequality (3.1) implies the result.
(b) Inequality (3.1) and the continuity of T (Lemma 2.5) imply by going to the

limit:

T (0, v + δ + ε̄)(p̄, ω0) = v(p̄, ω0) + δ(p̄) + ε.

This is condition Cε(p̄). Lemma 2.8(b) leads to the result.
(c) Lemma 3.2(b) is condition Cε′(p̄); Lemma 2.8(b) then implies the result.
Lemma 3.3. Fix ε′ = ε/2, and define λ∗ as in Lemma 3.2(c). There is a λ ≤ λ∗,

λ ∈ Λ such that

φ(v + δ + ε̄/2)(pλ, ω0) ≥ 0.

Proof. Define yλ ∈ Y0[v+ δ+ ε̄/2](pλ, ω0) to be optimal in Γ′[v+ δ+ ε̄/2](pλ, ω0).
For λ ∈ Λ, λ ≤ λ∗, let xλ ∈ Xλ[v + δ + ε̄](pλ, ω0), and define x to be the limit of a
converging subsequence of xλ. Choose λ such that ‖x − xλ‖ ≤ ε/2. By Lemma 2.5,
x ∈ X0[v + δ + ε̄](p̄, ω0). By Lemma 3.2c, x ∈ X0[v + δ + ε̄/2](pλ, ω0).

Therefore,

φxyλ(v + δ + ε̄/2)(pλ, ω0) ≤ φ(v + δ + ε̄/2)(pλ, ω0).(3.2)

Recall that by Lemma 2.8, x ∈ NR and yλ ∈ Y0[v + δ + ε̄](pλ, ω0). By (2.1) and
Lemma 3.2(c),

φxyλ(v + δ + ε̄/2)(pλ, ω0) =
∑
i∈I
j∈J

∑
k∈K

pkλxiyλja
kω0
ij − (v(pλ, ω0) + δ(pλ) + ε/2)

≥ φxλyλ(v + δ + ε̄)(pλ, ω0) + ε/2− ‖x− xλ‖.
Lemma 3.2(a) implies φxλyλ(v + δ + ε̄)(pλ, ω0) ≥ 0, and the result follows.
We now establish Theorem 1.1. The proof proceeds by induction on the cardinal-

ity of K, card (K).
If card (K) = 1, the game is a complete information game and by [5] vλ converges.
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Assume the result is true for card (K) ≤ K − 1, and let card (K) = K. The
induction hypothesis implies that on the boundary of ∆(K), vλ converges.

Let us prove the convergence of vλ by contradiction. Assume that there is a
sequence λn such that λn goes to 0 and such that vλn converges uniformly to some
function v′ different from v. By Proposition 1.5, v(p, ω) and v′(p, ω) are equal as soon
as ω ∈ Ω∗. So, we assume the following.

Hypothesis H. There is a p0 ∈ ∆(K) such that v′(p0, ω0) > v(p0, ω0).
By induction hypothesis, p0 is in the interior of ∆(K). Consider a sequence λn

such that limn→∞ λn = 0 and vλn converges uniformly to v′ as n goes to infinity.
Let ε > 0 satisfy v′(p0, ω0) > v(p0, ω0)+4ε; let δ be a strictly concave continuous

function from ∆(K) to [0, ε].
Now, for all λ, let p̂λ belong to argmaxp∈∆(K) [vλ(p, ω0)− v(p, ω0)− δ(p)]. As-

sume ‖vλ− v′‖ ≤ ε/16. Then H and the definition of ε imply vλ(p̂λ, ω0)− v(p̂λ, ω0)−
δ(p̂λ)− ε > 0.

Define p̂ as the limit of a converging subsequence p̂λs(n)
of p̂λn . Then, v

′(p̂, ω0)−
v(p̂, ω0)− δ(p̂)− ε ≥ 0. By induction hypothesis, p̂ is in the interior of ∆(K).

Set Λ0 the subset of (λs(n))n∈N such that for all λ ∈ Λ0,
vλ(p̂λ, ω0) > v(p̂λ, ω0) + δ(p̂λ) + ε,
p̂λ is in the interior of ∆(K),
‖vλ − v′‖ ≤ ε/16.

Lemma 3.4. For all λ ∈ Λ0 and all ε/8 ≤ ε′ ≤ ε,

T (λ, v + δ + ε̄′)(p̂λ, ω0) ≥ v(p̂λ, ω0) + δ(p̂λ) + ε′.

Proof. For p ∈ ∆(K) and ω∗ ∈ Ω∗, vλ(p, ω∗) ≤ v′(p, ω∗)+ ε/16 = v(p, ω∗)+ ε/16.
Therefore, by definition of p̂λ,

T (λ, vλ)(p, ω0)− T (λ, v + δ + ε̄′)(p, ω0)

≤ max

{
0, max

r∈∆(K)

ω′∈Ω

[vλ(r, ω
′)− v(r, ω′)− δ(r)− ε̄′(ω′)]

}
≤ vλ(p̂λ, ω0)− v(p̂λ, ω0)− δ(p̂λ)− ε′.

Since T (λ, vλ) = vλ, the last inequality implies, for p = p̂λ,

T (λ, v + δ + ε̄′)(p̂λ, ω0) ≥ v(p̂λ, ω0) + δ(p̂λ) + ε′,

which is the desired result.
Proof of Theorem 1.1. We have proved that p̂ is in the interior of ∆(K). Therefore

(λs(n)) satisfies the hypothesis of Proposition 3.1. But Lemma 3.4 and Proposition
3.1 are in contradiction. Hence the assumption H is impossible, and for any v′ such
that there is a subsequence of vλ that converges uniformly to v′,

∀p, v′(p, ω0) ≤ v(p, ω0).

But since v is any limit of a uniformly converging subsequence of vλ, this implies
that v′ = v. The uniqueness of such a limit gives the result, i.e., implies the con-
vergence of vλ as λ goes to 0 when card (K) = K. The theorem is then proved by
induction.

The previous results do not depend on the exact definition of v. The only impor-
tant property of v is that T (0, v + δ + ε̄) ≤ v + δ + ε̄ and T (0, v + δ + ε̄)(p, ω0) =
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v(p, ω0)+δ(p)+ε ⇒ φ(v+δ+ ε̄)(p, ω0) < 0. This property implies that there cannot
be a subsequence of vλ and pλ such that v(pλ) < vλ(pλ). Therefore, we have proved
the following proposition.
Proposition 3.5. Let f ∈ F satisfy

T (0, f + δ + ε̄) ≤ f + δ + ε̄,
T (0, f + δ + ε̄)(p, ω0) = f(p, ω0) + δ(p) + ε ⇒ φ(f + δ + ε̄)(p, ω0) < 0;

then f ≥ v.
This proposition will be used in the following section.

4. The case of finitely repeated games. The same argument will apply to
prove the convergence of vn to v. Although, since vn is no longer a fixed point of T,
the proofs might be longer. We only sketch them and mention the complete argument
when it is different from above.

Denote by w the limit (in the sense of the uniform norm) of a fixed converging
subsequence of vn and by v the limit of vλ. We prove that v = w and therefore that
w is unique. Let w be the lim inf of (vn). w is 1-Lipschitz and concave.
Let ε, ε̄, and δ be defined as previously.
Lemma 4.1. For all p ∈ ∆(K), we have the following.
(a) T (0, w)(p, ω0) = w(p, ω0).
(b) T (0, w + δ + ε̄)(p, ω0) ≤ w(p, ω0) + δ(p) + ε.
(c) T (0, w + δ + ε̄)(p, ω0) = w(p, ω0) + δ(p) + ε ⇒ φ(w + δ + ε̄)(p, ω0) < 0.
Proof.
(a) If (vs(n)) is a subsequence of (vn) that converges uniformly to w, then (vs(n)+1)

also converges uniformly to w, and therefore for any p, T (0, w)(p, ω0) =
w(p, ω0).

(b) Lemma 4.1(a) implies that for any w and any p,

T (0, w)(p, ω0) ≤ T (0, w)(p, ω0) = w(p, ω0).

But w(p, ω0) is the infimum of all possible w(p, ω0). Hence T (0, w)(p, ω0) ≤
w(p, ω0). The result follows from Lemma 2.7.

(c) This step is analog to Lemma 2.10. One proceeds by contradiction and as-
sumes

T (0, w + δ + ε̄)(p, ω0) = w(p, ω0) + δ(p) + ε and φ(w + δ + ε̄)(p, ω0) ≥ 0.

Define α as in Lemma 2.9 (applied for the function w), and let η ≤ min(α/8, ε/4). By
definition of w, there is an N such that for all n ≥ N, vn ≥ w − η and 1

n ≤ η.
Fix y ∈ ∆(J). There are two cases (see Lemma 2.9): either there is an x ∈

∆(I)K such that T (0, w + δ + ε̄)(p, ω0) ≥ w(p, ω0) + δ(p) + ε + α, or there is an
x ∈ X0[w + δ + ε̄](p, ω0) such that φxy(w + δ + ε̄)(p, ω0) ≥ −ε/2.

In the first case, there is an x ∈ ∆(I)K such that T (0, w + δ + ε̄)(p, ω0) ≥
w(p, ω0) + δ(p) + ε+ α. Therefore, for n ≥ N,

Txy

(
1

n+ 1
, vn

)
(p, ω0) ≥ − 2

n+ 1
+ Txy(0, w − η)(p, ω0).

Hence

Txy

(
1

n+ 1
, vn

)
(p, ω0) ≥ − 2

n+ 1
+ w(p, ω0) + α− η.(4.1)
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In the second case, there is an x ∈ X0[w + δ + ε̄](p, ω0) such that φxy(w + δ +
ε̄)(p, ω0) ≥ −ε/2. By Lemma 2.8a, x ∈ NR. Hence∑

i∈I
j∈J

∑
k∈K

pkxiyja
kω0
ij ≥ w(p, ω0) + δ(p) + ε/2.

Moreover, Txy(0, w + δ + ε̄)(p, ω0) ≥ w(p, ω0) + δ(p) + ε; therefore∑
ω∗∈Ω∗

µ∗
xy(ω

∗)w(p, ω∗) ≥
∑
ω∗∈Ω∗

µ∗
xy(ω

∗)(w(p, ω0) + ε).

This leads to

Txy

(
1

n+ 1
, vn

)
(p, ω0) ≥ 1

n+ 1
(w(p, ω0) + δ(p) + ε/2)

+
n

n+ 1

∑
ω∗∈Ω∗

µ∗
xy(ω

∗)(w(p, ω0) + ε− η)

+
n

n+ 1

∑
i∈I
j∈J

xiyjq(ω0|ω0, i, j)vn(p, ω0).

(4.2)

There is an n0 ≥ N such that |vn0(p, ω0) − w(p, ω0)| ≤ η. Equations (4.1) and
(4.2) imply that for any n such that |vn(p, ω0) − w(p, ω0)| ≤ η, and for any y, there
is an x satisfying Txy(

1
n+1 , vn)(p, ω0) ≥ vn(p, ω0) + min(η, ε

2n ). Hence vn+1(p, ω0) ≥
vn(p, ω0) + min(η, ε

2n ).
Therefore there is an n1 ≥ N such that vn1(p, ω0) ≥ w(p, ω0)+η. Equations (4.1)

and (4.2) imply that for any n such that vn(p, ω0) ≥ w(p, ω0) + η, and for any y,
there is an x satisfying, Txy(

1
n+1 , vn)(p, ω0) ≥ w(p, ω0) + η. Hence vn+1(p, ω0) ≥

w(p, ω0) + η. Thus for any n ≥ n1, vn(p, ω0) ≥ w(p, ω0) + η, which contradicts the
definition of w.
Lemma 4.2. w ≥ v.
Proof. This is a corollary of the previous lemma and Proposition 2.4 applied for

the function w.
Lemma 4.3. w ≤ v.
Proof. Let us denote by pn an element of argmax {vn(p, ω0)− v(p, ω0)− δ(p)}.

Denote by dn the quantity vn(pn, ω0)− v(pn, ω0)− δ(pn)− ε̄(ωn). Notice that Propo-
sition 1.5 implies that for all p, ω∗ ∈ Ω∗, v(p, ω∗) = w(p, ω∗). We prove the claim by
induction on the cardinality ofK. If card (K) = 1, it is a consequence of [5]. Assume it
is true for card (K) = K−1, and let card (K) = K. The induction hypothesis implies
that if ps(n) is any converging subsequence of pn, then its limit is in the interior of
∆(K). Thus Proposition 3.1 (with λn = 1/n) implies that there is an integer N such
that for all n ≥ N,

T

(
1

n
, v + δ + ε̄

)
(pn, ω0) < v(pn, ω0) + δ(pn) + ε.(4.3)

In the case of finitely repeated games, we have to consider this case that was ruled
out for discounted games by Lemma 3.4. Inequality 4.3 implies

T

(
1

n+ 1
, v + δ + ε̄

)
(pn+1, ω0) ≤ v(pn+1, ω0) + δ(pn+1) + ε

≤ vn+1(pn+1, ω0)− dn+1

≤ T

(
1

n+ 1
, vn

)
(pn+1, ω0)− dn+1.
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Hence, in any case, (n + 1)max(dn+1, 0) ≤ nmax(dn, 0). Thus there is a constant
C > 0 such that for all n ≥ N, dn ≤ C

n . The result follows.

These results imply that for any uniform limit w of a subsequence of (vn), we
have w = v; the result follows.

5. Concluding remarks.

1) The proof provided above gives no indication about the speed of convergence
of vn and vλ to their limit.

2) There is no immediate generalization of the proof to the case where the tran-
sitions q depend on the parameter k. Indeed, in this case the class of non-
revealing strategies may change, and all arguments may become much more
involved.

3) The limit of vn and the limit of vλ are equal in the situation under concern in
this paper. This property is conjectured to generalize to all stochastic games
with incomplete information and finite state and action sets: in [6], Lehrer
and Sorin proved that for one player games the uniform convergence of vλ is
equivalent to that of vn.

4) It is conjectured by Sorin [15] and Mertens [7] that the maxmin of infinitely
repeated games with lack of information on one side exists and is also equal to
v. In the case of big match games [14, 15], Sorin proved that this conjecture is
satisfied. The present proof gives no insight about this conjecture, though the
mappings T and φ, by separating the study of the absorbing and nonabsorbing
payoffs, seem to be an appropriate tool to study the maxmin of the infinitely
repeated game.

Acknowledgments. This work is part of my Ph.D. and has benefited from the
constant help and support of my advisor Sylvain Sorin. I also owe a lot of thanks to
Nicolas Vieille for the very fruitful discussions we had on the subject, the proof, and
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Abstract. This paper presents necessary and sufficient characterizations of several notions of
input to output stability. Similar Lyapunov characterizations have been found to play a key role in
the analysis of the input to state stability property, and the results given here extend their validity
to the case when the output, but not necessarily the entire internal state, is being regulated.

Key words. Lyapunov functions, output stability, ISS, robust control
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1. Introduction. This paper concerns itself with systems with outputs of the
general form

ẋ(t) = f(x(t), u(t)), y(t) = h(x(t)),(1.1)

where f : R
n × R

m → R
n and h : R

n → R
p are both locally Lipschitz continuous,

f(0, 0) = 0, and h(0) = 0. In [19] (see also [17]), the authors introduced several
notions of output stability for such systems. All these notions serve to formalize the
idea of a “stable” dependence of outputs y upon inputs (which may be thought of
as disturbances, actuator or measurement errors, or regulation signals). They differ
in the precise formulation of the decay estimates and the overshoot, or transient
behavior, characteristics of the output. Among all of them, the one of most interest is
probably the one singled out for the name input to output stability, or IOS, for short.

Our main theorem in this paper provides a necessary and sufficient characteriza-
tion of the IOS property in terms of Lyapunov functions. In the process of obtaining
this characterization, we derive as well corresponding results for the variants of IOS
discussed in [19]. (The relationships between those variants, shown in [19], play a role
in our proofs, but otherwise the two papers are independent of each other.)

In the very special case when y = x, our concepts all reduce to the input to state
stability (ISS) property. Much of ISS control design (cf. [2, 3, 4, 5, 6, 7, 9, 10, 13, 14,
15, 20]) relies upon the Lyapunov characterizations first obtained in [12, 16]. Thus,
it is reasonable to expect a similar impact from the results given here for the more
general case.

In order to review the different i/o stability concepts, let us make the following
notational conventions. Euclidean norms will be denoted as |x|, and ‖u‖ denotes the
Lm∞-norm (possibly infinite) of an input u (i.e., a measurable and locally essentially
bounded function u : I → R

m, where I is a subinterval of R which contains the origin;
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if we do not specify the domain I of an input u, we mean implicitly that I = R≥0). For
each initial state ξ ∈ R

n and input u, we let x(·, ξ, u) be the unique maximal solution
of the initial value problem ẋ = f(x, u), x(0) = ξ, and write the corresponding output
function h(x(t, ξ, u)) simply as y(·, ξ, u). Given a system with control-value set R

m,
we often consider the same system but with controls restricted to take values in some
subset Ω ⊆ R

m; we useMΩ for the set of all such controls. As usual, by a K function
we mean a function γ : [0,∞)→ [0,∞) that is strictly increasing and continuous and
satisfies γ(0) = 0, by a K∞ function one that is in addition unbounded, and we let KL
be the class of functions [0,∞)2 → [0,∞) which are of class K on the first argument
and decrease to zero on the second argument. When we state the various properties
below, we always interpret the respective estimates as holding for all inputs u and for
all initial states ξ ∈ R

n.
Recall that a system is said to be forward complete if for every initial state ξ and

input u, the solution x(t, ξ, u) is defined for all t ≥ 0.
The following four output stability properties were discussed in [19]. A forward

complete system is:
• IOS, or input to output stable, if there exist a KL-function β and a K-function

γ such that

|y(t, ξ, u)| ≤ β(|ξ| , t) + γ(‖u‖) ∀t ≥ 0(1.2)

(the term γ(‖u‖) can be replaced by the norm of the restriction to past inputs
γ(‖u‖[0,t]), and the sum could be replaced by a “max” or two analogous

terms);
• OLIOS, or output-Lagrange input to output stable, if it is IOS and, in addition,
there exist some K-functions σ1, σ2 such that

|y(t, ξ, u)| ≤ max{σ1(|h(ξ)|), σ2(‖u‖)} ∀ t ≥ 0;(1.3)

• SIIOS, or state-independent input to output stable, if there exist some β ∈ KL
and some γ ∈ K such that

|y(t, ξ, u)| ≤ β(|h(ξ)| , t) + γ(‖u‖) ∀ t ≥ 0;(1.4)

• ROS, or robustly output stable, if there are a smooth K∞-function λ and a
β ∈ KL such that the system

ẋ = g(x, d) := f(x, dλ(|y|)), y = h(x),(1.5)

is forward complete, and the estimate

|yλ(t, ξ, d)| ≤ β(|ξ| , t) ∀ t ≥ 0(1.6)

holds for all d ∈MB, where B = {|µ| ≤ 1} ⊂ R
m, and where yλ(·, ξ, d) denote

the output function of system (1.5).
The last concept corresponds to the preservation of output stability under output

feedback with “robustness margin” λ. It was shown in [19] that SIIOS ⇒ OLIOS
⇒ IOS ⇒ ROS, and no converses hold. It was also remarked in section 2.2 of [19]
that the OLIOS property is equivalent to the existence of a KL-function β and a
K-function γ such that the estimate

|y(t, ξ, u)| ≤ β

(
|h(ξ)| , t

1 + ρ(|ξ|)
)
+ γ(‖u‖) ∀ t ≥ 0
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holds for all trajectories of the system. We now introduce the associated Lyapunov
concepts.
Definition 1.1. With respect to the system (1.1), a smooth function V : R

n →
R≥0 is:

• an IOS-Lyapunov function if there exist α1, α2 ∈ K∞ such that

α1(|h(ξ)|) ≤ V (ξ) ≤ α2(|ξ|) ∀ ξ ∈ R
n(1.7)

and there exist χ ∈ K and α3 ∈ KL such that

V (ξ) ≥ χ(|µ|)⇒ DV (ξ)f(ξ, µ) ≤ −α3(V (ξ), |ξ|) ∀ ξ, ∀µ,(1.8)

• an OLIOS-Lyapunov function if there exist α1, α2 ∈ K∞ such that

α1(|h(ξ)|) ≤ V (ξ) ≤ α2(|h(ξ)|) ∀ ξ ∈ R
n(1.9)

and there exist χ ∈ K and α3 ∈ KL such that (1.8) holds,
• an SIIOS-Lyapunov function if there exist χ ∈ K and α3 ∈ K such that

V (ξ) ≥ χ(|µ|)⇒ DV (ξ)f(ξ, µ) ≤ −α3(V (ξ)) ∀ ξ, ∀µ(1.10)

and there exist α1, α2 ∈ K∞ such that (1.9) holds,
• an ROS-Lyapunov function if there exist χ ∈ K and α3 ∈ KL such that

|h(ξ)| ≥ χ(|µ|) ⇒ DV (ξ)f(ξ, µ) ≤ −α3(V (ξ), |ξ|) ∀ ξ, ∀µ(1.11)

and there exist α1, α2 ∈ K∞ such that (1.7) holds.
Observe that, if an estimate (1.7) holds, then (1.11) is implied by (1.8) in the

sense that if χ and α1 are as in the former, then χ̃ := α−1
1 ◦ χ can be used as “χ” for

the latter. Note also that, provided that (1.9) holds, condition (1.8) is equivalent to
the existence of χ ∈ K and α3 ∈ KL so that

|h(ξ)| ≥ χ(|µ|) ⇒ DV (ξ)f(ξ, µ) ≤ −α3(V (ξ), |ξ|).

Our main results can be summarized as follows. We say that system (1.1) is
uniformly bounded input bounded state stable, and write UBIBS for short, if it is
forward complete and, for some function σ of class K, the following estimate holds for
all solutions:

|x(t, ξ, u)| ≤ max{σ(|ξ|), σ(‖u‖)} ∀t ≥ 0.(1.12)

Theorem 1.2. A UBIBS system is:
1. IOS if and only if it admits an IOS-Lyapunov function;
2. OLIOS if and only if it admits an OLIOS-Lyapunov function;
3. ROS if and only if it admits an ROS-Lyapunov function; and
4. SIIOS if and only if it admits an SIIOS-Lyapunov function.

The proofs are provided in section 4.

2. Remarks on rates of decrease. In properties (1.8) and (1.11), the decay
rate of V (x(t)) depends on the state and on the value of V (x(t)). The main role of
α3 is to allow for slower convergence if V (x(t)) is very small or if x(t) is very large.
We first note two simplifications.
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Remark 2.1. Inequality (1.8) holds for some α3 ∈ KL if and only if there exist
K-functions κ1, κ2 such that

V (ξ) ≥ χ(|µ|) ⇒ DV (ξ)f(ξ, µ) ≤ − κ1(V (ξ))

1 + κ2(|ξ|)(2.1)

for all ξ ∈ R
n and all µ ∈ R

m. This follows from Lemma A.2, proved in the appendix.
A similar remark applies to (1.11).
Remark 2.2. Suppose V is an IOS-Lyapunov function for the system satisfy-

ing (1.7) with some α1, α2 ∈ K∞ and satisfying (2.1) with some χ, κ1, κ2 ∈ K. By the
proof of Lemma 11 together with Lemma 12 in [14], one sees that there exists a C1

K∞-function ρ such that ρ′(s)κ1(s) ≥ ρ(s) for all s ≥ 0. Let W = ρ ◦ V . Then W is
a C1 function satisfying the following:

ρ(α1(|h(ξ)|)) ≤W (ξ) ≤ ρ(α2(|ξ|)) ∀ ξ ∈ R
n,

and

W (ξ) ≥ χ
1
(|µ|) ⇒ DW (ξ)f(ξ, µ) ≤ − W (ξ)

1 + κ2(|ξ|)(2.2)

for all ξ ∈ R
n and all µ ∈ R

m, where χ
1
= ρ ◦ χ ∈ K. This shows that if a system

admits an IOS-Lyapunov function, then it admits one satisfying inequality (2.2). A
similar remark applies to (1.11).

Obviously, a function which satisfies a decay estimate of the stronger form

V (ξ) ≥ χ(|µ|) ⇒ DV (ξ)f(ξ, µ) ≤ −α(V (ξ))(2.3)

for some χ, α ∈ K is in particular an IOS Lyapunov function. It is thus natural to
ask if there always exists, for an IOS system, a function with this stronger property.
We now show, by means of an example, that such functions do not in general exist.
Consider for that purpose the following two-dimensional single-input system:

ẋ1 = 0, ẋ2 = −2x2 + u

1 + x2
1

, y = x2.(2.4)

This system is IOS, because with V (x) := x2
2, it holds that

V (ξ) ≥ µ2 ⇒ DV (ξ)f(ξ, µ) = −2x2
2x2 + u

1 + x2
1

≤ − 2V (ξ)

1 + x2
1

.

Namely, V is an IOS-Lyapunov function for the system.
Suppose that system (2.4) would admit an IOS-Lyapunov function W with a

decay estimate as in (2.3), i.e., there exist some χ, α ∈ K such that

W (ξ) ≥ χ(|µ|) ⇒ DW (ξ)f(ξ, µ) ≤ −α(W (ξ)).(2.5)

Without loss of generality, we may assume that χ ∈ K∞. In particular, we have that

DW (ξ)f(ξ,−χ−1(W (ξ))) ≤ −α(W (ξ))(2.6)

for all ξ ∈ R
2. Fix any ξ1 ∈ R, and consider the one-dimensional differential equation

ẋ2 = −2x2 − χ−1(W (ξ1, x2))

1 + ξ2
1

.(2.7)
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Since W (ξ1, x2(t)) → 0 (because of (2.6)) and as α1(|ξ2|) ≤ W (ξ1, ξ2) for all ξ (for
some α1 ∈ K), it follows that x2(t) → 0 as t → ∞. This implies that W (ξ1, ξ2) <
χ(2ξ2) for all ξ1 ∈ R and ξ2 > 0. Together with (2.5), this implies that there exists
some β ∈ KL such that, for every trajectory of (2.4) with u(t) ≡ 0, it holds that

|x2(t)| ≤ β(|x2(0)| , t)
for all ξ = (x1(0), x2(0)) such that x2(0) > 0. This is impossible, as it can be seen

that, when u(t) ≡ 0, x2(t) = x2(0)e
−2t/(1+(x1(0))

2), whose decay rate depends on both
x2(0) and x1(0).

Observe that, if we let U(ξ1, ξ2) := [(1 + ξ2
1) |ξ2|](1+ξ

2
1), then one obtains the

following estimate:

|ξ2| ≥ |µ| ⇒ DU(ξ)f(ξ, µ) ≤ −U(ξ)(2.8)

for all ξ1 ∈ R, ξ2 �= 0, and all µ ∈ R. (The function U is not smooth on the set where
U(ξ) = 0, but, using a routine smoothing argument, one may easily modify U to get a
smooth Lyapunov function.) This U is not an example of a W as here (which, in any
case, we know cannot exist), because (2.8) only means that U is an ROS-Lyapunov
function, not necessarily an IOS-Lyapunov function (since the comparison is between
|ξ2| and |µ| rather than between a function of U and |µ|).

Finally, we observe that property (1.8) in the IOS-Lyapunov definition may be
rephrased as follows:

V (ξ) > χ̃(|µ|) ⇒ DV (ξ)f(ξ, µ) < 0 ∀ ξ ∈ R
n, ∀µ ∈ R

m,(2.9)

where χ̃(s) := ρχ(s) (for any arbitrary chosen ρ ∈ (0, 1)). This statement is obviously
implied by (1.8). Conversely, if V satisfies this property, then there is an α ∈ KL so
that (1.8) holds; this follows from Lemma A.5 given in the appendix.

3. Uniform stability notions. There is a key technical result which underlies
the proofs of all our converse Lyapunov theorems. It requires yet another set of
definitions, which correspond to stability uniformly on all “disturbance” inputs.
Definition 3.1. A system (1.1) is uniformly output stable with respect to inputs

in MΩ, where Ω is a compact subset of R
m, if

• it is forward complete, and
• there exists a KL-function β such that

|y(t, ξ, u)| ≤ β(|ξ| , t) ∀t ≥ 0(3.1)

holds for all u and all ξ ∈ R
n.

If, in addition, there exists σ ∈ K such that

|y(t, ξ, u)| ≤ σ(|h(ξ)|) ∀ t ≥ 0(3.2)

holds for all trajectories of the system with u ∈ MΩ, then the system is output-
Lagrange uniformly output stable with respect to inputs in MΩ. Finally, if one
strengthens (3.1) to

|y(t, ξ, u)| ≤ β(|h(ξ)| , t) ∀ t ≥ 0(3.3)

holding for all trajectories of the system with u ∈ MΩ, then the system is state-
independent uniformly output stable with respect to inputs in MΩ.
Theorem 3.2. Let Ω be a compact subset of R

m, and suppose that a system (1.1)
is uniformly output stable with respect to inputs in MΩ. Then the system admits a
smooth Lyapunov function V satisfying the following properties:
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• there exist α1, α2 ∈ K∞ such that

α1(|h(ξ)|) ≤ V (ξ) ≤ α2(|ξ|) ∀ ξ ∈ R
n;(3.4)

• there exists α3 ∈ KL such that

DV (ξ)f(ξ, µ) ≤ −α3(V (ξ), |ξ|) ∀ ξ ∈ R
n, ∀µ ∈ Ω.(3.5)

Moreover, if the system is output-Lagrange uniformly output stable with respect
to inputs in MΩ, then (3.4) can be strengthened to

α1(|h(ξ)|) ≤ V (ξ) ≤ α2(|h(ξ)|) ∀ ξ(3.6)

for some α1, α2 ∈ K∞. Finally, if the system is state-independent uniformly out-
put stable with respect to inputs in MΩ, then (3.4) can be strengthened to (3.6) and
also (3.5) can be strengthened to

DV (ξ)f(ξ, µ) ≤ −α4(V (ξ)) ∀ ξ ∈ R
n, ∀µ ∈ Ω(3.7)

for some α4 ∈ K.
The proof of this theorem will be postponed until section 4.5.

4. Proof of Theorem 1.2. In the proofs of the various parts of the theorem,
we need the following small gain lemma for output-Lagrange stability (see Lemma 8
of [19]).
Lemma 4.1. For every system which satisfies (1.3), there exist a K-function σ

and a K∞-function λ such that the system

ẋ = f(x, dλ(|y|)), y = h(x),(4.1)

where d ∈MB, is forward complete, and

|yλ(t, ξ, d)| ≤ σ(|h(ξ)|)(4.2)

for all ξ ∈ R
n, all t ≥ 0, and all d ∈MB.

4.1. Proof of Theorem 1.2, part 1.
Necessity. Consider an OLIOS system (1.1). By Lemma 4.1, there exist a smooth

K∞-function λ1 and a K-function σ such that the system

ẋ = f(x, dλ1(|y|)), y = h(x),

where d ∈MB, is forward complete, and (4.2) holds.
Since the system is OLIOS, and, in particular, IOS, and since, as shown in [19],

any IOS system is necessarily also ROS, there exists some smooth K∞-function λ2

such that the system

ẋ = f(x, dλ2(|y|)), y = h(x),(4.3)

where d ∈ MB, is forward complete, and there exists some β ∈ KL such that, for all
trajectories x

λ2
(t, ξ, u) with the output functions y

λ2
(t, ξ, u), it holds that∣∣y

λ2
(t, ξ, d)

∣∣ ≤ β(|ξ| , t) ∀ t ≥ 0, ∀ ξ ∈ R
n, ∀ d ∈MB.
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Let λ3(s) = min{λ1(s), λ2(s)}, and let λ(·) be any smooth K∞-function so that λ(s) ≤
λ3(s) for all s. Then, the system

ẋ = f(x, dλ(|y|)), y = h(x),(4.4)

where d ∈MB, is forward complete, and it holds that∣∣y
λ
(t, ξ, d)

∣∣ ≤ β(|ξ| , t) and
∣∣y
λ
(t, ξ, d)

∣∣ ≤ σ(|h(ξ)|) ∀ t ≥ 0.

Applying Theorem 3.2, one sees that there exists some smooth function V such that:
• there exist α1, α2 ∈ K∞ such that

α1(|h(ξ)|) ≤ V (ξ) ≤ α2(|h(ξ)|) ∀ ξ;(4.5)

• there exist some α3 ∈ KL such that

DV (ξ)f(ξ, νλ(|h(ξ)|)) ≤ −α3(V (ξ), |ξ|)(4.6)

for all ξ ∈ R
n and all |ν| ≤ 1.

It then follows that

DV (ξ)f(ξ, µ) ≤ −α3(V (ξ), |ξ|)
whenever |µ| ≤ λ(|h(ξ)|), or, equivalently, whenever |h(ξ)| ≥ λ−1(|µ|). Let χ =
α−1

2 ◦ λ−1. Then one has

V (ξ) ≥ χ(|µ|)⇒ DV (ξ)f(ξ, µ) ≤ −α3(V (ξ), |ξ|)
for all ξ and all µ. Hence, V is an OLIOS-Lyapunov function for the system.

Sufficiency. Let V be an OLIOS-Lyapunov function for system (1.1). Let α1, α2 ∈
K∞ such that (1.9) holds. By (1.8), and arguing as in Remark 2.1, one also knows
that there exist some κ1 and κ2 ∈ K∞ such that

V (ξ) ≥ χ(|µ|)⇒ DV (ξ)f(ξ, µ) ≤ − κ1(V (ξ))

1 + κ2(|ξ|)(4.7)

for all ξ and µ.
Let β ∈ KL be as in Lemma A.4 for the function κ1. Pick any initial state ξ

and any u. Let x(t) and y(t) denote the ensuing trajectory and output function,
respectively. If for some t1 ≥ 0, V (x(t1)) ≤ χ(‖u‖), then V (x(t)) ≤ χ(‖u‖) for all
t ≥ t1. (Proof: pick any ε > 0. If t2 := inf{t > t1 |V (x(t)) > χ(‖u‖) + ε} is finite,
then V (x(t)) > χ(‖u‖) for all t in some left neighborhood of t2, so DV (x(t))/dt < 0
and V (x(t)) > V (x(t2)) for such t, contradicting its minimality. As ε was arbitrary,
the claim follows.) Now let

t̃ = inf{t ≥ 0 : V (x(t)) ≤ χ(‖u‖)}
with the understanding that t̃ =∞ if V (x(t)) > χ(‖u‖) for all t ≥ 0. Then

V (x(t)) ≤ χ(‖u‖) ∀ t ≥ t̃,(4.8)

and on [0, t̃), it holds that

d

dt
V (x(t)) ≤ − κ1(V (x(t)))

1 + κ2(|x(t)|) .
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Since the system is UBIBS, there exists some σ such that (1.12) holds. Hence,

d

dt
V (x(t)) ≤ − κ1(V (x(t)))

1 + max{κ̃2(|ξ|), κ̃2(‖u‖)}
for all t ∈ [0, t̃), where κ̃2 = κ2 ◦ σ. It then follows Lemma A.4 that

V (x(t)) ≤ β

(
V (ξ),

t

1 + max{κ̃2(|ξ|), κ̃2(‖u‖)}
)

for all t ∈ [0, t̃).
Let v0(s) = max|ξ|≤s V (ξ). Then v0 is nondecreasing, v0(0) = 0, and V (ξ) ≤

v0(|ξ|). Note then that

β

(
V (ξ),

t

1 + max{κ̃2(|ξ|), κ̃2(‖u‖)}
)

≤ max

{
β

(
V (ξ),

t

1 + κ̃2(|ξ|)
)
, β

(
v0(‖u‖), t

1 + κ̃2(‖u‖)
)}

≤ max

{
β

(
V (ξ),

t

1 + κ̃2(|ξ|)
)
, β (v0(‖u‖), 0)

}
(consider two cases: |ξ| ≥ ‖u‖ and |ξ| ≤ ‖u‖). This shows that

V (x(t)) ≤ max

{
β

(
V (ξ),

t

1 + κ̃2(|ξ|)
)
, β̃0(‖u‖)

}
for all t ∈ [0, t̃), where β̃0(s) = β(v0(s), 0). Combining this with (4.8), one sees that

V (x(t)) ≤ max

{
β

(
V (ξ),

t

1 + κ̃2(|ξ|)
)
, γ̃(‖u‖)

}
(4.9)

for all t ≥ 0, where γ̃(s) = β̃(s) + χ(s). Using the fact that |h(ξ)| ≤ α−1
1 (V (ξ)), we

conclude that

|y(t)| ≤ max

{
β̃

(
|h(ξ)| , t

1 + κ̃2(|ξ|)
)
, γ(‖u‖)

}
(4.10)

for all t ≥ 0, where β̃(s, r) = α−1
1 (β(α2(s), r)), and γ(s) = α−1

1 (γ̃(s)).

4.2. Proof of Theorem 1.2, part 2.
Necessity. Consider an IOS system (1.1). By Theorem 1 in [19], there exist some

locally Lipschitz map h0 and χ ∈ K∞ with the property that h0(ξ) ≥ χ(|h(ξ)|) such
that the system

ẋ = f(x, u), y = h0(x)(4.11)

is OLIOS. By part 1 of this theorem, system (4.11) admits an OLIOS-Lyapunov
function V . This means that there exist α1, α2, ρ ∈ K∞, and α3 ∈ KL such that

α1(|h0(ξ)|) ≤ V (ξ) ≤ α2(|h0(ξ)|) ∀ ξ ∈ R
n,

and

V (ξ) ≥ ρ(|µ|) =⇒ DV (ξ)f(ξ, µ) ≤ −α3(V (ξ), |ξ|).
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To show that V is an IOS-Lyapunov function, it remains only to show that V (ξ) ≥
α̃1(|h(ξ)|) for some α̃1 ∈ K∞. But this follows immediately from the fact that |h(ξ)| ≤
χ−1(h0(ξ)). So one can let α̃1 := α1◦χ. Hence, V is indeed an IOS-Lyapunov function
for system (1.1).

Sufficiency. Let V be an IOS-Lyapunov function for system (1.1). From the proof
of part 1 of Theorem 1.2 (sufficiency), one can see that if V satisfies (4.7) for some

χ, κ1, κ2 ∈ KL, then there exist β̃ ∈ KL, κ̃2, γ̃ ∈ K∞ such that (4.9) holds. This
means that the system

ẋ = f(x, u), y = V (x)

is OLIOS. Since V (x) ≥ α1(|h(ξ)|) for some α1 ∈ K∞, it follows that system (1.1) is
IOS.

4.3. Proof of Theorem 1.2, part 3.
Necessity. Since the system (1.1) is ROS, there is a smooth K∞-function λ such

that system (1.5) is forward complete, and (1.6) holds for the corresponding sys-
tem (1.5). That is, system (1.5) is uniformly output stable. By Theorem 3.2, sys-
tem (1.5) admits a smooth Lyapunov function V satisfying (3.4) and

DV (ξ)f(ξ, µλ(|y|)) ≤ −α3(V (ξ), |ξ|) ∀ ξ ∈ R
n, ∀ |µ| ≤ 1

for some α3 ∈ KL. This is equivalent to
|y| ≥ λ−1(|ν|) ⇒ DV (ξ)f(ξ, ν) ≤ −α3(V (ξ), |ξ|) ∀ ξ ∈ R

n, ∀ |ν| ∈ R
m.

Hence, one concludes that V is an ROS-Lyapunov function for system (1.1).
Sufficiency. Let V be an ROS-Lyapunov function. As in Remark 2.1, there exist

χ, κ1, κ2 ∈ K∞ such that

DV (ξ)f(ξ, µ) ≤ − κ1(V (ξ))

1 + κ2(|ξ|)
whenever |h(ξ)| ≥ χ(|µ|). Let λ = χ−1. Without loss of generality, one may assume
that λ is smooth. (Otherwise, one can always replace λ by a smooth K∞-function
that is majorized by λ.) It then follows that

DV (ξ)f(ξ, νλ(|h(ξ)|)) ≤ − κ1(V (ξ))

1 + κ2(|ξ|)
for all ξ ∈ R

n and all |ν| ≤ 1. This implies that for any trajectory x
λ
(t) = x

λ
(t, ξ, d)

of the system

ẋ = f(x, dλ(|y|)), y = h(x),

where d ∈MB, it holds that

d

dt
V (x

λ
(t)) ≤ − κ1(V (x

λ
(t)))

1 + κ2(
∣∣x
λ
(t)
∣∣)(4.12)

for all t ≥ 0. It follows immediately that V (x
λ
(t)) ≤ V (ξ) for all t ≥ 0. Since

V (ξ) ≥ α1(|h(ξ)|) for some α1 ∈ K∞, it follows that, for some σ ∈ K∞,∣∣y
λ
(t)
∣∣ ≤ σ(|ξ|) ∀ t ≥ 0.(4.13)



EDUARDO SONTAG AND YUAN WANG 235

Since the system is UBIBS, there exists some σ0 ∈ K such that∣∣x
λ
(t, ξ, d)

∣∣ ≤ max{σ0(|ξ|), σ0(‖ud‖)} ∀ t ≥ 0,

where ud(t) = d(t)λ(|y(t)|). Combining this with (4.13), it follows that∣∣x
λ
(t, ξ, d)

∣∣ ≤ σ̃(|ξ|) ∀ t ≥ 0,

where σ̃(s) = max{σ0(s), σ0(λ(σ(s)))}. Substituting this back into (4.12), one has

d

dt
V (x

λ
(t)) ≤ −κ1(V (x

λ
(t)))

1 + κ3(|ξ|) ∀ t ≥ 0,

where κ3(s) = κ2(σ̃(s)). Again, by Lemma A.4, one knows that there exists some
β ∈ KL (which depends only upon κ1) such that

V (x
λ
(t)) ≤ β

(
V (ξ),

t

1 + κ3(|ξ|)
)

∀ t ≥ 0.

Together with the fact that |h(ξ)| ≤ α−1
1 (V (ξ)), this yields∣∣y

λ
(t, ξ, d)

∣∣ ≤ β̃(|ξ| , t) ∀ t ≥ 0,

where β̃(s, r) = α−1
1 [β(α2(s), t/(1+κ3(s)))] is in KL, and α2 is any K∞-function such

that V (ξ) ≤ α2(|ξ|) for all ξ. This shows that the system is ROS.

4.4. Proof of Theorem 1.2, part 4.
Necessity. Assume that a UBIBS system (1.1) admits an estimate (1.4) for some

β ∈ KL and some γ ∈ K. Without loss of generality, one may assume that

|y(t, ξ, u)| ≤ max{β(|h(ξ)| , t), γ(‖u‖)}.
Let σ1(s) = β(s, 0), and let σ2(s) = γ(s). Note then that (1.3) holds. By Lemma 8
in [19], there exists some smooth K∞-function such that the corresponding sys-
tem (1.5) is forward complete, and it holds that

σ2(|d(t)|λ(|yλ(t, ξ, d)|)) ≤ 1

2
|h(ξ)|

for all ξ ∈ R
n, all t ≥ 0, and all d ∈MB. One then can show that for the system

ẋ(t) = f(x(t), d(t)λ(|y(t)|)), y(t) = h(x(t)),

there exists β̃ ∈ KL so that, for all trajectories x
λ
(t, ξ, d), it holds that∣∣y

λ
(t, ξ, d)

∣∣ ≤ β̃(|h(ξ)| , t)
for all t ≥ 0. Applying the last part of Theorem 3.2, one sees that there exists V
satisfying (3.6) for some α1, α2 ∈ K∞ and

DV (ξ)f(ξ, νλ(|y(ξ)|)) ≤ −α3(V (ξ))

for all ξ and all |ν| ≤ 1. This is equivalent to the existence of χ ∈ K∞ such that

V (ξ) ≥ χ(|µ|)⇒ DV (ξ)f(ξ, u) ≤ −α3(V (ξ)).(4.14)
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Sufficiency. It is routine to show that if there is a smooth function V satisfy-
ing (3.6) and (4.14), then the system admits an estimate of type (1.4).
Remark 4.1. Note that in all the proofs of the necessity implications of Theo-

rem 1.2, the UBIBS property is not needed. That is, to show the existence of various
Lyapunov functions for the corresponding stability properties, one does not need the
UBIBS property. However, the UBIBS property is indeed required in the proofs of the
sufficiency implications regarding the IOS, OLIOS, and the ROS properties. It is not
hard to find examples where a system admits an IOS-, OLIOS-, or ROS-Lyapunov
function, without satisfying the UBIBS property, and fails to be IOS, OLIOS, or ROS,
respectively.

It should also be noticed that part 4 of Theorem 1.2 also holds for all forward
complete systems (not necessarily UBIBS). Without the UBIBS assumption, this re-
sult recovers the converse Lyapunov theorem obtained in [12] for systems that are
uniformly globally asymptotically stable with respect to closed invariant sets, when
applied using as output the distance to a closed invariant set. In fact, part 4 of The-
orem 1.2 yields a more general result than the one in [12]. Because of the techniques
used in the proofs in [12], the systems were required to be backward complete. Due
to part 4 of Theorem 1.2, it can be seen that the backward completeness assumption
is redundant.

4.5. Proof of Theorem 3.2. Consider the system

ẋ(t) = f(x(t), u(t)), y = h(x(t)),(4.15)

where the input u takes values in a compact subset Ω of R
m. Assume that the system

is UBIBS and there exists some β ∈ KL such that (3.1) holds for all trajectories
of (4.15). Let ω : R

n → R≥0 be defined by

ω(ξ) := sup {|y(t, ξ, u)| : t ≥ 0, u ∈MΩ} .(4.16)

It then holds that

|h(ξ)| ≤ ω(ξ) ≤ β0(|ξ|) ∀ ξ ∈ R
n,(4.17)

where β0(s) = β(s, 0). Moreover, if there exists some σ ∈ K such that (3.2) holds for
all trajectories, then the above can be strengthened to

|h(ξ)| ≤ ω(ξ) ≤ σ(|h(ξ)|) ∀ ξ ∈ R
n.(4.18)

Observe that, for any ξ ∈ R
n, u ∈MΩ, and t1 ≥ 0,

ω(x(t1, ξ, u)) ≤ sup
t≥0,v∈MΩ

|y(t1 + t, ξ, v)| ≤ β(|ξ| , t1).(4.19)

Also ω decreases along trajectories, i.e.,

ω(x(t, ξ, u)) ≤ ω(ξ) ∀t ≥ 0, ξ ∈ R
n, u ∈MΩ.(4.20)

Define

D := {ξ : y(t, ξ, u) = 0 ∀ t ≥ 0, ∀u ∈MΩ}.
Then ω(ξ) = 0 if and only if ξ ∈ D. For ξ /∈ D, it holds that

ω(ξ) = sup
0≤t≤tξ, u∈MΩ

|y(t, ξ, u)| ,(4.21)
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where tξ = T|ξ|(ω(ξ)/2), and Tr(s) is defined as in Lemma A.1 associated with the
function β.
Lemma 4.2. The function ω(ξ) is locally Lipschitz on R

n \ D and continuous
everywhere.

Proof. First notice that

lim
ξ→ξ0

ω(ξ) ≥ ω(ξ0) ∀ ξ0 ∈ R
n;(4.22)

that is, ω(ξ) is lower semicontinuous on R
n. Indeed, pick ξ0 and let c := ω(ξ0). Take

any ε > 0. Then there are some u0 and t0 so that |y(t0, ξ0, u0)| ≥ c−ε/2. By continuity

of y(t0, ·, u0), there is some neighborhood Ũ0 of ξ0 so that |y(t0, ξ, u0)| ≥ c− ε for all

ξ ∈ Ũ0. Thus ω(ξ) ≥ c− ε for all ξ ∈ Ũ0, and this establishes (4.22).
Fix any ξ0 ∈ R

n \ D, and let c0 = ω(ξ0)/2. Then there exists a bounded neigh-
borhood U0 of ξ0 such that

ω(ξ) ≥ c0 ∀ ξ ∈ U0.

Let s0 be such that |ξ| ≤ s0 for all ξ ∈ U0. Then

ω(ξ) = sup {|y(t, ξ, u)| : t ∈ [0, t1], u ∈MΩ} ∀ ξ ∈ U0,

where t1 = Ts0(c0/2). By [12, Proposition 5.5], one knows that x(t, ξ, u) is locally
Lipschitz in ξ uniformly on u ∈ MΩ and on t ∈ [0, t1], and therefore, so is y(t, ξ, u).
Let C be a constant such that

|y(t, ξ, u)− y(t, η, u)| ≤ C |ξ − η| ∀ ξ, η ∈ U0, ∀ 0 ≤ t ≤ t1, ∀u ∈MΩ.

For any ε > 0 and any ξ ∈ U0, there exist some tξ,ε ∈ [0, t1] and some uξ,ε such that

ω(ξ) ≤ |y(tξ,ε, ξ, uξ,ε)|+ ε.

It then follows that, for any ξ, η ∈ U0, and for any ε > 0,

ω(ξ)− ω(η) ≤ |y(tξ,ε, ξ, uξ,ε)|+ ε− |y(tξ, ε, η, uξ,ε)| ≤ C |ξ − η|+ ε.

Consequently,

ω(ξ)− ω(η) ≤ C |ξ − η| ∀ ξ, η ∈ U0.

By symmetry,

ω(η)− ω(ξ) ≤ C |ξ − η| ∀ ξ, η ∈ U0.

This proves that ω is locally Lipschitz on R
n \ D.

We now show that ω is continuous on D. Fix ξ0 ∈ D. One would like to show that

lim
ξ→ξ0

ω(ξ) = 0.(4.23)

Assume that this does not hold. Then there exists some ε0 > 0 and a sequence {ξk}
with ξk → ξ0 such that ω(ξk) > ε0 for all k. Without loss of generality, one may
assume that

|ξk| ≤ s1 ∀ k
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for some s1 ≥ 0. It then follows that

ω(ξk) = sup {|y(t, ξk, u)| : t ∈ [0, t2], u ∈MΩ} ,
where t2 = Ts1(ε0/2). Hence, for each k, there exists some uk ∈ MΩ and some
τk ∈ [0, t2] such that

|y(τk, ξk, uk)| ≥ ω(ξk)− ε0/2 ≥ ε0/2.

Again, by the locally Lipschitz continuity of the trajectories, one knows that there is
some C1 > 0 such that

|y(t, ξk, u)− y(t, ξ0, u)| ≤ C1 |ξk − ξ0| ∀ k ≥ 0, ∀ 0 ≤ t ≤ t2, ∀u ∈MΩ.

Hence,

|y(τk, ξ0, uk)| ≥ ε0/4

for k large enough, contradicting the fact that y(t, ξ0, u) ≡ 0 for all u ∈ MΩ. This
shows that (4.23) holds if ξ0 ∈ D.

Next, we pick any smooth and bounded function k : R≥0 → R>0 whose derivative
is everywhere positive, and define W : R

n → R≥0 by

W (ξ) := sup {ω(x(t, ξ, u))k(t) : t ≥ 0, u ∈MΩ} .(4.24)

Corresponding to k there are two positive real numbers c1 < c2 such that k(t) ∈ [c1, c2]
for all t ≥ 0, and so

c1ω(ξ) ≤W (ξ) ≤ c2ω(ξ) ∀ ξ ∈ R
n,

which implies that

c1 |h(ξ)| ≤W (ξ) ≤ c2β0(|ξ|) ∀ ξ ∈ R
n.(4.25)

Note, for future reference, that it is always possible to find a bounded, positive,
and decreasing continuous function τ(·) with τ(t)→ 0 as t→∞ such that

k′(t) ≥ τ(t) ∀ t ≥ 0.(4.26)

By (4.19), one knows that ω(x(t, ξ, u)) → 0 as t → ∞. It follows that there is
some τξ ≥ 0 such that

W (ξ) = sup {ω(x(t, ξ, u))k(t) : u ∈MΩ, 0 ≤ t ≤ τξ} .(4.27)

Furthermore, one can get the following estimate, where {Tr} is a family of functions
associated to β as in Lemma A.4.
Lemma 4.3. For any ξ �∈ D with |ξ| ≤ r,

W (ξ) = sup {ω(x(t, ξ, u))k(t) : u ∈MΩ, 0 ≤ t ≤ τξ} ,
where τξ = Tr(

c1
2c2

ω(ξ)).
Proof. If the statement is not true, then for any ε > 0, there exists some tε >

Tr(
c1
2c2

ω(ξ)) and some uε ∈MΩ such that

W (ξ) ≤ ω(x(tε, ξ, uε))k(tε) + ε.
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This implies the following:

ω(ξ) ≤ 1

c1
W (ξ) ≤ 1

c1
ω(x(tε, ξ, uε))k(tε) +

ε

c1

≤ c2
c1

ω(x(tε, ξ, uε)) +
ε

c1
≤ c2

c1
· c1
2c2

ω(ξ) +
ε

c1

=
ω(ξ)

2
+

ε

c1
.

Taking the limit as ε→ 0 results in a contradiction.
Lemma 4.4. The function W (·) is locally Lipschitz on R

n \ D and continuous
everywhere.

Proof. Fix ξ0 �∈ D. Let K0 be a compact neighborhood of ξ0 such that K0∩D = ∅.
Since ω is continuous, it follows that there is some r0 > 0 such that ω(ξ) > r0 for all
ξ ∈ K0, and hence, W (ξ) > r1 := c1r0 for all ξ ∈ K0. Let

T0 = Ts0

(
r1
8c2

)
,

where s0 > 0 is such that |ξ| ≤ s0 for all ξ ∈ K0. Let C > 0 be such that

|y(t, ξ, u)− y(t, η, u)| ≤ C |ξ − η| ∀ t ∈ [0, T0], ∀ ξ, η ∈ K0, ∀u ∈MΩ.

Let

K1 = K0 ∩
{
ξ : |ξ − ξ0| ≤ r1

16Cc2

}
.

Fix any ε ∈ (0, r1/4). Then, for any ξ ∈ K1, there exist tξ,ε ∈ [0, T0] and uξ,ε ∈ MΩ

such that

W (ξ) ≤ ω(x(tξ,ε, ξ, uξ,ε))k(tξ,ε) + ε.

Claim. For any ξ, η ∈ K1, ω(x(tξ,ε, η, uξ,ε)) ≥ r1
8c2

.
Proof. First we note that for any ξ ∈ K1 ⊂ K0,

ω(x(tξ,ε, ξ, uξ,ε)) ≥ W (ξ)− ε

c2
≥ W (ξ)

2c2
≥ r2,

where r2 := r1
2c2

. Thus, for each ξ ∈ K1, there exists some vξ ∈MΩ and some τξ > 0
such that

|y(τξ, x(tξ,ε, ξ, uξ,ε), vξ)| ≥ ω(x(tξ,ε, ξ, uξ,ε))− r2/2 ≥ r2/2.

Observe that

y(τξ, x(tξ,ε, ξ, uξ,ε), vξ) = y(τξ + tξ,ε, ξ, vξ,ε),

where vξ,ε is the concatenation of uξ,ε and vξ, i.e.,

vξ,ε(t) =

{
uξ,ε(t), if 0 ≤ t < tξ,ε,

vξ(t− tξ,ε), if t ≥ tξ,ε.
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Noticing that |y(t, ξ, u)| ≤ r2/2 for all t ≥ Ts0(r2/4), one concludes that τξ + tξ,ε <
Ts0(r2/4) = T0. Note also that for any η ∈ K1,

|y(τξ, x(tξ,ε, η, uξ,ε), vξ)| = |y(τξ + tξ,ε, η, vξ,ε)|
≥ |y(τξ + tξ,ε, ξ, vξ,ε)| − |y(τξ + tξ,ε, η, vξ,ε)− y(τξ + tξ,ε, ξ, vξ,ε)|
≥ r2

2
− C |ξ − η|

≥ r2
2
− 2C

r1
16Cc2

=
r1
4c2

− r1
8c2

=
r1
8c2

.

This implies that ω(x(tξ,ε, η, uξ,ε)) ≥ r1
8c2

for all ξ, η ∈ K1, as claimed.
According to [12, Proposition 5.1], there is some compact set K2 such that

x(t, ξ, u) ∈ K2 for all 0 ≤ t ≤ T0, all ξ ∈ K1, and all u ∈MΩ. Let

K3 = K2 ∩ {ξ : ω(ξ) ≥ r1/8c2}.

Applying Lemma 4.2, one knows that there is some C1 > 0 such that

|ω(ζ1)− ω(ζ2)| ≤ C1 |ζ1 − ζ2| ∀ ζ1, ζ2 ∈ K3.

Since for all ξ, η ∈ K1, and all 0 < ε < r1/4, x(tξ,ε, η, uξ,ε) ∈ K3, we have

|ω(x(tξ,ε, ξ, uξ,ε))− ω(x(tξ,ε, η, uξ,ε))| ≤ C1 |x(tξ,ε, ξ, uξ,ε)− x(tξ,ε, η, uξ,ε)|

for all ξ, η ∈ K1, and all ε ∈ (0, r1/4). Hence,

W (ξ)−W (η) ≤ ω(x(tξ,ε, ξ, uξ,ε))k(tξ,ε)− ω(x(tξ,ε, η, uξ,ε))k(tξ,ε) + ε

≤ c2 |ω(x(tξ,ε, ξ, uξ,ε))− ω(x(tξ,ε, η, uξ,ε))|+ ε

≤ c2C1 |x(tξ,ε, ξ, uξ,ε)− x(tξ,ε, η, uξ,ε)|+ ε

≤ c2C1C2 |ξ − η|+ ε,

where C2 > 0 is such a constant that |x(t, ξ, u)− x(t, η, u)| ≤ C2 |ξ − η| for all ξ, η ∈
K3, all t ∈ [0, T0], and all u ∈ MΩ. Note that the above holds for any ε ∈ (0, r1/4),
and thus,

W (ξ)−W (η) ≤ C3 |ξ − η|

for all ξ, η ∈ K1, where C3 = c2C1C2. By symmetry, one proves that

W (η)−W (ξ) ≤ C3 |ξ − η|

for all ξ, η ∈ K1.
To prove the continuity of W on D, it is enough to notice that for any ξ ∈ D,

W (ξ) = 0 and

|W (ξ)−W (η)| ≤ c2ω(η)→ 0, as η → ξ.

The proof of Lemma 4.4 is thus concluded.
Below we show that W is decreasing along trajectories. Pick any ξ �∈ D. Let

θ0 > 0 be such that

ω(x(t, ξ,v)) ≥ ω(ξ)/2 ∀ t ∈ [0, θ0], ∀ v ∈ Ω,
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where v denotes the constant function v(t) ≡ v. (Observe that such a θ0 exists
because ω is continuous.) Pick any θ ∈ [0, θ0], and let ηv = x(θ, ξ,v). For any ε > 0,
there exists some tv,ε and uv,ε ∈MΩ such that

W (ηv) ≤ ω(x(tv,ε, ηv, uv,ε))k(tv,ε) + ε

= ω(x(tv,ε + θ, ξ, uv,ε))k(tv,ε + θ)

(
1− k(tv,ε + θ)− k(tv,ε)

k(tv,ε + θ)

)
+ ε

≤W (ξ)

(
1− k(tv,ε + θ)− k(tv,ε)

c2

)
+ ε,(4.28)

where uv,ε denotes the concatenation of v and uv,ε. Still for the fixed ξ and θ, and
for any r > |ξ|, define

T rξ,θ := max
ṽ∈Ω

Tr

(
c1
2c2

ω(x(θ, ξ, ṽ))

)
.(4.29)

Notice that x(θ, ξ, ṽ) is jointly continuous as a function of (θ, ξ, ṽ). Since ω and Tr
are both continuous, this maximum is well defined and, moreover, T rξ,θ is continuous
as a function of θ, so, in particular,

lim
θ→0+

T rξ,θ = Tr

(
c1
c2

ω(ξ)

)
.(4.30)

Claim. tv,ε + θ ≤ T rξ,θ for all v ∈ Ω and for all ε ∈ (0, c14 ω(ξ)).
Proof. Assume that this is not true. Then there is some v ∈ Ω and some ε ∈(

0, c14 ω(ξ)
)
such that tv,ε + θ > T rξ,θ, and, in particular,

tv,ε + θ ≥ Tr

(
c1
2c2

ω(x(θ, ξ,v))

)
,

from which it follows that

ω(x(tv,ε, ηv, uv,ε)) = ω(x(tv,ε + θ, ξ, uv,ε)) ≤ c1
2c2

ω(x(θ, ξ,v)) =
c1
2c2

ω(ηv)

for some input function uv,ε (which we can take to be the concatenation of v and
uv,ε; note that the inequality follows from (4.19) and the definition of the functions
Tr).

By the definition of W , one has

ω(ηv) ≤ 1

c1
W (ηv) ≤ 1

c1
ω(tv,ε, ηv, uv,ε)k(tv,ε) +

ε

c1

≤ c2
c1

ω(tv,ε + θ, ξ, uv,ε) +
ε

c1

≤ 1

2
ω(ηv) +

ε

c1
,

which is impossible, since ε < c1
4 ω(ξ) ≤ c1

2 ω(ηv). This proves the claim.
From (4.28), we have, for any v ∈ D and for any ε small enough,

W (x(θ, ξ,v))−W (ξ) ≤ −W (ξ)

c2
τ(tv,ε + cθ)θ + ε
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for some c ∈ (0, 1), where we used the mean value theorem in order to estimate the
change in k, and where τ is a function as in (4.26). Using the monotonicity of τ(·)
and the above claim, one concludes

W (x(θ, ξ,v))−W (ξ) ≤ −W (ξ)

c2
τ
(
T rξ,θ

)
θ + ε

for all ε small enough. Letting ε→ 0, one obtains

W (x(θ, ξ,v))−W (ξ) ≤ −W (ξ)

c2
τ
(
T rξ,θ

)
θ ∀ v ∈ Ω.

Thus one concludes that for any v ∈ Ω and any θ > 0,

W (x(θ, ξ,v))−W (ξ)

θ
≤ −W (ξ)

c2
τ(T rξ,θ).

Since W is locally Lipschitz on R
n\D, it is differentiable almost everywhere on R

n\D,
and hence, for any v ∈ Ω, any r > |ξ|, and any ξ at which W is differentiable,

DW (ξ)f(ξ, v) = lim
θ→0+

W (x(θ, ξ,v))−W (ξ)

θ
≤ − lim

θ→0+

W (ξ)

c2
τ(T rξ,θ)

= −W (ξ)

c2
τ
(

lim
θ→0+

T rξ,θ

)
= −W (ξ)

c2
τ

(
Tr

(
c1
c2

ω(ξ)

))
≤ −W (ξ)

c2
τ

(
Tr

(
c1
c22

W (ξ)

))
= −α̃3(W (ξ), r),(4.31)

where α̃3(s, r) =
s
c2

τ(Tr(c3s)) with c3 = c1/c
2
2. Since (4.31) holds for all r > |ξ|, it

follows that

DW (ξ)f(ξ, v) ≤ −α̃3(W (ξ), 2 |ξ|)(4.32)

for all v ∈ Ω and for almost all ξ ∈ R
n \ D.

Since Tr(s) is defined for all r ≥ 0 and s > 0, one sees that α̃3 is defined on
R>0 × R≥0. Extend α̃3 to R≥0 × R≥0 by letting α̃3(0, r) := 0 for all r ≥ 0. By
the continuity property of τ and Tr(·), one sees that α̃3(·, r) is continuous for each
r. (The continuity at s = 0 follows from α̃3(s, r) = sτ(Tr(c3s))/c2 ≤ sτ(0)/c2 for all
s > 0.) Furthermore, since τ(Tr(c3s)) is nondecreasing in s, it follows that α̃3(s, r)
is of class K in s. Let α̌3(s, r) = α̃3(s, 2r)/(1 + r). This function tends to zero as
r →∞, because α̃3(s, r) is nonincreasing in r; thus α̌3(s, r) is of class KL. Moreover,

DW (ξ)f(ξ, v) ≤ −α̌3(W (ξ), |ξ|) ∀ ξ ∈ R
n \ D, ∀ v ∈ Ω.

By Corollary A.3, there exists a continuous KL-function α̂3 such that

DW (ξ)f(ξ, v) ≤ −α̂3(W (ξ), |ξ|) ∀ ξ ∈ R
n \ D, ∀ v ∈ Ω.(4.33)

To complete the proof, we follow the strategy used in [12] to find a smooth
approximation of W . First of all, by Theorem B.1 in [12], applied on R

n \D, there is
a continuous function W1 that is smooth on R

n \ D such that

|W1(ξ)−W (ξ)| ≤ W (ξ)

2
∀ ξ ∈ R

n \ D,(4.34)
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and

DW1(ξ)f(ξ, v) ≤ −α̂3(W (ξ), |ξ|)/2 ∀ ξ ∈ R
n \ D, ∀ v ∈ Ω.(4.35)

We extend W1 to all of R
n by letting W1 ≡ 0 on D; thus, the approximation (4.34)

holds on all of R
n. (Note that W and α̂3(V (ξ), |ξ|) are both continuous, so the result

in [12] can indeed be applied.)
Next, we appeal to Lemma 4.3 in [12]. This shows that there exists some ρ ∈ K∞

with ρ′(s) > 0 for all s > 0 such that ρ ◦W1 is smooth everywhere. Let V = ρ ◦W1.
It follows from (4.25) and (4.34) that

α1(|h(ξ)|) ≤ V (ξ) ≤ α2(|ξ|) ∀ ξ ∈ R
n,

where α1(s) = ρ(c1s/2), α2(s) = ρ(2c2β0(s)), and it follows from (4.34) and (4.35)
that

DV (ξ)f(ξ, µ) ≤ −ρ′(W1(ξ))α̂3(W (ξ), |ξ|)/2 ≤ −α3(V (ξ), |ξ|)(4.36)

for all ξ ∈ R
n \ D and all µ ∈ Ω, where

α3(s, r) =
ρ′(ρ−1(s))α̂3(ρ

−1(V (ξ))/2, r)

2
.

Since V has local (actually, global) minima at all points inD, it follows thatDV (ξ) ≡ 0
on D, so we know that the estimate (4.36) also holds on all of R

n.
Finally, observe that if there exists σ ∈ K such that (3.2) holds for all trajectories

of the system, then (4.18) holds for all ξ, which, in turn, implies that

c1 |h(ξ)| ≤W (ξ) ≤ c2σ(|h(ξ)|) ∀ ξ ∈ R
n.(4.37)

This results in the desired inequality

α1(|h(ξ)|) ≤ V (ξ) ≤ σ1(|h(ξ)|) ∀ ξ ∈ R
n,(4.38)

where σ1(s) = ρ(2c2σ(s)). This shows that if (3.2) holds for some σ ∈ K, then
property (3.4) can be strengthened to property (3.6).

Finally, suppose that, in the above proof, one strengthens (3.1) to (3.3). Asso-
ciated to the function β there are, as before, functions {Tr}. Since we also have an
estimate as in (3.1), there are functions {Tr} associated to a β as in (3.1); without loss
of generality, we will assume that the same Tr’s work for both. Thus, we know that,
provided t ≥ Tr(s), |y(t, ξ, u)| ≤ s whenever |h(ξ)| ≤ r or |ξ| ≤ r. The claim stated
after (4.30) holds now for all r > |h(ξ)| (instead of merely if r > |ξ|), because (4.19)
can be strengthened to

ω(x(t1, ξ, u)) ≤ β(|h(ξ)| , t1).
We now repeat the above proof to get a function W (ξ) satisfying (4.37), and corre-
sponding to (4.33), one has now also

DW (ξ)f(ξ, v) ≤ −α̂3(W (ξ), |h(ξ)|) ≤ −α̂3

(
W (ξ),

W (ξ)

c1

)
for all ξ ∈ R

n \ D and all v ∈ Ω. Therefore, on R
n \ D,

DW (ξ)f(ξ, v) ≤ −α4(W (ξ)),
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where α̃4(s) = α̃3(s, s/c1) is a continuous positive definite function. Using the same
smoothing argument as earlier, we can show that there is a smooth function V such
that (4.38) holds for some σ1, σ2 ∈ K∞, and (4.36) can be strengthened to

DV (ξ)f(ξ, v) ≤ −α̂4(V (ξ))(4.39)

for all ξ ∈ R
n and all v ∈ Ω, where α̂4(·) is some continuous positive definite function.

Now we modify the function V to get V1 so that V1 satisfies inequalities of
type (4.37) and (4.39) with α̂4 replaced by a K∞ function α5. For this purpose,
let ρ0(·) be a smooth K∞-function such that ρ0(s)α̂4(s) ≥ 1 for s ≥ 1, and let

ρ1(s) = e
∫ s
0
ρ0(s1) ds1 − 1.

Define V1(ξ) = ρ1(V (ξ)). It holds that

α̂1(|h(ξ)|) ≤ V1(ξ) ≤ α̂2(|h(ξ)|) ∀ ξ ∈ R
n,

where α̂1(s) = ρ1(α1(s)), α̂2(s) = ρ1(α2(s)), and

DV1(ξ)f(ξ, v) = −(V1(ξ) + 1)ρ0(V (ξ))α̂4(V (ξ)) ≤ −α5(V1(ξ))

for all ξ ∈ R
n and all v ∈ Ω, where α5 is any K∞ function with the property that

α5(ρ1(s)) ≤ (ρ1(s) + 1)ρ0(s)α̂4(s)

for all s ≥ 0 (such a K∞-function exists because (s+ 1)ρ0(s)α̂4(s) ≥ s for all s ≥ 1).
Using V1 as a Lyapunov function, this completes the proof.

5. Remarks. The concept of IOS does not distinguish between “measured out-
puts,” which may be used to provide information about the state of a system, and
“target outputs,” which are often the object of control, nor does it allow for the con-
sideration of “robustness” to disturbances. A more general concept can be studied as
well, as follows. Suppose that, instead of systems as in (1.1), we study more general
systems of the following form:

ẋ(t) = f(x(t), u(t), d(t)), y(t) = h(x(t)), w(t) = k(x(t)),(5.1)

where f : R
n×R

m×R
r → R

n, h : R
n → R

p, and k : R
n → R

q are all locally Lipschitz
continuous (for some nonnegative integers n,m, r, p, q). We think of the functions d(·)
and w(·) as disturbances and measured outputs, respectively. Even more generality
is gained if one considers, as mentioned in [17], a “measure” for states (in the sense
of [11]), which we denote by |x|A in analogy to the distance to a set A as in previous
extensions of the ISS notion. Then, a natural definition of relative stability is given
by the requirement that there should exist a KL-function β and K-functions γ1 and
γ2 such that, for each initial state ξ and inputs (u, d), and for all t in the domain of
definition of the corresponding maximal solution x(·) of (5.1),

|y(t)| ≤ β(|ξ|A , t) + γ1(‖u‖) + γ2(‖w‖),(5.2)

where y and w are the functions h(x(·)) and k(x(·)), respectively. Observe that, when
d does not appear in the equations and when k ≡ 0, we recover (if |·|A = |·|) the
IOS definition. When, again, d does not appear in the equations, but now h(x) = x,
we recover (if |·|A = |·|) the input/output to state stability (IOSS) notion of zero-
detectability discussed in [18] and recently completely characterized in [8]. (These
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notions are related by the fact that a system is ISS if and only if it is both IOSS
and IOS, which generalizes the linear systems theory fact that internal stability is
equivalent to detectability plus external stability.) A sufficient Lyapunov-theoretic
condition for our general notion (which could be called “input/measurement to output
stability”) is the existence of a smooth V : R

n → R≥0 such that, for some α1, α2 ∈ K∞,

α1(|h(ξ)|) ≤ V (ξ) ≤ α2(|ξ|A) ∀ ξ ∈ R
n(5.3)

and there exist χ1, χ2 ∈ K, and α3 ∈ KL such that

DV (ξ)f(ξ, µ, δ) ≤ −α3(V (ξ), |ξ|) + χ1(|µ|) + χ2(|h(ξ)|) ∀ ξ, ∀µ, ∀ δ,(5.4)

or obvious variations of this inequality. We leave the formulation of converse theorems
for future work.

Appendix A. Some facts regarding KL functions.
The following simple observation is proved in [19] and will be needed here too.
Lemma A.1. For any KL-function β, there exists a family of mappings {Tr}r≥0

such that
• for each fixed r > 0, Tr : R>0

onto−→ R>0 is continuous and strictly decreasing,
and T0(s) ≡ 0;

• for each fixed s > 0, Tr(s) is strictly increasing as r increases and is such
that β(r, Tr(s)) < s, and consequently, β(r, t) < s for all t ≥ Tr(s).

Lemma A.2. For any KL function β, there exist two K functions κ1 and κ2

so that

β(s, t) ≥ κ1(s)

1 + κ2(t)
(A.1)

for all s ≥ 0 and all t ≥ 0.
Proof. We assume that b := sups β(s, 0) < ∞ (otherwise, we first find a β0 ≤ β

with that property and prove the result for β0). We define, for all s ≥ 0 and t ≥ 0,

β̃(s, t) :=

∫ t+1

t

β(s, τ) dτ.

Note that β̃ is again of class KL, and β̃(s, t) ≤ β(s, t) for all s, t. Let

α̃(t) := sup
s≥0

β̃(s, t).

This is finite everywhere, since it is bounded by b. Moreover, it is a continuous
function, because

α̃(t) :=

∫ t+1

t

α(τ) dτ,

where α is the decreasing function (not necessarily strictly) defined by α(t) :=

sups≥0 β(s, t). We will write from now on β̃(∞, t) instead of α̃(t). Finally, we let

ρ(x) := max{x, 0}
for all x ∈ R and introduce the following function:

c : R
2 → R : (x, y) �→ − ln β̃

(
1

ρ(x)
, ρ(y)

)
− ρ(−x)− ρ(−y),
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where we understand β̃( 1
0 , t) as α̃(t). As in [1], we let N denote the class of all

functions k : R → R that are nondecreasing, continuous, and unbounded below.
Note that c is of class N on each variable separately. (Continuity follows from the

continuity of each of β̃(∞, ·), β̃(s, ·) for each s ≥ 0, and β̃(·, t) for each t ≥ 0 as well as

continuity of ρ. The nondecreasing property is clear, using that β̃(·, t) for each t ≥ 0

and ρ are nondecreasing, and that β̃(∞, ·) and β̃(s, ·) for each s ≥ 0 are nonincreasing.
Unbounded below follows from the fact that for x → −∞ we have c(x, y0) = a + x,

where a = β̃(∞, ρ(y0)) − ρ(−y0) and for y → −∞ we have c(x0, y) = a + y, where

a = − ln β̃
(

1
ρ(x0)

, 0
)
− ρ(−x0).

By Proposition 3.4 in [1], there is some k ∈ N such that c(x, y) ≤ k(x) + k(y)

for all x, y. So, we can write, after using that β ≥ β̃: β(1/x, y) ≥ e−k(x)e−k(y) for all
x, y > 0. Equivalently,

β(s, t) ≥ κ1(s)

1 + κ2(t)

for all s, t > 0, when we define

κ1(s) := e−k(1/s)−k(0)

for all s > 0 and

κ2(t) := ek(t)−k(0) − 1

for all t ≥ 0. Observe that both of these functions are continuous, nondecreasing, and
nonnegative. Moreover, κ2(0) = 0, so κ2 is in K. From the inequality

[1 + κ2(0)]β(s, 0) ≥ κ1(s)

for all s > 0, and the fact that β(0, 0) = 0, we conclude that lims→0+ κ1(s) = 0, so
we may extend κ1 by defining κ1(0) = 0, and thus κ1 is in K as well.

As κ1 and κ2 in Lemma A.2 are continuous, we have, in particular, the following
corollary.
Corollary A.3. For any KL-function β, there is a (jointly) continuous KL-

function β1 such that β(s, r) ≥ β1(s, r) for all (s, r) ∈ R≥0 × R≥0.
The following is a generalization of the comparison lemma given in [12]. It plays

a role in the proofs of sufficiency, which are the easier parts of the theorems.
Lemma A.4. For any K-function κ, there exists a KL function β such that if

y(·) is any locally absolutely continuous function defined on some interval [0, T ] with
y(t) ≥ 0, and if y(·) satisfies the differential inequality

ẏ(t) ≤ −c κ(y(t)) for almost all t ∈ [0, T ](A.2)

for some c ≥ 0 with y(0) = y0 ≥ 0, then it holds that

y(t) ≤ β(y0, ct)

for all t ∈ [0, T ].
Proof. First, by Lemma 4.4 in [12], for each κ ∈ K, there exists β ∈ KL such that

for any locally absolutely continuous function z(t) ≥ 0, if it satisfies the inequality

ż(t) ≤ −κ(z(t))
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on [0, T ], it holds that z(t) ≤ β(z(0), t) for all t. (The statement in that reference
applies to z defined on all of [0,∞), but exactly the same proof works for a finite
interval.)

Let y(t) be a function as in the statement of the lemma for some c > 0, T > 0.
Let ỹ(t) = y(t/c). Then ỹ is again locally absolutely continuous and nonnegative on
[0, cT ]. Moreover, ỹ satisfies the inequality

d

dt
ỹ(t) ≤ −κ(ỹ(t)).

Hence,

ỹ(t) ≤ β(ỹ(0), t)

for all t ∈ [0, cT ]. This then implies that

y(t) ≤ β(y(0), ct)

for all t ∈ [0, T ].
Finally, we have the following fact, mentioned when discussing decrease condi-

tions.
Lemma A.5. Let V : R

n → R be a C1 positive definition function with the
following property: for some K function χ, it holds that

V (ξ) ≥ χ(|µ|) and V (ξ) �= 0 ⇒ DV (ξ)f(ξ, µ) < 0.

Then, there is a function α ∈ KL so that

V (ξ) ≥ χ(|µ|) ⇒ DV (ξ)f(ξ, µ) ≤ −α(V (ξ), |ξ|)

for all ξ ∈ R
n, µ ∈ R

m.
Proof. Without loss of generality, we assume that χ ∈ K∞. Define the set for

each s, t ≥ 0:

R(s, t) := {(x, u) : |ξ| ≤ t, V (ξ) ≥ s, |µ| ≤ χ−1(V (ξ))}.

These sets are compact (possibly empty) for each s and t. Note the following proper-
ties:

s > s′ ⇒ R(s, t) ⊆ R(s′, t),

t > t′ ⇒ R(s, t′) ⊆ R(s, t).

Now let

α0(s, t) = min
(ξ,µ)∈R(s,t)

−DV (ξ)f(ξ, µ)

(with the convention that α0(s, t) = +∞ if R(s, t) = ∅). Then, α0(s, t) is nonin-
creasing in t and nondecreasing in s. Moreover, α(s, t) > 0 whenever s > 0 (by the
hypothesis of the lemma). Next let

α̂(s, t) := min{α0(s, t), s}.
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This function has the same monotonicity properties as α0, it satisfies α0(s, t) ≥ α̂(s, t)
for all s, t, and is finite-valued. It also satisfies α̂(s, t) �= 0 for s > 0. Now pick

α̃(s, t) :=

∫ s

s−1

α̂(σ, t) dσ

(let α̂(s, t) := 0 for s < 0). This function still has the same monotonicity properties,
satisfies α̃(s, t) > 0 for s > 0, and is continuous in s. It may not be strictly increasing
in s, nor need it converge to zero as t → 0, so we obtain finally a KL function α by
defining

α(s, t) :=
sα̃(s, t)

(1 + s)(1 + t)
.

This satisfies the desired properties by construction, because

V (ξ) ≥ χ(|µ|) ⇒ DV (ξ)f(ξ, µ) ≤ −α(V (ξ), |µ|),

and α0 ≥ α̂ ≥ α̃ ≥ α pointwise.
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Abstract. The Tonelli existence theorem in the calculus of variations and its subsequent mod-
ifications were established for integrands f which satisfy convexity and growth conditions. In A. J.
Zaslavski [Nonlinear Anal., to appear], a generic existence and uniqueness result (with respect to
variations of the integrand of the integral functional) without the convexity condition was established
for a class of optimal control problems satisfying the Cesari growth condition. In this paper we extend
the generic existence and uniqueness result in A. J. Zaslavski [Nonlinear Anal., to appear], to a class
of optimal control problems in which constraint maps are also subject to variations. The main result
of the paper is obtained as a realization of a variational principle extending the variational principle
introduced in A. D. Ioffe and A. J. Zaslavski [SIAM J. Control Optim., 38 (2000), pp. 566–581].
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Introduction. The Tonelli existence theorem in the calculus of variations [25]
and its subsequent generalizations and extensions (e.g., [5, 6, 13, 18, 22, 24]) are based
on two fundamental hypotheses concerning the behavior of the integrand as a function
of the last argument (derivative): one that the integrand should grow superlinearly
at infinity and the other that it should be convex (or exhibit a more special convexity
property in case of a multiple integral with vector-valued functions) with respect
to the last variable. Moreover, certain convexity assumptions are also necessary for
properties of lower semicontinuity of integral functionals which are crucial in most of
the existence proofs, although there are some interesting theorems without convexity
(see [5, Ch. 16] and [2, 4, 7, 20, 21]).

In [27] it was shown that the convexity condition is not needed generically, and
not only for the existence but also for the uniqueness of a solution and even for
well-posedness of the problem (with respect to some natural topology in the space of
integrands). Instead of considering the existence of a solution for a single integrand f ,
we investigated it for a space of integrands and showed that a unique solution exists
for most of the integrands in the space. This approach has already been successfully
applied in global analysis and the theory of dynamical systems [8, 9, 23], as well as in
the calculus of variations (see, for example, [1, 16, 26]. Interesting generic existence
results were obtained for particular cases of variational problems [3, 19]. In [27] this
approach allowed us to establish the generic existence of solutions for a large class of
optimal control problems without convexity assumptions.

More precisely, in [27] we considered a class of optimal control problems (with the
same system of differential equations, the same functional constraints, and the same
boundary conditions) which is identified with the corresponding complete metric space
of cost functions (integrands), say F . We did not impose any convexity assumptions.
These integrands are only assumed to satisfy the Cesari growth condition. The main
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result in [27] establishes the existence of an everywhere dense Gδ-set F ′ ⊂ F such
that for each integrand in F ′ the corresponding optimal control problem has a unique
solution. At this point we do not intend to describe the topology on F . We only note
that it is rather natural and that the set F ′ has the following property:

For each f ∈ F and each positive number ε there exists g ∈ F ′ such that
|f(t, x, u)− g(t, x, u)| ≤ ε for all (t, x, u).

Here t is the independent variable, x is the state variable, and u is the control
variable.

The next step in this area of research was done in [14]. There we introduced a
general variational principle having its prototype in the variational principle of Deville,
Godefroy, and Zizler [10]. A generic existence result in the calculus of variations
without convexity assumptions was then obtained as a realization of this variational
principle. It was also shown in [14] that some other generic well-posedness results
in optimization theory known in the literature and their modifications are obtained
as a realization of this variational principle. Note that the generic existence result
in [14] was established for variational problems but not for optimal control problems
and that the topologies in the spaces of integrands in [27] and [14] are different.

In this paper we suggest a modification of the variational principle in [14] which
can be applied to classes of optimal control problems with various topologies in the
corresponding spaces of integrands. As a realization of this principle we establish a
generic existence result for a class of optimal control problems in which constraint
maps are also subject to variations as well as the cost functions. More precisely, we
establish a generic existence result for a class of optimal control problems (with the
same system of differential equations, the same boundary conditions, and without
convexity assumptions) which is identified with the corresponding complete metric
space of pairs (f, U) (where f is an integrand satisfying the Cesari growth condition
and U is a constraint map) endowed with some natural topology. We will show that
for a generic pair (f, U) the corresponding optimal control problem has a unique
solution.

To understand that the generic existence result which will be established in this
paper is more complicated than its prototypes in [27] and [14], we note that for the
class of optimal control problems (with the same constraint map) which is identified
with the corresponding space of integrands the following properties hold [27]:

• The optimal value vf in the optimal control problem with an integrand f
depends on f continuously.

• For each integrand f and each number δ > 0 there exists a neighborhood U of
f in the space of integrands such that each (g, δ/2)-optimal trajectory-control
pair with some g ∈ U is (f, δ)-optimal.

Here we say that a trajectory-control pair (x, u) is (g, ε)-optimal if the value of
the integral functional with the integrand g for (x, u) does not exceed vg + ε.

Clearly these properties which play an important role in [27] and [14] do not have
analogs when constraint maps are also subject to variations.

In the theory developed in [27], [14] and in the present paper topologies on spaces
of integrands and on spaces of integrand-map pairs are of great importance. Actually
one space of integrand-map pairs, say A, considered here is a topological product of
a space of integrands and a space of multivalued maps. The values of these maps are
elements of the space of all nonempty convex closed subsets of a finite-dimensional
Euclidean space endowed with the Hausdorff distance. In the space of multivalued
maps we consider the topology of uniform convergence. For the space of integrands



252 ALEXANDER J. ZASLAVSKI

we consider weak and strong topologies which induce weak and strong topologies on
the space A. We will prove the existence of a set A′ ⊂ A which is a countable in-
tersection of open (in the weak topology) everywhere dense (in the strong topology)
sets such that for each (f, U) ∈ A′ the corresponding optimal control problem has a
unique solution. In fact we will establish our result for various spaces of integrands:
the space of the so-called L⊗B-measurable integrands, the space of lower semicon-
tinuous integrands, and the space of continuous integrands, as well as their subspaces
consisting of integrands f(t, x, u) differentiable in u and subspaces consisting of inte-
grands f(t, x, u) differentiable in x and u. All these spaces are endowed with the same
weak topology which is a modification of the topologies introduced in [27] and [14].
Their strong topology is always stronger than the topology of uniform convergence.

1. Definitions and the main result. In this paper we use the following nota-
tions and definitions. Let k ≥ 1 be an integer. We denote by mes(E) the Lebesgue
measure of a measurable set E ⊂ Rk, by |·| the Euclidean norm in Rk, and by 〈·, ·〉 the
scalar product in Rk. We use the convention that ∞−∞ = 0. For any f ∈ Cq(Rk)
we set

||f ||Cq = ||f ||Cq(Rk) = sup
z∈Rk
{|∂|α|f(z)/∂xα1

1 . . . ∂xαk
k | :(1.1)

αi ≥ 0 is an integer, i = 1, . . . , k, |α| ≤ q},

where |α| =∑k
i=1 αi.

For each function f : X → [−∞,∞], where X is nonempty, we set inf(f) =
inf{f(x) : x ∈ X}. For each set-valued mapping U : X → 2Y \ {∅}, where X and Y
are nonempty, we set

graph(U) = {(x, y) ∈ X × Y : y ∈ U(x)}.(1.2)

In this paper we usually consider topological spaces with two topologies where
one is weaker than the other. (Note that they can coincide.) We refer to them as the
weak and the strong topologies, respectively. If (X, d) is a metric space with a metric
d and Y ⊂ X, then usually Y is also endowed with the metric d (unless another metric
is introduced in Y ). Assume that X1 and X2 are topological spaces and that each of
them is endowed with a weak and a strong topology. Then for the product X1×X2 we
also introduce a pair of topologies: a weak topology which is the product of the weak
topologies of X1 and X2 and a strong topology which is the product of the strong
topologies of X1 and X2. If Y ⊂ X1, then we consider the topological subspace Y
with the relative weak and strong topologies (unless other topologies are introduced).
If (Xi, di), i = 1, 2, are metric spaces with the metrics d1 and d2, respectively, then
the space X1 ×X2 is endowed with the metric d defined by

d((x1, x2), (y1, y2)) = d1(x1, y1) + d2(x2, y2), (xi, yi) ∈ X × Y, i = 1, 2.

Let m,n,N ≥ 1 be integers. In this paper we assume that Ω is a fixed bounded
domain in Rm, H(t, x, u) is a fixed continuous function defined on Ω×Rn×RN with
values in Rmn such that H(t, x, u) = (Hi)

n
i=1 and Hi = (Hij)

m
j=1, i = 1, . . . , n, B1 and

B2 are fixed nonempty closed subsets of Rn, and θ∗ = (θ∗i )
n
i=1 ∈ (W 1,1(Ω))n is also

fixed. Here

W 1,1(Ω) = {u ∈ L1(Ω) : ∂u/∂xj ∈ L1(Ω), j = 1, . . . ,m}
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andW 1,1
0 (Ω) is the closure of C∞

0 (Ω) inW 1,1(Ω), where C∞
0 (Ω) is the space of smooth

functions u : Ω→ R1 with compact support in Ω.
If m = 1, then we assume that Ω = (T1, T2), where T1 and T2 are fixed real

numbers for which T1 < T2.
For a function u = (u1, . . . , un), where ui ∈W 1,1(Ω), i = 1, . . . , n, we set

∇ui = (∂ui/∂xj)
m
j=1, i = 1, . . . , n, ∇u = (∇ui)

n
i=1.

Define set-valued mappings Ã : Ω→ 2R
n \ {∅} and Ũ : Ω×Rn → 2R

N \ {∅} by
Ã(t) = Rn, t ∈ Ω, Ũ(t, x) = RN , (t, x) ∈ Ω×Rn.(1.3)

For each A : Ω→ 2R
n\{∅} and each U : graph(A)→ 2R

N \{∅} for which graph(U)
is a closed subset of the space Ω×Rn×RN with the product topology, we denote by
X(A,U) the set of all pairs of functions (x, u), where x = (x1, . . . , xn) ∈ (W 1,1(Ω))n,
u = (u1, . . . , uN ) : Ω→ RN is measurable, and the following relations hold:

x(t) ∈ A(t), t ∈ Ω almost everywhere (a.e.), u(t) ∈ U(t, x(t)), t ∈ Ω a.e.,
(1.4a)

∇x(t) = H(t, x(t), u(t)), t ∈ Ω a.e.,(1.4b)

if m = 1, then x(Ti) ∈ Bi, i = 1, 2,(1.4c)

if m > 1, then x− θ∗ ∈ (W 1,1
0 (Ω))n.(1.4d)

Note that in the definition of the space X(A,U) we use the boundary condition (1.4c)
in the casem = 1, while in the casem > 1 we use the boundary condition (1.4d). Both
of them are common in the literature. We do this to provide a unified treatment for
both cases. Note that we prove our main result in the case m = 1 for a class of Bolza
problems (with the same boundary condition (1.4c)), while in the case m > 1 it will
be established for a class of Lagrange problems (with the same boundary condition
(1.4d)).

To be more precise, we have to define elements of X(A,U) as classes of pairs
equivalent in the sense that (x1, u1) and (x2, u2) are equivalent if and only if x2(t) =
x1(t), u2(t) = u1(t), t ∈ Ω a.e. If m = 1, then by an appropriate choice of represen-
tatives, W 1,1(T1, T2) can be identified with the set of absolutely continuous functions
x : [T1, T2]→ R1, and we will henceforth assume that this has been done.

Let A : Ω→ 2R
n \ {∅}, U : graph(A)→ 2R

N \ {∅}, and let graph(U) be a closed
subset of the space Ω×Rn ×RN with the product topology.

For the set X(A,U) defined above we consider the uniformity which is determined
by the following base:

EX(ε) = {((x1, u1), (x2, u2)) ∈ X(A,U)×X(A,U) :(1.5)

mes{t ∈ Ω : |x1(t)− x2(t)|+ |u1(t)− u2(t)| ≥ ε} ≤ ε},
where ε > 0. It is easy to see that the uniform space X(A,U) is metrizable (by a
metric ρ) (see [15]). In the space X(A,U) we consider the topology induced by the
metric ρ.
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Next we define spaces of integrands associated with the maps A and U . By
M(A,U) we denote the set of all functions f : graph(U) → R1 ∪ {∞} with the
following properties:

(i) f is measurable with respect to the σ-algebra generated by products of Lebesgue
measurable subsets of Ω and Borel subsets of Rn ×RN ;

(ii) f(t, ·, ·) is lower semicontinuous for almost every t ∈ Ω;
(iii) for each ε > 0 there exists an integrable scalar function ψε(t) ≥ 0, t ∈ Ω,

such that |H(t, x, u)| ≤ ψε(t) + εf(t, x, u) for all (t, x, u) ∈ graph (U).
The growth condition in (iii) was proposed by Cesari (see [5]), and its equivalents

and modifications are rather common in the literature. Due to the property (i) for
every f ∈ M(A,U) and every (x, u) ∈ X(A,U) the function f(t, x(t), u(t)), t ∈ Ω, is
measurable.

Denote by Ml(A,U) (respectively, Mc(A,U)) the set of all lower semicontinu-
ous (respectively, finite-valued continuous) functions f : graph(U) → R1 ∪ {∞} in
M(A,U). Now we equip the setM(A,U) with the strong and weak topologies. For
the spaceM(A,U) we consider the uniformity determined by the following base:

EM(ε) = {(f, g) ∈M(A,U)×M(A,U) :(1.6)

|f(t, x, u)− g(t, x, u)| ≤ ε, (t, x, u) ∈ graph(U)},

where ε > 0. It is easy to see that the uniform space M(A,U) with this uniformity
is metrizable (by a metric dM) and complete. This uniformity generates inM(A,U)
the strong topology. ClearlyMl(A,U) andMc(A,U) are closed subsets ofM(A,U)
with this topology.

For each ε > 0 we set

EMw(ε) = {(f, g) ∈M(A,U)×M(A,U) : there exists a nonnegative(1.7)

φ ∈ L1(Ω) such that

∫
Ω

φ(t)dt ≤ 1, and for almost every t ∈ Ω,

|f(t, x, u)− g(t, x, u)| < ε+ εmax{|f(t, x, u)|, |g(t, x, u)|}+ εφ(t)

for each x ∈ A(t) and each u ∈ U(t, x)}.

Using the following simple lemma we can easily show that for the set M(A,U)
there exists the uniformity which is determined by the base EMw(ε), ε > 0. This
uniformity induces inM(A,U) the weak topology.

Lemma 1.1. Let a, b ∈ R1, ε ∈ (0, 1), ∆ ≥ 0, and

|a− b| < (1 + ∆)ε+ εmax{|a|, |b|}.

Then

|a− b| < (1 + ∆)(ε+ ε2(1− ε)−1) + ε(1− ε)−1 min{|a|, |b|}.
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Denote by Cl(B1×B2) the set of all lower semicontinuous functions ξ : B1×B2 →
R1 ∪ {∞} bounded from below. We also equip the set Cl(B1 × B2) with strong and
weak topologies. For the set Cl(B1 × B2) we consider the uniformity determined by
the following base:

Ec(ε) = {(ξ, h) ∈ Cl(B1 ×B2)× Cl(B1 ×B2) : |ξ(z)− h(z)| ≤ ε, z ∈ B1 ×B2},
(1.8)

where ε > 0. It is easy to see that the uniform space Cl(B1 × B2) is metrizable (by
a metric dc) and complete. This metric induces in Cl(B1 × B2) the strong topology.
We do not write down the explicit expressions for the metrics dM and dc because we
are not going to use them in what follows.

For any ε > 0 we set

Ecw(ε) = {(ξ, h) ∈ Cl(B1 ×B2)× Cl(B1 ×B2) : |ξ(z)− h(z)|(1.9)

< ε+ εmax{|ξ(z)|, |h(z)|}, z ∈ B1 ×B2},
where ε > 0. By using Lemma 1.1 we can easily show that for the set Cl(B1×B2) there
exists a uniformity which is determined by the base Ecw(ε), ε > 0. This uniformity
induces in Cl(B1 × B2) the weak topology. Denote by C(B1 × B2) the set of all
finite-valued continuous functions h in Cl(B1 × B2). Clearly it is a closed subset of
Cl(B1 ×B2) with the weak topology.

In the case m > 1 for each f ∈ M(A,U) we define I(f) : X(A,U) → R1 ∪ {∞}
by

I(f)(x, u) =

∫
Ω

f(t, x(t), u(t))dt, (x, u) ∈ X(A,U).(1.10)

In the case m = 1 for each f ∈ M(A,U) and each ξ ∈ Cl(B1 × B2) we define
I(f,ξ) : X(A,U)→ R1 ∪ {∞} by

I(f,ξ)(x, u) =

∫ T2

T1

f(t, x(t), u(t))dt+ ξ(x(T1), x(T2)), (x, u) ∈ X(A,U).(1.11)

We will show (see Propositions 4.1 and 4.2) that in both cases (1.10) and (1.11) define
lower semicontinuous functionals on X(A,U).

From now on in this section we consider a fixed set-valued mapping A : Ω →
2R

n \ {∅} for which graph(A) is a closed subset of the space Ω×Rn with the product
topology. Denote by ŨA the restriction of Ũ (see (1.3)) to the graph(A). Namely,

ŨA : graph(A)→ 2R
N

, Ũ(t, x) = RN , (t, x) ∈ graph(A).(1.12)

We consider functionals I(f,ξ) with (f, ξ) ∈M(A, ŨA)×Cl(B1×B2) (in the case
m = 1) and functionals I(f) with f ∈ M(A, ŨA) (in the case m > 1) defined on the
space X(A, ŨA) (see (1.4)). As we have already noted in the introduction our main
result will be established for several classes of optimal control problems with different
corresponding spaces of the integrands which are subsets of the space M(A, ŨA).
The subspaces of lower semicontinuous and continuous integrands (Ml(A, ŨA) and
Mc(A, ŨA)) have already been defined. Now we define subspaces ofM(A, ŨA) which
consist of integrands differentiable with respect to the control variable u.
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Let k ≥ 1 be an integer. Denote by Mk(A, ŨA) the set of all finite-valued f ∈
M(A, ŨA) such that for each (t, x) ∈ graph(A) the function f(t, x, ·) ∈ Ck(RN ). We
consider the topological subspace Mk(A, ŨA) ⊂ M(A, ŨA) with the relative weak
topology. The strong topology onMk(A, ŨA) is induced by the uniformity which is
determined by the following base:

EMk(ε) = {(f, g) ∈Mk(A, ŨA)×Mk(A, ŨA) : |f(t, x, u)− g(t, x, u)| ≤ ε(1.13)

for all (t, x, u) ∈ graph(A)×RN and

||f(t, x, ·)− g(t, x, ·)||Ck(RN ) ≤ ε for all (t, x) ∈ graph(A)},

where ε > 0. It is easy to see that the space Mk(A, ŨA) with this uniformity is
metrizable (by a metric dM,k) and complete. Define

Ml
k(A, ŨA) =Mk(A, ŨA) ∩Ml(A, ŨA), Mc

k(A, ŨA) =Mk(A, ŨA) ∩Mc(A, ŨA).

(1.14)

Clearly Ml
k(A, ŨA) and Mc

k(A, ŨA) are closed sets in Mk(A, ŨA) with the strong
topology.

Finally, we define subspaces of M(Ã, Ũ) which consist of integrands differen-
tiable with respect to the state variable x and the control variable u. Denote by
M∗

k(Ã, Ũ) the set of all f : Ω×Rn ×RN → R1 inM(Ã, Ũ) (see (1.3)) such that for
each t ∈ Ω the function f(t, ·, ·) ∈ Ck(Rn × RN ). We consider the topological sub-
spaceM∗

k(Ã, Ũ) ⊂M(Ã, Ũ) with the relative weak topology. The strong topology in

M∗
k(Ã, Ũ) is induced by the uniformity which is determined by the following base:

E∗
Mk(ε) = {(f, g) ∈M∗

k(Ã, Ũ)×M∗
k(Ã, Ũ) :(1.15)

|f(t, x, u)− g(t, x, u)| ≤ ε for all (t, x, u) ∈ Ω×Rn ×RN and

||f(t, ·, ·)− g(t, ·, ·)||Ck(Rn+N ) ≤ ε for all t ∈ Ω},

where ε > 0. It is easy to see that the space M∗
k(Ã, Ũ) with this uniformity is

metrizable (by a metric d∗M,k) and complete. Define

M∗l
k (Ã, Ũ) =M∗

k(Ã, Ũ) ∩Ml(Ã, Ũ), M∗c
k (Ã, Ũ) =M∗

k(Ã, Ũ) ∩Mc(Ã, Ũ).(1.16)

ClearlyM∗l
k (Ã, Ũ) andM∗c

k (Ã, Ũ) are closed sets inM∗
k(Ã, Ũ) with the strong topol-

ogy.
Thus we have defined all the spaces of integrands for which we will prove our

main result. Now we will define a space of constraint maps PA. Denote by S(RN ) the
set of all nonempty convex closed subsets of RN . For each x ∈ RN and each E ⊂ RN ,
set dH(x,E) = infy∈E |x− y|. For each pair of sets C1, C2 ⊂ RN ,

dH(C1, C2) = max

{
sup
y∈C1

dH(y, C2), sup
x∈C2

dH(x,C1)

}
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is the Hausdorff distance between C1 and C2. For the space S(RN ) we consider the
uniformity determined by the following base:

ERN (ε) = {(C1, C2) ∈ S(RN )× S(RN ) : dH(C1, C2) ≤ ε},(1.17)

where ε > 0. It is well known that the space S(RN ) with this uniformity is metrizable
and complete. Denote by PA the set of all set-valued mappings U : graph(A) →
S(RN ) such that graph(U) is a closed subset of the space graph(A) × RN with the
product topology. For the space PA we consider the uniformity determined by the
following base:

EPA(ε) = {(U1, U2) ∈ PA × PA : dH(U1(t, x), U2(t, x)) ≤ ε(1.18)

for all (t, x) ∈ graph(A)},
where ε > 0. It is easy to see that the space PA with this uniformity is metrizable
and complete.

We consider the space X(A, ŨA) with the metric ρ (see (1.5)). For each U ∈ PA

define

SU = X(A,U) = {(x, u) ∈ X(A, ŨA) : u(t) ∈ U(t, x(t)), t ∈ Ω a.e.}.(1.19)

In the case m = 1 for each U ∈ PA and each (f, ξ) ∈ M(A, ŨA) × Cl(B1 × B2) we
consider the optimal control problem

I(f,ξ)(x, u)→ min, (x, u) ∈ X(A,U),

and in the case m > 1 for each U ∈ PA and each f ∈ M(A, ŨA) we consider the
optimal control problem

I(f)(x, u)→ min, (x, u) ∈ X(A,U).

We will state our main result, Theorem 1.1, in such a manner that it will be applicable
to the Bolza problem in case m = 1 and to the Lagrange problem in case m > 1, and
also applicable for all the spaces of integrands defined above.

To meet this goal we set A2 = PA and define a space A1 as follows.

A1 = A11 ×A12 if m = 1 and A1 = A11 if m > 1,

where A12 is either Cl(B1 × B2) or C(B1 × B2) or a singleton {ξ} ⊂ Cl(B1 × B2),
and A11 is one of the following spaces:

M(A, ŨA); Ml(A, ŨA); Mc(A, ŨA);

Mk(A, ŨA); Ml
k(A, ŨA); Mc

k(A, ŨA) (here k ≥ 1 is an integer);

M∗
k(Ã, Ũ); M∗l

k (Ã, Ũ); M∗c
k (Ã, Ũ) (here k ≥ 1 is an integer and A = Ã).

For each a = (a1, a2) ∈ A1 ×A2 we define Ja : X(A, ŨA)→ R1 ∪ {∞} by
Ja(x, u) = I

(a1)(x, u), (x, u) ∈ Sa2 , Ja(x, u) =∞, (x, u) ∈ X(A, ŨA) \ Sa2 .
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We will show that Ja is lower semicontinuous for all a ∈ A1 × A2. Denote by A the
closure of the set {a ∈ A1 ×A2 : inf(Ja) <∞} in the space A1 ×A2 with the strong
topology. We assume that A is nonempty. The following theorem is the main result
of this paper.

Theorem 1.1. There exists an everywhere dense (in the strong topology) set
B ⊂ A which is a countable intersection of open (in the weak topology) subsets of A
such that for any a ∈ B the following assertions hold:

(1) inf(Ja) is finite and attained at a unique pair (x̄, ū) ∈ X(A, ŨA).
(2) For each ε > 0 there are a neighborhood V of a in A with the weak topology

and δ > 0 such that for each b ∈ V, inf(Jb) is finite, and if (z, w) ∈ X(A, ŨA) satisfies
Jb(z, w) ≤ inf(Jb) + δ, then ρ((x̄, ū), (z, w)) ≤ ε and |Jb(z, w)− Ja(x̄, ū)| ≤ ε.

2. Generic variational principle. We will obtain our main result as a realiza-
tion of a variational principle which will be introduced in this section. This variational
principle is a modification of the variational principle in [14].

We consider a metric space (X, ρ) which is called the domain space and a complete
metric space (A, d) which is called the data space. We always consider the set X with
the topology generated by the metric ρ. For the space A we consider the topology
generated by the metric d. This topology will be called the strong topology. As
mentioned in section 1 in addition to the strong topology we also consider a weaker
topology on A which is not necessarily Hausdorff. This topology will be called the
weak topology. (Note that these topologies can coincide.) We assume that with
every a ∈ A a lower semicontinuous function fa on X is associated with values in
R̄ = [−∞,∞]. In our study we use the following basic hypotheses about the functions.

(H1) For any a ∈ A, any ε > 0, and any γ > 0 there exist a nonempty open set
W in A with the weak topology, x ∈ X, α ∈ R1, and η > 0 such that

W ∩ {b ∈ A : d(a, b) < ε} �= ∅,

and for any b ∈ W
(i) inf(fb) is finite;
(ii) if z ∈ X is such that fb(z) ≤ inf(fb)+ η, then ρ(z, x) ≤ γ and |fb(z)−α| ≤ γ.
(H2) If a ∈ A, inf(fa) is finite, {xn}∞n=1 ⊂ X is a Cauchy sequence, and the

sequence {fa(xn)}∞n=1 is bounded, then the sequence {xn}∞n=1 converges in X.
We will show (see Theorem 2.1) that if (H1) and (H2) hold, then for a generic

a ∈ A the minimization problem fa(x) → min, x ∈ X, has a unique solution. This
result generalizes the variational principle in [14, Theorem 2.2] which was obtained
for the complete domain space (X, ρ). Note that if (X, ρ) is complete, the weak and
strong topologies on A coincide, and for any a ∈ A the function fa is not identically
∞, then the variational principles in [14] and in this section are equivalent.

For the classes of optimal control problems considered in this paper the domain
space is usually the spaceX(A, ŨA) with the metric ρ (see (1.5)) which is not complete.
Since the variational principle in [14] was established only for complete domain spaces
it cannot be applied to these classes of optimal control problems. Fortunately, instead
of the completeness assumption we can use (H2), and this hypothesis holds for spaces
of integrands (integrand-map pairs) which satisfy the Cesari growth condition.

Theorem 2.1. Assume that (H1) and (H2) hold. Then there exists an everywhere
dense (in the strong topology) set B ⊂ A which is a countable intersection of open (in
the weak topology) subsets of A such that for any a ∈ B the following assertions hold:

(1) inf(fa) is finite and attained at a unique point x̄ ∈ X.
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(2) For each ε > 0 there are a neighborhood V of a in A with the weak topology
and δ > 0 such that for each b ∈ V, inf(fb) is finite and if z ∈ X satisfies fb(z) ≤
inf(fb) + δ, then ρ(x̄, z) ≤ ε and |fb(z)− fa(x̄)| ≤ ε.

Following the tradition, we can summarize the theorem by saying that under the
assumptions (H1) and (H2) the minimization problem for fa on (X, ρ) is generically
strongly well posed with respect to A.

Proof. Let a ∈ A. By (H1) for any natural n = 1, 2, . . . there are a nonempty open
set U(a, n) in A with the weak topology, x(a, n) ∈ X, α(a, n) ∈ R1, and η(a, n) > 0
such that

U(a, n) ∩ {b ∈ A : d(a, b) < 1/n} �= ∅,

and for any b ∈ U(a, n), inf(fb) is finite and if z ∈ X satisfies fb(z) ≤ inf(fb)+η(a, n),
then

ρ(z, x(a, n)) ≤ 1/n, |fb(z)− α(a, n)| ≤ 1/n.

Define Bn = ∪{U(a,m) : a ∈ A, m ≥ n} for n = 1, 2, . . . . Clearly, for each integer
n ≥ 1 the set Bn is open in the weak topology and everywhere dense in the strong
topology. Set B = ∩∞n=1Bn. Since for each integer n ≥ 1 the set Bn is also open in the
strong topology generated by the complete metric d we conclude that B is everywhere
dense in the strong topology.

Let b ∈ B. Evidently inf(fb) is finite. There are a sequence {an}∞n=1 ⊂ A and
a strictly increasing sequence of natural numbers {kn}∞n=1 such that b ∈ U(an, kn),
n = 1, 2, . . . . Assume that {zn}∞n=1 ⊂ X and limn→∞ fb(zn) = inf(fb).

Let m ≥ 1 be an integer. Clearly for all large enough n the inequality fb(zn) <
inf(fb) + η(am, km) is true and it follows from the definition of U(am, km) that

ρ(zn, x(am, km)) ≤ k−1
m , |fb(zn)− α(am, km)| ≤ k−1

m(2.1)

for all large enough n. Since m is an arbitrary natural number we conclude that
{zn}∞n=1 ⊂ X is a Cauchy sequence. By (H2) there is an x̄ = limn→∞ zn. As fb
is lower semicontinuous, we have fb(x̄) = inf(fb). Clearly fb does not have another
minimizer, for otherwise we would be able to construct a nonconvergent sequence
{zn}∞n=1. This proves the first part of the theorem. We further note that by (2.1)

ρ(x̄, x(am, km)) ≤ k−1
m , |fb(x̄)− α(am, km)| ≤ k−1

m , m = 1, 2, . . . .(2.2)

We turn now to the second assertion. Let ε > 0. Choose a natural number m for
which 4k−1

m < ε. Let a ∈ U(am, km). Clearly inf(fa) is finite. Let z ∈ X and
fa(z) ≤ inf(fa) + η(am, km). By the definition of U(am, km),

ρ(z, x(am, km)) ≤ k−1
m , |fa(z)− α(am, km)| ≤ k−1

m .

Together with (2.2) this implies that

ρ(z, x̄) ≤ 2k−1
m , |fb(x̄)− fa(z)| ≤ 2k−1

m < ε.

The second assertion is proved.
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3. Concretization of the hypothesis (H1). The proof of our main result
consists in verifying that the hypotheses (H1) and (H2) hold for the space of integrand-
map pairs introduced in section 1. Hypothesis (H2) will follow from Proposition 4.2,
which will be proved in section 4. The verification of (H1) is more complicated.
Recall that our space of integrand-map pairs is a product of the space of integrands
and the space of maps. Therefore we should seek the set W (see (H1)) in the form
V × U , where V is an open set in the space of integrands and U is an open set in
the space of maps. To simplify the verification of (H1) in this section we introduce
new assumptions (A1)–(A4) and show that they imply (H1) (see Proposition 3.1).
Using (A1)–(A4) we can construct the setW = V ×U step by step, roughly speaking.
Namely, using (A4) we construct the set U , using (A3) we find an integrand ā1, and
then using (A2) we construct the set V, which is an open neighborhood of ā1. Thus
to verify (H1) we need to show that the assumptions (A1)–(A4) are valid. In fact
this approach allows us to simplify the problem because each of (A2)–(A4) concerns
either the space of integrands or the space of maps while it is not difficult to verify
(A1).

Let (X, ρ) be a metric space with the topology generated by the metric ρ and
let (A1, d1), (A2, d2) be metric spaces. For the space Ai (i = 1, 2) we consider the
topology generated by the metric di. This topology is called the strong topology. In
addition to the strong topology we consider a weak topology on Ai, i = 1, 2.

Assume that with every a ∈ A1 a lower semicontinuous function φa : X →
R1 ∪ {∞} is associated and with every a ∈ A2 a set Sa ⊂ X is associated. For each
a = (a1, a2) ∈ A1 ×A2 define fa : X → R1 ∪ {∞} by

fa(x) = φa1
(x) for all x ∈ Sa2

, fa(x) =∞ for all x ∈ X \ Sa2
.(3.1)

Denote by A the closure of the set {a ∈ A1×A2 : inf(fa) <∞} in the space A1×A2

with the strong topology. We assume that A is nonempty.

In this paper we use the following hypotheses:

(A1) For each a1 ∈ A1, inf(φa1
) > −∞ and for each a ∈ A1 ×A2 the function fa

is lower semicontinuous.

(A2) For each a ∈ A1 and each D, ε > 0 there is a neighborhood U of a in
A1 with the weak topology such that for each b ∈ U and each x ∈ X satisfying
min{φa(x), φb(x)} ≤ D the relation |φa(x)− φb(x)| ≤ ε holds.

(A3) For each γ ∈ (0, 1) there exist positive numbers ε(γ) and δ(γ) such that
ε(γ), δ(γ)→ 0 as γ → 0 and the following property holds.

For each γ ∈ (0, 1), each a ∈ A1, each nonempty set Y ⊂ X, and each x̄ ∈ Y for
which

φa(x̄) ≤ inf{φa(z) : z ∈ Y }+ δ(γ) <∞,(3.2)

there is an ā ∈ A1 such that the following conditions hold:

d1(a, ā) ≤ ε(γ), φā(z) ≥ φa(z), z ∈ X, φā(x̄) ≤ φa(x̄) + δ(γ);(3.3)

for each y ∈ Y satisfying

φā(y) ≤ inf{φā(z) : z ∈ Y }+ 2δ(γ)(3.4)

the inequality ρ(y, x̄) ≤ γ is valid.
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(A4) For each a = (a1, a2) ∈ A1 × A2 satisfying inf(fa) < ∞ and each ε, δ > 0
there exist ā2 ∈ A2, x̄ ∈ Sā2

, and an open set U in A2 with the weak topology such
that

d2(a2, ā2) < ε, U ∩ {b ∈ A2 : d2(b, a2) < ε} �= ∅,(3.5)

φa1(x̄) ≤ inf{φa1(z) : z ∈ Sā2}+ δ <∞,(3.6)

and

x̄ ∈ Sb ⊂ Sā2 for all b ∈ U .(3.7)

Assume that (A3) holds. We show that the numbers ε(γ) and δ(γ) can be chosen
such that 0 < δ(γ) ≤ ε(γ) ≤ γ.

Let ε(γ) and δ(γ), γ ∈ (0, 1), be as guaranteed by (A3). Assume that γ ∈ (0, 1).
Since limt→0 ε(t) = 0 and limt→0 δ(t) = 0 there exist γ1 ∈ (0, γ) and γ0 ∈ (0, γ1) such
that ε(γ1) < γ and ε(γ0), δ(γ0) < ε(γ1). Set ε̄(γ) = ε(γ1) and δ̄(γ) = δ(γ0). Clearly
δ̄(γ) < ε̄(γ) < γ.

Assume that a ∈ A1, Y is a nonempty subset of X, and x̄ ∈ Y satisfies φa(x̄) ≤
inf{φa(z) : z ∈ Y } + δ̄(γ) < ∞. By (A3) and the equality δ̄(γ) = δ(γ0) there exists
ā ∈ A1 such that the following conditions hold:

d1(a, ā) ≤ ε(γ0) < ε(γ1) = ε̄(γ), φā(z) ≥ φa(z), z ∈ X,

φā(x̄) ≤ φa(x̄) + δ(γ0) = φa(x̄) + δ̄(γ);

for each y ∈ Y satisfying

φā(y) ≤ inf{φā(z) : z ∈ Y }+ 2δ(γ0)

the inequality ρ(y, x̄) ≤ γ0 ≤ γ is valid. Therefore (A3) holds with ε(γ) = ε̄(γ) and
δ(γ) = δ̄(γ).

Proposition 3.1. Assume that (A1)–(A4) hold. Then (H1) holds for the space
A.

Proof. Let a = (a1, a2) ∈ A and let ε, γ > 0. We may assume that inf(fa) < ∞.
Choose a positive number

γ0 < 8−1 min{1, ε, γ}.(3.8)

Let ε(γ0), δ(γ0) > 0 be as guaranteed by (A3) (namely, (A3) is true with γ = γ0,
ε(γ) = ε(γ0), δ(γ) = δ(γ0)). Choose

δ1 ∈ (0, 4−1δ(γ0)).(3.9)

By (A4) there are ā2 ∈ A2, x̄ ∈ Sā2
, and an open nonempty set U in A2 with the

weak topology such that (3.7) holds,

d2(a2, ā2) < ε(γ0), U ∩ {b ∈ A2 : d2(b, a2) < ε(γ0)} �= ∅,(3.10)

and

φa1(x̄) ≤ inf{φa1(z) : z ∈ Sā2}+ δ1 <∞.(3.11)
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It follows from the definition of ε(γ0) and δ(γ0), (A3) (with a1 = a and Y = Sā2
),

and (3.11) that there is an ā1 ∈ A1 such that

d1(a1, ā1) ≤ ε(γ0), φā1(z) ≥ φa1(z), z ∈ X,(3.12)

φā1(x̄) ≤ φa1(x̄) + δ(γ0),

and the following property holds.
(Pi) For each y ∈ Sā2

satisfying

φā1(y) ≤ inf{φā1(z) : z ∈ Sā2}+ 2δ(γ0)(3.13)

the relation ρ(y, x̄) ≤ γ0 is valid.
Let b ∈ U . Then by the definition of U , (3.7), and (3.11),

x̄ ∈ Sb ⊂ Sā2
, inf{φa1(z) : z ∈ Sb} ≤ φa1(x̄) <∞.(3.14)

We will show that the following property holds.
(Pii) If y ∈ Sb satisfies

φā1(y) ≤ inf{φā1(z) : z ∈ Sb}+ δ1,(3.15)

then

ρ(y, x̄) ≤ γ0 and |φā1(y)− φā1(x̄)| ≤ δ1 + δ(γ0).(3.16)

It follows from (3.11), (3.14), and (3.12) that

φa1(x̄)− δ1 ≤ inf{φa1
(z) : z ∈ Sā2

} ≤ inf{φa1
(z) : z ∈ Sb}(3.17)

≤ inf{φā1(z) : z ∈ Sb} ≤ φā1(x̄) ≤ φa1(x̄) + δ(γ0)

≤ inf{φa1
(z) : z ∈ Sā2

}+ δ1 + δ(γ0).

Assume that y ∈ Sb and (3.15) is true. It follows from (3.14), (3.15), (3.17),
(3.12), and (3.9) that

y ∈ Sā2 , φā1(y) ≤ inf{φa1(z) : z ∈ Sā2}+ δ(γ0) + 2δ1

< inf{φā1(z) : z ∈ Sā2}+ 2δ(γ0).

By these relations and property (Pi), ρ(y, x̄) ≤ γ0. Relations (3.15), (3.17), (3.11),
(3.14), and (3.12) imply that

|φā1(y)− φā1(x̄)| ≤ δ1 + δ(γ0).(3.18)

Thus, (3.16) is valid. Therefore we have shown that for each b ∈ U relation (3.14)
and property (Pii) hold. Choose a number

D > | inf(φā1
)|+ 1 + |φā1

(x̄)|.(3.19)
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By (A2) there exists an open neighborhood V of ā1 in A1 with the weak topology
such that the following property holds.

(Piii) For each b ∈ V and each x ∈ X for which min{φb(x), φā1(x)} ≤ D + 2 the
relation |φā1(x)− φb(x)| ≤ 4−1δ1 is true.

Property (Piii) and (3.19) imply that for each b ∈ V,
|φb(x̄)− φā1

(x̄)| ≤ 4−1δ1, inf(φb) ≤ φb(x̄) ≤ D.(3.20)

Now we will show that (H1) is true with the open set W = V ×U , x = x̄, α = φā1(x̄),
and η = 4−1δ1.

Assume that b = (b1, b2) ∈ V × U . By (3.20) and (3.14)

x̄ ∈ Sb2 , inf(fb) = inf{φb1(z) : z ∈ Sb2} ≤ φb1(x̄) <∞.(3.21)

Assume now that z ∈ X and fb(z) ≤ inf(fb) + 4−1δ1. Then

z ∈ Sb2 , φb1(z) ≤ inf{φb1(y) : y ∈ Sb2}+ 4−1δ1.(3.22)

By (3.21), (3.20), and (3.19),

inf{φb1(y) : y ∈ Sb2} ≤ φb1(x̄) ≤ D, inf{φā1(y) : y ∈ Sb2} ≤ φā1(x̄) ≤ D.
These inequalities imply that

inf{φb1(y) : y ∈ Sb2} = inf{φb1(y) : y ∈ Sb2 and φb1(y) ≤ D + 1}
and

inf{φā1
(y) : y ∈ Sb2} = inf{φā1

(y) : y ∈ Sb2 and φā1
(y) ≤ D + 1}.

It follows from these two relations and property (Piii) that

| inf{φb1(y) : y ∈ Sb2} − inf{φā1
(y) : y ∈ Sb2}| ≤ 4−1δ1.(3.23)

Relations (3.23), (3.22), (3.21), (3.19), and property (Piii) imply that

|φā1(z)− φb1(z)| ≤ 4−1δ1,(3.24)

φā1(z) ≤ inf{φā1(y) : y ∈ Sb2}+ δ1.(3.25)

It follows from (3.25), (3.22), and property (Pii) that

ρ(z, x̄) ≤ γ0 and |φā1(z)− φā1(x̄)| ≤ δ1 + δ(γ0).
Together with (3.24), (3.9), and the definition of δ(γ0) this implies that

|φb1(z)− φā1(x̄)| ≤ 2δ(γ0) ≤ 2γ0 < γ.

This completes the proof of the proposition.
Remark 3.1. In the proof of Proposition 3.1 for any a = (a1, a2) ∈ A1 × A2

satisfying inf(fa) < ∞ and any ε > 0 we constructed an open set V in A1 with the
weak topology and an open set U in A2 with the weak topology which satisfy

V ∩ {b ∈ A1 : d1(b, a1) < ε} �= ∅ and U ∩ {b ∈ A2 : d2(b, a2) < ε} �= ∅
and such that inf(fb) < ∞ for each b = (b1, b2) ∈ V × U . This implies that there
exists an open set F in A1 × A2 with the weak topology such that inf(fa) < ∞ for
all a ∈ F and A is the closure of F in the space A1 ×A2 with the strong topology.
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4. Preliminary results for hypotheses (A2) and (H2). Assume that A :

Ω → 2R
n \ {∅}, U : graph(A) → 2R

N \ {∅}, and that graph(U) is a closed subset of
the space Ω × Rn × RN with the product topology. Consider the spaces X(A,U),
M(A,U), and Cl(B1 ×B2) introduced in section 1.

Proposition 4.1. Let f ∈ M(A,U), (x, u) ∈ X(A,U), and {(xi, ui)}∞i=1 ⊂
X(A,U), and let ρ((xi, ui), (x, u))→ 0 as i→∞. Then∫

Ω

f(t, x(t), u(t))dt ≤ lim inf
i→∞

∫
Ω

f(t, xi(t), ui(t))dt.

Proof. We may assume that there is a finite limi→∞
∫
Ω
f(t, xi(t), ui(t))dt. There

is a subsequence {(xik , uik)}∞k=1 such that

(xik(t), uik(t))→ (x(t), u(t)) as k →∞, t ∈ Ω a.e.

(see [12, p. 68]). By property (ii) (see the definition of M(A,U)) for almost every
t ∈ Ω,

lim inf
k→∞

f(t, xik(t), uik(t)) ≥ f(t, x(t), u(t)).

The proposition now follows from property (iii) (see the definition ofM(A,U)) and
Fatou’s lemma.

The following proposition is an auxiliary result for the hypothesis (H2).
Proposition 4.2. Assume that f ∈ M(A,U), {(xi, ui)}∞i=1 ⊂ X(A,U) is a

Cauchy sequence, and the sequence {∫
Ω
f(t, xi(t), ui(t))dt}∞i=1 is bounded. Then there

is (x∗, u∗) ∈ X(A,U) such that (xi, ui) converges to (x∗, u∗) as i → ∞ in X(A,U),
and moreover, if m = 1, then xi(t)→ x∗(t) as i→∞ uniformly on [T1, T2].

Proof. To prove the proposition it is sufficient to show that there exists a sub-
sequence {(xik , uik)}∞k=1 and (x∗, u∗) ∈ X(A,U) such that (xik , uik) → (x∗, u∗) as
k →∞ in X(A,U) and if m = 1, then xik(t)→ x∗(t) as k →∞ uniformly on [T1, T2].
(In the case m = 1 this implies that each subsequence of {xi}∞i=1 has a subsequence
which converges to x∗ uniformly on [T1, T2]. This proves that {xi}∞i=1 converges to x∗
uniformly on [T1, T2].)

Since {(xi, ui)}∞i=1 is a Cauchy sequence there is a strictly increasing sequence of
natural numbers {ik}∞k=1 and a sequence of measurable sets Dk ⊂ Ω, k = 1, 2, . . . ,
such that for all k = 1, 2, . . . ,

mes(Dk) ≤ 2−k, |xik+1
(t)− xik(t)| ≤ 2−k,(4.1)

|uik+1
(t)− uik(t)| ≤ 2−k, t ∈ Ω \Dk.

Set Ck = ∪∞i=kDi, k = 1, 2, . . . . By (4.1) there exist measurable functions u∗ : Ω →
RN and x∗ : Ω→ Rn such that

lim
k→∞

xik(t) = x∗(t), lim
k→∞

uik(t) = u∗(t), t ∈ Ω \ ∩∞k=1Ck.(4.2)

Since the function f(t, ·, ·) is lower semicontinuous for t ∈ Ω a.e. (see the definition of
M(A,U), property (ii)) it follows from (4.2) that

f(t, x∗(t), u∗(t)) ≤ lim inf
k→∞

f(t, xik(t), uik(t)), t ∈ Ω a.e.(4.3)



WELL-POSEDNESS OF OPTIMAL CONTROL PROBLEMS 265

Clearly the function f(t, x∗(t), u∗(t)), t ∈ Ω, is measurable. By (4.3), Fatou’s lemma,
and property (iii),

∫
Ω
f(t, x∗(t), u∗(t))dt is finite. It follows from property (iii) and the

boundedness of the sequence {∫
Ω
f(t, xi(t), ui(t))dt}∞i=1 that the family of functions

E = {|H(t, x∗(t), u∗(t))|, t ∈ Ω, |H(t, xik(t), uik(t))|, t ∈ Ω, k = 1, 2, . . . }

is uniformly integrable [11, p. 74]. Namely, for each ε > 0 there exists δ > 0 such that
for each measurable set e ⊂ Ω satisfying mes(e) ≤ δ the following relations hold:∫

e

|H(t, x∗(t), u∗(t))|dt ≤ ε,
∫
e

|H(t, xik(t), uik(t))|dt ≤ ε, k = 1, 2, . . . .

It follows from this property, the continuity of H, (4.1), (4.2), and Egorov’s theorem
that for each measurable set e ⊂ Ω,∫

e

H(t, xik(t), uik(t))dt→
∫
e

H(t, x∗(t), u∗(t))dt as k →∞.(4.4)

Now we consider the case with m = 1. Since the set E is uniformly integrable it
follows from (1.4b), (4.2), and Ascoli’s compactness theorem that a subsequence of the
sequence {xik}∞k=1 converges to a continuous function y : [T1, T2]→ Rn uniformly on
[T1, T2]. By (4.2) we may assume that x∗(t) = y(t), t ∈ [T1, T2] a.e. Thus x∗ : Ω→ Rn

is continuous and some subsequence of {xik}∞k=1 converges to x∗ uniformly on [T1, T2].
Together with (4.4) this implies that (x∗, u∗) ∈ X(A,U). Since mes(∩∞k=1Ck) = 0 (see
(4.1)) it follows from (4.2) that (xik , uik)→ (x∗, u∗) as k →∞ in X(A,U). Therefore
the proposition is true in the case with m = 1.

We turn now to the case with m > 1. Since the set E is uniformly integrable it is
easy to verify that

H(·, x∗(·), u∗(·)) ∈ L1(Ω), H(·, xik(·), uik(·)) ∈ L1(Ω), k = 1, 2, . . . ,(4.5)

H(·, xik(·), uik(·))→ H(·, x∗(·), u∗(·)) as k →∞ in L1(Ω).

Note that xik−θ∗ ∈ (W 1,1
0 (Ω))n, k = 1, 2, . . . (see (1.4)). By [28, Thm. 2.4.1] there is

a constant c > 0 such that ||h||L1(Ω) ≤ c||∇h||L1(Ω) for all h ∈W 1,1
0 (Ω). Together with

(4.5) and (4.2) this implies that xik → x∗ as k →∞ in L1(Ω;Rn), x∗ ∈ (W 1,1(Ω))n,
∇x∗ = H(·, x∗(·), u∗(·)), and (x∗, u∗) ∈ X(A,U). Analogously to the previous case
we obtain that (xik , uik) → (x∗, u∗) as k → ∞ in X(A,U). Thus in the case m > 1
the proposition is proved.

Proposition 4.3. Let h ∈ Cl(B1 × B2) and ε,D > 0. Then there exists a
neighborhood V of h in Cl(B1 × B2) with the weak topology such that for each ξ ∈ V
and each x ∈ B1×B2 which satisfies min{ξ(x), h(x)} ≤ D the relation |ξ(x)−h(x)| ≤ ε
holds.

Proof. There is a c0 > 0 such that h(x) ≥ −c0 for all x ∈ B1 × B2. Choose a
positive number ε1 < 1 for which

ε1 + ε1(1− ε1)−1(2 +D + c0) < ε

and define V = {ξ ∈ Cl(B1 ×B2) : (ξ, h) ∈ Ecw(ε1)} (see (1.9)). Assume that ξ ∈ V,
x ∈ B1 × B2, and min{ξ(x), h(x)} ≤ D. It follows from the definition of V and ε1,
(1.9), and Lemma 1.1 that ξ(x), h(x) are finite and
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|ξ(x)− h(x)| < ε1 + ε21(1− ε1)−1 + ε1(1− ε1)−1 min{|ξ(x)|, |h(x)|}

< ε1 + ε
2
1(1− ε1)−1 + ε1(1− ε1)−1(D + c0) < ε.

The proposition is proved.
Corollary 4.1. Let h ∈ Cl(B1 × B2) and ε > 0. Then there is a neighborhood

V of h in Cl(B1 ×B2) with the weak topology such that for each ξ ∈ V the inequality
| inf(ξ)− inf(h)| ≤ ε holds.

Proof. We may assume that inf(h) is finite and ε < 1. By Proposition 4.3 there
exists a neighborhood V of h in Cl(B1 × B2) with the weak topology such that for
each ξ ∈ V and each x ∈ B1 × B2 which satisfies min{ξ(x), h(x)} ≤ inf(h) + 2 the
relation |ξ(x)− h(x)| ≤ 2−1ε holds.

Assume that ξ ∈ V. It follows from the definition of V that for each x ∈ B1 ×B2

satisfying h(x) ≤ inf(h) + 2 the relation |ξ(x) − h(x)| ≤ 2−1ε is true. Choose y ∈ X
such that h(y) ≤ inf(h) + 2−1ε. Then

inf(ξ) ≤ ξ(y) ≤ h(y) + 2−1ε ≤ inf(h) + ε ≤ inf(h) + 1.

It follows from this inequality and the definition of V that for each x ∈ B1 × B2

satisfying ξ(x) ≤ inf(ξ) + 1 the relation |ξ(x) − h(x)| ≤ 2−1ε holds. Choose z ∈ X
such that ξ(z) ≤ inf(ξ) + 2−1ε. Then

inf(h) ≤ h(z) ≤ ξ(z) + 2−1ε ≤ inf(ξ) + ε.

The corollary is proved.
The following proposition is an auxiliary result for the assumption (A2).
Proposition 4.4. Let f ∈ M(A,U) and ε ∈ (0, 1), D > 0. Then there exists a

neighborhood V of f inM(A,U) with the weak topology such that for each g ∈ V and
each (x, u) ∈ X(A,U) satisfying

min

{∫
Ω

f(t, x(t), u(t))dt,

∫
Ω

g(t, x(t), u(t))dt

}
≤ D(4.6)

the following relation holds:∣∣∣∣∫
Ω

f(t, x(t), u(t))dt−
∫

Ω

g(t, x(t), u(t))dt

∣∣∣∣ ≤ ε.(4.7)

Proof. There is an integrable function φ0(t) ≥ 0, t ∈ Ω, such that

f(t, x, u) ≥ −φ0(t) for all (t, x, u) ∈ graph(U).(4.8)

Choose a positive number ε1 for which

ε1

(
2mes(Ω) + 2 +

∫
Ω

φ0(t)dt+D

)
< ε(4.9)

and a positive number ε0 that satisfies

ε0 + ε0(1− ε0)−1 < 4−1ε1.(4.10)
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Define

V = {g ∈M(A,U) : (g, f) ∈ EMw(ε0)} (see (1.7)).(4.11)

Assume that g ∈ V, (x, u) ∈ X(A,U), and (4.6) is valid. By (4.11) and (1.7) there is
a nonnegative function φ ∈ L1(Ω) such that

∫
Ω
φ(t)dt ≤ 1, and for almost every t ∈ Ω

the inequality

|f(t, y, v)− g(t, y, v)| < ε0 + ε0φ(t) + ε0 max{|f(t, y, v)|, |g(t, y, v)|}
is true for each y ∈ A(t) and each v ∈ U(t, y). It follows from this inequality, Lemma
1.1, and (4.10) that for almost every t ∈ Ω the relation

|f(t, y, v)− g(t, y, v)| < ε0 + ε20(1− ε0)−1 + φ(t)(ε20(1− ε0)−1 + ε0)(4.12)

+ ε0(1− ε0)−1 min{|f(t, y, v)|, |g(t, y, v)|}

< 4−1ε1+4−1ε1φ(t)+4−1ε1 min{|f(t, y, v)|, |g(t, y, v)|}
is valid for each y ∈ A(t) and each v ∈ U(t, y). Relations (4.12) and (4.8) imply that
for almost every t ∈ Ω the inequality

g(t, y, v) ≥ f(t, y, v)− 4−1ε1 − 4−1ε1φ(t)− 4−1ε1|f(t, y, v)|(4.13)

≥ −4−1ε1φ(t)− 2φ0(t)− 4−1ε1

holds for each y ∈ A(t) and each v ∈ U(t, y). Set
λ(t) = min{f(t, x(t), u(t)), g(t, x(t), u(t))}, t ∈ Ω.(4.14)

It follows from (4.12), (4.8), (4.13), and (4.14) that for almost every t ∈ Ω,

|f(t, x(t), u(t))− g(t, x(t), u(t))| < 4−1ε1 + 4−1ε1φ(t)

+ 4−1ε1 min{f(t, x(t), u(t)) + 2φ0(t), g(t, x(t), u(t)) + φ(t) + 4φ0(t) + 2}

≤ 4−1ε1 + 4−1ε1φ(t) + 4−1ε1(φ(t) + 4φ0(t) + 2) + 4−1ε1λ(t).

By this relation, (4.6), and (4.9),∫
Ω

|f(t, x(t), u(t))− g(t, x(t), u(t))|dt ≤ 4−1ε1mes(Ω) + 4−1ε1

∫
Ω

φ(t)dt

+4−1ε1

∫
Ω

φ(t)dt+ ε1

∫
Ω

φ0(t)dt+ ε1mes(Ω) + 4−1ε1D < ε.

This completes the proof of the proposition.
Analogously to the proof of Corollary 4.1 we can show that Proposition 4.4 implies

the following corollary.
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Corollary 4.2. Let f ∈ M(A,U) and ε > 0. Then there exists a neighborhood
V of f inM(A,U) with the weak topology such that for all g ∈ V,∣∣∣∣inf {∫

Ω

f(t, x(t), u(t))dt : (x, u) ∈ X(A,U)

}
− inf

{∫
Ω

g(t, x(t), u(t))dt :

(x, u) ∈ X(A,U)

}∣∣∣∣ < ε.
Proposition 4.5. Let m = 1, f ∈ M(A,U), h ∈ Cl(B1 × B2), and ε ∈ (0, 1),

D > 0. Then there exist a neighborhood U of f in M(A,U) with the weak topology
and a neighborhood V of h in Cl(B1 × B2) with the weak topology such that for each
(ξ, g) ∈ V × U and each (x, u) ∈ X(A,U) which satisfies

min{I(f,h)(x, u), I(g,ξ)(x, u)} ≤ D(4.15)

the following relations are valid:

|h(x(T1), x(T2))− ξ(x(T1), x(T2))| ≤ ε,(4.16)

∣∣∣∣∣
∫ T2

T1

[f(t, x(t), u(t))− g(t, x(t), u(t))]dt
∣∣∣∣∣ ≤ ε.(4.17)

Proof. We may assume that inf(h) and

inf

{∫ T2

T1

f(t, x(t), u(t))dt : (x, u) ∈ X(A,U)

}
are finite. Choose a number

c0 > 4 + | inf(h)|+
∣∣∣∣∣inf

{∫ T2

T1

f(t, x(t), u(t))dt : (x, u) ∈ X(A,U)

}∣∣∣∣∣ .
By Corollaries 4.1 and 4.2 there exists a neighborhood V1 of h ∈ Cl(B1 × B2) with
the weak topology such that

| inf(ξ)| < c0 for all ξ ∈ V1(4.18)

and a neighborhood U1 of f inM(A,U) with the weak topology such that∣∣∣∣∣inf
{∫ T2

T1

g(t, x(t), u(t))dt : (x, u) ∈ X(A,U)

}∣∣∣∣∣ < c0 for all g ∈ U1.(4.19)

By Proposition 4.3 there exists a neighborhood V of h in Cl(B1 ×B2) with the weak
topology such that V ⊂ V1 and that for each ξ ∈ V and each z ∈ B1×B2 which satisfies
min{ξ(z), h(z)} ≤ D + c0 + 2 the relation |ξ(z) − h(z)| ≤ ε holds. By Proposition
4.4 there exists a neighborhood U of f inM(A,U) with the weak topology such that
U ⊂ U1 and that for each g ∈ U and each (x, u) ∈ X(A,U) satisfying

min

{∫ T2

T1

f(t, x(t), u(t))dt,

∫ T2

T1

g(t, x(t), u(t))dt

}
≤ D + c0 + 2
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the inequality (4.17) holds.
Now assume that (ξ, g) ∈ V × U and (x, u) ∈ X(A,U) satisfies (4.15). It follows

from (4.15), (4.18), and (4.19) that

min{ξ(x(T1), x(T2)), h(x(T1), x(T2))} − c0 ≤ min{I(f,h)(x, u), I(g,ξ)(x, u)} ≤ D

and

min

{∫ T2

T1

f(t, x(t), u(t))dt,

∫ T2

T1

g(t, x(t), u(t))dt

}
− c0

≤ min{I(f,h)(x, u), I(g,ξ)(x, u)} ≤ D.

By these inequalities and the definition of U and V, the inequalities (4.16) and (4.17)
are valid. The proposition is proved.

5. Preliminary lemma for hypothesis (A3). Fix a number d0 ∈ (0, 1).
There is a C∞-function φ0 : R1 → [0, 1] such that φ0(t) = 1 if |t| ≤ d0, 1 > φ0(t) >
0 if d0 < |t| < 1, and φ0(t) = 0 if |t| ≥ 1. Define a C∞-function φ̄ : R1 → R1 by
φ̄(x) =

∫ x

0
φ0(t)dt, x ∈ R1. Clearly φ̄ is monotone increasing, φ̄(x) = x if |x| ≤ d0,

and

φ̄(x) = φ̄(1) if x ≥ 1, φ̄(x) = φ̄(−1) if x ≤ −1,(5.1)

d0 = φ̄(d0) ≤ φ̄(x) ≤ φ̄(1) ≤ 1 for all x ∈ (d0, 1).(5.2)

Now we define a set L ⊂ Cl(B1×B2). In the case m = 1 we set L = Cl(B1×B2)
and in the casem > 1 denote by L a singleton {0} where 0 is a function in Cl(B1×B2)
which is identically zero. In the case m > 1 for each (f, ξ) ∈ M(A,U) × L and each
(x, u) ∈ X(A,U) we set

I(f,ξ)(x, u) = I(f)(x, u)(5.3)

(see (1.10) and (1.11)). For each measurable set E ⊂ Rm, each measurable set E0 ⊂ E,
and each h ∈ L1(E) we set

||h||L1(E0) =

∫
E0

|h(t)|dt.(5.4)

Fix an integer k ≥ 1. It is easy to verify that all partial derivatives of the functions
(x, y) → φ̄(|x − y|2), (x, y) ∈ Rq × Rq with q = n,N up to the order k are bounded
(by some d̄ > 0).

For each γ ∈ (0, 1) choose ε0(γ) ∈ (0, γ) such that

EX(8ε0(γ)) ⊂ {((x1, u1), (x2, u2)) ∈ X(A,U)×X(A,U) : ρ((x1, u1), (x2, u2)) ≤ γ}
(5.5)

(see (1.5)) and

ε0(γ) < 4−1γ(d̄+ 2)−1(5.6)
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and choose

ε1(γ) ∈ (0, d0ε0(γ)),(5.7)

δ(γ) ∈ (0, 16−1ε1(γ)
4).(5.8)

Lemma 5.1. Let γ ∈ (0, 1), f ∈ M(A,U), ξ ∈ L, and let Y ⊂ X(A,U),
(x̄, ū) ∈ Y ,

I(f,ξ)(x̄, ū) ≤ inf{I(f,ξ)(x, u) : (x, u) ∈ Y }+ δ(γ) <∞.(5.9)

Then there is a g : Rm ×Rn ×RN → R1 in Ck(Rm+n+N ) which satisfies

0 ≤ g(t, x, u) ≤ γ for all (t, x, u) ∈ Rm ×Rn ×RN ,(5.10)

||g(t, ·, ·)||Ck(Rn×RN ) ≤ γ for all t ∈ Rm

such that for a function f̄ ∈M(A,U) defined by

f̄(t, x, u) = f(t, x, u) + g(t, x, u), (t, x, u) ∈ graph(U),(5.11)

the following properties hold:

I(f̄ ,ξ)(x̄, ū) ≤ I(f,ξ)(x̄, ū) + δ(γ);(5.12)

for each (y, v) ∈ Y satisfying

I(f̄ ,ξ)(y, v) ≤ inf{I(f̄ ,ξ)(z, w) : (z, w) ∈ Y }+ 2δ(γ)(5.13)

the relation ρ((y, v), (x̄, ū)) ≤ γ is valid.
Moreover the function g is the sum of two functions, one of them depends only

on (t, x) while the other depend only on (t, u).
Proof. Choose a positive number ε2 for which

e2 < (mes(Ω) + 1)−18−1δ(γ)d0(d̄+ 1)−1.(5.14)

There is a measurable set E0 ⊂ Ω such that

mes(Ω \ E0) < 2−1ε2(5.15)

and the functions x̄ and ū are bounded on E0. There exist sequences of functions
{x̄i}∞i=1 ∈ C∞(Rm;Rn) and {ūi}∞i=1 ⊂ C∞(Rm;RN ) such that

||ūi − ū||L1(E0), ||x̄i − x̄||L1(E0) → 0 as i→∞(5.16)

[17, p. 13]. We may assume without loss of generality that ūi(t)→ ū(t), x̄i(t)→ x̄(t)
as i → ∞, t ∈ E0 a.e. By Egorov’s theorem there is a measurable set E1 ⊂ E0 such
that

mes(E0 \ E1) < 2−1ε2(5.17)
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and

ūi(t)→ ū(t) and x̄i(t)→ x̄(t) uniformly in E1 as i→∞.(5.18)

There is an integer s ≥ 1 such that

max{|ūs(t)− ū(t)|, |x̄s(t)− x̄(t)|} ≤ 4−1ε2(mes(Ω) + 1)−1, t ∈ E1.(5.19)

Define a function g : Rm ×Rn ×RN → R1 by

g(t, x, u) = ε0(γ)φ̄(|x− x̄s(t)|2) + ε0(γ)φ̄(|u− ūs(t)|2), (t, x, u) ∈ Rm ×Rn ×RN .

(5.20)

Clearly g ∈ C∞(Rm ×Rn ×RN ). Define

f̄(t, x, u) = f(t, x, u) + g(t, x, u), (t, x, u) ∈ graph(U).(5.21)

Evidently f̄ ∈ M(A,U). It follows from (5.20), the definition of d̄, (5.1), (5.2), and
(5.6) that (5.10) is true. We will show that (5.12) is true. By (5.21), (5.20), (5.19),
(5.1), and (5.2),

I(f̄ ,ξ)(x̄, ū) = I(f,ξ)(x̄, ū) + ε0(γ)

∫
Ω

φ̄(|x̄(t)− x̄s(t)|2)dt

+ ε0(γ)

∫
Ω

φ̄(|ū(t)− ūs(t)|2)dt = I(f,ξ)(x̄, ū) + ε0(γ)
∫
E1

φ̄(|x̄(t)− x̄s(t)|2) dt

+ ε0(γ)

∫
Ω\E1

φ̄(|x̄(t)− x̄s(t)|2)dt+ ε0(γ)
∫
E1

φ̄(|ū(t)− ūs(t)|2)dt

+ ε0(γ)

∫
Ω\E1

φ̄(|ū(t)− ūs(t)|2)dt ≤ I(f,ξ)(x̄, ū)

+ 2(mes(Ω))ε0(γ)φ̄((4
−1ε2)

2) + 2ε0(γ) mes (Ω \ E1).

It follows from this relation, (5.14), (5.1), (5.2), (5.15), and (5.17) that

I(f̄ ,ξ)(x̄, ū) ≤ I(f,ξ)(x̄, ū) + 2mes(Ω)ε0(γ)(4
−1ε2)

2 + 2ε0(γ)ε2

≤ I(f,ξ)(x̄, ū) + 4ε0(γ)ε2 ≤ I(f,ξ)(x̄, ū) + δ(γ).
Thus (5.12) is valid. Now assume that (y, v) ∈ Y satisfies (5.13). It follows from
(5.13), (5.21), (5.20), and (5.9) that

I(f,ξ)(y, v) + ε0(γ)

∫
Ω

φ̄(|x̄s(t)− y(t)|2)dt+ ε0(γ)
∫

Ω

φ̄(|v(t)− ūs(t)|2)dt

= I(f̄ ,ξ)(y, v) ≤ 2δ(γ) + I(f̄ ,ξ)(x̄, ū) ≤ 3δ(γ) + I(f,ξ)(x̄, ū) ≤ I(f,ξ)(y, v) + 4δ(γ).
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This implies that∫
Ω

φ̄(|x̄s(t)− y(t)|2)dt+
∫

Ω

φ̄(|ūs(t)− v(t)|2)dt ≤ 4δ(γ)(ε0(γ))
−1.(5.22)

Set

E2 = {t ∈ Ω : |y(t)− x̄s(t)| ≥ 2−1ε1(γ)}, E3 = {t ∈ Ω : |v(t)− ūs(t)| ≥ 2−1ε1(γ)}.
(5.23)

Then by (5.23), (5.22), (5.6), (5.7), (5.1), (5.2), and (5.8)

mes(E2) + mes(E3) ≤ 4ε1(γ)
−2

[∫
E2

φ̄(|x̄s(t)− y(t)|2)dt+
∫
E3

φ̄(|ūs(t)− v(t)|2)dt
](5.24)

≤ 16ε1(γ)
−2δ(γ)(ε0(γ))

−1 < ε1(γ).

It follows from (5.24), (5.23), (5.19), (5.14), (5.15), and (5.17) that

mes{t ∈ Ω : |y(t)− x̄(t)| ≥ ε1(γ)} ≤ mes(Ω \ E1)

+ mes{t ∈ Ω : |y(t)− x̄s(t)| ≥ 2−1ε1(γ)} ≤ ε2 + ε1(γ) ≤ 2ε1(γ)

and

mes{t ∈ Ω : |v(t)− ū(t)| ≥ ε1(γ)} ≤ mes(Ω \ E1)

+ mes{t ∈ Ω : |v(t)− ūs(t)| ≥ 2−1ε1(γ)} ≤ ε2 + ε1(γ) ≤ 2ε1(γ).

These relations and (5.5) imply that ((y, v), (x̄, ū)) ∈ EX(4ε1(γ)), ρ((y, v), (x̄, ū)) ≤ γ.
This completes the proof of the lemma.

6. An auxiliary result. Let p ≥ 1 be an integer and let e1 = (1, 0, . . . 0),. . . ,
ep = (0, . . . , 0, 1) be the standard basis in Rp. For each set E ⊂ Rp denote by conv(E)
its convex hull.

Proposition 6.1. Let a finite set E = {hij : i = 1, 2, . . . , p, j = 1, 2} ⊂ Rp

satisfy

|hi1 − ei|, |hi2 + ei| ≤ (2p)−1, i = 1, . . . , p.

Then the relation 0 ∈ conv(E) holds.

Proof. Let us assume the converse. Then 0 �∈ conv(E) and there is ξ = (ξ1, . . . , ξp) ∈
Rp \ {0} such that inf{〈g, ξ〉 : g ∈ conv(E)} > 0. We may assume that |ξ1| ≥ |ξi|,
i = 1, . . . , p. There are two cases: ξ1 > 0; ξ1 < 0. Consider the case with ξ1 > 0.
Then 0 < 〈ξ, h12〉 = 〈ξ,−e1〉 + 〈ξ, h12 + e1〉 ≤ −ξ1 + (2p)−1p|ξ1| < 0, a contradic-
tion. Analogously we obtain a contradiction in the second case. The proposition is
proved.
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7. Auxiliary lemma for hypothesis (A4). Assume that A : Ω → 2R
n \ {∅}

and graph(A) is a closed subset of the space Ω×Rn with the product topology. Let
e1 = (1, 0, . . . , 0), e2 = (0, 1, . . . , 0), . . . , eN = (0, 0, . . . , 1) be a standard basis in RN .
Now we define a set L ⊂ Cl(B1×B2). In the case m = 1 we set L = Cl(B1×B2) and
in the case m > 1 we denote by L a singleton {0} where 0 is a function in Cl(B1×B2),
which is identically zero. In the case m > 1 for each (f, ξ) ∈M(A, ŨA)×L and each
(x, u) ∈ X(A, ŨA) we set

I(f,ξ)(x, u) = I(f)(x, u)

(see (1.10), (1.11), and (1.12)).
Lemma 7.1. Let f ∈M(A, ŨA), ξ ∈ L, U ∈ PA,

{(x, u) ∈ X(A,U) : I(f,ξ)(x, u) <∞} �= ∅,(7.1)

and let ε, δ > 0. Then there are U∗ ∈ PA, (x̄, ū) ∈ X(A,U∗), and an open set W in
PA such that

(U∗, U) ∈ EPA(ε), W ∩ {V ∈ PA : (U, V ) ∈ EPA(ε)} �= ∅,(7.2)

I(f,ξ)(x̄, ū) ≤ inf{I(f,ξ)(x, u) : (x, u) ∈ X(A,U∗)}+ δ <∞,(7.3)

and for all V ∈ W,

(x̄, ū) ∈ X(A, V ) ⊂ X(A,U∗).(7.4)

Proof. For each r ∈ [0, 1] define Ur ∈ PA by

Ur(t, x) = {u ∈ RN : dH(u, U(t, x)) ≤ r}, (t, x) ∈ graph(A),(7.5)

and define

µ(r) = inf{I(f,ξ)(x, u) : (x, u) ∈ X(A,Ur)}.(7.6)

Clearly µ(r) is finite for all r ∈ [0, 1] and the function µ is monotone decreasing.
There is an r0 ∈ (0, 8−1ε) such that µ is continuous at r0. Choose r1 ∈ (0, r0) such
that

|µ(r1)− µ(r0)| < 16−1δ.(7.7)

There is

(x̄, ū) ∈ X(A,Ur1)(7.8)

such that

I(f,ξ)(x̄, ū) ≤ µ(r1) + 16−1δ.(7.9)

Relations (7.7) and (7.9) imply that

I(f,ξ)(x̄, ū) ≤ µ(r0) + 8−1δ.(7.10)
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Set

r2 = 2−1(r0 + r1).(7.11)

Clearly

(Uri , U) ∈ EPA(ε), i = 0, 1, 2.(7.12)

Choose a positive number γ for which

γ < min{4−1δ, (16N)−1(r0 − r1)}(7.13)

and define

W = {V ∈ PA : (Ur2
, V ) ∈ EPA(γ)}, U∗ = Ur0 .(7.14)

It follows from (7.12), (7.14), (7.10), and (7.6) that (7.2) and (7.3) are true.
Assume that V ∈ W. Then by (7.14), (7.13), and (7.11), for each (t, x) ∈

graph(A),

V (t, x) ⊂ {z ∈ RN : dH(z, Ur2
(t, x)) ≤ γ}

⊂ {z ∈ RN : dH(z, U(t, x)) ≤ r0} = Ur0(t, x).

Therefore

X(A, V ) ⊂ X(A,Ur0
).(7.15)

We will show that (x̄, ū) ∈ X(A, V ). It is sufficient to show that

ū(t) ∈ V (t, x̄(t)) for almost every t ∈ Ω.(7.16)

By (7.8) for almost every t ∈ Ω,

ū(t) ∈ Ur1
(t, x̄(t)).(7.17)

Assume that t ∈ Ω and (7.17) is true. By (7.17), (7.11), (7.5), and (7.14) for i =
1, . . . , N ,

ū(t) + 2−1(r0 − r1)ei, ū(t)− 2−1(r0 − r1)ei ∈ Ur2(t, x̄(t)),

and there are zi1, zi2 ∈ RN such that

ū(t) + zi1, ū(t) + zi2 ∈ V (t, x̄(t)), |zi1 − 2−1(r0 − r1)ei|, |zi2 + 2−1(r0 − r1)ei| ≤ γ.
(7.18)

Since the set V (t, x̄(t)) is convex it follows from (7.18), (7.13), and Proposition 6.1
that

0 ∈ conv{zij : i = 1, . . . , N, j = 1, 2}, ū(t) ∈ V (t, x̄(t)).

This implies that (x̄, ū) ∈ X(A, V ). The lemma is proved.
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8. Proof of Theorem 1.1 and its extensions.
Proof of Theorem 1.1. By Propositions 4.1 and 4.2 (A1) holds and Ja is lower

semicontinuous for all a ∈ A1×A2. By Theorem 2.1 we need to verify that (H1) and
(H2) are valid. (H2) follows from Proposition 4.2. Therefore it is sufficient to show
that (H1) holds. By Proposition 3.1 it is sufficient to show that (A2), (A3), and (A4)
are valid. Hypothesis (A2) follows from Propositions 4.4 and 4.5. By Lemma 5.1,
(A3) holds. Hypothesis (A4) follows from Lemma 7.1. This completes the proof of
the theorem.

As we mentioned in section 1 we proved Theorem 1.1 in such a manner that
it is applicable for all the spaces of integrands introduced there. All the spaces of
integrands are subspaces of M(A,U). Since (H2), (A1), (A2), and (A4) hold for
the class of optimal control problems with the space of integrands M(A,U), they
are also valid for all its subclasses considered here. On the other hand (A3) follows
from Lemma 5.1, which establishes that f + g and f belong to the same subspaces of
integrands. This implies that (A3) holds for all classes of optimal control problems
introduced in section 1.

As seen from the proof of Lemma 5.1 the perturbation g of the integrand f is
chosen as the sum of two functions, one of them depends only on (t, x) while the other
depend only on (t, u). Therefore Theorem 1.1 can be easily extended to subclasses of
the classes of optimal control problems introduced in section 1 in which integrands are
sums of two finite-valued functions, one of them, depending only on (t, x), is defined
on graph(A), while the other, depending only on (t, u), is defined on Ω×RN .

Finally in this section we present the extension of the generic existence and unique-
ness result established in [27] for the space of lower semicontinuous integrands f :
graph(U) → R1. Our generalization holds for all the spaces of integrands defined
in section 1, and it is obtained as a realization of the generic variational principle
established in section 2.

Assume that A : Ω → 2R
n \ {∅}, U : graph(A) → 2R

N \ {∅}, and graph(U) is
a closed subset of Ω × Rn × RN with the product topology. We consider the metric
space X(A,U) with the metric ρ (see (1.5)).

Now we define A1 as follows:

A1 = A11 ×A12 if m = 1 and A1 = A11 if m > 1,

where A12 is either Cl(B1 × B2) or C(B1 × B2) or a singleton {ξ} ⊂ Cl(B1 × B2),
and A11 is one of the following spaces:

M(A,U); Ml(A,U); Mc(A,U);

Mk(A, ŨA); Ml
k(A, ŨA); Mc

k(A, ŨA) (here k ≥ 1 is an integer, U = ŨA,

and graph(A) is a closed subset of the space Ω×Rn with the product topology);

M∗
k(Ã, Ũ); M∗l

k (Ã, Ũ); M∗c
k (Ã, Ũ) (here k ≥ 1 is an integer and A = Ã, U = Ũ).

Denote by A the closure of the set {a ∈ A1 : inf(I(a)) < ∞} in the space A1 with
the strong topology. We assume that A is nonempty. The following result is proved
analogously to Theorem 1.1.

Theorem 8.1. The minimization problem for I(a) on (X(A,U), ρ) is generically
strongly well posed with respect to A.
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9. Generic existence and uniqueness of solutions for variational prob-
lems without convexity assumptions. We use the notation and definitions intro-
duced in section 1. Assume that n = N , H(t, x, u) = u, (t, x, u) ∈ Ω×Rn ×Rn, and
B1 and B2 are singletons. Let A : Ω→ 2R

n \ {∅}, U : graph(A)→ 2R
n \ {∅} and let

graph(U) be a closed subset of the space Ω×Rn ×Rn with the product topology. If
(x, u) ∈ X(A,U), then u = ∇x and (x, u) is identified with x ∈ (W 1,1(Ω))n. In what
follows we omit the notation u in describing the elements of X(A,U). For the set
X(A,U) we consider the metric ρ introduced in section 1 (see (1.5)) and the metric
ρs defined by

ρs(x, y) = ||x− y||W 1,1(Ω) for all x, y ∈ X(A,U).

Clearly (X(A,U), ρs) is a complete metric space and its uniform structure is stronger
than the uniformity that generates the metric ρ. Finally for the set X(A,U) we
consider the third uniformity which is determined by the following base:

EXw(ε) = {(x1, x2) ∈ X(A,U)×X(A,U) :(9.1)

mes{t ∈ Ω : |∇x1(t)−∇x2(t)| ≥ ε} ≤ ε},

where ε > 0. (Note that if x, y ∈ X(A,U) and ∇x = ∇y, then x = y [28, Theorem
2.4.1].) It is easy to see that this uniform structure is metrizable (by a metric ρw)
and weaker than the uniformity which generates the metric ρ.

For variational problems considered in this section we can obtain strong versions
of Theorems 1.1 and 8.1. These strong versions establish generic strong well-posedness
of the minimization problem on the space (X, ρs), while in Theorems 1.1 and 8.1 it
is obtained on (X, ρ). They are derived from Theorems 1.1 and 8.1, Proposition 4.4,
and the following proposition.

Proposition 9.1. Let f ∈M(A,U),

c0 > inf

{∫
Ω

f(t, x(t),∇x(t))dt : x ∈ X(A,U)

}
(9.2)

and let

Y =

{
x ∈ X(A,U) :

∫
Ω

f(t, x(t),∇x(t))dt ≤ c0
}
.(9.3)

Then for each ε > 0 there exists δ > 0 such that if x1, x2 ∈ Y and (x1, x2) ∈ EXw(δ),
then ρs(x1, x2) ≤ ε.

Proof. Let ε > 0. In the case m > 1 by [28, Theorem 2.4.1] there exists a constant
c > 0 such that ||h||L1(Ω) ≤ c||∇h||L1(Ω) for all h ∈ W 1,1

0 (Ω). In the case m = 1 set
c = 1. Choose a positive number

∆ < (32(c+ 1)(mes(Ω) + 1))−1ε.

By the property (iii) (see the definition ofM(A,U)) and (9.3), the family of functions
{|∇x(·)| : x ∈ Y } is uniformly integrable. Therefore there exists γ ∈ (0,∆) such that
for each x ∈ Y and each measurable set e ⊂ Ω satisfying mes(e) ≤ γ the inequality∫
e
|∇x(t)|dt ≤ ∆ holds. Choose a positive number δ < (8c+ 8)−1(mes(Ω) + 1)−2γ.
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Assume that x1, x2 ∈ Y and (x1, x2) ∈ EXw(δ). There exists a measurable set
e ⊂ Ω such that mes(e) ≤ δ and |∇x1(t) − ∇x2(t)| ≤ δ, t ∈ Ω \ e. It follows from
these inequalities and the definition of γ and δ that∫

e

|∇xi(t)|dt ≤ ∆, i = 1, 2,

∫
Ω

|∇x1(t)−∇x2(t)|dt(9.4)

≤
∫
e

|∇x1(t)−∇x2(t)|dt+
∫

Ω\e
|∇x1(t)−∇x2(t)|dt ≤ 2∆ + δmes(Ω).

In the case m = 1 we have

|x1(t)− x2(t)| ≤
∫

Ω

|∇x1(s)−∇x2(s)|ds, t ∈ Ω,

and by (9.4) and the definition of δ and ∆,

ρs(x1, x2) = ||x1 − x2||W 1,1(Ω) ≤ (mes(Ω) + 1)||∇x1 −∇x2||L1(Ω)

≤ (mes(Ω) + 1)(2∆ + δmes(Ω)) < ε.

In the case m > 1 it follows from (1.4), the definition of c, (9.4), and the definition of
δ,∆ that

ρs(x1, x2) = ||x1 − x2||L1(Ω) + ||∇x1 −∇x2||L1(Ω)

≤ (c+ 1)||∇x1 −∇x2||L1(Ω) ≤ (c+ 1)(2∆ + δmes(Ω)) < ε.

This completes the proof of the proposition.
Proposition 9.1 and the completeness of the space (X(A,U), ρs) imply the follow-

ing result.
Proposition 9.2. Assume that f ∈ M(A,U), {xi}∞i=1 is a Cauchy sequence in

the space X(A,U) with the metric ρw, and the sequence {
∫
Ω
f(t, xi(t),∇xi(t))dt}∞i=1

is bounded. Then there is x∗ ∈ X(A,U) such that ρs(xi, x∗) → 0 as i → ∞ and,
moreover, if m = 1, then xi(t)→ x∗(t) as i→∞ uniformly on [T1, T2].

From now on we consider a fixed set-valued mapping A : Ω→ 2R
n \{∅} for which

graph(A) is a closed subset of the space Ω×Rn with the product topology and a set-
valued mapping ŨA : graph(A)→ 2R

n\{∅}, where ŨA(t, x) = R
n, (t, x) ∈ graph(A).

For each f ∈M(A, ŨA) we define I(f) : X(A, ŨA)→ R1 ∪ {∞} by

I(f)(x) =

∫
Ω

f(t, x(t),∇x(t))dt, x ∈ X(A, ŨA).

Consider the space of set-valued mappings A2 and the space of integrands A11 defined
in section 1. Denote by A0 the set of all functions f ∈ A11 which do not depend on
x. Clearly A0 is a closed subset of A11 with the strong topology. We consider the
topological subspace A0 ⊂ A11 with the relative weak and strong topologies.

Let a function F : graph(A)×Rn → R1 ∪ {∞} have the following properties:
F is measurable with respect to the σ-algebra generated by products of Lebesgue

measurable subsets of Ω and Borel subsets of Rn×Rn; F (t, ·, ·) is lower semicontinuous
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for almost every t ∈ Ω; there exists an integrable scalar function ψF (t) ≥ 0, t ∈ Ω,
such that F (t, x, u) ≥ ψF (t) for all (t, x, u) ∈ graph (A)×Rn.

Clearly, for each g ∈M(A, ŨA), g + F ∈M(A, ŨA).
For each a = (a1, a2) ∈ A0 ×A2 we define Ja : X(A, ŨA)→ R1 ∪ {∞} by

Ja(x) = I
(a1+F )(x), x ∈ Sa2

, Ja(x) =∞, x ∈ X(A, ŨA) \ Sa2
.

Here Sa2 = X(A, a2) (see (1.19)). Denote by A the closure of the set {a ∈ A0 ×A2 :
inf(Ja) < ∞} in the space A0 × A2 with the strong topology. We assume that A is
nonempty.

Theorem 9.1. The minimization problem for Ja on (X(A, ŨA), ρs) is generically
strongly well posed with respect to A.

Proof. We will show that the following assertion holds: The minimization problem
for Ja on (X(A, ŨA), ρw) is generically strongly well posed with respect to A.

This assertion is proved analogously to Theorem 1.1. Note that Propositions
4.1 and 9.2 imply the lower semicontinuity of Ja for all a ∈ A0 × A2, (H2) follows
from Proposition 9.2, and (A3) is derived from a modification of Lemma 5.1. In this
modification the perturbation g = g(t, x, u) does not depend on x and in the last line
of the statement of Lemma 5.1 ρ is substituted by ρw. The proof of this modification
is analogous to the proof of Lemma 5.1. In the relation (5.5), ρ is substituted by ρw
and EX is substituted by EXw, and in (5.20) g is defined by

g(t, x, u) = ε0(γ)φ̄(|u− ūs(t)|2), (t, x, u) ∈ Rm ×Rn ×Rn.

Thus there exists an everywhere dense (in the strong topology) set B ⊂ A which is
a countable intersection of open (in the weak topology) subsets of A such that for any
a ∈ B the assertions (1) and (2) of Theorem 2.1 hold with (X, ρ) = (X(A, ŨA), ρw)
and fb = Jb, b ∈ A.

Let a = (a1, a2) ∈ B. By the assertion (1) of Theorem 2.1 inf(Ja) is finite and
attained at a unique element x̄ ∈ X(A, ŨA). In order to complete the proof of the
theorem it is sufficient to show that the assertion (2) of Theorem 2.1 holds with
(X, ρ) = (X(A, ŨA), ρs) and fb = Jb, b ∈ A.

By Proposition 4.4 there exists an open (in the weak topology) neighborhood V1

of a1 in A0 such that for each b ∈ V1 and each x ∈ X(A, ŨA) satisfying I
(b+F )(x) ≤

inf(Ja) + 1 the following relation holds:

I(a1+F )(x) ≤ I(b+F )(x) + 1 ≤ inf(Ja) + 2.(9.5)

Let ε ∈ (0, 1). It follows from Proposition 9.1 that there exists ε0 ∈ (0, ε) such
that for each x1, x2 ∈ X(A, ŨA) satisfying

I(a1+F )(xi) ≤ inf(Ja) + 2, i = 1, 2, and ρw(x1, x2) ≤ ε0(9.6)

the relation ρs(x1, x2) ≤ ε holds.
By the assertion (2) of Theorem 2.1 which holds for the space (X(A, ŨA), ρw),

there are a neighborhood V of a in A with the weak topology and δ > 0 such that for
each b ∈ V, inf(Jb) is finite, and if z ∈ X(A, ŨA) satisfies

Jb(z) ≤ inf(Jb) + δ,(9.7)

then

ρw(x̄, z) ≤ ε0 and |Jb(z)− Ja(x̄)| ≤ ε0.(9.8)
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We may assume that

V ⊂ V1 ×A2.(9.9)

Now assume that b = (b1, b2) ∈ V, and z ∈ X(A, ŨA) satisfies (9.7). Then (9.8)
holds. By (9.8), (9.9), and the definition of V1 (see (9.5))

I(a1+F )(z) ≤ inf(Ja) + 2.

It follows from this inequality, (9.8), and the definition of ε0 (see (9.6)) that the
relation ρs(x̄, z) ≤ ε holds. Thus the assertion (2) of Theorem 2.1 holds with (X, ρ) =
(X(A, ŨA), ρs) and fb = Jb, b ∈ A. This completes the proof of the theorem.

Note that for the class of variational problems considered here we can also prove
an analog of Theorem 8.1 in which only integrands are subject to variations.

Example. Let us consider the scalar variational problem∫ 1

0

f(t, x′(t))dt→ min, x(0) = x(1) = 0,

where f(t, u) = 0 for u ∈ {−1, 1} and f(t, u) = ∞ otherwise. Clearly the functions
x∗ and x̃ defined by

x∗(t) = t, t ∈ [0, 2−1], x∗(t) = 1− t, t ∈ (1/2, 1],(9.10)

x̃(t) = −x∗(t), t ∈ [0, 1]

are solutions of the problem. Define a continuous function φ : R2 → R1 by

φ(t, u) = min{1, |u− 1|(1/2− t)}, (t, u) ∈ (−∞, 1/2]×R1,

φ(t, u) = min{1, |u+ 1|(t− 1/2)}, (t, u) ∈ (1/2,∞)×R1,

and for each r ∈ (0, 1) define a function fr by

fr(t, u) = f(t, u) + rφ(t, u), (t, u) ∈ [0, 1]×R1.

It is easy to see that fr → f as r → 0, and for each r ∈ (0, 1) the variational problem∫ 1

0

fr(t, x
′(t))dt→ min, x(0) = x(1) = 0

has a unique solution x∗ defined by (9.10).
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contractions non linéaires dans un espace de Banach, C. R. Acad. Sci. Paris Sér. A-B, 283
(1976), pp. 185–187.

[9] F.S. De Blasi and J. Myjak, Generic flows generated by continuous vector fields in Banach
spaces, Adv. in Math., 50 (1983), pp. 266–280.

[10] R. Deville, R. Godefroy, and V. Zizler, Smoothness and Renorming in Banach Spaces,
Longman Scientific and Technical, Harlow, UK, 1993.

[11] J. Diestel and J.J. Uhl, Vector Measures, Amer. Math. Soc., Providence, RI, 1977.
[12] J.L. Doob, Measure Theory, Springer-Verlag, New York, 1994.
[13] A.D. Ioffe and V.M. Tikhomirov, Theory of Extremal Problems, North-Holland, New York,

1979.
[14] A.D. Ioffe and A.J. Zaslavski, Variational principles and well-posedness in optimization

and calculus of variations, SIAM J. Control Optim., 38 (2000), pp. 566–581.
[15] J.L. Kelley, General Topology, Van Nostrand, Princeton, NJ, 1955.
[16] M. Marcus and A.J. Zaslavski, The structure of extremals of a class of second order varia-
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1. Introduction. The classical Cauchy problem for the Hamilton–Jacobi equa-
tion is the partial differential equation with initial condition

ut(t, x) +H(t, x, ux(t, x)) = 0, (t, x) ∈ (0,∞)× R
n,

u(0, x) = ϕ(x), x ∈ R
n.

(1.1)

If the Hamiltonian H(t, x, p) is convex with respect to p, there are connections be-
tween solutions to (1.1) and optimization problems involving a function dual to the
Hamiltonian. This function L, called the Lagrangian, is derived from H using the
Legendre–Fenchel transform as follows:

L(t, x, v) = sup
p∈Rn

{〈 p, v 〉 −H(t, x, p)}.(1.2)

Here 〈 p, v 〉 denotes the inner product of p and v. It is possible for L to assume the
value +∞, and it is this important feature which allows constraints to be incorporated
directly into L in the form of “infinite penalties.” The generalized problem of Bolza
we parameterize here in (τ, ξ) as

(Pτ,ξ) minimize Γ(x) := ϕ(x(0)) +

∫ τ

0

L
(
t, x(t), ẋ(t)

)
dt,

where we are minimizing Γ over A1
n[0, τ ] (the space of all absolutely continuous arcs

x : [0, τ ] → R
n) with x(τ) = ξ. This has a simple appearance, and yet a wide range

of problems involving optimal control, differential inclusions, and constraints can be
expressed in this form. See Loewen [20] or the introductory chapter of Clarke [8] for
a discussion on the equivalences between these various formulations.

An extended-real-valued function is called proper if it never takes on the value
−∞ and is not identically +∞. When H(t, x, ·) is proper, lower semicontinuous (lsc),
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and convex for each (t, x), then L(t, x, · ) also has these properties. Furthermore, we
can then retrieve H from L by performing the Legendre–Fenchel transform a second
time:

H(t, x, p) = sup
v∈Rn

{〈 p, v 〉 − L(t, x, v)}.(1.3)

Thus we have a one-to-one correspondence between Hamiltonians and Lagrangians in
this convex case, and every equation of the form (1.1) can be paired with a problem
of the form (Pτ,ξ).

Definition 1.1. The value function V : R× R
n → R ∪ {±∞} is defined from Γ

as follows:

V (τ, ξ) =


inf{ Γ(x) | x ∈ A1

n[0, τ ], x(τ) = ξ} if τ > 0,

ϕ(ξ) if τ = 0,

+∞ if τ < 0.

(1.4)

When the value function is real-valued and differentiable, it is known to sat-
isfy (1.1) in the classical sense, and yet in many situations the value function is
extended-real-valued and merely lsc. Our goal is to provide a way to interpret (1.1)
for extended-real-valued, lsc functions u in such a way that the value function V will
be the unique solution. This is not the first such attempt, as the discussion below
will reveal; however, we achieve this uniqueness result over a much larger class of
Hamiltonians than had been previously attained.

The first of these earlier results dates back to the early 1980s when Crandall
and Lions [10] introduced viscosity solutions, with Crandall, Evans, and Lions giving
a simplified approach in [11]. Viscosity solutions attracted a lot of attention, and
over subsequent years a sizable literature developed from many authors dealing with,
among other issues, existence and uniqueness of solutions.

In section 2 we will go into more detail about the classes of Hamiltonians and
solutions addressed by viscosity theory, but for now we will mention briefly that they
typically require that the solution be uniformly continuous and bounded and that
the Hamiltonian satisfy some sort of uniform continuity condition. For an up-to-date
account of the subject, see the recent book of Bardi and Capuzzo-Dolcetta [4].

Another class of continuous generalized solutions, named minimax solutions, was
developed by Subbotin, initially in [29], with a more detailed approach in [31]. For a
large class of Hamiltonians, minimax solutions and viscosity solutions are equivalent.

As mentioned earlier, even continuity may fail for the value function, and thus
there is a need for semicontinuous solutions to (1.1). Ishii [18] examined issues re-
garding the existence of possibly discontinuous solutions, which were defined using
upper semicontinuous (usc) and lsc envelopes. Barles and Perthame [5] used Ishii’s
notion of solution and obtained an early uniqueness result. In [7], Barron and Jensen
extended viscosity solutions to certain semicontinuous functions for Hamiltonians that
are convex in p and provided a uniqueness result. The paper by Barles [6] provides
some extensions and an informal discussion of Barron and Jensen’s ideas.

Frankowska [16] also considered lsc solutions and presented a uniqueness result
for the Hamilton–Jacobi equation arising from the Mayer problem in optimal control.
This corresponds to considering (Pτ,ξ) with the Lagrangian L(t, x, · ) as the indicator
of a compact set for each (t, x). The indicator function Ψ : R

n → R ∪ {∞} of a set
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C ⊂ R
n is defined as

ΨC(v) =

{
0 if v ∈ C,

+∞ otherwise.
(1.5)

The Mayer problem then has L(t, x, v) = ΨF (t,x)(v) for some set-valued mapping
F with compact, convex images. This gives rise to a Hamiltonian which is finite
and positively homogeneous in p. An important feature of [16], which inspired the
approach taken here, is Frankowska’s use of viability theory.

This paper will present a result on the existence and uniqueness of solutions
to (1.1) with a solution concept similar to those in [7] and [16]. As in [16], viability
plays an important role in deriving our main result; however, we advance by working
with unbounded differential inclusions. The differential inclusions we wish to employ
are epigraphical set-valued mappings, whose images by their very nature cannot be
bounded.

Typically, viability properties of a set K are determined through properties of
the tangent and normal cones to K. Our viability approach differs in that we use
normal cone properties of the reachable set of K. This allows us to deal with the
epigraphical differential inclusion directly, without having to resort to truncations of
the epigraph. Ultimately this allows us greater range in our choice of Lagrangians
and Hamiltonians. In particular, we can go beyond cases where L has the form
L(t, x, v) = L1(t, x, v) + ΨF (t,x)(v) for some Lipschitz function L1. (This case can be
reduced to a Mayer problem through truncations of the epigraphs L(t, x, · ).) More
generally speaking, we are not restricting ourselves to Hamiltonians H(t, x, p) which
have linear growth in p (this corresponds to the essential domain of L(t, x, v) being
bounded in the variable v for each (t, x)). Instead we have the extremely mild growth
condition (A1) on the Hamiltonian, given in the next section.

The proof of our main theorem also relies on the improved necessary optimal-
ity conditions achieved in the papers [21], [22], and [23] of Loewen and Rockafellar.
The assumption (A2) used in the main theorem is designed precisely to allow the
application of these necessary conditions, which are given in section 5.

Because nonsmooth analysis will be used here, we will need the notion of a sub-
gradient. We use the notation adopted in Rockafellar and Wets [27]. The symbol R

is used to denote R ∪ {+∞} ∪ {−∞}. For v ∈ R
n and an lsc function f : R

n → R,

(i) v is a regular subgradient of f at x, written v ∈ ∂̂f(x), if

lim inf
y→x, y �=x

f(y)− f(x)− 〈v, y − x〉
|y − x| ≥ 0;

(ii) v is a (general) subgradient of f at x, written v ∈ ∂f(x), if there are sequences

xν → x with f(xν)→ f(x) and vν ∈ ∂̂f(xν) with vν → v;
(iii) v is a horizon subgradient of f at x, written v ∈ ∂∞f(x), if there are sequences

xν → x with f(xν)→ f(x) and vν ∈ ∂̂f(xν) with λνvν → v for some sequence λν ↘0.

There is another way to define regular subgradients, equivalent to the above,
which is more in line with the ideas used for viscosity solutions. We can say a vector
v belongs to ∂̂f(x) if and only if on some neighborhood W of x, there exists a function
g continuously differentiable on W with g(x) = f(x), ∇g(x) = v, and g(x′) < f(x′)
for all x′ ∈W with x′ �= x. (See Prop. 8.5 in [27] for details.)
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Given a closed set K and a point x ∈ K, we can define the general normal cone
NK(x) and the regular normal cone N̂K(x) from the corresponding subgradients as
follows:

NK(x) = ∂ΨK(x),(1.6)

N̂K(x) = ∂̂ΨK(x).(1.7)

We use the notation dom f for the effective domain of f, which is the set {x :
f(x) <∞}. We can now specify what we mean by a generalized solution to (1.1).

Definition 1.2. A function u : R× R
n → R is a solution to (1.1) if it satisfies

the following:
(a) u is proper and lsc, with domu ⊂ [0,∞)× R

n;
(b) u(0, ξ) = ϕ(ξ) for all ξ ∈ R

n;
(c) For every (τ, ξ) ∈ domu, every (σ, η) ∈ ∂u(τ, ξ) satisfies{

σ +H(τ, ξ, η) ≤ 0 if τ = 0,

σ +H(τ, ξ, η) = 0 if τ > 0.
(1.8)

Note the use of general subgradients in the definition. This differs from the
papers [7] and [16], where the emphasis is on regular subgradients. The choice of
using general subgradients in our definition of solution has been made because of
the richer calculus rules these subgradients enjoy and due to their emphasis in [27].
Definition 1.2 aside, the general subgradient is a better choice later in the paper when
characterizing sub-Lipschitz and pseudo-Lipschitz properties of set-valued mappings
(see Mordukhovich [24]). Thus we make it our subgradient of choice. Note, however,

that if H is continuous, we can replace ∂u(τ, ξ) with ∂̂u(τ, ξ) in the above, and the
resulting definition of solution will be equivalent to Definition 1.2. As will be seen,
the continuity of H is a property that holds in the main theorem below.

Due to the viability approach we will be taking, let us introduce some notation
and terminology associated with set-valued mappings. We write F : R

n ⇒ R
m to

denote a mapping which associates a subset F (x) of R
m to each point x ∈ R

n. The
graph of F , denoted gphF , is the set of points {(x, y) | y ∈ F (x)} in R

n × R
m.

Of particular importance are the epigraphical mappings. These are set-valued
mappings Ef : R

n ⇒ R
m+1, defined from a function f : R

n × R
m → R as Ef (x) =

epi f(x, · ), where

epi f(x, · ) := {(v, α) | v ∈ dom f(x, · ), α ≥ f(x, v)}.(1.9)

Thus the graph of Ef corresponds to the epigraph of f , and the sets Ef (x) are closed
if and only if f(x, · ) is lsc for each x.

Another way in which our Theorem 2.2 improves upon previous results is that
we are able to relax the Lipschitz behavior of the Lagrangian set-valued mapping
EL. Typically, one defines Lipschitz continuity with respect to the Hausdorff metric.
However, epigraphical mappings are unbounded, and placing a Lipschitz assumption
on EL proves to be rather restrictive.

The closed unit ball is denoted by B. To say F : R
n ⇒ R

m is Lipschitz on some
open set W means there exists a constant k > 0, a Lipschitz constant, so that

F (x′) ⊂ F (x) + k|x′ − x|B for all x′, x ∈W.(1.10)
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The notion of sub-Lipschitz continuity relaxes the condition in (1.10) by allowing
a truncation on the left-hand side of this inclusion. The Lipschitz constant k is then
allowed to grow with the size of the corresponding truncation. Specifically, F is sub-
Lipschitz on some open set W if there exists a positive ρ0 so that for each ρ > ρ0,
there exists a k > 0, a ρ-Lipschitz constant, so that

F (x′) ∩ ρB ⊂ F (x) + k|x′ − x|B for all x′, x ∈W.(1.11)

Mordukhovich (section 5 of [24]) shows how one can characterize Lipschitz and
sub-Lipschitz properties of a set-valued mapping F through properties of the normal
cones NgphF (x, v) and the associated coderivative mapping D∗F (x|v) : R

m → R
n

defined as

D∗F (x|v)(y) = {w : (w,−y) ∈ NgphF (x, v)}.(1.12)

Moreover, he shows how these coderivatives can lead to bounds for the Lipschitz
and ρ-Lipschitz constants (see also section 9.F of [27]). For an epigraphical set-
valued mapping Ef , the coderivative can be expressed using the general and horizon
subgradients of f .

Our uniqueness result applies to cases where the epigraphical mapping of the
Lagrangian has a special kind of sub-Lipschitz behavior. This Lipschitz condition is
given in a subgradient form on the Hamiltonian as assumption (A2) in the next section.
This subgradient expression is placing bounds on a certain coderivative mapping.

Throughout this paper, H will be seen to depend on t for t ∈ R, while (1.8) implies
that the behavior of H(t, x, p) for t < 0 has no effect on our notion of solution. The
reason for defining H on a larger domain than is necessary is to avoid complications
that may arise with relative neighborhoods of points (t, x). This shouldn’t present
a problem if we have a Hamiltonian defined only for t ≥ 0. By setting H(t, x, p) =
H(0, x, p) for t < 0, we can easily extend the domain of H without affecting (1.8).
We can extend L in the same manner.

2. Statement of the main result. The main result of this paper is Theo-
rem 2.2, which depends upon the assumptions (A) and (A0)–(A2) given below. After
a comparison with other uniqueness results in the literature, the latter half of this
section gives some implications of (A1) and (A2) as well as connections between the
Hamiltonian and the Lagrangian under these assumptions.

When we say that a function u exhibits linear growth, we mean there exists a
constant k > 0 so that |u(x)| ≤ k(1+ |x|) for all x. It will be useful to define the class
of functions which have only “half” linear growth, in that no restrictions are placed
on how the positive values of u may behave.

Definition 2.1. A function u : R
n → R satisfies the lower linear growth (LLG)

condition if there exists k > 0 such that

u(x) ≥ −k(1 + |x|) for all x ∈ R
n.(2.1)

A function u : R×R
n → R satisfies the uniform lower linear growth (ULLG) condition

if for each T > 0, there exists k > 0 such that

u(t, x) ≥ −k(1 + |x|) for all (t, x) ∈ [−T, T ]× R
n.(2.2)

These mild conditions are effectively ruling out countercoercivity in the state
variable, but not necessarily in t. A function f is coercive if it is bounded from below
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and lim inf |x|→∞ f(x)/|x| = +∞, and f is countercoercive if lim inf |x|→∞ f(x)/|x| =
−∞. For example, the function u(t, x) = −t2 satisfies the ULLG condition, whereas
u(t, x) = −|x|2 does not.

Basic assumption. We have a Hamiltonian H : R× R
n × R

n → R.
(A) H(t, x, · ) is proper, lsc, and convex for each (t, x) ∈ R× R

n.
Initial cost assumption. We have an extended-real-valued function ϕ : R

n → R.
(A0) The function ϕ is proper, lsc, and satisfies the LLG condition (2.1).
Hamiltonian assumptions. We have a Hamiltonian H : R× R

n × R
n → R.

(A1) There exists a convex, nondecreasing function µ : [0,∞) → R and positive
constants α and β so that

H(t, x, p) ≤ µ(|p|) + (|t|+ |x|)(β + α|p|) for all (t, x, p) ∈ R× R
n × R

n.

(A2) H is lsc on R × R
n × R

n, and for each (t̄, x̄) ∈ R × R
n, there exists a

neighborhood W of (t̄, x̄) and a positive constant k so that at every point (t, x, p) ∈
W × R

n, every (w1, w2, v) ∈ ∂H(t, x, p) satisfies

|(w1, w2)| ≤ k(1 + |v|+ |L(t, x, v)|)(1 + |p|+ |H(t, x, p)|).(2.3)

Assumption (A1) is a mild growth condition on H that is directly related to
the stronger growth condition introduced by Rockafellar [25] to help guarantee the
existence of optimal arcs in generalized Bolza problems. Note that taken together,
(A) and (A1) imply that for each (t, x), H is finite and convex in p, which forces H
to be continuous in p (see Corollary 2.36 in [27]).

Assumption (A2) is a special kind of sub-Lipschitz behavior of the epigraphical
mapping EH : R× R

n ⇒ R
n+1, where EH is defined as

EH(t, x) = epiH(t, x, · ).(2.4)

See Proposition 2.6 below for a connection with the epigraphical mapping EL of the
Lagrangian.

The main theorem below shows that the value function is the unique solution to
(1.1) among the class of functions satisfying the ULLG condition.

Theorem 2.2 (existence and uniqueness). Under (A) and (A0)–(A2), the value
function V satisfies the ULLG condition and is a solution to the Cauchy problem (1.1)
for the Hamilton–Jacobi equation, in the sense given by Definition 1.2.

Furthermore, if a function u is a solution to (1.1) as given by Definition 1.2, and
u satisfies the ULLG condition, then u must be the value function V .

The proof of the theorem is contained in section 6.
Let us now compare our uniqueness result of Theorem 2.2 to others in the liter-

ature. We begin by mentioning that most of the uniqueness (or, comparison) results
for viscosity solutions place no convexity assumptions on the Hamiltonian. However,
convexity of H(t, x, p) with respect to p will be present in any optimization context,
due to the definition of the Hamiltonian as a maximization of functions affine in p.

Viscosity solutions are defined as functions satisfying a pair of inequalities. Orig-
inally, the definition was given in terms of smooth support functions, but we can
equivalently define them using regular subgradients. A usc function u is termed a
viscosity subsolution if

w +H(t, x, p) ≤ 0 whenever (w, p) ∈ −∂̂(−u)(t, x),
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whereas an lsc function u is a viscosity supersolution if

w +H(t, x, p) ≥ 0 whenever (w, p) ∈ ∂̂u(t, x).

A viscosity solution is a continuous function which is simultaneously a subsolution
and a supersolution.

Initially in [10], [11], the uniqueness results for viscosity solutions were rather re-
strictive as they gave uniqueness only over the class of bounded, uniformly continuous
functions. Furthermore, the Hamiltonian was also required to have uniform continuity
properties in all its variables.

These restrictions were relaxed somewhat in later papers. In [12] the boundedness
assumption on the viscosity solution was removed, but the solution was still required
to be uniformly continuous. The uniqueness of solutions was extended to the class of
all continuous functions in [13], but the Hamiltonian was required to have a certain
uniform continuity property and exhibit linear growth in p. The assumptions on the
Hamiltonian were subsequently relaxed in [14] and [19]; however, the class of solutions
had to be restricted to those with linear growth in the state variable and uniformly
continuous initial condition.

For lsc solutions, the uniqueness result of [16] uses hypotheses similar to those
in [31] and which are more general than those appearing in [7] or [6]. One assumption
is the Lipschitz behavior in x of the mapping epiL(t, x, ·). Another assumption in [16]
is that the Hamiltonian be positively homogeneous in p. This is not quite as restrictive
as it first seems. For example, through a change of variables, any Bolza problem that
has L of the form L(t, x, v) = L0(t, x, v) + ΨF (t,x)(v), with L0 locally Lipschitz in v
and F a locally Lipschitz compact set-valued mapping, is covered with such H. Still,
this corresponds to a class of Hamiltonians H which, among other properties, must
exhibit linear growth in p.

By way of a different change of variables, Subbotin (section 5 of [30]) shows how
one can convert a Hamiltonian H into one which is positively homogeneous. Given
H : R× R

n × R
n → R, define h : R× R

n × R× R
n → R via

h(t, x, r, p) = |r|H(t, x, p/|r|) if r �= 0.(2.5)

For r = 0, take limits in the above expression so that h is continuous in (r, p). Then
h is positively homogeneous in (r, p). (Although [30] doesn’t require convexity, note
that in general, h will not be convex in (r, p) unless we restrict r ≥ 0.) In order to use
this technique to gain uniqueness under the original H, the new Hamiltonian h must
satisfy certain continuity conditions (for now, let us fix some (t, x) and just write H(p)
and h(r, p)). These conditions (H5 in [30]) state that h must be Lipschitz continuous
on the set where |p|2 + r2 ≤ 1. Assume, as in our Bolza problem context, that H(p)
is convex and is dual to a convex Lagrangian L(v). Through subgradient calculus one
can show that if (w, v) ∈ ∂h(r, p) for some (r, p) with r > 0, then v ∈ ∂H(p/r) and
w = −L(v). In order for h to be locally Lipschitz at (0, 0), H(p) must be globally
Lipschitz and thus have linear growth. Again, this corresponds to the Lagrangian
having a bounded essential domain. But there is something even more restrictive
here. With a bounded essential domain, it is still possible that L may be unbounded
on this set. Assume there exists a bounded sequence vν with L(vν) unbounded. Then
one can find (rν , pν)→ (0, 0) with rν > 0 and (−L(vν), vν) ∈ ∂h(rν , pν), so that these
subgradients become unbounded, and there is no hope for h to satisfy the required
Lipschitz condition.
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Frankowska and Plaskasz [17] use the techniques from [16] to obtain uniqueness
for lsc solutions in which state constraints are present, something which we do not
consider in this paper. In [17], the Bolza problem is presented in an optimal control
form. If one converts this control problem into the form (Pτ,ξ), assumptions on the
dynamics ẋ(t) = f(t, x(t), u(t)) once again force the velocity to be bounded and the
Hamiltonian to have linear growth in p.

Our result covers a broader class of Hamiltonians, as there is absolutely no re-
striction on the growth of H other than the mild condition (A1), and in this sense
Theorem 2.2 improves on previous results. Also, we can now deal with cases where
the Hamiltonian does possess linear growth but arises from a Lagrangian that is un-
bounded in v on its essential domain (as in the discussion on [30] above). Moreover,
the assumption (A2) introduces a sub-Lipschitz behavior for epigraphical set-valued
mappings of a much greater scope than that of Lipschitz continuity. We hope to
devote a separate paper to provide examples and an analysis of the assumption (A2),
including the case of mappings which have a fully convex graph.

Rockafellar and Wolenski [28] provide an analysis of the value function and
Hamilton–Jacobi theory in an autonomous, fully convex Lagrangian case. They do
not present a uniqueness result, but rather they give regularity properties of the value
function, develop a method of characteristics, and examine connections to a dual
Bolza problem.

Let us note that (A1) and (A2) force the same restrictions on H in t and x
jointly. This is not the case in [16]. If we take the case where L is of the form
ΨF (t,x)(v), then our assumptions would require that F be a locally Lipschitz set-
valued mapping in (t, x) with compact, convex images. The assumptions in [16] would
require, generally speaking, that F be locally Lipschitz in x and only continuous in
t. Thus there are certain Hamiltonians not satisfying our assumptions, to which the
results of Frankowska’s paper can be applied.

The remainder of this section contains some lemmas and propositions giving im-
plications of the hypotheses (A1) and (A2). These will be useful in later sections and
in the proof of Theorem 2.2.

Lemma 2.3. Assume (A) and (A2) hold. Then for any (t, x, p), if (w1, w2, 0) ∈
∂∞H(t, x, p), then (w1, w2) = (0, 0).

Proof. Fix (t, x, p) ∈ R × R
n × R

n and take W and k as given by (A2) and
(w1, w2, v) ∈ ∂∞H(t, x, p). This means there exist sequences (tν , xν , pν) → (t, x, p)
with H(tν , xν , pν) → H(t, x, p) and λν(wν1 , w

ν
2 , v

ν) → (w1, w2, v) with (wν1 , w
ν
2 , v

ν) ∈
∂̂H(tν , xν , pν) and λν ↘ 0. Assume that (tν , xν) ∈ W for each ν. It follows (see

Corollary 10.9 of [27]) that vν ∈ ∂̂pH(tν , xν , pν), and convex analysis tells us that
H(tν , xν , pν) + L(tν , xν , vν) = 〈pν , vν〉 for each ν. Now using the inequality from
(A2), we see that

|(wν1 , wν2 )| ≤ k(1 + |vν |+ |L(tν , xν , vν)|)(1 + |pν |+ |H(tν , xν , pν)|)
⇒ |λν(wν1 , wν2 )| ≤ k(λν + |λνvν |+ |λνL(tν , xν , vν)|)(1 + |pν |+ |H(tν , xν , pν)|)

= k(λν + |λνvν |
+ |λν(〈vν , pν〉 −H(tν , xν , vν))|) (1 + |pν |+ |H(tν , xν , pν)|)

⇒ |(w1, w2)| ≤ k(|v|+ |〈v, p〉|)(1 + |p|+ |H(t, x, p)|).

(2.6)

Thus if v = 0, this forces (w1, w2) = (0, 0).



HAMILTON–JACOBI CHARACTERIZATION OF VALUE FUNCTION 289

The horizon subgradient condition present in Lemma 2.3 can also be expressed
in terms of the coderivative D∗EH of the set-valued mapping EH (see (1.12)). The
lemma is saying that D∗EH((t, x)|(p, y))(0) = {0} at every point (t, x, p, y) in the
epigraph of H, from which it follows by the result of Mordukhovich [24, Thm. 5.7]
that EH has the Aubin property at every point of the graph of EH (originally called
the pseudo-Lipschitz property as introduced in [2]). In particular, this gives us the
following proposition.

Proposition 2.4. Assume H(t, x, ·) is finite and convex for each (t, x) ∈ R×R
n

and that (A2) holds (this is true in particular when (A), (A1), and (A2) hold). Then
H is locally Lipschitz continuous at every (t, x, p) ∈ R× R

n × R
n.

Proof. Fix (t, x, p). Showing H is locally Lipschitz at this point is equivalent to
showing that ∂∞H(t, x, p) = {(0, 0, 0)}. This equivalence is proved in [27, Thm. 9.13].
Take (w1, w2, v) ∈ ∂∞H(t, x, p). From Lemma 2.3, it suffices to show that v must
be 0.

Take sequences defining (w1, w2, v) as in the proof of Lemma 2.3. The Aubin
property at every point of the graph of the mapping EH implies that EH is continuous
with respect to Painlevé–Kuratowski set convergence [27, Thm. 9.38] and that H has
the so-called epi-continuity property discussed in [26]. This epi-continuity property
of H leads to a result of Attouch [27, Thm. 12.35] which says that the subgradient

mappings ∂̂pH(tν , xν , · ) graphically converge to ∂̂pH(t, x, · ). Since H(t, x, · ) is

finite and convex, ∂̂pH(t, x, p) is convex, nonempty, and bounded. This implies [27,

Ex. 5.34] the existence of finite constants R and N such that ∂̂pH(tν , xν , pν) ⊂ RB

for ν ≥ N . But we have that vν ∈ ∂̂pH(tν , xν , pν), so |vν | ≤ R for ν ≥ N . Since
λν ↘ 0, we must have v = 0.

Lemma 2.5. Assume H(t, x, · ) is finite and convex for each (t, x) ∈ R×R
n and

that (A2) holds. Then at every (t̄, x̄) ∈ R×R
n, there exists a neighborhood W of (t̄, x̄)

and a positive constant k such that

H(t, x, p) ≥ −k(1 + |p|) for all (t, x, p) ∈W × R
n.

Proof. Take (t̄, x̄) ∈ R×R
n. Proposition 2.4 gives us a neighborhood W1×W2 ⊂

R
n+1×R

n of (t̄, x̄, 0) on whichH is Lipschitz. This implies the existence of k1 > 0 such

that ∂̂H(t, x, 0) ⊂ k1B, which in turn says that ∂̂pH(t, x, 0) ⊂ k1B for all (t, x) ∈W1.
The Lipschitz property of H also implies that H(t, x, 0) ≥ −k2 for some k2 > 0 for
(t, x) ∈W1. Finally, H(t, x, · ) being a convex function gives us that

H(t, x, p) ≥ H(t, x, 0) + 〈v, p〉
≥ −k2 − k1|p|

if v ∈ ∂̂pH(t, x, 0) and (t, x, p) ∈W1 × R
n. Now let k = max{k1, k2}.

Proposition 2.6. Take a dual pair H and L, with both H(t, x, · ) and L(t, x, · )
proper, lsc, and convex for every (t, x) where L can be derived from H via (1.2) and
H can be derived from L via (1.3). Then the following are equivalent.

(i) (A2) holds for H.
(ii) L is lsc on R × R

n × R
n, and for each (t̄, x̄), there exists a neighborhood

W of (t̄, x̄) and a positive constant k so that at every point (t, x, v) ∈W × R
n, every

(w1, w2, p) ∈ ∂L(t, x, v) satisfies the relation given by (2.3).
Proof. Assume (i). In the proof of Proposition 2.4 we saw that H has the epi-

continuity property as described in [26]. Theorem 11.34 of [27] says that then L also
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has the epi-continuity property, which implies that the epigraph of L is closed, and
so L is lsc on R× R

n × R
n.

To show that the subgradient inequality holds, we would like to use Theorem 3.3
of [26], which requires checking that a condition holds on the horizon subgradients
of H. This is exactly the condition shown to hold in Lemma 2.3, and so using [26,
Thm. 3.3] we can conclude that, for any given (t, x, v, p),

con{(w1, w2)|(w1, w2, p) ∈ ∂L(t, x, v)} = − con{(w1, w2)|(w1, w2, v) ∈ ∂H(t, x, p)}.

Now choose (t̄, x̄), bounded neighborhood W , and constant k as given in (2.3). Take
(w1, w2, p) ∈ ∂L(t, x, v) for (t, x, v) ∈ W × R

n. Then (w1, w2) can be written as a
finite, convex combination of points in the set {(−w′

1,−w′
2)|(w′

1, w
′
2, v) ∈ ∂H(t, x, p)}.

But this implies that

|(w1, w2)| ≤ sup{|(−w′
1,−w′

2)|
∣∣ (w′

1, w
′
2, v) ∈ ∂H(t, x, p)}

≤ k(1 + |v|+ |L(t, x, v)|)(1 + |p|+ |H(t, x, p)|),

the second inequality following by assumption (i). Thus (ii) holds at (t̄, x̄) with the
same constant k for our neighborhood W .

If we begin instead by assuming (ii), the entire argument presented above will go
through, since at every step each result holds symmetrically in L as in H, and we can
conclude that (i) holds.

3. Viability and the value function. The concepts of viability and invariance
of a differential inclusion (sometimes called weak invariance and strong invariance)
are essential in the proof of Theorem 2.2. It will be seen that the epigraph of the value
function is both viable and invariant with respect to a certain unbounded differential
inclusion. The italics are meant to stress that this is an uncommon assumption. If one
were to examine the main theorems on differential inclusions in texts such as [1], [3],
[9], or [15], it becomes immediately apparent that set-valued mappings with compact
images are the focus.

To study the viability properties of epiV it will be essential for us to know that
this is a closed set and that solutions to the unbounded differential inclusion exist.
This leads us to the following.

Proposition 3.1. Assume we have ϕ satisfying (A0) and a Lagrangian L which
is lsc in all variables and that L(t, x, · ) is proper and convex for each (t, x) ∈ R×R

n.
Further assume that (A1) holds for H derived from L via (1.3). Then the value
function V for (Pτ,ξ) has the following properties.

(a) V is proper and lower semicontinuous on R× R
n.

(b) At every (τ, ξ) ∈ domV , there exists an optimal arc achieving the value V (τ, ξ)
in (Pτ,ξ).

Proof. Take (τ, ξ) with V (τ, ξ) < +∞ and consider the functional

x( · ) �→ l(x(0), x(τ)) +

∫ τ

0

L(t, x(t), ẋ(t))dt,

where l(x(0), x(τ)) = ϕ(x(0))+Ψ{ξ}(x(τ)). Minimizing this functional over all x( ·) ∈
An[0, τ ] is equivalent to (Pτ,ξ). The hypotheses given allow us to use “Existence
Theorem 2” of [25] to conclude that the above functional attains its minimum. Thus
there exists some absolutely continuous arc x( · ) achieving the minimum in (Pτ,ξ),
and (b) holds.
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To see that the minimum value is not −∞, note that L(t, x, v) ≥ −H(t, x, 0) for
all v, and so if x is our optimal arc, there exists a constant M with |x(t)| ≤M for all
t ∈ [0, τ ], giving us

V (τ, ξ) ≥ ϕ(x(0))−
∫ τ

0

H(t, x(t), 0)dt

≥ ϕ(x(0))−
∫ τ

0

µ(0) + σ(|t|+ |x(t)|)dt

≥ ϕ(x(0))−
∫ τ

0

µ(0)dt−
∫ τ

0

σ(τ +M)dt

> −∞.

That V is not identically +∞ follows since V (0, ξ) = ϕ(ξ) and ϕ is proper. Thus V
is a proper function.

It remains to show that V is lsc. Let K = [a, b]× K̃ ⊂ R× R
n be a compact set

with 0 ≤ a < b. For each τ ≥ 0 and x( · ) ∈ A1
n[0, τ ], let

γK(τ, x( · )) = ϕ(x(0)) + ΨK(τ, x(τ)) +

∫ τ

0

L(t, x(t), ẋ(t))dt.

For each α ∈ R, define the set AαK ⊂ R× R
n as

AαK := {(τ, x(τ)) | γK(τ, x( · )) ≤ α for some (τ, x( · ))}.

These sets are related to the lower level sets of V as follows:

AαK = K ∩ lev≤α V,

where the notation lev≤α f denotes the set { x | f(x) ≤ α }. So if for every compact
K, AαK is compact for each α, this shows the lower level sets of V are closed, and V
is lsc. To accomplish this, we will use the Erdmann transform to convert the above
problem into one with fixed time. Let

L0(t, x, v, λ) =


Ψ{0}(v) if λ = 0,

λL(t, x, v/λ) if λ > 0,

+∞ otherwise.

Note that since L(t, x, · ) is proper, convex, and coercive, L0(t, x, · , · ) will be proper,
convex, and lsc. For arcs (θ( · ), ζ( · )) ∈ A1

n+1[0, 1] consider the functional

ΓK(θ( · ), ζ( · )) = l(θ(0), ζ(0), θ(1), ζ(1)) +

∫ 1

0

LK(θ(s), ζ(s), ζ̇(s), θ̇(s))ds,

where we define l(θ(0), ζ(0), θ(1), ζ(1)) = Ψ{0}(θ(0)) + ϕ(ζ(0)) + ΨK(θ(1), ζ(1)) and
LK(t, x, v, λ) = L0(t, x, v, λ) + Ψ[a,b](λ). Now consider the sets

Bα
K := {(θ(1), ζ(1)) | ΓK(θ( · ), ζ( · )) ≤ α for some (θ( · ), ζ( · ))}.

The function Ψ{0}(θ(0)) + ϕ(ζ(0)) is not countercoercive on R
n+1, while ΨK( · , · )

is coercive, since K is compact. Furthermore, the Hamiltonian corresponding to
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LK satisfies (A1), the stronger growth condition, and we can apply the results of
“Existence Theorem 2” of [25] to conclude that the level sets

{(θ( · ), ζ( · )) | ΓK(θ( · ), ζ( · )) ≤ α}
are compact in the norm topology of continuous arcs from [0, 1] to R

n+1, where the
norm is the usual supremum norm. Thus Bα

K must be compact.
Now we need to relate Bα

K to AαK . Fix α and K, and take (τ, x(τ)) ∈ AαK . Let
θ(s) = τs and ζ(s) = x(τs). Note that τ ∈ [a, b], and ΓK(θ(·), ζ(·)) = γK(τ, x(·)) ≤ α.
Also, (θ(1), ζ(1)) = (τ, x(τ)), so we have AαK ⊂ Bα

K .

If we takeK = [a, b]×K̃ with a > 0 and consider an arc for which ΓK(θ(·), ζ(·)) ≤
α, then necessarily θ̇(s) ≥ a > 0 for a.e. s ∈ [0, 1] and θ is then strictly increasing
and invertible. If we then let τ = θ(1) and x(t) = ζ(θ−1(t)), substituting these
arcs into the functionals above, we find γK(τ, x( · )) = ΓK(θ( · ), ζ( · )) ≤ α, and
(τ, x(τ)) = (θ(1), ζ(1)), showing that Bα

K ⊂ AαK . Combining this with the opposite
inclusion from the previous paragraph, we see that AαK is compact for every α and

every compact set K = [a, b] × K̃ when a > 0. This implies that V is lsc at every
(τ, ξ) with τ > 0.

To see that V is also lsc at points (0, ξ), consider compact K = [0, b] × K̃, and
note that if (0, ξ) = (θ(1), ζ(1)) ∈ Bα

K , then θ̇(s) = 0 for a.e. s, which forces ζ̇(s) = 0
for a.e. s, from the way L0 is defined. Thus ζ(1) = ζ(0) and ΓK(θ( · ), ζ( · )) = ϕ(ζ(0)),

so ζ(1) ∈ lev≤α ϕ. On the other hand, if we take any ξ ∈ K̃ ∩ lev≤α ϕ, the constant
arc (θ(s), ζ(s)) = (0, ξ) gives ΓK(θ( · ), ζ( · )) = ϕ(ξ) ≤ α, so we have shown that

Bα
K ∩ ({0} × R

n) = {0} × (K̃ ∩ lev≤α ϕ).

We also know from above that Bα
K is compact and that AαK ⊂ Bα

K . So take ξ ∈ domϕ

and K̃ so that ξ lies in the interior of K̃. Take b > 0 and any sequence (τν , ξν)→ (0, ξ)
with (τν , ξν) ∈ AαK . So in fact (τν , ξν) must lie in Bα

K , whose compactness forces
(0, ξ) ∈ Bα

K , and so from (4.1) we have ϕ(ξ) ≤ α. It must be the case then that
lim inf(τν ,ξν)→(0,ξ) V (τν , ξν) ≥ ϕ(ξ) = V (0, ξ), and so V is lsc at every point in its
effective domain.

At this point we introduce the set-valued mapping ẼL : R× R
n × R ⇒ R

n+2 as

ẼL(t, x, y) := {1} × epiL(t, x, · ).
The variable y ∈ R can be thought of as an “epigraphical variable” since we will
typically be considering the setting where the points (t, x, y) ∈ epiV . We wish to
establish that the value function is the unique function which satisfies an endpoint
condition and is simultaneously viable and invariant in a certain way with respect
to ẼL.

Proposition 3.2. Assume (A) and (A0)–(A2). A function u : R × R
n → R is

the value function for (Pτ,ξ) if and only if it satisfies the following properties.
(P1) u is proper and lsc on R× R

n with domu ⊂ [0,∞)× R
n.

(P2) u(0, ξ) = ϕ(ξ) for all ξ ∈ R
n.

(P3) (backward viability). For all (τ, ξ, β) ∈ epiu, there exists an absolutely con-
tinuous arc z( · ) = (t( · ), x( · ), y( · )) such that

(i) z( · ) is defined on [0, τ ], (ii) z(0) = (τ, ξ, β), (iii) ż(s) ∈ −ẼL(z(s)) for a.e.
s ∈ [0, τ ], and (iv) z(s) ∈ epiu for all s ∈ [0, τ ].

(P4) (forward invariance). For all (τ, ξ, β) ∈ epiu, for all r > 0, if an absolutely
continuous arc z( · ) = (t( · ), x( · ), y( · )) satisfies
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(i) z( · ) is defined on [0, r], (ii) z(0) = (τ, ξ, β), and (iii) ż(s) ∈ ẼL(z(s)) for a.e.
s ∈ [0, r], then z( · ) must also satisfy (iv) z(s) ∈ epiu for all s ∈ [0, r].

Proof. Take the value function V . By definition of V , domV ⊂ [0,∞) × R
n,

and also (P2) holds. Proposition 3.1(a) guarantees that the rest of condition (P1)
holds. To show (P3), take (τ, ξ, β) ∈ epiV . Let x̄( · ) be an optimal arc for (Pτ,ξ), its
existence guaranteed by Proposition 3.1(b). By the principle of optimality, we have

V (τ ′, x̄(τ ′)) = ϕ(x̄(0)) +
∫ τ ′

0
L(t, x̄(t), ˙̄x(t))dt for all τ ′ ∈ [0, τ ]. Thus the arc

z(s) =

(
τ − s, x̄(τ − s), ϕ(x̄(0)) +

∫ τ−s

0

L(t, x̄(t), ˙̄x(t)) dt+ β − V (τ, ξ)

)
satisfies (P3) since

ϕ(x̄(0)) +

∫ τ−s

0

L(t, x̄(t), ˙̄x(t))dt+ β − V (τ, ξ) = V (τ − s, x̄(τ − s)) + (β − V (τ, ξ))

≥ V (τ − s, x̄(τ − s))

for all s ∈ [0, τ ], and so z(s) ∈ epiV for all s. Also, we see that

ż(s) = (−1,− ˙̄x(τ − s),−L(τ − s, x̄(τ − s), ˙̄x(τ − s))) ∈ −ẼL(z(s)).

Assume we have an arc z( · ) satisfying (i)–(iii) of (P4). Then for any τ ′ ∈ [0, r],
we have

y(τ ′) = β +

∫ τ ′

0

ẏ(s)ds ≥ β +

∫ τ ′

0

L(τ + s, x(s), ẋ(s))ds

≥ β + V (τ ′ + τ, x(τ ′))− V (τ, x(τ))

≥ V (τ ′ + τ, x(τ ′)),

and thus z(s) ∈ epiV for s ∈ [0, r].
Now assume u satisfies (P1)–(P4). Clearly u(τ, ξ) = V (τ, ξ) if τ ≤ 0. So fix

(τ, ξ) with τ > 0. Let β = u(τ, ξ). By (P3) there exists an arc (t( · ), x( · ), y( · ))
with (t(0), x(0), y(0)) = (τ, ξ, β) and (t(τ), x(τ), y(τ)) ∈ epiu. But the differential
inclusion that our arc satisfies means ṫ(s) = −1 and so t(s) = τ − s and t(τ) = 0.
Thus y(τ) ≥ ϕ(x(τ)). Now if we imagine running our arc backward via the new arc
(t̄(s), x̄(s), ȳ(s)) = (t(τ − s), x(τ − s), y(τ − s)), we get that t̄(s) = s and ˙̄y(s) ≥
L(s, x̄(s), ˙̄x(s)) and so

β = ȳ(0) +

∫ τ

0

˙̄y(s)ds ≥ y(τ) +

∫ τ

0

L(s, x̄(s), ˙̄x(s))ds

≥ ϕ(x̄(0)) +

∫ τ

0

L(s, x̄(s), ˙̄x(s))ds

≥ V (τ, ξ),

showing that u(τ, ξ) ≥ V (τ, ξ).
Now using (P4), let x̄( · ) be a minimizing arc giving the value of V (τ, ξ). We

have then (0, x̄(0), ϕ(x̄(0))) ∈ epiu by (P2). Let t̄(s) = s and ȳ(s) = ϕ(x̄(0)) +∫ s
0
L(w, x̄(w), ˙̄x(w))dw. Then the arc z( · ) = (t̄( · ), x̄( · ), ȳ( · )) satisfies (i)–(iii) of

(P4). Set r = τ and so z(τ) ∈ epiu. But since ȳ(τ) = V (τ, ξ), we must have that
u(τ, ξ) ≤ V (τ, ξ).
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4. Monotonicity and the reachable set. In the previous section it was seen
that the value function uniquely satisfies certain invariance and viability properties.
The goal now is to characterize these properties with the monotone behavior of a
certain reachable set.

First consider a general setup as follows. We have a closed set K ⊂ R
n and a set

valued mapping F : R
n ⇒ R

n. Under the differential inclusion ẋ(t) ∈ F (x(t)), we can
define the forward solution set S+

K(t) and the backward solution set S−
K(t) to be

S+
K(t) := {x( · ) ∈ A1

n([0, t]) | x(0) ∈ K, ẋ(s) ∈ F (x(s)) for a.e. s ∈ [0, t]},
S−
K(t) := {x( · ) ∈ A1

n([0, t]) | x(0) ∈ K, ẋ(s) ∈ −F (x(s)) for a.e. s ∈ [0, t]},
and the corresponding reachable set RK(t) as

RK(t) := {y ∈ R
n | y = x(t) for some x( · ) ∈ S+

K(t)}.
Note that we are not requiring that solutions exist for all times. It is possible

that RK(t) = ∅ for some t.
Proposition 4.1. The following are equivalent.
(i) The set K is invariant with respect to the forward solution set. That is, for

all t ≥ 0, every x( · ) ∈ S+
K(t) satisfies x(s) ∈ K for all s ∈ [0, t].

(ii) For any t1, t2 with t2 ≥ t1 ≥ 0, we have RK(t2) ⊂ RK(t1).
Proof. It should be clear that (ii) implies (i). Assume (i) and take t2 ≥ t1 ≥ 0.

The set K being invariant tells us that RK(t) ⊂ K for all t > 0. It is also true that
if A ⊂ B, then RA(t) ⊂ RB(t). By its nature, the reachable set satisfies a certain
semigroup property which tells us that

RK(t2) = RRK(t2−t1)(t1).

But RK(t2 − t1) ⊂ K, and so the right-hand side of the above is contained in the set
RK(t1).

The concept of viability is related to that of invariance. To say that the set K is
viable with respect to the backward solution set means for every t ≥ 0 and for every
x0 ∈ K, there exists an x( · ) ∈ S−

K(t) such that x(0) = x0 and x(s) ∈ K for all
s ∈ [0, t].

Proposition 4.2. The following are equivalent.
(i) The set K is invariant with respect to the forward solution set and viable

with respect to the backward solution set.
(ii) RK(t) = K for all t ≥ 0.
Proof. Assume (i) and take t1 ≥ 0. From Proposition 4.1 we know that RK(t) ⊂

K. Take any x0 ∈ K. That K is viable means there is an arc x( · ) with ẋ(t) ∈
−F (x(t)), x(0) = x0, and x(t) ∈ K for all t. Consider the arc y(t) = x(t1 − t). Then
y ∈ S+

K(t1) with y(t1) = x0. So x0 ∈ RK(t1) giving us that K ⊂ RK(t1).
If we assume (ii), Proposition 4.1 tells us that K is forward invariant. Let x0 ∈ K.

Then x0 ∈ RK(t1) for any t1 > 0. Thus there exists an arc x( · ) ∈ S+
K(t1) with

x(t1) = x0 and x(t) ∈ K for t ∈ [0, t1]. Again, if we consider y(t) = x(t1 − t), we
get y ∈ S−

K(t1) with y(0) = x0, and so K is viable with respect to the backward
solution set.

Note that we require minimal hypotheses on the set K and the mapping F . In
particular, F can have unbounded images.

Now we wish to use this monotonicity property in the setting of the previous
section. Proposition 4.2 cannot be applied directly, however, since the time interval
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on which the epigraph of the value function is viable depends upon the initial point
we choose, and thus the general results above should be viewed as a motivating guide
for the following proposition.

Proposition 4.3. Take the set-valued mapping ẼL(t, x, y) = {1} × epiL(t, x, · )
and the corresponding differential inclusion ż(s) ∈ ẼL(z(s)). Assume u : R×R

n → R

satisfies (P1)–(P2) of Proposition 3.2. Then u also satisfies (P3) and (P4) if and
only if

Repiu(s) = epiu ∩ ([s,∞)× R
n) for all s ≥ 0.

Proof. Assume u satisfies (P1)–(P4). The condition (P4) says that epiu is in-
variant with respect to the forward solution set of the differential inclusion ż(s) ∈
ẼL(z(s)). Thus, by Proposition 4.1 we have Repiu(s) ⊂ epiu. Also, any z( · ) =
(t( · ), x( · ), y( · )) satisfying the differential inclusion must have ṫ(s) = 1 for a.e. s and
t(0) ≥ 0, so t(s) ≥ s. Thus Repiu(s) ⊂ epiu ∩ ([s,∞)× R

n).

Take (τ, ξ, β) ∈ epiu∩ ([s,∞)×R
n). This is equivalent to taking (τ, ξ, β) ∈ epiu

with τ ≥ s. Now take an arc (t(·), x(·), y(·)) as in (P3). Since s ∈ [0, τ ], z(s) ∈ epiu. If
we now consider the arc z̄(s′) = z(s−s′), we see that z̄(0) ∈ epiu, z̄(s) = (τ, ξ, β), and
˙̄z(s′) ∈ ẼL(z̄(s

′)). So (τ, ξ, β) ∈ Repiu(s) and we have epiu∩([s,∞)×R
n) ⊂ Repiu(s).

Now take a function u satisfying (P1)–(P2) and such that for all s ≥ 0, Repiu(s) =
epiu ∩ ([s,∞)× R

n). Then Proposition 4.1 immediately implies that (P4) holds.

To see that (P3) holds, take (τ, ξ, β) ∈ epiu. So in fact (τ, ξ, β) ∈ Repiu(τ),
and there exists a solution to the differential inclusion, z̄( · ) = (t̄( · ), x̄( · ), ȳ( · ))
with (t̄(0), x̄(0), ȳ(0)) ∈ epiu and (t̄(τ), x̄(τ), ȳ(τ)) = (τ, ξ, β). Again, by letting
z(s′) = z̄(τ − s′), we get an arc satisfying (i)–(iv) of (P3).

Note that the set-valued mapping ẼL(t, x, y) is independent of y. Thus, if (τ, ξ, β)
∈ Repiu(s) for some s, then in fact (τ, ξ, β′) ∈ Repiu(s) for all β

′ ≥ β. This means that
the graph ofRepiu can be thought of as the epigraph of a function whose domain lies in
R×R×R

n. Given u : R×R
n → R, define this associated function ũ : R×R×R

n → R

as follows:

ũ(s, τ, ξ) =

{
u(τ, ξ), 0 ≤ s ≤ τ,

+∞ otherwise.
(4.1)

In other words, epi ũ(s, · , · ) = epiu∩ ([s,∞)×R
n) for s ≥ 0. At this point we show

that the function ũ can be characterized with subgradients.

Proposition 4.4. Assume we have proper, lsc functions f : R × R × R
n → R

and u : R× R
n → R. Then (i) and (ii) are equivalent.

(i) f = ũ, as defined by (4.1).
(ii) f(0, · , · ) = u( · , · ), and at every (s, τ, ξ) ∈ dom f , every subgradient

(α, σ, η) ∈ ∂f(s, τ, ξ) satisfies 
α ≤ 0 if 0 = s < τ,

α = 0 if 0 < s < τ,

α ≥ 0 if 0 < s = τ.

The proof of Proposition 4.4 depends on the following lemma (Proposition 8.50
in [27]).
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Lemma 4.5. For an lsc function f : R
n → R and a point x̄ where f is finite, the

following are equivalent for a pair (a, β) ∈ R
n × R.

(i) There exists a neighborhood W of x̄ and δ > 0 such that 〈v, a〉 ≤ β for all
v ∈ ∂f(x) when x ∈W and f(x) ≤ f(x̄) + δ.

(ii) For some neighborhood W of x̄, δ > 0, and ε > 0 one has

f(x+ ka)− f(x)

k
≤ β when k ∈ (0, ε], x ∈W, f(x) ≤ f(x̄) + δ.

Proof of Proposition 4.4. First we show that ũ satisfies (ii). The first condition
is clearly satisfied, so we only need check that the subgradient criterion holds. First
take (0, τ̄ , ξ̄) ∈ dom ũ with τ̄ > 0. Then there exists ε > 0 such that (0, τ̄ , ξ̄) +
2εB ⊂ {(s, τ, ξ)|s < τ}. Let W = (0, τ̄ , ξ̄) + εB and let δ > 0 be arbitrary. Fix
a = (1, 0, 0) ∈ R × R × R

n. Then if we take any k ∈ (0, ε] and (s, τ, ξ) ∈ W with
ũ(s, τ, ξ) �=∞, we have

(ũ((s, τ, ξ) + ka)− ũ(s, τ, ξ))/k = (ũ(s+ k, τ, ξ)− ũ(s, τ, ξ))/k

= (u(τ, ξ)− u(τ, ξ))/k

= 0.

So (ii) of Lemma 4.5 holds with β = 0. Thus (i) of Lemma 4.5 tells us that, in
particular, 〈(α, σ, η), a〉 ≤ 0 for all (α, σ, η) ∈ ∂ũ(0, τ̄ , ξ̄), which reduces to saying that
α ≤ 0.

Now take (s̄, τ̄ , ξ̄) ∈ dom ũ with 0 < s̄ < τ̄ . In this case, the same argument as
above will go through, applied to both a and −a. Applying part (i) of Lemma 4.5
now gives the results that α ≤ 0 and α ≥ 0 for any (α, σ, η) ∈ ∂ũ(s̄, τ̄ , ξ̄). So α = 0.

Similarly, taking (s̄, τ̄ , ξ̄) ∈ dom ũ with 0 < s̄ = τ̄ allows us to apply the above
argument with −a, giving the result that α ≥ 0 for any (α, σ, η) ∈ ∂ũ(s̄, s̄, ξ̄).

Assume now we have a proper, lsc f satisfying (ii). Then at any (s, τ, ξ) ∈ dom f
with 0 ≤ s < τ , we can find a neighborhood W so that (i) of the lemma holds for
a = (1, 0, 0) and β = 0 (δ arbitrary). Similarly, (i) of the lemma holds for a = (−1, 0, 0)
and β = 0 in a neighborhood of (s, τ, ξ) with 0 < s ≤ τ . Now applying (ii) of the
lemma we see that, for fixed (τ̄ , ξ̄), f(s, τ̄ , ξ̄) is monotonically decreasing for 0 ≤ s < τ̄
and is monotonically increasing for 0 < s ≤ τ̄ . Thus f(s, τ̄ , ξ̄) = c, a constant, for
s ∈ (0, τ̄).

Now by assumption, f(0, τ̄ , ξ̄) = u(τ̄ , ξ̄). Since f is decreasing in s at s = 0, we
must have c ≤ u(τ̄ , ξ̄). But f is lsc, so f(0, τ̄ , ξ̄) ≤ c. So in fact f(s, τ̄ , ξ̄) = u(τ̄ , ξ̄)
for s ∈ [0, τ̄). But again, using lower semicontinuity and monotonicity of f in s,
we get f(τ̄ , τ̄ , ξ̄) = c = u(τ̄ , ξ̄). The only points not checked in dom f are of the
form (0, 0, ξ), but by assumption we know that f(0, 0, ξ) = u(0, ξ). It should be clear
from the argument just given that (s, τ, ξ) ∈ dom f if and only if 0 ≤ s ≤ τ and
(τ, ξ) ∈ domu. Thus dom f = dom ũ and so f = ũ.

5. Necessary conditions. This section examines the necessary conditions pre-
sented in the papers [21], [22], and [23]. Some work is required to show that our
assumptions (A) and (A0)–(A2) enable us to use these papers. The approach taken
in that series of articles was to take an arc known to be optimal and then impose hy-
potheses with respect to that particular arc. The goal of this section then is to show
that under our assumptions, when the need arises to examine necessary conditions
for some optimal arc, we can find a neighborhood of that arc to which Loewen and
Rockafellar’s hypotheses can be applied.
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The main result of the paper [23] followed directly from [22], after applying the
Erdmann transform to place the variable time Bolza problem in the context of a fixed
time problem. This transform employs the following integrand which we will denote
by Lm. For each m > 0, define

Lm(t, x, v, λ) =

{
λL(t, x, v/λ) if λ ≥ m,

+∞ otherwise.
(5.1)

Note that Lm(t, x, · , · ) is proper and convex if and only if L(t, x, · ) is proper and
convex.

Proposition 5.1. Assume L(t, x, · ) is proper, lsc, coercive, and convex for
each (t, x), and that (A2) holds. Then for each m > 0 and every (t̄, x̄), there exists
a neighborhood W of (t̄, x̄) and positive constant k such that for all (t, x, v, λ) ∈
W × R

n × R,

|(w1, w2)| ≤ k(1 + |(v, λ)|+ |Lm(t, x, v, λ)|)(1 + |(p, π)|)(5.2)

for all (w1, w2, p, π) ∈ ∂Lm(t, x, v, λ).
Proof. In Proposition 2.6 it was shown that (A2) implies that the subgradients

of L satisfy a relation given by (2.3). Using the calculus rules ([27, Thm. 10.6 and
Cor. 10.9]), and the fact that we can write Lm(t, x, v, λ) = λL(t, x, v/λ) +Ψ[m,∞)(λ),
we have

∂Lm(t, x, v, λ) ⊂ {(λw1, λw2, p, r)
∣∣ (w1, w2, p) ∈ ∂L(t, x, v/λ)},

∂̂Lm(t, x, v, λ) ⊃ {(λw1, λw2, p, r)
∣∣ (w1, w2, p) ∈ ∂̂L(t, x, v/λ)}

with

{
r = −H(t, x, p) if λ > m,

r ≤ −H(t, x, p) if λ = m.

(5.3)

Take m > 0. Since L is lsc, epiLm( · , · , · , λ) is a closed set and from the definition
of Lm is varying continuously with λ for λ ≥ m. So epiLm is closed, implying Lm
is lsc.

Take (t̄, x̄) ∈ R × R
n and choose a neighborhood W and constant k as given by

(A2). Also let k1 be a positive constant so that H(t, x, p) ≥ −k1(1 + |p|) whenever
(t, x, p) ∈ W × R

n. The existence of this constant is guaranteed by Lemma 2.5. Let
(w1, w2, p, π) ∈ ∂Lm(t, x, v, λ) for some (t, x, v, λ) ∈W×R

n×[m,∞). Then (5.3) tells
us that (w1, w2, p, π) = (λw′

1, λw
′
2, p, π) for some (w′

1, w
′
2, p) ∈ ∂L(t, x, v/λ) and with

π ≤ −H(t, x, p). Note that we have the estimate |H(t, x, p)| ≤ max{k1(1 + |p|), |π|}.
So (A2) says that

|(w′
1, w

′
2)| ≤ k(1 + |v/λ|+ |L(t, x, v/λ)|)(1 + |p|+ |H(t, x, p)|)

⇒ |(w1, w2)| ≤ k(λ+ |v|+ |Lm(t, x, v, λ)|)(1 + |p|+ |H(t, x, p)|)
≤
√
2k(1 + |(v, λ)|+ |Lm(t, x, v, λ)|)(1 + |p|+ k1(1+|p|+|π|))

≤
√
2k(k1 + 1)(1 + |(v, λ)|+ |Lm(t, x, v, λ)|)(1 + |p|+ |π|)

≤ 2k(k1 + 1)(1 + |(v, λ)|+ |Lm(t, x, v, λ)|)(1 + |(p, π)|).
Lemma 5.2. Assume we have an autonomous Lagrangian L : R

n × R
n → R for

which, given any M > 0, there exists k1 > 0 such that for all (x, v) ∈MB× R
n,

|w| ≤ k1(1 + |v|+ |L(x, v)|)(1 + |p|) for all (w, p) ∈ ∂L(x, v).(5.4)
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Let x̄( ·) ∈ A1
n([a, b]) so that L(x̄(t), ˙̄x(t)) is integrable on [a, b]. Then there exist ε > 0

and integrable κ : R→ R and δ : R→ R so that ([22, Hypothesis H5]) holds. That is,
the ratio κ(t)/δ(t) is essentially bounded and for a.e. t ∈ [a, b], one has

|w| ≤ κ(t)(1 + |p|) for all (w, p) ∈ ∂L(x, v)

whenever |x− x̄(t)| < ε,
∣∣ (v, L(x, v))− ( ˙̄x(t), L(x̄(t), ˙̄x(t)))

∣∣ < δ(t).
Proof. Let M = (sup{|x̄(t)| : t ∈ [a, b]}+ 1) and let ε < 1. Define

L̄(t) = L(x̄(t), ˙̄x(t)),

δ(t) = | ˙̄x(t)|+ |L̄(t)|+ 1,

κ(t) = k1

[
1 +

√
2
( | ˙̄x(t)|+ |L̄(t)|+ δ(t)

) ]
.

Note that δ and κ are integrable on [a, b]. Choose t ∈ [a, b] so that δ(t) is finite
(this holds for a.e. t). Now take any (x, v) so that |x − x̄(t)| < ε and |(v, L(x, v)) −
( ˙̄x(t), L̄(t))| < δ(t). Thus |x| < M and |(v, L(x, v))| < | ˙̄x(t)| + |L̄(t)| + δ(t), so (5.4)
states that, for every (w, p) ∈ ∂L(x, v),

|w| ≤ k1

[
1 + ( |v|+ |L(x, v)| ) ](1 + |p|)

≤ k1

[
1 +

√
2|(v, L(x, v))| ](1 + |p|)

≤ k1

[
1 +

√
2
( | ˙̄x(t)|+ |L̄(t)|+ δ(t)

) ]
(1 + |p|)

= κ(t)(1 + |p|).
We also have that

κ(t)/δ(t) = k1[1 +
√
2 ( | ˙̄x(t)|+ |L̄(t)|+ δ(t))]/δ(t)

≤ k1(1 + 2
√
2δ(t))/δ(t)

≤ k1(1 + 2
√
2).

Thus κ(t)/δ(t) is essentially bounded and so ([22, Hypothesis H5]) holds.
Ultimately, we wish to employ the main result of [23], which gives necessary

conditions on an optimal arc to the following general time Bolza problem: Find a
nondegenerate interval [a, b] and arc x ∈ A1

n[a, b] in order to

(Pt) minimize l(a, x(a), b, x(b)) +

∫ b

a

L(t, x(t), ẋ(t)) dt.

The following theorem says that if our global assumptions on H are in place, then
the result in [23] holds. Again, we are assuming that H and L satisfy (1.2) and (1.3).

Theorem 5.3. Let the arc x̄ and interval [ā, b̄] provide the minimum in (Pt).
Assume that the endpoint function l : R × R

n × R × R
n → R is proper and lsc; that

L(t, x, · ) is proper, lsc, coercive, and convex for each (t, x); and that (A2) holds.
Then some absolutely continuous arc (h, p) taking values in R×R

n satisfies either the
normal conditions or singular conditions below.

Normal conditions:
(a) (ḣ(t), ṗ(t)) ∈ co{(w1, w2) : (w1,−w2, ˙̄x(t)) ∈ ∂H(t, x̄(t), p(t))}

= co{(w1, w2) : (−w1, w2, p(t)) ∈ ∂L(t, x̄(t), ˙̄x(t))} a.e. t ∈ [ā, b̄].
(b) h(t) = H(t, x̄(t), p(t)) for all t ∈ [ā, b̄].
(c) (−h(ā), p(ā), h(b̄),−p(b̄)) ∈ ∂l(ā, x̄(ā), b̄, x̄(b̄)).
Singular conditions: One has |(h(t), p(t))| > 0 for all t ∈ [ā, b̄], and
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(a∞) (ḣ(t), ṗ(t)) ∈ co{(w1, w2) : (−w1, w2, p(t)) ∈ ∂∞L(t, x̄(t), ˙̄x(t))} a.e. t ∈ [ā, b̄].
(b∞) h(t) = 〈p(t), ˙̄x(t)〉 a.e. t ∈ [ā, b̄].
(c∞) (−h(ā), p(ā), h(b̄),−p(b̄)) ∈ ∂∞l(ā, x̄(ā), b̄, x̄(b̄)).
Proof. Many of the details of the proof are in the paper [23]. We must convert

our problem (Pt) into an equivalent problem over a fixed time interval and show that
we can then use the necessary conditions given in [22].

Let [ā, b̄] and x̄( ·) be an optimal solution to (Pt). First we transform the problem
into a fixed-time Bolza problem by using the Erdmann transform. This transform
employs the Lagrangian Lm defined in (5.1), where we choosem < b̄−ā. In particular,
we consider the problem

(Π) minimize l(θ(0), ξ(0), θ(1), ξ(1)) +

∫ 1

0

Lm(θ(s), ξ(s), ξ̇(s), θ̇(s))ds

over absolutely continuous arcs (θ, ξ) ∈ A1
n+1[0, 1]. It turns out (see [23, Lemma 4.1])

that the arc (θ̄(s), ξ̄(s)) = (ā+(b̄− ā)s, x̄(θ̄(s))) solves (Π). The goal is then to apply
necessary conditions from [22] to (θ̄, ξ̄) and then relate the conditions back to the
original arc x̄.

So we need to check that the hypotheses of [22] hold for the problem (Π). It is
fairly straightforward to see that the first four hypotheses of that paper are satisfied.
Our assumptions allow us to conclude that the subgradient inequality (5.2) of Propo-
sition 5.1 holds. So now we can apply Lemma 5.2 to Lm and the arc (θ̄, ξ̄). Lemma
5.2 says that ([22, Hypothesis H5]) holds. Thus the necessary conditions of [22] apply
to Lm and (θ, ξ). Translating these conditions back in terms of x̄, H, and L is done
in section 4.3 of [23], giving us the results of our theorem.

One slight adjustment we have made is in condition (b). In [23] it is shown that
(b) holds for a.e. t, but in our case we know that H is continuous (Proposition 2.4),
which forces this condition to hold at every t ∈ [ā, b̄].

We note that the conditions on L in this theorem are satisfied under (A), (A1),
and (A2). The coercivity condition on L is equivalent to assuming that H(t, x, · ) is
finite for every (t, x). This is a basic property of the Legendre–Fenchel transform.

6. Proof of the main result. We begin this section with a proposition that
will be used in the proof of the main theorem but is also of independent interest.
Recall the normal cone definitions (1.6) and (1.7).

Proposition 6.1. Let F : R
n ⇒ R

n be a locally sub-Lipschitz set-valued mapping
(see (1.11)) with closed, convex images. Assume K is a closed set that is invariant
with respect to the forward solution set (see Proposition 4.1). Then at each x ∈ K
we have

sup
v∈F (x)

〈v, y〉 ≤ 0 for every y ∈ NK(x).(6.1)

Proof. Take x̄ ∈ K and y ∈ NK(x̄). Since F is locally sub-Lipschitz, there is a
neighborhoodW of x̄ so that d(0, F (x)) < ρ0 for all x ∈W . Then for any ρ ∈ (2ρ0,∞),
the truncation mapping Fρ(x) := F (x)∩ρB is locally Lipschitz continuous onW (from
Theorem 9.33(a) in [27]). But if K is forward invariant under F , it also must be under
Fρ, since the solution set of the latter differential inclusion is contained in that of the

former. Take a sequence (xν , yν) with xν ∈ K ∩W and xν → x̄ so that yν ∈ N̂K(xν)
and yν → y. Theorem 5.3.4 of [3] tells us then that supv∈Fρ(xν)〈v, yν〉 ≤ 0. Then Fρ
being a bounded continuous mapping forces a similar inequality in the limit. That is,
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supv∈Fρ(x̄)〈v, y〉 ≤ 0. But this is true regardless of how large we take ρ, so our result
must hold.

Proof of Theorem 2.2. First we will show that V satisfies the ULLG condition,
as given in Definition 2.1. By (A0), there is a constant k1 > 0 such that ϕ(x) ≥
−k1(1 + |x|). Fix T > 0, and note that for (t, x, p) ∈ [0, T ]×R

n ×R
n, (A1) says that

H(t, x, p) ≤ H1(t, x, p) := µ(|p|) + (T + |x|)(β + α|p|).

Let L1 be the corresponding Lagrangian toH1. For (t, x, p) ∈ [0, T ]×R
n×R

n it follows
that L1(t, x, v) ≤ L(t, x, v). Thus if we let V1 be the value function corresponding to
the Bolza problem

min

{
− k1(1 + |x(0)|) +

∫ τ

0

L1

(
t, x(t), ẋ(t)

)
dt | x(τ) = ξ

}
,

we must have V1(τ, ξ) ≤ V (τ, ξ) for all (τ, ξ) ∈ [0, T ]×R
n. We can consider our Bolza

problem to have the form of (Pt) by letting

l(a, x(a), b, x(b)) = Ψ{0}(a) + Ψ{τ}(b)− k1(1 + |x(a)|) + Ψ{ξ}(x(b)).

We want to apply Theorem 5.3. Clearly l is proper and lsc. Since H1(t, x, · ) is lsc,
proper, convex, and finite for all (t, x), L1 satisfies the hypotheses of Theorem 5.3.
Furthermore, H1 satisfies the epi-continuity condition in (t, x) as well as in p, and so
by [26, Prop. 2.2], (w1, w2, v) ∈ ∂H1(t, x, p) implies that (w1, w2) ∈ ∂(t,x)H1(t, x, p),
from which it follows that |(w1, w2)| ≤ (β + α|p|), and thus (A2) holds.

Fix (τ̄ , ξ̄) ∈ [0, T ]×R
n and let x̄(·) be the minimizing arc for V1(τ̄ , ξ̄), which exists

by Proposition 3.1. Theorem 5.3 gives us an absolutely continuous arc p( · ) which
satisfies either normal or singular conditions. First we see that part (c) of the singular
conditions cannot occur since it forces p(ā) = p(0) = 0. So the normal conditions must
hold. Since ∂l(ā, x̄(ā), b̄, x̄(b̄)) ⊂ R × k1B × R × R

n, we must have |p(0)| ≤ k1. Part
(a) of the normal conditions says that for a.e. t, |ṗ(t)| ≤ (β + α|p(t)|), and so p( · )
must be bounded on [0, τ̄ ], implying the existence of a constant k2, independent of
(τ̄ , ξ̄), such that ∂µ(|p(t)|) ⊂ k2B for all t ∈ [0, τ̄ ]. Also implicit in normal condition
(a) is that

˙̄x(t) ∈ ∂pH1(t, x̄(t), p(t))

= ∂p(µ(|p|) + (T + |x|)(β + α|p|))(x̄(t), p(t))
⊂ ∂p(µ(|p|))(x̄(t), p(t)) + ∂p((T + |x|)(β + α|p|))(x̄(t), p(t))
⊂ k2B + α(T + |x̄(t)|)B.

So there exists a constant k3, also independent of (τ̄ , ξ̄), such that | ˙̄x(t)| ≤ k3(1 +
|x̄(t)|). This implies that |x̄(t)| ≤ (|ξ̄| + 1)ek3T for t ∈ [0, τ̄ ]. Now since L1(t, x, v) ≥
−H1(t, x, 0),∫ τ̄

0

L1(t, x̄(t), ˙̄x(t))dt ≥
∫ τ̄

0

−µ(0)− β(|T |+ |x̄(t)|)dt

≥
∫ τ̄

0

−µ(0)− β(|T |+ (|ξ̄|+ 1)ek3T )dt

≥ −k4(|ξ̄|+ 1)
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for some constant k4 > 0. Since |x̄(0)| ≤ (|ξ̄|+ 1)ek3T , we see then that

V1(τ, ξ) ≥ −k1((|ξ|+ 1)ek3T + 1)− k4(|ξ|+ 1)

= −k(1 + |ξ|)

for some k > 0 and for all (τ, ξ) ∈ [0, T ]× R
n. So V satisfies the ULLG condition.

To see that the value function is a solution to (1.1) as given by Definition 1.2,
we first note that Proposition 3.1 shows V is proper and lsc. By Definition 1.1, V
satisfies (a) and (b) of Definition 1.2. The only remaining part that requires checking
is the subgradient condition (c).

First we check for τ = 0. Take ξ ∈ R
n and (σ, η) ∈ ∂V (0, ξ). By Proposition 3.2,

V satisfies property (P4). That is, epiV is invariant with respect to the differential

inclusion (ṫ(s), ẋ(s), ẏ(s)) ∈ ẼL((t(s), x(s), y(s)). Assumptions (A) and (A2) imply
that the mapping epiL(t, x, · ), by Proposition 2.6, is locally sub-Lipschitz. Then

ẼL(t, x, y) = {1} × EL(t, x) will also be locally sub-Lipschitz and Proposition 6.1
says that

sup
(v,β)∈epiL(0,ξ, · )

{ 〈
(σ, η,−1), (1, v, β) 〉 } ≤ 0,

⇒ sup
v∈Rn

{
σ + 〈η, v〉 − L(0, ξ, v)

} ≤ 0,

⇒ σ +H(0, ξ, η) ≤ 0.

Now take (σ, η) ∈ ∂̂V (τ, ξ) for some (τ, ξ) with τ > 0. Let x̄( · ) be a minimizing
arc for (Pτ,ξ). As mentioned in the introduction, there exists a differentiable function
g : R × R

n → R such that g(τ, ξ) = V (τ, ξ), but for any (τ ′, ξ′) �= (τ, ξ), we have
g(τ ′, ξ′) < V (τ ′, ξ′). Furthermore, ∇g(τ, ξ) = (σ, η). Consider the following general
time Bolza problem:

(Pg) minimize l(a, x(a), b, x(b)) +

∫ b

a

L
(
t, x(t), ẋ(t)

)
dt,

where l(a, x(a), b, x(b)) = Ψ{0}(a) + ϕ(x(a)) − g(b, x(b)) and we are minimizing over
all nondegenerate time intervals [a, b] and arcs x ∈ A1

n([a, b]). If (Pg) is to have a
finite value, a must be 0. Evaluating the above expression for any feasible arc x( · )
and interval [0, b] must give us a nonnegative value, since

l(0, x(0), b, x(b)) +

∫ b

0

L
(
t, x(t), ẋ(t)

)
dt ≥ ϕ(x(0))− g(b, x(b)) +

∫ b

0

L
(
t, x(t), ẋ(t)

)
dt

≥ V (b, x(b))− g(b, x(b))

≥ 0.

It should be clear however, that taking [a, b] = [0, τ ] and x = x̄( · ) gives the value 0
in the above. Thus we have an optimal solution. Now we wish to use the necessary
conditions given in Theorem 5.3, which can be applied to our general time Bolza
problem (Pg). First checking the singular conditions described in Theorem 5.3, we
have

∂
∞
l(0, x̄(0), τ, x̄(τ)) ⊂ ∂

∞
Ψ{0}(0)× ∂

∞
ϕ(x(0))× ∂

∞
g(τ, x̄(τ))

= R× ∂
∞
ϕ(x(0))× (0, 0).
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For the first containment, we have used the calculus rules in ([27, Prop. 10.5]). So
there does not exist an arc (h, p) with |(h(t), p(t))| > 0 for t ∈ [0, τ ] satisfying the
singular conditions, since condition (c∞) forces (h(τ), p(τ)) = (0, 0). So the normal
conditions must hold. That is, there exist absolutely continuous arcs h and p satisfying
the transversality condition

(−h(0), p(0), h(τ),−p(τ)) ∈ ∂l(0, x̄(0), τ, x̄(τ))

= R× ∂ϕ(x(0))× (−σ,−η),

and so h(τ) = −σ and p(τ) = η. Also, condition (b) of the normal conditions says
that h(t) = H(t, x̄(t), p(t)) for all t ∈ [0, τ ], so in particular h(τ) = H(τ, x̄(τ), p(τ)),
giving us that σ +H(τ, ξ, η) = 0.

Now if we have (σ, η) ∈ ∂V (τ, ξ) for τ > 0, by definition of the general subgradient,
there exist sequences (τν , ξν)→ (τ, ξ) with V (τν , ξν)→ V (τ, ξ) and (σν , ην)→ (σ, η)

with (σν , ην) ∈ ∂̂V (τν , ξν) and τν > 0. So by the result just proved, H(τν , ξν , ην) =
−σν . But H being continuous implies H(τν , ξν , ην) → H(τ, ξ, η) which forces
H(τ, ξ, η) = −σ. Thus V is a solution as given by Definition 1.2.

Let u be a solution to (1.1) as in Definition 1.2 that satisfies the ULLG condition.
To prove the uniqueness part of the theorem, we need to show that u = V . Let
V : R× R× R

n → R be the value function for

(Pθ,τ,ξ) min u(t(0), x(0)) +

∫ θ

0

L(s, t(s), x(s), ṫ(s), ẋ(s))ds.
Here we are minimizing over (t( · ), x( · )) ∈ A1

n+1([0, θ]) with (t(θ), x(θ)) = (τ, ξ), and
the Lagrangian is

L(s, t, x, v1, v2) := L(t, x, v2) + Ψ{1}(v1).

Note that this is a generalized problem of Bolza in which we are considering (t, x) as
the state variable and s as the time parameter. The corresponding Hamiltonian is
then

H(s, t, x, p1, p2) = sup
(v1,v2)∈R×Rn

{ 〈(v1, v2), (p1, p2)〉 − L(s, t, x, v1, v2)
}

= sup
(v1,v2)∈R×Rn

{ 〈v1, p1〉+ 〈v2, p2〉 − L(t, x, v2)−Ψ{1}(v1)
}

= sup
v2∈Rn

{
p1 + 〈v2, p2〉 − L(t, x, v2)

}
= p1 +H(t, x, p2).

We would like to use the existence part of Theorem 2.2, just proved above, to show
that V is a solution to

Vs(s, t, x) +H(s, t, x,Vt(s, t, x),Vx(s, t, x)) = 0, (s, t, x) ∈ (0,∞)× R× R
n,

V(0, t, x) = u(t, x), (t, x) ∈ R× R
n,

in the sense of Definition 1.2. ClearlyH satisfies (A), (A1), and (A2) as long asH does.
Assumption (A0) is not necessarily satisfied however, since u could behave in a coun-
tercoercive manner with respect to its first variable. We can get around this problem
as follows. Let T > 0 and consider adding an indicator function Ψ[0,T ]×Rn(t(0), x(0))
to the initial cost u(t(0), x(0)) in (Pθ,τ,ξ). Now the initial cost does satisfy (A0) and
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the new resulting value function V̄ is therefore a solution to (1.1) as given by Definition
1.2, and it has equation

V̄(θ, τ, ξ) =
{
V(θ, τ, ξ) if τ ≤ T + θ,

+∞ otherwise.

This implies that V must satisfy (a)–(c) of Definition 1.2, and for any given (θ, τ, ξ) ∈
domV, it suffices to take T > θ + τ to compare V with V̄ and see that (1.8) holds.
Thus V is a solution to (1.1).

First consider the case where 0 < θ. If we were to go through the existence proof
above, we can again apply the technique of introducing a differentiable function g ≤ V
whose gradient is (α, σ, η) at the point (θ, τ, ξ), and using the results from Theorem
5.3, assert the existence of absolutely continuous arcs h(·) and p(·) with the properties

(a) h(s) = H(s, t̄(s), x̄(s), p(s)) for all s ∈ [0, θ],
(b) (−h(0), p(0), h(θ),−p(θ)) ∈ R× ∂u(t̄(0), x̄(0)) × (−α,−σ,−η),
(c) ḣ(s) = 0 for a.e. s ∈ [0, θ].

Conditions (b) and (c) imply then that h(s) = −α for all s ∈ [0, θ]. If we denote p(0)
by (σ0, η0), then (b) implies (σ0, η0) ∈ ∂u(t̄(0), x̄(0)). But then (a) gives us that

−α = H(θ, τ, ξ, σ, η)

= H(0, t̄(0), x̄(0), σ0, η0)

= σ0 +H(t̄(0), x̄(0), η0).

By assumption, this last quantity is equal to 0 if t̄(0) > 0 and is less than or equal to

0 if t̄(0) = 0. Since ˙̄t(s) = 1, and t̄(θ) = τ , the only way t̄(0) = 0 is if θ = τ . Thus we
have {

−α = 0 if 0 < θ < τ,

−α ≤ 0 if 0 < θ = τ.

Now consider (α, σ, η) ∈ ∂̂V(0, τ, ξ) with τ > 0. Again applying the existence
part of Theorem 2.2 to V, we have α + H(0, τ, ξ, σ, η) ≤ 0. Using the calculus of

regular subgradients (see Corollary 10.11 in [27]), we see that (σ, η) ∈ ∂̂(t,x)V(0, τ, ξ) =
∂̂u(τ, ξ). By assumption then, H(0, τ, ξ, σ, η) = σ + H(τ, ξ, η) = 0. It follows that
α ≤ 0.

Now looking at a general subgradient (α, σ, η) ∈ ∂V(0, τ, ξ) with τ > 0, there
exist sequences (αν , σν , ην)→ (α, σ, η) and (θν , τν , ξν)→ (0, τ, ξ) with (αν , σν , ην) ∈
∂̂V(θν , τν , ξν) and V(θν , τν , ξν) → V(0, τ, ξ). Furthermore, since τ > 0, we can take
θν < τν . We have just seen though that for this sequence αν ≤ 0, so we must have
α ≤ 0.

In summary then, for (α, σ, η) ∈ ∂V(θ, τ, ξ), we have
α ≤ 0 if 0 = θ < τ,

α = 0 if 0 < θ < τ,

α ≥ 0 if 0 < θ = τ.

It should be clear from Proposition 3.1 that V is lsc and proper. So Proposition 4.4
says that in fact V = ũ. That is,

V(θ, τ, ξ) =
{
u(τ, ξ) if 0 ≤ θ ≤ τ,

+∞ otherwise.
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But epiV(θ, · , · ) is the reachable set of epiu at time θ under the differential inclusion

ż(s) ∈ ẼL(z(s)). That is,

epiV(θ, · , · ) = Repiu(θ).

Now from Proposition 4.3, we have that u satisfies conditions (P1)–(P4), and finally
Proposition 3.2 implies that u is the value function V for (Pτ,ξ).
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spective, Birkhäuser, Boston, 1995.



UTILITY MAXIMIZATION WITH DISCRETIONARY STOPPING∗

IOANNIS KARATZAS† AND HUI WANG‡

SIAM J. CONTROL OPTIM. c© 2000 Society for Industrial and Applied Mathematics
Vol. 39, No. 1, pp. 306–329

Abstract. Utility maximization problems of mixed optimal stopping/control type are con-
sidered, which can be solved by reduction to a family of related pure optimal stopping problems.
Sufficient conditions for the existence of optimal strategies are provided in the context of continuous-
time, Itô process models for complete markets. The mathematical tools used are those of optimal
stopping theory, continuous-time martingales, convex analysis, and duality theory. Several examples
are solved explicitly, including one which demonstrates that optimal strategies need not always exist.
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1. Introduction. Problems of expected utility maximization go back at least
to the seminal articles of Samuelson and Merton (1969) and Merton (1971), and
have been studied extensively in recent years, for instance by Pliska (1986), Karatzas,
Lehoczky, and Shreve [KLS] (1987), and Cox and Huang (1989). Most of this literature
shares the common setting of an agent who receives a deterministic initial capital,
which he must then invest in a market (complete or incomplete) so as to maximize
the expected utility of his wealth and/or consumption, up to a prespecified terminal
time.

In this paper we consider a variant of these problems by allowing the agent freely
to stop before or at a prespecified final time in order to maximize the expected utility
of his wealth and/or consumption up to the stopping time. The assets available to the
agent can be traded continuously, without restrictions, frictions, or transaction costs;
they consist of a locally riskless money-market, and m risky stocks. (One can think,
for example, of an investor or mutual fund manager who tries to invest/consume as
skillfully as possible before “retiring” from the stock market and putting all his hold-
ings in the money-market.) The stock prices are driven by m independent Brownian
motions; these represent the sources of uncertainty in the market model, which is
assumed to be complete in the sense of Harrison and Pliska (1981). The market coef-
ficients, i.e., the money-market rate, the stock-appreciation rates, and the matrix of
stock volatilities, are bounded random processes adapted to the driving m-dimensional
Brownian motion.

The utility maximization problem studied here involves aspects of both optimal
stopping and stochastic control. Such problems also arise in situations like pricing
American contingent claims under constraints, selecting trading strategies in the pres-
ence of transaction costs with an American option held in the portfolio, target-tracking
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followed by a decision (to engage the target or not), etc.; see Karatzas and Kou (1998),
Davis and Zariphopoulou (1995), Davis and Zervos (1994), as well as Karatzas and
Sudderth (1999) for such problems in different contexts. The free-boundary prob-
lem approach, based on an associated Hamilton–Jacobi–Bellman (HJB) equation of
dynamic programming, is inadequate for the analysis of the general version of our
model, which is not Markovian. Instead, duality theory plays an important role and
leads to a family of pure optimal stopping problems which is even more amenable to
analysis. Duality approaches have been used with success in treating portfolio opti-
mization problems for financial markets which are incomplete or impose constraints
on portfolio choice, as in Karatzas, Lehoczky, Shreve, and Xu [KLSX] (1991), Shreve
and Xu (1992), and Cvitanić and Karatzas (1992).

The model and the utility maximization problem are described in sections 2–5. We
present a solution in section 6 using a duality approach. However, this solution is not
quite satisfactory in the sense that it leads to computationally tractable results only in
very special cases and does not shed much light on the general question of existence of
optimal strategies. We then introduce and analyze a family of pure optimal stopping
problems in sections 7–8. In terms of these, we are able to provide conditions which
guarantee the existence of optimal strategies. In section 9, several examples are
presented, one of which demonstrates that optimal strategies need not always exist.
For completeness, we treat in Appendix A an example which can be solved explicitly
using a free-boundary problem for the associated HJB equation. In Appendix B we
formulate an open problem, suggested by the referee, where consumption continues
past the time of retirement from the stock market.

It is hoped that the analysis in this paper will serve as a step towards estab-
lishing a general theory for stochastic control problems with discretionary stopping
in continuous time, possibly along the lines of the Dubins–Savage (1965) theory for
discrete-time “leavable gambling problems” developed in Chapter 3 of Maitra and
Sudderth (1996).

Remark 1.1. We denote by “standing assumption” those conditions that are al-
ways in force throughout the paper; they will not be cited in theorems. And “assump-
tion” stands for those conditions which are in force only when theorems specifically
cite them.

2. The market model. We adopt a model consisting of a money-market, with
price P0(·) given by

dP0(t) = P0(t)r(t) dt, P0(0) = 1,(2.1)

and of m stocks with prices-per-share Pi(·) satisfying the equations

dPi(t) = Pi(t)

bi(t) dt +

m∑
j=1

σij(t)dWj(t)

 , i = 1, . . . ,m.(2.2)

Here W (·) = (W1(·), . . . ,Wm(·))∗ is an m-dimensional Brownian motion on a com-
plete probability space (Ω,F,P). We shall denote by F = {Ft}0≤t≤T the P-augmentation
of the filtration generated by W (·). The coëfficients of the model, that is, the scalar
interest rate process r(·), the vector process b(·) = (b1(·), . . . , bm(·))∗ of appreciation
rates, and the matrix-valued volatility process σ(·) = (σij(·))1≤i,j≤m, are assumed to
be bounded, and progressively measurable with respect to F. All processes encoun-
tered throughout sections 2–9 of the paper will be defined on the fixed, finite horizon
[0, T ].
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Standing Assumption 2.1. We assume that ‖b(t)‖ ≤ L, |r(t)| ≤ L, ∀ 0 ≤ t ≤ T
hold almost surely (a.s.) for some given real constant L > 0.

Standing Assumption 2.2. The process σ(·) satisfies the strong nondegeneracy
condition

ξ∗σ(t)σ∗(t)ξ ≥ ε‖ξ‖2 ∀ (t, ξ) ∈ [0, T ] × R
m

a.s. for some given real constant ε > 0. From Standing Assumption 2.2, the matrices
σ(t), σ∗(t) are invertible, and the norms of (σ(t))−1 and (σ∗(t))−1 are bounded from
above and below by δ and δ−1, respectively, for some δ ∈ (1,∞); cf. Karatzas and
Shreve (1991), p. 372. We also define the “relative risk” process

θ(t)
�
= σ−1(t)[b(t) − r(t)1m],(2.3)

where 1m = (1, . . . , 1)∗, the discount process

γ(t)
�
=

1

P0(t)
= exp

{
−
∫ t

0

r(s) ds

}
,(2.4)

the exponential martingale (or likelihood ratio process)

Z0(t)
�
= exp

{
−
∫ t

0

θ∗(s) dW (s) − 1

2

∫ t

0

‖θ(s)‖2 ds

}
,(2.5)

and the state-price-density process

H(t)
�
= γ(t)Z0(t).(2.6)

3. Portfolio and wealth processes. A portfolio process π(·) = (π1(·), . . . , πm(·))∗
is R

m-valued, and a consumption process c(·) takes values in [0,∞); these are both
F-progressively measurable and satisfy∫ T

0

c(t) dt +

∫ T

0

‖π(t)‖2 dt < ∞

a.s. We regard πi(t) as the proportion of an agent’s wealth invested in stock i at time
t; the remaining proportion 1 − π∗(t)1m = 1 −∑m

i=1 πi(t) is invested in the money-
market. These proportions are not constrained to take values in the interval [0, 1]; in
other words, we allow both short-selling of stocks and borrowing at the interest rate of
the bond. For a given, nonrandom, initial capital x > 0, let X(·) ≡ Xx,π,c(·) denote
the wealth-process corresponding to a portfolio/consumption process pair

(
π(·), c(·))

as above. This wealth-process is defined by the initial condition Xx,π,c(0) = x and
the equation

dX(t) =

m∑
i=1

πi(t)X(t)

bi(t) dt +

m∑
j=1

σij(t)dWj(t)

(3.1)

+

{
1 −

m∑
i=1

πi(t)

}
X(t)r(t) dt− c(t) dt

= r(t)X(t)dt + X(t)π∗(t)σ(t)dW0(t) − c(t) dt, X(0) = x > 0,
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where we have set

W0(t)
�
= W (t) +

∫ t

0

θ(s) ds, 0 ≤ t ≤ T.(3.2)

In other words,

d (γ(t)Xx,π,c(t)) = γ(t)Xx,π,c(t)π∗(t)σ(t) dW0(t) − γ(t)c(t) dt, 0 ≤ t ≤ T.(3.3)

The process W0(·) of (3.2) is Brownian motion under the equivalent martingale mea-
sure

P0(A)
�
= E

[
Z0(T )1A

]
, A ∈ FT ,(3.4)

by the Girsanov theorem (section 3.5 in Karatzas and Shreve (1991)). We shall say
that a portfolio/consumption process pair (π, c) is available at initial capital x > 0 if
the corresponding wealth-process Xx,π,c(·) of (3.3) is strictly positive on [0, T ] a.s.

An application of Itô’s rule to the product of the processes Z0(·) and γ(·)Xx,π,c(·)
leads to

H(t)Xx,π,c(t) +

∫ t

0

H(s)c(s) ds(3.5)

= x +

∫ t

0

H(s)Xx,π,c(s)(σ∗(s)π(s) − θ(s))∗ dW (s).

This shows, in particular, that for any pair (π, c) available at initial capital x > 0, the
process H(·)Xx,π,c(·)+

∫ ·
0
H(s)c(s) ds is a continuous, positive local martingale, hence

a supermartingale, under P. Consequently, the optional sampling theorem gives

E

[
H(τ)Xx,π,c(τ) +

∫ τ

0

H(s)c(s) ds

]
≤ x ∀ τ ∈ S.(3.6)

Here and in what follows, we denote by Ss,t the class of F-stopping times τ : Ω −→ [s, t]
for 0 ≤ s ≤ t ≤ T , and let S ≡ S0,T .

4. Utility function. A function U : (0,∞) −→ R will be called utility function
if it is strictly increasing, strictly concave, continuously differentiable, and satisfies

U ′(0+)
�
= lim

x↓0
U ′(x) = ∞, U ′(∞)

�
= lim

x↑∞
U ′(x) = 0.(4.1)

We shall denote by I(·) the (continuous, strictly decreasing) inverse of the marginal-
utility function U ′(·); this function maps (0,∞) onto itself and satisfies I(0+) =
∞, I(∞) = 0. We also introduce the Legendre–Fenchel transform

Ũ(y)
�
= max

x>0
[U(x) − xy] = U(I(y)) − yI(y), 0 < y < ∞,(4.2)

of −U(−x); this function Ũ(·) is strictly decreasing, strictly convex, and satisfies

Ũ ′(y) = −I(y), 0 < y < ∞,(4.3)

U(x) = min
y>0

[Ũ(y) + xy] = Ũ(U ′(x)) + xU ′(x), 0 < x < ∞.(4.4)

The inequality

U(I(y)) ≥ U(x) + y[I(y) − x] ∀ x > 0, y > 0,(4.5)

is a direct consequence of (4.2).
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5. The optimization problem. The agent in our model has time-dependent
utility of the form

∫ t
0
e−βsU1

(
c(s)

)
ds + e−βtU2(x), with β ≥ 0 a real constant. The

utility functions U1(·), U2(·) measure his utility from consumption and wealth, re-
spectively, whereas β stands for a discount factor. If the agent uses the portfo-
lio/consumption strategy (π, c) available at initial capital x > 0, and the stopping
rule τ ∈ S, his expected discounted utility is

J(x;π, c, τ)
�
= E

[∫ τ

0

e−βtU1

(
c(t)

)
dt + e−βτU2(Xx,π,c(τ))

]
.(5.1)

The optimization problem considered in this paper is the following: to maximize
the expected discounted utility in (5.1), over the class A(x) of triples (π, c, τ) as above,
for which the expectation in (5.1) is well defined, i.e.,

E

[∫ τ

0

e−βtU−
1

(
c(t)

)
dt + e−βτU−

2 (Xx,π,c(τ))

]
< ∞.(5.2)

(Here and in what follows, x− denotes the negative part of the real number x, namely,
x− = max(−x, 0).) The value-function of this problem will be denoted by

V (x)
�
= sup

(π,c,τ)∈A(x)

J(x;π, c, τ), x ∈ (0,∞).(5.3)

We say that the value V (x) is “attainable” if we can find a triple (π̂, ĉ, τ̂) ∈ A(x) with
V (x) = J(x, π̂, ĉ, τ̂); such a triple is then called “optimal” for problem (5.3). To ensure
that this problem is meaningful, we impose the following assumption throughout.

Standing Assumption 5.1. V (x) < ∞ ∀x ∈ (0,∞).
It is fairly straightforward that the function V (·) is increasing on (0,∞). However, it
is not clear at this stage whether V (·) is concave or not. We shall discuss this issue
in section 8.

Remark 5.2. A sufficient condition for Standing Assumption 5.1 is that

max{U1(x), U2(x)} ≤ k1 + k2x
δ ∀ x ∈ (0,∞)(5.4)

holds for some k1 > 0, k2 > 0, δ ∈ (0, 1); cf. Remark 3.6.8 in Karatzas and Shreve
(1998).

6. Duality approach. For any fixed stopping time τ ∈ S, we denote by Πτ (x)
the set of portfolio/consumption process pairs (π, c) for which (π, c, τ) ∈ A(x). The
solution of the utility maximization problem

Vτ (x)
�
= sup

(π,c)∈Πτ (x)

J(x;π, c, τ)(6.1)

can be derived as in KLS (1987). We review briefly the results in this section. For
any triple (π, c, τ) ∈ A(x) and any real number λ > 0, it follows from (4.2), (3.6) that

J(x;π, c, τ) = E

[∫ τ

0

e−βtU1

(
c(t)

)
dt + e−βτU2(Xx,π,c(τ))

]
≤ E

[∫ τ

0

e−βtŨ1(λeβtH(t)) dt + e−βτ Ũ2(λeβτH(τ))

]
+λ · E

[
H(τ)Xx,π,c(τ) +

∫ τ

0

H(t)c(t) dt

]
≤ E

[∫ τ

0

e−βtŨ1(λeβtH(t)) dt + e−βτ Ũ2(λeβτH(τ))

]
+ λx,
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with equality if and only if

Xx,π,c(τ) = I2(λeβτH(τ)) and c(t) = I1
(
λeβtH(t)

) ∀ 0 ≤ t ≤ τ a.s.,(6.2)

E

[
H(τ)Xx,π,c(τ) +

∫ τ

0

H(t)c(t) dt

]
= x(6.3)

hold. It develops that we have Vτ (x) ≤ infλ>0

[
J̃(λ; τ) + λx

]
∀ τ ∈ S, as well as

V (x) = sup
τ∈S

Vτ (x) ≤ sup
τ∈S

inf
λ>0

[
J̃(λ; τ) + λx

]
(6.4)

with the notation

J̃(λ; τ)
�
= E

[∫ τ

0

e−βtŨ1

(
λeβtH(t)

)
dt + e−βτ Ũ2(λeβτH(τ))

]
.(6.5)

In order to proceed, we shall need the following assumption (see Remark 6.7 for
discussion).

Assumption 6.1. E

[
sup0≤t≤T

(
H(t) · I2(λeβtH(t)

)
+
∫ T
0

H(t)I1(λeβtH(t)) dt
]

< ∞ ∀λ ∈ (0,∞).
Under this assumption, for any given τ ∈ S, the function Xτ : (0,∞) → (0,∞)

defined by

Xτ (λ)
�
= E

[∫ τ

0

H(t)I1
(
λeβtH(t)

)
dt + H(τ) · I2(λeβτH(τ))

]
, 0 < λ < ∞,(6.6)

is a continuous, strictly decreasing mapping of (0,∞) onto itself with Xτ (0+) =
∞, Xτ (∞) = 0; thus Xτ (·) has a continuous, strictly decreasing inverse Yτ (·) from
(0,∞) onto itself. We define

ξx(τ)
�
= I2

(Yτ (x)eβτH(τ)
)

and ηx(t)
�
= I1

(Yτ (x)eβtH(t)
)
, 0 ≤ t ≤ T,(6.7)

so that, in particular,

E

[
H(τ)ξx(τ) +

∫ τ

0

H(t)ηx(t) dt

]
= x.(6.8)

Lemma 6.2. For any τ ∈ S, the random variables of (6.7) satisfy

E

[
e−βτU−

2

(
ξx(τ)

)
+

∫ τ

0

e−βtU−
1

(
ηx(t)

)
dt

]
< ∞,(6.9)

and for every portfolio/consumption pair (π, c) ∈ Πτ (x) we have

E

[∫ τ

0

U1

(
c(t)

)
dt + e−βτU2(Xx,π,c(τ))

]
(6.10)

≤ E

[∫ τ

0

U1

(
ηx(t)

)
dt + e−βτU2(ξx(τ)

)]
.
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Lemma 6.2 can be proved by arguments similar to those used in the proof of
Theorem 3.6.3 in Karatzas and Shreve (1998). We conclude from Lemma 6.2 that,
if there exists a portfolio π̂τ (·) such that (π̂τ , ĉτ ) is available at initial capital x > 0,

where ĉτ (·) �
= ηx(·)1[[0,τ [[(·), and if

Xx,π̂τ ,ĉτ (τ) = ξx(τ)(6.11)

holds a.s., then the pair (π̂τ , ĉτ ) belongs to Πτ (x) and is optimal for the utility max-
imization problem (6.1). The existence of such a portfolio will need the assumption
of market completeness, as we shall see in the next lemma.

Lemma 6.3. For any τ ∈ S, any Fτ -measurable random variable B with P[B >
0] = 1, and any progressively measurable process c(·) ≥ 0 that satisfies c(·) ≡ 0 almost

everywhere (a.e.) on [[τ, T ]] as well as E

[
H(τ)B +

∫ T
0

H(t)c(t) dt
]

= x, there exists a

portfolio process π(·) such that, a.s.

Xx,π,c(t) > 0, 0 ≤ t ≤ T, and Xx,π,c(τ) = B.

Proof. We begin with the strictly positive, continuous process X(·) defined by

X(t)
�
=

1

γ(t)
· E0

[
γ(τ)B +

∫ τ

t∧τ
γ(s)c(s) ds

∣∣∣∣Ft] , 0 ≤ t ≤ T.

This process satisfies

X(0) = E0

[
γ(τ)B +

∫ τ

0

γ(s)c(s) ds

]
= E

[
H(τ)B +

∫ τ

0

H(s)c(s) ds

]
= x,

and X(τ) = B a.s. On the other hand, the P0-martingale

M(·) �
= γ(·)X(·) +

∫ ·

0

γ(s)c(s) ds = E0

[
γ(τ)B +

∫ τ

0

γ(s)c(s) ds|F·

]
admits the stochastic integral representation

M(t) = x +

∫ t

0

ψ∗(s) dW0(s), 0 ≤ t ≤ T,

for some F-adapted process ψ(·) that satisfies
∫ T
0
‖ψ(s)‖2 ds < ∞ a.s. (e.g., Karatzas

and Shreve (1998), Lemma 1.6.7). Define π(t)
�
= (σ∗(t))−1ψ(t)/M(t), 0 ≤ t ≤ T, and

check from (3.3) that X(·) = Xx,π,c(·) a.e. on [0, T ] × Ω.
Remark 6.4. Note that the martingale M(·) is constant, and thus we have

ψ(·) ≡ 0, π(·) ≡ 0 a.e. on the stochastic interval [[τ, T ]]; in particular, Xx,π,c(t, ω) =

B(ω)e

∫ t
τ(ω)

r(u,ω) du
a.e. on [[τ, T ]]. In other words, at the stopping time τ all invest-

ment in the stock market ceases, and all proceeds are invested in the money-market
from then on.

We have proved the following result.
Proposition 6.5. Under Assumption 6.1, for any τ ∈ S we have

Vτ (x) = inf
λ>0

[
J̃(λ; τ) + λx

]
= J̃(Yτ (x); τ) + xYτ (x),(6.12)
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and the supremum in (6.1) is attained by the consumption strategy ĉτ (t) = I1
(Yτ (x)eβt

H(t)
)
1[0,τ)(t) and some portfolio π̂τ (·) that satisfies (6.11). Moreover,

V (x) = sup
τ∈S

Vτ (x) = sup
τ∈S

inf
λ>0

[
J̃(λ; τ) + λx

]
= sup

τ∈S

[
J̃(Yτ (x); τ) + xYτ (x)

]
.

(6.13)

Example 6.6 (logarithmic utility functions). U1(x) = δ log x, U2(x) = log x for
x > 0 and some δ ∈ [0, 1]. In this case, Assumption 6.1 is satisfied, and we have
I1(y) = δ/y, Ũ1(y) = δ log δ − δ[1 + log y], and I2(y) = 1/y, Ũ2(y) = −1 − log y.
Hence, with

Q(t)
�
=

∫ t

0

θ∗(s) dW (s) +

∫ t

0

(
r(s) +

‖θ(s)‖2

2
− β

)
ds

and with the convention δ log δ ≡ 0 for δ = 0, we have

J̃(λ; τ) = E
[
e−βτ (Q(τ) − (1 + log λ))

]
+ δ · E

∫ τ

0

e−βt
(
Q(t) − (1 + log λ)

)
dt

+δ log δ · E
∫ τ

0

e−βt dt

for any stopping time τ . It develops that Xτ (λ) = Kτ/λ and thus Yτ (x) = Kτ/x,
where

Kτ
�
= E

[
e−βτ + δ

∫ τ

0

e−βt dt
]
.

From Proposition 6.5, the value-function of problem (5.3) is given by

V (x) = sup
τ∈S

E

[
e−βτ

{
log

(
x/Kτ

)
+ Q(τ)

}
+ δ ·

∫ τ

0

e−βt
{

log
(
x/Kτ

)
+ Q(t)

}
dt

]
,

a quantity that is, in general, very difficult to compute. It is not even clear whether the
supremum in this expression is attained (see Example 9.3 in this regard). However,
in the special case β = 0 and δ = 0, the above expression can be reduced significantly
to

V (x) = log x + sup
τ∈S

E

∫ τ

0

[
r(u) +

1

2
‖θ(u)‖2

]
du

and amounts to solving a standard optimal stopping problem. The latter has the
trivial solution τ∗ ≡ T for r(·) ≥ 0.

Remark 6.7. A sufficient condition for Assumption 6.1 is that

I1(y) + I2(y) ≤ k1 + k2y
−α ∀ y ∈ (0,∞)(6.14)

holds for some constants k1 > 0, k2 > 0, and α > 0. Indeed, under (6.14) we have

E

[
sup

0≤s≤T

(
H(s) · Ij(λeβsH(s))

)]
≤ k1E

[
sup

0≤s≤T
(H(s))

]
+ k2λ

−α
E

[
sup

0≤s≤T
(H(s))

1−α
]

< ∞
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for j = 1, 2, as is easy to check using Hölder’s inequality, Doob’s maximal inequality,
and the boundedness of market coefficients. This is because, for any ρ ∈ R, there
exist positive constants C1, C2 such that

E

[
sup

0≤t≤T

(
H(t)

)ρ]
= E

[
sup

0≤t≤T

(
γ(t)Z0(t)

)ρ] ≤ C1 · E
[

sup
0≤t≤T

(Z0(t))
ρ

]
≤ C1 · E

[
sup

0≤t≤T

(
e
−ρ

∫ t
0
θ∗(s) dW (s)− ρ2

2

∫ t
0
‖θ(s)‖2 ds

)
· sup
0≤t≤T

(
e
ρ(ρ−1)

2

∫ t
0
‖θ(s)‖2 ds

)]
≤ C2 · E

[
sup

0≤t≤T

(
e
−ρ

∫ t
0
θ∗(s) dW (s)− ρ2

2

∫ t
0
‖θ(s)‖2 ds

)]
< ∞.

7. Pure optimal stopping problems. The representation (6.13) for the solu-
tion of the utility maximization problem in section 5 is not entirely satisfactory. It
is not clear how the quantities Yτ (x) are related to each other for different stopping
times τ ∈ S, except in some very special cases. Furthermore, it is not easy to compute
the last supremum in (6.13), or even to decide whether it is attained or not. All these
points are illustrated in Example 6.6 of a logarithmic utility function. In this section,
we shall try to convert the original problem into a family of pure optimal stopping
problems, for which we can obtain a better understanding. To this end, we define, for
every λ ∈ (0,∞), the dual optimization problem

Ṽ (λ)
�
= sup

τ∈S
J̃(λ; τ) = sup

τ∈S
E

[∫ τ

0

e−βtŨ1

(
λeβtH(t)

)
dt + e−βτ Ũ2

(
λeβτH(τ)

)](7.1)

of pure optimal stopping type, in the notation of (6.5), (4.2), (2.6). To ensure that
the problem of (7.1) is meaningful, we impose the following assumption throughout.

Standing Assumption 7.1. For any λ ∈ (0,∞) we have Ṽ (λ) < ∞, and there exists
some stopping time τ̂λ which is optimal in (7.1), i.e., such that Ṽ (λ) = J̃(λ; τ̂λ).

Here and in what follows, we denote by Ŝλ the set of stopping times that attain
the supremum in (6.5) for every given λ > 0. It follows from (6.4) that we have, in
the notation of (7.1),

V (x) ≤ sup
τ∈S

inf
λ>0

[
J̃(λ; τ) + λx

]
≤ inf

λ>0

[
sup
τ∈S

J̃(λ; τ) + λx

]
= inf

λ>0

[
Ṽ (λ) + λx

]
.

(7.2)

We wish that the inequalities in (7.2) would always hold as equalities. Unfortunately,
it turns out that the second inequality in (7.2) might be strict, depending on the
coefficients of the model and on the initial capital x. We shall see this more clearly
in the following sections.

Remark 7.2. Standing Assumption 7.1 holds if condition (5.4) is satisfied. This is

because the continuous process Y λ(t)
�
=
∫ t
0
e−βsŨ1

(
λeβsH(s)

)
+ e−βtŨ2(λeβtH(t)),

0 ≤ t ≤ T, satisfies in this case E[sup0≤t≤T |Y λ(t)|] < ∞ . Indeed, it is easy to check
that (5.4) implies

max{Ũ1(y), Ũ2(y)} ≤ k1 + k3y
−α ∀ 0 < λ < ∞(7.3)
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with α = δ/(1 − δ), k3 = (1 − δ)(k2δ
δ)1/(1−δ) (cf. KLSX (1991)), and it follows from

Remark 6.7 that Ṽ (λ) ≤ E
[
sup0≤t≤T |Y λ(t)|] ≤ k4 + k5λ

−α ·E[sup0≤t≤T
(
H(t)

)−α]
< ∞. Standard results in the theory of optimal stopping (e.g., Theorem D.12 in
Karatzas and Shreve (1998)) guarantee then the existence of an optimal stopping
time.

8. Analysis of the optimal stopping problem. In this section we shall derive
our main results for the optimization problem of (5.3), by first establishing several
properties of the “dual” value function Ṽ (·) defined in (7.1). It is not a trivial matter
to decide whether the value function V (·) of our “primal” problem (5.3) inherits the
concavity of U(·). Indeed, even the continuity of V (·) is not quite clear a priori.
However, properties of convexity and monotonicity are relatively straightforward for
the dual value function Ṽ (·) of (7.1).

Lemma 8.1. The function Ṽ (·) of (7.1) is strictly convex and strictly decreasing.
In particular, it is continuous and a.e. differentiable.

Proof. For any 0 < λ1 < λ2 < ∞, 0 < s < 1, and λ0
�
= sλ1 + (1 − s)λ2,

we have Ṽ (λ2) = J̃(λ2; τ̂2) < J̃(λ1; τ̂2) ≤ Ṽ (λ1) from Standing Assumption 7.1,
where τ̂i ∈ Ŝλi , i = 0, 1, 2 are optimal stopping times, and Ṽ (λ0) = J̃(λ0; τ̂0) <
sJ̃(λ1; τ̂0) + (1 − s)J̃(λ2; τ̂0) ≤ sṼ (λ1) + (1 − s)Ṽ (λ2).

It follows from Lemma 8.1 that the right- and left-derivatives

�±Ṽ (λ)
�
= lim

h→0±
1

h
[Ṽ (λ + h) − Ṽ (λ)](8.1)

of the convex function Ṽ (·) exist, and are finite for every λ ∈ (0,∞). Furthermore,
the strict convexity of Ṽ (·) implies

�+Ṽ (λ1) < �−Ṽ (λ2) ≤ �+Ṽ (λ2) ≤ 0 ∀ 0 < λ1 < λ2 < ∞,(8.2)

and �+Ṽ (·) (respectively, �−Ṽ (·)) is right- (respectively, left-) continuous.
Lemma 8.2. For every λ ∈ (0,∞) and any optimal stopping time τ̂λ ∈ Ŝλ, we

have

�−Ṽ (λ) ≤ −Xτ̂λ(λ) ≤ �+Ṽ (λ).(8.3)

Proof. The convexity of Ũj(·), j = 1, 2, gives

Ũ
′
j(y)(x− y) ≤ Ũj(x) − Ũj(y) ≤ Ũ

′
j(x)(x− y) ∀ 0 < x, y < ∞,(8.4)

and for any real number h with |h| < λ we obtain

Ṽ (λ + h) − Ṽ (λ) = Ṽ (λ + h) − J̃(λ; τ̂λ) ≥ J̃(λ + h; τ̂λ) − J̃(λ; τ̂λ)

≥ h · E
[∫ τ̂λ

0

H(t)Ũ
′
1

(
λeβtH(t)

)
dt + H(τ̂λ)Ũ

′
2(λeβτ̂λH(τ̂λ))

]
= −hXτ̂λ(λ).

The last equality follows from (4.3) and the definition (6.6) of Xτ̂ (·). Letting h → 0,
we deduce for arbitrary λ ∈ (0,∞):

�+Ṽ (λ) = lim
h→0+

1

h
[Ṽ (λ + h) − Ṽ (λ)]

≥ −Xτ̂λ(λ) ≥ lim
h→0−

1

h
[Ṽ (λ + h) − Ṽ (λ)]

= �−Ṽ (λ).
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Corollary 8.3. If Ṽ (·) is differentiable at λ > 0, then Ṽ ′(λ) = −Xτ̂λ(λ).
Lemma 8.4. We have limλ↓0 �±Ṽ (λ) = −∞. Moreover, if Assumption 6.1

holds, we also have limλ↑∞�±Ṽ (λ) = 0.
Proof. From the decrease of the function I(·), the monotone convergence theorem,

and I(0+) = ∞, it follows that

lim
λ↓0

Xτ̂λ(λ) ≥ lim
λ↓0

E

[
inf

0≤s≤T

(
H(s) · I2

(
λeβT sup

0≤s≤T
H(s)

))]
= ∞,

and so by Lemma 8.2 and the inequality (8.2) we obtain limλ↓0 �±Ṽ (λ) = −∞. Now
suppose that Assumption 6.1 holds; we have then

0 ≤ lim
λ↑∞

Xτ̂λ(λ)

≤ lim
λ↑∞

E

[
sup

0≤s≤T

(
H(s) · I2

(
λeβsH(s)

))
+

∫ T

0

H(s) · I1
(
λeβsH(s)

)
ds

]
= 0

from the decrease of the functions Ij(·), the dominated convergence theorem, and

Ij(∞) = 0, j = 1, 2. It follows again from Lemma 8.2 and (8.2) that limλ↑∞�±Ṽ (λ) =
0.

We shall define, for each given λ > 0, the subset

Gλ �
=
{
Xτ̂λ(λ)

/
τ̂λ is optimal in (7.1), i.e., τ̂λ ∈ Ŝλ

}
(8.5)

of R
+. It follows from (8.2) and (8.3) that the sets {Gλ}λ>0 satisfy the following

properties:
(i) Gλ is nonempty for every λ > 0,
(ii) Gλ ∩ Gν = ∅, if λ �= ν, and
(iii) for any 0 < ν < λ < ∞ and x ∈ Gλ, y ∈ Gν , we have x < y.

Let us also introduce the set

G �
=

⋃
λ>0

Gλ.(8.6)

We can state now the main result of the paper. This explains, in particular, when
we can expect to find an optimal triple in (5.3) and to have equality in (7.2).

Theorem 8.5. For any x ∈ G, the value V (x) of (5.3) is attainable and we have

V (x) = inf
λ>0

[
Ṽ (λ) + λx

]
.(8.7)

Conversely, for any x ∈ (0,∞) that satisfies (8.7) and for which the value V (x) of
(5.3) is attainable, we have x ∈ G, provided that Assumption 6.1 holds.

Proof. Suppose x ∈ Gν for some ν > 0, and x = Xτ̂ν (ν) for some stopping time
τ̂ν ∈ Ŝν which is optimal in (7.1) with λ = ν, i.e., with

Ṽ (ν) = J̃(ν; τ̂ν) = E

[ ∫ τ̂ν

0

e−βtŨ1

(
νeβtH(t)

)
dt + e−βτ̂ν Ũ2

(
νeβτ̂νH(τ̂ν)

)]
.(8.8)

Then we claim

V (x) = Ṽ (ν) + νx = inf
λ>0

[Ṽ (λ) + λx].(8.9)
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Indeed, by Lemma 8.2, we have −x ∈ [�−Ṽ (ν),�+Ṽ (ν)], so that Ṽ (λ) − Ṽ (ν) ≥
(−x) · (λ− ν), or, equivalently, Ṽ (λ) + λx ≥ Ṽ (ν) + νx ∀λ > 0.

Since x = Xτ̂ν (ν) = E
[
H(τ̂ν)I2(νeβτ̂νH(τ̂ν)) +

∫ τ̂ν
0

H(t)I1
(
νeβtH(t)

)
dt
]
, it fol-

lows from Lemma 6.3 and Lemma 6.2 that there exists a portfolio process π̂(·) with

Xx,π̂,ĉ(τ̂ν) = I2(νeβτ̂νH(τ̂ν)), where ĉ(t)
�
= I1

(
νeβtH(t)

)
1[0,τ)(t). The expected util-

ity J(x; π̂, ĉ, τ̂ν), under the portfolio/consumption strategy (π̂, ĉ) and the stopping
time τ̂ν , is thus

V (x) ≥ J(x; π̂, ĉ, τ̂ν) = E

[∫ τ̂ν

0

e−βtU1

(
I1(νeβtH(t))

)
dt + e−βτ̂νU2(I2(νeβτ̂νH(τ̂ν)))

]

= E

[∫ τ̂ν

0

e−βtŨ1

(
νeβtH(t)

)
+ e−βτ̂ν Ũ2(νeβτ̂νH(τ̂ν))

]

+ ν · E
[
H(τ̂ν)Xx,π̂,ĉ(τ̂ν) +

∫ τ̂ν

0

H(t)ĉ(t) dt

]
= Ṽ (ν) + νx = inf

λ>0
[Ṽ (λ) + λx],

and (8.9) follows then from (7.2). In particular, the triple (π̂, ĉ, τ̂ν) in A(x) is optimal
for the original optimization problem of (5.3).

Conversely, suppose that (8.7) holds for some positive real number x, for which
the value V (x) of (5.3) is attained by some optimal triple (π∗, c∗, τ∗) ∈ A(x). In other
words,

V (x) = inf
λ>0

[ Ṽ (λ) + λx ] = J(x;π∗, c∗, τ∗) ≤ Vτ∗(x)(8.10)

in the notation of (6.1). Suppose also that Assumption 6.1 holds. By Lemma 8.1
the function λ �−→ Ṽ (λ) + λx =: G(λ) is strictly convex, with G(0+) = Ṽ (0+) and
G(∞) = ∞. Thus, either there exists a unique ν > 0 such that

Ṽ (ν) + νx = inf
λ>0

[ Ṽ (λ) + λx ],(8.11)

or else we have Ṽ (0+) ≤ Ṽ (λ) + λx ∀λ > 0. This latter possibility can be ruled
out easily; it cannot hold if Ṽ (0+) = ∞, whereas with Ṽ (0+) < ∞ it leads to
limλ↓0

(−�+Ṽ (λ)
) ≤ x, which is impossible by Lemma 8.4. Therefore, (8.11) holds

for a unique ν > 0 and leads, with (8.10) and Proposition 6.4, to

V (x) = Ṽ (ν) + νx ≥ J̃(ν; τ∗) + νx ≥ inf
λ>0

[J̃(λ; τ∗) + λx] = Vτ∗(x) ≥ V (x).(8.12)

We obtain Ṽ (ν) = J̃(ν; τ∗) as well as J̃(ν; τ∗) + νx = infλ>0 [J̃(λ; τ∗) + λx] from
(8.10), (8.12), or, equivalently, τ∗ ∈ Ŝν and ν = Yτ∗(x). Thus x = Xτ∗(ν) ∈ Gν ,
which concludes the proof.

Corollary 8.6. Under Assumption 6.1, for any x �∈ G ≡ ⋃
λ>0 Gλ, we have the

strict inequality (“duality gap”) V (x) < infλ>0 [Ṽ (λ) + λx].
Corollary 8.7. Under Assumption 6.1, and if Ṽ (·) is differentiable everywhere,

the value V (x) of (5.3) is attainable and (8.7) holds for every x ∈ (0,∞).
Proof. Since every differentiable convex function is continuously differentiable (cf.

Rockafellar (1970), Corollary 25.5.1), Ṽ
′
(·) is continuous. By Lemma 8.4, the range
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of Ṽ ′(·) is (−∞, 0). It follows from Corollary 8.3 that G = (0,∞), and Theorem 8.5
applies.

Corollary 8.8. Under Assumption 6.1, suppose that for any λ ∈ (0,∞) there

exist two sequences {λ(±)
n } with λ

(+)
n ↓ λ, λ

(−)
n ↑ λ, as well as stopping times τ̂ ∈ Ŝλ,

τ̂
(±)
n ∈ Ŝ

λ
(±)
n

such that τ̂
(±)
n → τ̂ a.s.; then the value V (x) of (5.3) is attainable and

(8.7) holds for every x > 0.
Proof. By Corollary 8.7, we need only show that Ṽ (·) is differentiable everywhere.

From (8.4) and (4.3) we have

Ṽ (λ(±)
n ) − Ṽ (λ) ≤ J̃(λ(±)

n ; τ̂ (±)
n ) − J̃(λ; τ̂ (±)

n )

≤ −(λ(±)
n − λ) · E

[∫ τ̂±
n

0

H(t)I1
(
λ(±)
n eβtH(t)

)
dt + H(τ̂ (±)

n )I2(λ(±)
n eβτ̂

(±)
n H(τ̂ (±)

n ))

]
= −(λ(±)

n − λ) · X
τ̂
(±)
n

(λ(±)
n ),

which implies

�+Ṽ (λ) = lim
λ

(+)
n ↓λ

Ṽ (λ
(+)
n ) − Ṽ (λ)

λ
(+)
n − λ

≤ lim sup
λ

(+)
n ↓λ

(−X
τ̂
(+)
n

(λ(+)
n )

)
= −Xτ̂ (λ),

�−Ṽ (λ) = lim
λ

(−)
n ↑λ

Ṽ (λ
(−)
n ) − Ṽ (λ)

λ
(−)
n − λ

≥ lim inf
λ

(−)
n ↓λ

(−X
τ̂
(−)
n

(λ(−)
n )

)
= −Xτ̂ (λ)

by the dominated convergence theorem. From (8.2), Ṽ
′
(λ) = �+Ṽ (λ) = �−Ṽ (λ) =

−Xτ̂ (λ).
Corollaries 8.7 and 8.8 provide simple sufficient (but not necessary) conditions,

under which there is no “duality gap” in (7.2), i.e., its leftmost and rightmost members
are equal. The following proposition will characterize this kind of interchangeability
of “inf” and “sup” operations from another point of view, namely, the concavity of
the “primal” value function V (·).

Proposition 8.9. Under Assumption 6.1, the following two statements are equiv-
alent:

(A) V (·) is concave on (0,+∞),
(B) V (x) = infλ>0 [Ṽ (λ) + λx] holds for every x ∈ (0,∞).
Proof of (B) =⇒ (A). Under condition (B), the number −V (x) is the pointwise

supremum of the affine functions g(λ) = −λx − µ such that (x, µ) belongs to the
epigraph of Ṽ (·). Hence −V (·) is a convex function (Rockafellar (1970), Theorem
12.1), or, equivalently, V (·) is concave.

Proof of (A) =⇒ (B). By Lemma 8.4 and (8.2), it is sufficient to show that for
any (ν, x) ∈ (0,∞) × (0,∞) such that −�+Ṽ (ν) ≤ x ≤ −�−Ṽ (ν), we have V (x) =
Ṽ (ν) + νx.

Let x0
�
= −�+Ṽ (ν), x1

�
= −�−Ṽ (ν). Since Ṽ (·) is strictly convex and differ-

entiable except on a countable set, we can find a sequence of positive real numbers
{λn}, such that λn ↓ ν as n → ∞, and Ṽ (·) is differentiable at each λn. Define

yn
�
= −Ṽ

′
(λn). It follows from the right-continuity of �+Ṽ (·) that −yn = �+Ṽ (λn) ↓

�+Ṽ (ν) = −x0. However, Theorem 8.5 and Corollary 8.3 assert that

V (yn) = inf
λ>0

[Ṽ (λ) + λyn] = Ṽ (λn) + λnyn.(8.13)
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Letting n → ∞, we obtain

V (x0) = Ṽ (ν) + νx0,(8.14)

thanks to the continuity of V (·) (which is concave by assumption (A)) and of Ṽ (·)
(which is convex by Lemma 8.1). Furthermore, we claim that �−V (x0) ≤ ν. Indeed,
it follows from (8.13) and (8.14) that

V (yn) − V (x0) = Ṽ (λn) + λnyn − Ṽ (ν) − νx0 ≥ �+Ṽ (ν)(λn − ν) + λnyn − νx0

= λn(yn − x0),

and hence

�−V (x0) = lim
n→∞

V (yn) − V (x0)

yn − x0
≤ lim

n→∞λn = ν.(8.15)

Similarly, we obtain

V (x1) = Ṽ (ν) + νx1 and �+V (x1) ≥ ν.(8.16)

However, �−V (x0) ≥ �+V (x1) holds from the concavity of V (·). It follows from
(8.15) and (8.16) that �−V (x0) = ν = �+V (x1), or equivalently, �−V (x) =
�+V (x) = V

′
(x) = ν ∀ x0 ≤ x ≤ x1. It is clear now that V (x) = Ṽ (ν) + νx =

infλ>0 [Ṽ (λ) + λx] holds for any x0 ≤ x ≤ x1.

9. Examples. Using the technique developed in the preceding section, we study
here several examples, including one which shows that optimal strategies need not
always exist (see Example 9.3). The first of these examples can also be treated using
the methods of section 6, but for the second and third examples the methodology
of section 8 is indispensable. The reader of this section should not fail to notice the
rarity of a setting where utility functions of power-type are much easier to handle
than logarithmic ones.

Example 9.1 (utility functions of power-type). Uj(x) = xα/α, where 0 < α <
1, j = 1, 2. In this case, condition (5.4) is satisfied and we have Ij(y) = y−1/(1−α)

and Ũj(y) = y−γ/γ with γ = α/(1 − α), j = 1, 2, so that Assumption 6.1 is also
satisfied (see Remark 6.7) and implies K < ∞ in (9.2) below. We obtain easily

Ṽ (λ) = sup
τ∈S

E

[∫ τ

0

e−βtŨ1

(
λeβtH(t)

)
dt + e−βτ Ũ2(λeβτH(τ))

]
=

K

γ
λ−γ ,

(9.1)

with

K
�
= sup

τ∈S
Kτ := sup

τ∈S
E

[∫ τ

0

e−(1+γ)βt
(
H(t)

)−γ
dt + e−(1+γ)βτ

(
H(τ)

)−γ]
.(9.2)

Clearly Ṽ (·) is differentiable everywhere, and it follows from Corollary 8.7 that V (x) =
infλ>0 [Ṽ (λ)+λx] = K1−α xα/α. In other words, with utility functions of power-type,
the original optimization problem is reduced to the pure optimal stopping problem
(9.2). We can arrive at this conclusion also using Proposition 6.5, since we have
Xτ (λ) = Kτλ

−1/(1−α), Yτ (x) = (Kτ/x)1−α, J̃(λ; τ) = Kτ
γ λ−γ , and thus V (x) =

xα

α K1−α from (6.12), (6.13).
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The optimal stopping time τ̂ for the original problem is also optimal for the prob-
lem of (9.2); the corresponding optimal consumption ĉ(·) and wealth-level Xx,π̂,ĉ(τ̂) ≡
ξx(τ̂) are given as

ĉ(t) =
x

K
e−

βt
1−α

(
H(t)

)− 1
1−α , 0 ≤ t ≤ τ̂ , ξx(τ̂) =

x

K
e−

βτ̂
1−α (H(τ̂))

− 1
1−α

by (6.11), and the optimal portfolio process π̂(·) can then be obtained from Lemma
6.3.

It is straightforward to check that τ̂ ≡ 0, K = 1 if

β ≥ γ

[
r(t)

1 + γ
+

1

2
‖θ(t)‖2

]
∀ 0 ≤ t ≤ T

holds a.s., and that τ̂ ≡ T, K = KT if

β ≤ γ

[
r(t)

1 + γ
+

1

2
‖θ(t)‖2

]
∀ 0 ≤ t ≤ T

holds a.s. This observation provides a complete solution to the optimal stopping
problem of (9.2) in the case of constant interest-rate r(t) ≡ r ∈ R and relative risk

θ(t) ≡ θ ∈ R
m; in particular, if β = γ

(
r

1+γ + ‖θ‖2

2

)
, every stopping time τ ∈ S0,T is

optimal in (9.2) and K = Kτ = 1.
Example 9.2 (logarithmic utility function from terminal wealth only, with β > 0).

U2(x) = log x for x > 0 and U1(·) ≡ 0. This is the setting of Example 6.6 with δ = 0;
Assumption 6.1 is now satisfied trivially.

(i) b(·) ≡ r(·)1m. Since we have θ(·) ≡ 0 in this case, it follows that J̃(λ; τ) =
−E[e−βτ (1 + log λ + A(τ))], where

A(t, ω)
�
= βt−

∫ t

0

r(s, ω) d s ∀ 0 ≤ t ≤ T.

We claim that

if dA(t,ω)
dt − βA(t, ω) is strictly increasing for almost every ω ∈ Ω

(e.g., if r(t) ≡ r > β), then (8.7) holds.

In order to check this, let τ̂λ
�
= inf {t ≥ 0 / dA(t)

dt − βA(t) ≥ β(1 + log λ)} ∧ T.

It is not difficult to see that τ̂λ ∈ Ŝλ, since −e−βτ̂λ(ω)(1 + log λ + A(τ̂λ(ω), ω)) is
then the minimum of the path e−βt(1 + log λ + A(t, ω)), 0 ≤ t ≤ T . Moreover, the
condition of Corollary 8.8 is satisfied, and τ̂λn → τ̂λ if λn → λ. It follows that

V (x) = inf
λ>0

[J̃(λ; τ̂λ) + λx].

The optimal stopping time for the original optimization problem is τ̂ ≡ τ̂λ̂, where

λ̂ > 0 attains the infimum in the above expression. The corresponding optimal level
of wealth Xx,π̂,0(τ̂) ≡ ξx(τ̂) is given by (6.11) as

ξx(τ̂) =
x

E (e−βτ̂ )
e

∫ τ̂
0
r(s) ds−βτ̂

,

and the optimal portfolio process π̂(·) can be derived from Lemma 6.3.
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(ii) A general result for the logarithmic utility function (from terminal wealth
only) seems difficult to obtain, as we saw already in Example 6.6. Nevertheless, using
the theory of section 8, we shall establish the following property:

(9.3)

{
V (x) is attainable and (8.7) holds for every x > 0, if there exists a
unique optimal stopping time solving problem (7.1) for every λ > 0

}
.

The rest of this paragraph is dedicated to the proof of statement (9.3). Consider the
continuous process

Y λ(t)
�
= e−βtŨ(λeβtH(t)) = −e−βt(1 + log λ + βt + log H(t))

and its Snell envelope, given as a right continuous with limits from the left (RCLL)
modification of the supermartingale

Zλ(t)
�
= esssupτ∈St,T E[Y λ(τ)|Ft], 0 ≤ t ≤ T,

with Zλ(0) = supτ∈S0,T
EY λ(τ) = Ṽ (λ). We claim that Zλ(·) is actually con-

tinuous. Indeed, since the random variable sup0≤t≤T Y λ(t) is integrable by Re-

mark 7.2, the Snell envelope Zλ(·) admits the Doob–Meyer decomposition Zλ(·) =
Zλ(0) + Mλ(·) − Aλ(·) (Karatzas and Shreve (1998), Theorem D.13), where Mλ(·)
is an RCLL martingale and Aλ(·) is continuous and nondecreasing. But any RCLL
martingale of the Brownian filtration is continuous (Karatzas and Shreve (1991),
Problem 3.4.16); hence Mλ(·) is continuous, and thus so is Zλ(·). The stopping time

τ∗
λ

�
= inf

{
t ∈ [0, T )

/
Zλ(t) = Y λ(t)

} ∧ T is the smallest optimal stopping time in

Ŝλ, whereas the stopping time ρ∗λ
�
= inf

{
t ∈ [0, T )

/
Aλ(t) > 0

} ∧ T is the largest

optimal stopping time in Ŝλ (Karatzas and Shreve (1998), Theorems D.12 and D.9; El
Karoui (1981)). In particular, the uniqueness property (9.3) amounts to the statement
P[τ∗

λ = ρ∗λ] = 1 ∀ 0 < λ < ∞.
Moreover, λ �→ τ∗

λ is increasing ; that is, for any λ ≥ ν we have τ∗
λ ≥ τ∗

ν a.s. To
see this, observe that Y λ(t) − Y ν(t) = −e−βt log(λ/ν) and obtain

Zλ(t) − Zν(t) = esssupτ∈St,T E[Y λ(τ)|Ft] − esssupτ∈St,T E

[
Y λ(τ) + e−βτ log

(
λ

ν

) ∣∣∣∣Ft]

≥ esssupτ∈St,T E[Y λ(τ)|Ft] − esssupτ∈St,T E[Y λ(τ)|Ft] − e−βt log

(
λ

ν

)
= Y λ(t) − Y ν(t)

a.s. for any given 0 ≤ t ≤ T . By the continuity of Z(·) and Y (·), it follows that

P
[
Zλ(t) − Y λ(t) ≥ Zν(t) − Y ν(t) ∀ 0 ≤ t ≤ T

]
= 1,

which implies that τ∗
λ ≥ τ∗

ν a.s., since Z(·) always dominates Y (·). It is not difficult

to see that τ±
λ

�
= limn→∞ τ∗

λ± 1
n

are stopping times, thanks to the continuity of the

filtration F. Moreover, they both belong to Ŝλ, which is an easy exercise on the
dominated convergence theorem (we omit the details).

Now we can prove our assertion (9.3). Clearly it must hold that τ∗
λ = τ+

λ = τ−
λ

by uniqueness of optimal stopping time. It follows from Corollary 8.8 that V (x) is
attainable and (8.7) holds for every x > 0.
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Example 9.3 (a case where no optimal strategy exists). We present now an
example which shows that optimal strategies need not always exist for every initial
capital x ∈ (0,∞).

Consider the logarithmic utility functions as in Example 6.6 with δ = 0, i.e.,
U1(·) ≡ 0 and U2(x) = log x, discount factor β = 1, and model parameters m =
1, r(·) ≡ 0, b(·) ≡ 0, σ(·) ≡ 1 in (2.1), (2.2). In this case we may take c(·) ≡ 0
since there is no utility from consumption, and for a given initial capital x > 0 the
wealth-process Xx,π(·) ≡ Xx,π,0(·) corresponding to a portfolio π(·) satisfies

dXx,π(t) = Xx,π(t)π(t) dW (t), Xx,π(0) = x.(9.4)

It is not difficult to check that

Ṽ (λ) = sup
τ∈S

J̃(λ; τ) = sup
τ∈S

E
[−e−τ (1 + log λ + τ)

]
= max

0≤t≤T
F (λ; t),(9.5)

where F (λ; t)
�
= −e−t(1 + log λ + t), λ > 0, t > 0. Note that the function t �→

F (λ; t) attains its maximum on the interval [0, T ] at one of its endpoints; that is,
max0≤t≤T F (λ; t) = max{F (λ; 0), F (λ;T )}, since et dFdt (λ; t) = log λ + t is increasing.
It follows then from (9.5) that

Ṽ (λ) =

{ −(1 + log λ), 0 < λ ≤ λ∗(T )
−e−T (1 + log λ + T ), λ∗(T ) ≤ λ < ∞

}
,(9.6)

where λ∗(s)
�
= exp

{(
s/(es − 1)

)− 1
} ∈ (0, 1) is determined by the equation

1 + log λ∗(s) = e−s(1 + log λ∗(s) + s).(9.7)

Clearly, Ṽ (·) is not differentiable at λ = λ∗(T ). Moreover, it is easy to verify that
Gλ = {1/λ} for 0 < λ < λ∗(T ) and that Gλ =

{
e−T /λ

}
for λ > λ∗(T ), and thus

G =
⋃
λ>0

Gλ =
(
0, x0(T )

] ∪ [
x1(T ),∞)

(9.8)

with x0(s)
�
= e−s

λ∗(s) ∈ (0, 1) and x1(s)
�
= 1

λ∗(s) ∈ (1,∞); we omit the details of these

computations. It should be noted that x1(·) is increasing with x1(0+) = 1, x1(∞) = e,
whereas x0(·) is decreasing with x0(0+) = 1, x0(∞) = 0.

Now with V0(x)
�
= e−T log x and V1(x)

�
= log x, let us consider the concave

function

G(x)
�
= inf

λ>0
[Ṽ (λ) + λx]

=


V0(x), 0 < x ≤ x0(T )

V0(x0(T )) x1(T )−x
x1(T )−x0(T ) + V1(x1(T )) x−x0(T )

x1(T )−x0(T ) , x0(T ) < x < x1(T )

V1(x), x1(T ) ≤ x < ∞


(see Remark 9.4 for discussion). We have V (x) = G(x) for x ∈ G from Theorem 8.5,
or

V (x) =

{
V0(x), 0 < x ≤ x0(T )
V1(x), x1(T ) ≤ x < ∞

}
.(9.9)
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In particular, the optimal strategy is to keep all the wealth in the money-market (i.e.,
π(·) ≡ 0) and to wait until the terminal time T , if the initial capital x is in (0, x0(T )],
whereas the optimal strategy for x ≥ x1(T ) is to stop immediately.

But how about an initial capital x ∈ (x0(T ), x1(T ) )? From Theorem 8.5 and
Proposition 8.9, we know that either V (x) < G(x) for some x ∈ (x0(T ), x1(T ) )
(which will give us a nonconcave value function V (·)), or else V (x) ≡ G(x) ∀x ∈
(x0(T ), x1(T ) ) (in which case no optimal strategy exists).

We claim that the latter is the case. In other words, V (x) ≡ G(x) ∀x ∈ R+,
but no optimal strategy exists for x ∈ (x0(T ), x1(T ) ). Actually, for every x ∈
(x0(T ), x1(T ) ), a maximizing sequence of strategy pairs {(πn, τn)}∞n=1 can be con-
structed so that J(x;πn, τn) → G(x) as n → ∞; this proves, in particular, that
V (·) ≡ G(·) on

(
x0(T ), x1(T )

)
. Indeed, consider the wealth-process dXx,n(t) =

nXx,n(t) dW (t), Xx,n(0) = x, and let

Tn0
�
= inf

{
t ≥ 0

/
Xx,n(t) ≤ x0(T − t)

} ∧ T,(9.10)

Tn1
�
= inf

{
t ≥ 0

/
Xx,n(t) ≥ x1(T − t)

} ∧ T.(9.11)

Recall x0(0+) = x1(0+) = 1, so that Tn0 ∧Tn1 < T holds a.s. We define the portfolio/
stopping time pair (πn, τn) by

πn(t)
�
= n · 1{t<Tn1 ∧Tn0 } and τn

�
= Tn1 · 1{Tn1 <Tn0 } + T · 1{Tn1 ≥Tn0 }.(9.12)

This means if the wealth reaches the curve x1(T−·) before reaching the curve x0(T−·),
stop immediately when this happens; if the wealth reaches the curve x0(T − ·) before
reaching the curve x1(T − ·), then put all the money in the bank account and wait
until the terminal time T ; and up until the first time that one of these curves is
reached, keep an amount of n dollars invested in stock. Clearly,

Xx,πn(τn) = x0(T − Tn0 ) · 1{Tn0 <Tn1 } + x1(T − Tn1 ) · 1{Tn1 <Tn0 }.(9.13)

Moreover, since πn(·) is bounded, the wealth process Xx,πn(·) is a martingale, and
the optional sampling theorem gives

x = E [Xx,πn(τn)] .(9.14)

Because Tn0 = inf
{
t ≥ 0

/
W (t) ≤ 1

2nt + 1
n log

(x0(T−t)
x

)} ∧ T −→ 0 a.s. as n → ∞,
it follows from (9.13) and (9.14) that x0(T )pn + x1(T )(1 − pn) −→ x as n → ∞,

where pn
�
= P(Tn0 < Tn1 ) = 1 − P(Tn1 < Tn0 ), or, equivalently,

pn → x1(T ) − x

x1(T ) − x0(T )
as n → ∞.(9.15)

On the other hand, the expected discounted utility corresponding to (πn, τn) of
(9.12) is

J(x;πn, τn) = E
[
e−T log (x0(T − Tn0 )) · 1{Tn0 <Tn1 } + log

(
e−T

n
1 x1(T −Tn1 )

) · 1{Tn1 <Tn0 }
]
.

We conclude the proof by noting from (9.15) and the dominated convergence theorem,
that

lim
n→∞J(x;πn, τn) = e−T log x0(T ) · x1(T ) − x

x1(T ) − x0(T )
+log x1(T ) · x− x0(T )

x1(T ) − x0(T )
= G(x).
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Remark 9.4. The tangent to the graph of V0(·) at x = x0
�
= x0(T ) and the

tangent to the graph of V1(·) at x = x1
�
= x1(T ) coincide. Indeed, V ′

1(x) = 1
x so that

the tangent f1(·) to the graph of V1(·), at the point x = x1, is given by

f1(x) =
x− x1

x1
+ f1(x1) =

(
x

x1
− 1

)
+ log x1 = λ∗(T )x− (1 + log λ∗(T )).

On the other hand, V ′
0(x) = 1

xe
−T so that the tangent f0(·) to the graph of V0(·), at

the point x = x0, is given by

f0(x) =
x− x0

x0
e−T + f0(x0) = e−T

(
xλ∗(T )eT − 1

)
+ e−T log x0

= λ∗(T )x− e−T (1 + log λ∗(T ) + T ).

Thanks to (9.7), these two expressions are the same.

Appendix A. In this section we provide an example which illustrates briefly, in
a Markovian setting and with logarithmic utility from wealth (we set c(·) ≡ 0 and
write Xx,π(·) ≡ Xx,π,0(·) throughout), how the optimization problem of (5.3) can be
cast in the form of a free-boundary problem for a suitable HJB equation, which can
then be solved explicitly.

In order to obtain such an explicit solution, we place ourselves on an infinite
time-horizon so that all stopping times τ ∈ S0,∞ are admissible, and we denote the
corresponding value function by

V∞(x) = sup
(π,τ)∈A(x)

E
[
e−βτ log Xx,π(τ) · 1{τ<∞}

]
(A.1)

with β > 0, for a given initial capital x > 0 in the notation of (9.4). Furthermore, we
assume that the coefficients of the model r(·) ≡ r > 0, b(·) ≡ b, σ(·) ≡ σ > 0 are all
constant, and we impose the assumption b �= r1m, or, equivalently, θ(·) ≡ θ �= 0. For
the measure-theoretic subtleties associated with working on an infinite time-horizon,
we refer the reader to section 1.7 in Karatzas and Shreve (1998).

Consider the differential operator

Lu (x)
�
= −βu(x) + rxu′(x) + max

π∈Rm

(
xu′(x)π∗σθ +

1

2
x2u′′(x) ‖ π∗σ ‖2

)
(A.2)

= −βu(x) + rxu′(x) − (u′(x))2Θ2

2u′′(x)
,

acting on functions u : (0,∞) → R which are twice continuously differentiable with

u′′(·) < 0; here Θ
�
= ‖ (σ∗)−1θ ‖= ‖ (σσ∗)−1(b − r1m) ‖> 0. By analogy with

section 2.7 in Karatzas and Shreve (1998), we cast the original optimization problem
of (A.1) as a variational inequality, relying on the familar “principle of smooth–fit.”

Variational Inequality A.1. Find a number b ∈ (1,∞) and an increasing
function g(·) in the space C([0,∞)) ∩ C1((0,∞)) ∩ C2((0,∞) \ {b}), such that

Lg (x) = 0 , 0 < x < b,(A.3)

Lg (x) < 0 , x > b,(A.4)

g(x) > log x , 0 < x < b,(A.5)

g(x) = log x , x ≥ b,(A.6)

g(x) > 0 , x > 0,(A.7)

g′′(x) < 0 , x ∈ (0,∞) \ {b}.(A.8)
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Theorem A.2. Suppose that the pair (b, g(·)) solves the Variational Inequality
A.1, that the ratio |g′(x)/(xg′′(x))| is bounded away from both zero and infinity on
(0,∞), and that the stochastic differential equation

dX̂(t) = X̂(t)

[
r dt− g′(X̂(t))

X̂(t)g′′(X̂(t))
θ∗ dW0(t)

]
, X̂(0) = x > 0,(A.9)

has a pathwise unique, strictly positive strong solution X̂(·). In terms of this process,
define

π̂(·) �
= −(σ∗)−1

θ
g′(ξ)

ξg′′(ξ)

∣∣∣∣
ξ=X̂(·)

, τ̂
�
= inf

{
t ≥ 0

/
X̂(t) ≥ b

}
.(A.10)

Then the function g(·) coincides with the optimal expected utility V∞(·) of (A.1), the
pair

(
π̂(·), τ̂) attains the supremum in (A.1), and we have X̂x,π̂(·) ≡ X̂(·).

Proof. Fix x ∈ (0,∞). For any available portfolio process π(·), an application of

Itô’s rule to Gx,π(t)
�
= e−βtg(Xx,π(t)), 0 ≤ t < ∞, yields, in conjunction with (3.1),

(A.3), and (A.4),

e−βtg(Xx,π(t)) − g(x) −
∫ t

0

e−βsπ∗σ · ξg′(ξ)
∣∣
ξ=Xx,π(s)

dW (s)(A.11)

=

∫ t

0

e−βs
(

(π∗σθ + r) · ξg′(ξ) +
1

2
g′′(ξ)ξ2 ‖ π∗σ ‖2 −βg(ξ)

)∣∣∣∣
ξ=Xx,π(s)

ds

≤
∫ t

0

e−βsLg(Xx,π(s)) ds ≤ 0.

It follows that the process Gx,π(t) = e−βtg(Xx,π(t)), 0 ≤ t < ∞ is a local super-
martingale under P, hence also a true supermartingale because it is positive. In par-

ticular, Gx,π(∞)
�
= lim supt→∞ Gx,π(t) ≥ 0 exists a.s., and {Gx,π(t), 0 ≤ t ≤ ∞} is

a P-supermartingale. Thus

E[e−βτ log Xx,π(τ) · 1{τ<∞}] ≤ E[e−βτg
(
Xx,π(τ)

) · 1{τ<∞}](A.12)

≤ E[Gx,π(τ))] ≤ g(x)

holds for any stopping time τ ∈ S0,∞, by the optional sampling theorem and (A.5)–
(A.6); in other words, V∞(x) ≤ g(x). We complete the proof upon noticing that,
thanks to (A.3) and (A.6), all the inequalities in (A.11) and (A.12) hold as equalities
for the choice

π̂(t)
�
= − g′(X̂(t))

X̂(t)g′′(X̂(t))
(σ∗)−1θ, τ̂b

�
= inf

{
t ≥ 0

/
X̂(t) ≥ b

}
,(A.13)

since we have 0 < g(X̂(τ̂b)) ≤ log b and e−βτ̂b g(X̂(τ̂b)) = 0 on the event
{τ̂b = ∞}.

We have now to construct the solution of Variational Inequality A.1 and to verify
the properties for (A.9) assumed in Theorem A.2.

Proposition A.3. Let α be the unique solution of the quadratic equation

α2 −
(

1 +
Θ2

2r
+

β

r

)
α +

β

r
= 0(A.14)
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in the interval (0, 1), set b
�
= e1/α, and consider the function

g(x)
�
=

{
xα
/
eα, 0 ≤ x < b

log x, b ≤ x < ∞
}

.(A.15)

Then the pair (b, g(·)) solves Variational Inequality A.1, and the stochastic differential
equation (A.9) has a pathwise unique, strictly positive strong solution X̂(·).

Proof. Note that the function

F (u)
�
= u2 −

(
1 +

Θ2

2 + β

r

)
u +

β

r
, 0 ≤ u < ∞,(A.16)

is convex with F (0) = β/r > 0, F (1) = −Θ2/2r < 0. Thus F (·) has exactly one
root in the interval (0, 1). It is clear now that (A.6)–(A.8) are satisfied since b > 1.
Furthermore, notice from (A.15) that

g′(x) =

{
xα−1/e, 0 < x < b

1/x, b < x < ∞
}

(A.17)

is continuous across x = b (principle of smooth-fit), which implies that the func-
tion g(·) belongs to the space of functions C([0,∞)) ∩ C1((0,∞)) ∩ C2((0,∞) \ {b}).
It is fairly straightforward to check that (A.3) holds for 0 < x < b, and that
|g′(x)/(xg′′(x))| is bounded away from both zero and infinity on (0,∞) (cf. (A.19)
below). As for (A.4), we need to prove that −β log x + r + Θ2/2 < 0 ∀x > b. Since

log b = 1/α and β > 0, it is sufficient to verify α < α∗ �
= β/(r + Θ2

2 ). Indeed

F (α∗) = α∗
(
α∗ −

Θ2

2 + β

r
− 1

)
+

β

r

< α∗
(

β

r
−

Θ2

2 + β

r
− 1

)
+

β

r
= α∗

(
−

Θ2

2 + r

r

)
+

β

r
= 0,

which yields α < α∗. Finally, (A.5) follows readily from

g′(x) − (log x)′ =
1

x

(
1

e
xα − 1

)
<

1

x

(
1

e
bα − 1

)
= 0, 0 < x < b.

It is now clear that the pair (b, g(·)) solves Variational Inequality A.1.
For the function g(·) of (A.15), the optimal wealth-process X̂(·) of Theorem A.2

satisfies the stochastic differential equation (A.9), namely,

dX̂(t) = X̂(t)
[
r dt + ν

(
X̂(t)

)
θ∗ dW0(t)

]
, X̂(0) = x > 0,(A.18)

where

ν(x)
�
= − g′(x)

xg′′(x)
=

{
1
/

(1 − α), 0 < x < b
1, b ≤ x < ∞

}
.(A.19)

Equivalently, the process Ŷ (·) �
= log X̂(·) solves the stochastic differential equation

dŶ (t) =

[
r − ||θ||2

2
· ν2

(
eŶ (t)

)]
dt + ν

(
eŶ (t)

)
θ∗ dW0(t), Ŷ (0) = log x,(A.20)
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which has a pathwise unique, strong solution (cf. Nakao (1972)). This, in turn,

means that (A.15) for X̂(·) ≡ eŶ (·) also has a strictly positive, pathwise unique
strong solution, as postulated in Theorem A.2.

Remark A.4. For x ≥ b, we have τ̂ ≡ 0; on the other hand, for 0 < x < b, we can

write the stopping time τ̂
�
= inf

{
t ≥ 0

/
X̂(t) ≥ x

}
= inf

{
t ≥ 0

/
Ŷ (t) ≥ log b

}
in

the form of the time

τ̂ = inf

{
t ≥ 0

/(
r +

||θ||2
2

1 − 2α

(1 − α)2

)
t +

θ∗

1 − α
W (t) ≥ log

(
b

x

)}
of first-passage to a positive level by a Brownian motion with drift. Clearly, we have
P[τ̂ < ∞] = 1 if and only if (1 − α)2 + ||θ||2(1 − 2α)/2r ≥ 0, and in light of (A.14)
this last condition is equivalent to(

β − r − ||θ||2 +
Θ2

2

)
· α ≥

(
β − r − ||θ||2

2

)
.(A.21)

In particular, if σ = Im, the condition (A.21) amounts to

β ≤ r + ||b− r1m||2.(A.22)

Remark A.5. From (A.13), the optimal portfolio process is actually given as

π̂(t) ≡ (σ∗)−1

1 − α
θ =

(σσ∗)−1

1 − α
[b− r1m], 0 ≤ t < τ̂ ;(A.23)

this means that the optimal strategy is to invest a fixed proportion of total wealth in
every stock, given by (A.3), up to the optimal stopping time τ̂ .

Remark A.6. The assumption θ �= 0 is crucial for solving Variational Inequality
A.1. When θ = 0, we can have situations, as in Example 9.3, for which no optimal
strategy exists. Actually, for θ = 0 and β > r, it is easy to show that Variational
Inequality A.1 has no solution (see Example 9.2 for discussion of the case θ = 0, β <
r).

Appendix B. As the referee points out, it would be very interesting to study
optimization over a consumption stream that extends beyond the stopping time τ .
Consider, for instance, the situation of an investor who remains in the stock-market
up until a “retirement” time τ of his choice. At that point he consumes a lump-
sum amount ξ ≥ 0 of his choice (say, to buy a new house, or to finance some other
“retirement-related” activity); and from then on he keeps his holdings in the money-
market, making withdrawals for consumption at some rate, up until t = T .

We can capture such a situation by changing the wealth-equation of (3.1) to read

dX(t) = r(t)X(t)dt + X(t)π∗(t)σ(t)dW0(t) − dC(t), X(0) = x > 0.(B.1)

Here

C(t) =

∫ t

0

c(u) du + ξ · 1[τ,T ](t), 0 ≤ t ≤ T,(B.2)

is the “cumulative consumption up to time t.” This process consists of a stopping
time τ ∈ S, a consumption-rate process c(·) as before, and an Fτ -measurable random
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variable ξ : Ω → [0,∞) representing lump-sum consumption at time τ . We say that
a portfolio/cumulative-consumption process pair (π,C) is “available” to an investor
with initial capital x, if the portfolio process π(·) and the wealth-process X(·) ≡
Xx,π,C(·) of (B.1) satisfy

π(t) = 0, τ ≤ t ≤ T,(B.3)

Xx,π,C(t) > 0 ∀ 0 ≤ t < T, and Xx,π,C(T ) ≥ 0 ,(B.4)

a.s. For any such pair (π,C), the investor’s expected discounted utility is given as

J∗(x;π,C)
�
= E

[
α

∫ τ

0

e−βtU1

(
c(t)

)
dt + e−βτU2(ξ) + γ

∫ T

τ

e−βtU1

(
c(t)

)
dt

]
(B.5)

for some given constants α ≥ 0, γ ≥ 0 and utility functions U1(·), U2(·). With
α = 1, γ = 0, we recover the problem of section 5. With α = 0, γ = 1, the expression
of (B.5) tries to capture the situation of an investor who consumes nothing up until
retirement, consumes a lump-sum amount ξ at that time, and afterwards keeps all
holdings in the money-market while consuming at some rate c(·). The objective now
is to maximize the expression of (B.5) over the class A∗(x) of pairs (π,C) that satisfy
the analogue

E

[
α

∫ τ

0

e−βtU−
1

(
c(t)

)
dt + e−βτU−

2 (ξ) + γ

∫ T

τ

e−βtU−
1

(
c(t)

)
dt

]
< ∞(B.6)

of (5.2), and to see whether the value-function

V ∗(x)
�
= sup

(π,C)∈A∗(x)

J∗(x;π,C), x ∈ (0,∞),(B.7)

is attained by some optimal (π̂, Ĉ) ∈ A∗(x). We have not yet been able to obtain a
satisfactory answer to these questions and would like to suggest their resolution as an
interesting open problem.

Acknowledgments. We are indebted to the associate editor and the referees for
their very careful reading of the first version of this paper and for their many helpful
suggestions. In particular, the open problem presented in Appendix B was inspired
by suggestions from one of the referees.
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Abstract. This paper is concerned with the controllability of the linear Korteweg–de Vries
equation on the domain Ω = (0,+∞), the control being applied at the left endpoint x = 0. It is
shown that the exact boundary controllability holds true in L2(0,+∞) provided that the solutions
are not required to be in L∞(0, T, L2(0,+∞)). The proof rests on a Carleman’s estimate and an
approximation theorem. A similar result is obtained for the heat equation and for the Schrödinger
equation.

Key words. exact boundary controllability, unbounded domain, Carleman’s estimate
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PII. S0363012999353229

1. Introduction and main results. The Korteweg–de Vries (KdV) equation

ut + ux + uux + uxxx = 0, t ≥ 0, x ∈ Ω ⊂ R,(1.1)

may serve as a model for (among other things) propagation of small amplitude long
water waves in a uniform channel. In this context, t is time, x is the space variable,
and u stands for the deviation of the liquid’s surface from the equilibrium position.
The boundary (resp., internal) controllability of (1.1) has been extensively studied (see
[21], [22], [19], [20], and also [16] for the Benjamin–Bona–Mahony equation) when Ω
is bounded, say Ω = (0, L). The (local) exact boundary controllability of (1.1) follows
in [19] from the exact boundary controllability of the associated linear KdV equation,
namely

ut + ux + uxxx = 0.(1.2)

To date, there is no result as far as the boundary controllability of (1.1) or (1.2) on
some unbounded domain (say Ω = (0,+∞)) is concerned. The aim of this paper is
to fill this gap in providing a study of the exact boundary controllability of (1.2) on
(0,+∞), which may be seen as a first step in the knowledge of the control theory for
(1.1) on unbounded domains. It should be observed that the approximate boundary
controllability of (1.2) in L2(0,+∞) is quite easy to prove, whereas the exact boundary
controllability requires a more sophisticated analysis, due to a lack of compactness.
An enlightening example of the difference between exact and approximate (internal)
controllabilities for linear PDEs in unbounded domains is provided by the following
result, whose (simple) proof is sketched in the appendix.

Proposition 1.1. Consider a (real) constant coefficients differential operator

Au =
∑n

i=0 ai
di u
d xi , with domain D(A) = {u ∈ L2(R); Au ∈ L2(R)}. Assume that

∗Received by the editors March 12, 1999; accepted for publication (in revised form) April 5, 2000;
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n ≥ 2 (with an �= 0) and that A generates a continuous semigroup
(
S(t)

)
t≥0

on L2(R).

Let T > 0 and L1 < L2 be some numbers. Set

R =

{∫ T

0

S(T − t)f(t, ·)dt; f ∈ L2(R2), supp f ⊂ [0, T ]× [L1, L2]

}
,

where supp f denotes the support of f . Then R is a strict dense subspace of L2(R).
In other words, when considering mild solutions (in C([0, T ], L2(R)) ) of the forced

initial-value problem {
du
dt −Au = f,

u(0) = 0,

where f denotes any square integrable function supported in [0, T ] × [L1, L2], the
space R of all reachable states is dense in (but different from) L2(R). Notice that for
Au = −uxxx−ux, letting L1 = −1 < L2 = 0 and taking the restrictions to (0,+∞) of
the mild solutions, we readily infer the approximate boundary controllability of (1.2) in
L2(0,+∞). It turns out that the exact boundary controllability of (1.2) in L2(0,+∞)
also fails to be true if we restrict ourselves to solutions with bounded energy, that
is, which belong to L∞(0, T, L2(0,+∞)). An implicit formulation (that is, without
specification of the boundary conditions) of this fact is given in the following theorem,
to be proved later in this paper.

Theorem 1.2. Let T > 0. Then there exists u0 ∈ L2(0,+∞) such that if u is
any function in L∞(0, T, L2(0,+∞)) satisfying{

ut + ux + uxxx = 0 in D′((0, T )× (0,+∞)
)
,

u|t=0
= u0,

(1.3)

then u|t=T �= 0.
(Notice that u|t=0

and u|t=T are meaningful in H−3(0,+∞) for any u ∈ L∞(0, T,
L2(0,+∞)) satisfying (1.3): Indeed, such a function belongs to the space W 1,∞(0, T,
H−3(0,+∞)).) Theorem 1.2 tells us that even the (boundary) null-controllability fails
to be true for solutions with bounded energy. Nevertheless, when the bounded energy
condition (u ∈ L∞(0, T, L2(0,+∞)) ) is dropped, the exact boundary controllability
of KdV holds true, as is shown in the following theorem, which is the main result of
this paper.

Theorem 1.3. Let T, ε, b be positive numbers, with ε < T
2 . Let L2((0,+∞),

e−2bxdx) denote the space of (class of) measurable functions u : (0,+∞) → R such

that
∫ +∞
0

u2(x)e−2bx dx < ∞. Let u0 ∈ L2(0,+∞) and uT ∈ L2((0,+∞), e−2bxdx).
Then there exists a function

u ∈ L2
loc

(
[0, T ]× [0,+∞)

)∩C([0, ε], L2(0,+∞)
)∩C([T − ε, T ], L2((0,+∞), e−2bxdx)

)
which solves 

ut + ux + uxxx = 0 in D′((0, T )× (0,+∞)
)
,

u|t=0
= u0,

u|t=T = uT .
(1.4)

Let us make some comments.
1. The proof of Theorem 1.3 combines Fursikov–Imanuvilov’s approach (see [4])

for the boundary controllability of the Burgers equation on bounded domains (which
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is based on a global Carleman’s estimate) and, for the extension to some unbounded
domain, Rosay’s clever proof of Malgrange–Ehrenpreis’s theorem (see [18]), which uses
an approximation theorem. Roughly speaking, the approximation theorem allows us
to modify a sequence of solutions of ut + ux + uxxx = f , defined on an increasing
sequence of domains, in such a way that it converges (strongly) in L2

loc(R
2). It should

be emphasized that our approach allows us to consider initial and final states in differ-
ent spaces of functions, thus exploiting an asymmetric property of the KdV equation,
namely the (forward) wellposedness of (1.2) in the asymmetric space L2(R, e2bxdx)
for any b > 0 (see [9]). Notice that we may require that u ∈ C([T − ε, T ], L2(0,+∞))
if uT is also assumed to be in L2(0,+∞).

2. As in [2] and [13], the formulation of the previous boundary controllability
result is implicit. Nevertheless, setting h0 = u|x=0

, h1 = ux|x=0
, and h2 = uxx|x=0

,
it may be seen that h0, h1, h2 ∈ H−1(0, T ) and, thanks to Holmgren’s uniqueness
theorem, that u is the only solution (in the same space as above) of the initial-value
boundary problem

ut + ux + uxxx = 0 in D′((0, T )× (0,+∞)
)
,

u|x=0
= h0, ux|x=0

= h1, uxx|x=0
= h2,

u|t=0
= u0.

Moreover u satisfies u|t=T = uT .
3. The method described in item 1 applies also to many other linear PDEs for

which the characteristic hyperplanes take the form {t = Const.}: For instance, the
heat equation ut−∆u = 0 and the Schrödinger equation iut+∆u = 0 are concerned.
(See section 5.)

The paper is outlined as follows. The proof of Theorem 1.2 is given in section
2. It rests on a duality argument and on the behavior of the traces ux|x=0

, uxx|x=0

of exponential solutions for (1.2) with the boundary condition u|x=0
= 0. A global

Carleman’s estimate for the KdV equation (which is subsequently used) is stated and
proved in section 3. The proof of Theorem 1.3 is given in section 4, together with the
proof of the approximation theorem (Lemma 4.4). In the last section we sketch the
proof of similar results for the heat equation and the Schrödinger equation.

From now on, for the sake of brevity, we shall write P for the operator (∂/∂t) +
(∂/∂x) + (∂3/∂x3).

2. Proof of Theorem 1.2. The proof of Theorem 1.2 rests on the following key
result.

Lemma 2.1. There exists a family (vλ)λ>0 of functions in ∩n≥0C
∞([0, T ],

Hn(0,+∞)) such that for every λ > 0

P vλ = 0 in (0, T )× (0,+∞),(2.1)

vλ|x=0
= 0 on (0, T ),(2.2)

‖vλ|t=0
‖L2(0,+∞) = 1,(2.3)

and

‖vλx |x=0
‖Hn(0,T ) + ‖vλxx|x=0

‖Hn(0,T ) → 0 as λ→ 0 (for every n ≥ 1).(2.4)
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Proof. Let us consider the operator Av := −vxxx − vx with domain

D(A) = H3(0,+∞) ∩H1
0 (0,+∞) ⊂ L2(0,+∞).

Then A generates a strongly continuous semigroup
(
S(t)

)
t≥0

on L2(0,+∞), and we

shall search for vλ in the form of an exponential solution:

vλ(t, ·) = S(t)vλ0 = e−λtvλ0 ,

where vλ0 ∈ D(A) solves Avλ0 = −λvλ0 and λ ∈ (0,+∞). The roots of the equation
−z3− z = −λ may be written in the form r,− r

2 ± iµ, where 0 < r ∼ λ as λ→ 0+ and

µ =
(
1 + 3

4r
2
) 1

2 . Let wλ
0 (x) := �m

(
e(−

r
2+iµ)x

)
= e−

r
2x sin(µx) (hence wλ

0 ∈ D(A)
and Awλ

0 = −λwλ
0 ). Easy calculations give

‖wλ
0 ‖L2(0,+∞) =

(
2µ2

r(r2 + 4µ2)

) 1
2

·

Set cλ := ( r(r
2+4µ2)
2µ2 )

1
2 , vλ0 := cλw

λ
0 , and vλ(t, x) := e−λtvλ0 (x). Since we know that

(2.1)–(2.3) are true, it remains to prove (2.4). Obviously vλx(t, 0) = cλµe
−λt and

vλxx(t, 0) = −cλµ r e−λt, and since cλ → 0 as λ→ 0+, (2.4) follows.
It will result from the next lemma that the traces u|x=0

, ux|x=0
, and uxx|x=0

of
a bounded energy solution u = u(t, x) of (1.2) belong to the dual space to H1(0, T )
(which is not to be confused with H−1(0, T ) = H1

0 (0, T )
′).

Lemma 2.2. Let T and L be positive numbers and let u ∈ L∞(0, T, L2(0, L)) be
such that P u = 0 in D′((0, T ) × (0, L)

)
. Then u ∈ H3(0, L,H1(0, T )′) and we have

for some constant C = C(L, T ) > 0

‖u(·, 0)‖H1(0,T )′ + ‖ux(·, 0)‖H1(0,T )′ + ‖uxx(·, 0)‖H1(0,T )′

≤ C‖u‖L∞(0,T,L2(0,L)).
(2.5)

Proof. Since ut = −(uxxx + ux) ∈ L2(0, T,H−3(0, L)), we see that u ∈ H1(0, T,
H−3(0, L)); hence for every f ∈ H1(0, T,H3

0 (0, L))∫ T

0

〈ut, f〉 dt = −
∫ T

0

∫ L

0

uft dxdt+ [〈u, f〉]Tt=0,(2.6)

where 〈·, ·〉 denotes the duality pairing 〈·, ·〉H−3(0,L),H3
0 (0,L). Since u ∈ C([0, T ],

H−3(0, L))∩L∞(0, T, L2(0, L)), u, as a function of t, is weakly continuous in L2(0, L).
Hence ∣∣∣∣∣

∫ T

0

〈ut, f〉 dt
∣∣∣∣∣ ≤ ‖u‖L2((0,T )×(0,L)) · ‖ft‖L2((0,T )×(0,L))

+‖u‖L∞(0,T,L2(0,L)) ·
(‖f(0, ·)‖L2(0,L) + ‖f(T, ·)‖L2(0,L)

)
≤ C1‖u‖L∞(0,T,L2(0,L)) · ‖f‖L2(0,L,H1(0,T ))

(2.7)

for some constant C1 = C1(T,L) > 0. Since H1(0, T,H3
0 (0, L)) is dense in L2(0, L,

H1(0, T )), we infer from (2.7) that ut ∈ L2(0, L,H1(0, T )′). Integrating three times
with respect to (w.r.t.) x in the equation

(uxx + u)x = −ut in D′(0, L,H1(0, T )′)
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(ut ∈ L2(0, L,H1(0, T )′) being given by (2.6)), we deduce that u ∈ H3(0, L,H1(0, T )′)
and (2.5) follows.

We now proceed to the proof of Theorem 1.2. Arguing by contradiction, we
assume that for every u0 ∈ L2(0,+∞) there exists a function u ∈ L∞(0, T, L2(0,+∞))
such that P u = 0 in D′((0, T ) × (0,+∞)), u|t=0

= u0, and u|t=T = 0. Let E denote
the space

{u ∈ L∞(0, T, L2(0,+∞)), P u = 0 in D′((0, T )× (0,+∞)) and u|t=T = 0},
endowed with the norm ‖u‖E = ‖u‖L∞(0,T,L2(0,+∞)). It is a Banach space, since

‖u|t=T ‖H−3(0,+∞) ≤ C‖u‖H1(0,T,H−3(0,+∞)) ≤ C ′‖u‖E
for all u ∈ E and some constants C,C ′ > 0. Also, the linear map Λ : u ∈ E �→
u|t=0

∈ H−3(0,+∞) is continuous. Actually, thanks to [14, Lem. 8.1], Λ takes values
in L2(0,+∞) and we readily infer from the closed graph theorem that Λ is continuous
as a map from E into L2(0,+∞). Let N = kerΛ, let Ẽ stand for the quotient
space of E by N , and let π denote the natural projection of E onto Ẽ. Then Ẽ
is a Banach space for the norm ‖π(u)‖Ẽ := infw∈π(u) ‖w‖E , and the induced map

Λ̃ : Ẽ → L2(0,+∞) (defined by Λ̃(π(u)) = Λ(u) for any u ∈ E) has a continuous
inverse by the open mapping theorem. For every λ > 0 we pick uλ ∈ E such that
π(uλ) = Λ̃−1(vλ(0, ·)) (with vλ as in Lemma 2.1) and

‖uλ‖E ≤ 2‖π(uλ)‖Ẽ ≤ 2‖Λ̃−1‖.(2.8)

Let L be a positive number. Integrations by part in∫ T

0

∫ L

0

P (uλ)vλ dxdt = 0

result in

−
∫ L

0

vλ(0, x)2 dx+
[〈uλxx + uλ, vλ〉 − 〈uλx, vλx〉+ 〈uλ, vλxx〉

]L
x=0

= 0,(2.9)

where 〈·, ·〉 denotes here the duality pairing 〈·, ·〉H1(0,T )′,H1(0,T ). Since

‖uλ(·, L)‖H1(0,T )′ + ‖uλx(·, L)‖H1(0,T )′ + ‖uλxx(·, L)‖H1(0,T )′

≤ C‖u‖L∞(0,T,L2(L,L+1))

≤ C‖u‖L∞(0,T,L2(0,+∞))

(where C = C(1, T ) is as in Lemma 2.2) and since vλ(·, L), vλx(·, L) and vλxx(·, L)→ 0
in H1(0, T ) as L→ +∞, letting L→ +∞ in (2.9) and using (2.2)–(2.3) we get

1 =

∫ +∞

0

vλ(0, x)2 dx = 〈uλx, vλx〉|x=0
− 〈uλ, vλxx〉|x=0

.

Hence, by (2.5) and (2.8) (also with C = C(1, T ))

1 ≤ 2C‖Λ̃−1‖
(
‖vλx |x=0

‖H1(0,T ) + ‖vλxx|x=0
‖H1(0,T )

)
·(2.10)

Letting λ→ 0 in (2.10) and using (2.4) we get a contradiction. The proof of Theorem
1.2 is complete.
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3. A Carleman’s estimate. Let T and L be positive numbers. Set

Z = {q ∈ C3([0, T ]× [−L,L]); q(t,±L) = qx(t,±L) = qxx(t,±L) = 0 for 0 ≤ t ≤ T}.
This section is devoted to the proof of the following global Carleman’s estimate for
the KdV equation.

Proposition 3.1. There exists a smooth positive function ψ on [−L,L] (which
depends on L) and there exist constants s0 = s0(L, T ) and C = C(L, T ) such that for
all s ≥ s0 and all q ∈ Z∫ T

0

∫ L

−L

{
s5

t5(T − t)5 |q|
2 +

s3

t3(T − t)3 |qx|
2 +

s

t(T − t) |qxx|
2

}
e−

2sψ(x)
t(T−t) dxdt

≤ C

∫ T

0

∫ L

−L

|qt + qx + qxxx|2e−
2sψ(x)
t(T−t) dxdt.

(3.1)

Proof. Let ψ = ψ(x) be a positive function (to be specified later) of class C3 in

[−L,L] and let ϕ(t, x) := ψ(x)
t(T−t) . Let q be given in Z and let s > 0. Set u := e−sϕq

and w := e−sϕP (esϕu). We readily get

w = Au+Bux + Cuxx + uxxx + ut,(3.2)

with

A := s(ϕt + ϕx + ϕxxx) + 3s2ϕxϕxx + (sϕx)
3,

B := 1 + 3sϕxx + 3(sϕx)
2,

C := 3sϕx.

Set M1(u) := ut + uxxx + Bux and M2(u) := Au + Cuxx. We deduce the following
inequality:

2

∫∫
M1(u)M2(u) ≤

∫∫ (
M1(u) +M2(u)

)2
=

∫∫
w2.(3.3)

(Here and in what follows, the integrals are extended to (0, T )×(−L,L).) To compute
the integral in the left-hand side of (3.3) we perform integrations by part w.r.t. x or
t. We readily get∫∫

M1(u)Au = −1
2

∫∫
(At +Axxx + (AB)x)u

2 +
3

2

∫∫
Axu

2
x(3.4)

and ∫∫
(uxxx +Bux)Cuxx = −1

2

∫∫
Cxu

2
xx −

1

2

∫∫
(BC)xu

2
x.(3.5)

Finally, using (3.2),∫∫
utCuxx = −

∫∫
Cxutux −

∫∫
Cutxux

=

∫∫
Cx

(
Au+Bux + Cuxx + uxxx − w

)
ux +

1

2

∫∫
Ctu

2
x

= −1
2

∫∫
(CxA)xu

2 +
1

2

∫∫
(2BCx − (CCx)x + Cxxx + Ct)u

2
x

−
∫∫

Cxu
2
xx −

∫∫
Cxwux·

(3.6)
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Combining (3.4), (3.5), and (3.6) we get

2

∫∫
M1(u)M2(u) = −

∫∫ (
At +Axxx + (AB)x + (CxA)x

)
u2

+

∫∫ (
3Ax − (BC)x + 2BCx − (CCx)x + Cxxx + Ct

)
u2
x

−3
∫∫

Cxu
2
xx − 2

∫∫
Cxwux·

(3.7)

If ε is any number in (0, 1), then by the Cauchy–Schwarz inequality

2

∫∫
Cxwux ≤ ε

∫∫
C2
xu

2
x + ε−1

∫∫
w2·

Hence, setting

D := −(At +Axxx + (AB)x + (CxA)x
)
,

E := 3Ax +BCx −BxC − (CCx)x + Cxxx + Ct − εC2
x,

F := −3Cx

and using (3.3), (3.7) we get∫∫
Du2 +

∫∫
Eu2

x +

∫∫
Fu2

xx ≤ (1 + ε−1)

∫∫
w2.(3.8)

The function ψ will be chosen in such a way that D, E, and F are positive. Clearly

D = −(AB)x + 1

t4(T − t)4O(s
4) (as s→ +∞)

= −(3(sϕx)5)x + O(s4)

t4(T − t)4
= −15s5ψ

′(x)4ψ′′(x)
t5(T − t)5 +

O(s4)

t4(T − t)4 ·

It follows that for s large enough, if

|ψ′(x)| > 0 and ψ′′(x) < 0 for x ∈ [−L,L],(3.9)

we have

D ≥ C1
s5

t5(T − t)5(3.10)

for some constant C1 > 0. On the other hand, expanding E in a series of powers of
s, it is easy to see that there is no term in s3 (because of cancellations) and that

E = 9s2
(
(1− ε)ϕ2

xx − ϕxϕxxx
)
+

O(s)

t2(T − t)2
= 9s2

(1− ε)ψ′′(x)2 − ψ′(x)ψ′′′(x)
t2(T − t)2 +

O(s)

t2(T − t)2 ·

Hence for s large enough, if

(1− ε)ψ′′(x)2 − ψ′(x)ψ′′′(x) > 0 for all x ∈ [−L,L],(3.11)
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we get for some constant C2 > 0

E ≥ C2
s2

t2(T − t)2 ·(3.12)

Finally, for some constant C3 > 0

F = −9ψ
′′(x)s

t(T − t) ≥ C3
s

t(T − t)(3.13)

provided that (3.9) holds true. Now pick some smooth positive function ψ on [−L,L]
such that (3.9) and (3.11) are fulfilled for some ε > 0. (For instance, picking any ε
in (0, 1), ψ(x) = −x2 + (2L+ 1)(x+ 2L) is convenient.) We infer from (3.8), (3.10),
(3.12), and (3.13) that, for s large enough,∫∫ {

s5

t5(T − t)5u
2 +

s2

t2(T − t)2u
2
x +

s

t(T − t)u
2
xx

}
≤ C4

∫∫
w2(3.14)

for some constant C4 > 0. Actually (3.14) may be slightly improved by observing
that ∫∫

s3

t3(T − t)3u
2
x = −

∫∫
s3

t3(T − t)3uuxx

≤ 1

2

(∫∫
s5

t5(T − t)5u
2 +

∫∫
s

t(T − t)u
2
xx

)
≤ C4

2

∫∫
w2

(thanks to (3.14)); hence, for s large enough,∫∫ {
s5

t5(T − t)5u
2 +

s3

t3(T − t)3u
2
x +

s

t(T − t)u
2
xx

}
≤ 3

2
C4

∫∫
w2·(3.15)

Replacing u with e−sϕq in (3.15) we readily get (3.1) for some constant C > 0 and s
large enough. The proof of Proposition 3.1 is complete.

Corollary 3.2. Let L > 0 and let f = f(t, x) be any function in L2
(
Rt ×

(−L,L)x
)
such that supp f ⊂ [t1, t2]× (−L,L), where −∞ < t1 < t2 <∞. Then for

every ε > 0 there exist a positive number C = C(L, t1, t2, ε) (C does not depend on f)
and a function v ∈ L2

(
R× (−L,L)) such that

vt + vx + vxxx = f in D′(R× (−L,L)),(3.16)

supp v ⊂ [t1 − ε, t2 + ε]× (−L,L),(3.17)

‖v‖
L2
(

R×(−L,L)
) ≤ C‖f‖

L2
(

R×(−L,L)
)·(3.18)

Proof. Applying a translation w.r.t. time if needed, we may assume without loss
of generality that 0 = t1 − ε < t1 < t2 < t2 + ε =: T . We readily infer from (3.1) that
for some constants k,C1 > 0 and for every q ∈ Z∫ T

0

∫ L

−L

|q|2e− k
t(T−t) dxdt ≤ C1

∫ T

0

∫ L

−L

|Pq|2 dxdt.(3.19)
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Thus the bilinear form

(p, q) :=

∫ T

0

∫ L

−L

PpPq dxdt

is a scalar product on Z. Let H denote the completion of Z for (·, ·). Obviously

|q|2e− k
t(T−t) is integrable on (0, T ) × (−L,L) if q ∈ H, and (3.19) holds true as well.

On the other hand the linear form

l(q) := −
∫ T

0

∫ L

−L

fq dxdt

is well defined and continuous on H. Indeed, using (3.19) and the assumption on the
support of f , we get∫ T

0

∫ L

−L

|fq| dxdt =
∫ t2

t1

∫ L

−L

|fq| dxdt ≤ C2‖f‖
L2
(
(t1,t2)×(−L,L)

) · (q, q) 1
2(3.20)

for some constant C2 > 0. It follows from the Riesz representation theorem that there
exists a unique p ∈ H such that

for all q ∈ H (p, q) = l(q).(3.21)

We set v := P (p) ∈ L2
(
(0, T ) × (−L,L)). Taking q ∈ D((0, T ) × (−L,L)) as a test

function in (3.21) we get

〈P ∗(v), q〉D′(Q),D(Q) = 〈−f, q〉D′(Q),D(Q),

where Q = (0, T ) × (−L,L) and P ∗ = −P is the (formal) adjoint to the operator
P . Hence Pv = f in D′(Q). Notice that v ∈ H1(0, T,H−3(−L,L)), since v and
vt = f−vxxx−vx belong to L2(0, T,H−3(−L,L)); hence v|t=0

and v|t=T are meaningful
in H−3(−L,L). Now let q ∈ Z ⊂ H1(0, T,H3

0 (−L,L)). It follows from (3.21) that

−
∫ T

0

∫ L

−L

fq dxdt =

∫ T

0

∫ L

−L

v(qt + qx + qxxx) dxdt

= −
∫ T

0

〈vt + vx + vxxx, q〉 dt+ [〈v, q〉]Tt=0

= −
∫ T

0

∫ L

−L

fq dxdt+ [〈v, q〉]Tt=0,

where 〈·, ·〉 denotes the duality pairing 〈·, ·〉H−3(−L,L),H3
0 (−L,L). Since q|t=0

and q|t=T
may be arbitrarily chosen in D(−L,L), we infer that v|t=0

= v|t=T = 0 in H−3(−L,L).
Extending v by setting v(t, x) = 0 for (t, x) �∈ (0, T ) × (−L,L), we see that (3.16),
(3.17), and (3.18) hold true (with C = C2).

Remark 1. Using [19, Thm. 1.2] instead of Proposition 3.1, one may prove that

the result in Corollary 3.2 also holds true for ε = 0 and that the weight e−
k

t(T−t) may
be dropped in the integral term of the left-hand side of (3.19). Nevertheless, the proof
given here is direct and shorter, and it leads to a self-contained paper. Moreover, this
proof also works for the heat equation (see below the proof of Theorem 5.2).
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4. The proof of Theorem 1.3. For the comfort of the reader, we first give an
outline of the proof of Theorem 1.3. In the first step, we show that we are finished
if, for any f ∈ L2

loc(R
2) with support in some strip [0, T ] × R and any ε > 0, there

exists a function u ∈ L2
loc(R

2) supported in [−ε, T + ε] × R, which solves P u = f .
This problem has already been solved when the whole domain R

2 is replaced by
Rt × (−n, n)x, n ≥ 1. (See Corollary 3.2.) At this stage, we are given a sequence of
solutions of P u = f , which are defined on an increasing sequence of domains and are
supported in [−ε, T + ε]×R. To ensure the convergence of this sequence in L2

loc(R
2),

we need an approximation theorem (Lemma 4.4), which differs from the one in [18]
by a careful control on the growth of the support in time. Two technical lemmas
(namely, Lemmas 4.2 and 4.3) are needed to prove the approximation theorem. The
final step is a standard Mittag–Leffler’s procedure.

Let u0 ∈ L2(0,+∞) and uT ∈ L2
(
(0,+∞), e−2bxdx

)
. It is well known (see [9])

that the operator Av = −vxxx with domain H3(R) (resp., {v ∈ L2(R, e2bxdx), Av ∈
L2(R, e2bxdx)}) generates a continuous semigroup on L2(R) (resp., L2(R, e2bxdx)).
Thanks to the standard change of functions

v(t, x) = u(t, t+ x)(4.1)

we easily get two functions u1(t, x), u2(t, x) such that u1 ∈ C([0, T ], L2(R)), u2 ∈
C([0, T ], L2(R, e2bxdx)), and

Pu1 = Pu2 = 0 on (0, T )× R,

u1(0, x) =

{
u0(x) for a.e. x > 0,
0 for a.e. x < 0,

u2(0, x) =

{
uT (−x) for a.e. x < 0,
0 for a.e. x > 0.

Now set ũ2(t, x) = u2(T − t,−x). Obviously P ũ2 = 0 and ũ2|t=T =ũT on (0,+∞). Let

ε′ be any number in (ε, T2 ) and let ϕ ∈ C∞([0, T ]) be such that ϕ(t) = 1 for t ≤ ε′

and ϕ(t) = 0 for t ≥ T − ε′. The change of functions

u(t, x) = ϕ(t)u1(t, x) +
(
1− ϕ(t))ũ2(t, x) + w(t, x)

transforms (1.4) into{
P w = dϕ

dt (ũ2 − u1) in D′((0, T )× (0,+∞)
)
,

w|t=0
= w|t=T = 0 on (0,+∞).

Setting f(t, x) = ϕ′(t)
(
ũ2(t, x)−u1(t, x)

)
, it is clear that we are finished if the following

result is proved.
Proposition 4.1. Let f = f(t, x) be any function in L2

loc(R
2) such that

supp f ⊂ [t1, t2]× R

where 0 < t1 < t2 < T . Let ε ∈ (0,min(t1, T − t2)). Then there exists u ∈ L2
loc(R

2)
such that

P u = f in D′(R2) and supp u ⊂ [t1 − ε, t2 + ε]× R.(4.2)

Remark 2. The question whether Proposition 4.1 remains valid with ε = 0 is open.
Notice that the answer is negative for the heat equation. (See Remark 3 below.)
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As in [18] the proof of Proposition 4.1 rests on an approximation theorem (Lemma
4.4), which in turn is obtained as a consequence of two preliminary lemmas. In what
follows SL will denote the unitary group in L2(−L,L) generated by the operator
Au = −uxxx − ux with domain

D(A) = {u ∈ H3(−L,L); u(−L) = u(L), ux(−L) = ux(L), uxx(−L) = uxx(L)}·

Set en(x) = 1√
2L
ein

π
Lx for n ∈ Z. en is an eigenvector for A associated with the

eigenvalue ωn = iλn, with

λn =
(
n
π

L

)3

− nπ
L
·(4.3)

If u0 is any complex-valued function in L2(−L,L), decomposed as u0 =
∑

n∈Z
cnen,

we have for every t ∈ R

SL(t)u0 =
∑
n∈Z

eiλntcnen.(4.4)

We are now ready to state the first lemma, which may be seen as a preliminary version
to the approximation theorem.

Lemma 4.2. Let l1, l2, L, t1, t2, T be numbers such that 0 < l1 < l2 < L and
0 < t1 < t2 < T . Let u ∈ L2 ((0, T )× (−l2, l2)) be such that

P u = 0 in (0, T )× (−l2, l2) and supp u ⊂ [t1, t2]× (−l2, l2).(4.5)

Let δ > 0 with 2δ < min(t1, T − t2) and η > 0 be given. Then there exist v1, v2 ∈
L2(−L,L) and v ∈ L2 ((0, T )× (−L,L)) such that

P v = 0 in (0, T )× (−L,L),(4.6)

v(t, ·) = SL(t− t1 + 2δ)v1 for t1 − 2δ < t < t1 − δ,(4.7)

v(t, ·) = SL(t− t2 − δ)v2 for t2 + δ < t < t2 + 2δ,(4.8)

‖v − u‖L2((t1−2δ,t2+2δ)×(−l1,l1)) < η.(4.9)

Roughly speaking, (4.7)–(4.8) mean that for t ∈ (t1− 2δ, t1− δ)∪ (t2 + δ, t2 +2δ)
v satisfies (in addition to P v = 0) the boundary conditions v(−L) = v(L), vx(−L) =
vx(L), and vxx(−L) = vxx(L).

Proof of Lemma 4.2. Set Q = (0, T )× (−L,L), Qδ = (t1 − 2δ, t2 +2δ)× (−l1, l1).
Smoothing u by convolution and multiplying the regularized function by a cut-off
function (of x), we easily get a function u′ ∈ D(R2) such that

supp u′ ⊂ [t1 − δ, t2 + δ]× [−l2, l2],

P u′ = 0 in (0, T )× (−l1, l1) and

‖u′ − u‖
L2
(
(0,T )×(−l1,l1)

) < η
2 ·

(4.10)
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Let

E = {v ∈ L2(Q); ∃v1, v2 ∈ L2(−L,L) s.t. (4.6), (4.7), and (4.8) hold true}.

The lemma is proved if we may find v ∈ E such that ‖v − u′‖L2(Qδ) <
η
2 . We are

finished if we prove u′ ∈ E = E⊥⊥, where the closure and the orthogonal complement
are taken in the space L2(Qδ). Fix a function g ∈ E⊥ ⊂ L2(Qδ). Before proving
(u′, g)L2(Qδ) = 0, we begin with the following claim.

Claim 1. Let T = {ϕ ∈ C∞(R2); supp ϕ ⊂ [t1 − δ, t2 + δ] × R}. Then there
exists C > 0 such that

for all ϕ ∈ T |(ϕ, g)L2(Qδ)| ≤ C‖P ϕ‖L2(Q).(4.11)

Proof of Claim 1. Let ϕ ∈ T , and set ψ(t) :=
∫ t
0
SL(t− τ)Pϕ(τ) dτ for 0 ≤ t ≤ T ;

that is, ψ is the (strong) solution of the following boundary initial-value problem:

P ψ = P ϕ in Q,
ψ(t,−L) = ψ(t, L),
ψx(t,−L) = ψx(t, L),
ψxx(t,−L) = ψxx(t, L),

ψ(0, ·) = 0.

Clearly v := ψ − ϕ ∈ E ((4.7)–(4.8) hold true with v1 = 0, v2 = ψ(t2 + δ)); hence
(ψ − ϕ, g)L2(Qδ) = 0. On the other hand, it is clear that

for all t ∈ [0, T ] ‖ψ(t)‖L2(−L,L) ≤ ‖P ϕ‖L1(0,t,L2(−L,L)) ≤
√
T‖P ϕ‖L2(Q);

hence

|(ϕ, g)|L2(Qδ) = |(ψ, g)|L2(Qδ) ≤ T‖g‖L2(Qδ) · ‖P ϕ‖L2(Q).

This completes the proof of Claim 1. We now proceed to the next claim.
Claim 2. There exists a function w ∈ L2(Q) such that

for all ϕ ∈ T (ϕ, g)L2(Qδ) = (P ϕ,w)L2(Q).(4.12)

Proof of Claim 2. Let Z := {(P ϕ)|Q ; ϕ ∈ T }. Notice first that for any ζ ∈ Z,
if ζ = (P ϕ1)|Q = (P ϕ2)|Q for two functions ϕ1, ϕ2 ∈ T , then ϕ1 − ϕ2 ∈ E ; hence
(ϕ1 − ϕ2, g)L2(Qδ) = 0. It follows that the (linear) map Λ : ζ ∈ Z �→ (ϕ, g)L2(Qδ) ∈ R

(if ζ = (P ϕ)|Q , ϕ ∈ T ) is well defined. Let H denote the closure of Z in L2(Q). We
infer from (4.11) that Λ may be extended to H in such a way that Λ is a continuous
linear form on H. It follows from Riesz representation theorem that there exists
w ∈ H such that Λ(ζ) = (ζ, w)L2(Q) for all ζ ∈ H. Then (4.12) holds true.

We are now ready to prove (u′, g)L2(Qδ) = 0. Extend g and w on R
2 to g̃, w̃ by

setting

g̃(t, x) = 0 for (t, x) ∈ R
2 \Qδ,

w̃(t, x) = 0 for (t, x) ∈ R
2 \Q.

Set Ω = (t1 − δ, t2 + δ)× R and let ϕ ∈ D(Ω) ⊂ T . Obviously

(ϕ, g)L2(Qδ) = (ϕ, g̃)L2(Ω) and (P ϕ,w)L2(Q) = (P ϕ, w̃)L2(Ω);
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hence it follows from (4.12) that

〈P ∗ w̃, ϕ〉D′(Ω),D(Ω) = 〈g̃, ϕ〉D′(Ω),D(Ω)·
Thus

P ∗ w̃ = g̃ in D′(Ω)

and

P ∗ w̃ = 0 for t1 − δ < t < t2 + δ and |x| > l1.

Since

w̃(t, x) = 0 for t1 − δ < t < t2 + δ and |x| > L

we infer from Holmgren’s uniqueness theorem (see [5, Thm. 8.6.8]) that

w̃(t, x) = 0 for t1 − δ < t < t2 + δ and |x| > l1.(4.13)

Applying (4.12) to u′ ∈ T and using (4.10), (4.13) we get

(u′, g)L2(Qδ) = (P u′, w)L2(Q)

= (P u′, w)
L2
(
(t1−δ,t2+δ)×(−l1,l1)

)
= 0.

The proof of Lemma 4.2 is complete.
Next result is an observability result.
Lemma 4.3. Let l, L, T be positive numbers such that l < L. Then there exists a

constant C > 0 such that for every u0 ∈ L2(−L,L), if u denotes SL(·)u0, we have

‖u0‖L2(−L,L) ≤ C‖u‖
L2
(
(0,T )×(−l,l)

).(4.14)

(Hence

‖u‖L2((0,T )×(−L,L)) ≤
√
TC‖u‖L2((0,T )×(−l,l)).)(4.15)

Proof. Pick T ′ ∈ (0, T2 ) and γ > π
T ′ . Let N ∈ N be such that

λN − λ−N = 2λN ≥ γ and (n ∈ Z, |n| ≥ N)⇒ λn+1 − λn ≥ γ.

By Ingham’s inequality (see [7]) there exists a constant CT ′
> 0 such that for ev-

ery sequence (an)|n|≥N of complex numbers, with an = 0 for |n| large enough, the
following inequality holds true:

∑
|n|≥N

|an|2 ≤ CT ′
∫ T ′

−T ′

∣∣∣∣∣∣
∑

|n|≥N

ane
−iλnt

∣∣∣∣∣∣
2

dt.(4.16)

Let Zn := Span(en) for n ∈ Z and Z =
⊕

n∈Z
Zn ⊂ L2(−L,L). We define a seminorm

p in Z by

p(u) :=

(∫ l

−l

|u(x)|2 dx
) 1

2

for u ∈ Z.
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p is clearly a norm in each Zn. On the other hand, if u0 ∈ Z ∩ (
⊕

|n|<N Zn)⊥ (i.e.,

u0 may be written in the form u0 =
∑

|n|≥N cnen with cn = 0 for |n| large enough),
then applying (4.16) (with an = cn√

2L
ei(λnT

′+n πLx)) and integrating w.r.t. x on (−l, l),
we get

2l
∑

|n|≥N

|cn|2
2L
≤ CT ′

∫ l

−l

∫ 2T ′

0

∣∣∣∣∣∣
∑

|n|≥N

eiλnτ cnen(x)

∣∣∣∣∣∣
2

dτdx;

hence, by Fubini’s theorem,

‖u0‖2L2(−L,L) ≤
L

l
CT ′

∫ 2T ′

0

p
(
SL(τ)u0

)2
dτ.

Finally, for any u0 ∈ L2(−L,L), we have∫ 2T ′

0

p
(
SL(τ)u0

)2
dτ ≤ ‖SL(·)u0‖2

L2
(
(0,2T ′)×(−L,L)

) = 2T ′‖u0‖2L2(−L,L).

Since T > 2T ′, it follows from [10, Thm. 5.2] that there exists a constant C > 0
such that (4.14) holds true for all z0 ∈ Z. We get (4.14) for all u0 ∈ L2(−L,L) by a
density argument.

We now proceed to the proof of the following approximation theorem, which
differs from the one in [18] by an additional property on the support.

Lemma 4.4. Let n ∈ N \ {0, 1} and let t1, t2, T be numbers such that 0 < t1 <
t2 < T . Let u ∈ L2

(
(0, T ) × (−n, n)) be such that P u = 0 in (0, T ) × (−n, n)

and supp u ⊂ [t1, t2] × (−n, n). Let 0 < ε < min(t1, T − t2). Then there exists
v ∈ L2

(
(0, T )× (−n− 1, n+ 1)

)
such that

P v = 0 in (0, T )× (−n− 1, n+ 1),(4.17)

supp v ⊂ [t1 − ε, t2 + ε]× (−n− 1, n+ 1),(4.18)

‖v − u‖
L2
(
(0,T )×(−n+1,n−1)

) < ε.(4.19)

Proof. Let η > 0 (to be chosen later). By Lemma 4.2, applied with L = n + 1,
there exists ṽ ∈ L2

(
(0, T )× (−n− 1, n+ 1)

)
such that

P ṽ = 0 in (0, T )× (−n− 1, n+ 1),

ṽ(t, ·) = Sn+1

(
t− t1 + ε

2

)
v1 for t1 − ε

2
< t < t1 − ε

4
,(4.20)

ṽ(t, ·) = Sn+1

(
t− t2 − ε

4

)
v2 for t2 +

ε

4
< t < t2 +

ε

2
(4.21)

for some v1, v2 ∈ L2(−n− 1, n+ 1) and

‖ṽ − u‖
L2
(
(t1− ε

2 ,t2+
ε
2 )×(−n+1,n−1)

) < η·
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In order that (4.18) be fulfilled, we multiply ṽ by a cut-off function. Let ϕ ∈ D(0, T )
be such that 0 ≤ ϕ ≤ 1, ϕ(t) = 1 for all t ∈ [t1− ε

4 , t2+
ε
4 ] and supp (ϕ) ⊂ [t1− ε

2 , t2+
ε
2 ].

Set v̄(t, x) = ϕ(t)ṽ(t, x). It follows that

supp v̄ ⊂
[
t1 − ε

2
, t2 +

ε

2

]
× (−n− 1, n+ 1)·

Hence

‖v̄ − u‖
L2
(
(0,T )×(−n+1,n−1)

)
= ‖v̄ − u‖

L2
(
(t1− ε

2 ,t2+
ε
2 )×(−n+1,n−1)

)
≤ ‖(ϕ− 1)ṽ‖

L2
(
(t1− ε

2 ,t2+
ε
2 )×(−n+1,n−1)

)
+‖ṽ − u‖

L2
(
(t1− ε

2 ,t2+
ε
2 )×(−n+1,n−1)

).
Since supp u ⊂ [t1, t2]× (−n, n) and ϕ(t) = 1 for t1 − ε

4 ≤ t ≤ t2 +
ε
4 , we get

‖(ϕ− 1)ṽ ‖2
L2
(
(t1− ε

2 ,t2+
ε
2 )×(−n+1,n−1)

)
≤ ‖ṽ‖2

L2
(
{(t1− ε

2 ,t1− ε
4 )∪(t2+

ε
4 ,t2+

ε
2 )}×(−n+1,n−1)

)
≤ ‖ṽ − u‖2

L2
(
(t1− ε

2 ,t2+
ε
2 )×(−n+1,n−1)

)
< η2·

(4.22)

Hence

‖v̄ − u‖
L2
(
(0,T )×(−n+1,n−1)

) ≤ 2η·(4.23)

Finally P v̄ = dϕ
dt ṽ in (0, T )× (−n− 1, n+ 1); hence

‖P v̄ ‖2
L2
(
(0,T )×(−n−1,n+1)

)
≤ ‖dϕdt ‖2L∞(0,T ) · ‖ṽ‖2L2

(
{(t1− ε

2 ,t1− ε
4 )∪(t2+

ε
4 ,t2+

ε
2 )}×(−n−1,n+1)

).
Since (4.20), (4.21) hold true, we infer from Lemma 4.3 that there exists a constant
C = C(n, ε) > 0 such that

‖ṽ‖
L2
(
(t1− ε

2 ,t1− ε
4 )×(−n−1,n+1)

) ≤ C‖ṽ‖
L2
(
(t1− ε

2 ,t1− ε
4 )×(−n+1,n−1)

)
and also

‖ṽ‖
L2
(
(t2+

ε
4 ,t2+

ε
2 )×(−n−1,n+1)

) ≤ C‖ṽ‖
L2
(
(t2+

ε
4 ,t2+

ε
2 )×(−n+1,n−1)

).
Hence, by (4.22),

‖P v̄‖
L2
(
(0,T )×(−n−1,n+1)

) ≤ C‖dϕ
dt
‖L∞(0,T ) η·(4.24)

We finally modify v̄ in order that (4.17) be satisfied. By Corollary 3.2 there exist a
constant C ′ > 0 (which depends on n, t1, t2, and ε) and a function w ∈ L2

(
(0, T ) ×

(−n− 1, n+ 1)
)
such that

P w = P v̄ in (0, T )× (−n− 1, n+ 1),

supp w ⊂ [t1 − ε, t2 + ε]× (−n− 1, n+ 1),
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and also

‖w‖
L2
(
(0,T )×(−n−1,n+1)

) ≤ C ′‖P v̄‖
L2
(
(0,T )×(−n−1,n+1)

)·(4.25)

Set v := v̄ − w. Then (4.17) and (4.18) are obvious, and we infer from (4.23), (4.24),
and (4.25) that

‖v − u‖
L2
(
(0,T )×(−n+1,n−1)

) ≤ (2 + CC ′
∥∥∥∥dϕdt

∥∥∥∥
L∞(0,T )

)
η·

Hence (4.19) holds true provided that η is small enough.
We now turn to the proof of Proposition 4.1, which is carried out as in [18].
Proof of Proposition 4.1. Let (tn1 )n≥2 and (tn2 )n≥2 be two sequences of numbers

such that

for all n ≥ 2 t1 − ε < tn+1
1 < tn1 < t1 < t2 < tn2 < tn+1

2 < t2 + ε·(4.26)

We construct (by induction on n) a sequence (un)n≥2 of functions such that, for every
n ≥ 2,

un ∈ L2
(
(0, T )× (−n, n)),(4.27)

supp un ⊂ [tn1 , t
n
2 ]× (−n, n),(4.28)

P un = f in (0, T )× (−n, n),(4.29)

and, if n > 2,

‖un − un−1‖
L2
(
(0,T )×(−n+2,n−2)

) < 2−n·(4.30)

u2 is given by Corollary 3.2. Now let n ≥ 2 and assume that u2, . . . , un have been
constructed in such a way that (4.27)–(4.30) hold true. By Corollary 3.2 there exists
w ∈ L2

(
(0, T )× (−n− 1, n+ 1)

)
such that

supp w ⊂ [t21, t
2
2]× (−n− 1, n+ 1) and P w = f in (0, T )× (−n− 1, n+ 1)·

Since P (un − w) = 0 in (0, T )× (−n, n) and
supp (un − w|(0,T )×(−n,n)

) ⊂ [tn1 , t
n
2 ]× (−n, n),

with tn+1
1 < tn1 < tn2 < tn+1

2 , it follows from Lemma 4.4 that there exists a function
v ∈ L2

(
(0, T )× (−n− 1, n+ 1)

)
such that

supp v ⊂ [tn+1
1 , tn+1

2 ]× (−n− 1, n+ 1), P v = 0 in (0, T )× (−n− 1, n+ 1)

and also

‖v − (un − w)‖
L2
(
(0,T )×(−n+1,n−1)

) < 2−n−1·

We set un+1 := v+w. Then (4.27)–(4.30) are fulfilled. Extending the un’s by setting
un(t, x) = 0 for (t, x) �∈ (0, T )×(−n, n), we infer from (4.30) that the sequence (un)n≥2

converges in L2
loc(R

2) towards a function u such that

supp u ⊂ [t1 − ε, t2 + ε]× R

by (4.26) and (4.28). Finally P u = f in R
2, because of (4.29). This completes the

proof of Proposition 4.1 and also the proof of Theorem 1.3.
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5. The heat equation and the Schrödinger equation. In this section, we
are concerned with the control of the heat equation and of the Schrödinger equation
in unbounded domains. Let us first briefly discuss the controllability of the heat
equation

ut −∆u = 0,(5.1)

where ∆u =
∑N

i=1
∂2u
∂x2
i

, N ≥ 1. By Proposition 1.1, the (boundary or internal)

approximate controllability of (5.1) in unbounded domains is obvious. Notice that
this result is still valid (but not so obvious) for a semilinear heat equation; see [23].
As far as the boundary null-controllability of (5.1) is concerned, it has been proved in
[17] that no (nontrivial) function in D(Ω) (the space of test functions) can be driven
to 0 when Ω = R

N
+ := {(x′, xN ) : x′ ∈ R

N−1, xN > 0} and solutions of (5.1) are
taken in some transposition sense. However, if all the solutions of (5.1) are taken into
consideration, then the null-controllability is recovered, thanks to the following result
by Jones (see [8], [13]).

Theorem 5.1. Let g ∈ C0(RN ) and T > 0. Then there exists a function
u ∈ C0([0, T ] × R

N ) which solves (5.1) in the distributional sense for t > 0 and
satisfies u|t=0

= g, u|t=T = 0.
Notice that, as it has been pointed out in [13], the boundary control problem is

solved once and for all without reference to any specific domain or set of boundary
conditions. Theorem 5.1 is derived in [8] from the existence, for any ε > 0, of a
fundamental solution of the heat equation which is supported in the strip [0, ε]×R

N .
A result close to Theorem 5.1 may be proved along the same lines as in section 4.

Theorem 5.2. Let
(
S(t)

)
t≥0

denote the continuous semigroup on L2(RN ) gen-

erated by the operator Au = ∆u with domain H2(RN ). Let T, ε be positive numbers
with ε < T

2 and let u0, u1 ∈ L2(RN ). Then there exists a function

u ∈ L2
loc

(
[0, T ]× R

N )
) ∩ C

(
[0, ε] ∪ [T − ε, T ], L2(RN )

)
which solves 

ut −∆u = 0 in D′((0, T )× R
N
)
,

u|t=0
= u0,

u|t=T = S(T )u1.
(5.2)

Proof. Set, for any L > 0, ΩL := (−L,L)N . Let P1 denote the operator ∂
∂t −∆.

Let ε′ ∈ (ε, T2 ) and let ϕ ∈ C∞([0, T ]) be such that ϕ(t) = 1 for t ≤ ε′ and ϕ(t) = 0
for t ≥ T − ε′. The change of functions

u(t, ·) = ϕ(t)S(t)u0 +
(
1− ϕ(t))S(t)u1 + w(t, ·)

transforms (5.2) into{
P1 w = dϕ

dt S(t)(u1 − u0) in D′((0, T )× R
N
)
,

w|t=0
= w|t=T = 0.

Once again, it is clear that we are finished if Proposition 4.1 holds true with P1 instead
of P . The estimate (see [3, Lem. 5.2], [4, Thm. 4.1])

∃k > 0, ∃C > 0 s.t.

∫ T

0

∫
ΩL

|q|2e− k
t(T−t) dxdt ≤ C

∫ T

0

∫
ΩL

|qt +∆q|2 dxdt
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for any q ∈ C2([0, T ] × [−L,L]N ) such that q(t, x) = ∂nq(t, x) = 0 for (t, x) ∈
[0, T ] × ∂ΩL shows that Corollary 3.2 holds true with P1 instead of P . The other
key ingredient in the proof of Proposition 4.1, namely the internal observability result
(Lemma 4.3), may be found in the literature (see [12, Cor. 2]). If

(
SL(t)

)
t≥0

now

denotes the continuous semigroup on L2(ΩL) generated by the operator Au = ∆u
with domain H2

per(ΩL), then the proofs of Lemmas 4.2 and 4.4 and of Proposition 4.1
are word for word the same as those given above for the KdV equation.

Remark 3. For the heat equation, the results in Corollary 3.2 and in Proposition
4.1 are no longer true if we do ε = 0. Indeed, if we assume that Corollary 3.2 is
true for the one-dimensional heat equation with ε = 0 (for any f), then an argument
similar to the one used in the proof of Theorem 1.2 shows that for some constant
C > 0 we have ∫ T

0

∫ L

−L

|q|2 dxdt ≤ C

∫ T

0

∫ L

−L

|qt − qxx|2 dxdt(5.3)

for any q ∈ C2([0, T ] × [−L,L]) such that q(t,±L) = qx(t,±L) = 0. Let E be the
classical fundamental solution of the one-dimensional heat equation, namely

E(t, x) =

{
(4πt)−

1
2 exp(−x2

4t ) if t > 0, x ∈ R,
0 otherwise.

Let ρ ∈ D(−L,L) be such that ρ(x) = 1 for |x| < L
2 . Set q(t, x) = ρ(x)∂E∂x (t, x) for

x ∈ (−L,L) and t > 0. Direct computations show that ‖q‖L2((ε,T+ε)×(−L,L)) → +∞
as ε→ 0+, whereas ‖qt − qxx‖L2((ε,T+ε)×(−L,L)) = O(1), contradicting (5.3).

We now turn to the Schrödinger equation

iut +∆u = 0.(5.4)

For the sake of simplicity, we restrict ourselves to the one-dimensional case (i.e.,
N = 1). The following result is proved in the same way as Theorem 1.3.

Theorem 5.3. Let T, ε be positive numbers with ε < T
2 and let u0, uT ∈ L2(R).

Then there exists a function

u ∈ L2
loc

(
[0, T ]× R

) ∩ C
(
[0, ε] ∪ [T − ε, T ], L2(R)

)
which solves 

iut + uxx = 0 in D′((0, T )× R
)
,

u|t=0
= u0,

u|t=T = uT .
(5.5)

Proof. We shall write P2 for the operator ∂
∂t − i ∂2

∂x2 . Let
(
S(t)

)
t∈R

denote the

unitary group on L2(R) generated by the operator Au = iuxx with domain H2(R).
Let ε′ and ϕ be as in the proof of Theorem 5.2. The change of functions

u(t, ·) = ϕ(t)S(t)u0 +
(
1− ϕ(t))S(t− T )uT + w(t, ·)

transforms (5.5) into{
P2 w = dϕ

dt S(t)
(
S(−T )uT − u0

)
in D′((0, T )× R

)
,

w|t=0
= w|t=T = 0.
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We are again led to prove Proposition 4.1, but with P2 instead of P . Let SL denote
here the unitary group on L2(−L,L) generated by the operator Au = iuxx with
domain {u ∈ H2(−L,L); u(−L) = u(L), ux(−L) = ux(L)}. Let en(x) = 1√

2L
ein

π
Lx

and λn = (n π
L )

2 for n ∈ Z. If u0 ∈ L2(−L,L) is decomposed as u0 =
∑

n∈Z
cnen,

then S(t)u0 =
∑

n∈Z
e−iλntcnen for all t ∈ R.

A proof of Corollary 3.2 using a controllability result in the literature instead of
a Carleman’s estimate is as follows. Let w(t) :=

∫ t
t1
SL(t − τ)f(τ) dτ ∈ L2(−L,L)

for t1 ≤ t ≤ t2. By [15, Thm. 1.2] (the result being in fact true for any final
state yT ∈ L2(Ω) instead of 0) there exists some (internal) control function h ∈
L2((t1, t2)× (L,L+ 1)) such that the solution y ∈ C([t1, t2], L2(−L,L+ 1)) of

yt − iyxx = hχ(L,L+1) in (t1, t2)× (−L,L+ 1),
y = 0 on (t1, t2)× {−L,L+ 1},

y|t=t1 = 0

satisfies y|t=t2 = −w(t2) on (−L,L). Clearly, the function

v(t) :=

{
w(t) + y(t) if t1 ≤ t ≤ t2,
0 otherwise

fulfills vt − ivxx = f in D′(R× (−L,L)), (3.17) (with ε = 0) and (3.18).
As for the KdV equation the proof of Lemma 4.3 rests on Ingham’s inequality and

on [10, Thm. 5.2]. Here Z =
⊕

n∈N
Zn, with Z0 = Span(e0) and Zn = Span(en, e−n)

for n ≥ 1. To properly handle the left-hand side in Ingham’s estimate

∑
n≥N

|an|2 ≤ CT ′
∫ T ′

−T ′

∣∣∣∣∣∣
∑
n≥N

ane
−iλnt

∣∣∣∣∣∣
2

dt(5.6)

(which is applied with an = (cnen + c−ne−n)e
−iλnT

′
) it is sufficient to observe that

the estimate

‖cnen + c−ne−n‖2L2(−l,l) ≥
1

2

(‖cnen‖2L2(−l,l) + ‖c−ne−n‖2L2(−l,l)

)
holds true provided that |n| is large enough, which implies (for N large enough)∫ l

−l

∑
n≥N

|cnen + c−ne−n|2 dx ≥ l

2L

∑
|n|≥N

|cn|2 = l

2L
‖u0‖2L2(−L,L).

The rest of the proof of Lemma 4.3 and of Proposition 4.1 is as above for the KdV
equation.

Appendix. Proof of Proposition 1.1.
We argue by contradiction and assume that R = L2(R). Consider the map

Λ : f ∈ L2
(
(0, T )× (L1, L2)

)→ ∫ T

0

S(T − t)f̃(t, ·)dt ∈ L2(R)

(where f̃ is the prolongation of f by 0 on R
2). Let N = ker(Λ). Then the restriction

of Λ to the orthogonal complement of N in L2
(
(0, T ) × (L1, L2)

)
is a one-to-one

continuous linear map which is onto L2(R); hence its inverse (Λ|
N⊥ )

−1 is continuous.
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Let f ∈ D((0, T ) × (L1, L2)
)
and let wT ∈ D(A∗), where A∗ denotes the adjoint of

the operator A. (Clearly A∗w =
∑n

i=0(−1)iai d
iw
dxi .) Recall that A∗ generates the

continuous semigroup
(
S∗(t)

)
t≥0

on L2(R). Set w(t) := S∗(T − t)wT for t ∈ [0, T ].

Then w solves {
dw
dt = −A∗w,

w|t=T = wT .

Let u(t) =
∫ t
0
S(t− s)f̃(s, ·)ds. Integrating by part in∫ T

0

∫
R

(
dw

dt
+A∗w

)
u dxdt = 0,

we get ∫ T

0

∫ L2

L1

f(t, x)w(t, x) dxdt =

∫
R

wT (x)u(T, x) dx.(A.1)

The same equation holds true (by density) for f ∈ L2
(
(0, T ) × (L1, L2)

)
and wT ∈

L2(R). Letting f = (Λ|
N⊥ )

−1(wT ), where wT is any function in L2(R) \ {0}, we get

‖wT ‖2L2(R) ≤ ‖f‖L2
(
(0,T )×(L1,L2)

) · ‖w‖
L2
(
(0,T )×(L1,L2)

);
hence

‖wT ‖L2(R) ≤ ‖(Λ|
N⊥ )

−1‖ · ‖w‖
L2
(
(0,T )×(L1,L2)

)·
Replacing wT by wT (·+ n) (and also w(t, x) by w(t, x+ n)), we get

‖wT ‖L2(R) = ‖wT (·+ n)‖L2(R) ≤ ‖(Λ|
N⊥ )

−1‖ · ‖w‖
L2
(
(0,T )×(L1+n,L2+n)

).
Letting n → ∞, we get (by Lebesgue’s theorem) wT = 0, a contradiction. Thus
R �= L2(R). Now let wT ∈ R⊥. We infer from (A.1) that∫ T

0

∫ L2

L1

f(t, x)w(t, x) dxdt = 0

for all f ∈ L2
(
(0, T )×(L1, L2)

)
; hence w|(0,T )×(L1,L2)

= 0. Since n ≥ 2 (with an �= 0) it

follows from Holmgren’s uniqueness theorem that w = 0 in (0, T )×R; hence wT = 0,
and we infer that R is dense in L2(R).
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Abstract. In 1986 Warga proposed a “weak” relaxation procedure applicable to fully nonlinear
problems with delays in the control variables and showed that the resulting relaxed problem has
a solution. However, in the event of commensurate delays, several examples were found for which
weakly relaxed controls cannot be approximated with original controls, so that this extension fails to
be “proper.” Although the case of commensurate delays was solved by the introduction of a “strong”
model, the question of how to properly relax noncommensurately delayed controls has remained
open, and a natural candidate has been precisely that of weakly relaxed controls. In this paper, a
general counterexample is constructed which rules out the weak relaxation as a proper relaxation
when there are two or more delays. It is hoped that this result will provide some insight into the
problem of finding a general representation of properly relaxed controls.

Key words. optimal control problems, systems with time delays, proper relaxation procedures
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1. Introduction. This paper concerns the problem of finding a proper relax-
ation procedure for optimal control problems with nonadditively coupled delays (or,
more generally, shifts) in the control variables. Usually in relaxation theory the aim
is to find a relaxation procedure for a given original problem which leads us to its
proper extension. This means that the set of controls for the original problem is dense
in the space of controls for the relaxed problem. Such procedures are well studied
for delay free problems. For problems with delays the situation is more difficult and
less understood. For example, there are natural relaxation procedures which give a
proper extension while there are other natural relaxation procedures which do not
(see [2, 8]).

Research in this area starts in [11]. There are two basic problems:

1. the existence of a proper relaxation, and

2. the representation of the set of relaxed controls when it exists.

Problem 1 has been affirmatively answered in [11] when there is only one constant
delay, in [8] when the constant delays are commensurate, in [13] for arbitrary constant
delays, and in [12] for certain variable delays.

This paper deals with problem 2. Specifically, a general counterexample is con-
structed which rules out the weak relaxation proposed in [11] as a proper relaxation
when there are two or more delays. This is a significant step forward in this direction
which finally clarifies questions raised in [1, 2, 3, 4, 5, 6, 7, 8, 11]. In order to under-
stand this contribution, let us briefly state the problem we shall be concerned with
together with some basic notation and previous results.

For T ⊂ R compact and R a compact metric space, denote by M(T,R) the
space of measurable functions mapping T to rpm(R) with the weak star topology of
L1(T,C(R))∗, where rpm(R) is the space of Radon probability measures on R with

∗Received by the editors January 26, 1998; accepted for publication (in revised form) March 14,
2000; published electronically August 31, 2000.
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the weak star topology of C(R)∗. Let U(T,R) be the space of measurable functions
mapping T to R, embedded in M(T,R) by identifying each u ∈ U(T,R) with the
function t �→ δu(t), where δa (also written as δa) is the Dirac measure at a.

It is well known thatM(T,R) coincides with cl U(T,R), the weak star closure of
U(T,R). For optimal control problems where U(T,R) is the space of ordinary controls,
under the usual assumptions on the data of the problem, existence of minimizers in the
spaceM(T,R) of relaxed controls can thus be assured, and they can be approximated
with ordinary controls. This fact is summarized by saying that M(T,R) provides a
“proper” relaxation procedure for U(T,R). For a full account of these ideas, together
with a thorough study of relaxation and its importance in optimal control theory, we
refer to Warga’s book [10].

For optimal control problems involving delays in the controls, several attempts
have been made to find proper relaxation procedures. The space of ordinary delayed
controls we shall consider (also studied in [1, 2, 3, 4, 5, 6, 7, 8]), which illustrates the
main difficulties encountered when addressing relaxation questions, is given by

U(θ1, . . . , θk) = {(u0, u1, . . . , uk) ∈ U(T,Ωk+1) | ui(t) = ui−1(t−∆i)

almost everywhere (a.e.) in Ti (i = 1, . . . , k)},
where T = [0, 1], 0 < θ1 < · · · < θk < 1 are given real numbers, Ω is a given compact
metric space, and θ0 = 0, ∆i = θi − θi−1, Ti = [∆i, 1] (i = 1, . . . , k).

Warga [11] proposed (in a more general setting) a natural extension of U(θ1, . . . , θk),
which we call the weak relaxation procedure, given by

Mw(θ1, . . . , θk) = {µ ∈M(T,Ωk+1) | Piµ(t) = Pi−1µ(t−∆i) a.e. in Ti (i = 1, . . . , k)},
where if, say, µ ∈ M(T,Ωn) for some n ∈ N and S ⊂ {0, 1, . . . , n − 1}, then PSµ(t)
denotes the projection onto the S coordinates of µ(t). Equivalently, µ ∈M(T,Ωk+1)
is a weakly relaxed control if and only if∫

Ti

dt

∫
ϕ(t, ri)µ(t)(dr) =

∫
Ti

dt

∫
ϕ(t, ri−1)µ(t−∆i)(dr)

for all ϕ in L1(T,C(Ω)) and i = 1, . . . , k, where r = (r0, . . . , rk).
One readily verifies that the set of weakly relaxed controls contains the set of

ordinary controls and, regarding it as a subspace ofM(T,Ωk+1) with the weak star
topology, it is compact. In [11] the question of properness of this model (that is, if
the equality Mw(θ1, . . . , θk) = cl U(θ1, . . . , θk) holds) was posed but could not be
proved. For the one delay case, it is shown in [3, 8] that this model is indeed a proper
relaxation procedure.

In [8] Rosenblueth and Vinter introduced an abstract relaxation procedure, which
we call the D-model, and properness of this procedure was established by Warga and
Zhu [13]. However, as we point out in [9], determining the set of D-relaxed controls
for specific problems is a very difficult and perhaps even a hopeless task, so there is
a need to find more concrete characterizations of the closure of the space of ordinary
delayed controls.

Now, the conjecture mentioned in our title, considered in [1, 2, 3, 4, 5, 6, 7, 8, 11],
is that

for any Ω ⊂ Rm compact and 0 < θ1 < θ2 < 1, Mw(θ1, θ2) = cl U(θ1, θ2).
This statement is false. In [8], Rosenblueth and Vinter exhibit an element of

Mw(θ1, θ2) lying outside cl U(θ1, θ2) for the case when θ2 = 2θ1 and Ω = [0, 1].
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Rosenblueth [4] extends the inequality Mw(θ1, θ2) �= cl U(θ1, θ2) to pairs different
than (θ1, 2θ1) and whose quotient is a rational number (this settles a question raised
by Andrews [1]). In the event of commensurate delays, a “strong” relaxation proce-
dure was introduced in [8] and shown to be proper (see also [4, 9]). For the noncom-
mensurate case, the problem of how to characterize D-relaxed controls has remained
unsolved, but a natural candidate has been precisely the space of weakly relaxed con-
trols (see [1, 5, 6]). In particular, it is shown in [6] that, if Ω = {0, 1} and θ1/θ2
is irrational, then any constant element ofMw(θ1, θ2) can be approximated with el-
ements of U(θ1, θ2). The present paper finally solves this question. We show that
inequality also holds for noncommensurate θ1, θ2:

For any 0 < θ1 < θ2 < 1, there exists µ ∈Mw(θ1, θ2) such that µ �∈ cl U(θ1, θ2).
It is hoped that the counterexample used to solve this question will provide some in-
sight into the problem of finding a general representation of properly relaxed controls.

2. The solution to the conjecture. In the following theorem we assume that
Ω = [0, 1]. Essentially the same arguments apply if Ω ⊂ R is any compact set
containing at least two points.

Theorem 2.1. For any 0 < θ1 < θ2 < 1 there exists µ ∈ Mw(θ1, θ2) such that
µ �∈ cl U(θ1, θ2).

Proof. Let 0 < θ1 < θ2 < 1 and set α := θ2 − θ1. For all (u, v, w) ∈ Ω3 let

h(u, v, w) := min{|(u, v − 1, w − 1)|, |(u− 1, v, w)|},
g(u, v, w) := min{|(u, v, w − 1)|, |(u− 1, v − 1, w)|},

and, for any t ∈ T , x0, x1 ∈ R, and (u, v, w) ∈ Ω3, let

f(t, x0, x1, u, v, w) :=

{
(x0 − t/2)2 + h(u, v, w) if t ∈ [0, θ2),
(x0 − t/2)2 + g(u, v, w) if t ∈ [θ2, 1].

Consider the problem (P) of minimizing x1(1) subject to
(ẋ0(t), ẋ1(t)) = (u(t), f(t, x0(t), x1(t), u(t), v(t), w(t))) a.e. in T,

(x0(0), x1(0)) = (0, 0),

(u, v, w) ∈ U(θ1, θ2).
Let µ ∈M(T,Ω3) be given by

µ(t) =

{
1
2δ(0, 1, 1) +

1
2δ(1, 0, 0) if t ∈ [0, θ2),

1
2δ(0, 0, 1) +

1
2δ(1, 1, 0) if t ∈ [θ2, 1].

Since

Piµ(t) = 1

2
δ0 +

1

2
δ1 for all t ∈ T and i = 0, 1, 2,

we have µ ∈ Mw(θ1, θ2). Note that its corresponding cost is zero and, since the cost
cannot be negative, the minimum of the problem posed onMw(θ1, θ2) is zero.

Let 0 < a < min{α, θ1, 1− θ2} so that the intervals I := [0, a), I + α, and I + θ2
are disjoint and belong to [0, 1). Let (x0, x1, u, v, w) be any admissible original process
for (P), so that (u, v, w) ∈ U(T,Ω3) and

v(t) = u(t− θ1) a.e. in [θ1, 1],(2.1)

w(t) = v(t− α) a.e. in [α, 1],(2.2)



WEAKLY RELAXED DELAYED CONTROLS 355

and observe that the following relations hold a.e. in I:

w(t+ α) = v(t), v(t+ θ2) = u(t+ α), w(t+ θ2) = u(t).

Indeed, by (2), w(t+α) = v(t) a.e. in [0, 1−α] and, since a < θ1 < 1−θ2+θ1 = 1−α,
we have I ⊂ [0, 1− α]. By (1), v(t+ θ2) = u(t+ α) a.e. in [−α, 1− θ2] ⊃ I. Finally,
by (2), w(t+ θ2) = v(t+ θ1) a.e. in [−θ1, 1− θ2] and, by (1), v(t+ θ1) = u(t) a.e. in
[0, 1− θ1]. Hence w(t+ θ2) = u(t) a.e. in [0, 1− θ2] ⊃ I and the three relations hold
a.e. in I.

Therefore,

x1(1) =

∫ θ2

0

{(x0(s)− s/2)2 + h(u(t), v(t), w(t))}dt

+

∫ 1

θ2

{(x0(s)− s/2)2 + g(u(t), v(t), w(t))}dt

≥
∫ a

0

h(u(t), v(t), w(t))dt+

∫ α+a

α

h(u(t), v(t), w(t))dt

+

∫ θ2+a

θ2

g(u(t), v(t), w(t))dt

=

∫ a

0

{h(u(t), v(t), w(t)) + h(u(t+ α), v(t+ α), v(t))
+g(u(t+ θ2), u(t+ α), u(t))}dt.

Fix t ∈ I and let r0 = u(t), r1 = v(t), r2 = u(t + α), s0 = w(t), s1 = v(t + α),
and s2 = u(t+ θ2). Define

ϕ(t) := h(r0, r1, s0) + h(r2, s1, r1) + g(s2, r2, r0),

and let

m0 :=

{
1 if h(r0, r1, s0) = |(r0, r1 − 1, s0 − 1)|,
0 if h(r0, r1, s0) = |(r0 − 1, r1, s0)|,

m1 :=

{
1 if h(r2, s1, r1) = |(r2, s1 − 1, r1 − 1)|,
0 if h(r2, s1, r1) = |(r2 − 1, s1, r1)|,

m2 :=

{
1 if g(s2, r2, r0) = |(s2, r2, r0 − 1)|,
0 if g(s2, r2, r0) = |(s2 − 1, r2 − 1, r0)|.

Observe now that

m0 �= m1 ⇒ ϕ(t) ≥ |1− r1|+ |r1|,
m1 �= m2 ⇒ ϕ(t) ≥ |1− r2|+ |r2|,
m0 = m2 ⇒ ϕ(t) ≥ |1− r0|+ |r0|.

On the other hand, if m0 = m1 and m1 = m2, then m0 = m2 and so, in all cases,
ϕ(t) ≥ 1. It follows that

x1(1) ≥
∫ a

0

ϕ(t)dt ≥ a > 0

and so the infimum of (P) posed over the original admissible processes is positive.
This implies that µ cannot be approximated with elements of U(θ1, θ2).
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3. Extensions to other delay-relaxation problems. The term “weak relax-
ation procedure” was first introduced in [8] referring to the model proposed by Warga
in [11]. To be exact, the latter is slightly different from the one studied in [8] and
mentioned in section 1. The subtle difference, which we shall explain below, leads to
the study of another delay-relaxation problem for which a proof similar to the one of
Theorem 2.1 can be applied.

Consider the following optimal control problem involving constant delays in the
control variables. Let T := [0, 1] and suppose we are given real numbers 0 < θ1 <
· · · < θk < 1, a point ξ ∈ Rn, a compact set Ω ⊂ Rm, and functions g mapping Rn

to R and f mapping T ×Rn ×Rm(k+1) to Rn. Let T̂ := [−θk, 1] and consider the
problem (P) of minimizing g(x(1)) subject to

ẋ(t) = f(t, x(t), u(t), u(t− θ1), . . . , u(t− θk)) a.e. in T,
x(0) = ξ,

u(t) ∈ Ω a.e. in T̂ ,

where u is any measurable function mapping T̂ to Rm.
In [11] Warga reformulated this “original control problem” (P) by treating the

control functions as independent variables which satisfy certain compatibility condi-
tions in terms of the delays. The model of relaxation proposed by Warga was obtained
by generalizing these conditions in the corresponding space of relaxed controls. To be
specific, let

W(θ1, . . . , θk)

:= {(u0, u1, . . . , uk) ∈ U(T̂ ,Ωk+1) | ui(t) = u0(t− θi) a.e. in T (i = 1, . . . , k)}
and consider the problem (W) of minimizing g(x(1)) subject to

ẋ(t) = f(t, x(t), u(t)) a.e. in T,

x(0) = ξ,

u ∈ W(θ1, . . . , θk).

As Warga mentions in [11], it is a simple fact to show that (P) and (W) are equivalent.
The “weak” extension of W(θ1, . . . , θk) proposed by Warga is given by

Sw(θ1, . . . , θk) := {µ ∈M(T̂ ,Ωk+1) | Piµ(t) = P0µ(t− θi) a.e. in T (i = 1, . . . , k)}.
In [8] Rosenblueth and Vinter considered the problem (see the notation of section

1), which we label (RV), of minimizing g(x(1)) subject to
ẋ(t) = f(t, x(t), u(t)) a.e. in T,

x(0) = ξ,

u ∈ U(θ1, . . . , θk).
It should be noted that, in this reformulation of the problem, ordinary controls are
measurable functions defined on the interval T = [0, 1] and not on T̂ = [−θk, 1] as in
the reformulation (W) of (P) given in [11]. As before, (P) and (RV) are equivalent
(see [7] for details). The notion of “weakly relaxed controls” applied to (RV) yields
the set

Mw(θ1, . . . , θk) = {µ ∈M(T,Ωk+1) | Piµ(t) = Pi−1µ(t−∆i) a.e. in Ti (i = 1, . . . , k)}
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and, since the three problems are equivalent, so is the question of properness of the
two models of relaxed controls.

Now, in [5, 6] we studied a similar but larger space of ordinary controls to which
the notion of weakly relaxed controls can also be applied. A different class of optimal
control problems is derived from these spaces, and the question of properness of the
weak model with respect to the larger class of ordinary controls can be posed. Consider
the space of original controls

U ′(θ1, . . . , θk)
= {(u0, u1, . . . , uk) ∈ U(T,Ωk+1) | ui(t) = u0(t− θi) a.e. in [θi, 1] (i = 1, . . . , k)}.

The notion of weakly relaxed controls applied to problem (R) of minimizing g(x(1))
subject to 

ẋ(t) = f(t, x(t), u(t)) a.e. in T,

x(0) = ξ,

u ∈ U ′(θ1, . . . , θk)

corresponds to

M′
w(θ1, . . . , θk) := {µ ∈M(T,Ωk+1) | Piµ(t) = P0µ(t−θi) a.e. in [θi, 1] (i = 1, . . . , k)},

which we shall call the space of R-weakly relaxed controls, and the open question has
been, again, if the relationM′

w(θ1, . . . , θk) = cl U ′(θ1, . . . , θk) holds.
Note that (R) is similar to (P) but not equivalent. The definition of U ′(θ1, . . . , θk)

as the space of ordinary delayed controls does not correspond to a reformulation of
(P) and, as one can easily show,

U ′(θ1, . . . , θk)
= {(u0, u1, . . . , uk) ∈ U(T,Ωk+1) | ui(t) = ui−1(t−∆i) a.e. in [θi, 1] (i = 1, . . . , k)}.

Comparing with the definition of the set U(θ1, . . . , θk), it is clear that U(θ1, . . . , θk) ⊂
U ′(θ1, . . . , θk), but the two sets may not coincide.

In [7] we proved an important consequence of this fact by exhibiting an element of
bothMw(θ1, θ2) andM′

w(θ1, θ2) which belongs to the weak star closure of U ′(θ1, θ2)
but not to that of U(θ1, θ2). Also in [7] we showed that, for certain delays, the space
of R-weakly relaxed controls does provide a proper relaxation procedure. The result
proved in [7] states that, given 0 < θ1 < θ2 < 1 and Ω ⊂ Rm compact, if θ1 ≥ 1/2,
then M′

w(θ1, θ2) = cl U ′(θ1, θ2) and, if θ1 < 1/2 and θ1 and θ2 are commensurate,
then cl U ′(θ1, θ2) may be strictly contained inM′

w(θ1, θ2).
A new result for this model can now be obtained with a proof similar to the one

of Theorem 2.1. The foregoing arguments can be applied to the conjecture stated in
terms of M′

w(θ1, θ2) and U ′(θ1, θ2). If θ1 + θ2 < 1, with a problem similar to the
previous one, it is not difficult to see that

µ(t) =

{
1
2δ(0, 1, 1) +

1
2δ(1, 0, 0) if t ∈ [0, θ1 + θ2),

1
2δ(0, 0, 1) +

1
2δ(1, 1, 0) if t ∈ [θ1 + θ2, 1]

belongs toM′
w(θ1, θ2) but not to cl U ′(θ1, θ2). We state this result.

Theorem 3.1. For any 0 < θ1 < θ2 < 1 with θ1 + θ2 < 1 there exists µ ∈
M′

w(θ1, θ2) such that µ �∈ cl U ′(θ1, θ2).
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Abstract. We propose a definition of “regular synthesis” that is more general than those
suggested by other authors such as Boltyanskii [SIAM J. Control Optim, 4 (1966), pp. 326–361] and
Brunovský [Math. Slovaca, 28 (1978), pp. 81–100], and an even more general notion of “regular
presynthesis.” We give a complete proof of the corresponding sufficiency theorem, a slightly weaker
version of which had been stated in an earlier article, with only a rough outline of the proof. We
illustrate the strength of our result by showing that the optimal synthesis for the famous Fuller
problem satisfies our hypotheses. We also compare our concept of synthesis with the simpler notion
of a “family of solutions of the closed-loop equation arising from an optimal feedback law,” and
show by means of examples why the latter is inadequate, and why the difficulty cannot be resolved
by using other concepts of solution—such as Filippov solutions, or the limits of sample-and-hold
solutions recently proposed as feedback solutions by Clarke et al. [IEEE Trans. Automat. Control,
42 (1997), pp. 1394–1407]—for equations with a non-Lipschitz and possibly discontinuous right-hand
side.

Key words. optimal control, regular synthesis, sufficient conditions
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1. Introduction. The purpose of the theory of “regular synthesis” is to turn into
a rigorous, precise theorem the vague assertion that “if a collection Γ of extremals
covers the whole space in a smooth enough way, then all the members of Γ are op-
timal.” Naturally, a good definition should at the same time be stringent enough to
lead to a correct proof of the sufficiency assertion, and broad enough to cover as large
as possible a class of optimal control problems. In particular, it would be desirable
for the theory to apply to well-known examples such as the famous “Fuller’s problem”
(cf. Fuller [13], Marchal [15], Zelikin–Borisov [32]), where the optimal controls have
infinitely many switchings.

The three main goals of this paper are (a) to propose a new definition of regular
synthesis, more general than those suggested by other authors (e.g., Boltyanskii [2],
Brunovský [5], [6]), as well as an even more general notion of “regular presynthesis,”
(b) to give a detailed statement and proof of the corresponding sufficiency theorem,
a slightly weaker version of which had been announced by one of us in an earlier
article (Sussmann [31]), with only a rough sketch of the proof, and (c) to compare our
definition with other concepts of synthesis such as those of Boltyanskii and Brunovský,
and with the simpler notion of a “family of solutions of the closed-loop equation arising
from an optimal feedback law.”

Our main sufficiency result is Theorem 2.13. The key to the proof turns out to be
a technical result—Theorem 2.14—on the relation between the adjoint vector of the
maximum principle and the gradient of the cost function. This in turn depends on
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results about differentiability of trajectories with respect to a parameter under weak
differentiability assumptions on the dependence of the data on the parameter. These
results are of interest in themselves and are presented separately in Appendix A.

Our definitions of regular presynthesis and regular synthesis are explained in
section 2; cf. Definition 2.3 for the notion of “presynthesis,” Definition 2.4 for that
of “synthesis,” and Definition 2.12 for “regularity.” The strength of Theorem 2.13
is illustrated in section 3 by showing that it applies to the synthesis for Fuller’s
problem, where other sufficiency theorems such as those of [2] and [6] cannot be used
because of the technical problem arising from the occurrence of an infinite number of
switchings. (Not surprisingly, the optimality of Fuller’s synthesis was originally proved
without resorting to regular synthesis arguments, and using instead special symmetry
properties of the problem, cf., e.g., Fuller [13], Marchal [15], Zelikin–Borisov [32].)
Other definitions of synthesis—including those of Boltyanskii and Brunovský—are
reviewed and compared with ours in section 4, where we also discuss in detail why
the concept of “optimal synthesis” cannot just be defined by simply identifying it
with that of “optimal feedback law.” In particular, we explain in section 4 that
if x → v(x) is an optimal feedback, then in general the concept of “solution” of the
closed-loop equation ẋ = f(x, v(x)) is problematic (because x → f(x, v(x)) may fail to
be Lipschitz-continuous), and we compare the classical definition of solution with two
other notions: (i) Filippov solutions and (ii) the limits of sample-and-hold solutions
recently proposed as feedback solutions by Clarke et al. in [8], which will be referred
to here as “CLSS solutions.” We argue that the classical notion of solution fares better
than the other two concepts, since there are situations where the optimal trajectories
are not Filippov solutions of the optimal closed-loop equation, as well as cases where
they are not CLSS solutions. The analysis of section 4 is supplemented in section 5
with several examples that clarify the relationship between the various definitions.
Finally, a number of technical points, including some arguments pertaining to the
proof of Theorem 2.13, are relegated to three appendices.

As explained in section 4, there are essentially two opposite starting points for
defining the notion of a “regular” optimal synthesis. One approach, following Boltyan-
skii [2], Brunovský [5], [6], Cesari [7], Fleming and Rishel [11], and Sussmann [18],
is to take as the primary object a smooth or “piecewise smooth” feedback control v,
and then let the synthesis be the collection Traj(v) of all trajectories generated by
v. If this collection is too large (for example, if the closed-loop equation determined
by v does not have unique solutions), then a synthesis would be a suitably defined
subclass Γ of Traj(v). The other strategy, proposed in Piccoli [16] and Sussmann
[31], is to take a “synthesis” to be just a collection of trajectories—or, more precisely,
trajectory-control pairs—not necessarily arising from a feedback control. To carry
out the first strategy, Boltyanskii and Brunovský were forced to make precise sense
of the notion of piecewise smoothness, which they did by requiring that the set of
interest—that is, the set of initial points of optimal trajectories—be partitioned into
submanifolds of various dimensions on which a smooth feedback control is specified.
It turns out, however, that with this definition the feedback control by itself is not suf-
ficient for the synthesis to be completely determined, since a discontinuous feedback
control may generate too many trajectories, some of which could fail to be optimal,
as shown in Example 5.3 below. So, in any case, the final outcome of the effort to
implement the first strategy is a result more consistent with the second one, since
one ends up with a notion of synthesis as a pair consisting of a feedback control v
together with a selection Γ of a family of trajectories generated by v, suggesting that



REGULAR SYNTHESIS 361

the specification of Γ is needed but that of v might not be. This leads naturally to
the approach of this paper, in which v is dispensed with altogether.

An important point that ought to be further investigated but that will not be
touched upon here is the relation between the geometrical approaches of [3], [4], [5],
[6], [14], [17], [18], [19], [20], [21], [22], [23], [24], [26], [27], [31] and the theory of
viscosity solutions (cf. Bardi and Capuzzo-Dolcetta [1], Fleming and Soner [12]). We
point out that the existing results of this theory for deterministic optimal control do
not appear to cover cases such as Fuller’s problem. (Cf. [1], for example, where the
main result is for Lagrangians that are bounded away from zero.)

2. Regular presynthesis and synthesis, and the sufficiency theorem. We
start with some definitions that will enable us to state and prove a mild generalization
of the theorem whose proof was outlined in [31]. Our assumptions will be minimal,
so as to achieve maximum generality.

We consider a control system,

ẋ = f(x, u), x ∈ Ω, u ∈ U,(2.1)

and a family P = P(Ω, U, f, L, T , τ) = {P(Ω, U, f, L, T , τ, x0)}x0∈Ω of minimization
problems, where P(Ω, U, f, L, T , τ, x0) is the problem

minimize τ(x(b)) +

∫ b

a

L(x(t), u(t))dt subject to (2.1), x(a) = x0, and x(b) ∈ T .
(2.2)
(A more precise formulation of the problems P(Ω, U, f, L, T , τ, x), carefully specifying
the space of curves to be considered, will be given below. Since both f and L have
no explicit dependence on t, we can always take b = 0.) We assume that
(A1) n is a positive integer and Ω—the “state space”—is an open subset of R

n;
(A2) U—the “control set”—is a nonempty set;
(A3) f : Ω×U → R

n—the “dynamics”—and L : Ω×U → R—the “Lagrangian”—
are maps;

(A4) f(·, u) and L(·, u) are maps of class C1 for every fixed u ∈ U ;
(A5) T—the “target”—is a nonempty subset of Ω;
(A6) τ : Ω→ R is a function of class C1.

We use T cxS to denote the contingent tangent cone to a set S at a point x ∈ S,
defined as follows: a vector v is in T cxS if and only if there exist a sequence {xj} of
points of S and a sequence {hj} of strictly positive numbers such that hj → 0 and
xj = x+ hjv + o(hj) as j → ∞. We write

T̃xS = T cxS ∩ (−T cxS) = {v : v ∈ T cxS and − v ∈ T cxS}.(2.3)

As in Sussmann [31], f̃ will denote the map Ω × U  (x, u) → f̃(x, u)
def
=(f(x, u),

L(x, u)) ∈ R
n+1.

If Ω× R  (x, t)→ g(x, t) ∈ R
m is a time-varying vector-valued map on Ω, then

Dg(x, t) denotes, for each (x, t) ∈ Ω, the Jacobian matrix at x of the map y → g(y, t),
so Dg(x, t) ∈ R

m×n.
If µ : A → B is a map, we use Dom(µ) to indicate the domain of µ, i.e., the set A.
A control is a U -valued map η such that Dom(η) is a compact subinterval [a, b] of

R. If η is a control, we define maps fη : Ω× R → R
n, Lη : Ω× R → R, f̃η : Ω× R →

R
n+1 by letting

fη(x, t)=f(x, η(t)), Lη(x, t)=L(x, η(t)), f̃η(x, t)= f̃(x, η(t)) if t∈Dom(η);
fη(x, t)=0, Lη(x, t)=0, f̃η(x, t)=0 if t /∈Dom(η).
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A trajectory for a control η is an absolutely continuous map γ : Dom(η)→ Ω with
the property that γ̇(t) = f(γ(t), η(t)) for almost every t ∈ Dom(η). If Dom(η) = [a, b]
(so that Dom(γ) = [a, b] as well), and x = γ(a), y = γ(b), we say that γ (or the pair
(γ, η)) goes from x to y, and that η steers x to y, and we write γ− = x, γ+ = y. We
use Range(γ) to denote the range of the map γ, that is, the set {γ(t) : t ∈ Dom(γ)}.

A control η is C1-admissible for f̃ if f̃η satisfies the following C1 Carathéodory
conditions:
(C.i ) the map Dom(η)  t → f̃η(x, t) ∈ R

n+1 is measurable for each x ∈ Ω;
(C.ii) for every compact subset K of Ω there exists an integrable function ϕK : R →

R such that for every x ∈ K and t ∈ Dom(η)
‖f̃η(x, t)‖+ ‖Df̃η(x, t)‖ ≤ ϕK(t).(2.4)

If η is a C1-admissible control for f̃ , and γ is a trajectory corresponding to η, then we

say that (γ, η) is a C1-admissible pair for f̃ . We use AdmC1

(f̃) to denote the set of

all C1-admissible pairs for f̃ , and write AdmC1, 0(f̃), AdmC1, 0(f̃ , T ), AdmC1, 0
x (f̃ , T )

to denote, respectively, the set of all (γ, η) ∈ AdmC1

(f̃) such that Dom(η) is an

interval of the form [T, 0] with T ≤ 0, the set of those (γ, η) ∈ AdmC1, 0(f̃) such that

γ(0) ∈ T , and the set of those (γ, η) ∈ AdmC1, 0(f̃ , T ) such that γ− = x. For a pair

(γ, η) ∈ AdmC1, 0(f̃ , T ), we use J(γ, η) to denote the cost of (γ, η), given by

J(γ, η) = τ(γ+) +

∫
Dom(γ)

L(γ(t), η(t)) dt.(2.5)

If Γ ⊆ AdmC1, 0(f̃ , T ) is an arbitrary set of C1-admissible pairs for f̃ ending at the
target T at time 0, we define a function VΓ :Ω→R ∪ {±∞}, called the cost function
of Γ, by letting

VΓ(x) = inf {J(γ, η) : (γ, η) ∈ Γ, γ− = x}(2.6)

for x ∈ Ω. (In particular, VΓ(x) = +∞ if and only if there is no (γ, η) ∈ Γ starting
at x.) If Γ = AdmC1, 0(f̃ , T ), then the cost function VΓ is the value function of
our problem, and in that case we write Vf̃ ,T rather than V

AdmC1, 0(f̃ ,T )
. Naturally,

VΓ ≥ Vf̃ ,T pointwise for every subset Γ of Adm
C1, 0(f̃ , T ).

We can now formulate P(Ω, U, f, L, T , τ, x0) precisely: P(Ω, U, f, L, T , τ, x0) is

the problem of finding a (γ, η) ∈ AdmC1, 0
x0

(f̃ , T ) such that J(γ, η) = Vf̃ ,T (x0). Any
such pair (γ, η) is said to be a solution of P(Ω, U, f, L, T , τ, x0). A pair (γ, η) ∈
AdmC1, 0(f̃ , T ) is optimal if it is a solution of P(Ω, U, f, L, T , τ, γ−). We use
P(Ω, U, f, L, T , τ)—or, simply, P , in any context where the meaning of Ω, U , f ,
L, T , τ is clear—to denote the family of problems {P(Ω, U, f, L, T , τ, x0)}x0∈Ω.

Remark 2.1. We emphasize that in the optimal control problems studied here the
trajectories have to end at the target but could pass through it before. For example,
consider the dynamical law ẋ = 1 in R, with Lagrangian L(x) ≡ −1 and target
T = {0, 1}. Then the value function V is given by V (x) = x − 1 for x ≤ 1 and
V (x) = +∞ for x > 1. If x < 1, then the optimal trajectory γx from x to the target
is given by γx(t) = t+ 1 for Tx ≤ t ≤ 0, where Tx = x− 1. Notice that if x < 0, then
t = 0 is not the first time when γx(t) belongs to T .

Given λ ∈ Rn (the space of row n-vectors), λ0 ∈ R, x ∈ Ω, and u ∈ U , we define

Hc(λ, λ0, x, u) = 〈λ, f(x, u)〉+ λ0L(x, u),(2.7)

H(λ, λ0, x) = inf {Hc(λ, λ0, x, u) : u ∈ U}.(2.8)
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The functions Hc : Rn×R×Ω×U → R and H : Rn×R×Ω→ R∪{−∞} are known,
respectively, as the control Hamiltonian and the minimized Hamiltonian of f̃ .

Definition 2.2. We say that the pair (γ, η) ∈ AdmC1, 0(f̃ , T ) is extremal if
there exist an absolutely continuous map λ : Dom(γ) → Rn and a constant λ0 ≥ 0
that satisfy

(EX1) (λ0, λ(t)) �= (0, 0) for some (and hence every) t;
(EX2) λ̇ = −∂Hc

∂x (λ(t), λ
0, γ(t), η(t)) for almost everywhere (a.e.) t ∈ Dom(η);

(EX3) H(λ(t), λ0, γ(t)) = Hc(λ(t), λ0, γ(t), η(t)) = 0 for a.e. t ∈ Dom(η);
(EX4) 〈λ(0), v〉 = λ0〈∇τ(γ(0)), v〉 for all v ∈ T̃γ(0)T .
Properties (EX1), (EX2), (EX3), (EX4) are, respectively, the nontriviality condi-

tion, the adjoint equation, the Hamiltonian minimization condition, and the transver-
sality condition. A pair (λ, λ0) such that (EX2) holds is called an adjoint vector for
(γ, η). An adjoint vector for which (EX3) holds is a minimizing adjoint vector for
(γ, η).

The maximum principle says that, under some special conditions on the target
set T , every optimal pair (γ, η) is extremal. (This is true, for example, if T is a
submanifold of Ω of class C1, or a closed convex subset of Ω, or a set which is locally
equivalent to a convex set via a C1 diffeomorphism. More generally, it is true if the cone
T̃γ(0)T is convex—in which case it is of course a subspace, since v ∈ T̃γ(0)T ⇒ −v ∈
T̃γ(0)T—and is an approximating cone to T at γ(0). Recall that a closed convex cone
C is an approximating cone to a set S at a point s ∈ S if there exist a neighborhood
W of 0, and a continuous map F : W ∩ C → S, such that F (v) = s + v + o(||v||) as
v → 0 via values in C.)

Definition 2.3. A presynthesis for P is a subset Γ of AdmC1, 0(f̃ , T ) such that
the following holds:

(PS) Whenever (γ1, η1) ∈ Γ, (γ2, η2) ∈ Γ, and γ−1 = γ−2 , it follows that (γ1, η1) =
(γ2, η2).

The set Dom(Γ)
def
= {γ− : (γ, η) ∈ Γ} is called the domain of Γ. We say that Γ is a

presynthesis on a set S if Γ is a presynthesis and S = Dom(Γ).
Clearly, giving a presynthesis on S amounts to choosing, for each x ∈ S, a (γ, η) ∈

AdmC1, 0(f̃ , T ) such that γ− = x.
If Γ is a presynthesis such that Dom(Γ) consists of all points that can be steered

to a point of T by means of a pair belonging to AdmC1, 0(f̃ , T ), then we say that Γ is
total.

Given a presynthesis Γ and a point x ∈ Dom(Γ), we will always use (γΓ
x , η

Γ
x )—or,

simply, (γx, ηx) when the meaning of Γ is clear from the context—to denote the unique
pair (γ, η) ∈ Γ such that γ− = x, and will write Tx = min Dom(γx), so Tx ≤ 0 and
Dom(γx) = Dom(ηx) = [Tx, 0].

Definition 2.4. A presynthesis on a set S is memoryless if whenever x ∈ S and
t ∈ Dom(ηx) it follows that y = γx(t) belongs to S and ηy is the restriction of ηx to
the interval [t, 0]. A synthesis is a memoryless presynthesis.

Definition 2.5. If each pair of a presynthesis Γ is optimal (resp., extremal),
then we say that Γ is optimal (resp., extremal).

In particular, a presynthesis Γ for P(Ω, U, f, L, T , τ) is a total optimal presynthe-
sis if and only if VΓ ≡ Vf̃ ,T .

As explained in the introduction, we wish to propose a definition of “regular
synthesis” that will give rise to a sufficiency theorem. The theorem will say that a
total extremal regular synthesis that satisfies the appropriate boundary conditions is
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optimal. We will actually define the more general notion of “regular presynthesis,”
and prove the sufficiency theorem in this broader setting, so the desired optimality
result will be true in particular when the presynthesis is a true synthesis.

The definition will say that a “regular presynthesis” is a presynthesis that satisfies
suitable regularity assumptions. So we begin by describing these regularity assump-
tions in detail.

Definition 2.6. We call a function V : Ω→ R ∪ {+∞} weakly upper semicon-
tinuous (w.u.s.c) at a point x ∈ Ω if lim infy→x lim supz→y V (z) ≤ V (x).

Equivalently, V is w.u.s.c. at x if there exist sequences {xj}, {εj}, and {δj} such
that xj ∈ Ω, εj > 0, and δj > 0 for all j, and xj → x and δj → 0 as j → ∞, having
the property that V (y) ≤ V (x) + δj whenever ‖y − xj‖ < εj .

Definition 2.7. Suppose we are given a Lipschitz-continuous vector field X on
Ω and a function V : Ω → R ∪ {+∞}. We say that V has the NDJ (“no downward
jumps”) property along X if the following holds:

(NDJ) If [a, b]  t → γ(t) ∈ Ω is an integral curve of X, then
lim infh↓0 V (γ(t− h)) ≤ V (γ(t)) for every t ∈ ]a, b].

Definition 2.8. We say that V : Ω → R ∪ {+∞} satisfies the weak continuity
conditions for the control system (2.1) if V is lower semicontinuous and w.u.s.c. at
every x ∈ Ω and has the NDJ property along the vector field x → f(x, u) for every
u ∈ U .

We now define the “weak differentiability conditions” for Γ. In this definition, we
let ρf̃ ,Γ,x̄,T (v) be the integrable R

n+1-valued function on [T, 0] (see definition below)
given by

ρf̃ ,Γ,x̄,T (v)(t) = f̃ηx̄+v (γx̄(t), t)− f̃ηx̄(γx̄(t), t)

and use the symbol ρf̃ ,Γ,x̄,T to denote the correspondence v → ρf̃ ,Γ,x̄,T (v), regarded

as a map into the space Bor([T, 0],Rn+1) of R
n+1-valued Borel measures on [T, 0].

(Recall that Bor([T, 0],Rn+1) is the dual of the space C0([T, 0],Rn+1) of continuous
R
n+1-valued functions on [T, 0].)
Definition 2.9. A presynthesis Γ = {(γx, ηx) : x ∈ S} for P(Ω, U, f, L, T , τ) is

said to be (f, L)-differentiable at a point x̄ ∈ Ω if there exist (a) a neighborhood N of
x̄ in Ω such that N ⊆ Dom(Γ), (b) an interval [T, 0] such that Dom(ηx) ⊆ [T, 0] for
all x ∈ N , and (c) an ε̄ > 0, for which

(DC1) there are integrable functions ψε : [T, 0] → R, for ε ∈ ]0, ε̄], with the

property that limε→0

∫ 0

T
ψε(t) dt = 0, for which the inequality∥∥∥f̃ηx(y, t)− f̃ηx(γx̄(t), t)−Df̃ηx̄(γx̄(t), t) · (y − γx̄(t))

∥∥∥(2.9)

≤ ψε(t).(||y − γx̄(t)||+ ||x− x̄||)

holds for every y ∈ Ω, x ∈ N , t ∈ [T, 0] such that ‖y − γx̄(t)‖ ≤ ε and
||x− x̄|| ≤ ε;

(DC2) the map ρf̃ ,Γ,x̄,T is weak
∗-differentiable at v = 0 in the sense that, for every

continuous function α : [T, 0]→ R, the map R
n  v → ∫ 0

T
α(t).ρf̃ ,Γ,x̄,T (v)(t) dt

∈ R
n+1 is differentiable at v = 0.

Definition 2.10. A subset A of Ω is thin if there exist A1, A2 such that
A = A1 ∪ A2, A1 is a finite or countable union of connected C1 submanifolds of
positive codimension, and Hn−1(A2) = 0, where Hk denotes k-dimensional Hausdorff
measure.
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If S is a subset of Ω, we use S̊ to denote the interior of S in Ω.
Definition 2.11. If n, Ω, U , f , L, T , τ are such that assumptions (A1)–(A6)

hold, Γ is a presynthesis for P(Ω, U, f, L, T , τ), and S = Dom(Γ), we say that Γ has
the interior approximation property if the following hold:

(IAP) If (γ, η) ∈ AdmC1, 0(f̃) is such that γ(t) ∈ S for all t ∈ Dom(γ), then there
exists a sequence {(γj , ηj)}∞j=1 in Adm

C1, 0(f̃) such that

(IAP.1) γj(t) ∈ S̊ for every t ∈ Dom(γj);
(IAP.2) VΓ(γ

+
j )→ VΓ(γ

+);

(IAP.3) γ−j → γ−;
(IAP.4)

∫
Dom(γj)

L(γj(t), ηj(t)) dt →
∫
Dom(γ)

L(γ(t), η(t)) dt.

We are now ready to present our definition of “regular presynthesis.”
Definition 2.12. Let n, Ω, U , f , L, T , τ be such that assumptions (A1)–(A6)

hold. Let Γ be a presynthesis for P(Ω, U, f, L, T , τ). We say that Γ is regular if
(a) the associated cost function VΓ satisfies the weak continuity conditions;
(b) there exists a thin subset A of Ω such that Γ is (f, L)-differentiable at all

points of Dom(Γ)\A.
With this definition, our main sufficiency theorem (a weaker version of which was

already stated in [31], with only an outline of the proof) says the following.
Theorem 2.13. Let n, Ω, U , f , L, T , τ be such that assumptions (A1)–(A6)

hold. Let Γ be an extremal regular presynthesis for P(Ω, U, f, L, T , τ) and let S =
Dom(Γ). Then we have the following:

(a) The “dynamic programming inequality”

(2.10) VΓ(γ
−) ≤

∫
Dom(γ)

L(γ(t), η(t)) dt+ VΓ(γ
+)

holds for every (γ, η) ∈ AdmC1, 0(f̃) such that Range(γ) ⊆ S̊.
(b) If VΓ satisfies the boundary condition

(2.11) VΓ(x) ≤ τ(x) for every x ∈ T ,

then VΓ(γ
−) ≤ J(γ, η) for all (γ, η) ∈ AdmC1, 0(f̃ , T ) such that Range(γ) ⊆

S̊.
(c) If Γ has the interior approximation property, then (2.10) holds for all (γ, η) ∈

AdmC1, 0(f̃) such that Range(γ) ⊆ S.
(d) If Γ has the interior approximation property and satisfies (2.11), then VΓ(γ

−) ≤
J(γ, η) for all (γ, η) ∈ AdmC1, 0(f̃ , T ) such that Range(γ) ⊆ S.

(e) If Γ is total and satisfies (2.11), then Γ is optimal.
Proof. We first establish the relation between the differential of the cost function

VΓ and the adjoint fields of vectors along the extremal trajectories of the presynthesis.
This result is important in its own right, so we state it as a separate theorem.

Theorem 2.14. Let n, Ω, U , f , L, T , τ be such that assumptions (A1)–(A6)
hold, and let Γ = {(γx, ηx) : x ∈ S} be a presynthesis. Let x̄ ∈ S be such that Γ is
(f, L)-differentiable at x̄. Then

(a) the function VΓ is differentiable at x̄;
(b) if the pair (γx̄, ηx̄) is extremal, then every minimizing adjoint vector (λ, λ

0)
for (γx̄, ηx̄) satisfies the identity

λ0(∇VΓ)(x̄) = λ(Tx̄).
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In particular, λ0 �= 0, and (λ, λ0) is unique up to multiplication by a positive
constant.

Proof of Theorem 2.14. We apply Theorem A.11 in Appendix A, taking P to be
R
n and letting fx = fηx , Lx = Lηx , f̃x = f̃ηx . Then, if y ∈ Ω and x ∈ N , we have

fx(y, t) = f(y, ηx(t)), Lx(y, t) = L(y, ηx(t)), f̃x(y, t) = f̃(y, ηx(t)) if t ∈ [Tx, 0], and
fx(y, t) = 0, Lx(y, t) = 0, f̃x(y, t) = 0 if t /∈ [Tx, 0].

We let V̂Γ(x) =
∫ 0

Tx
L(γx(t), ηx(t)) dt, so V̂Γ is the “Lagrangian part” of our cost

function. We extend the curve γx to the interval [T, 0] by letting γx(t) = x for T ≤
t < Tx, so γx still is an integral curve of fηx on [T, 0], and V̂Γ(x) =

∫ 0

T
Lx(γx(t), t) dt.

The map p → x̄p of Theorem A.11 is the identity map, which is certainly differ-

entiable at x̄. So Theorem A.11 tells us that the “endpoint map” x → E(x)def
= γx(0)

and the function V̂Γ are differentiable at x̄. This implies that the function VΓ is
differentiable at x̄, proving Theorem 2.14(a).

Assume now that (γx̄, ηx̄) is extremal and (λ, λ
0) is a minimizing adjoint vector

for (γx̄, ηx̄). We extend the adjoint vector λ to [T, 0] by letting λ(t) = λ(Tx̄) for
T ≤ t < Tx̄. We then define

Hc
x(p, p

0, y, t) = 〈p, fx(y, t)〉+ p0Lx(y, t).

Then the adjoint equation λ̇(t) = −∇yH
c
x̄(λ(t), λ

0, γx̄(t), t) holds a.e. on [T, 0]. More-
over,

(2.12) Hc
x(λ(t), λ

0, γx̄(t), t) ≥ Hc
x̄(λ(t), λ

0, γx̄(t), t) = 0 for a.e. t ∈ [T, 0].

(To see this, we first observe that Hc
x̄(λ(t), λ

0, γx̄(t), t) = 0 a.e. on [T, 0], because
(a) the equality holds a.e. when t ∈ [Tx, 0] thanks to (EX3), and (b) it holds every-
where when t ∈ [T, Tx [ , because in this case fx̄(γx̄(t), t) = 0 and Lx̄(γx̄(t), t) = 0.
Next, we show that, if x ∈ N , then Hc

x(λ(t), λ
0, γx̄(t), t) ≥ 0. The inequality fol-

lows from (EX3) for almost every t when t ≥ Tx̄ and t ≥ Tx, because in this case
Hc
x(λ(t), λ

0, γx̄(t), t)=Hc(λ(t), λ0, γx̄(t), ηx(t))≥H(λ(t), λ0, γx̄(t))= 0 for almost ev-
ery t. When t < Tx, H

c
x(λ(t), λ

0, γx̄(t), t) vanishes, because fx(γx̄(t), t) = 0 and
Lx(γx̄(t), t) = 0. Finally, we must consider the possibility that Tx ≤ t < Tx̄. For
this purpose, we observe that, if u ∈ U is arbitrary, then Hc(λ(s), λ0, γx̄(s), u) ≥
H(λ(s), λ0, γx̄(s)) ≥ 0 for almost every s ∈ [Tx̄, 0]. Since s → Hc(λ(s), λ0, γx̄(s), u)
is continuous, we conclude that Hc(λ(s), λ0, γx̄(s), u) ≥ 0 for all s ∈ [Tx̄, 0]. In
particular, Hc(λ(Tx̄), λ

0, x̄, u) ≥ 0. Since λ is constant on [T, Tx̄], we see that
Hc(λ(s), λ0, x̄, u) ≥ 0 for all s ∈ [T, Tx̄] and all u ∈ U . Now, if Tx ≤ t < Tx̄,
then Hc

x(λ(t), λ
0, γx̄(t), t) = Hc(λ(t), λ0, x̄, ηx(t)) ≥ 0, and (2.12) is proved.)

From Theorem A.11, the identity

λ(0).DE(x̄).v + λ0∇V̂Γ(x̄).v − λ(Tx̄) · v

= lim
ε↓0

ε−1

∫ 0

T

(
Hc
x̄+εv(λ(t), λ

0, γx̄(t), t)−Hc
x̄(λ(t), λ

0, γx̄(t), t)
)
dt

(2.13)

follows, for every vector v. Then (2.12) tells us that the right-hand side of inequality
(2.13) is nonnegative. So

(2.14) λ(0).DE(x̄).v + λ0∇V̂Γ(x̄).v − λ(Tx̄) · v ≥ 0 for all v ∈ R
n.
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Given v, the curve r → γx̄+rv(0) is defined for r in a neighborhood of 0 in R, and
is differentiable at 0 with derivative DE(x̄).v. On the other hand, this curve is con-
tained in T , so the vector w = DE(x̄).v belongs to T̃γx̄(0)T . It then follows from the
transversality condition (EX4) that 〈λ(0), w〉 = λ0〈∇τ(γ(0)), w〉. Therefore
(2.15) λ0(∇τ(γ(0)).DE(x̄).v +∇V̂Γ(x̄).v)− λ(Tx̄) · v ≥ 0 for all v ∈ R

n.

Since the left-hand side of (2.15) is linear in v, it has to vanish for all v. So

(2.16)
λ0∇VΓ(x̄).v = λ0(∇τ(γ(0)).DE(x̄).v +∇V̂Γ(x̄).v) = λ(Tx̄) · v for all v ∈ R

n.

Therefore λ0∇VΓ(x̄) = λ(Tx̄).
In particular, λ0 cannot vanish, because λ0 = 0 would imply λ(Tx̄) = 0, contra-

dicting (EX1). So we may, after multiplication by a positive constant, assume that
λ0 = 1, and then ∇VΓ(x̄) = λ(Tx̄). This proves, in particular, the uniqueness of
(λ(·), λ0) up to multiplication by a positive constant, since the Cauchy problem for
the adjoint equation has unique solutions.

Continuation of the proof of Theorem 2.13. We first prove Theorem 2.13(a). For
any given x ∈ S \ A, let λx be the unique λ such that (λ, 1) is a minimizing adjoint
vector along (γx, ηx). (The existence and uniqueness of λx follows from Theorem
2.14.) The minimization condition (EX4) of maximum principle then implies that,
for any given u ∈ U , the inequality

〈λx(t), f(γx(t), u)〉+ L(γx(t), u) ≥ 0
holds for almost all t ∈ [Tx, 0]. Since t → 〈λx(t), f(γx(t), u)〉+L(γx(t), u) is continuous
on [Tx, 0], the inequality is valid at time Tx. In view of Theorem 2.14,

(2.17) 〈∇VΓ(x), f(x, u)〉+ L(x, u) ≥ 0.

Now consider an arbitrary (γ, η) ∈ AdmC1, 0(f̃), with domain [T, 0], such that
Range(γ) ⊆ S̊. We want to prove that (2.10) holds. It follows from Lemma 4.1

of [28] that there exists a sequence of admissible pairs (γj , ηj) ∈ AdmC1, 0(f̃), with
domain [T, 0], such that γj(0) = γ(0), ηj is piecewise constant, γj → γ uniformly on

[T, 0], and
∫ 0

T
L(γj(t), ηj(t)) dt →

∫ 0

T
L(γ(t), η(t)) dt.

Since Range(γ) ⊆ S̊, we can clearly assume that Range(γj) ⊆ S̊. Since VΓ is

lower semicontinuous, it follows that, if VΓ(γj(T )) +
∫ 0

T
L(γj(t), ηj(t)) dt ≤ VΓ(γ(0))

for each j, then VΓ(γ(T ))+
∫ 0

T
L(γ(t), η(t)) dt ≤ VΓ(γ(0)). Hence it suffices to assume

that the control η is piecewise constant.

If (2.10) holds for two pairs (γi, ηi) ∈ AdmC1

(f̃) such that Dom(γ1) = [a, b],
Dom(γ2) = [b, c], and γ1(b) = γ2(b) for some a, b, c, then it also holds for the concate-
nated pair (γ, η) defined in an obvious way. It therefore suffices to prove (2.10) for all

(γ, η) ∈ AdmC1

(f̃) corresponding to a constant control. Since L does not depend on

time we can assume (γ, η) ∈ AdmC1, 0(f̃) and η constant, so we make this assumption
from now on.

Let u ∈ U be such that η(t) = u for t ∈ [T, 0]. For each y ∈ Ω, let t → ζy(t)
be the trajectory of η that satisfies the terminal condition ζy(0) = y. Let W be an
open subset of Ω such that γ(0) ∈ W , ζy(T ) is defined for all y ∈ W , and ζy([T, 0]) is
contained in S̊ whenever y ∈ W . We will show that
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(#) for almost every y ∈ W the set By = {t ∈ [T, 0] : ζy(t) ∈ A} is finite or
countable.

Since A is thin, we can write A = A1 ∪ A2, where A1 =
⋃
jMj and {Mj}j∈J is

a finite or countable family of connected submanifolds of Ω of codimension dj > 0,
while Hn−1(A2) = 0. After replacing each Mj by a finite or countable family of open
submanifolds of Mj , we may assume that the Mj are embedded.

Define W̃ = W× ]T, 0 [ , and let Φ be the map W̃  (y, t) → ζy(t) ∈ Ω. Then
Φ is a C1 submersion, because for each fixed t the partial map y → Φ(y, t) is a C1

diffeomorphism. Therefore each set M̃j = Φ
−1(Mj) is an embedded submanifold of

W̃ of codimension dj , and Hn(Φ−1(A2)) = 0.

Let π be the projection W̃  (y, t)→ y ∈ W . Let Sj be the set of points s ∈ M̃j

such that the restriction π�M̃j of π to M̃j is not regular at s. (Recall that, if S1, S2 are
C1 manifolds, then a C1 map F : S1 → S2 is regular at s ∈ S1 if the differential dπ(s)
maps the tangent space TsS1 surjectively onto TF (s)S2.) Then Hn(π(Φ−1(A2))) = 0
(see, for example, Federer [9]), and Hn(π(Sj)) = 0 for each j, by Sard’s theorem. So
the “bad” set B = π(Φ−1(A2)) ∪ (

⋃
j π(Sj)) has Lebesgue measure zero.

Now let y ∈ W\B. Then ζy(t) /∈ A2 if T < t < 0. (Otherwise, if ζy(t) ∈ A2,
T < t < 0, it would follow that (y, t) ∈ Φ−1(A2), so y ∈ π(Φ−1(A2)), and then y ∈ B.)
Also, we claim that the set {t ∈ [T, 0] : ζy(t) ∈ A1} is at most countable. To see this,
it suffices to show that, for each j, the set Ej = {t : T < t < 0 , ζy(t) ∈ Mj} is finite
or countable. Fix j, and suppose t ∈ Ej . The manifold M̃j has codimension dj in

W̃ . Since dj > 0, the dimension νj of M̃j is ≤ n. Moreover, dπ(y, t) maps Ty,tM̃j

surjectively onto R
n (the tangent space to Ω at y), because y /∈ B. So νj = n, and

dπ(y, t) is injective on Ty,tM̃j . Since dπ(y, t)(
∂
∂t ) is obviously equal to 0, it follows

that ∂
∂t /∈ Ty,tM̃j . Since M̃j is embedded, (y, t

′) /∈ M̃j if 0 < |t′ − t| ≤ ε, provided
that ε is sufficiently small. Therefore t is an isolated point of Ej . So Ej is a discrete
subset of the open interval ]T, 0 [ . Therefore Ej is finite or countable, as desired.

We have therefore proved that, if y ∈ W\B, then ζy(t) /∈ A2 for all t ∈]T, 0[, and
the set {t ∈ [T, 0] : ζy(t) ∈ A1} is at most countable. Since A = A1 ∪ A2, and B has
measure zero, (#) follows.

In view of the weak upper semicontinuity of VΓ, there exist xj , εj > 0, δj > 0
such that xj → γ(0) and δj → 0 as j → ∞, and VΓ(y) ≤ VΓ(γ(0)) + δj whenever
‖y−xj‖ ≤ εj . Choose the εj ’s so that ‖y−xj‖ ≤ εj implies y ∈ W . Then, by (#), we
can choose for each j a yj such that ‖yj−xj‖ ≤ εj and the bad set B

yj is at most finite

or countable. Since ζyj (t) ∈ S̊ for every t ∈ [T, 0], (2.17) implies that the function
[T, 0]  t → ϕj(t) = VΓ(ζ

yj (t)) +
∫ t
T
L(ζyj (s), η(s))ds ∈ R is differentiable at every

t, except for a finite or countable number of values, with a nonnegative derivative.
Therefore ϕj satisfies assumption (a) of Lemma B.1 (Appendix B). Moreover, the
lower semicontinuity of VΓ ensures assumption (b) of Lemma B.1 for ϕj , and the NDJ
condition ensures assumption (c) of Lemma B.1. Hence we can apply Lemma B.1 to
ϕj , and conclude that ϕj(T ) ≤ ϕj(0). So

VΓ(ζ
yj (T )) ≤

∫ 0

T

L(ζyj (t), η(t))dt+ VΓ(yj) ≤
∫ 0

T

L(ζyj (t), η(t))dt+ VΓ(γ(0)) + δj .

If we let j → ∞, we find, using the lower semicontinuity of VΓ, that (2.10) holds for
(γ, η), as desired. So (2.10) holds when η is constant and, as explained earlier, this
completes the proof of (a).

To prove (b), we pick (γ, η) ∈ AdmC1, 0(f̃ , T ) such that γ is contained in S̊, and
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apply (a) to conclude that VΓ(γ
−) ≤ ∫

Dom(γ)
L(γ(t), η(t))dt + VΓ(γ(0)). Then (2.11)

implies the inequality VΓ(γ(0)) ≤ τ(γ(0)), so VΓ(γ
−) ≤ J(γ, η) and (b) is proved.

To prove (c), we pick (γ, η) ∈ AdmC1, 0(f̃) such that γ is contained in S, and
find pairs (γj , ηj) such that conditions (IAP.1)–(IAP.4) hold. Then (a) implies that
the inequality VΓ(γ

−
j ) ≤

∫
Dom(γj)

L(γj(t), ηj(t))dt + VΓ(γj(0)) holds. Using (IAP.2),

(IAP.3), (IAP.4), and the lower semicontinuity of VΓ, we conclude that (2.10) holds,
completing the proof of (c).

The proof of (d) is identical to that of (b), using (c) instead of (a).
Finally, to prove (e), we assume that Γ is total and prove that it satisfies the

interior approximation property. So now S is the set of all points of Ω that can be

steered to a point of T by a pair belonging to AdmC1, 0(f̃). Let (γ, η) ∈ AdmC1, 0(f̃)
be a trajectory-control pair such that γ is entirely contained in S. Then γ(0) ∈ S,
so γ(0) ∈ Dom(Γ) and then VΓ(γ(0)) < +∞. The weak upper semicontinuity of
VΓ implies that there exist xj , εj > 0, δj > 0 such that xj → γ(0) and δj → 0 as
j → ∞, and VΓ(y) ≤ VΓ(γ(0)) + δj whenever ‖y − xj‖ ≤ εj . It then follows that
VΓ(xj)→ VΓ(γ(0)), since VΓ is lower semicontinuous. Let Dom(γ) = [T, 0]. Let γj be
the maximally defined trajectory for the control η that satisfies γj(0) = xj . Then γj
is defined on [T, 0] if j is large enough, and conditions (IAP.2), (IAP.3), and (IAP.4)
hold with ηj = η. We may then assume that γj is defined on [T, 0] for all j. To prove
that (IAP.1) holds as well, we observe that y ∈ S whenever ‖y − xj‖ ≤ εj , because
in that case VΓ(y) < +∞, since VΓ(y) ≤ VΓ(γ(0)) + δj , and VΓ(γ(0)) < +∞ because
γ(0) ∈ S. Let ζy be the trajectory for the control η that satisfies ζy(0) = y. Then
for each j there exists a ε̃j such that 0 < ε̃j ≤ εj , with the property that the curve
ζy is defined on [T, 0] for all y such that ‖y− xj‖ ≤ ε̃j . Moreover, it is clear that y is
reachable from ζy(t) for every t ∈ [T, 0], so ζy([T, 0]) ⊆ S if ‖y − xj‖ ≤ ε̃j , because
y ∈ S. Now, if T ≤ t ≤ 0, the map y → ζy(t) is a C1 diffeomorphism from the
neighborhood {x : ‖x− xj‖ < ε̃j} of xj onto a neighborhood Nj(t) of γj(t). Clearly,

Nj(t) ⊆ S, so γj(t) ∈ S̊. This completes the proof of (e).
Remark 2.15. The function VΓ is w.u.s.c. everywhere if and only if it is w.u.s.c. at

all the points of the target T . Indeed, let x ∈ Ω. If x /∈ S, then VΓ(x) = +∞, and the
conclusion follows. Next, suppose x ∈ S, and let (γx, ηx) be its associated admissible
pair. Assume that VΓ is w.u.s.c. at γx(0). Let yj , εj , δj be such that yj → γx(0),
εj > 0, δj > 0, δj → 0, and VΓ(y) ≤ VΓ(γx(0)) + δj whenever ‖y − yj‖ ≤ εj . Let ζ

yj

be the trajectory corresponding to the control ηx and such that ζ
yj (0) = yj . Since

yj → γx(0), we may assume, by picking j large enough, that ζ
yj is defined on [Tx, 0]

for all j, and let xj = ζyj (Tx). Let ε̃j be such that 0 < ε̃j <
1
j and, if ‖z − xj‖ ≤ ε̃j ,

then the trajectory θz of ηx with initial condition θ
z(Tx) = z is defined on [Tx, 0] and

satisfies ‖θz(0)−yj‖ < εj . Then, using the same reasoning as in the proof of Theorem
2.13, we can show that

(2.18) VΓ(z) ≤
∫ 0

Tx

L(θz(t), ηx(t)) dt+ VΓ(γx(0)) + δj

whenever ‖z − xj‖ ≤ ε̃j . (First approximate ηx by piecewise constant controls,
ηk, and let θz,k be the corresponding trajectories with terminal condition θz,k(0) =
θz(0). Then for each k use statement (#) of the proof of Theorem 2.13 to approx-
imate the terminal point θz(0) by points wz,k,i with the property that, if θ̃z,k,i is
the trajectory for ηk for which θ̃z,k,i(0) = wz,k,i, it follows that VΓ(θ̃

z,k,i(Tx)) ≤∫ 0

Tx
L(θ̃z,k,i(t), ηk(t)) dt + VΓ(w

z,k,i). Since ‖θz(0) − yj‖ < εj , the wz,k,i satisfy



370 BENEDETTO PICCOLI AND HÉCTOR J. SUSSMANN

‖wz,k,i − yj‖ < εj if i is large enough, so VΓ(θ̃
z,k,i(Tx)) ≤

∫ 0

Tx
L(θ̃z,k,i(t), ηk(t)) dt +

VΓ(γx(0)) + δj when i is large enough. If we let i → ∞ and then let k → ∞, and use
the lower semicontinuity of VΓ, we find that (2.18) holds.)

Let δ̃j = sup{‖ ∫ 0

Tx
L(θz(t), ηx(t)) dt −

∫ 0

Tx
L(γx(t), ηx(t)) dt‖ : ‖z − xj‖ ≤ ε̃j}.

Then δ̃j → 0, because xj → x and ε̃j → 0. On the other hand, VΓ(z) ≤ VΓ(x)+δj+ δ̃j
whenever ‖z − xj‖ ≤ ε̃j . So VΓ is w.u.s.c. at x.

3. The Fuller phenomenon. In this section we show that the famous mini-
mization problem considered by Fuller in [13]—and extensively studied by other au-
thors, e.g., Zelikin–Borisov [32]—has a regular optimal synthesis in the sense of our
Definitions 2.4 and 2.12.

Consider the system

(3.1) ẋ1 = x2, ẋ2 = u, |u| ≤ 1
and the family P̂ = {P̂x}x∈R2 of minimization problems:

(3.2) P̂x : minimize

∫ +∞

0

x2
1(t) dt subject to (x1(0), x2(0)) = x.

We proceed to describe the optimal synthesis for this problem, determined by Fuller,
referring the reader to Zelikin–Borisov [32, Chap. 2] for further details. First define
the “switching locus”

ζ = {(x1, x2) : |x1| = Cx2
2, x1x2 ≤ 0},

where C is a constant whose precise definition will be given later. Write ζ = ζ+ ∪
ζ− ∪ {(0, 0)}, where ζ± = {(x1, x2) ∈ ζ : ±x1 > 0}. Then the piecewise smooth
curve ζ divides the plane into two regions A− and A+ consisting, respectively, of
the points that lie above and below ζ. We define a discontinuous feedback control
k : R

2 → [−1, 1] by letting k(x1, x2) = −1 if (x1, x2) ∈ A− ∪ ζ−, k(x1, x2) = 1 if
(x1, x2) ∈ A+ ∪ ζ+, and k(0, 0) = 0.

Then for every x ∈ R
2 there exists a unique solution γ̂x : [0,∞ [→ R

2 of the
Cauchy problem ẋ1 = x2, ẋ2 = k(x1, x2), (x1(0), x2(0)) = x. The corresponding
open-loop control η̂x is related to γ̂x by η̂x(t) = +1 when γ̂x(t) ∈ A+, η̂x(t) = −1
when γ̂x(t) ∈ A−, and η̂x(t) = 0 when γ̂x(t) = 0.

The switchings occur when γ̂(t) ∈ ζ. The curve γ̂x reaches the origin in a finite
time T̂x and then stays there. Therefore η̂x(t) = 0 when γ̂x(t) = 0, which happens
if and only if t ≥ T̂x (see Figure 1). Therefore the admissible pairs (γ̂x, η̂x) actually
solve the family P = {Px}x∈R2 of minimization problems

(3.3)

Px : minimize

∫ b

a

x2
1(t)dt subject to (x1(a), x2(a)) = x and (x1(b), x2(b)) = (0, 0),

i.e., the problems of reaching the origin in finite time, subject to the dynamical con-
straints (3.1), and minimizing the cost given by (3.3).

So far, C was an arbitrary positive constant. It turns out that, if C is chosen to be
equal to C∗, where C∗ is the unique positive root of the polynomial x4+x2/12−1/18,
then the pairs (γ̂x, η̂x) are extremal. (This is proved in [32]. On page 26, it is shown
that C must be chosen so that (1− 2C)1/2(1 + 2C)−1/2 = µ, where µ is such that, if
σ = µ+µ−1, then σ2−3σ−6 = 0. These equations easily imply C4+C2/12−1/18=0.)
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Fig. 1.

We now choose C = C∗, so, in particular, 0.4 < C < 0.5. Then {γ̂x}x∈R2 is a
family of extremals reaching the target, and one would like to prove that the γ̂x are
optimal. The sufficiency theorems of [2] and [6] do not apply, since the controls η̂x
have an infinite number of switchings. For this reason, the optimality of the synthesis
obtained by Fuller is usually established by other means. For example, one can prove
optimality using the dilation symmetry properties of the problem. Precisely, there
exists a one parameter family ∆ = {∆ρ}ρ>0 of maps from R

2 to R
2 such that, if (γ, η)

is an admissible pair having cost c, and we let γρ(t) = ∆ρ(γ(
t
ρ )) and ηρ(t) = η( tρ ),

then (γρ, ηρ) is an admissible pair having cost ρ
5c. It then follows that the ∆ρ map

optimal trajectories to optimal trajectories.
The proof of optimality using the dilation symmetry is given, for example, in [32],

and will not be repeated here. It will turn out, however, that the dilations ∆ρ will
play a role in our arguments, so we recall their definition and one simple identity that
will be useful later:

(1) By definition,

∆ρ(x1, x2) = (ρ
2x1, ρx2).

(2) It follows from (1), in particular, that

∆ρ(x1, x2)− x = (ρ− 1) (2x1, x2) + (ρ− 1)2 (x1, 0)

for all ρ, x1, x2.
In order to apply Theorem 2.13, we first make a time translation. We define Tx = −T̂x,
and then let

γx(t) = γ̂x(t+ T̂x) , ηx(t) = η̂x(t+ T̂x)

for Tx ≤ t ≤ 0. Then Γ = {(γx, ηx)}x∈R2 is a memoryless family of C1-admissible
extremal pairs such that γx is defined on [Tx, 0], γx(Tx) = x, and γx(0) = 0.
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We want to prove that Γ is an optimal synthesis. For this purpose, we will verify
the hypotheses of Theorem 2.13, and in particular the (f, L)-differentiability of Γ at
every point x ∈ R

2\ζ. Since it is very easy to check property (DC1), we will verify
only (DC2).

As in [32, p. 26], we let

µ =

√
1− 2C
1 + 2C

.

Then 0 < µ < 1.
Fix a point x̄ = (x̄1, x̄2) belonging to R

2\{(0, 0)}. Then there exist s0(x̄) and
s1(x̄) such that Tx̄ = s0(x̄) < s1(x̄) ≤ µs0(x̄) < 0, and

ηx̄ = ±
+∞∑
k=0

(−1)kχ
Ik(x̄)

,

where
(a) I0(x̄) = [s0(x̄), s1(x̄)];
(b) Ik(x̄) = [µ

k−1s1(x̄), µ
ks1(x̄)] for k = 1, 2, . . . ;

(c) χ
S
is the indicator function of a set S;

and
(d) the ± sign depends on x̄ as follows: it is + if x̄ ∈ A+ ∪ ζ+ and − if

x̄ ∈ A− ∪ ζ−.
Let T be such that T < 0 and the interval [T, 0] contains Dom(ηx)—i.e., T ≤ Tx—for
x near x̄. To prove (DC2), we must pick a point x̄ ∈ R

2 \ ζ and a continuous function
α : [T, 0]→ R, and show that the map

(3.4) R
2  x −→ Jα(x)

def
=

∫ 0

T

α(t).f̃ηx(γx̄(t), t) dt ∈ R
3

is differentiable at x = x̄. We will do this by showing that, for two linearly independent
directions v1(x), v2(x), depending smoothly on x, the directional derivatives Dv1(x)J

α

and Dv2(x)J
α exist and are continuous with respect to x. We choose v1(x) to be the

direction of the curve ρ → ∆ρ(x) at ρ = 1, and take v2(x) = f(x, ηx(Tx)). The
determinant of v1(x) and v2(x) is then equal to ±(2x1−x2

2) (the sign being as in (d)),
which never vanishes on A+ ∪ A−, since C < 1/2. So v1(x) and v2(x) are linearly
independent for all x ∈ A+ ∪ A−. We will just determine the directional derivatives
at x̄, and the result will make it obvious that they depend continuously on x̄, so
differentiability will follow.

Let us assume, for simplicity, that x̄ ∈ A+. (The case when x̄ ∈ A− is similar.)
We first differentiate Jα in the direction of v1(x̄). If ρ > 0, we have (letting s̄0 = s0(x̄),
s̄k = µk−1s1(x̄) for k = 1, 2, . . . , Ik = [s̄k, s̄k+1], and I

ρ
k = [ρs̄k, ρs̄k+1] for k = 0, 1, . . . ,

and writing x̄ρ = ∆ρ(x̄))

T
x̄ρ
= ρTx̄ , ηx̄ρ =

+∞∑
k=0

(−1)kχ
I
ρ
k

,

and

(3.5) f̃ηx̄ρ (γx̄(t), t)− f̃ηx̄(γx̄(t), t) =

 0
η
x̄ρ
(t)− ηx̄(t)
0

+Rρ(t),
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where Rρ(t) is a term arising because of the possibility that Tx̄ �= T
x̄ρ
.

Then, if ρ ≥ 1 and ρ− 1 is sufficiently small,∫ 0

T

(ηx̄ρ (t)− ηx̄(t))α(t) dt =

∫ 0

ρs̄0

+∞∑
k=0

(−1)k
(
χ
I
ρ
k

(t)− χ
Ik
(t)
)
α(t) dt

=

+∞∑
k=0

(−1)k
(∫ ρs̄k+1

ρs̄k

α(t) dt−
∫ s̄k+1

s̄k

α(t) dt

)

=

+∞∑
k=0

(−1)k
(∫ s̄k

ρs̄k

α(t) dt−
∫ s̄k+1

ρs̄k+1

α(t) dt

)

=

∫ s̄0

ρs̄0

α(t) dt+ 2

+∞∑
k=1

(−1)k
(∫ s̄k

ρs̄k

α(t) dt

)
.

The numbers (ρ − 1)−1‖ ∫ s̄k
ρs̄k

α(t) dt‖ are bounded by µk−1|s̄1|.‖α‖L∞ , which is the
general term of a convergent series, since µ < 1. So we can divide by ρ− 1, let ρ → 1,
and take the limit of each term separately. We then conclude that

(3.6) lim
ρ↓1

1

ρ− 1
∫ 0

T

(ηx̄ρ(t)− ηx̄(t))α(t)dt = −s̄0α(s̄0)− 2s̄1
+∞∑
k=1

(−1)kµk−1α(µk−1s̄1).

We now find the limit of (ρ− 1)−1
∫ 0

T
α(t).Rρ(t) dt as ρ ↓ 1. Clearly, Tx̄ρ = ρTx̄ <

Tx̄ if ρ > 1. So

∫ 0

T

α(t).Rρ(t) dt =

∫ Tx̄

ρTx̄

α(t).

 γ2
x̄ρ
(t)
0(

γ1
x̄ρ
(t)
)2

 dt ,

where γi
x̄ρ
(t), for i = 1, 2, is the ith component of γ

x̄ρ
(t). Therefore

(3.7) lim
ρ↓1
(ρ− 1)−1

∫ 0

T

α(t).Rρ(t) dt = −Tx̄α(Tx̄).
 x̄2

0
x̄2

1

 .

Similar computations show that (3.6) and (3.7) hold as well for the limits as ρ ↑ 1. So
the directional derivative of Jα at x = x̄ in the direction of v1(x̄) exists and is given
by the sum of the right-hand sides of (3.6) and (3.7), which depend continuously on
x̄, since s̄0, s̄1, and Tx̄ (which is none other than s̄0) depend continuously on x̄ as
long as x̄ ∈ A+.

A much simpler argument verifies the existence of the derivative of Jα in the direc-
tion of v2(x̄)—i.e., of f(x̄, 1)—whose value turns out to be the vector with components
α(Tx̄)x̄2, α(Tx̄), and α(Tx̄)x̄

2
1. Once again, this expression depends continuously on

x̄, so the proof of (DC2) is complete.
The other assumptions of Theorem 2.13 are easily checked. So the theorem ap-

plies, and the optimality of the synthesis described above follows.

4. Comparison with other definitions of synthesis. The purpose of this
section is to compare our concept of regular presynthesis with other definitions of
synthesis that either have been proposed by other authors or are sufficiently natural
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to be worth considering as possible ways to define this notion. For simplicity, we will
only consider the case of a single-point target set T , and take this point to be the
origin. (Both Boltyanskii and Brunovský, whose definitions will be discussed in detail,
do the same, so this will facilitate the comparison.) Moreover, we will consider only
nonnegative Lagrangians, so a trajectory containing a loop can never be optimal, and
an optimal trajectory necessarily terminates when it hits the origin.

Perhaps the simplest conceivable notion of a “regular synthesis” is that of a
“feedback control.” In principle, one could define a “feedback control law” on a set S
to be a map v : S → U . If v is such that the vector field S  x → f(x, v(x)) ∈ R

n is
Lipschitz-continuous, and we assume for simplicity that S is open, then v gives rise to
unique maximally defined trajectories γ̂x starting at each x ∈ S, and corresponding
open-loop controls η̂x, given by η̂x(t) = v(γ̂x(t)). If we make the additional assumption
that every trajectory γ̂x obtained in this way reaches the target at a time T̂x, define
Tx = −T̂x, and let γx(t) = γ̂(t+ T̂x) and ηx(t) = η̂(t+ T̂x) for Tx ≤ t ≤ 0, then we will
have constructed a synthesis Γ = {(γx, ηx)}x∈S—in the sense of Definition 2.4—with
domain S.

The main drawback of such a definition is that, as is well known, for most reason-
able optimal control problems there does not exist an optimal feedback that renders
the map x → f(x, v(x)) Lipschitz-continuous or even continuous. So it is absolutely
essential to allow “discontinuous feedback laws,” and when this is done one immedi-
ately runs into the problems of

(a) the lack of a truly satisfactory notion of solution
and

(b) the lack of good theorems guaranteeing existence of solutions.
Difficulty (b) can be handled in at least two ways, namely, by
(A) incorporating into the definition requirements that imply existence and unique-

ness of solutions of the closed-loop equation ẋ = f(x, v(x)) ;
(B) incorporating into the definition requirements that imply existence—but not

necessarily uniqueness—of solutions of the closed-loop equation, and adding
to the specification of v a definite prescription for choosing a solution when
uniqueness fails, so that the “feedback law” is no longer the closed-loop control
v alone, but the pair (v,Γ), where Γ = {(γx, ηx)} is a family that selects one
solution of the closed-loop equation for each initial condition x.

Moreover, whether we choose (A) or (B), one has to be precise about the concept of
“solution.” Here we will consider three such concepts, namely,

(1) classical solutions (i.e., absolutely continuous curves t → x(t) having the
property that the equality ẋ(t) = f(x(t), v(x(t))) holds for almost every t),

(2) Filippov solutions (cf. [10]),
(3) “CLSS solutions,” that is, the “feedback solutions” defined by Clarke et al.

in [8].
The examples of section 5 will show that the concepts of CLSS solution and Filippov
solution are not adequate. Indeed, Example 5.4 shows an optimal synthesis whose
trajectories are not Filippov solutions of the optimal closed-loop equation. In this
example, the optimal trajectories are CLSS solutions, but the optimal closed-loop
equation has many other CLSS solutions that are not optimal (cf. Remark 5.5). In
Example 5.6, we exhibit an optimal control problem whose optimal trajectories are
not CLSS solutions of the optimal closed-loop equation.

This leaves the notion of classical solution as the only viable candidate for the
concept of solution to be used in the definition of optimal synthesis. Example 5.3
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shows that it may happen that the set of classical solutions of the optimal closed-loop
equation contains, in addition to all the optimal trajectories, some other arcs that are
not optimal.

It then follows that (A) is not an adequate way of handling difficulty (b), and
we are left with (B). This was indeed the strategy followed by Boltyanskii in [2],
Brunovský in [6], and Sussmann in [18]. In all these cases, a “regular synthesis” is
defined by first specifying a—not necessarily continuous—feedback control law x →
v(x). The feedback v is supposed to be “piecewise smooth” in a technical sense
that, among other things, guarantees the existence of trajectories for every initial
condition. Uniqueness is not assumed, but the specification of v is supplemented with
a prescription for selecting a trajectory when nonuniqueness occurs. So, a “synthesis”
in the sense of [2], [6], and [18] is more than just an optimal feedback: it is really a
pair (v,Γ) of the kind discussed in (B).

We now review the three concepts of regular synthesis proposed in [2], [6], and
[18], starting with Brunovský’s definition as stated in [6], and then explaining how to
modify this idea to obtain the alternative formulations suggested by Boltyanskii in
[2] and Sussmann in [18]. Since the notations used in [2], [6], and [18] are different,
we will give a unified account of the three definitions using a single set of symbols,
and indicating which notations of [2] and [6] they correspond to. Furthermore, our
accounts of [2] and [6] will be slightly modified versions of the text of the published
papers, correcting what we believe are some minor imprecisions or typographical
errors, and introducing some additional notations of our own for extra clarity.

Both Boltyanskii and Brunovský work with a system defined on an open subset
Ω of a finite-dimensional real space (called X in [2], equal to R

n in [6]). Both assume
that the dynamical behavior of the controlled system is given by a law ẋ = f(x, u),
where U is a subset of R

m, and the maps f and L are of class C1, in the sense that
they can be extended to maps of class C1 on an open subset of Ω×R

m that contains
Ω× closRm(U). Both assume that the synthesis is defined on an open subset S of Ω
(called V in [2], G in [6]).

Brunovský’s definition uses the concept of a stratification, so we review this notion
first.

Definition 4.1. Given a k ∈ {1, 2, . . .} ∪ {+∞, ω}, and a manifold M of class
Ck, a Ck stratification in M of a subset S of M is a partition P of S into nonempty
connected embedded submanifolds of M of class Ck, such that P is locally finite in
M (i.e., every compact subset of M intersects finitely many members of P) and the
following “frontier axiom” holds:
(FA) If P1, P2 ∈ P, P1 �= P2 (so that P1 ∩ P2 = ∅), and P1 ∩ closM (P2) �= ∅, then

P1 ⊆ closM (P2) and dim(P1) < dim(P2).
A Ck-stratified subset of M is a pair (S,P) having the property that S ⊆ M and P
is a Ck stratification of S in M .

We are now ready to present Brunovský’s definition, inserting some comments of
our own—labeled “BP&HS”—in square brackets.

Definition 4.2. Let S ⊆ Ω be an open subset such that the origin belongs to S.
A Brunovský regular synthesis on S for the control problem (2.1), (2.2), with target
the origin, is a 6-tuple Ξ = (P,P1,P2,Π,Σ, v) (called (S,S1,S2,Π,Σ, v) in [6]) such
that

(Br.1) P is the union of {{0}} and a locally finite (in S) partition P\{{0}}
of S \ {0} into nonempty connected embedded C1 submanifolds of S (called
“cells”),

(Br.2) P\{{0}} is the disjoint union of P1 (the set of “type I cells”) and P2 (the
set of “type II cells”),
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(Br.3) v : S → U (the “closed loop control”), Π : P1 → P, and Σ : P2 → P1 are
maps such that the following properties are satisfied:
(Br.3.A) If P ′ = {P ∈ P : dim P < n , P �= {0}}, and S′ =

⋃{P ∈ P ′}, then
(S′,P ′) is a stratified subset of S of dimension < n. [BP&HS: This
turns out to be equivalent to the much simpler statement that P is a C1

stratification of S. The proof is somewhat delicate and will be given in
full detail in Appendix C.]

(Br.3.B) The function v is of class C1 on each cell.
(Br.3.C) If P1 ∈ P1, then f(x, v(x)) ∈ TxP1 (the tangent space to P1 at x) for

every x ∈ P1. In addition, for each x ∈ P1, if we let ξx be the maximally
defined solution of the initial value problem

(4.1) ξ̇ = f(ξ, v(ξ)) , ξ(0) = x , ξ ∈ P1,

and define tx = sup Dom(ξx), then the limit ξx(tx−) def
= limt↑tx ξx(t) ex-

ists (in Ω) and belongs to Π(P1). [BP&HS: The limit ξx(tx−) can-
not belong to P1, because if it did then it would be equal to the limit
of ξx(t) in P1 (because P1 is embedded), so ξx(t) would have a limit in
P1 as t ↑ tx, and then ξx would be extendable to a solution of (4.1) on
an interval containing [0, tx + ε [ for some positive ε, contradicting the
choice of tx. It then follows that P1 �= Π(P1) ⊆ clos(P1) and, more-
over, dim(Π(P1)) < dim(P1) for all P1 ∈ P1. Indeed, if P1 ∈ P1, then
we can pick x ∈ P1 and conclude that ξx(tx−) belongs to Π(P1)\P1. So
Π(P1) ∩ clos(P1) �= ∅ and Π(P1) �= P1. Therefore Π(P1) ⊆ clos(P1)
and dim(Π(P1)) < dim(P1), since P1 ∈ P, Π(P1) ∈ P, and P is a
stratification.]

(Br.3.D) If P2 ∈ P2, then the control v is continuous on P2 ∪ Σ(P2), and for
each x ∈ P2 there exists a unique curve ξx : [0, tx [→ Ω such that the
restriction ξx� ] 0, tx [ is a maximally defined integral curve of the vector
field f(·, v(·)) on Σ(P2), and ξx(0) = x. [BP&HS: This implies that
Σ(P2) �= P2, P2 ⊆ clos(Σ(P2)), and dim(Σ(P2)) > dim(P2) for every
P2 ∈ P2.]

(Br.3.E) On every cell P , x → tx is a continuously differentiable function, and

(t, x) → ξx(t), (t, x) → ux(t)
def
= v(ξx(t)) are continuously differentiable

maps on the set

(4.2) E(P )
def
= {(t, x) : x ∈ P , t ∈ [0, tx]}

in the sense that they can be prolonged to maps of class C1 on some open
subset of R × P containing E(P ).

(Br.3.F) For every x ∈ S\{0}, if we let ξ̃x denote the curve obtained in an
obvious way by piecing together the trajectories on every single cell, and
write η̃x(t) = v(ξ̃x(t)), then the admissible pair (ξ̃x, η̃x) ends at the origin
after passing from one cell to another a finite number of times, and is
extremal.

(Br.3.G) The cost function V Ξdef
=VΓ(Ξ) corresponding to the synthesis Γ(Ξ) =

{(ξ̃x, η̃x)}x∈S is continuous.
Boltyanskii’s definition, as given in [2], includes an extra ingredient, namely, a

subset N of S where the synthesis is allowed to have a more singular behavior. The
definition is formulated in terms of a sequence P = (P 0, . . . , Pn) of subsets of S such
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that

(4.3) P 0 ⊆ P 1 ⊆ · · · ⊆ Pn = S,

and the object that we called P here (that is, the set of “cells”) is the union

(4.4) P =
n⋃
i=0

Pi,

where
(Bo.*) Pi, for i ≥ 0, is the set of all connected components of P i \ (P i−1 ∪ N),

where P−1 = ∅,
so now P is a partition of (S \ N) ∪ {0} rather than of S. Boltyanskii does not
explicitly require that this partition be locally finite in S. He asks only that the
sets P i and N be “piecewise smooth” (that is, locally finite unions of “curvilinear
polyhedra,” i.e., of sets that are C1-diffeomorphic to closed bounded polyhedra in
finite-dimensional Euclidean spaces), but this does not imply that P is locally finite.
(In fact, in section 5, Example 5.2, we exhibit a Boltyanskii regular synthesis whose
set of cells is not locally finite.)

In addition, Boltyanskii imposes some extra requirements, which imply some of
the Brunovský conditions. In order to facilitate the comparison, we will include in
our definition of a Boltyanskii synthesis all the Brunovský conditions that necessarily
follow from the Boltyanskii assumptions, even though this will introduce a number of
redundancies.

Definition 4.3. A Boltyanskii regular synthesis on the open subset S of the
open set Ω ⊆ R

n, for the control problem (2.1), (2.2), with target the origin, is an
8-tuple Ξ = (P,P1,P2,Π,Σ, v,N,ΞN ) such that

(Bo.1) P = (P 0, . . . , Pn) is a sequence of piecewise smooth subsets of S such that
(4.3) holds.

(Bo.2) N is a piecewise smooth subset of S such that dim(N) < n.
(Bo.3) If P—the set of “cells”—is defined by (4.4), with the Pi defined by (Bo.∗),

then all the cells are embedded submanifolds of S, of class C1, such that
dim(P ) = i whenever P ∈ Pi. [BP&HS: The cells are obviously connected,
by definition, and form a partition of (S \N)∪{0}. But P need not be locally
finite and a fortiori P need not be a stratification.]

(Bo.4) dim(Π(P )) = dim(P )− 1 whenever P ∈ P1.
(Bo.5) The only zero-dimensional cell is {0}.
(Bo.6) ΞN is a family of pairs in AdmC1, 0(f̃ , {0}) such that (a) if (ξ, η) ∈ ΞN , then

ξ− ∈ N , (b) for every x ∈ N there is a (ξ, η) ∈ ΞN such that ξ− = x, and (c) if
(ξ1, η1) and (ξ2, η2) belong to Ξ

N , and ξ−1 = ξ−2 , then J(ξ1, η1) = J(ξ2, η2).
(Bo.7) Conditions (Br.2) and (Br.3) of Brunovský’s definition hold, with the fol-

lowing modifications: (a) v is defined on S \ N rather than on S, (b) the
stratification requirement (Br3.A) is dropped, and (c) V Ξ(x) is defined to be
equal to J(ξ̃x, η̃x) if x ∈ S \ N , and to J(ξ, η) if x ∈ N and (ξ, η) is any
member of ΞN such that ξ− = x.

(Bo.8) Whenever the trajectory ξ̃x enters a new cell, it does so “at a nonzero
angle.” (That is, more precisely: whenever P ∈ P1 and x ∈ P , the tangent
vector to ξ̃x at time tx is not tangent to Π(P ) at ξ̃x(tx).)

It is then clear that the two concepts of a regular synthesis defined by Boltyanskii
and Brunovský are not comparable. A Brunovský synthesis can fail to be a Boltyanskii
synthesis because
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(a) it violates the “nonzero angle” condition (Bo.8), as in the example given by
Brunovský in [6],
or

(b) it violates the dimension condition (Bo.4), as in our Example 5.4 below,
or

(c) it violates condition (Bo.5), as in Example 5.1 below.
On the other hand, a Boltyanskii synthesis can fail to be a Brunovský synthesis
because, for example, the set of cells could fail to be locally finite, as in our Example
5.2. Also, the Brunovský definition, as stated in [6], does not allow for an extra
“singular set” N .

The uniqueness requirement of (Br.3.D) is rather strong. In [18] Sussmann pro-
posed an even less restrictive formulation, as we now explain. For a P ∈ P2, we not
only specify a cell Σ(P ) ∈ P1 as in (Br.3.D), but also give a continuous “exiting map”
EP , defined on the set {(x, t) : x ∈ P, 0 ≤ t < ε(x)} and with values in P ∪Σ(P ). Here
ε : P → R is a continuous strictly positive function, and the map EP is required to be
such that, for every x ∈ P , (a) EP (x, 0) = x, and (b) the map ] 0, ε(x) [ t → EP (x, t)
takes values in Σ(P ) and is an integral curve of f(·, v(·)). So in [18] a synthesis is not
just a 6-tuple Γ = (P,P1,P2,Π,Σ, v) as in the Brunovský definition, but a 7-tuple
Γ = (P,P1,P2,Π,Σ, v, E), where the extra ingredient is the family E = {EP }P∈P2 of
exiting maps.

Remark 4.4. The map EP can be thought of as way of selecting in a continuous
fashion, for each x ∈ P , an initial piece ] 0, ε(x) [ t → EP (x, t) ∈ Σ(P ) of an
integral curve of the feedback vector field Σ(P )  y → f(y, v(y)) ∈ TyΣ(P ) such that
limt↓0 EP,x(t) = x. Naturally, if (Br.3.D) was satisfied we would just choose this curve
to be the restriction of ξx to ]0, tx[.

It is not hard to produce a concept of regular synthesis that contains as special
cases the three definitions of [2], [6], and [18] but does not differ too much from any of
them. This can be done by removing from the definitions of [2], [6], and [18] conditions
that are not really needed, such as the local finiteness requirements and Boltyanskii’s
conditions (Bo.4), (Bo.5), and (Bo.8). One can also eliminate the requirement that
the control space U be a subset of some Euclidean space R

m, and take U to be an
arbitrary set with no extra structure, provided only that all the conditions involving
differentiability of the feedback control x → v(x) are replaced by a differentiability
requirement for the map x → f̃(x, v(x)). One possible result is the following concept,
that we will call “BB-regular synthesis,” using the letters BB to stand for “Boltyanskii
and Brunovský.”

Definition 4.5. A BB-regular synthesis on the open subset S of Ω, for the con-
trol problem (2.1), (2.2), with target {0}, is a 9-tuple Ξ = (P,P1,P2,Π,Σ, E , v,N,ΞN )
such that

(BB.1) 0 ∈ N ⊆ S, and P is a finite or countable partition of S\N into nonempty
connected embedded submanifolds of S of class C1(called “cells”);

(BB.2) P is the disjoint union of P1 (the set of “type I cells”) and P2 (the set of
“type II cells”),

(BB.3) v :
⋃{P : P ∈ P1} → U (the “closed loop control”), Π : P1 → P ∪ {{0}},

and Σ : P2 → P1 are maps, and E is a family {EP }P∈P2
, such that the

following properties are satisfied:
(BB.3.A) If P ∈ P1, then the map P  x → f̃(x, v(x)) is of class C1, and

such that f(x, v(x)) belongs to TxP (the tangent space to P at x) for
every x ∈ P .
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(BB.3.B) If P ∈ P2, then Σ(P ) ∈ P1, and EP is a map that assigns to
each x ∈ P a maximally defined integral curve EP,x of the vector field
Σ(P )  y → f(y, v(y)) ∈ TyΣ(P ) in such a way that 0 = inf Dom(EP,x)
and limt↓0 EP,x(t) = x.

(BB.3.C) For x ∈ P ∈ P2, define a map ξx : {0} ∪ Dom(EP,x) → Ω by
letting ξx(0) = x and ξx(t) = EP,x(t) for t ∈ Dom(EP,x). For x ∈ P1 ∈
P1, let ξx be the maximally defined solution of the initial value problem
(4.1). Define tx = sup Dom(ξx) for x ∈ P ∈ P. Then for every cell
P ∈ P the function P  x → tx is of class C1, and the maps Ê(P ) 
(t, x) → ξx(t) ∈ Ω and Ê(P )  (t, x) → f̃(ξx(t), v(ξx(t))) ∈ R

n+1 have
continuously differentiable extensions to a neighborhood of E(P ) in R×P ,
where E(P ) is the set defined by (4.2), and Ê(P ) = {(t, x) ∈ E(P ) : 0 <
t < tx}.

(BB.3.D) If x ∈ P ∈ P1, then the limit ξx(tx−) = limt↑tx ξx(t)—which exists
because of (BB.3.C)—belongs to Π(P ).

(BB.4) Boltyanskii’s condition (Bo.6) holds.
(BB.5) Brunovský’s condition (Br.3.F) holds for x ∈ S \N .
(BB.6) Brunovský’s condition (Br.3.G) holds, with V Ξ defined as in (Bo.7.c).
It is then easy to show that if Ξ is a regular synthesis in the sense of Boltyanskii

[2], Brunovský [6], or Sussmann [18], then it is possible to associate to Ξ in a natural
way a BB-regular synthesis in the sense of Definition 4.5. Moreover, a BB-regular
synthesis gives rise in a natural way to a regular presynthesis Γ(Ξ) in the sense of our
Definition 2.12, which is a synthesis if N = {0}.

Our Definition 2.12—a slightly different version of which was already proposed in
[31]—is even more general, because of the following:

(a) We do not require that VΓ be continuous, and we assume only the weak
continuity conditions.

(b) We do not require that the domain of the synthesis be an open set. This is
quite important because one wants the theory to apply to systems that are
not locally controllable, and in those cases one usually wants to take S to be
the set Ŝ of all points of Ω that can be steered to the target, and in general
Ŝ is not open.

(c) We do not require the existence of a partition into “cells.” From our point of
view, such a partition is only needed to guarantee the weak differentiability
condition (b) of Definition 2.12.

(d) Even when a good partition into “cells” exists, satisfying the most restrictive
conditions of both definitions (that is, Brunovský’s stratification condition
(Br.3.A) and Boltyanskii’s conditions (Bo.4), (Bo.5), and (Bo.8)), it may still
happen that the crucial “finite number of steps” condition (Br.3.F) is violated,
as in Fuller’s example, but our requirements for a regular presynthesis are still
met.

5. Examples. We now present several examples of optimal regular syntheses to
illustrate the differences between the various definitions.

One example showing how our notion of regular synthesis is more general than
those of Boltyanskii and Brunovský was already discussed in section 3, where we
showed that our theory applies to Fuller’s problem while the other ones clearly do
not, since they do not allow the trajectories of the synthesis to have infinitely many
switchings. Another important example, relevant for the comparison of the Boltyan-
skii and Brunovský definitions, is the one given by Brunovský in [6], showing how the
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“nonzero angle” condition (Bo.8) can be violated.
We now show by means of an example how Boltyanskii’s condition (Bo.5) can be

violated. In principle, it is quite easy to produce examples of syntheses that satisfy
all of Boltyanskii’s conditions except for (Bo.5). It turns out, however, that in most
such examples one can construct a new synthesis where (Bo.5) holds, for example,
by incorporating the zero-dimensional cells in the singular set N , or by drawing a
one-dimensional arc Aq through every q such that {q} is a cell and making the Aq’s
cells of the new synthesis. To produce an example where no synthesis can possibly
satisfy (Bo.5) more work is needed, but it can be done, as we now show.

Example 5.1. Let

S1 = {(x, 0) : x ≤ 0} , S2 = {(x, x) : 0 ≤ x ≤ 1} ,
S3 = {(x, 2x−1) : x ≥ 1} , S4 = {(x, 0) : x ≥ 0} .

Let Λ1 = S1 ∪S2 ∪S3, Λ2 = S1 ∪S4. Let A be the set of points (x, y) such that x ≥ 0
and either 0 ≤ y ≤ x ≤ 1 or 0 ≤ y ≤ 2x− 1, and let B be the set of those (x, y) such
that either y ≤ 0, or x ≤ 0, or 0 ≤ x ≤ 1 and x ≤ y, or x ≥ 1 and y ≥ 2x − 1. Let
ϕ,ψ : R

2 → R be smooth nonnegative functions such that ϕ(x, y) = 0 if and only if
(x, y) ∈ A, and ψ(x, y) = 0 if and only if (x, y) ∈ B.

We consider the minimum time-optimal control problem in R
2 with target {(0, 0)}

and dynamics given by

ẋ =
u1

1 + ϕ(x, y)
, ẏ =

u2

1 + ψ(x, y)
,

where the control constraint is |u1|+ |u2| ≤ 1.
If q = (x̄, ȳ) is any point in R

2, and [a, b]  t → ξ(t) = (x(t), y(t)) ∈ R
2 is

any trajectory from q to the target, corresponding to a control [a, b]  t → η(t) =
(u1(t), u2(t)), then

b− a ≥
∫ b

a

(
|u1(t)|+ |u2(t)|

)
dt ≥

∫ b

a

(
|ẋ(t)|+ |ẏ(t)|

)
dt ≥ |x̄|+ |ȳ| .

Moreover, a trajectory ξq from q to the origin whose cost is exactly |x̄| + |ȳ| can be
constructed as follows:

1. If q belongs to Λ1, then the point ξq(t) moves along Λ1 towards the origin,
with a control vector ηq(t) = (u1(t), u2(t)) such that |u1(t)|+ |u2(t)| = 1 (so
that ηq(t) = (1, 0) if q ∈ S1 and ηq(t) = (− 1

2 ,− 1
2 ) if q ∈ S2; if q ∈ S3, then

ηq(t) = (− 1
3 ,− 2

3 ) until ξq(t) = (1, 1), and ηq(t) = (− 1
2 ,− 1

2 ) from then on).
2. If q ∈ A, then ξq(t) moves horizontally to the left (with control (u1, u2) =
(−1, 0)) until it reaches Λ1, and then follows the trajectory described in
item 1.

3. If q ∈ B and ȳ > 0, then ξq(t) moves vertically down (with control (u1, u2) =
(0,−1)) until it reaches Λ1, and then follows the trajectory described in
item 1.

4. If q ∈ B and ȳ < 0, then ξq(t) moves vertically up (with control (u1, u2) =
(0, 1)) until it reaches Λ2, and then moves horizontally towards the origin
with control (1, 0) or (−1, 0).

The family Ξ = {ξq}q∈R2 is an optimal synthesis. If we define P 0 to be the two-point
set consisting of (0, 0) and (1, 1), and let P 1 = ∪4

i=1Si, P
2 = R

2, and N = ∅, then all
the conditions of a Boltyanskii regular synthesis are satisfied (with 17 cells), except
for (Bo.5). Moreover, it is easy to show that this problem does not admit a regular
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synthesis that satisfies all the Boltyanskii conditions, including (Bo.5). (The proof is
as follows. The optimal trajectories for our problem are clearly unique for all initial
points q = (x̄, ȳ). So for any optimal synthesis the trajectories are the ξq. Assume
we have a regular synthesis satisfying all of Boltyanskii’s conditions. Then the point
(1, 1) cannot belong to the singular set N , because the definition of a Boltyanskii
synthesis implies that every marked trajectory starting at a point of R

2 \N is entirely
contained in R

2 \N , so the set U = {(x, y) : x ≥ 1 , y ≥ 1} must be entirely contained
in N—because if q ∈ U , then ξq goes through (1, 1)—and this contradicts the fact
that the dimension of N is at most one (as below). Now, let C be the cell containing
(1, 1). Since every optimal trajectory going through (1, 1) has a discontinuous velocity
at (1, 1), the cell C cannot be of type I. In particular, C is not two-dimensional, so
(Bo.5) implies that it is one-dimensional. It follows from the definition of a Boltyanskii
synthesis that the direction ν(q) of the marked trajectory ξq at its starting point q
must be a continuous function of q as long as q ∈ C. But ν(1, 1) = (− 1

2 ,− 1
2 ), and

there is no direction along which ν(q) is continuous as q → (1, 1), so it is impossible
for C to be one-dimensional.)

In our second example, we present a Boltyanskii optimal synthesis which is not a
Brunovský synthesis, because the set of cells is not locally finite.

Example 5.2. Let ψ : R → R be a function of class C∞ such that (a) ψ(x) = 0
whenever x ≤ 0, (b) 0 ≤ ψ(x) < x when x > 0, (c) the set of zeros of ψ is the
union of {0} and the points of a decreasing infinite sequence {xk}∞k=1 having an
accumulation point at 0, (d) for every k ≥ 1 there exists x̄k ∈]xk+1, xk[ such that ψ is
strictly increasing on [xk+1, x̄k] and strictly decreasing on [x̄k, xk] and (e) ψ is strictly
increasing on [x1,+∞[. Let

A = {(x, y) ∈ R
2 : x ≥ 0 and − ψ(x) ≤ y ≤ ψ(x)},

B = {(x, y) ∈ R
2 : x ≤ |y|},

E = {(x, y) ∈ R
2 : x ≥ 0 and (ψ(x) ≤ y ≤ x or − x ≤ y ≤ −ψ(x))}.

Let L be the y axis. Then A, B, E, and L are closed subsets of R
2. Let σ : R2 → R

be a function of class C∞ such that σ ≡ 0 on A ∪ B and σ > 0 on R
2 \ (A ∪ B).

Let τ : R
2 → R be a function of class C∞ such that τ ≡ 0 on E ∪ L and τ > 0 on

R
2 \ (E ∪ L).
Consider the optimal control problem in R

2 with target {(0, 0)}, in which the
dynamics is given by

ẋ = u1, ẏ = u2 ,

the control constraints are u1 ∈ {−1, 0, 1} and |u1|+ |u2| = 1, and the cost functional
to be minimized is

J =

∫ b

a

(
u1(t)

2
(
1 + σ(x(t), y(t))

)
+ u2(t)

2τ(x(t), y(t))

)
dt.

If q = (x̄, ȳ) ∈ R
2, and [a, b]  t → ξ(t) = (x(t), y(t)) is any trajectory going from q to

the origin, then J(ξ) ≥ ∫ b
a
u1(t)

2 dt =
∫ b
a
|u1(t)| dt ≥ | ∫ b

a
ẋ(t) dt| = |x̄|. On the other

hand, there exists a trajectory ξq for which J(ξq) = |x̄|. To see this, observe that
purely vertical motion—i.e., |u2| = 1 and u1 = 0—costs nothing as long as it takes
place in E ∪ L, while horizontal motion—i.e., |u1| = 1 and u2 = 0—has a cost per
unit time equal to 1 on A ∪ B. If q ∈ B, then we can move horizontally towards the
y axis—using u1 = −sgn(x̄)—and then move vertically along the y axis and end up
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at the origin, thereby obtaining a trajectory whose cost is exactly |x̄|. If q ∈ E, then
we can move vertically up or down—using u2 = sgn(ȳ)—until we hit the boundary of
B. Once we are in B, we follow the optimal trajectory already described for points of
B, and end up producing a trajectory from q to the origin whose cost is |x̄|. If q ∈ A
and ȳ = 0, then the constant control u1 = −1, u2 = 0 steers q to the origin with cost
x̄. If q ∈ A and ȳ �= 0, then we can use the constant control u1 = −1, u2 = 0 until we
reach a point (x̂, ŷ) such that |ŷ| = ψ(x̂). The cost of this is clearly x̄− x̂, and (x̂, ŷ)
belongs to E, so we know how to go from (x̂, ŷ) to the origin with cost x̂. So we can
go from q to the origin with cost x̄.

Therefore the value function V for this problem is given by V (x, y) = |x|. More-
over, we have given an explicit description of a family Ξ = {ξq}q∈R2 which is a total
optimal synthesis.

We now show that Ξ is the family of trajectories of a Boltyanskii regular synthesis
whose set of cells is not locally finite. To see this, we defineN to be the set [0,∞ [×{0},
so N is clearly piecewise smooth. We take P 0 = {(0, 0)}, and let P 1 be the union of
the two coordinate axes, the two half-lines L1 = {(x, x) : x ≥ 0} and L2 = {(x,−x) :
x ≥ 0}, and the graphs of ψ and −ψ. Finally, we let P 2 = R

2. It is then clear that
P 0, P 1, and P 2 are piecewise smooth. The connected components of P 1 \ (P 0 ∪N)
are the open half-lines

Λ1 = {(x, x) : x > 0} , Λ2 = {(0, y) : y > 0} , Λ3 = {(x, 0) : x < 0} ,
Λ4 = {(0, y) : y < 0} , Λ5 = {(x,−x) : x > 0}
and the arcs

A+
0 = {(x, ψ(x)) : x > x1} , A−

0 = {(x,−ψ(x)) : x > x1} ,
A+
k = {(x, ψ(x)) : xk+1 < x < xk} , A−

k = {(x,−ψ(x)) : xk+1 < x < xk} .

The connected components of P 2 \ (P 1 ∪N) are the sets

U1 = {(x, y) : x > 0 , ψ(x) < y < x} , U2 = {(x, y) : 0 < x < y} ,
U3 = {(x, y) : x < 0 < y} , U4 = {(x, y) : x < 0 , y < 0} ,
U5 = {(x, y) : x > 0 , y < −x} , U6 = {(x, y) : x > 0 , −x < y < −ψ(x)}
and the bounded regions

W+
0 = {(x, y) : x > x1 , 0 < y < ψ(x)} , W−

0 = {(x, y) : x > x1 , 0 > y > −ψ(x)} ,
W+
k = {(x, y) : xk+1 < x < xk , 0 < y < ψ(x)} ,

W−
k = {(x, y) : xk+1 < x < xk , 0 > y > −ψ(x)} .

The arcs A+
0 , A

−
0 , A

+
k , and A−

k and the half-lines Λ1, Λ5 are declared to be type II
cells, and we choose

Σ(A+
0 ) = Σ(A

+
k ) = U1 , Σ(A−

0 ) = Σ(A
−
k ) = U6 , Σ(Λ1) = U2 , Σ(Λ5) = U5 .

The remaining cells (that is, Λ2, Λ3, Λ4, the Ui, W
+
0 , W

−
0 , the W

+
k and the W

−
k ) are

type I cells. The feedback v is defined by letting

v ≡


(−1, 0) on Z ,
(1, 0) on U3 ∪ U4 ,
(0, 1) on U1 ∪ Λ4 ,
(0,−1) on U6 ∪ Λ2 ,
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where

Z = (N \ {(0, 0)})
⋃
(W+

0 ∪W−
0 )
⋃
(∪kW+

k )
⋃
(∪kW−

k )
⋃

U2

⋃
U5 .

The definitions of Π and ΞN are the obvious ones. It is then clear that all the
conditions of the Boltyanskii definition are satisfied, but the set of cells is not locally
finite.

Example 5.3. We now present an example of a synthesis that satisfies all the
Brunovský conditions except for the continuity requirement (Br.3.G). This example
will, in addition, exhibit the phenomenon of nonuniqueness of trajectories for the
closed-loop equation arising from the optimal feedback, thereby providing a concrete
illustration of the reasons for including as an extra ingredient a selection of trajecto-
ries, i.e., for following strategy (B) of section 4.

We construct and study in detail the time-optimal synthesis for the planar system:

(5.1) q̇ = F (q) + uG(q) , |u| ≤ 1,

where

(5.2) q
def
=

x

y

 ∈ R
2 , F (q)

def
=

 1− y
2

x+1
2

 , G(q)
def
=

 −y
2

x+1
2

 ,

and the target is the origin of R
2.

The trajectories of (5.1) corresponding to the constant control u ≡ −1 are straight
horizontal lines going from left to right, while those corresponding to u ≡ +1 are circles
centered at the point (−1, 1), running counterclockwise. The optimal synthesis, to be
determined below, is shown in Figure 2.

An arc γ : [a, b] → R
2 is simple if γ is an injective map. Clearly, all optimal

trajectories are simple.
Since G(q) = 0 only for q = (−1, 0), it is clear that a trajectory γ : [a, b] → R

2

uniquely determines the corresponding control u(·), unless the set {t : γ(t) = (−1, 0)}

(-1,0)

u=+1

u=-1

Fig. 2.
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is of positive measure. In particular, for simple trajectories γ—the only ones that will
be of interest to us—the control is uniquely determined by γ.

As in previous sections, we use Rk to denote the space of real row k-vectors. If Ω
is an open subset of R

k and X,Y : Ω→ R
k are vector fields of class C1, then [X,Y ]

will denote the Lie bracket of X and Y , so [X,Y ] = (DY ).X − (DX).Y .
If X,Y are R

2-valued functions on a subset of R
2, then (X,Y ) will denote the

2 × 2 matrix with columns X,Y . In particular, following Sussmann [25], we define
two real-valued functions ∆A, ∆B on R

2, by letting

(5.3) ∆A = det (F,G) ∆B = det (G, [F,G])

where det stands for determinant. From the results of [25], we know that every
extremal trajectory of (5.1) is a finite concatenation of “bang” and “singular” arcs.
An arc is a bang arc if it is a B− arc—i.e., a trajectory for the control u = −1—or
a B+ arc—i.e., a trajectory for u = 1. Singular arcs lie in the set of zeros of the
function ∆B . In our case,

(5.4) ∆A =
x+ 1

2
and ∆B = −y

4
,

so the only singular arcs are those entirely contained in the x axis, and these cor-
respond to the control −1, so they actually are bang. So all the extremals of our
problem are bang-bang, that is, finite concatenations of bang arcs.

If ∆A(q) �= 0, then the vectors F (q) and G(q) are linearly independent, and we
can define the numbers f(q) and g(q) as the coefficients of the linear combination:

(5.5) [F,G](q) = f(q)F (q) + g(q)G(q).

Let ΩA, ΩB be, respectively, the sets {q : ∆A(q) �= 0}, {q : ∆B(q) �= 0}, and define
ΩAB = ΩA ∩ ΩB . It was proved in [25] that, if γ is an extremal trajectory and
γ(t) ∈ ΩAB for every t, then γ is bang-bang with at most one switching, and this
switching can only be from the control value −1 to the value +1 if f > 0, and from
+1 to −1 if f < 0. In our case, it follows from (5.4) that

(5.6) ΩA = {(x, y) : x �= −1} , ΩB = {(x, y) : y �= 0},
so ΩAB is the union of four open quadrants ΩAB,i, i = 1, 2, 3, 4, defined by

ΩAB,1 = {(x, y) : x > −1 , y > 0},
ΩAB,2 = {(x, y) : x < −1 , y > 0},

(5.7)
ΩAB,3 = {(x, y) : (x,−y) ∈ ΩAB,2},
ΩAB,4 = {(x, y) : (x,−y) ∈ ΩAB,1}.

Moreover,

(5.8) [F,G] =

(
0
1
2

)
=

y

2(x+ 1)
F +

2− y

2(x+ 1)
G,

so f > 0 on ΩAB,1 ∪ ΩAB,3 and f < 0 on ΩAB,2 ∪ ΩAB,4. So the control switchings
are from −1 to 1 on ΩAB,1 ∪ ΩAB,3 and from 1 to −1 on ΩAB,2 ∪ ΩAB,4.

To determine the optimal synthesis, we will first construct a “sufficient family”
of trajectories for our problem, i.e., a collection F of simple trajectories such that
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every optimal trajectory ending at the target is in F . We will then find, for every
initial point q, a γq ∈ F such that if δ ∈ F goes from q to 0 and δ �= γq, then δ is not
optimal. Since the existence of optimal trajectories from any initial point follows by
elementary arguments, we will be able to conclude that γq is optimal.

Suppose that γ : [a, b] → R
2 is time-optimal, γ(b) = (0, 0), a < b, and γ arises

from an open-loop control t → u(t). Then γ is simple, and is a concatenation of
finitely many maximal bang arcs. Since γ is an extremal, we can fix a nontrivial
minimizing adjoint vector λ along γ and a constant λ0 ≥ 0 for which (EX4) holds.
Define the switching function

ϕ(t) = λ(t) ·G(γ(t)).
The Hamiltonian minimization condition implies that

(5.9) ϕ(t) �= 0 =⇒ u(t) = −sgn(ϕ(t)).
Let δ : [c, d]→ R

2 be a maximal B− piece of γ, so c < d and δ is of the form:

(5.10) δ(t) = (x0 + t, y0).

For a.e. t ∈ [c, d], we have λ̇ = −λ · D(F − G) = 0. So λ = (λ1, λ2) is constant,
(λ1, λ2) �= (0, 0), and

(5.11) ϕ(t) = −λ1
y0

2
+ λ2

x0 + t+ 1

2

is a linear function of t. Since a linear function cannot have more than one zero
unless it vanishes identically, we conclude that a < c < d < b can only be true if
λ2 = y0 = 0. If d = b, then of course y0 = 0, since γ(b) = (0, 0). So one of the
following two possibilities occurs:

(I) δ is contained in the x axis,
(II) a = c.

This shows that all the maximal B− pieces of γ are entirely contained in the x axis,
with the only possible exception that the domain [a, b] of γ may contain an initial
segment [a, d] such that γ([a, d]) is contained in a horizontal line for which y �= 0.

Let us now analyze the adjoint equation for a maximal B+ piece δ : [c, d] → R
2

of γ, such that c < d. Clearly, δ is of the form

(5.12) x(t) = −1 + r cos(t+ θ) , y(t) = 1 + r sin(t+ θ) , c ≤ t ≤ d,

where r, θ are constants, r > 0, and θ ∈ [0, 2π]. (The possibility that r = 0 is obviously
excluded, because γ is time-optimal and c < d.) The components λ1, λ2 of λ satisfy
λ̇1 = −λ2 and λ̇2 = λ1, so there exist constants A > 0, θ1 ∈ [0, 2π], such that
(5.13) λ1(t) = A cos(t+ θ1) , λ2(t) = A sin(t+ θ1), c ≤ t ≤ d.

Therefore, up to multiplication by a positive constant,

(5.14) ϕ(t) = − cos(t+ θ1) + r sin(θ1 − θ).

Now suppose that one of the two endpoints c, d of the domain of δ is a switching
time and the corresponding point in R

2 lies in the x axis. That is, we assume that
h ∈ {c, d} is such that ϕ(h) = 0 and y(h) = 0. Then
(5.15) r sin(h+ θ) = −1,
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so

ϕ(t) = − cos(t+ θ1) + r(sin(h+ θ1) cos(h+ θ)− cos(h+ θ1) sin(h+ θ))

(5.16)
= − cos(t+ θ1) + cos(h+ θ1) + r sin(h+ θ1) cos(h+ θ).

In particular,

(5.17) 0 = ϕ(h) = r sin(h+ θ1) cos(h+ θ),

so ϕ(t) = − cos(t+θ1)+cos(h+θ1). If r �= 1, then (5.15) implies 0 ≥ sin(h+θ) �= −1,
so cos(h+ θ) �= 0. But then (5.15) implies sin(h+ θ1) = 0, so cos(h+ θ1) = ±1. The
possibility that cos(h+θ1) = 1 is excluded, for in that case ϕ would be > 0 throughout
] c, d [ , contradicting the minimization condition. So ϕ(t) = −1 − cos(t + θ1). This
shows that ϕ(t) < 0 for t ∈ [c, d] \ {h}, unless d − c = 2π. But if d − c = 2π, then γ
would not be simple. So d − c < 2π, and we have shown that the other endpoint h′

of [c, d] cannot be a switching point, and therefore h′ ∈ {a, b}.
It then follows that one of the following possibilities must occur:
(i) d = b;
(ii) a = c < d < b and γ(d) lies in the x axis;
(iii) a < c < d < b and γ(d) = (−1, 0).

Indeed, if d < b but γ(d) is not in the x axis, then we could let δ′ be the maximal
B− piece of γ that starts at time d, and our analysis of the B− pieces of γ, applied
to δ′, would show that δ′ cannot in fact occur, since δ′ is not an initial segment of γ
and is not contained in the x axis. So, if d < b, then γ(d) lies in the x axis, and d is
a switching time of γ. Our previous argument shows that c = a, unless r = 1. But if
r = 1, and γ(d) is in the x axis, then γ(d) = (−1, 0). So d < b implies that either (ii)
or (iii) must hold.

We now combine the results about the two types of pieces and provide a complete
description of the optimal trajectories ending at the origin. Let us use L, L0, C to
denote, respectively, the trajectory types “B− and not contained in the x axis,” “B−
and contained in the x axis,” and “B+.” (The symbols L and C stand for “line”
and “circle.”) Let us use T1T2 . . . Tm to denote the trajectory type “T1 followed by
T2 . . . followed by Tm.”

With this notation, we now show that a nontrivial optimal trajectory γ ending
at the origin is of one of the following seven types: L0, C, L0C, LC, CL0, LCL0,
CL0C. First, concatenations of six or more types are ruled out as follows: any such
concatenation would have to contain at least three different C pieces; at most one
of them can satisfy (i) and at most one can satisfy (ii); if both of these possibilities
occurred, then we would have a concatenation of the form C ∗ C ∗ C, i.e., five pieces
rather than six; so there must be two different pieces satisfying (iii), and then γ
would go at least twice through the point (−1, 0), and would not be simple. Next, all
concatenations containing an L0CL0 sequence are excluded, because if γ is any such
concatenation, then the C piece that lies between the two L0s would have to satisfy
(iii), so its last switching would have to happen at (−1, 0); then the C piece would
have to be an arc of the circle with center (−1, 1) and radius 1, which intersects the
x axis only at (−1, 0); then the other switching would also happen at (−1, 0), and
γ would not be simple. A five-piece concatenation must be CL0CL0C, LCL0CL0,
or L0CL0CL0, because every B− piece must satisfy (I) or (II), so it cannot be an L
unless it is the first piece. So all such concatenations contain an L0CL0 piece and
are therefore excluded. A four-piece concatenation must be CL0CL0, L0CL0C, or
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LCL0C. The types CL0CL0 and L0CL0C are ruled out because they contain an
L0CL0 triple. The type LCL0C is excluded because the first C would have to satisfy
(iii), so the switching from C to L0 would have to happen at (−1, 0); then the L0

piece following the switching has to be a segment going from (−1, 0) to a point (α, 0)
and α must satisfy −1 < α < 0, for if α was ≥ 0, then the L0 piece would already
reach the origin before switching to the last C; and if −1 < α < 0, then the C arc
starting at (α, 0) does not go through the origin. So all four-piece concatenations
are excluded. Of the three-piece possibilities, CLC, LCL, and L0CL are excluded
because an L piece can occur only at the beginning of the sequence, and we also know
that L0CL0 is excluded. So only CL0C and LCL0 are left. Of the two- and one-piece
concatenations, CL and L are obviously excluded, and we are left with L0, C, CL0,
L0C, and LC.

The LCL0 trajectories are further restricted by the condition that the switching
from C to L0 must happen at the point (−1, 0). Let us call those LCL0 trajectories
that satisfy this extra condition “good.”

Let F be the set of all simple trajectories that end at the origin and are either
of one of the six types L0, C, L0C, LC, CL0, CL0C, or of type LCL0 and good.
We have shown that every optimal trajectory belongs to F . It will turn out that the
optimal synthesis involves all seven types listed above, but not all trajectories of one
of these types are optimal, so we need a finer analysis.

To begin with, observe that ẋ = 1 − y along a B+ arc, so ẋ > 1 along a B+ arc
as long as y < 0. Therefore, if q1 = (x1, y1) and q2 = (x2, y2) satisfy y1 = y2 ≤ 0,
x1 < x2, and x1+x2 = −2, so that q1 and q2 can be joined both by a C arc and an L
(or L0) arc, then the C arc is contained in the lower half-plane, and is faster than the
L or L0 arc. In particular, if we let L0(β) denote, for β > 0, the L0 arc going from
(−β, 0) to (0, 0), we see that L0(β) is not optimal if 1 < β ≤ 2, because the piece of
L0 going from (−β, 0) to (−2+β, 0) can be replaced by a faster type C arc. Then the
principle of optimality implies that L0(β) is not optimal if 1 < β, because if β > 2,
then L0(β) contains L0(2), which is not optimal.

Next we show that L0(1) is optimal. It suffices to notice that there is no trajectory
from (−1, 0) to (0, 0) of any of the types C, LC, LCL0, and exactly one trajectory
of each of the types L0, L0C, CL0, and CL0C, but the last three are not simple,
so L0(1) is left as the only possible candidate. It then follows from the principle of
optimality that L0(β) is optimal for 0 ≤ β ≤ 1.

We now study the optimal trajectories that are of one of the types C, L0C, LC,
and CL0C. Let γ : [a, b]→ R

2 be such a trajectory, and take b = 0, so γ(0) = (0, 0).
If γ is a C arc, then a > −2π, for otherwise γ would contain a full loop. For

0 < a < 2π, we let C(a) be the C arc γ : [−a, 0]→ R
2 such that γ(0) = (0, 0). It will

be shown below that the arcs C(a) are all optimal.
Next suppose that γ is LC. Since the C piece satisfies (5.12), we must have

r =
√
2 and θ = 7π

4 . Let c be the time when the switching from L to C occurs, so
−2π < c < 0, for if c ≤ −2π, then γ would not be simple. On [c, 0], the switching
function ϕ is given, up to multiplication by a positive constant, by

ϕ(t) =
√
2 sin

(
θ1 − 7π

4

)
− cos(t+ θ1) = sin θ1 + cos θ1 − cos(t+ θ1).

So

ϕ(t) = (1 + sin t) sin θ1 + (1− cos t). cos θ1.
Suppose that sin θ1 = 0. Then cos θ1 = ±1, so cos θ1 = −1, because ϕ(t) < 0 when t
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is negative and close to 0, since u(t) = +1 for such t. So ϕ(t) = cos t − 1, and then
ϕ(c) �= 0, since −2π < c < 0. Since ϕ(c) = 0, we conclude that sin θ1 �= 0. We can
then define

ψ(t) =
1 + sin t

1− cos t , ν =
cos θ1
sin θ1

.

Then ψ is well defined and smooth on [c, 0 [ , and ψ(t) goes to +∞ as t ↑ 0. Moreover,
ϕ can be expressed as ϕ(t) = sin θ1.(1 − cos t).(ν + ψ(t)) for t ∈ [c, 0 [ . Therefore
sin θ1 < 0, and ψ(c) = −ν, since 1−cos c �= 0, because −2π < c < 0. Clearly, ψ(t) ≥ 0
for all t ∈ ]−2π, 0 [ , and ψ attains the value 0 on ]−2π, 0 [ at t = −π

2 and nowhere else.
A simple calculation shows that ψ is strictly increasing on ]− π

2 , 0 [ . If ν > 0, then
ψ + ν never vanishes on ]−2π, 0[ , so ϕ(c) �= 0. So ν ≤ 0. If ν = 0, then ψ(c) = −ν
implies c = −π

2 . If ν < 0, then ψ must take the value −ν at some point t(ν) such that
−π

2 < t(ν) < 0, because ψ(−π
2 ) = 0 and ψ(0−) = +∞. Since ψ is strictly increasing

on ]− π
2 , 0 [ , we see that t(ν) is unique, and ϕ changes sign at t(ν). If c < t(ν), we

would contradict the fact that ϕ has constant sign on [c, 0]. On the other hand, it
is impossible that c > t(ν), because then the equation ψ(t) = −ν would have two
solutions on ]− π

2 , 0 [ . So c = t(ν), and we have proved that −π
2 ≤ c < 0. If −π

4 < c,
then γ(c) ∈ ΩAB,4, and the switching is not permitted. So the only possibility left to
us is −π

2 ≤ c ≤ −π
4 . If c = −π

2 , then we really have an L0C arc rather than an LC
arc. So the only LC arcs that could be optimal are those for which −π

2 < c ≤ −π
4 .

For 0 < σ < 2π, s > 0, let LC(s, σ) denote the trajectory defined on the interval
[−s−σ, 0] that ends at the origin and corresponds to a u = −1 control on [−s−σ,−σ]
followed by a u = 1 control on [−σ, 0]. We have shown that LC(s, σ) is not optimal
unless π

4 ≤ σ < π
2 . We now show that if

π
4 ≤ σ < π

2 , then LC(s, σ) is optimal. To
see this, let q = (x, y) be the starting point of LC(s, σ), for s > 0, π4 ≤ σ < π

2 . Then

1 − √
2 ≤ y < 0. It is clear that LC(s, σ) is the only simple LC trajectory from q

to (0, 0). Also, it is easy to see that there are no trajectories from q to (0, 0) of the
types L0, C, L0C, or good LCL0. There is exactly one CL0 trajectory, but it is easy
to see that the time τ̂ along this trajectory is larger than the time τ along LC(s, σ).
(Actually, τ = s + σ < |x| < τ̂ − 3π

2 .) Finally, there is exactly one CL0C trajectory

γ, which can also be ruled out. (Let x̄ = −1 −√2− (y − 1)2, so q̄ = (x̄, y) is the
point where LC(s, σ) switches from L to C. Then both LC(s, σ) and γ go through
q̄ and coincide from that point on. So it suffices to compare the parts of LC(s, σ)
and γ up to q̄. The time along LC(s, σ) up to q̄ is s = x̄ − x and that along γ is
>
√
(1 + x)2 + (1− y)2 −√

2 + 3π
2 . So we have to show that α > 0, where

α =
√
(1+x)2+(1−y)2 −

√
2 +

3π

2
− (x̄−x)

=
√
(1+x)2+(1−y)2 −

√
2 +

3π

2
+x+1+

√
2−(y−1)2.

Then, using the fact that
√
a +

√
b ≥ √

a+ b when a ≥ 0 and b ≥ 0, we get the
inequalities

α ≥
√
(1 + x)2 + 2−

√
2 +

3π

2
+ x+ 1

>
√
(1 + x)2 + x+ 1

= |1 + x|+ 1 + x ≥ 0,
as desired.)
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For s > 0, we let L0C(s) denote the trajectory that consists of a B− arc during
time s followed by a B+ arc during time

π
2 , and ending at the origin. Then it is easily

shown that L0C(s) is optimal for every s > 0. (Indeed, if q = (x, 0) is the starting
point of L0C(s), for s > 0, then L0C(s) is the only simple L0C trajectory from q to
(0, 0), and there are no simple trajectories from q to (0, 0) of the types C, LC, CL0,
LCL0, or CL0C. There is an L0 arc, namely, L0(|x|), but we know that this arc is
not optimal because |x| > 1.)

Now define

R1 = {(0, 0)} , R2 = ]−1, 0 [×{0} , R3 = {(−1, 0)}.

For q = (0, 0), let γq be the trajectory γ with domain {0} such that γ(0) = (0, 0). If
q = (x, 0) belongs to R2 ∪ R3, let γq = L0(|x|). Then the γq, for q ∈ R1 ∪ R2 ∪ R3,
are optimal.

For r > 0, let D(r) be the open disc with center (−1, 1) and radius r, and let
∂D(r) denote the boundary of D(r). Let

R4 = D(1) , R5 = ∂D(1)\{(−1, 0)}.

Then every point q ∈ R4 can be joined to (0, 0) by a unique good LCL0 trajectory.
We use γq to denote this trajectory. Then the arcs γq, for q ∈ R4, are optimal. (To
see this, observe that if q ∈ R4, then the only trajectories other than γq that are of one
of our seven types and go from q to the origin are either LCL0 but not good or not
simple, or LC with a switching from L to C at a time c that violates the requirement
that −π

2 < c. So all the alternative candidates are excluded, and γq must be the
optimal trajectory.)

A similar argument shows that if q ∈ R5 and γq is the unique CL0 trajectory
going from q to (0, 0), then γq is optimal.

Next, let

R6 = D(
√
2)\(R2 ∪R3 ∪R4 ∪R5).

If q ∈ R6, then the obvious candidate for optimality is the arc γq of type CL0 obtained
by following the C arc that starts at q until R2 is reached, and then continuing along
R2 towards the origin. We now prove that the arcs γq, q ∈ R6, are optimal. To see
this, observe that if q = (x, y) ∈ R6, then there are no simple arcs from q to (0, 0) of
the types C, L0C, CL0C. If y �= 0, then there are no L0 arcs either. If y = 0, then
there is an L0 arc, but it is L0(β) for β = |x| > 1, so it is not optimal. If y �= 0, then
there is an LC arc, but (i) if y < 0, then this arc switches from L to C in ΩAB,4, so
it is not optimal; (ii) if y > 0, then the arc is LC(s, σ) for some σ ∈ ] 5π/4, 2π [ , so
it is not optimal either. If y ≤ 0, then γq is the only simple CL0 arc, and if y > 0,
then there are two such arcs, but the other one is not optimal, because it contains
L0(β) for some β > 1. So we have ruled out all the alternative candidates to γq other
than good LCL0 arcs. We now exclude this possibility too, by doing it first for the
case when y �= 2. If y ≤ 0 or y > 2 or x ≥ −1, then there is no good LCL0 arc. If
0 < y < 2 and x < −1, then there is a good LCL0 arc, but it switches from L to C
at a point in ΩAB,2, so this arc is not optimal. So now all the alternative possibilities
have been ruled out if q = (x, y) ∈ R6 is such that y �= 2 or y = 2 and x > −1. So
γq is optimal for all such q’s. Suppose now that y = 2 and x < −1. Then there is
a good LCL0 arc γ, which switches from L to C at the point p = (−1, 2). This arc
can be ruled out in a number of ways, of which the following qualitative argument
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appears to be the shortest. Let γ be defined on [T, 0]. Let α be a small positive
number—actually, any α such that 0 < α < π will do—and let γ̃ : [T −α, 0]→ R

2 be
the trajectory such that γ̃(t) = γ(t) for t ∈ [T, 0] and γ̃ is a B+ arc on [T −α, T ]. Let
(x̃, ỹ) = q̃ = γ̃(T − α). Then q̃ also belongs to R6, but it’s not true that ỹ = 2 and
x̃ < −1. So we already know that γq̃ is the unique optimal arc from q̃ to the origin.
Since γq is a cofinal piece of γq̃, the principle of optimality implies that γq is optimal
as well. If γ was optimal, then γq and γ would go from q to 0 in the same time, so

γq(T ) = γq̃(T ) = q. Let [T̃ , 0] be the domain of γq̃, and define δ : [T̃ , 0] → R
2 by

letting δ agree with γq̃ on [T̃ , T ] and with γ on [T, 0]. Then δ is an optimal arc from q̃
to 0, and δ is CLCL0. This, however, is impossible, because we know that CLCL0 is
excluded. So we have now completed the proof that for each q ∈ R6, γq is the unique
optimal arc from q to the origin.

Next, we define five sets R7, R8, R9, R10, R11 by letting

R7 = ∂D(
√
2) ∩

(
R× ] 0,+∞ [

)
,

R8 =
{
(−2, 0)

}
,

R9 =
{
(x, y) ∈ ∂D(

√
2) : −2 < x < −1, y < 0

}
,

R10 =
{
(−1, 1−

√
2)
}
,

R11 =
{
(x, y) ∈ ∂D(

√
2) : −1 < x < 0, y < 0

}
.

Then the sets R1, R7, R8, R9, R10, and R11 are pairwise disjoint and

∂D(
√
2) = R1 ∪R7 ∪R8 ∪R9 ∪R10 ∪R11.

For q ∈ R7 ∪ R8 ∪ R9 ∪ R10 ∪ R11 there is a unique trajectory γq of type C going
from q to (0, 0). The optimality of γq for q ∈ R7 ∪ R8 ∪ R9 ∪ R10 ∪ R11 is proved by
considerations similar to those used for R6.

We let

R12 = ]−∞,−2 [×{0},
R13 = {(x, y) : 1−

√
2 < y < 0 , x < −1 , (x+ 1)2 + (1− y)2 > 2},

R14 = ]−∞,−1 [×{1−
√
2}.

Then R13 ∪R14 is exactly the set of starting points q of the trajectories LC(s, σ), for
s > 0, π4 ≤ σ < π

2 , and we know that for each q ∈ R13 ∪ R14 the LC(s, σ) trajectory
is unique and optimal. We define γq to be this trajectory. A similar fact is true for
R12, with L0C(s) rather than LC(s, σ) in the role of γq.

Finally, we let

R15 = R
2\(R1 ∪ · · · ∪R14).

For q ∈ R15, we let γq be the unique simple CL0C trajectory from q to (0, 0). We
show that γq is optimal for all q ∈ R15. Let q ∈ R15, and let γ ∈ F be an extremal
trajectory starting at q and verifying γ(0) = 0. It is then obvious that γ is not of
type L0, C, or L0C. The case LC is impossible, because in that case γ would have
a switching at a time c such that c < −π/2. If γ is of type CL0, then it contains an
L0(β) piece, with β > 1, and we know that any such piece is nonoptimal, so γ is not
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optimal. Finally, if γ is of type LCL0 and good, then γ(t) = p = (xp, yp) ∈ R5 for
some t. It is clear that yp > 0. If xp > −1, then γ is not simple, so this possibility is
excluded. If xp ≤ −1, then we can pick a positive ε such that q̂ = γ(t − ε) is in R6.
Then the restriction γ̂ of γ to the interval [t− ε, 0] is a good LCL0 trajectory from q̂
to 0. Since q̂ ∈ R6, we know that γ̂ is not optimal. So γ is not optimal either, by the
principle of optimality.

We have now completely analyzed the minimum time problem with target set
{(0, 0)} for every initial condition q, and proved in all possible cases that γq is the
unique solution whose terminal time is 0. So the synthesis Γ = {γq}q∈R2 shown
in Figure 2 is optimal, and is the unique optimal presynthesis. The partition P =
(R1, . . . , R15) is a C

1—and, actually, Cω—stratification of R
2.

Let us define the feedback control (x, y)→ v(x, y) by letting

v =


0 on R1 ,

−1 on R2 ∪R3 ∪R4 ∪R12 ∪R13 ∪R14 ,
+1 on R5 ∪R6 ∪R7 ∪R8 ∪R9 ∪R10 ∪R11 ∪R15 .

We let

P1 = {R2, R4, R5, R6, R7, R9, R11, R12, R13, R14, R15},
P2 = {R3, R8, R10}.

We then define

Π(R2) = R1 , Π(R4) = R5 , Π(R5) = R3 , Π(R6) = R2 ,
Π(R7) = R8 , Π(R9) = R10 , Π(R11) = R1 , Π(R12) = R8 ,
Π(R13) = R9 , Π(R14) = R10 , Π(R15) = R12 , Σ(R3) = R2 ,
Σ(R8) = R9 , Σ(R10) = R11 .

Then (P,P1,P2,Π,Σ, v) is a regular synthesis that satisfies all the conditions
of Brunovský’s definition, except for the continuity requirement (Br.3.G) on the cost
function VΓ. On the other hand, it is easy to verify that VΓ satisfies the weak continuity
conditions. So (P,P1,P2,Π,Σ, v) gives rise to a “regular synthesis” in the sense of
our definition.

Moreover, it is clear that the +1 trajectory starting from the point (−1, 0) is an ad-
missible classical trajectory for the optimal feedback control but is not optimal. So this
example illustrates a very important positive aspect of the Boltyanskii–Brunovský’s
definition, namely, the role of the “instantaneous exit map” Σ. To understand how Σ
matters, let us suppose we did not specify Σ, and allowed all the classical trajectories
of the discontinuous feedback v. Then we could, for example, start from the type
II cell R3 = {(−1, 0)} and follow the trajectory corresponding to the control +1 up
to time 2π, returning to the starting point, after which we could go to the origin
using the control −1. The curve γ1 defined in this way is also an admissible classical
trajectory of v, but it is clear that γ1 is not time optimal. Even worse, we can define
a trajectory γ2 of v, with domain [0,+∞[, corresponding to the constant control +1
and starting from (−1, 0). This trajectory neither reaches the origin in finite time nor
approaches it as time goes to infinity. Notice that the trajectories γ1 and γ2 satisfy
the equation γ̇(t) = f(γ(t), v(γ(t))) for every t in their domain, so they satisfy the
equation corresponding to the discontinuous feedback v in the classical sense. How-
ever, if we regard it as part of the specification of our synthesis that Σ has to be given
as well, then the difficulty disappears.
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Example 5.4. We now exhibit an optimal synthesis in Brunovský’s sense that does
not satisfy condition (Bo.4) of Boltyanskii’s definition. We consider the minimum time
problem for the system

ẋ = u, ẏ = v, ż =
w√

1 + x2 + y2
,

with target {(0, 0, 0)} and control constraint (u, v, w) ∈ U , where U is the set of those
(u, v, w) ∈ R

3 such that (u2+v2)1/2+ |w| ≤ 1, i.e., the solid of revolution obtained by
rotating the square {(u,w) : |u|+ |w| ≤ 1} in the u,w-plane about the w axis. Define
the sets

R0 = {(0, 0, 0)}, R3 = {(x, y, z) : x2 + y2 > 0, z = 0},
R1 = {(x, y, z) : x = y = 0, z > 0}, R4 = {(x, y, z) : x2 + y2 > 0, z > 0},
R2 = {(x, y, z) : x = y = 0, z < 0}, R5 = {(x, y, z) : x2 + y2 > 0, z < 0}.

We then define a feedback control law (u, v, w) : R3 → U by specifying its restriction
Ri  (x, y, z)→ (ui(x, y, z), vi(x, y, z), wi(x, y, z)) ∈ R

3 for every Ri as follows:

(5.18)

u0 = v0 = w0 = 0, u3 = u4 = u5 = − x√
x2 + y2

,

u1 = v1 = 0, w1 = −1, v3 = v4 = v5 = − y√
x2 + y2

,

u2 = v2 = 0, w2 = 1, w3 = w4 = w5 = 0.

If we follow the trajectories of this feedback starting from a point (x, y, z) ∈ R3∪R4∪
R5, we move horizontally towards the z axis with speed 1, and then, if we are not yet
at the origin, we move to the origin along the z axis with speed 1. This obviously
gives rise to a synthesis Γ, and it is possible to prove that Γ is optimal by applying
Theorem 2.13. However, in this case it is easy to verify directly that the associated
cost function

VΓ = |z|+
√
x2 + y2

is the value function of our problem. Indeed, since VΓ is the cost function arising
from the synthesis Γ, all we need is to show that the cost b − a of any trajectory
[a, b]  t → ξ(t) = (x(t), y(t), z(t)) from a point q̄ = (x̄, ȳ, z̄) to the origin is bounded
below by VΓ(q̄).

Assume first that x(t)2 + y(t)2 > 0 for all t ∈ ] a, b [ , and let t → (u(t), v(t), w(t))
be the corresponding control. Write ρ(t) =

√
u(t)2 + v(t)2. Then an elementary

calculation shows that

d

dt

(
VΓ(ξ(t))

)
=

u(t).x(t) + v(t).y(t)√
x(t)2 + y(t)2

+ sgn(z(t)).
w(t)√

1 + x(t)2 + y(t)2

≥ −ρ(t)− |w(t)| ≥ −1.

Therefore, since the function t → VΓ(ξ(t)) is Lipschitz, and hence absolutely contin-
uous, we can conclude that

VΓ(q̄) = −
∫ b

a

d

dt

(
VΓ(ξ(t))

)
dt ≤ b− a.
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Now, if ξ : [a, b] → R
3 is an arbitrary trajectory from q̄ to the origin, then ξ can be

approximated by a sequence of trajectories ξj : [aj , bj ] → R
3 from q̄ to (0, 0, 0) such

that ξj(t) is not in the z axis for aj < t < bj . Then bj − aj ≥ VΓ(q̄) for all j, so
b− a ≥ VΓ(q̄). Therefore Γ is an optimal synthesis.

Notice that in this case Π(R4) = R1, Π(R5) = R2, and Π(R3) = R0. So the
optimal synthesis Γ does not satisfy the conditions of Boltyanskii’s definition, be-
cause (Bo.4) is violated, since the dimension of the exit manifold from Ri is equal to
dim(Ri)− 2 for i = 3, 4, 5.

Remark 5.5. In Example 5.4 the optimal pair (γq, ηq) starting at q is unique for
every q, and is a classical solution of the closed-loop equation corresponding to the
optimal feedback law defined by (5.18).

On the other hand, it is easy to see that the optimal trajectories are not Filippov
solutions of the optimal closed-loop equation. Finally, we point out that, although
the optimal trajectories are CLSS solutions, it is not true that all CLSS solutions of
the optimal closed-loop equation are optimal trajectories. For example, if the initial
condition is a point q which is not in the z axis and also not in the plane z = 0, then
most CLSS solutions t → γ(t) will never switch at a time t such that γ(t) lies in the
z axis, and will therefore be entirely contained in a plane z = constant, without ever
reaching the target.

Example 5.6. We now exhibit an example of an optimal synthesis for which it is
not true that all the optimal trajectories are CLSS solutions of the optimal closed-loop
equation.

Consider the optimal control problem in R, with control space U = R, dynamics
given by ẋ = u, Lagrangian L = (u4 − x2)2, and target {1}. The value function V is
given by V (x) ≡ 0. The feedback control law v defined by

v(x) = sgn(1− x).
√

|x|
leads to trajectories γx : [Tx, 0] → R, corresponding to open-loop controls ηx :
[Tx, 0]→ R, given by the formulas

Tx = 2.sgn(1− x).
(
sgn(x).

√
|x| − 1

)
,

γx(t) =



(2 + t)2

4
if x ≤ 1 and max(Tx,−2) ≤ t ≤ 0 ,

− (2 + t)2

4
if x ≤ 1 and Tx ≤ t ≤ −2 ,

(2− t)2

4
if x ≥ 1 and Tx ≤ t ≤ 0 ,

ηx(t) =


1

2
|2 + t| if x ≤ 1 and Tx ≤ t ≤ 0 ,

1

2
(2− t) if x ≥ 1 and Tx ≤ t ≤ 0 .

It is easy to see that the family Γ = {(γx, ηx)}x∈R is a regular synthesis in the sense
of our definition. Moreover, although the optimal trajectories are not unique, it is not
hard to show that Γ is the only optimal synthesis for our problem. (Indeed, suppose
that Γ̃ = {(γ̃x, η̃x)}x∈R was another optimal synthesis, and let Dom(γx) = [T̃x, 0] for
x ∈ R. Let x ∈ R. Then the cost of (γ̃x, η̃x) must be zero, so |η̃x(t)| =

√|γ̃x(t)| for
a.e. t. Suppose x < 1. Then γ̃x(t) < 1 for all t ∈ [T̃x, 0 [ , because if γ̃x(t) ≥ 1 for
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some t ∈ [T̃x, 0 [ , then the map γ̃x would not be injective, and this would contradict
the fact that Γ is a synthesis. If η̃x(t) < 0 for all t in a subset E of [T̃x, 0] of positive
measure, then once again the map γ̃x would not be injective. So η̃x(t) ≥ 0 a.e., and
then η̃x(t) = v(γ̃x(t)) for a.e. t. A similar argument shows that η̃x(t) = v(γ̃x(t)) for
a.e. t if x > 1. So the γ̃x are solutions of the equation γ̇ = v(γ). This equation has
unique solutions, except for the possibility that, starting at some x < 0, a trajectory
reaching the origin may stay there for an arbitrary length of time before it resumes
its motion to the right. This possibility, however, is clearly excluded for a trajectory
of a synthesis. So, for each x, γ̃x is the unique solution of γ̇ = v(γ) that starts at x,
ends at 1 at time 0, and is one-to-one. Therefore γ̃x = γx for all x, so Γ̃ = Γ.)

If we let f(x, u) = u, then we have established that the arcs γx are classical
solutions of the closed-loop equation ẋ = f(x, v(x)). On the other hand, the trajectory
γ0 corresponding to the initial condition x = 0 is not a CLSS solution of the closed-
loop equation ẋ = f(x, v(x)) because, on an interval [a, b], the only CLSS solution γ
of this equation with initial condition γ(a) = 0 is γ(t) ≡ 0.

Appendix A. Differentiation of trajectories with respect to a parame-
ter. The purpose of this appendix is to prove a general theorem on differentiation
with respect to a parameter p, taking values in a normed space P , of a family of
trajectories xp : [a, b]→ R

n of time-varying vector fields fp. We will state and prove
the theorem under minimal hypotheses, much weaker than what is actually needed
for the main results of this paper, because this result has other applications, such as
the theory of envelopes (cf. Sussmann [29], [30]), where the more general statement
is useful.

If ẋp(t) = fp(xp(t), t), then formal differentiation with respect to p at p = p0 in
the direction of a vector v yields the variational equation

(A.1) ẏp0,v(t) =
∂fp0
∂x

(xp0(t), t).yp0,v(t) + lim
ε↓0

Wp0+εv(t)−Wp0(t)

ε
,

where yp0,v(t) is the directional derivative of xp(t) at p0 in the v-direction, andWp(t) =
fp(xp0(t), t).

The technical problem that will concern us here is to make (A.1) rigorous even
when the limit in the right-hand side only exists in a weak sense.

For example, suppose that n = 1 and we are looking at the control system ẋ = u,
and a family of “bang-bang” controls us depending on s ∈ [0,∞[, such that us(t) = 1
for t < s, and us(t) = −1 for t ≥ s. Let xs : [0,∞[→ R be the solution of ẋ = us,
x(0) = 0. Then xs(t) = t for t ≤ s, and xs(t) = 2s − t for t ≥ s. Given any

T > 0, the limit limε→0
uTs+ε−uTs

ε —where uTs is the restriction of us to [0, T ]—does
not exist pointwise but exists in the weak∗ sense—regarding the us as members of
the dual of the space of continuous functions on [0, T ]—and equals 2δs, where δs is
the Delta function at s. If we let ys(t) be the derivative of xs(t) with respect to s—so
ys(t) = ys,1(t)—then ys satisfies the differential equation ẏs(t) = 2δs(t), which makes
better sense in integrated form: ys(t) = 2χ[s,∞[(t). This says, in particular, that
ys(T ) = 2 for s < T , and ys(T ) = 0 for s > T .

As this example shows, it can happen that the variational equation is a linear
equation of the form ẏ(t) = A(t)y(t)+w(t) where the “input” w is the formal derivative
of a function W which is not necessarily absolutely continuous or even continuous.
So our first task will be to study the solutions of linear systems with “generalized
inputs” w.
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Let −∞ < a < b < ∞, and let n be a positive integer. If A ∈ L1([a, b],Rn×n),
and Ȳ ∈ R

n, then it is well known that the initial value problem

(A.2) Ẏ (t) = A(t) · Y (t) + w(t) , Y (a) = Ȳ

has a unique solution for every initial condition and every map w ∈ L1([a, b],Rn).
Since (A.2) can also be written formally as

(A.3) dY (t) = A(t) · Y (t) dt+ w(t) dt , Y (a) = Ȳ ,

we will use YA,w dt,Ȳ to denote the unique solution of (A.2).
As explained before, we want to solve (A.2) for “inputs” w more general than

integrable functions. The appropriate class of inputs turns out to be that of formal
derivatives of bounded measurable functions. Precisely, we let BM([a, b],Rn) denote
the space of all bounded Lebesgue measurable functions W : [a, b] → R

n, and use
BM0([a, b],R

n) to denote the set of those W in BM([a, b],Rn) such that W (a) = 0.
(In BM([a, b],Rn) we do not identify two functions that are equal a.e.)

We endow BM([a, b],Rn) with the norm

(A.4) ||W ||BMdef
= sup{||W (t)|| : t ∈ [a, b]}.

Then BM([a, b],Rn) is a Banach space, and BM0([a, b],R
n) is a closed subspace of

BM([a, b],Rn). The space C0([a, b],Rn) of continuous maps W : [a, b] → R
n is of

course a closed subspace of BM([a, b],Rn), but L∞([a, b],Rn) is not a subspace of
BM([a, b],Rn), because in L∞([a, b],Rn) we identify functions that are equal a.e., but
in BM([a, b],Rn) we do not.

If W ∈ BM0([a, b],R
n) is absolutely continuous, and w = Ẇ , so that, formally,

dW = w dt, then we can rewrite (A.2) formally as

(A.5) dY (t) = A(t) · Y (t) dt+ dW (t) Y (a) = Ȳ .

A solution of (A.5) is then a continuous map t → Y (t) such that

(A.6) Y (t) = Ȳ +

∫ t

a

A(s) · Y (s) ds+W (t) for all t ∈ [a, b].

Now (A.6) makes sense for arbitrary Y ∈ BM([a, b],Rn), W ∈ BM0([a, b],R
n), even

if W is not absolutely continuous. So we turn it into a definition: for a pair (W, Ȳ ) ∈
BM0([a, b],R

n)×R
n, a solution of (A.5) is a map Y ∈ BM([a, b], Rn) such that (A.6)

holds. It then follows that
(EU) for every W∈BM0([a, b],R

n) and every Ȳ∈R
n there exists a unique solution

Y of (A.5).
Indeed, uniqueness is trivial, since the difference Y = Y 1 − Y 2 of two solutions is
a solution of the homogeneous problem (i.e., of (A.2) with w ≡ 0 and Ȳ = 0), so
Y 1 − Y 2 ≡ 0. To prove existence, we observe that (A.6) is equivalent to
(A.7)

Y (t)−W (t) = Ȳ +

∫ t

a

A(s)·(Y (s)−W (s)) ds+

∫ t

a

A(s)·W (s) ds for all t ∈ [a, b],

i.e., to dZ = AZ dt+ AW dt, Z(a) = Ȳ , with Z = Y −W . Since AW ∈ L1, because
A ∈ L1 andW is bounded and measurable, the equation Ż(t) = A(t)·Z(t)+A(t)W (t)
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has a unique solution Z∗ for which Z∗(a) = Ȳ . If we let Y (t) = Z∗(t) +W (t), and
recall that W (a) = 0, we see that Y is the desired solution of (A.5).

We will use YA,dW,Ȳ to denote the solution of (A.5), whose existence and unique-
ness has just been established. In addition to proving (EU), the preceding argument
also gives an explicit formula for YA,dW,Ȳ , namely,

(A.8) YA,dW,Ȳ =W + YA,AW dt,Ȳ .

Clearly, the function YA,AW dt,Ȳ is absolutely continuous, so the regularity properties
of YA,dW,Ȳ—modulo absolutely continuous functions—are exactly the same as those
of W . (For example, Y is continuous, right-continuous, or left-continuous at a point
t ∈ [a, b] if and only if W is; Y is of bounded variation if and only if W is; Y is
absolutely continuous if and only if W is.)

Gronwall’s inequality, applied to (A.7), tells us that

(A.9) ||YA,dW,Ȳ (t)−W (t)|| ≤ e||A||L1 (||Ȳ ||+ ||A||L1 ||W ||BM ).

Therefore

(A.10) ||YA,dW,Ȳ ||BM ≤ ||W ||BM + e||A||L1 (||Ȳ ||+ ||A||L1 ||W ||BM ).

On the other hand, (A.6) also implies that

(A.11) ||W ||BM ≤ ||Ȳ ||+ ||YA,dW,Ȳ ||BM (1 + ||A||L1).

Theorem A.1. Let {Wj}, {Ȳj}, {Aj} be sequences in BM0([a, b],R
n), R

n,
L1([a, b],Rn×n), respectively. Assume that {Aj} is bounded in L1([a, b],Rn×n). Let
Yj = YAj ,dWj ,Ȳj . Then we have the following:

(A.1.1) {Yj} is bounded in BM([a, b],Rn) if and only if {Wj} is bounded in
BM([a, b],Rn) and {Ȳj} is bounded in R

n;
(A.1.2) If {Aj} converges in L1([a, b],Rn) to a limit A, Ȳ ∈ R

n, Ȳj → Ȳ , {Wj}
is bounded in BM([a, b],Rn), W ∈ BM0([a, b],R

n), and Y = YA,dW,Ȳ , then
Yj → Y a.e. if and only if Wj → W a.e. In that case, (a) Yj −Wj converges
to Y − W uniformly on [a, b] and, in particular, (b) for every t ∈ [a, b],
Yj(t)→ Y (t) if and only if Wj(t)→ W (t).

Proof. Statement (A.1.1) follows from the bounds (A.10) and (A.11). To prove
(A.1.2), we first observe that under the hypotheses of (A.1.2) we can apply (A.1.1)
and conclude that {Yj} is bounded in BM([a, b],Rn).

Let Ỹj = Yj −Wj = YAj ,AjWj dt,Ȳj , Ỹ = Y −W = YA,AW dt,Ȳj . Then

(A.12) Ỹj(t) = Ȳj +

∫ t

a

Aj(s)Yj(s) ds = Ȳj +

∫ t

a

Aj(s)Ỹj(s) ds+

∫ t

a

Aj(s)Wj(s) ds,

so

(A.13) Ỹj(t)− Ỹ (t) =

∫ t

a

A(s)(Ỹj(s)− Ỹ (s)) ds+Rj(t),

where

(A.14) Rj(t) = Ȳj − Ȳ +

∫ t

a

(Aj(s)−A(s))Yj(s) ds+

∫ t

a

A(s)(Wj(s)−W (s)) ds
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and also

(A.15) Ỹj(t)− Ỹ (t) = Ȳj − Ȳ +

∫ t

a

(Aj(s)−A(s))Yj(s) ds+

∫ t

a

A(s)(Yj(s)− Y (s)) ds.

The assumption that the sequence {Wj} is uniformly bounded and {Ȳj} converges
to Ȳ implies that the sequences {Ỹj} and {Yj} are uniformly bounded as well. Since
Aj → A in L1, it is clear that the first two terms of the sum defining Rj(t) go to zero
uniformly as j → ∞. Also,

(A.16)

∥∥∥∥∫ t

a

A(s)(Wj(s)−W (s)) ds

∥∥∥∥ ≤
∫ b

a

||A(s)|| · ||Wj(s)−W (s)|| ds,

which goes to zero by the dominated convergence theorem if s → ||A(s)|| is integrable
and the sequence {Wj −W} is uniformly bounded and goes to zero a.e. So, if we let
Kj = sup{||Rj(t)|| : a ≤ t ≤ b}, we see that Kj → 0 as j → ∞ if the assumptions of
(A.1.2) hold and Wj(t)→ W (t) for a.e. t. It then follows from Gronwall’s inequality,

applied to (A.13), that ||Ỹj(t)− Ỹ (t)|| ≤ Kje
||A||L1 , so Ỹj − Ỹ → 0 uniformly.

If Yj − Y → 0 a.e., then the first two terms of the right-hand side of (A.15) go to

zero uniformly, and the third one is bounded by
∫ b
a
||A(s)|| · ||Yj(s)− Y (s)|| ds, which

also goes to zero. So Ỹj − Ỹ → 0 uniformly.

We have thus shown that Ỹj− Ỹ → 0 uniformly if either Wj → W a.e. or Yj → Y
a.e. This clearly implies all the conclusions of (A.1.2).

A very important subspace of BM([a, b],Rn) is BV ([a, b],Rn), the space of all
functions W : [a, b] → R

n such that (a) W is of bounded variation, (b) W is right-
continuous at every point of ]a, b], and (c) W (a) = 0. There is a canonical corre-
spondence between BV ([a, b],Rn) and the dual space C0([a, b],Rn)

∗ of the Banach
space C0([a, b],Rn) of continuous functions [a, b] → Rn. (We write Rn rather than
Rn because we want to think of the members of C0([a, b],Rn) as row-vector-valued
functions; cf. below.)

The members of C0([a, b],Rn)
∗ are the R

n-valued Borel measures on [a, b]. When
n = 1, they are the finite signed Borel measures on [a, b]. The identification map
from BV ([a, b],Rn) to C0([a, b],Rn)

∗ is the one that assigns to a function W ∈
BV ([a, b],Rn) the unique Borel measure µW such that µW ([a, t]) =W (t) for a < t ≤ b.

From now on we identify a function W ∈ BV ([a, b],Rn) with its corresponding
measure µW , and write

∫
α · dW for

∫
α · dµW . Clearly,

∫
α · dW is defined, more

generally, for an arbitrary bounded Borel measurable Rn-valued map α on [a, b].
Naturally, the integral

∫
αdW of a scalar bounded Borel measurable function

α : [a, b]→ R is also well defined, and is a vector in R
n.

On BV ([a, b], Rn) there are at least three important topologies: (a) the one in-
duced by the norm || · · · ||BM , (b) the strong topology of BV ([a, b],Rn) as the dual
of the Banach space C0([a, b],Rn), (c) the weak

∗ topology, also corresponding to the
duality with C0([a, b],Rn). The second one is induced by the total variation norm:

(A.17) ||W ||TV = sup
{∣∣∣∫ α · dW

∣∣∣ : α ∈ C0([a, b],Rn) , ||α||BM ≤ 1
}
.

It is clear that ||W ||BM ≤ ||W ||TV for all W in BV ([a, b],Rn). Therefore, if a subset
S of BV ([a, b],Rn) is bounded in TV norm, then S is also bounded in BM norm.

We will need the following.
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Lemma A.2. If a sequence {Wj} in BV ([a, b],Rn) weak∗-converges to a W ∈
BV ([a, b],Rn), then (a) {Wj} is bounded in TV norm, (b) Wj(a) → W (a) and
Wj(b)→ W (b), (c) every subsequence of {Wj} has a subsequence that converges to W
at all but at most countably many points of [a, b], (d)

∫ b
a
β(s)||Wj(t)−W (t)|| dt → 0

for every function β ∈ L1([a, b],R).
Proof. Statement (a) follows from the uniform boundedness theorem, and state-

ment (b) is trivial, since Wj(a) = 0 = W (a), Wj(b) =
∫
1 dWj , and W (b) =

∫
1 dW .

Statement (c) for n = 1 is a consequence of Helly’s theorem, and the statement for
arbitrary n then follows easily from the case n = 1. Statement (d) then clearly fol-
lows from (c), using the dominated convergence theorem together with the fact that
boundedness in TV norm implies boundedness in BM norm.

As a corollary of Lemma A.2, we get the integration by parts formula below.
Lemma A.3. If λ : [a, b]→ Rn is absolutely continuous, and W ∈ BV ([a, b],Rn),

then

(A.18) λ(b) ·W (b) =
∫

λ · dW +

∫ b

a

λ̇(t) ·W (t) dt.

Proof. The result is obviously true, because of the standard product rule for
derivatives, ifW is also absolutely continuous. In the general case, we use the fact that
an arbitrary W ∈ BV ([a, b],Rn) is the weak∗-limit of a sequence {Wj} of absolutely
continuous functions. It then follows that (i) λ(b) · Wj(b) → λ(b) · W (b), because
Wj(b)→ W (b), (ii)

∫
λ · dWj →

∫
λ · dW , because {Wj} weak∗-converges to W , and

λ is continuous, and (iii)
∫ b
a
λ̇(t) · Wj(t) dt → ∫ b

a
λ̇(t) · W (t) dt, because part (d) of

Lemma A.2 implies that
∫ b
a
||λ̇(t)||.||Wj(t)−W (t)|| dt → 0, since λ̇ ∈ L1.

An important consequence of Lemma A.3 is the following lemma.
Lemma A.4. Let W ∈ BV ([a, b],Rn), A ∈ L1([a, b],Rn×n), Ȳ ∈ R

n, and write
Y = YA,dW,Ȳ . Suppose λ : [a, b] → Rn is absolutely continuous and satisfies λ̇(t) =
−λ(t)A(t) for almost all t. Then

(A.19) λ(b) · Y (b)− λ(a) · Y (a) =
∫

λ · dW.

Proof. Write Y (t) = V (t) +W (t), where V (t) = Ȳ +
∫ t
a
A(s).Y (s) ds. Then

(A.20) λ(b) · Y (b)− λ(a) · Y (a) = λ(b) · V (b)− λ(a) · V (a) + λ(b) ·W (b).
The function t → λ(t) ·V (t) is absolutely continuous and its derivative is λ̇(t) ·V (t)+
λ(t) · V̇ (t), which equals −λ(t)A(t)Y (t)+λ(t)A(t)Y (t)− λ̇(t) ·W (t), i.e., −λ̇(t) ·W (t).
So

(A.21) λ(b) · Y (b)− λ(a) · Y (a) = λ(b) ·W (b)−
∫ b

a

λ̇(t) ·W (t) dt.

Equation (A.19) follows from this and the integration by parts formula (A.18).
It is clear that, if A ∈ L1([a, b],Rn×n), Ȳ ∈ R

n, and W ∈ BM0([a, b],R
n), then

YA,dW,Ȳ −W is absolutely continuous, so W ∈ BV ([a, b],Rn) if and only if YA,dW,Ȳ
is of bounded variation, which happens if and only if YA,dW,Ȳ − Ȳ ∈ BV ([a, b],Rn).

Theorem A.5. Let {Wj}, {Ȳj}, {Aj} be sequences in BV ([a, b],Rn), R
n,

L1([a, b],Rn×n), respectively. Assume that {Aj} is bounded in L1([a, b],Rn×n) and
{Ȳj} is bounded in R

n. Let Yj = YAj ,dWj ,Ȳj . Then
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(A.5.1) {Yj − Ȳj} is bounded in BV ([a, b],Rn) if and only if {Wj} is bounded in
BV ([a, b],Rn).

(A.5.2) If {Aj} converges in L1([a, b],Rn) to a limit A, Ȳj → Ȳ ,W ∈ BV ([a, b],Rn),
and we write Y = YA,dW,Ȳ , then {Wj} weak∗-converges to W if and only if
{Yj − Ȳj} weak∗-converges to Y − Ȳ . In that case, {Yj −Wj − Ȳj} converges
to Y −W − Ȳ strongly in BV ([a, b],Rn). In particular, (a) Wj(b) → W (b),
(b) Yj(b) → Y (b), and (c) for every t ∈ [a, b], Yj(t) → Y (t) if and only if
Wj(t)→ W (t).

Proof. We know from Theorem A.1 that {Yj − Ȳj} is bounded in BM norm if
and only if {Wj} is. Since boundedness in TV norm implies boundedness in BM
norm, we see that boundedness of one of the two sequences in TV norm implies
that there is a constant C such that ||Yj(t)|| ≤ C for all j, t, and then the integral

Ij =
∫ b
a
||Aj(t)Yj(t)|| dt is bounded by a fixed constantK. But Ij = ||Yj−Ȳj−Wj ||TV .

So boundedness in TV norm of one of the sequences {Wj}, {Yj} implies boundedness
in TV norm of the other one.

If either {Wj} weak∗-converges toW , or {Yj−Ȳj} weak∗-converges to Y −Ȳ , then
the uniform boundedness theorem implies that either {Wj} or {Yj − Ȳj} is bounded
in TV norm, so both sequences are bounded in TV norm—and hence also in BM
norm—by a constant C. Writing Zj = Yj − Ȳj −Wj , Z = Y − Ȳ −W , we then have
Zj − Z = R1

j +R2
j , where

(A.22) R1
j (t) =

∫ t

a

(Aj(s)−A(s))Yj(s) ds, R2
j (t) =

∫ t

a

A(s)(Yj(s)− Y (s)) ds.

Then ||R1
j ||TV ≤ C||Aj −A||L1 , so ||R1

j ||TV → 0. Also,

(A.23) ||R2
j ||TV ≤ ||A||L1 .||Ȳj − Ȳ ||+

∫ b

a

||A(t)||.||Yj(t)− Ȳj − (Y (t)− Ȳ )|| dt.

If {Yj−Ȳj} weak∗-converges to Y −Ȳ , then Lemma A.2 implies that ||R2
j ||TV → 0,

so Zj → Z in BV ([a, b],Rn).
If {Wj} weak∗-converges to W , then we rewrite R2

j as

(A.24) R2
j (t) =

∫ t

a

A(s)(Zj(s)− Z(s)) ds+R3
j (t) +R4

j (t),

where R3
j (t) =

∫ t
a
A(s)(Ȳj − Ȳ ) ds and R4

j (t) =
∫ t
a
A(s)(Wj(s) −W (s)) ds. We then

have ||R3
j ||TV ≤ ||A||L1 .||Ȳj − Ȳ || and ||R4

j ||TV ≤ ∫ b
a
||A(s)||.||Wj(s) − W (s)|| ds.

Lemma A.2 then implies that ||R4
j ||TV → 0. So Zj(t) − Z(t) =

∫ t
a
A(s).(Zj(s) −

Z(s)) ds + Rj(t), where Rj = R1
j + R3

j + R4
j , so ||Rj ||TV → 0. Then Gronwall’s

inequality implies that ||Zj − Z||BM ≤ e||A||L1 ||Rj ||TV . If Qj(t) =
∫ t
a
A(s).(Zj(s) −

Z(s)) ds, then ||Qj ||TV ≤ ||A||L1 ||Zj − Z||BM , so ||Qj ||TV → 0. Since Zj − Z =
Qj +Rj , we see that ||Zj − Z||TV → 0.

So we have shown that if one of the two sequences {Wj−W}, {Yj− Ȳj−(Y − Ȳ )}
weak∗-converges to 0, then Yj − Ȳj −Wj → Y − Ȳ −W strongly in BV ([a, b],Rn).
This implies all the conclusions of (A.5.2).

Recall that, if P,Q are normed spaces, and F : Ω → Q is a map defined on a
neighborhood Ω of a point p of P , then F is said to be Fréchet differentiable at p if
there exists a bounded linear map L—called the Fréchet differential of F at p—such
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that F (p′) = F (p) + L(p′ − p) + o(||p′ − p||) as p′ → p. If X is a Banach space and
Q = X∗, then we call F weak∗ Fréchet differentiable at p if for every x ∈ X the map
Ω  p′ → 〈F (p′), x〉 ∈ R is Fréchet differentiable at p. (We use 〈x∗, x〉, for x ∈ X,
x∗ ∈ X∗, as an alternative notation for x∗(x).)

Suppose P is a normed space, X is a Banach space, p ∈ P , F : Ω → X∗ is
a map defined on a neighborhood Ω of p, and F is weak∗ Fréchet differentiable at
p. Then for each x ∈ X there is a bounded linear functional θx on P such that
〈F (p+ v), x〉 = 〈F (p), x〉+ θx(v) + o(||v||) as v → 0 in P . Clearly, θx is unique and is
given by the formula

(A.25) θx(v) = lim
h→0

h−1〈F (p+ hv)− F (p), x〉.

For any given v ∈ P , use θv to denote the map x → θx(v). Then θ
v is a limit of linear

maps, so it is linear. If {hj} is any sequence going to 0, then the sequence of linear
functionals νj on X given by νj(x) = h−1

j 〈F (p+ hjv)− F (p), x〉 converges pointwise
to θv. Since each νj is a bounded linear functional on X, it follows for the uniform
boundedness theorem that θv is bounded. Since θv(x) = θx(v), which is linear with
respect to v, we can conclude that v → θv is a linear map from P to X∗. We use
DwF (p) to denote this map, and DwF (p).v to denote its value for a particular v, so
DwF (p).v = θv, and

(A.26) 〈DwF (p).v, x〉 = lim
h→0

h−1〈F (p+ hv)− F (p), x〉.

Lemma A.6. Assume that P is a normed space, X is a Banach space, p ∈ P ,
F : Ω → X∗ is a map defined on a neighborhood Ω of p, and F is weak∗ Fréchet
differentiable at p. Then

(A.6.i) there is a C > 0 such that

(A.27) ||F (p+ v)− F (p)|| ≤ C||v|| for all sufficiently small v ∈ P,

(A.6.ii) the linear map DwF (p) : P → X∗ defined by (A.26) is bounded.
Proof. Suppose (A.6.i) is not true. Then there exists a sequence {vj} in P ,

converging to 0 and such that ||F (p + vj) − F (p)|| > j||vj ||. Define, for each j, a
member σj of X

∗ by

(A.28) σj =
F (p+ vj)− F (p)− θvj

||vj || .

Then σj(x) → 0 for each x, so the sequence {σj} is pointwise bounded and hence
uniformly bounded.

On the other hand, for each x ∈ X, the sequence { θvj (x)||vj || } is bounded, because
θvj (x) = θx(vj), and θx is a bounded linear functional on P , so |θvj (x)| ≤ ||θx||.||vj ||.
So, using the uniform boundedness theorem once again, we conclude that the sequence
{ θvj

||vj ||} is bounded in X∗. Since {σj} is bounded, we conclude that the sequence
{F (p+vj)−F (p)

||vj || } is bounded, contradicting the fact that ||F (p+ vj)− F (p)|| > j||vj ||.
So (A.27) holds for some C > 0, and we have proved (A.6.i).

It follows from (A.6.i) that |〈F (p + v) − F (p), x〉| ≤ C||x||.||v|| for all x ∈ X if
v ∈ P is small enough. Applying this with hv in the role of v and letting h ↓ 0, we
find that

(A.29) |〈DwF (p).v, x〉| ≤ C||x||.||v|| for all x ∈ X , v ∈ P.
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Therefore ||DwF (p).v|| ≤ C||v||, so DwF (p) is a bounded linear map from P to
X∗.

We are now ready to study the differentiability properties with respect to a pa-
rameter p, belonging to a normed space P , of a family of trajectories xp : [a, b]→ R

n

of time-varying vector fields fp. We will prove, under minimal technical hypotheses,
that if the initial condition map p → xp(a) is differentiable at p = 0, and the map
p → fp satisfies a “weak differentiability condition” at the trajectory x0, then the
map p → xp is weak

∗-differentiable at p = 0, as a map into BV ([a, b],Rn), and in
particular, the endpoint map p → xp(b) is differentiable at p = 0.

A curve in R
n is a continuous map ξ : I → R

n, whose domain I = Dom(ξ) is a
nonempty interval. A curve ξ is an arc if Dom(ξ) is compact. The graphG(ξ) of a curve
ξ is the setG(ξ) = {(ξ(t), t) : t ∈ Dom(ξ)}. If ξ : [a, b]→ R

n is an arc in R
n, and ε > 0,

then the ε-tube about ξ is the set T (ξ, ε) = {(x, t) : x ∈ R
n, a ≤ t ≤ b, ||x− ξ(t)|| ≤ ε}.

A time-varying vector field on R
n is an R

n-valued map f whose domain Dom(f)
is a—possibly empty—subset S of the product R

n×R. We use TV V F (Rn) to denote
the set of all time-varying vector fields on R

n. A trajectory, or integral curve, of an
f ∈ TV V F (Rn) is a locally absolutely continuous curve ξ in R

n such that G(ξ) ⊆
Dom(f) and ξ̇(t) = f(ξ(t), t) for almost all t ∈ Dom(ξ). We use Traj(f) to denote
the set of all trajectories of f , and Trajc(f) to denote the set of all ξ ∈ Traj(f) such
that Dom(ξ) is compact.

If f ∈ TV V F (Rn) and ξ ∈ Traj(f), we say that ξ is a maximal trajectory of f if it
cannot be extended to a trajectory ξ̃ : Ĩ → R

n of f defined on an interval Ĩ such that
I ⊆ Ĩ but I �= Ĩ. We use MTraj(f) to denote the set of all maximal trajectories of f .
Given x̄ ∈ R

n, t̄ ∈ R, we use Traj(f, x̄, t̄), MTraj(f, x̄, t̄) to denote, respectively, the
set of all ξ ∈ Traj(f) such that ξ(t̄) = x̄, and the set Traj(f, x̄, t̄) ∩MTraj(f). Zorn’s
lemma implies that every ξ ∈ Traj(f, x̄, t̄) can be extended to a ξ̃ ∈ MTraj(f, x̄, t̄), so
Traj(f, x̄, t̄) �= ∅ if and only if MTraj(f, x̄, t̄) �= ∅. Clearly, Traj(f, x̄, t̄) �= ∅ if and only
if (x̄, t̄) ∈ Dom(f). (Indeed, if (x̄, t̄) ∈ Dom(f), then the map ξ with domain {t̄} such
that ξ(t̄) = x̄ is in Traj(f).)

We say that an f ∈ TV V F (Rn) has the forward existence property at a point (x̄, t̄)
if for some ε > 0 there exists a ξ ∈ Traj(f, x̄, t̄) with domain [t̄, t̄+ ε]. We say that f
has the forward limit property on a subset S of Dom(f) if, whenever ξ : [a, b[→ R

n is a
trajectory of f which is contained in a compact subset of S, it follows that limt↑b ξ(t)
exists.

Suppose we are given the following data:
(D.1) a normed space P ,
(D.2) a family f = {fp}p∈P of time-varying vector fields on R

n, depending on a
parameter p ∈ P ,

(D.3) a p0 ∈ P ,
(D.4) a trajectory ξ : [a, b]→ R

n of fp0 .
We then define functions wp : [a, b]→ R

n by

(A.30) wp(t) = fp(ξ(t), t)− fp0(ξ(t), t) for t ∈ [a, b],
so wp is defined on [a, b] whenever G(ξ) ⊆ Dom(fp). If wp is integrable, we let

(A.31) Wp(t) =

∫ t

a

wp(s) ds for t ∈ [a, b].

We then let W be the map that sends p to W(p) =Wp, with domain

(A.32) Dom(W) = {p ∈ P : G(ξ) ⊆ Dom(fp), wp ∈ L1([a, b],Rn)}.
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We regard W as a map from Dom(W) to BV ([a, b],Rn).
We then say that f is weakly differentiable at p0 along ξ if there exists ε̄ > 0 such

that
(WD1) T (ξ, ε̄) ⊆ Dom(fp) for every p such that ||p− p0|| ≤ ε̄;
(WD2) for every p such that ||p− p0|| ≤ ε̄, fp has the forward limit property on

T (ξ, ε̄) and the forward existence property at every (x, t) such that a ≤ t < b
and ||x− ξ(t)|| < ε̄;

(WD3) there exist A∈L1([a, b],Rn×n) and functions ψε∈L1([a, b],R), for ε∈]0, ε̄],
such that

(A.33) ||fp(x, t)− fp(ξ(t), t)−A(t).(x− ξ(t))|| ≤ ψε(t)(||x− ξ(t)||+ ||p− p0||)
whenever a ≤ t ≤ b, ||x− ξ(t)|| ≤ ε, ||p− p0|| ≤ ε, and

(A.34) lim
ε↓0

∫ b

a

ψε(t) dt = 0;

(WD4) the function wp defined by (A.30) is integrable for every p such that ||p−
p0|| ≤ ε̄ and, if W is defined as above, then W is weak∗ Fréchet differentiable
at p0.

The second part of condition (WD4) says that for each α ∈ C0([a, b],Rn) the map
p → ∫

α · dWp is Fréchet differentiable at p0. Lemma A.6 then implies—since Wp0 =
0—that there exists a bounded linear map DwW(p0) : P → BV ([a, b],Rn) having the
property that
(A.35)∫

α · dWp = 〈W(p)−W(p0), α〉

=

∫
α · d

(
DwW(p0).(p− p0)

)
+ o(||p− p0||) as p → p0

for each α ∈ C0([a, b],Rn), and also that there is a constant C such that

(A.36) ||Wp||TV ≤ C||p− p0|| for all p ∈ P such that ‖p− p0‖ is sufficiently small.
The following result is the main theorem on differentiation of trajectories with

respect to a parameter.
Theorem A.7. Let P , f , p0, ξ be data as in (D.1,2,3,4). Assume that f is weakly

differentiable at p0 along ξ. Let ε̄ > 0 be such that (WD1) to (WD4) hold. Then the
following hold:

(A.7.a) For every ε ∈ ] 0, ε̄] there exists a δ ∈ ] 0, ε[ such that, whenever ||p−p0|| ≤
δ, ||x̄ − ξ(a)|| ≤ δ, and ζ ∈ MTraj(fp, x̄, a), it follows that [a, b] ⊆ Dom(ζ)
and ||ζ(t)− ξ(t)|| ≤ ε for all t ∈ [a, b].

(A.7.b) If {x̄p}||p−p0||≤ε̄ is a family of points of R
n such that the map p → x̄p is

Fréchet differentiable at p0 and x̄p0 = ξ(a), then, if {ξp}||p−p0||≤ε̄ is a family
of curves such that ξp ∈ MTraj(fp, x̄p, a), and xp denotes the restriction of ξp
to [a, b]—which is well defined for small enough ||p−p0|| by (A.7.a)—then the
map X that sends each p to the function xp is weak

∗ Fréchet differentiable at
p0 as a map from P to BV ([a, b],Rn). Moreover, DwX (p0) can be computed
as follows. For v ∈ P ,

(A.37) DwX (p0).v = YA, d(DwW(0).v), L.v,
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where L : P → R
n is the differential at p0 of the map p → x̄p.

Proof. We will assume, as we clearly may without loss of generality, that p0 = 0.
Also, we know that there is a C > 0 such that the bound (A.36) holds. So we can
assume, by making ε̄ smaller, if necessary, that ||Wp||TV ≤ C||p|| whenever ||p|| ≤ ε̄.
By making C larger and ε̄ smaller, if necessary, we may also assume that C ≥ 1, and
(A.38) 8e||A||L1 ||ψε||L1 < 1 for ε ∈]0, ε̄].
Pick ε ∈]0, ε̄[, and choose δ > 0 such that
(A.39) Cδ < ε.

Notice that δ < ε, since C ≥ 1.
Let p, x̄ be such that ||p|| ≤ δ and ||x̄− ξ(a)|| ≤ δ. Let ζ ∈ MTraj(fp, x̄, a), and

let I = Dom(ζ). Then a ∈ I. Let c be the supremum of those t such that a ≤ t ≤ b
and ||ζ(s) − ξ(s)|| ≤ ε for a ≤ s ≤ t. Then a < c ≤ b, c ∈ I, and either c = b or
||ζ(c) − ξ(c)|| = ε. (The fact that a < c follows from the local existence property,
since ||x̄ − ξ(a)|| ≤ δ < ε < ε̄, and ζ is continuous. The fact that c ∈ I follows from
the forward limit property, since the graph of the restriction of ζ to [a, c[ is contained
in T (ξ, ε). If c < b and ||ζ(c)− ξ(c)|| < ε, then the forward existence property implies
that ζ is not maximal.)

We will estimate ||ζ(t)− ξ(t)|| for t ∈ [a, c], and show that—if ε is small enough,
and δ is suitably chosen—||ζ(t) − ξ(t)|| < ε for all such t, including t = c. This will
imply that c = b.

From now on, we work on the interval [a, c]. We have

(A.40) ζ(t)− ξ(t) = x̄− ξ(a) +

∫ t

a

(fp(ζ(s), s)− f0(ξ(s), s)) ds,

so

(A.41) ζ(t)− ξ(t) = x̄− ξ(a) +Wp(t) +

∫ t

a

(fp(ζ(s), s)− fp(ξ(s), s)) ds.

Let rp(t) = ||fp(ζ(t), t)− fp(ξ(t), t)−A(t).(ζ(t)− ξ(t))||. Then

(A.42) ζ(t)− ξ(t) = x̄− ξ(a) +Wp(t) +

∫ t

a

A(s).(ζ(s)− ξ(s)) ds+

∫ t

a

rp(s) ds,

so

(A.43)

||ζ(t)− ξ(t)|| ≤ ||x̄− ξ(a)||+ ||Wp||sup +
∫ t

a

||A(s)||.||ζ(s)− ξ(s)|| ds+
∫ t

a

rp(s) ds,

and then

(A.44) ||ζ(t)−ξ(t)|| ≤ ||x̄−ξ(a)||+||Wp||sup+2ε||ψε||L1+

∫ t

a

||A(s)||.||ζ(s)−ξ(s)|| ds,

because rp(s) ≤ 2εψε(s) for s ∈ [a, c], since ||ζ(s)− ξ(s)|| ≤ ε and ||p|| ≤ ε.
Since ||x̄−ξ(a)|| ≤ δ, and ||Wp||sup ≤ ||W ||TV ≤ C||p|| ≤ Cδ, Gronwall’s inequal-

ity implies

(A.45) ||ζ(t)− ξ(t)|| ≤ e||A||L1 ((C + 1)δ + 2ε||ψε||L1).
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In view of (A.38), we have

(A.46) 2εe||A||L1 ||ψε||L1 <
ε

4
.

Now suppose that

(A.47) δ ≤ κε, where κ = (4C + 4)−1e−||A||L1 .

Then

(A.48) ||ζ(t)− ξ(t)|| ≤ ε

2
for all t ∈ [a, c].

This is our desired estimate, from which it follows, as explained above, that c = b,
and then ||ζ(t)− ξ(t)|| ≤ ε for all t ∈ [a, b]. This completes the proof of (A.7.a).

Besides proving (A.7.a), we have also shown that, if κ is the constant given by
(A.47), then the conclusion of (A.7.a) holds for every δ such that 0 < δ ≤ κε. (Notice
that if δ ≤ κε, then (A.39) holds.)

Now suppose we are given a map P  p → x̄p ∈ R
n which is defined for ||p|| ≤ δ̄

for some δ̄ > 0. Assume that this map is Fréchet differentiable at 0, with differential
L, and is such that x̄0 = ξ(a). Write zp = YA,dVp,L.p, where Vp = DwW(0).p.

It then follows that there exist a constant C ′ ≥ 1 and a δ̄′ ∈ ] 0, δ̄] such that
(i) C ′δ̄′ ≤ κε̄ and (ii) ||x̄p − ξ(a)|| ≤ C ′||p|| for ||p|| ≤ δ̄′.

Pick in an arbitrary fashion ξp ∈ MTraj(fp, x̄p, a) for ||p|| ≤ δ̄′. Then, if ||p|| ≤ δ̄′,
it follows that (i) ξp is defined, (ii) ξp ∈ MTraj(fp, x̄, a) for an x̄—namely, x̄p—such
that ||x̄− ξ(a)|| ≤ C ′δ̄′ ≤ κε̄. Since C ′ ≥ 1, we also have ||p|| ≤ κε̄. Therefore we can
conclude—using ε = ε̄ and δ = κε̄—that [a, b] ⊆ Dom(ξp) and (ξp(t), t) ∈ T (ξ, ε̄) for
t ∈ [a, b].

Moreover, using (A.33) with p = p0 it is easy to see that ξ0(t) = ξ(t) for every
t ∈ [a, b], since both trajectories satisfy the same initial condition.

Let xp be the restriction of ξp to [a, b]. For ||p|| ≤ δ̄′, we have

(A.49)
xp(t)− ξ(t)− zp(t) = x̄p − ξ(a)− L.p

+

∫ t

a

A(s).(xp(s)− ξ(s)− zp(s)) ds+Wp(t)− Vp(t) +Rp(t),

where Rp(t) =
∫ t
a
r̃p(s) ds and r̃p(s) = fp(xp(s), s)− fp(ξ(s), s)−A(s).(xp(s)− ξ(s)).

If p �= 0, let

(A.50)

Yp = ||p||−1(xp − x0 − zp),

Up = ||p||−1(Wp − Vp +Rp),

Ȳp = ||p||−1(x̄p − x0(a)− L.p).

Then Yp = YA,dUp,Ȳp .

We have to prove that Yp weak
∗-converges to 0 as p → 0. Since Ȳp → 0, using

Theorem A.5 our conclusion will follow if we show that Up weak
∗-converges to 0.

Since Vp = DwW(0).p, it is clear that ||p||−1(Wp − Vp) weak
∗-converges to 0. So all

we need is to prove that ||p||−1Rp weak
∗-converges to 0. If ||p|| is sufficiently small,
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then we can apply the previous estimates using δ = ||p||, ε = δ
κ . We conclude that||rp(s)|| ≤ 2εψε(s) for all s ∈ [a, b]. This implies that

(A.51) ||r̃p||L1 ≤ 2||p||
κ

||ψκ−1||p||||L1 .

This shows that ||Rp||TV = ||rp||L1 = o(||p||) as p → 0. So ||p||−1Rp converges to 0
strongly—and a fortiori weakly∗—in BV ([a, b],Rn). This completes our proof.

If f ∈ TV V F (Rn) and ξ : [a, b] → R
n is a trajectory of f , we say that f is

differentiable along ξ if the map x → f(x, t) is differentiable at ξ(t) for almost every t.

In that case, we write Dξf(t)
def
= ∂f

∂x (ξ(t), t), and refer to the map [a, b] t→Dξf(t)∈
R
n×n as the differential of f along ξ.
Lemma A.8. If f is weakly differentiable at p0 along a trajectory ξ : [a, b] → R

n

of fp0 , then fp0 is differentiable along ξ and the map A of (WD3) is such that A(t) =
Dξfp0(t) for almost all t ∈ [a, b].

Proof. We begin by showing that the functions ψε for which (WD3) holds can
be chosen so that ψε(t) is a monotonically nonincreasing function of ε for each t. To
see this, start with some family {ψε}ε∈]0,ε̄] of functions for which (WD3) holds, and

define ψ̂ε = ψ2−k ε̄ whenever 2
−k−1ε̄ < ε ≤ 2−kε̄ and k is a nonnegative integer. Then

(WD3) also holds if the ψ̂ε are substituted for the ψε. Next define ψ̄ε(t) = min{ψ̂ε′(t) :
ε ≤ ε′ ≤ ε̄}. Then the ψ̄ε are well-defined integrable functions of t, because for each ε
the set of functions {ψ̂ε′ : ε ≤ ε′ ≤ ε̄} is finite. It is clear that (WD3) also holds with
the ψ̄ε instead of the ψ̂ε, and in addition ψ̂ε(t) is nonincreasing as a function of ε.

Now, if we pick the ψε to be monotonically nonincreasing with respect to ε,
it follows that the limit ρ(t) = limε↓0 ψε(t) exists for every t. By the dominated

convergence theorem,
∫ b
a
ρ(t)dt = 0. Since ρ(t) ≥ 0 for all t, it follows that ρ(t) = 0

a.e.
Let t be such that ρ(t) = 0. Let θ(x) = ψ||x−ξ(t)||(t). Then limx→ξ(t) θ(x) = 0.

On the other hand, (WD3) implies that

(A.52) ||fp0(x, t)− fp0(ξ(t), t)−A(t).(x− ξ(t))|| ≤ θ(x)||x− ξ(t)||.
Since θ(x) → 0 as x → ξ(t), (A.52) says precisely that A(t) is the differential at ξ(t)
of the map x → fp0(x, t), completing our proof.

If f ∈ TV V F (Rn) is differentiable along a trajectory ξ : [a, b]→ R
n of f , and the

matrix-valued function Dξf is integrable, then the ordinary differential equation

(A.53) λ̇(t) = −λ(t).Dξf(t),

for an Rn-valued function λ on [a, b], is the adjoint variational equation—or, simply,
the adjoint equation—for f along ξ. A solution of the adjoint equation (i.e., an
absolutely continuous function λ : [a, b]→ Rn such that (A.53) holds for almost all t)
is known as an adjoint vector for f along ξ.

Theorem A.9. Let P , f = {fp}p∈P , p0 ∈ P , ξ : [a, b] → R
n be as in Theorem

A.7. Let P  p → x̄pıR
n be a map which is Fréchet differentiable at p0 and such that

x̄p0 = ξ(a), and let La be its differential at p0. Let ξp be, for p close enough to p0,
maximal trajectories of fp such that ξp(a) = x̄p, and let xp be the restriction of ξp to
[a, b]. Then the map p → xp(b) is differentiable at p0. Let Lb be its differential at p0.
Let λ : [a, b]→ R

n be an adjoint vector for fp0 along ξ. Then

(A.54) λ(b) · Lb(v)− λ(a) · La(v) = lim
ε↓0

ε−1

∫ b

a

〈λ(t), fp0+εv(ξ(t), t)− fp0(ξ(t), t)〉dt
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for every v ∈ R
n.

Proof. Assume, without loss of generality, that p0 = 0. According to Theorem
A.7 and Lemma A.8, the map p → xp is weak

∗ Fréchet differentiable at 0—as a map
from P to BV ([a, b],Rn)—and its differential at 0 is the map that sends v ∈ P to
YA,d(U.v),La(v), where U = DwW(0), and W is the map p → Wp, where Wp(t) =∫ t
a
(fp(ξ(s), s)− f0(ξ(s), s))dt, and A = Dξf . Then p → xp(b) is Fréchet differentiable

at 0, and the differential Lb is given by Lb(v) = YA,d(U.v),La(v)(b). Clearly, La(v) =

YA,d(U.v),La(v)(a). Since λ satisfies λ̇ = −λ.A, Lemma A.4 tells us that

λ(b) · Lb(v)− λ(a) · La(v) =
∫ b

a

λ.d(U.v).

Since U.v is the weak∗-limit of ε−1Wεv as ε ↓ 0, our conclusion follows.
We now turn to the differentiation of a Lagrangian cost functional.
If f ∈ TV V F (Rn), a Lagrangian for f in R

n is a real-valued function L such that
(L.1) Dom(f) ⊆ Dom(L);
(L.2) the function t → L(ξ(t), t) is locally integrable for every ξ ∈ Traj(f).

If f ∈ TV V F (Rn) has components f1, . . . , fn, and L is a Lagrangian for f , then
we can consider the time-varying vector field [L; f ] in R

n+1 whose components are
(f0, f1, . . . , fn), where f0 ≡ L. A trajectory of [L; f ] can then be regarded as a
pair (ξ0, ξ), where ξ ∈ Traj(f) and ξ0 is a real-valued locally absolutely continuous
function on Dom(ξ) such that ξ̇0(t) = L(ξ(t), t) for a.e. t. Any such function ξ0 will
be called a running L-cost along ξ. Our definition of a Lagrangian implies that a
running L-cost along ξ exists for all ξ ∈ Traj(f), and it is clear that any two running
L-costs along ξ must differ by a constant. If ξ is such that Dom(ξ) is of the form [a, b]
or [a, b[ or [a,∞[, then there is a canonical choice of running L-cost along ξ, obtained
by letting ξ0(t) =

∫ t
a
L(ξ(s), s) ds. In that case, we will write ξL to denote the curve

t → (ξ0(t), ξ(t)), where ξ0 is the canonical running L-cost.
Now suppose we are given data P , f , p0, ξ as in (D.1,2,3,4), as well as

(D.5) a family L = {Lp}p∈P such that each Lp is a Lagrangian for fp.
Given a trajectory ξ : [a, b] → R

n of fp0 , we say that the pair (f ,L) is weakly differ-
entiable at p0 along ξ if the family {[Lp; fp]}p∈P is weakly differentiable along ξLp0 .

It is easy to see that (f ,L) is weakly differentiable at p0 along ξ if and only if
there exists ε̄ > 0 such that (WD1,2,3,4) hold, and in addition the following hold:

(WD5) There exists h ∈ L1([a, b],Rn) such that

(A.55) ||Lp(x, t)− Lp(ξ(t), t)− h(t).(x− ξ(t))|| ≤ ψε(t)(||x− ξ(t)||+ ||p− p0||)
whenever a ≤ t ≤ b, ||x− ξ(t)|| ≤ ε, and ||p− p0|| ≤ ε.

(WD6) If we let w0
p(t) = Lp(ξ(t), t) − Lp0(ξ(t), t), W

0
p (t) =

∫ t
a
w0
p(s) ds, then

the map W0 that sends p to W0(p) = W 0
p ∈ BV ([a, b],R) is weak∗ Fréchet

differentiable at p0.
If f ∈ TV V F (Rn), ξ : [a, b] → R

n is a trajectory of f , and L is a Lagrangian for f ,
we say that L is differentiable along ξ if the map x → L(x, t) is differentiable at ξ(t)

for almost every t. In that case, we write ∇ξL(t)
def
=∇xL(ξ(t), t), and refer to the map

[a, b]  t → ∇ξL(t) ∈ R
n as the differential of L along ξ.

Lemma A.8, applied to the curve ξLp0 , yields the following.
Lemma A.10. If (f ,L) is weakly differentiable at p0 along a trajectory ξ : [a, b]→

R
n of fp0 , then fp0 and Lp0 are differentiable along ξ and the maps A, h of (WD3,5)

are such that A(t) = Dξfp0(t) and h(t) = ∇ξLp0(ξ(t), t) for almost all t ∈ [a, b].
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Under the hypothesis of Lemma A.10, we can apply Theorem A.9 to the family
{[Lp; fp]}p∈P and the curve ξLp0 . Define

(A.56) Jp(ζ) =

∫ b

a

Lp(ζ(t), t) dt,

if ζ : [a, b] → R
n is a curve such that the integral exists. (We will only be using

this when ζ ∈ Traj(fp), in which case Jp(ζ) is well defined.) An adjoint vector for
[Lp0 ; fp0 ] along ξLp0 is then a pair (λ0, λ) such that λ0 ∈ R, λ : [a, b] → Rn is
absolutely continuous, and

(A.57) λ̇(t) = −λ(t).A(t)− λ0h(t) for a.e. t ∈ [a, b].
Theorem A.9 then implies the following.

Theorem A.11. Assume that we are given data P , f , p0, ξ, L as in (D.1,2,3,4,5).
Assume that (f ,L) is weakly differentiable at p0 along ξ. Let P  p → x̄p ∈ R

n be a
map which is Fréchet differentiable at p0 and such that x̄p0 = ξ(a) and let La be its
differential at p0. Let ξp be, for p close enough to p0, maximal trajectories of fp such
that ξp(a) = x̄p, and let xp be the restriction of ξp to [a, b]. Then the maps p → xp(b)
and p → Jp(xp) are differentiable at p0. Let Lb, L

0
b be their differentials at p0. Then,

if (λ0, λ) is an adjoint vector for [Lp0 , fp0 ] along ξ, it follows that

(A.58)

λ(b) · Lb(v) + λ0L0
b(v)− λ(a) · La(v)

= lim
ε↓0

ε−1

∫ b

a

(
Hp0+εv(λ(t), λ0, ξ(t), t)−Hp0(λ(t), λ0, ξ(t), t)

)
dt,

where

(A.59) Hp(z, z
0, x, t) = 〈z, fp(x, t)〉+ z0Lp(x, t)

for x ∈ R
n, z ∈ Rn, z

0 ∈ R, t ∈ [a, b].
Appendix B. A lemma.
Lemma B.1. Let f be a real-valued function on a compact interval [a, b]. Assume

that there exists a finite or countable subset E of [a, b] with the following properties:

(B.1.a) lim infh↓0
f(x+h)−f(x)

h ≥ 0 for all x ∈ [a, b[\E,
(B.1.b) lim infh↓0 f(x+ h) ≥ f(x) for all x ∈ [a, b[,
(B.1.c) lim infh↓0 f(x− h) ≤ f(x) for all x ∈ ] a, b].

Then f(b) ≥ f(a).
Proof. Let ε > 0 be arbitrary. We will prove that f(b) ≥ f(a)−ε. Let ε′ = ε

1+b−a
and E = {xk : k ∈ N}.

For each x ∈ [a, b], let I(x) = {k : xk < x}. Define g : [a, b]→ R by

g(x) =
∑
k∈I(x)

2−kε′.

Then g is left-continuous and monotonically nondecreasing.
Let S be the set of all x ∈ [a, b] such that f(y) ≥ f(a) − (y − a)ε′ − g(y) for all

y ∈ [a, x]. It is clear that a ∈ S, and also that S is an interval. So S is of the form
[a, c[ or [a, c], with c ∈ [a, b].

Suppose S = [a, c [ . Then c > a. By (B.1.c), given δ > 0 there is a sequence {zj}
of points of [a, b] such that zj < c, zj → c, and f(c) ≥ f(zj)− δ. Then the zj belong
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to S, so the inequalities f(zj) ≥ f(a) − (zj − a)ε′ − g(zj) ≥ f(a) − (c − a)ε′ − g(c)
hold. It then follows that f(c) ≥ f(a)− (c− a)ε′ − g(c)− δ. Since δ is arbitrary, we
have f(c) ≥ f(a)− (c− a)ε′ − g(c), so c ∈ S, which is a contradiction.

Therefore S = [a, c] for some c ∈ [a, b]. We now show that c = b. Assume that
c < b, and consider separately the cases c /∈ E, c ∈ E.

If c /∈ E, then (B.1.a) implies that there exists a c′ > c such that f(x) − f(c) ≥
−(x− c)ε′ for every x ∈ [c, c′]. But then, since f(c) ≥ f(a)− (c− a)ε′ − g(c), we can
conclude that f(x) ≥ f(a)− (x− a)ε′ − g(c) ≥ f(a)− (x− a)ε′ − g(x) for x ∈ [c, c′].
Therefore c′ ∈ S, contradicting the fact that S = [a, c].

Now suppose c ∈ E. Then c = xk for some k, and xk �= b. By (B.1.b), there
exists h > 0 such that c + h ≤ b and f(y) − f(c) ≥ −2−kε′ for all y ∈ [c, c + h]. If
y ∈ ] c, c + h], then k /∈ I(c), and I(c) ∪ {k} ⊆ I(y). Therefore g(y) ≥ g(c) + 2−kε′.
Since f(c) ≥ f(a)− (c− a)ε′ − g(c), we have f(y) ≥ f(c)− 2−kε′ ≥ f(a)− (c− a)ε′ −
2−kε′ − g(c) ≥ f(a)− (y − a)ε′ − g(y). So c+ h ∈ S, which is a contradiction.

We have therefore proved that c = b. Then

f(b) ≥ f(a)− (b− a)ε′ − g(b) ≥ f(a)− (b− a)ε′ − ε′ = f(a)− ε.

Since ε is arbitrary, we have shown that f(b) ≥ f(a), as desired.

Appendix C. A simpler version of Brunovský’s stratification condition.
We prove that (Br.3.A) holds if and only if P is a stratification of S. It is clear
that if P is a stratification of S, then (Br.3.A) holds. Let us prove the converse.
Suppose that (Br.3.A) holds. Then P is a locally finite partition of S into nonempty
connected embedded C1 submanifolds of S. Let us prove by contradiction that the
frontier axiom (FA) holds. Suppose the axiom was violated for some pair (P1, P2)
of members of P. Of all these “bad” pairs, choose one for which P1 has the largest
possible dimension. Then P1, P2 are in P, P1 �= P2 (so P1 ∩ P2 = ∅), and P1 ∩
clos(P2) �= ∅. Let P̃1 = P1 ∩ clos(P2), so P̃1 is a nonempty relatively closed subset of
P1. We will show that P̃1 = P1, contradicting the fact that (P1, P2) is a bad pair. To
begin with, we cannot have P2 = {0}, for if P2 = {0}, then P2 would be closed, so
P1 ∩ P2 = P1 ∩ clos(P2) = P̃1 �= ∅, which is a contradiction. Also, dim(P1) < n, for if
dim(P1) = n, then P1 would be open, so the fact that P1 ∩ clos(P2) �= ∅ would imply
that P1 ∩ P2 �= ∅, which is a contradiction. Finally, we may assume that P1 �= {0},
because if P1 = {0}, then P̃1 = {0} = P1, because P̃1 ⊆ P1 and P̃1 �= ∅. So from now
on we take it for granted that P1 �= {0}, P2 �= {0}, and dim(P1) < n, so, in particular,
P1 ∈ P ′. Let us first assume that dim(P2) < n. Then P2 ∈ P ′. So both P2 and P1

belong to P ′, and in addition P1 ∩ clos(P2) �= ∅. Since P ′ is a stratification of S′ by
(Br.3.A), it follows that P1 ⊆ clos(P2), contradicting the fact that the pair (P1, P2)
was bad. This excludes the possibility that dim(P2) < n, and we are left with the

case when dim(P2) = n, so P2 is open in S. Let P̂1
def
=P1\P̃1. The fact that (P1, P2) is

a bad pair implies that P̂1 �= ∅. Since P̃1 �= ∅, P̃1 is relatively closed in P1, and P1 is
connected, it follows that P̂1 is not relatively closed in P1. So P̃1∩closP1(P̂1) �= ∅. Pick
a point x̄ ∈ P̃1∩closP1(P̂1). Let m = dim(P1). We already know that m < n. Choose
a coordinate chart x = (x1, . . . , xn) : N → R

n that maps an open neighborhood N of
x̄ diffeomorphically onto the open cube ]−1, 1 [ n in R

n, in such a way that x(x̄) = 0
and x(P1 ∩ N) = ]−1, 1 [m × {0}n−m. For δ > 0, let N(δ) = x−1( ]−δ, δ [ n). Since
P is locally finite, if we let Q(δ) be the set of all P ∈ P that intersect N(δ), then
there must exist a δ̄ such that the set Q = Q(δ) is finite and independent of δ for
δ ∈ ] 0, δ̄]. Clearly, P1 ∈ Q and P2 ∈ Q. Let Z(δ) = closN(δ)(P2 ∩ N(δ)). Then

(P2 ∪ P̃1)∩N(δ) ⊆ Z(δ). Let us exclude the possibility that (P2 ∪ P̃1)∩N(δ) = Z(δ).
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If (P2 ∪ P̃1) ∩ N(δ) = Z(δ), then P2 ∩ (N(δ)\P1) is relatively closed in N(δ)\P1.
Since P2 ∩ (N(δ)\P1) is also relatively open in N(δ)\P1 and nonempty, it follows that
P2 ∩ (N(δ)\P1) must be a union of connected components of N(δ)\P1. If m < n− 1,
then N(δ)\P1 is connected, so P2 ∩ (N(δ)\P1) = N(δ)\P1. If m = n − 1, then
N(δ)\P1 has two connected components, and P1 ∩ N(δ) is entirely contained in the
closure of each one of them. So in both cases it follows that P1 ∩ N(δ) ⊆ clos(P2).
But then P1 ∩ N(δ) ⊆ P̃1, showing that P̃1 is a relative neighborhood of x̄ in P1,
which contradicts our choice of x̄ as a limit point in P1 of P1\P̃1. We now know that
(P2 ∪ P̃1) ∩ N(δ) is a proper subset of Z(δ), for each δ ∈ ] 0, δ̄]. Fix a sequence {δj}
such that 0 < δj ≤ δ̄ for all j and δj ↓ 0. Pick yj ∈ Z(δj)\((P2 ∪ P̃1) ∩N(δj)). Then
every yj belongs to a P j ∈ Q, but yj /∈ P1 ∪ P2. (It is obvious that yj /∈ P2 and

yj /∈ P̃1, since yj ∈ N(δj). On the other hand, yj ∈ clos(P2), so yj cannot be in P1,

because if it was in P1 it would belong to P̃1.) So P1 �= P j �= P2 for every j. Since Q
is finite, we may assume, after passing to a subsequence, that all the Pj ’s are equal
to one and the same P ∈ Q. By construction, P ∩ clos(P2) �= ∅, because all the yj
are in clos(P2). Since P �= P2, P cannot be open, because P ∈ P, so P ∩ P2 = ∅,
thanks to the fact that P is a partition, so if P was open, then P ∩ clos(P2) would be
empty. So dim(P ) < n. Moreover, P �= {0} because yj �= x̄ but yj → x̄ and yj ∈ P .
So P ∈ P ′. Since x̄ ∈ clos(P ) ∩ P1, and both P and P1 are in P ′, it follows that
P1 ⊆ clos(P ) and dim(P1) < dim(P ). Since we have chosen (P1, P2) to be a bad pair
for which dim(P1) is maximized, we can infer that (P, P2) is not a bad pair. Since P
and P2 are in P, and P ∩ clos(P2) �= ∅, the inclusion P ⊆ clos(P2) must hold. But
then clos(P ) ⊆ clos(P2) as well, and this implies that P1 ⊆ clos(P2), since we know
that P1 ⊆ clos(P ). So (P1, P2) is not a bad pair after all, and our proof is complete.
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a visitor at the Institut Henri Poincaré in Paris. He is grateful to the Institut Henri
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Abstract. This paper deals with nonparametric estimation and adaptive control of nonlinear
systems of the form Xn+1 = f(Xn) + Un + ξn+1 (n ∈ N) where the state Xn is observed, f
is an unknown function, and the control Un is chosen in order to track a given reference trajectory.
We estimate the function f using a nonparametric estimator and study two adaptive control laws
built from this nonparametric estimator and derived from the self-tuning control. The first one can
be used for open-loop stable systems and requires an additional exciting noise. The second one
needs some a priori knowledge on function f but allows us to control open-loop unstable systems.
We establish some general results on the nonparametric estimator of f like the uniform almost sure
convergence over dilating sets and then prove that both adaptive control laws are asymptotically
optimal in quadratic mean. In addition, we give a strongly consistent estimator of the covariance
matrix of the unobservable white noise ξn.

Key words. adaptive control, discrete-time stochastic nonlinear system, nonparametric esti-
mation, optimal adaptive tracking
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1. Introduction. Since Aström and Wittenmark [2] introduced the self-tuning
regulator in 1973, the stochastic adaptive tracking problem has drawn much attention
from the control community (see, for example, Chen and Guo [7], Caines [6], Chen [8],
Duflo [13], and the references therein). For linear models, the ARX and ARMAX
models, the difficult problem of identifying unknown parameters and simultaneously
tracking a reference signal has been completely solved using both the weighted least
squares algorithm (see Bercu [3], [4] and Guo [18]) and a slight modification of the
extended least squares algorithm (see Guo and Chen [16], Guo [17]).

Nevertheless, these linear models are not well suited for modelling when the rela-
tion between the state and its past is nonlinear. Several authors have proposed inter-
esting methods for adaptive control of nonlinear models: neural networks-based meth-
ods, for example, have been increasingly used (see Narendra and Parthasarathy [27],
Chen and Khalil [9] and Jagannathan, Lewis, and Pastravanu [22]). But, for these
methods, theoretical results are not always proven.

In this paper, we consider the problem of adaptive control of discrete-time non-
linear stochastic systems. We will focus on NARX models on R

d (d ∈ N
∗) of the form

Xn+1 = f(Xn) + Un + ξn+1 (n ∈ N),(1.1)

where Xn, Un, and ξn are the system output, input, and driven noise of the system,
respectively. State Xn is observed, driving function f is unknown, ξn is an unob-
servable white noise, and control Un is chosen in order to track a given deterministic
reference trajectory, denoted by (X∗

n)n≥1.
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Clearly, this is quite a small class of models. Indeed, state is observed, time
delay is equal to one, both control and state are in the same space (Rd), and the
system is always stabilizable. Our work, though, is a first step toward the study of
nonlinear stochastic control systems and deals with the problem of unknown function
f estimation. It should be noticed, however, that despite its simplicity, model (1.1)
has already been used (in a slightly different version) to regulate the output gas flow-
rate of an aerobic digestion process by adapting the liquid flow-rate of an influent of
industrial wine distillery wastewater (see Hilgert et al. [21]).

In order to estimate function f , we introduce a kernel method-based recursive
estimator (see Härdle [19], Devroye and Györfi [11]). We use general results on non-
parametric estimation of regression functions. Using nonparametric estimation may
come with a price, however. Compared with parametric methods, nonparametric ones
have slower convergence rates. This is the counterpart of the flexibility of such non-
parametric design. Let us mention that kernel estimation methods are also used in
identification problems for nonlinear dynamic systems such as Hammerstein systems
(see Greblicki [14], Greblicki and Pawlak [15]).

Nonparametric estimation of regression function has often been studied in a non-
controlled framework, i.e., Un ≡ 0 in model (1.1) (see Collomb [10], Doukhan and
Ghindès [12], Ango Nze and Portier [1], Truong and Stone [32], Bosq [5]). Unfortu-
nately, all these papers deal with stationary and mixing processes; therefore, these
results and techniques are not suitable for controlled processes: Un can depend on
the current state Xn and on the previous ones. Thus, another approach is necessary.

Duflo [13] and Senoussi [31] have given the first convergence results for f̂n in a
control framework. For nonadaptive control laws ensuring that model (1.1) is stable
(in the sense defined in section 2), they prove that ∀A <∞

sup
‖x‖≤A

∥∥∥f̂n(x)− f(x)∥∥∥ a.s.−→
n→∞ 0,(1.2)

where f̂n denotes the nonparametric estimator of function f . Hilgert, Senoussi, and
Vila [20] generalize this result for models where the unknown function f depends on
time n. In this paper, we extend result (1.2): we establish the uniform almost sure

convergence of f̂n over dilating sets, i.e.,

sup
‖x‖≤vn

∥∥∥f̂n(x)− f(x)∥∥∥ a.s.−→
n→∞ 0,(1.3)

where (vn)n≥0 is a sequence of positive numbers increasing to infinity. Such a result

allows us to study adaptive control laws built from f̂n which was not possible with
result (1.2). Indeed, in order to obtain the asymptotic optimality of the tracking, we
have to prove that

1

n

n∑
k=1

∥∥∥f̂k(Xk)− f(Xk)
∥∥∥2 a.s.−→

n→∞ 0(1.4)

and clearly, the uniform almost sure convergence over fixed compact sets is not suffi-
cient.

In order to solve the problem of tracking, we propose two adaptive control laws,
based on the certainty-equivalence principle. The first one can be used only when
model (1.1) is open-loop stable. It requires an additional exciting term:

Un = −f̂n(Xn) + X∗
n+1 + γn+1 ηn+1,(1.5)
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where η = (ηn)n≥1 is a Gaussian white noise and (γn)n≥1 a sequence of real numbers
decreasing to 0. The second adaptive control law requires some a priori knowledge
about function f , but allows us to control open-loop unstable systems:

Un = −f̂n(Xn)11En(Xn) − f∗(Xn)11En(Xn) + X∗
n+1,(1.6)

where En denotes the complementary set of En. Function f∗ characterizes the a
priori knowledge about function f and allows us to compensate the possible lack of
observations which disrupts the local estimator f̂n. Set En, which will be specified in
section 4.2, is introduced to ensure the closed-loop stability of model (1.1).

For both control laws, we prove that the tracking is asymptotically optimal, i.e.,

1

n

n∑
k=1

‖Xk −X∗
k‖2 a.s.−→

n→∞ trace(Γ),(1.7)

where Γ denotes the covariance matrix of the noise ξn.
This paper is organized as follows. Section 2 is devoted to the model assump-

tions. Section 3 is concerned with the nonparametric estimation of function f . In
section 4, we explain the adaptive control problem and we study the properties of
control laws (1.5) and (1.6). In addition, the strong consistency of an estimator of Γ
is proven. Finally, Appendices A to D contain proofs of the main results.

2. Model assumptions. Let (Ω,A, P ) be a probability space with a filtration
F = (Fn)n≥0, where Fn is the σ-algebra generated by events occurring up to time n.
We assume that control U = (Un)n≥0 and noise ξ = (ξn)n≥1 are adapted to F ,
and that X0 and U0 are F0-measurable and arbitrarily chosen. Typically, here we
have Fn = σ (X0, U0, ξ1, . . . , ξn). Finally, let us assume the following properties for
model (1.1).

Assumption [A1] (about function f). Function f is Lipschitz:

∃ rf <∞, ∀x ∈ R
d, ∀ y ∈ R

d, ‖f(x)− f(y)‖ ≤ rf ‖x− y‖ ,

where ‖ . ‖ denotes the usual norm on R
d.

Assumptions [A2] (about noise ξ).
• ξ = (ξn)n≥1 is a sequence of independent and identically distributed random

vectors with mean 0 and invertible covariance matrix Γ which is supposed to
be unknown.
• ξn has a finite moment of order m > 2 and its distribution is absolutely con-

tinuous with respect to the Lebesgue measure. Its probability density function
denoted by p is supposed to be C1-class, p and its gradient are bounded.

In this paper, the following definition for stability is used.
Definition 2.1. The process (Xn)n≥0, defined by (1.1), is said to be stable if

there exist constants µ > 0 and M <∞ such that for any initial law (the law of X0),

lim sup
n→∞

1

n

n∑
k=1

‖Xk‖µ ≤ M , a.s.

We will see in section 4 that the system driven by control (1.5) or (1.6) is stable

with µ = m. Let us now present nonparametric estimator f̂n and the uniform almost
sure convergence of f̂n over dilating sets.
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3. Estimation of function f . In order to estimate unknown function f , we use
a recursive version of the classical kernel estimator of the regression function (see, for
example, Härdle [19]). Let K be a function from R

d to R+ satisfying
∫
K(y) dy = 1

and let α be a real number in ]0 , 1/d[ . Function K is called the kernel and α the
bandwidth parameter. For x ∈ R

d, we estimate f(x) by

f̂n(x) =

n−1∑
i=0

iαdK
(
iα(Xi − x)

)(
Xi+1 − Ui

)
n−1∑
i=0

iαdK
(
iα(Xi − x)

)(3.1)

if the denominator of f̂n(x) is not equal to 0, and by 0 otherwise.

Let us remark that f̂n(x) can be rewritten as
∑n−1

i=0 wi(Xi, x) (Xi+1 −Ui), where
wi(Xi, x) ≥ 0 and

∑n−1
i=0 wi(Xi, x) = 1. So, f̂n(x) appears to be a weighted sum of

(Xi+1−Ui)0≤i≤n−1. The closer Xi is to x, the greater is the weight wi(Xi, x), thanks
to the kernel K and the bandwidth parameter α, and therefore, the greater is the
contribution of (Xi+1 − Ui) to f̂n(x).

Nonparametric estimator (3.1) is said to be recursive because for x ∈ R
d and

n ≥ 0 we have

Hn(x) = Hn−1(x) + nαdK
(
nα(Xn − x)

)
, H−1(x) = 0,

Nn(x) = Nn−1(x) + nαdK
(
nα(Xn − x)

)(
Xn+1 − Un

)
, N−1(x) = 0,

where Nn−1(x) and Hn−1(x) denote the numerator and the denominator of f̂n(x),
respectively. This recursive property is useful in the adaptive control framework.
Indeed, as soon as a new observation becomes available, f̂n(x) can easily be updated.

The following assumptions are made on kernel K.
Assumptions [A3] (about kernel K). K : R

d → R
∗
+ is a positive bounded

function, with a compact support such that
• ∫ K(y) dy = 1 and

∫ ‖y‖K(y) dy <∞.
• ∃ rK <∞, ∀x ∈ R

d, ∀ y ∈ R
d, ‖K(x)−K(y)‖ ≤ rK ‖x− y‖.

For example, Epanechnikov’s kernel, defined by

K(y) = K(y1, . . . , yd) =

d∏
j=1

(3/4)(1− yj)211{|yj |≤1},

satisfies [A3].

Now we give convergence results for estimator f̂n. Part 1 of Theorem 3.1 will be
used to study the convergence of f̂n(x) with control law (1.5) and part 2 with control
law (1.6).

Theorem 3.1. Assume that [A1], [A2], and [A3] hold. Let α ∈ ]0 , 1/2d[ and
let (vn)n≥1 be a sequence of positive real numbers increasing to infinity such that
vn = O(nν) with ν > 0.

1. If there exists a sequence (wn)n≥0 of positive real numbers, increasing to in-
finity, such that for any initial law

lim inf
n→∞

(
inf

‖x‖≤vn
1

wn
Hn−1(x)

)
> 0, a.s.,(3.2)
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where Hn−1(x) =
∑n−1

i=0 i
αdK (iα(Xi − x)), then, for any s ∈ ]1/2 + αd , 1[ ,

sup
‖x‖≤vn

∥∥∥f̂n(x)− f(x)∥∥∥ a.s.
= o

(
ns

wn

)
+ O

(
n1−α

wn

)
.(3.3)

2. More particularly, if the probability density function p is strictly positive and
if there exists a finite constant M such that for any initial law

lim sup
n→∞

1

n

n∑
k=1

‖Xk‖2 ≤M, a.s.,(3.4)

then (3.2) and (3.3) hold with wn = nmn and mn = inf{p(z); ‖z‖ ≤ vn + R} for
some finite constant R.

Proof. The proof is given in Appendix B.
Comments. We will say that we have uniform almost sure dilated convergence

of f̂n to f if and only if there exists a sequence (vn)n≥0 of positive real numbers,
increasing to infinity, such that

sup
‖x‖≤vn

∥∥∥f̂n(x)− f(x)∥∥∥ a.s.−→
n→∞ 0.(3.5)

From part 1 of Theorem 3.1, we can observe that the convergence of f̂n to f depends
only on the behavior of the denominator Hn−1 of f̂n. We will see in section 4 (see
Theorem 4.1) how to choose sequences (vn) and (wn) in order to satisfy condition (3.2)
when control law (1.5) is used to drive model (1.1).

Let us make some comments about Hn−1(x). The quantity n
−1Hn−1(x) behaves

as a kind of frequency of the past values of the process (Xi)0≤i≤n−1 located in a
neighborhood of x. Condition (3.2) constrains the asymptotical behavior of Hn−1(x),
in order to have enough observations in a neighborhood of x, whatever x may be. Let
us also mention that, when process (Xn) is asymptotically stationary (see Devroye
and Györfi [11]), n−1Hn−1(x) is an estimator of the probability density function of
the stationary distribution at point x.

When the assumptions of part 2 are fulfilled, result (3.5) is true as soon as

m−1
n =

(
inf
{
p(z) ; ‖z‖ ≤ vn +R

})−1

= inf
(
o (nα) , O

(
n1−s)).(3.6)

Thus, it is the decrease of the probability density function p and the choice of a
well-suited sequence (vn) which give the rate of the uniform almost sure dilated con-

vergence of f̂n. If p rapidly decreases to 0, then sequence (vn) must slowly increase
to infinity. There is, however, a well-known property of kernel-based estimation: any
new observation improves the estimator only in a neighborhood of this observation.
According to the uniform convergence requirement, any heavy tailed noise is better
than any Gaussian-type noise. Indeed, for any given n, heavy tailed noises explorate
a larger zone than Gaussian-type noises.

The following corollary emphasizes this point. Let us consider the widely used
Gaussian noise. In that case, we are able to easily exhibit sequence (vn) and specify

sequence (mn) and convergence rate of f̂n.
Corollary 3.2. Assume that [A1], [A2], and (3.4) hold, and that ξ is a Gaussian

white noise with mean zero and invertible covariance matrix Γ.
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1. For α = 1/2(d+ 1), any initial law and any A <∞,

sup
‖x‖≤A(loglog n)1/2

∥∥∥f̂n(x)− f(x)∥∥∥ a.s.
= O

(
n−λ

)
,(3.7)

with λ ∈ ]0 , 1/2(d+ 1)[ .
2. For α ∈ ]0 , 1/2d[, any initial law and any positive constant A such that

A2/λmin (Γ) < inf(α , 1− s), where λmin (Γ) denotes the minimum eigenvalue of the
matrix Γ,

sup
‖x‖≤A(log n)1/2

∥∥∥f̂n(x)− f(x)∥∥∥ a.s.
= O

(
n−λ

)
,(3.8)

with λ = inf(α , 1− s)−A2/λmin (Γ) .
Proof. Since ξn is Gaussian, [A2] is fulfilled and the probability density function

p is such that

inf
{
p(z) ; ‖z‖ ≤ vn +R

}
≥ cte exp

(
− (vn +R)

2

2λmin (Γ)

)
≥ cte exp

(
− v2n
λmin (Γ)

)
.

Thus, if we take vn = A (log log n)
1/2

with A ∈ ]0 , ∞[, condition (3.6) is verified since
mn ≥ cte (log n)−δ with δ = A2/λmin (Γ). The choice α = 1/2(d+ 1) leads to part 1.

Now, if we choose vn = A (log n)
1/2

with A > 0 , then mn ≥ cten−A
2/λmin(Γ) and

part 2 is easily derived.
Prediction errors. In forecasting and adaptive control problems, the behavior of

the prediction errors is a natural question to address (the prediction error at time k

is defined by f̂k(Xk)− f(Xk)). The following convergence result can be useful:

1

n

n∑
k=1

∥∥∥f̂k(Xk)− f(Xk)
∥∥∥2 a.s.

= o(1).(3.9)

If we are able to prove that sup‖x‖≤vn ‖f̂n(x)− f(x)‖
a.s.
= o(1), for a sequence (vn)n≥1

increasing to infinity, then

1

n

n∑
k=1

∥∥∥f̂k(Xk)− f(Xk)
∥∥∥2

11{ ‖Xk‖≤ vk}
a.s.
= o(1).

Result (3.9) is then easily derived by establishing a similar result for prediction errors

of the form ‖f̂k(Xk)− f(Xk)‖211{ ‖Xk‖>vk}. The following theorem deals with this
particular point.

Theorem 3.3. Assume that [A1], [A2], and [A3] hold and that there exist two
constants µ > 0 and M <∞ such that

lim sup
n→∞

1

n

n∑
k=1

‖Xk‖µ ≤M , a.s.(3.10)

Let (vn)n≥1 be a sequence of positive real numbers increasing to infinity. Let us denote

ξ#n = supk≤n ‖ξk‖. Then, for any b ∈ [ 0 , µ [,

1

n

n∑
k=1

∥∥∥f̂k(Xk)− f(Xk)
∥∥∥b 11{‖Xk‖>vk}

a.s.
= O

((
ξ#n
)b
n

n∑
k=1

v−µk +
1

n

n∑
k=1

vb−µk

)
.
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Proof. First, Lemma B.1 gives

n∑
k=1

∥∥∥f̂k(Xk)− f(Xk)
∥∥∥b 11{‖Xk‖>vk}

a.s.
= O

(
n∑

k=1

(
‖Xk‖b + 1 + (ξ#k )

b
)

11{‖Xk‖>vk}

)
.

Then, part 2 of Lemma A.1 finishes the proof.
Example. Let us once again consider the Gaussian white noise case and let us

show that the prediction errors converge to 0 in quadratic mean. Assume that we can
exhibit a control law ensuring (control law (1.6) is well suited) that there exist µ > 2
and M <∞ such that

lim sup
n→∞

1

n

n∑
k=1

‖Xk‖µ ≤ M , a.s.

Then, since ξn is Gaussian, ξ#n
a.s.
= O((log n)1/2) and taking vn = A (log n)

1/2
, with

A > 0 such that A2/λmin (Γ) < inf(α , 1 − s), we derive from result (3.8) and Theo-
rem 3.3 that

1

n

n∑
k=1

∥∥∥f̂k(Xk)− f(Xk)
∥∥∥2 a.s.

= O
(
(log n)2−µ

)
.

Now we explain the adaptive control problem and give the properties of con-
trol laws (1.5) and (1.6). In addition, the strong consistency of an estimator of Γ
is obtained.

4. Study of two optimal adaptive control laws. In this section we consider
a simple problem of adaptive control: the problem of adaptive tracking. The goal of
adaptive tracking is to find a control sequence U = (Un)n≥1 which forces the output
X = (Xn)n≥1 to track the given deterministic reference trajectory X∗ = (X∗

n)n≥1.
If function f were known, the control Un defined by

Un = −f(Xn) + X∗
n+1(4.1)

would ensure that the tracking is asymptotically optimal in quadratic mean. We have,
indeed, the following:

1

n

n∑
k=1

‖Xk −X∗
k‖2 =

1

n

n∑
k=1

‖ξk‖2 a.s.−→
n→∞ trace(Γ).(4.2)

When function f is unknown, we know how to estimate it using the kernel estima-
tor (3.1) and then, we can replace f by f̂n in (4.1). Thus, the adaptive tracking control
Un is given by

Un = −f̂n(Xn) + X∗
n+1.(4.3)

Using this control law, the closed-loop system is of the form

Xn+1 −X∗
n+1 =

(
f(Xn) − f̂n(Xn)

)
+ ξn+1.(4.4)

Let us remember, as seen in section 3, that in order to obtain good properties
of convergence for f̂n, the closed-loop system must be stable. Since the closed-loop
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properties of system (1.1) driven by (4.3) are unknown, we propose two adaptive
control laws which are derived from (4.3) and for which stability properties of the
closed-loop system can be obtained by adding some complementary assumptions on
model (1.1). Then, for both control laws, we prove that the tracking is asymptotically
optimal, i.e.,

1

n

n∑
k=1

‖Xk −X∗
k‖2 a.s.−→

n→∞ trace(Γ)(4.5)

and Γ̂n, defined by

Γ̂n =
1

n

n∑
k=1

(Xk −X∗
k) (Xk −X∗

k)
T
,(4.6)

is a strongly consistent estimator of Γ.

4.1. The excited tracking control. In this section, we study the excited track-
ing control law proposed by Oulidi in [28]. First, let us make the following assumptions
for model (1.1).

Assumptions [A4] (about function f and noise ξ).

• Function f satisfies [A1]with rf < 1.
• White noise ξ is bounded and satisfies [A2].

Let us remark that the crucial assumption is the open-loop stability of model (1.1),
which is implied by the value of the Lipschitz coefficient. Moreover, from a practical
point of view, the noise assumption is not too restrictive.

In order to control model (1.1), we use the excited tracking control defined as
follows.

Construction of Un. Let (X∗
n)n≥1 and (ηn)n≥1, respectively, be a bounded deter-

ministic reference trajectory and a Gaussian white noise with mean zero and invertible
covariance matrix Γη , and let (γn)n≥1 be the sequence of real numbers defined by

γ1 > 0 , γn = Cγ (log n)
−γ

with Cγ <∞ and γ ∈ ]0 , 1/2[.

Besides, η = (ηn)n≥1 is supposed to be independent of X0 and ξ. The excited tracking
control, at time n, is given by

Un = −f̂n(Xn) + X∗
n+1 + γn+1 ηn+1.(4.7)

The addition of an exciting noise in the control law allows us to obtain the uniform
strong consistency for f̂n over dilating sets, unreachable when ξ is bounded. Besides,
we can specify the convergence rate of f̂n. Similar persistently excited control is used
in the ARMAX framework to obtain the consistency of the least squares estimator
(see Caines [6]).

Theorem 4.1. Assume that [A3] and [A4] hold.

1. Then there exists a finite constant M such that for all initial law and any
integer m,

lim sup
n→∞

1

n+ 1

n∑
k=0

‖Xk‖m ≤ M , a.s.
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2. Let us take α ∈ ]0 , 1/2d[. Then, for some finite constant A, we have

lim inf
n→∞

(
inf

‖x‖≤A(log n)1/2−γ

1

n1−δ(log n)γd
Hn−1(x)

)
> 0, a.s.,

and

sup
‖x‖≤A(log n)1/2−γ

∥∥∥f̂n(x)− f(x)∥∥∥ a.s.
= o

(
n−δ

)
with δ ∈ ]0 , 1/2− αd[. Moreover, the tracking is asymptotically optimal in quadratic
mean

1

n

n∑
k=1

‖Xk −X∗
k‖2 a.s.−→

n→∞ trace(Γ),

1

n

n∑
k=1

‖Xk −X∗
k − ξk‖2 a.s.

= O
(
(log n)

−2γ
)

and Γ̂n
a.s.−→
n→∞ Γ .

Proof. The proof is given in Appendix C. The result of almost sure uniform dilated
convergence of f̂n is obtained using part 1 of Theorem 3.1 in which assumption (3.2)

is verified with vn = O
(
(log n)1/2−γ

)
and wn = n1−δ (log n)γd.

Now let us study control law (1.6).

4.2. Control with a priori knowledge on the model. In this section, we
build a control law similar to the one proposed by Portier [30]. In this reference,

an adaptive control algorithm, built on f̂n and using a priori knowledge about func-
tion f , was studied by simulation. The author shows that its adaptive control law
gives very satisfactory results: function f is well estimated in the domain where the
observations are clustered and this estimation leads to a good tracking of the given
reference trajectory. However, no theoretical results prove that the tracking is opti-
mal, though it appeared through the simulation results (see also Najim, Oppenheim,
and Portier [26], Portier and Oppenheim [29]).

Let us introduce the knowledge we need on model (1.1). Assume there is a function
f∗ such that we have the following.

Assumption [A5]. Function f∗ is continuous and

∃ af ∈
[
0 , 1/2

[
,∃ Af ∈

]
0 , ∞[ ,∀x ∈ R

d, ‖f(x)− f∗(x)‖ ≤ af ‖x‖+ Af .

Then we can build an adaptive control law which first ensures the stability of the
closed-loop model and finally possesses the optimality property (4.5).

Construction of Un. Let (X∗
n)n≥1 be a bounded deterministic given reference

trajectory. At time n, the adaptive tracking control with a priori knowledge is given by

Un = −f̂n(Xn)11En(Xn) − f∗(Xn)11En(Xn) + X∗
n+1,(4.8)

where En is the set {x ∈ R
d ; ‖ f̂n(x)−f∗(x) ‖≤ bf ‖x‖+ Bf} with bf ∈ ]af , 1− af [

and Bf ∈ ]Af , ∞[ ; En denotes the complementary set of En.
Function f∗ and constants af and Af characterize the a priori knowledge we have

on model (1.1). From a practical point of view, knowing function f∗ is more important
(see Portier and Oppenheim [29]) than the assumption on constant af (and then on
bf ) since the value of Bf can be chosen arbitrarily large. Using control law (4.8) in
model (1.1), we obtain the following results.
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Theorem 4.2. Assume that [A1], [A2], [A3], and [A5] hold and that the proba-
bility density function p is strictly positive.

1. Then, there exists a finite constant M such that for any initial law,

lim sup
n→∞

1

n+ 1

n∑
k=0

‖Xk‖m ≤ M , a.s.

2. Let us take α ∈ ]0 , 1/2d[. If there is a sequence of positive real numbers
(vn)n≥1 increasing to infinity such that vn = O (nν) with ν > 0 and(

inf
{
p(z) ; ‖z‖ ≤ vn +R

})−1

= inf
(
o (nα) , O

(
n1−s))

for some constant R <∞ and with s ∈ ]1/2 + αd , 1[, then we have the optimality of
the tracking, i.e.,

1

n

n∑
k=1

‖Xk −X∗
k‖2 a.s.−→

n→∞ trace(Γ),

and Γ̂n
a.s.−→
n→∞ Γ .

Proof. The proof is given in Appendix D.
When ξ is a Gaussian white noise, we can specify the convergence rate of the

optimality.
Corollary 4.3. Assume that [A1], [A3], and [A5] hold and that ξ is a Gaus-

sian white noise with zero mean and invertible covariance matrix Γ. Then, for
α ∈ ]0 , 1/2d[, any initial law and any m > 2,

1

n

n∑
k=1

‖Xk −X∗
k − ξk‖2 a.s.

= O
(
(log n)2−m

)
.

Remark. The convergence rate is smaller than the one we have in the ARX
framework, which is of (log n)/n (for example, see Lai and Wei [23], [24], Guo [17],
and also Bercu [4]).

Proof. Noise ξn being Gaussian, [A2] is fulfilled and ξn has any moment of orderm.
Thus, part 1 of Theorem 4.2 holds for any m. Besides, part 2 of Corollary 3.2 gives

sup
‖x‖≤A(log n)1/2

∥∥∥f̂n(x)− f(x)∥∥∥ a.s.
= O

(
n−λ

)
,(4.9)

where λ = inf(α , 1− s)−A2/λmin (Γ) with A > 0 and A2/λmin (Γ) < inf(α , 1− s).
Finally, from (D.13) (see Appendix D)

n∑
k=1

‖Xk −X∗
k − ξk‖2 a.s.

= O

(
n−1∑
k=1

v2−mk

)
+ O

(
n v2−mn

)
(4.10)

+ O

n−1∑
k=1

(
sup

‖x‖≤ vk

∥∥∥f̃k(x)∥∥∥
)2

 ,
and we easily derive the corollary, setting vk = A (log k)

1/2
in the last equation.
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Appendix A. In this first appendix, we give three useful lemmas and their proofs.
Lemma A.1. Let (φn)n≥1 be a sequence of random vectors. Assume that there

are µ > 0 and a finite constant M such that lim supn→∞
1
n

∑n
k=1 ‖φk‖µ ≤M .

1. Then, for R large enough, lim infn→∞ 1
n

∑n−1
k=0 11{‖φk‖≤R} > 0.

2. Let (vn)n≥1 be a sequence of positive real numbers increasing to infinity. Then,

∀ b ∈ [0 , µ[,
1

n

n∑
k=1

‖φk‖b 11{ ‖φk‖>vk} = O

(
1

n

n∑
k=1

vb−µk

)
+ O

(
vb−µn

)
.

Proof. Let R > 0. Since

1

n

n∑
k=1

‖φk‖µ ≥ 1

n

n∑
k=1

‖φk‖µ 11{‖φk‖>R} ≥ Rµ

n

n∑
k=1

11{‖φk‖>R},(A.1)

we easily deduce that

1

n

n∑
k=1

11{‖φk‖≤R} ≥ 1− M
Rµ
,(A.2)

and part 1 holds for R large enough. Let b ∈ [0 , µ[. For k ≥ 1,

‖φk‖b 11{ ‖φk‖>vk} = ‖φk‖µ ‖φk‖b−µ 11{ ‖φk‖>vk} ≤ ‖φk‖µ vb−µk .

Thus, if we set Sn =
∑n

k=1 ‖φk‖µ and S0 = 0, we obtain that

1

n

n∑
k=1

‖φk‖b 11{‖φk‖>vk} ≤
1

n

n∑
k=1

vb−µk

(
Sk − Sk−1

)
(A.3)

=
1

n

n∑
k=1

(
vb−µk − vb−µk+1

)
Sk + vb−µn+1

Sn
n
.

Then using the lemma’s assumption, we derive that

1

n

n∑
k=1

‖φk‖b 11{‖φk‖>vk} = O
( 1
n

n∑
k=1

k
(
vb−µk − vb−µk+1

))
+ O

(
vb−µn+1

)
(A.4)

= O
( 1
n

n∑
k=1

vb−µk

)
+ O

(
vb−µn

)
,

which establishes part 2.
Now we give a lemma useful for establishing a result of almost sure uniform

dilated convergence for the square integrable martingales index-linked by x ∈ R
d

which appear in the rest of the paper.
Lemma A.2. For x ∈ R

d, let us consider

Mn(x) =

n∑
i=1

iλ
(
K
(
iα(Xi − x)

)
− E

[
K
(
iα(Xi − x)

)
/Fi−1

])
,(A.5)

where λ ∈ ]0 , 1/2[ , α ∈ ]0 , 1/2d[ , (Xn)n≥0 is given by model (1.1), and K is the
kernel of the nonparametric estimator. Assume that [A2] and [A3] hold. Then, for
A <∞ , ν > 0, and some t ∈ ]1/2 + λ , 1[,

sup
‖x‖≤Anν

‖Mn(x)‖ a.s.= o
(
nt
)
.(A.6)
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Proof. The proof uses a theorem due to Oulidi that we can find with its proof
in Duflo [13, Theorem 6.4.34, p. 220]. For the sake of completeness, we recall this
theorem below.

Theorem. Let us consider a probability space with a filtration F and a sequence
(Mn(x))n≥0,x∈Rd such that ∀x, Mn(x) is a square-integrable martingale adapted to F

and ∀n, the trajectories x → Mn(x) are continuous. Suppose there exists a sequence
(sn) adapted to F which tends a.s. to infinity and is such that, denoting ∆n+1(x) =
Mn+1(x) −Mn(x) and h(x) = (2x log log x)1/2, there exist two constants 0 < δ < γ
and constants a, b, c, and d with the following properties:
P1. a.s., 〈M(0)〉n ≤ a s2n−1 and |∆n(0)| ≤ b s2n−1 (h(s

2
n−1))

−1;
P2. for any pair (x, y), a.s.,

〈M(x)−M(Y )〉n ≤ c s2n−1 ‖x− y‖γ ,
|∆n(x)−∆n(y)| ≤ d ‖x− y‖δ s2n−1 (h(s

2
n−1))

−1.

Then we have the following result. Let v be any function from R+ to itself which is
increasing to infinity and such that for θ > 1, v

(
θn+1

)
= O (v(θn)). Then, for any

β > sup(δ , γ − δ), a.s.,

sup
‖x‖≤ v(s2n−1)

‖Mn(x)‖ = o
(
vβ(s2n−1)h(s

2
n−1)

)
.

Let us show thatMn(x) defined by (A.5) matches the different assumptions of this
theorem. To this aim, let us denote for n ≥ 1 and x ∈ R

d, ∆n(x) = Mn(x)−Mn−1(x),
and 〈M(x)〉n =

∑n
k=1 E

[
∆2
k(x) / Fk−1

]
, where M0( . ) ≡ 0 . For x ∈ R

d and n ≥ 1,
Mn(x) is a square integrable martingale adapted to F . Let us denote s2n = n1+2λ+αδ

for some δ > 0. Since K is bounded (cf. Assumption [A3]),

|∆n(0)| ≤ cte nλ ≤ cte s2n (h(s
2
n))

−1,(A.7)

where h(x) = (2x log log x)1/2. In addition, since p is bounded (cf. Assumption [A2]),

〈M(0)〉n ≤
n∑
i=1

E
[
i2λK2 (iαXi) /Fi−1

]
(A.8)

≤
n∑
i=1

i2λ−αd
∫
K2(t) p

(
i−αt− f(Xi−1)− Ui−1

)
dt

≤ ‖ p ‖∞ ‖K‖∞
n∑
i=1

i2λ−αd ≤ cte n1+2λ−αd ≤ cte s2n.

Let x, y ∈ R
d . Since K is bounded and Lipschitz, we have for any δ ∈ ]0 , 1[ ,

|∆n(x)−∆n(y)| ≤ cte nλ(1−δ/2) |∆n(x)−∆n(y)|δ/2(A.9)

≤ cte ‖x− y‖δ/2 nλ+αδ/2 ≤ cte ‖x− y‖δ/2 s2n (h(s2n))−1,〈
M(x)−M(y)

〉
n
≤

n∑
i=1

i2λ E

[(
K (iα(Xi − x))−K (iα(Xi − y))

)2

/Fi−1

]
≤ cte ‖x− y‖δ n1+2λ+αδ ≤ cte ‖x− y‖δ s2n.(A.10)
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Then, with (A.7)–(A.10), assumptions of Oulidi’s theorem are fulfilled and therefore,
for any ω > δ/2 > 0,

sup
‖x‖≤ v(σ2

n)

‖Mn(x)‖ a.s.= o
(
vω(s2n)h(s

2
n)
)
,(A.11)

where v is a real valued function increasing to infinity, such that v
(
θn+1

)
= O (v(θn))

for θ > 1. In particular, if we take v(n) = Anν/(1+2λ+αδ) for A < ∞ and ν > 0, we
obtain (A.6). This closes the proof.

Lemma A.3 below collects some classic and sparse results that we can find in
Duflo [13] or in Meyn and Tweedie [25]. Part 1 of Lemma A.3 will be used to establish
part 1 of Theorems 4.1 and 4.2, and part 2 will ensure that some of martingales we
consider are square integrable.

Lemma A.3. Let 0 < a < 1 and b < ∞, and let Z = (Zn) and ε = (εn) be two
positive sequences of random variables. Assume that, for n ≥ 1,

Zn ≤ aZn−1 + b + εn.(A.12)

1. If ε is a sequence of independent, identically distributed positive random vari-
ables with a moment of order m ≥ 1, then supk≤n Zk = o(n1/m), a.s. and there is a
finite constant M such that

lim sup
n→∞

1

n

n∑
k=1

Zmk ≤ M , a.s.

2. In addition, if Z0 has a moment of order m, then supn E [Zmn ] < ∞.
For the sake of completeness, let us recall a sketch of proof.
Proof. From (A.12), we easily deduce that Zn ≤ an Z0 + cte +

∑n
k=1 a

n−kεk.
Then, Zn

a.s.
= O(supk≤n εk) and since ε has a moment of order m, then Zn

a.s.
= o(n1/m).

In addition, for a < a1 < 1, we have Zmn ≤ a1 Z
m
n−1 + cte + cte εmn and we derive

that (1 − a1) lim supn→∞
1
n

∑n
k=1 Z

m
k ≤ cte + cte lim supn→∞

1
n

∑n
k=1 ε

m
k . Then,

with the assumptions on ε, lim supn→∞
1
n

∑n
k=1 ε

m
k ≤ cte and part 1 is established.

Part 2 follows from the fact that Zmn ≤ an1 Z
m
0 + cte + cte

∑n
k=1 a

n−k
1 εmk .

Appendix B. This appendix is concerned with the proof of Theorem 3.1. Let
us denote f̃n(x) = f̂n(x)− f(x). Starting from the definition of f̂n(x), we can write

f̃n(x) =
Mn(x) +Rn−1(x)

Hn−1(x)
11{Hn−1(x) �= 0} − f(x)11{Hn−1(x) = 0}(B.1)

with Mn(x) =

n−1∑
i=0

iαdK
(
iα(Xi − x)

)
ξi+1,

Rn−1(x) =

n−1∑
i=0

iαdK
(
iα(Xi − x)

)(
f(Xi)− f(x)

)
,

and easily derive that for any x ∈ R
d,∥∥∥f̂n(x)− f(x)∥∥∥ ≤ ‖f(x)‖ + sup
k≤n
‖ξk‖ +

‖Rn(x)‖
Hn−1(x)

11{Hn−1(x) �= 0}.(B.2)

The proof of Theorem 3.1 consists of studying separately Mn(x), Rn−1(x), and
Hn−1(x) and then combining the results.
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Study of Mn(x). Since process (ξn)n≥1 has a finite moment of order m > 2 and
since for any x, y ∈ R

d and any δ ∈]0 , 1[,
nαd |K (nα(Xn − x))| ≤ cte nαd,(B.3)

nαd |K (nα(Xn − x))−K (nα(Xn − y))| ≤ cte nαd+αδ ‖x− y‖δ ,(B.4)

the assumptions of the following corollary, also due to Oulidi [28] and which we can
find with its proof in Duflo [13, Corollary 6.4.35, p. 223], are fulfilled with, for instance,
Tn = nαd+αδ.

Corollary. Let (εn) be a noise of dimension 1 adapted to a filtration F =

(Fn)n≥0 such that, for some α > 0, supn E[|εn+1|2+2α
/Fn] < ∞, a.s. We con-

sider a sequence (Yn(x))n≥0,x∈Rd such that ∀x, Yn(x) is adapted to F and, ∀n, the
process (Yn(.)) is continuous. Finally, we suppose we have a positive sequence (Tn)
adapted to F, such that |Tn(0)| ≤ Tn , a.s., and there exist two constants δ > 0 and

a < ∞ such that, for any pair (x, y), |Yn(x)− Yn(y)| ≤ a ‖x− y‖δ Tn , a.s. For
Mn(x) =

∑n
k=1 Yk−1(x) εk and τn =

∑n
k=0 T

2
k , we assume that, a.s., τ∞ = ∞ and∑

T 2+2α
n (τn)

−1−α (log log n)α <∞. Then, for β > δ and any function v : R+ → R+

increasing to infinity and such that for θ > 1, v
(
θn+1

)
= O (v(θn)), we have

sup
‖x‖≤ v(τn−1)

‖Mn(x)‖ a.s.= o
(
vβ(τn−1) (2τn−1 log log τn−1)

1/2
)
.

Taking v(n) = Anν/(1+2αd+2αδ) (for any A < ∞ and ν > 0) in the corollary
above, we obtain, for s > 1/2 + αd

sup
‖x‖≤Anν

‖Mn(x)‖ a.s.
= o(ns).(B.5)

In addition, let us note that the restriction α ∈ ]0 , 1/2d[ derives from the fact that
in that which follows the real s must be chosen as s < 1.

Study of Rn(x). Since function f is Lipschitz-continuous (cf. [A1]),

‖Rn(x)‖ ≤ rf
n∑
i=1

iαdK
(
iα(Xi − x)

)
‖Xi − x‖ .(B.6)

In addition, since K has a compact support (cf. [A3]), there exists a finite constant
cK such that K(y) = 0 for ‖y‖ ≥ cK . Then

‖Rn(x)‖ ≤ rf

n∑
i=1

iαd−αK
(
iα(Xi − x)

)
iα ‖Xi − x‖ 11{iα ‖Xi − x‖ ≤ cK

}(B.7)

a.s.
= O

(
Tn(x)

)
with Tn(x) =

∑n
i=1 i

αd−αK
(
iα(Xi − x)

)
. In addition, since Tn(x) ≤ Hn(x), there

exists a finite constant cf such that for any x ∈ R
d,

‖Rn(x)‖
Hn−1(x)

11{Hn−1(x) �= 0} ≤ cf .(B.8)

Then, by combining this result with (B.2), we prove the following lemma which gives

a first result on ‖f̂n(x)− f(x)‖.
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Lemma B.1. Assume that [A1] and [A3] hold. Let us denote ξ#n = supk≤n ‖ξk‖ .
Then, there exists cf <∞ such that ∀x ∈ R

d and ∀n ≥ 1,∥∥∥f̂n(x)− f(x)∥∥∥ ≤ cf + ‖f(x)‖ + ξ#n , a.s.

We are left with the study of Tn(x). Let us write Tn(x) = MT
n (x) + T cn(x) with

MT
n (x) =

n∑
i=1

iαd−α
(
K
(
iα(Xi − x)

)
− E

[
K
(
iα(Xi − x)

)
/Fi−1

])
,

T cn(x) =

n∑
i=1

iαd−α E

[
K
(
iα(Xi − x)

)
/Fi−1

]
=

n∑
i=1

i−α
∫
K(t) p

(
i−αt+ x− f(Xi−1)− Ui−1

)
dt.

Since p is bounded (cf. [A2]) and
∫
K(t) dt = 1 (cf. [A3]),

sup
x∈Rd

‖T cn(x)‖ a.s.
= O

(
n1−α) .(B.9)

For x ∈ R
d and n ≥ 1, MT

n (x) is a square integrable martingale for which we can
apply Lemma A.2 with λ = αd− α. Then, for A <∞, ν > 0, and s′ > 1

2 + αd− α,

sup
‖x‖≤Anν

∥∥MT
n (x)

∥∥ a.s.
= o

(
ns

′)
.(B.10)

Moreover, since α ∈ ]0 , 1/2d[, the real s′ can be chosen such that s′ < 1−α. Therefore,
from (B.9) and (B.10), we obtain that for A <∞ and ν > 0

sup
‖x‖≤Anν

‖Tn(x)‖ a.s.
= O

(
n1−α) ,(B.11)

and therefore

sup
‖x‖≤Anν

‖Rn(x)‖ a.s.
= O

(
n1−α) .(B.12)

Finally, as soon as vn = O(nν), by combining result (B.5) and result (B.12) with
assumption (3.2), we derive part 1 since

sup
‖x‖≤vn

‖Mn(x)‖
Hn−1(x)

a.s.
= o

(
ns

wn

)
,(B.13)

sup
‖x‖≤vn

‖Rn−1(x)‖
Hn−1(x)

a.s.
= O

(
n1−α

wn

)
.(B.14)

Proof of part 2. To establish part 2, we have only to prove that

lim inf
n→∞

(
inf

‖x‖≤vn
1

nmn
Hn−1(x)

)
> 0, a.s.(B.15)

We study Hn(x) by proceeding as for Tn(x). For x ∈ R
d, let us set

Hn(x) = MH
n (x) +

(
Hc
n(x) − Jn(x)

)
+ Jn(x)(B.16)
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with

MH
n (x) =

n∑
i=1

iαd
(
K
(
iα(Xi − x)

)
− E

[
K
(
iα(Xi − x)

)
/Fi−1

])
,

Hc
n(x) =

n∑
i=1

iαd E

[
K (iα(Xi − x)) /Fi−1

]
=

n∑
i=1

∫
K(t) p

(
i−αt+ x− f(Xi−1)− Ui−1

)
dt,

Jn(x) =

n∑
i=1

p
(
x− f(Xi−1)− Ui−1

)
.

For x ∈ R
d and n ≥ 1,MH

n (x) is a square integrable martingale. Then, by Lemma A.2
with λ = αd, we derive that for A <∞, ν > 0, and s′′ > 1

2 + αd,

sup
‖x‖≤Anν

∥∥MH
n (x)

∥∥ a.s.
= o

(
ns

′′)
.(B.17)

Since ‖Dp‖∞ <∞ (cf. [A2]) and
∫ ‖t‖K(t) dt <∞ (cf. [A3]),

sup
x∈Rd

‖Hc
n(x)− Jn(x)‖ a.s.

= O
(
n1−α) .(B.18)

Let R <∞. For x ∈ R
d such that ‖x‖ ≤ vn, we have

‖p‖∞ ≥ 1

n
Jn(x) ≥ mn

n

n−1∑
k=0

11{‖f(Xk)+Uk‖≤R},(B.19)

where mn = inf {p(z) ; ‖z‖ ≤ vn +R}. Since m > 2, lim supn→∞
1
n

∑n
k=1 ‖ξk‖2 <

∞. Combining this last result with assumption (3.4), we derive that

lim sup
n→∞

1

n

n−1∑
k=0

‖f(Xk) + Uk‖2 < ∞,

and then by applying part 1 of Lemma A.1, we obtain

lim inf
n→∞

1

n

n−1∑
k=0

11{‖f(Xk)+Uk‖≤R} > 0, a.s.(B.20)

Then, combining (B.17), (B.18), (B.19), and (B.20) gives (B.15).

Appendix C. This appendix is concerned with the proof of Theorem 4.1.
1. Stability of (Xn). Using (4.7) in model (1.1), the following equation holds:

Xn+1 = −f̃n(Xn) + X∗
n+1 + ξn+1 + γn+1ηn+1.(C.1)

Since ξ and (X∗
n)n≥1 are bounded and f is Lipschitz, we deduce from Lemma B.1 that

‖Xn+1‖ ≤ rf ‖Xn‖ + A2 + γn+1 ‖ηn+1‖(C.2)
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with A2 <∞. Then part 1 is obtained using Lemma A.3.
2. Consistency of f̂n. To prove the almost sure uniform dilated convergence of

f̂n, we use part 1 of Theorem 3.1. Therefore, we must verify assumption (3.2) and,
more precisely, find two sequences (vn)n≥1 and (wn)n≥1 such that

lim inf
n→∞

(
inf

‖x‖≤vn
1

wn
Hn−1(x)

)
> 0, a.s.(C.3)

For n ≥ 0, let us set Πn = −f̃n(Xn) +X
∗
n+1 and consider the following decomposition:

Hn(x) = MH
n (x) +

(
Hc
n(x)− Jn(x)

)
+

(
Jn(x)− Ln(x)

)
+ Ln(x)(C.4)

with

MH
n (x) = Hn(x) − Hc

n(x),

Hc
n(x) =

n∑
i=1

iαd E

[
K
(
iα (Xi − x)

)
/Fi−1

]
=

n∑
i=1

iαd E

[
K
(
iα (Πi−1 + γi ηi + ξi − x)

)
/Fi−1

]
=

n∑
i=1

γ−di

∫∫
K(v) p(u) pη

(
γ−1
i

(
i−αv + x−Πi−1 − u

))
du dv,

Jn(x) =

n∑
i=1

γ−di

∫
p(u) pη

(
γ−1
i (x−Πi−1 − u)

)
du,

Ln(x) =

n∑
i=1

γ−di pη
(
γ−1
i (x−Πi−1)

)
.

In this part, Fn = σ (X0, U0, ξ1, η1, . . . , ξn, ηn). We now proceed as for Hn(x) in
Appendix B. For x ∈ R

d and n ≥ 1, MH
n (x) is a square integrable martingale

adapted to F . Then, by Lemma A.2 with λ = αd, we obtain that for A <∞, ν > 0,
and s ∈ ]1/2 + αd , 1[,

sup
‖x‖≤Anν

∥∥MH
n (x)

∥∥ a.s.
= o (ns) .(C.5)

Since ‖Dpη‖ <∞,
∫ ‖v‖K(v) dv <∞ (cf. [A3]), and

∫ ‖u‖ p(u) du <∞,

sup
x∈Rd

‖Hc
n(x)− Jn(x)‖ + sup

x∈Rd

‖Jn(x)− Ln(x)‖ a.s.= O

(
n∑
i=1

γ−d−1
i

)
.(C.6)

We are left with the study of Ln(x). Let R > 0. Using Lemma B.1 and Assumption
[A4], we deduce that ‖Πn‖ ≤ ‖Xn‖ + N , with N <∞. Hence,

Ln(x) ≥
n∑
i=1

γ−di inf
‖y‖≤N+R

pη
(
γ−1
i (x− y)) 11{‖Xi−1‖≤R}.(C.7)

Since η is a Gaussian white noise with invertible covariance matrix Γη, we have

pη
(
γ−1
i (x− y)) ≥ cte exp

(
−γ

−2
i ‖ x− y ‖2
2λmin(Γη)

)
,(C.8)
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and since γn = Cγ(log n)
−γ with γ ∈ ]0 , 1/2[,

inf
{
pη
(
γ−1
n (x− y)) ; ‖x‖2 ≤ Aγ2

n log n , ‖y‖ ≤ N +R
}
≥ cten−δ,(C.9)

with δ = A/2λmin(Γη). Finally,

inf
‖x‖2≤Aγ2

n logn
Ln(x) ≥ cte

n∑
i=2

i−δ (log i)−γd 11{‖Xi−1‖≤R}.(C.10)

In addition, by part 1 of Theorem 4.1, there exists a finite constant M such that
lim supn→∞

1
n

∑n
i=1 ‖Xi−1‖2 ≤ M , a.s. Then, from part 1 of Lemma A.1, we de-

duce that

lim inf
n→∞

1

n

n∑
i=1

11{‖Xi−1‖≤R} > 0, a.s.,(C.11)

and therefore

lim inf
n→∞

(
inf

‖x‖≤ (2 δ λmin(Γη))
1/2Cγ(log n)1/2−γ

Ln(x)

n1−δ(log n)γd

)
> 0, a.s.(C.12)

Then, combining (C.5), (C.6), and (C.12), we obtain that for any δ ∈ ]0 , 1/2− αd[

lim inf
n→∞

(
inf

‖x‖≤A(log n)1/2−γ

1

n1−δ(log n)γd
Hn−1(x)

)
> 0, a.s.,(C.13)

where A = (2 δ λmin(Γη))
1/2
Cγ . Thus (3.2) is fulfilled and part 2 of Theorem 4.1

is proved.
3. Optimality of the tracking. From (C.1), we have∥∥Xn+1 −X∗

n+1

∥∥2
=
∥∥∥f̃n (Xn)

∥∥∥2

2
〈
f̃n (Xn) , ξn+1 + γn+1 ηn+1

〉
+ ‖ξn+1‖2 + γ2

n+1 ‖ηn+1‖2 + 2 γn+1

〈
ηn+1, ξn+1

〉
,

‖Xn −X∗
n − ξn‖2 ≤ 2

∥∥∥f̃n−1 (Xn−1)
∥∥∥2

+ 2 γ2
n ‖ηn‖2 ,

where 〈 . , . 〉 denotes the inner product on R
d. Using part 2 of Theorem 4.1,

Lemma B.1, and Theorem 3.3, we derive that for any integer m,

1

n

n∑
k=1

∥∥∥f̃k (Xk)
∥∥∥2

11{‖Xk‖≤Aδ(log k)1/2−γ}
a.s.
= o

(
n−2δ

)
,(C.14)

1

n

n∑
k=1

∥∥∥f̃k (Xk)
∥∥∥2

11{‖Xk‖>Aδ(log k)1/2−γ}
a.s.
= O

(
(log n)(1/2−γ)(2−m)

)
.(C.15)

Hence, for any integer m,

1

n

n∑
k=1

∥∥∥f̃k (Xk)
∥∥∥2 a.s.

= O
(
(log n)−(1/2−γ)(m−2)

)
.(C.16)

For n ≥ 1, Mn =
∑n

k=1〈f̃k−1 (Xk−1) , γk ηk + ξk〉 is a square integrable martin-

gale. Since ‖ 〈M〉n ‖ = O(
∑n

k=1 ‖f̃k−1 (Xk−1) ‖2) and
∑n

k=1 ‖f̃k−1 (Xk−1) ‖2 a.s.
= o(n)
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by (C.16), we deduce from a strong law of large numbers for the martingales (for
example, Duflo [13, Theorem 1.3.15, p. 20]) that for any λ > 0,

1

n

n∑
k=1

〈f̃k−1 (Xk−1) , γk ηk + ξk〉 a.s.= O

(
(log n)1+λ

n

)1/2

.(C.17)

Since η is a Gaussian white noise,
∑n

k=1 ‖ηk‖2 a.s.
= O(n) and then part 2 of Lemma A.1

gives

1

n

n∑
k=1

γ2
k ‖ηk‖2 a.s.

= O
(
(log n)−2γ

)
.(C.18)

To close the proof of Theorem 4.1, we have only to combine all these results and use
classical strong law of large numbers for the other terms.

Appendix D. This appendix is concerned with the proof of Theorem 4.2. For
x ∈ R

d, let us denote f̃∗(x) = f(x)− f∗(x).
1. Stability of (Xn). Let us first rewrite model (1.1) with control (4.8) in the

following way:

Xn+1 =
(
f∗(Xn)− f̂n(Xn)

)
11En(Xn) + f̃∗(Xn) + X∗

n+1 + ξn+1.(D.1)

Then, using Assumption [A5],

‖Xn+1‖ ≤ (af + bf )︸ ︷︷ ︸
< 1

‖Xn‖ + (Af +Bf +
∥∥X∗

n+1

∥∥)︸ ︷︷ ︸
< ∞

+ ‖ξn+1‖ ,(D.2)

and applying Lemma A.3 gives part 1 of Theorem 4.2.
2. Optimality of the control law. For k ≥ 0, let us set Πk = f(Xk) + Uk −

X∗
k+1. Then ∥∥Xk+1 −X∗

k+1

∥∥2
= ‖Πk‖2 + 2 ΠT

k ξk+1 + ‖ξk+1‖2 ,(D.3)

where ΠT
k denotes the transpose of Πk. To prove the optimality, we study the con-

vergence of the sum of each term in the last equation right-hand side.
The study of (1/n)

∑n−1
k=0 ‖ξk+1‖2 is straightforward. To explore (1/n)

∑n−1
k=0 Π

T
k ×

ξk+1, we must face the real difficulty which concerns (1/n)
∑n−1

k=0 ‖Πk‖2.
Step 1: study of (1/n)

∑n−1
k=0 ‖ξk+1‖2. Since ξ has a finite moment of order m > 2,

we have the regular strong law of large numbers

1

n

n−1∑
k=0

‖ξk+1‖2 a.s.−→
n→∞ trace(Γ).(D.4)

Step 2: study of (1/n)
∑n−1

k=0 ‖Πk‖2. To this aim, let us rewrite

Πk =
(
−f̃k(Xk)11Ek(Xk) + f̃

∗(Xk)11Ek(Xk)
)

11Vk(Xk)

+
(
−f̃k(Xk)11Ek(Xk) + f̃

∗(Xk)11Ek(Xk)
)

11V k(Xk),

where Vk denotes the set
{
x ∈ R

d ; ‖x‖ ≤ vk
}
and V k its complementary.



430 BRUNO PORTIER AND ABDERRAHIM OULIDI

• First, using assumption on function f∗ (cf. [A5]),

n∑
k=1

∥∥∥f̃∗(Xk)
∥∥∥2

11Ek(Xk)11V k(Xk)
a.s.
= O

(
n∑

k=1

(
‖Xk‖2 + 1

)
11{ ‖Xk‖ > vk}

)
.(D.5)

Moreover, there are two constants c1, c2 > 0 such that, a.s.,∥∥∥f̃k(Xk)
∥∥∥2

11Ek(Xk) ≤
∥∥∥f̃k(Xk)

∥∥∥2

11{x∈Rd ; ‖f̃k(x)‖−‖f̃∗(x)‖ ≤ bf‖x‖+Bf}(Xk)(D.6)

≤
∥∥∥f̃k(Xk)

∥∥∥2

11{x∈Rd ; ‖f̃k(x)‖ ≤ c1‖x‖+ c2}(Xk)

≤ (c1 ‖Xk‖+ c2)
2

and

n∑
k=1

∥∥∥f̃k(Xk)
∥∥∥2

11Ek(Xk)11V k(Xk)
a.s.
= O

(
n∑

k=1

(
‖Xk‖2 + 1

)
11{ ‖Xk‖ > vk}

)
.(D.7)

Since
∑n

k=1 ‖Xk‖m a.s.
= O(n) with m > 2, part 2 of Lemma A.1 applied to (D.5)

and (D.7) leads to

1

n

n∑
k=1

(∥∥∥f̃k(Xk)
∥∥∥2

11Ek(Xk) +
∥∥∥f̃∗(Xk)

∥∥∥2

11Ek(Xk)

)
11V k(Xk)(D.8)

a.s.
= O

(
1

n

n∑
k=1

v2−mk

)
+ O

(
v2−mn

)
.

• Using once again Assumption [A5], we derive

n∑
k=1

∥∥∥f̃∗(Xk)
∥∥∥2

11Ek(Xk)11Vk(Xk)(D.9)

a.s.
= O

(
n∑

k=1

(
‖Xk‖2 + 1

)
11{x∈Rd ; (bf−af )‖x‖+(Bf−Af )≤‖f̃k(x)‖}(Xk) 11Vk(Xk)

)
.

In addition, for all constants c3, c4 > 0, there is c5 > 0 such that for k ≥ 1∥∥∥f̃k(Xk)
∥∥∥2

11Vk(Xk)(D.10)

≥
∥∥∥f̃k(Xk)

∥∥∥2

11{x∈Rd ; ‖f̃k(x)‖≥ c3 ‖x‖+ c4}(Xk)11Vk(Xk)

≥ c5

(
‖Xk‖2 + 1

)
11{x∈Rd ; ‖f̃k(x)‖≥ c3‖x‖+ c4}(Xk)11Vk(Xk).

Thus, using this result in (D.9), we derive that

n∑
k=1

∥∥∥f̃∗(Xk)
∥∥∥2

11Ek(Xk)11Vk(Xk)
a.s.
= O

(
n∑

k=1

∥∥∥f̃k(Xk)
∥∥∥2

11{‖Xk‖≤vk}

)
(D.11)
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and then

n∑
k=1

(∥∥∥f̃k(Xk)
∥∥∥2

11Ek(Xk) +
∥∥∥f̃∗(Xk)

∥∥∥2

11Ek(Xk)

)
11Vk(Xk)(D.12)

a.s.
= O

 n∑
k=1

(
sup

‖x‖≤vk

∥∥∥f̃k(x)∥∥∥
)2

 .
Finally, combining (D.8) and (D.12) leads to

1

n

n∑
k=1

‖Πk‖2 a.s.
= O

(
1

n

n∑
k=1

v2−mk

)
+ O

(
v2−mn+1

)
(D.13)

+ O

 1

n

n∑
k=1

(
sup

‖x‖≤vk

∥∥∥f̃k(x)∥∥∥
)2

 .
Since assumptions of part 2 of Theorem 3.1 are satisfied, sup‖x‖≤vn ‖f̃n(x)‖

a.s.
= o(1),

and since m > 2, then v2−mn = o(1). Therefore, from (D.13), we deduce that

1

n

n∑
k=1

‖Πk‖2 a.s.
= o(1).(D.14)

Step 3: study of (1/n)
∑n−1

k=0 Π
T
k ξk+1. For n ≥ 1, Mn =

∑n−1
k=0 Π

T
k ξk+1 is a

square integrable martingale. Since ‖ 〈M〉n ‖ ≤ trace(Γ)
∑n−1

k=0 ‖Πk‖2 a.s.
= o(n)

(by (D.14)), we deduce from a strong law of large numbers for the martingales (for
example, Duflo [13, Theorem 1.3.15, p. 20]), that for any δ > 0,

1

n

n−1∑
k=0

ΠT
k ξk+1

a.s.
= O

(
(log n)1+δ

n

)1/2

.(D.15)

Finally, results (D.4), (D.14), and (D.15) give the optimality of the tracking.
To finish the proof of Theorem 4.2, let us remark that

∥∥∥Γ̂n − Γ
∥∥∥ a.s.

= O

(
1

n

n−1∑
k=0

‖Πk‖2
)

+ O

(∥∥∥∥∥ 1n
n∑

k=1

ξk ξ
T
k − Γ

∥∥∥∥∥
)
.(D.16)
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Abstract. In this paper, variational problems with equality and inequality state constraints are
considered. The theory of conjugate points for these problems is developed, and necessary conditions
for weak local optimality are derived in terms of this concept and the Legendre condition. For the case
of inequality constraints, the envelope-like effect is taken into consideration in the accessory problem.
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1. Introduction. In this paper, we deal with two variational problems. One is
the variational problem with inequality state constraints:

(VP) Minimize

∫ T

0

f(t, x(t), ẋ(t))dt

subject to x(0) = x0, x(T ) = xT , x ∈Wn
1,∞[0, T ],

g(t, x(t)) ≤ 0 for all t ∈ [0, T ];

the other is the variational problem with equality state constraints:

(VP0) Minimize

∫ T

0

f(t, x(t), ẋ(t))dt

subject to x(0) = x0, x(T ) = xT , x ∈Wn
1,∞[0, T ],

h(t, x(t)) = 0 for all t ∈ [0, T ],

where T > 0 is a fixed time, x0 and xT are given points in Rn, and Wn
1,∞[0, T ] :=

{x : [0, T ]→ Rn | xi ; absolutely continuous, ||x|| <∞} equipped with the norm ||x||
= maxt∈[0,T ] ||x(t)|| + esssupt∈[0,T ] ||ẋ(t)||. We assume that f : R2n+1 → R, h :

[0, T ] × Rn → Rl and g : [0, T ] × Rn → Rm are continuous and have continuous
partial derivatives with respect to (w.r.t.) x and ẋ up to order 2 inclusive.

Since the inception of optimal control theory in the 1960s and its increased appli-
cations to modern problems, the study of variational problems with state constraints
has been the center of attention for several researchers; see, for instance, [2], [9], [10],
[11], [12], [17], [28], [29], [31], [36], [38] and the references provided therein. At this
stage, many questions pertaining to the first-order optimality conditions have been
satisfactorily answered. Recently, the light has been strongly focusing on the questions
concerning second-order optimality conditions. For the case of abstract problems with
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inequality constraints, it was observed by Kawasaki [18] that a certain envelope-like
effect occurs and is manifested by the appearance of an extra term in the second-
order necessary condition. Later this phenomenon was also noticed by several authors
(Ioffe [15], [16], Cominetti [8], Páles and Zeidan [32], [33], and Penot [36]).

For the case of variational problems with state constraints, (e.g., the problem
(VP)), it is shown [32] that an extra term appears in the corresponding accessory
problem.

In the context of second-order necessary conditions for weak local minima, the
concept of conjugate point plays a crucial role in the history of variational problems
with fixed endpoints and no state constraints (e.g., [4], [13], and [30]). This concept
is usually given in terms of envelopes and is traditionally used as an effective tool to
verify the nonnegativity of the second variation, or equivalently, to verify that the
accessory problem has a zero minimum value. Hence, it is an important question to
obtain optimality conditions in terms of conjugate points theory. This theory was
extended in Zeidan and Zezza [43], [44] to the case when general endpoint conditions
are present; this naturally includes the periodic ones.

However, the problem of deriving the conjugate point theory for the case when
state constraints are present is a long-standing open question. This is the case even
for the calculus of variations setting.

The main purpose of this paper is to develop a theory of conjugate points for the
problems (VP) and (VP0). The second aim is to establish in terms of this notion
necessary conditions for optimality in (VP) and (VP0). Our approach is analytical.

In section 2 we review the resulting envelope-like effect for an abstract infinite
dimensional optimization problem. Then, the second variation is derived in Theorem
2.3 for (VP) via a direct proof. This result requires the nonemptiness of the set of
second-order admissible variations K(y) (see (2.2)) and, as expected, evokes in the
second variation an extra term E (see Definition 2.2).

Since the constraint K(y) 	= ∅ is neither an equality nor an inequality and since
the extra term involving E is so complicated to analyze, then the form of the accessory
problem given by Theorem 2.3 is not appropriate to derive the conjugate point theo-
rem. In section 3, we obtain from the second-variation of section 2 a “well-behaved”
accessory problem (AP) for (VP) that has quadratic objectives and inequalities. The
major results of the paper are given in section 4. There, we consider a quadratic prob-
lem (GAP) generalizing the accessory problem (AP) for which we develop necessary
conditions for optimality phrased in terms of a certain “Jacobi system.” This later
inspires the introduction of the “conjugate point” notion for (GAP). As a consequence
we obtain that the nonexistence of points in (0, T ) conjugate to 0 is necessary for op-
timality in (VP). In section 5 we obtain the Legendre condition for (VP). Conjugate
point theory for (VP0) is derived in section 6. In the final section we provide two
numerical examples that illustrate the utility of the results.

2. Preliminary results. Both (VP) and (VP0) are formulated as an abstract
optimization problem in Banach spaces:

(P) Minimize F (x)
subject to G(x) ∈ K, H(x) = 0,

where X, V, W are Banach spaces, K is a closed convex cone in V with nonempty
interior, F : X → R, G : X → V , and H : X → W are of C2-class. For instance, to
include (VP0) (equality constraints) one would take V = {0}.
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We first give some notations and definitions. We denote by 〈·, ·〉 the canonical
pairing between a Banach space V and its topological dual space V ∗. For any A ⊂ X,
its interior, closure, and conical hull are denoted by intA, Ā, and coneA, respectively.
All vectors in Rn except gradient vectors are column vectors. For a ∈ Rn, aT denotes
the transpose of a, and ai denotes the ith component of a. The polar cone of K is
defined by K◦ = {v∗ ∈ V ∗|〈v∗, v〉 ≤ 0 for all v ∈ K}. For any K̂ ⊂ V and v∗ ∈ V ∗,
the support function is defined by δ∗(v∗|K̂) = sup{〈v∗, v〉|v ∈ K̂}. For any twice
continuously differentiable mapping H, we denote by H ′(x) and H ′′(x) the first and
second Fréchet differentials, respectively. A feasible function x̄ is regular if H ′(x̄) has
a closed range. A vector y ∈ X is called a critical direction at x̄ if

F ′(x̄)y = 0, H ′(x̄)y = 0, G′(x̄)y ∈ cone(K −G(x̄)).(2.1)

For a given y ∈ X, we define the second-order admissible variation set

K(y) := {w ∈ V |d(θ2G(x̄) + θG′(x̄)y + w, K)→ 0 as θ →∞},(2.2)

where d(a,K) denotes the distance from a point a to the set K; see Kawasaki [18], [20].
The set K(y) is the closure of the set of second-order admissible variations defined in
[32].

Theorem 2.1 (see [32, Theorem 6]). Let x̄ be a regular local minimum of (P ).
Then, for each critical direction y satisfying K(y) 	= ∅, there exist λ0 ≥ 0, v∗ ∈ K◦,
and w∗ ∈W ∗ not all zero such that

L′(x̄) = 0,(2.3)

L′′(x̄)(y, y)− 2δ∗(v∗|K(y)) ≥ 0,(2.4)

〈v∗, G(x̄)〉 = 0,(2.5)

where

L(x) := λ0F (x) + 〈v∗, G(x)〉+ 〈w∗, H(x)〉.
Remark 2.1. As a consequence of (2.1), (2.3), and v∗ ∈ K◦, we obtain the second

complementary condition

〈v∗, G′(x̄)y〉 = 0.(2.6)

Remark 2.2. The additional term δ∗(v∗|K(y)) was first introduced in [18]. It
is closely related to the second derivative of an envelope formed by the generalized
inequality constraint G(x) ∈ K; see [18], [19], and [20]. Readers may also refer
to [3], [5], [8], [15], [16], [21], [22], [23], [24], [25], [26], [32], [33], [35], [36], [39], [41],
and [42]. Theorem 2.1 was also derived in [15, Thm. 5.1] under the Mangasarian–
Fromovitz condition. In that case λ0 = 1.

Now, we derive a second-order necessary optimality condition for the variational
problem (VP) with inequality state constraints by applying Theorem 2.1 to (VP).
Let x̄ be an arbitrary weak minimum for (VP). For the sake of simplicity we use the
following abbreviations:

f̄(t) = f(t, x̄(t), ˙̄x(t)), ḡ(t) = g(t, x̄(t)), . . . .
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We shall invoke the full-rank condition, that is,

{ḡjx(t)}ḡj(t)=0 are linearly independent for any t ∈ [0, T ].

Note that it can be shown that the Mangasarian–Fromovitz condition holds if the
full-rank condition holds together with

g(0, x0) < 0, g(T, xT ) < 0.(2.7)

In order to apply Theorem 2.1 to (VP), we takeX := Wn
1,∞[0, T ], V := (C[0, T ])m,

and W := R2n. Furthermore, we take K := {v ∈ (C[0, T ])m | v(t) ≤ 0 for all t},
F (x) :=

∫ T
0
f(t, x, ẋ)dt, G(x)(t) := g(t, x(t)), and H(x) := (x(0) − x0, x(T ) − xT )T ,

respectively.
Under the assumptions in section 1, the mappings F : X → R, G : X → V , and

H : X → R2n are twice continuously Fréchet differentiable, and their first and second
Fréchet differentials are given by

F ′(x̄)y =

∫ T

0

{f̄xy + f̄ẋẏ}dt,(2.8)

F ′′(x̄)(y, y) =

∫ T

0

{yT f̄xxy + 2yT f̄xẋẏ + ẏT f̄ẋẋẏ}dt,(2.9)

G′(x̄)y = ḡxy, G′′(x̄)(y, y) = yT ḡxxy,(2.10)

H ′(x̄)y = (y(0), y(T ))T , H ′′(x̄)(y, y) = (0, 0)T ;(2.11)

see, e.g., Girsanov [11] and Ioffe and Tihomirov [14].
The set K(y) in this setting is

K(y) := {w ∈ (C[0, T ])m | ∃ ∆(θ) ∈ (C[0, T ])m such that ∆(θ)→ 0 as θ →∞,
θ2ḡ(t) + θḡx(t)y(t) + w(t) + ∆(θ)(t) ≤ 0 for all t, for all θ > 0}.

In order to deal with the extra term δ∗(v∗|K(y)) in (2.4), we need the function
E(t) introduced in [19] and [20]. A function closely related to E was also introduced
for this context in [32] and [33].

Definition 2.2. For any u, v ∈ C[0, T ] that satisfy u(t) ≥ 0 for all t and
v(t) ≥ 0 for any t such that u(t) = 0, we define a function E : [0, T ]→ [−∞,∞] by

E(t) :=


max

{
lim sup
n→∞

v(tn)2

4u(tn)
; {tn} satisfies (2.13)

}
if t ∈ T0,

0 if t ∈ T1\T0,

−∞ otherwise,

(2.12)

where

T0 :=

{
t ∈ T | ∃tn → t s.t. u(tn) > 0, − v(tn)

u(tn)
→ +∞

}
,(2.13)
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T1 := {t ∈ T |u(t) = v(t) = 0}.(2.14)

Furthermore, it is convenient to use the following notation: Let y(t) be critical.
For each j = 1, . . . ,m, take in Definition 2.2

u(t) = −ḡj(t), v(t) = −ḡjx(t)y(t).(2.15)

Then we denote the function E(t) by Ej(t; y), and (E1(t; y), . . . , Em(t; y))T by E(t; y),
respectively. The following second-order necessary optimality condition was essen-
tially obtained in Páles, Zeidan [32, Thm. 6] for a more general problem. Since the
problem (VP) is simpler than that considered in [32], a direct and short proof is
provided below in order to complete the presentation of this paper.

Theorem 2.3. If x̄ is a weak minimum for (VP), then for each critical direction
y ∈Wn

1,∞[0, T ] satisfying K(y) 	= ∅, there exists a constant vector a ∈ Rn, a constant
λ0 ≥ 0, and a nondecreasing function λ : [0, T ]→ Rm that is right-continuous except
at t = 0 such that λ0 and dλ are not zero and

λ0

(
f̄ẋ(t)−

∫ t

0

f̄xds

)
−
∫

(0,t]

dλT ḡx = aT a.e. t ∈ [0, T ],(2.16)

∫ T

0

λ0{yT f̄xxy + 2yT f̄xẋẏ + ẏT f̄ẋẋẏ}dt+

∫
[0,T ]

yT (dλT ḡ)xxy +2

∫
[0,T ]

dλ(t)TE(t; y) ≥ 0,

(2.17)

and

dλj(t) = 0 on {t | ḡj(t) = ḡjx(t)y(t) = 0 }c, j = 1, . . . ,m.(2.18)

If in addition the full-rank condition holds then λ0 	= 0, say λ0 = 1, and in this case,
λ does not depend on y.

Remark 2.3. Since y = 0 is a critical direction and since 0 ∈ K(0), then by
Theorem 2.3, y = 0 has an associated λ0 ≥ 0 and λ satisfying (2.16) and (2.20).
Under the full-rank condition and (2.7), Theorem 2.3 asserts that this particular λ0

is nonzero and that when we take λ0 = 1, λ is independent of y and is unique up to
a constant.

Proof. By Riesz’s representation theorem, the Lagrange function L(x) is repre-
sented as

L(x) =

∫ T

0

λ0fdt+

∫
[0,T ]

dλT g +
∑

k=0, T

νTk (x(k)− xk),(2.19)

where ν0, νT ∈ Rn and λ : [0, T ] → Rm is a componentwise nondecreasing function;
see, e.g., Rudin [40]. For any critical direction y, we get from (2.3), (2.19), and the
integration by parts that

0 = L′(x̄)y =

∫ T

0

λ0{f̄xy + f̄ẋẏ}dt+

∫
[0,T ]

dλT ḡxy +

T∑
k=0

νTk y(k)

=

∫ T

0

λ0

{
f̄ẋ −

∫ t

0

f̄xdt−
∫

(0,t]

dλT ḡx

}
ẏdt
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for all y ∈ Wn
1,∞[0, T ] satisfying y(0) = y(T ) = 0. This implies (2.16); see, e.g., [11],

[14], and [27]. On the other hand, the complementarity condition (2.5) becomes∫
[0,T ]

dλT ḡ = 0.(2.20)

Since λ is nondecreasing and ḡ is nonpositive, (2.20) implies that

dλj(t) = 0 if ḡj(t) < 0.(2.21)

Hence the second complementarity condition (2.6) becomes∫
ḡ(t)=0

dλT ḡx = 0.(2.22)

Since G′(x̄)y ∈ cone(K −G(x̄)), it follows from Lemma 6.1 in [18] that

ḡx(t)y(t) ≤ 0 if ḡ(t) = 0.(2.23)

Combining (2.4), (2.21), (2.22), and (2.23), we get (2.18). On the other hand, it was
shown in [20, p. 222] and [34, Cor. (4.2) (iv)] that

δ∗(v∗|K(y)) = −
∫

[0,T ]

dλ(t)TE(t; y).(2.24)

Combining (2.9), (2.10), and (2.24), we get (2.17).
Now, assume the full-rank condition. Then, if λ0 = 0, (2.16) yields that∫

(t1,t2]

dλT ḡx = 0 for all t1, t2 ∈ [0, T ].

The right continuity of λ, the full-rank condition, and (2.21) imply that dλ = 0 on
[0, T ]. Hence a contradiction is obtained. Thus, λ0 	= 0 and can be taken to be 1.
Similar arguments show that if λ and µ are two nondecreasing functions that are
right continuous except at t = 0 and satisfy (2.16) and (2.21), then they must have
dλ = dµ on [0, T ].

3. The accessory problem (AP). In this section, we will give an accessory
problem (AP) for (VP). Assume in the rest of the paper that the full rank condition
and (2.7) hold. By Theorem 2.3 and Remark 2.3, there exist unique (up to a con-
stant) multipliers λ0 = 1 and λ such that Theorem 2.3 leads to a prototype of our
accessory problem:

(AP0) Minimize
1

2

∫ T

0

{yT f̄xxy + 2yT f̄xẋẏ + ẏT f̄ẋẋẏ}dt

+
1

2

m∑
j=1

∫
[0,T ]

{yT ḡjxxy + 2Ej}dλj ,

subject to y being critical and K(y) 	= ∅.
From Theorem 2.3, it follows that y(t) ≡ 0 is a minimum of (AP0).

Note that when we attempt to give a first-order necessary optimality condition
for (AP0) as well as the classical Jacobi equation, we encounter two difficulties:
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(1) The constraint K(y) 	= ∅ is neither an inequality constraint nor an equality
constraint.

(2) The definition of E(t; y) is so complicated that the extra term
∫
[0,T ]

Ej(t; y)dλj
is hard to analyze as a function of y.

Hence the key of this section is to overcome these two difficulties. Before solving
them, we first deal with critical directions.

Lemma 3.1. When x̄(t) is a weak minimum for (VP), then a function y ∈
Wn

1,∞[0, T ] is critical if and only if∫
[0,T ]

dλ(t)T ḡx(t)y(t) = 0,(3.1)

ḡjx(t)y(t) ≤ 0 if ḡj(t) = 0(3.2)

for all j, and

y(0) = y(T ) = 0.(3.3)

Proof. It is evident that H ′(x̄)y = 0 is equivalent to (3.3). As was seen in the
proof of Theorem 2.3, the condition G′(x̄)y ∈ cone(K −G(x̄)) is equivalent to (3.2).
Since the first-order optimality condition (2.3) is satisfied, the condition F ′(x̄)y = 0
is equivalent to 〈v∗, G′(x̄)y〉 = 0, which is furthermore equivalent to (3.1). This
completes the proof.

In this result, we characterize the nonemptiness of K(y) in terms of inequalities.
Thus, the first difficulty encountered above is circumvented.

Lemma 3.2. For any critical direction y(t), the necessary and sufficient condition
for the nonemptiness of K(y) is that there exists β ∈Wm

1,∞[0, T ] such that

ḡjx(t)y(t) +
√
−2ḡj(t)βj(t) ≤ 0(3.4)

for all t and j = 1, . . . ,m. Furthermore, when β(t) satisfies (3.4), it holds that

m∑
j=1

∫
[0,T ]

β(t)2dλj ≥ 2

m∑
j=1

∫
[0,T ]

Ej(t; y)dλj ,(3.5)

where λj(t) is the nondecreasing function guaranteed in Theorem 2.3.
Proof. First we note that K(y) is nonempty if and only if Ej(t; y) < ∞ for all t

and j = 1, . . . ,m; see Theorem 2.1 in [19]. Next, for each j = 1, . . . ,m, put

uj(t) := −ḡj(t), vj(t) := −ḡjx(t)y(t).(3.6)

Sufficiency: Let β satisfy (3.4). Then, for any converging sequence tn → t satis-
fying

− vj(tn)

uj(tn)
→∞,(3.7)

we get from (3.4) that

0 <
−vj(tn)√

2uj(tn)
≤ −βj(tn).(3.8)
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Tending n→∞, we get

0 ≤ limsup
n→∞

vj(tn)2

2uj(tn)
≤ βj(t)2.(3.9)

It follows from the definition of Ej(t; y) that 0 ≤ 2Ej(t; y) ≤ βj(t)2 <∞. When there
is no sequence tn → t satisfying (3.7), it is evident from the definition of Ej(t; y) that
2Ej(t; y) ≤ 0 ≤ βj(t)2. Since dλ ≥ 0, we readily get (3.5) from these inequalities.

Necessity: Since vj(t) ≥ 0 if uj(t) = 0, condition (3.4) implies that

βj(t) ≤ vj(t)√
2uj(t)

if uj(t) > 0 for all j = 1, . . . ,m.(3.10)

Since βj is continuous, this condition yields that

− vj(t)√
2uj(t)

is bounded above on {t : uj(t) > 0} for all j = 1, . . . ,m.(3.11)

Conversely, assume that (3.11) holds for some upper bounds Mj > 0. Set βj(t) =
Mj on [0, T ]. The result is that the function β = (βj) is in Wm

1,∞[0, T ] and satisfies
(3.4) on [0, T ]. Therefore, (3.4) is equivalent to (3.11).

Now, we proceed by contradiction. If (3.11) does not hold, then there exist some
j and a sequence tn such that u(tn) > 0 and

lim
n→∞

−vj(tn)√
2uj(tn)

=∞.(3.12)

Here we may assume that tn converges to some point t̄. Then it is evident that
vj(tn) < 0 for all sufficiently large n,

lim
n→∞

vj(tn)2

4uj(tn)
=∞,(3.13)

and

− vj(tn)

uj(tn)
=
vj(tn)2

uj(tn)

1

−vj(tn)
→∞.(3.14)

Therefore Ej(t̄; y) =∞, so that K(y) is empty. This completes the proof.
Combining Lemmas 3.1 and 3.2, we get another variational problem, which we

call the accessory problem for the variational problem (VP):

(AP) Minimize
1

2

∫ T

0

{yT f̄xxy + 2yT f̄xẋẏ + ẏT f̄ẋẋẏ}dt

+
1

2

m∑
j=1

∫
[0,T ]

{yT ḡjxxy + β2
j }dλj

subject to y ∈Wn
1,∞[0, T ], β ∈Wm

1,∞[0, T ],

ḡjx(t)y(t) +
√
−2ḡj(t)βj(t) ≤ 0 if dλj(t) = 0,

ḡjx(t)y(t) +
√
−2ḡj(t)βj(t) = 0 if dλj(t) > 0,

y(0) = y(T ) = 0.

Theorem 2.3 implies that the objective function of (AP) is nonnegative. Hence, it is
evident that (y(t), β(t)) ≡ (0, 0) is a minimum of the accessory problem (AP).
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4. Conjugate points for the (VP) problem. The goal of this section is to
eventually derive necessary conditions for the (VP) problem in terms of conjugate
points. In order to achieve this goal, we first derive the conjugate point theory for
the general quadratic problem (GAP) below, and then the conjugate points for (VP)
will be defined exactly as the conjugate points for its accessory problem (AP), which
is quadratic. In this section, we first give a first-order necessary optimality condition
(Jacobi system) for the accessory problem (AP). Next, we will define conjugate points
by using the Jacobi system, and finally we will prove that the open interval (0, T )
includes no points conjugate to 0 for any weak minimum for (VP).

(GAP) Minimize
1

2

∫ T

0

{yTPy + 2yTQẏ + ẏTRẏ}dt+
1

2

m∑
j=1

∫
[0,T ]

{yTCjy + β2
j }dλj

subject to y ∈Wn
1,∞[0, T ], β ∈Wm

1,∞[0, T ],

aj(t)
T y(t) + αj(t)βj(t) ≤ 0 if dλj(t) = 0,(4.1)

aj(t)
T y(t) + αj(t)βj(t) = 0 if dλj(t) > 0,(4.2)

y(0) = y(T ) = 0,

where R, Q, and P are n×n-matrix-valued essentially bounded measurable functions
for j = 1, . . . ,m, Cj is a continuous n×n-matrix-valued function, aj(t) in Wn

1,∞[0, T ]
and αj(t) in W1,∞[0, T ], and dλj is a given nonnegative regular Borel measure. We
assume that R(t), P (t), and Cj(t) are symmetric, αj(0) and αj(T ) are positive for
all j = 1, . . . ,m, the measure satisfies

αj(t)dλj(t) = 0 on [0, T ](4.3)

for all j = 1, . . . ,m, and {aTj (t)}αj(t)=0 are linearly independent for all t ∈ [0, T ].
In the following, we use these abbreviations:

α(t) :=

α1(t)
...

αm(t)

 , D(α) :=

α1 0
. . .

0 αm

 , A(t) :=

a1(t)T

...
am(t)T

 .(4.4)

The following theorem is a first-order necessary optimality condition for the general-
ized accessory problem (GAP).

Theorem 4.1. If (y, β) ∈Wn
1,∞[0, T ]×Wm

1,∞[0, T ] is a minimum for the accessory
problem (GAP), then there exist d ∈ Rn and µ : [0, T ]→ Rm with bounded variation
that is right-continuous except at t = 0 such that y(0) = y(T ) = 0, and the Jacobi
system holds:

Q(t)T y(t) +R(t)ẏ(t)−
∫ t

0

{Py +Qẏ}dt−
m∑
j=1

∫
(0,t]

Cjydλj −
∫

(0,t]

AT dµ = d a.e. t,

(J1)

βj(t)dλj(t) = αj(t)dµj(t) = 0,(J2)

aj(t)
T y(t) ≤ 0 if αj(t) = 0,(J3)
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aj(t)
T y(t) + αj(t)βj(t) ≤ 0 if dλj(t) = 0,(J4)

aj(t)
T y(t)dµj(t) = aj(t)

T y(t)dλj(t) = 0,(J5)

and

dµj(t) ≥ 0 if dλj(t) = 0(J6)

for all t ∈ [0, T ] and j = 1, . . . ,m.
Proof. For the sake of simplicity, we denote by F (y, β) the quadratic objective

function of (GAP). Now, let (y, β) be a minimum for (GAP). Then, since all the
functions in the constraints are linear w.r.t. (y, β), it is easily seen that there exists
no (z, γ) ∈ Wn

1,∞[0, T ] ×Wm
1,∞[0, T ] such that F ′(y, β)(z, γ) < 0, Az +D(α)γ ∈ Kλ,

and z(0) = z(T ) = 0, where Kλ denotes the set of all v ∈Wm
1,∞[0, T ] that satisfies

vj(t) ≤ 0 if dλj(t) = 0 and aj(t)
T y(t) + αj(t)βj(t) = 0,(4.5)

vj(t) ∈ R if dλj(t) = 0 and aj(t)
T y(t) + αj(t)βj(t) < 0,(4.6)

vj(t) = 0 if dλj(t) > 0(4.7)

for all j = 1, . . . ,m. This implies that the zero-vector in R × (C[0, T ])m × R2n does
not belong to the following convex cone:

C :=



F ′(y, β)(z, γ) + p
Az +D(α)γ − v

z(0)
z(T )

 ;

p > 0
v ∈ Kλ

z ∈Wn
1,∞[0, T ]

γ ∈Wm
1,∞[0, T ]

 .(4.8)

As we shall later see, C has nonempty interior. Hence, by the separation theorem,
there exist λ0 ∈ R, ν0, νT ∈ Rn, and µ : [0, T ]→ Rm of bounded variations that are
right-continuous except at t = 0 not all zero such that

λ0{F ′(y, β)(z, γ) + p}+

∫
[0,T ]

dµT {Az +D(α)γ − v}+ νT0 z(0) + νTT z(T ) ≥ 0(4.9)

for all p > 0, v ∈ Kλ, z ∈ Wn
1,∞[0, T ], and γ ∈ Wm

1,∞[0, T ]. We easily get λ0 ≥ 0.
From (4.9) and the definition of Kλ, we obtain

dµj(t) ≥ 0, if dλj(t) = 0 and aj(t)
T y(t) + αj(t)βj(t) = 0,(4.10)

and

dµj(t) = 0, if dλj(t) = 0 and aj(t)
T y(t) + αj(t)βj(t) < 0,(4.11)

which yields the last assertion (J6). Tending p → +0 and taking v = 0 in (4.9),
we have

λ0F
′(y, β)(z, γ) +

∫
[0,T ]

dµT {Az +D(α)γ}+ νT0 z(0) + νTT z(T ) ≥ 0(4.12)

for all z ∈ Wn
1,∞[0, T ] and γ ∈ Wm

1,∞[0, T ]. Let us show λ0 > 0. Suppose that λ0 = 0
in (4.12); then we have∫

[0,T ]

dµT {Az +D(α)γ}+ νT0 z(0) + νTT z(T ) = 0.(4.13)
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Hence, for any (z, γ) satisfying z(0) = z(T ) = 0, we have, by integration by parts, that∫ T

0

(∫
(0,t]

dµTA

)
ż(t)dt+

∫ T

0

(∫
[0,t]

dµTD(α)

)
γ̇(t)dt = 0.(4.14)

Hence both
∫
(0,t]

dµTA and
∫
(0,t]

dµTD(α) are constant, so that dµT (A,D(α)) = 0.

Since the matrix (A(t), D(α(t))) has full rank, we have dµ(t) = 0. Hence from (4.13)
we have ν0 = νT = 0. This leads to a contradiction. Hence we may assume that
λ0 = 1, and we get from (4.12) that

F ′(y, β)(z, γ) +

∫
[0,T ]

dµT {Az +D(α)γ} = 0(4.15)

for any (z, γ) such that z(0) = z(T ) = 0. That is,∫ T

0

{yTPz + ẏTQT z + yTQż + ẏTRż}dt+

m∑
j=1

∫
[0,T ]

{yTCjzdλj + dλTD(β)γ}

+

∫
[0,T ]

dµT {Az +D(α)γ} = 0.

By integration by parts, we have

∫ T

0

ż(t)T

Q(t)T y(t) +R(t)ẏ(t)−
∫ t

0

{Py +Qẏ}dt−
m∑
j=1

∫
(0,t]

Cjydλj −
∫

(0,t]

AT dµ

 dt

−
∫ T

0

γ̇(t)T

{∫
(0,t]

D(β)dλ+

∫
(0,t]

D(α)dµ

}
dt = 0.(4.16)

From (4.16), we get (J1) and

D(β(t))dλ(t) +D(α(t))dµ(t) = 0 on [0, T ].(4.17)

Combining (4.3) and (4.17), we get (J2).
From (4.1), (4.2), (4.10), and (4.11) we get (J3), (J4),

{aj(t)T y(t) + αj(t)βj(t)}dλj(t) = 0,(4.18)

and

{aj(t)T y(t) + αj(t)βj(t)}dµj(t) = 0.(4.19)

Combining (4.18), (4.19), and (J2), we get (J5). Finally, we prove that the convex cone
C has nonempty interior. For any u ∈ (W+

1,∞[0, T ])m, that is, for any nonnegative-
valued function inWm

1,∞[0, T ], the full-rank property of (A,D(α)) implies the following
linear equation has an unique solution w(t) ∈ Rm:

(A(t), D(α(t)))

(
A(t)T

D(α(t))

)
w(t) = u(t).(4.20)
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Put

z(t) := A(t)Tw(t), γ(t) := D(α(t))w(t).(4.21)

Then, by Cramer’s formula, z in Wn
1,∞[0, T ] and γ in Wm

1,∞[0, T ]. From (4.20), we
have

A(t)z(t) +D(α(t))γ(t) = u(t).(4.22)

Since α(0) and α(T ) are positive and since α is continuous, there exists δ > 0 such
that α is positive on [0, δ] ∪ [T − δ, T ]. Next, for any ξ0, ξT ∈ Rn, put

z̄(t) :=


1
δ {tz(t) + (δ − t)ξ0(t)} on [0, δ],

z(t) on [δ, T − δ],
1
δ {(T − t)z(t) + (t− T + δ)ξT (t)} on [T − δ, T ],

(4.23)

where

ξ0(t) =
1

δ
[z(δ)t+ (δ − t)ξ0]

and

ξT (t) =
1

δ
[z(T − δ)(T − t) + (t− T + δ)ξT ] .

Similarly for a suitable η ∈Wm
1,∞[0, T ], satisfying η(δ) = γ(δ) and η(T−δ) = γ(T−δ),

and which we will define later, put

γ̄(t) :=


1
δ {tγ(t) + (δ − t)η(t)} on [0, δ],

γ(t) on [δ, T − δ],
1
δ {(T − t)γ(t) + (t− T + δ)η(t)} on [T − δ, T ].

(4.24)

Then it is evident from (4.22)–(4.24) that

z̄(0) = ξ0, z̄(T ) = ξT , ˙̄z(δ) = ż(δ), and ˙̄z(T − δ) = ż(T − δ),(4.25)

z̄ and γ̄ are in Wn
1,∞ and Wm

1,∞, and

A(t)z̄(t) +D(α(t))γ̄(t) = u(t) on [δ, T − δ].(4.26)

Furthermore, for any t ∈ [0, δ], it follows from (4.22)–(4.24) that

(4.27)

u(t)− {A(t)z̄(t) +D(α(t))γ̄(t)}
= A(t)z(t) +D(α(t))γ(t)−A(t)

tz(t) + (δ − t)ξ0(t)

δ
−D(α(t))

tγ(t) + (δ − t)η(t)

δ

=
δ − t
δ
{A(t)(z(t)− ξ0(t)) +D(α(t))γ(t)} − δ − t

δ
D(α(t))η(t).

We can choose η(t) so that the right-hand side of (4.27) is nonnegative for all t ∈ [0, δ].
Indeed, put ρ(t) := A(t)(z(t)−ξ0(t))+D(α(t))γ(t). Then the right-hand side of (4.27)
is nonnegative if and only if

ρj(t) ≥ αj(t)ηj(t) for all j = 1, . . . ,m.(4.28)
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Since αj(t) > 0 on [0, δ] and since both ρ and α are in Wm
1,∞[0, T ], (4.28) is achieved

by a certain function η(t) in Wm
1,∞[0, T ]. This fact together with (4.27) implies that

u(t) ≥ A(t)z̄(t) +D(α(t))γ̄(t) on [0, δ].(4.29)

Similarly, we can prove that the inequality in (4.29) also holds on [T−δ, T ] by choosing
a suitable η(t). Finally, take

v(t) :=

{
0 on [δ, T − δ],
A(t)z̄(t) +D(α(t))γ̄(t)− u(t) ≤ 0 on [0, δ] ∪ [T − δ, T ].

(4.30)

Then it is easily seen from assumption (4.3) that v ∈ Kλ and u = Az̄ + D(α)γ̄ − v.
Therefore the convex cone C contains [r,∞)× (W+

1,∞[0, T ])m ×R2n, where r is some
real number. This completes the proof.

Definition 4.2. A pair (y, β) ∈ Wn
1,∞[0, T ] ×Wm

1,∞[0, T ] is said to satisfy the
Jacobi system for (GAP) if there exist a constant vector d ∈ Rn and µ : [0, T ]→ Rm

with bounded variation that is right-continuous except at t = 0 such that (J1)–(J6)
are satisfied.

Theorem 4.3. Let c be in (0, T ], and let (y, β) ∈Wn
1,∞[0, T ]×Wm

1,∞[0, T ] satisfy
the generalized Jacobi system on [0, c] and the end points condition

y(0) = y(c) = 0 and β(c)T
∫

(c,T ]

dλ = 0.(4.31)

Define ȳ(t) and β̄(t) by

ȳ(t) :=

{
y(t) on [0, c],

0 on [c, T ],
β̄(t) :=

{
β(t) on [0, c],

β(c) on [c, T ],
(4.32)

respectively. Then (ȳ, β̄) is also a feasible solution for the generalized accessory prob-
lem (GAP), and the value of the objective function at (ȳ, β̄) is zero.

Proof. It is clear that (ȳ, β̄) is a feasible solution for (GAP). It suffices to show that∫ c

0

{yTPy + 2yTQẏ + ẏTRẏ}dt+

m∑
j=1

∫
[0,c]

{yTCjy + β2
j }dλj = 0.(4.33)

By (J2), (J1), and integration by parts, this integration is equal to

∫ c

0

y(t)TQ(t) + ẏ(t)TR(t)−
∫ t

0

yTPdt−
∫ c

0

ẏTQT dt−
m∑
j=1

∫
(0,t]

yTCjdλj

 ẏ(t)dt

=

∫ c

0

(∫
(0,t]

dµTA

)
ẏdt =

∫
[0,c]

dµTAy = 0,

where the first equality follows from the complementarity condition (J5). This com-
pletes the proof.

Definition 4.4. Let y belong toWm
1,∞[0, T ] and let c be in (0, T ]. Then we denote

by ẏess(c− 0) the set of all essential cluster points of ẏ(t) as t→ c− 0, that is, those
that persist upon the removal of any set of measure zero; see Clarke [6, Ex. 2.2.5].
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Definition 4.5. A point c ∈ (0, T ] is said to be conjugate to t = 0 for (GAP)
if there exist a pair (y, β) ∈ Wm

1,∞[0, T ] ×Wm
1,∞[0, T ] and an essential cluster point

ξ ∈ ẏess(c− 0) such that they satisfy, with some µ and d, the Jacobi system (J1)–(J6)
on [0, c], the end points condition (4.31),

aj(c)
T ξ ≥ 0 if αj(c) = 0 and dλj(c) = 0,(4.34)

aj(c)
T ξ = 0 if dλj(c) > 0,(4.35)

for all j, and

limesssup
t→c−0, ẏ(t)→ξ

ẏ(t)TR(t)ẏ(t) > 0.(4.36)

In particular, when both ẏ(t) and R(t) have the left limits at t = c, conditions (4.34),
(4.35), and (4.36) reduce, respectively, to

aj(c)
T ẏ(c− 0) ≥ 0 if αj(c) = 0 and dλj(c) = 0,(4.37)

aj(c)
T ẏ(c− 0) = 0 if dλj(c) > 0,(4.38)

and

ẏ(c− 0)TR(c− 0)ẏ(c− 0) > 0.(4.39)

The following result is a necessary condition in terms of the conjugate point theory
for the optimal value of (GAP) to be zero.

Theorem 4.6. Assume that (GAP) has a minimum value equal to zero. Then
the open interval (0, T ) contains no points conjugate to t = 0.

Remark 4.1. Note that we do not assume that the strengthened Legendre con-
dition holds and thus, R(c− 0) need not be positive definite. Hence, Theorem 4.6 is
applicable to the shortest path problem in Euclidean space; see Example 7.2 below.

Proof of Theorem 4.6. Let (y, β) satisfy the Jacobi system (J1)–(J6) on [0, c] and
the end points condition (4.31). Let (ȳ, β̄), defined by (4.32), be the extensions of
(y, β). Then, by Theorem 4.3, (ȳ, β̄) is a global minimum for the generalized accessory
problem (GAP). Hence, by Theorem 4.1, there exist a function µ̄(t) and a constant d̄
that satisfy the Jacobi system (J1)–(J6). In particular, (J1) reduces to

Q(t)T y(t) +R(t)ẏ(t)−
∫ t

0

{Py +Qẏ}dt−
m∑
j=1

∫
(0,t]

{Cjydλj + ajdµ̄j} = d̄(4.40)

a.e. on [0, c], and

−
∫ c

0

{Py +Qẏ}dt−
m∑
j=1

∫
(0,c]

{Cjydλj + ajdµ̄j} = d̄.(4.41)

By subtracting (4.41) from (4.40) and multiplying it by ẏ(t)T , we get

ẏ(t)TQ(t)T y(t) + ẏ(t)TR(t)ẏ(t) + ẏ(t)T
∫ c

t

{Py +Qẏ}dt

+

m∑
j=1

ẏ(t)T
∫

(t,c]

Cjydλj +

m∑
j=1

ẏ(t)T
∫

(t,c]

ajdµ̄j = 0(4.42)
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a.e. on [0, c]. Here, since ẏ(t)TQ(t)T is essentially bounded and y(c) = 0, the first
term of (4.42) converges to zero as t→ c−0. Similarly, the third and the fourth terms
tend to zero. Now, let ξ be the essential cluster point in the definition of conjugate
points, and let tk → c− 0 satisfy (4.42) and ẏ(tk)→ ξ. Then the last term in (4.42)
converges to ξT

∑m
j=1 aj(c)dµ̄j(c). So we get from (4.42) that

lim
k→∞

ẏ(tk)TR(tk)ẏ(tk) +

m∑
j=1

ξTaj(c)dµ̄j(c) = 0.(4.43)

Hence it follows from (J2) and (4.35) that

lim
k→∞

ẏ(tk)TR(tk)ẏ(tk) +
∑

αj(c)=0, dλj(c)=0

ξTaj(c)dµ̄j(c) = 0.(4.44)

However, for any j satisfying αj(c) = 0 and dλj(c) = 0, we get from (4.34) and
(J6) that ξTaj(c)dµ̄j(c) ≥ 0, so that limk→∞ ẏ(tk)TR(tk)ẏ(tk) ≤ 0, which contradicts
(4.36). This completes the proof.

In the rest of this section, we apply the concept of conjugate points and Theo-
rem 4.6 to the problem (VP).

Definition 4.7. A point c ∈ (0, T ] is said to be conjugate to t = 0 for (VP) if c
is a conjugate point to t = 0 for (AP).

The following theorem is a necessary condition for optimality in (VP) in terms of
the conjugate point theory. It is an immediate consequence of Theorems 2.3 and 4.6.
We assume that ḡ(t) ∈ Wm

1,∞[0, T ] and ḡjx(t) ∈ Wn
1,∞[0, T ] for all j and that the full

rank condition and (2.7) hold.
Theorem 4.8 (main theorem). Let x̄(t) be a weak minimum for the variational

problem (VP). Then the open interval (0, T ) contains no points conjugate to t = 0.

5. Legendre condition for (VP). In the definition of conjugate points (Defi-
nition 4.5), we used a kind of Legendre condition. In this section, we justify it, that
is, we will prove that the usual Legendre condition holds for (VP).

First, let x̄(t) be a weak minimum for (VP). Then there exists ε > 0 such that
F (x̄) ≤ F (x̄+ εy) if x̄+ εy is feasible and ‖ y ‖< 1, where F is the objective function
of (VP) and ‖ y ‖ is the norm in Wn

1,∞[0, T ].
Hence, by putting u := ẏ, (ȳ(t), ū(t)) ≡ (0, 0) is a global minimum for the following

optimal control problem:

(OCP) Minimize

∫ T

0

f(t, x̄(t) + εy(t), ˙̄x(t) + εu(t))dt

subject to y(0) = y(T ) = 0, (y, u) ∈Wn
1,∞[0, T ]× Ln∞[0, T ],

ẏ = u,

g(t, x̄(t) + εy(t)) ≤ 0 for all t ∈ [0, T ],

|y(t)| < 1, |u(t)| < 1,

where | · | designates the Euclidean norm.
Theorem 5.1. If x̄ is a weak minimum for (VP), then fẋẋ(t, x̄(t), ˙̄x(t)) is non-

negative definite for a.e. t.
Proof. By the maximum principle, see, e.g., Clarke [6, Thm. 5.2.1], there exist

λ0 ∈ {0, 1}, m-dimensional vector-valued absolutely continuous p, and a nondecreas-
ing function λ : [0, T ] −→ Rm that is right-continuous except t = 0 such that
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(λ0, p, dλ) are not all zero,

ṗ(t) = −Hy
(
t, ȳ(t), p(t) +

∫
(0,t]

ḡTx dλ, ū(t), λ0

)
,(5.1)

H

(
t, ȳ(t), p(t) +

∫
(0,t]

ḡTx dλ,w, λ0

)
≥ H

(
t, ȳ(t), p(t) +

∫
(0,t]

ḡTx dλ, ū(t), λ0

)
(5.2)

for all |w| < 1 and a.e. t, and

dλj(t) = 0 if ḡj(t) < 0(5.3)

for all j, where

H(t, y, q, w, λ0) := qTu− λ0f(t, x̄(t) + εy, ˙̄x(t) + εw)(5.4)

for (t, y, q, w, λ0) ∈ [0, T ]×R3n+1. Since

H

(
t, ȳ(t), p(t) +

∫
(0,t]

ḡTx dλ,w, λ0

)
=

(
p(t) +

∫
(0,t]

ḡTx dλ

)T
w − λ0f(t, x̄(t), ˙̄x(t) + εw)

(5.5)

takes the maximum at w = 0, we get

p(t) +

∫
(0,t]

ḡTx dλ− λ0εfẋ(t, x̄(t), ˙̄x(t)) = 0(5.6)

for a.e. t. Furthermore, by differentiating (5.5) twice w.r.t. w, we see that λ0ε
2fẋẋ(t,

x̄(t), ˙̄x(t)) is nonnegative definite for a.e. t. Finally, we show that λ0 	= 0. Indeed, if
λ0 = 0, then from (5.6) we have

p(t) +

∫
(0,t]

ḡTx dλ = 0(5.7)

for a.e. t. For any t ∈ [0, T ], by choosing a suitable sequence tk converging to t from
the left and taking the limit in (5.7), we get

p(t) +

∫
(0,t)

ḡTx dλ = 0,(5.8)

where the commutativity of the limit with the integration is guaranteed by Lebesgue’s
convergence theorem. Similarly, by taking a suitable right limit in (5.7), we see that
(5.7) holds for all t ∈ [0, T ]. So, from (5.7) and (5.8), we have ḡx(t)T (λ(t)−λ(t−0)) = 0
for all t. Since {ḡjx(t)}ḡj(t)=0 are linearly independent and dλj(t) = 0 for any j such
that ḡj(t) < 0, we see that λ(t) does not jump at any point t. On the other hand, it
follows from the adjoint equation (5.1) that ṗ = −λ0εf̄x = 0. Since p(0) = 0, we have
p(t) = 0. Next, differentiate (5.7). Then we have ṗ+ ḡTx λ̇ = 0. Hence ḡTx λ̇ = 0, which
implies that λ̇ = 0. This contradicts that (λ0, p, dλ) are not all zero. Therefore λ0 is
positive. This completes the proof.

Remark 5.1. Theorem 5.1 above asserts that the usual Legendre condition holds
even if there exists an inequality state constraint. This fact is surprising, because
the result is different in the case of an equality state constraint. Namely, when the
inequality constraint g(t, x(t)) ≤ 0 is replaced with h(t, x(t)) = 0, we get only

ξT fẋẋ(t, x̄(t), ˙̄x(t))ξ ≥ 0 if hx(t, x̄(t))ξ = 0;(5.9)

see, e.g., Hestenes [13, Thm. 5.1].
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6. Conjugate points for (VP0) problem. In this section, we deal with the
variational problem (VP0) with equality state constraints. Since all the proofs are
similar to and far simpler than those of the inequality case, we omit them. Assume
that h̄x(t) has full rank for all t.

Theorem 6.1. If x̄(t) is a weak minimum for (VP0), then there exists a constant
vector a ∈ Rn and a function λ : [0, T ] −→ Rm with bounded variation that is right-
continuous except at t = 0 such that for each critical direction y ∈Wn

1,∞[0, T ], we have

f̄ẋ(t)−
∫ t

0

f̄xds−
∫

(0,t]

dλT h̄x = aT a.e. t ∈ [0, T ],(6.1)

∫ T

0

{yT f̄xxy + 2yT f̄xẋẏ + ẏT f̄ẋẋẏ}dt+

∫
[0,T ]

yT (dλT h̄)xxy ≥ 0.(6.2)

The accessory problem for (VP0) is given as follows:

(AP0) Minimize
1

2

∫ T

0

{yT f̄xxy + 2yT f̄xẋẏ + ẏT f̄ẋẋẏ}dt+
1

2

∫
[0,T ]

yT (dλT h̄)xxy

subject to y ∈Wn
1,∞[0, T ], h̄jx(t)y(t) ≡ 0, y(0) = y(T ) = 0.

Theorem 6.2. If y is a weak minimum for (AP0), then there exist d ∈ Rn and
µ : [0, T ] −→ Rm of bounded variation that is right-continuous except at t = 0 such
that the Jacobi system is satisfied, that is, a.e. t,

f̄ẋx(t)y(t) + f̄ẋẋ(t)ẏ(t)−
∫ t

0

{f̄xxy + f̄xẋẏ}dt−
m∑
j=1

∫
(0,t]

{h̄jxxydλj + h̄Tjxdµj} = d,

(J10)

a.e. t, and

h̄x(t)y(t) ≡ 0.(J20)

Theorem 6.3. Let c be in (0, T ], y satisfy (J10) and (J20) on [0, c], and c satisfy
the end points condition y(0) = y(c) = 0. Next, define ȳ(t) by y(t) on [0, c], and 0
on [c, T ]. Then ȳ is also a feasible solution for (AP0), and the value of the objective
function at ȳ is zero.

Definition 6.4. A point c ∈ (0, T ] is said to be conjugate to t = 0 if there
exist a feasible solution y ∈ Wm

1,∞[0, T ] for (AP0) and an essential cluster point
ξ ∈ ẏess(c − 0) such that they satisfy, for some µ and d, the Jacobi system (J10),
(J20) on [0, c], the end points condition y(0) = y(c) = 0, h̄x(c)ξ = 0, and
limesssupt→c−0, ẏ(t)→ξ ẏ(t)T f̄ẋẋ(t)ẏ(t) > 0.

Theorem 6.5. Let x̄(t) be a weak minimum for the variational problem (VP0).
Then the open interval (0, T ) contains no points conjugate to t = 0.

Remark 6.1. Traditionally, it was thought that inequality constraints could be
treated in the context of equality constraints by adding a slack variable of the form
v2 (see, e.g., [13, p. 261] or [30, p. 148]). However, this method produces necessary
conditions for optimality that are considerably weaker than those obtained via The-

orem 2.1. For instance, if we add the slack variable v2

2 to g(t, x(t)), the constraint
g(t, x(t)) ≤ 0 reduces to

g(t, x(t)) +
v2

2
(t) = 0 for all t ∈ [0, T ].(6.3)
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Now apply the results of this section to (VP), where g(t, x(t)) ≤ 0 is replaced by
(6.3). We obtain that the accessory problem (AP) has a zero minimum over a set of
directions (y, β) ∈Wn

1,∞[0, T ]×Wm
1,∞[0, T ] which is a strict subset of the set of critical

directions used in section 3. In fact, (y, β) must now satisfy y(0) = y(T ) = 0 and, for
all t and for all j,

aTj (t)y(t) + αj(t)βj(t) = 0,(6.4)

where aTj (t) = ḡjx(t) and αj(t) =
√−2ḡj(t). Furthermore, the Jacobi system associ-

ated with (GAP) subject to (6.4) would be (J1), (J2), (J5), (J6), and (6.4). Hence,
with this Jacobi system the number of conjugate points is smaller than that obtained
by using (J1)–(J6), as in Definition 4.5. Thus, the necessary condition that we would
obtain in terms of conjugate points is weaker than that given in Theorems 4.6 and
4.8.

7. Examples. We begin this section by introducing a connection condition.
Usually, optimal solutions for (VP) have a couple of phases. For instance, in Fig-
ure 7.1 below, x̄(t) has two phases: straight line x0P and sin-curve PxT . This fact
makes calculation of the Jacobi system, especially (J1), complicated. For example,
when we compute the integrations in (J1) for t that correspond to a point in PxT , we
have to divide the interval of integration into two subintervals like [0, t] = [0, τ)∪ [τ, t].
However, we can avoid this division by introducing a connection condition at the
boundary point t = τ .

Theorem 7.1. Let y and µ satisfy (J1), and let τ be in (0, T ). Then it holds that

{QT (t)y(t) +R(t)ẏ(t)}|t=τ+0
t=τ−0 =

m∑
j=1

{Cj(τ)y(τ)λj(t)|t=τt=τ−0 + aj(τ)µj(t)|t=τt=τ−0}.
(7.1)

We call (7.1) the connection condition.
Proof. Take the left and the right limits at τ in (J1). Then, since λ(t) and µ(t)

are right-continuous, we get the desired result by comparing the limits.
With the connection condition, we do not need to take care of the value of the

constant vector d ∈ Rn in (J1). It suffices to use the fact that the left-hand side of
(J1) is constant in each phase; see (7.7) below. Furthermore, we can easily derive
another connection condition for the Euler–Lagrange equation (2.16).

f̄ẋ(t)|t=τ+0
t=τ−0 = λ(t)T |t=τt=τ−0ḡx(τ).(7.2)

Example 7.1.

Minimize

∫ T

0

f(t, x, ẋ)dt =
1

2

∫ T

0

(ẋ2 − x2)dt

subject to x(0) = 0, x(T ) = −1, x ∈W1,∞[0, T ],

g(t, x(t)) = l(t)− x(t) ≤ 0 for all t ∈ [0, T ],

where π ≤ τ < T < 2π are fixed and

l(t) := min

{
t− π

sin(T − τ)
, 0,

τ − t
sin(T − τ)

}
.
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Fig. 7.1.

It is easily seen that the following pair satisfies the boundary condition and the
Euler–Lagrange equation (2.16):

x̄(t) :=

{
0 on [0, τ ],

− sin(t−τ)
sin(T−τ) on [τ, T ],

and λ(t) :=

{
0 on [0, τ),

1
sin(T−τ) on [τ, T ].

Next, since R(t) = f̄ẋẋ(t) = 1, Q(t) = f̄xẋ(t) = 0, P (t) = f̄xx(t) = −1, C1(t) =
ḡxx(t) = 0, and a1(t) = ḡx(t)T = −1, (J1) reduces to

ẏ +

∫ t

0

y dt+ µ(t)− µ(0) = d.(7.3)

On the other hand, it follows from (J2) that dµ = 0 on [0, π)∪ (τ, T ], so that ÿ+y = 0
a.e. on [0, π) ∪ (τ, T ]. Since y(0) = 0, we have y(t) = A sin t on [0, π]. Let us now
see if t = π is conjugate to 0 or not. By taking β(t) ≡ 0, we can easily see that the
pair (y, β) satisfies the Jacobi system. Furthermore, t = π satisfies (4.39) if A 	= 0.
Indeed, if A 	= 0, then R(π − 0)ẏ(π − 0)2 = A2 > 0.

Case 1. In the case of τ > π, it holds that dλ(π) = 0, ḡ(π) = 0, and ḡx(π)ẏ(π −
0) = A. Hence, by taking A > 0, we see that t = π is conjugate to 0, and hence x̄ is
not a weak minimum for the problem.

Case 2. In the case of τ = π, it holds that dλ(π) > 0 and ḡx(π)ẏ(π − 0) = A.
Hence, by (4.38), A must be zero if t = π is conjugate to 0. However, this contradicts
(4.39). Hence t = π is not conjugate to 0. Furthermore, since y(t) = B sin t for some
B ∈ R on [π, T ], (π, T ] contains no points conjugate to t = 0. Therefore x̄ could
be optimal.

Example 7.2. The problem is to find the shortest path which does not cross the
inside of the unit ball B ⊂ R3 and which joins two given points x0, x1 /∈ B; see Figure
7.2. That is,

Minimize

∫ T

t0

f(t, x(t), ẋ(t))dt =

∫ T

t0

√
ẋ1(t)2 + ẋ2(t)2 + ẋ3(t)2dt

subject to x(t0) = x0, x(T ) = x1, x ∈Wn
1,∞[t0, T ],

g(t, x(t)) =
1

2
(1− x1(t)2 − x2(t)2 − x3(t)2) ≤ 0 for all t ∈ [t0, T ],

where t0 < 0, π
2 < T are fixed.
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Fig. 7.2.

Fig. 7.3.

In this example, we consider the case where the endpoints are given by

x0 = (1, 0, t0)T , x1 =
(π

2
− T, 0, 1

)T
.(7.4)

As a candidate for an optimal solution, let us take

x̄(t) :=


(1, 0, t)T on t0 ≤ t < 0,

(cos t, 0, sin t)T on 0 ≤ t < π
2 ,

(π2 − t, 0, 1)T on π
2 ≤ t ≤ T.

(7.5)
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Then it is easily seen that x̄(t) satisfies the Euler–Lagrange equation by taking

λ(t) :=


0 on t0 ≤ t < 0,

t on 0 ≤ t < π
2 ,

π
2 on π

2 ≤ t ≤ T.
(7.6)

Now, let us compute the Jacobi system.
Phase 1. t0 ≤ t < 0. On this interval, it is easily seen that (J1) reduces toẏ1(t)

ẏ2(t)
0

+

∫
(t0,t]

1
0
t

 dµ = d.

Since y(t0) = 0, we see that dµ(t) ≡ 0, y1(t) = d1(t − t0), y2(t) = d2(t − t0),
and y3(t) can be arbitrary except y3(t0) = 0. Suppose that there exists a point
c conjugate to t0 in this interval. Then both y1(t) and y2(t) must vanish, so that
ẏ(c − 0)T f̄ẋẋ(c − 0)ẏ(c − 0) = ẏ1(c − 0)2 + ẏ2(c − 0)2 = 0, which contradicts (4.39).
Therefore there is no point conjugate to t0 in this interval.

Phase 2. 0 ≤ t < π. It is easily seen that (J1) reduces to

 cos2 t 0 sin t cos t
0 1 0

sin t cos t 0 sin2 t

ẏ1(t)
ẏ2(t)
ẏ3(t)

+

∫
(0,t]

y1(t)
y2(t)
y3(t)

 dt+

∫
(0,t]

cos t
0

sin t

 dµ = c,

(7.7)

where c ∈ R3 is a suitable constant vector. Here we note that the interval of integra-
tion is not (t0, t] but (0, t]. On the other hand, it follows from (J5) that ḡxydt = 0.
That is, y1(t) cos t + y3(t) sin t = 0. Hence there exists a real-valued function ρ(t)
such that

(y1(t), y3(t)) = ρ(t)(sin t,− cos t).(7.8)

Hence ρ(t) is absolutely continuous. Substituting (7.8) into (7.7), we get

ρ(t) cos t+

∫
(0,t]

ρ(t) sin t dt+

∫
(0,t]

cos tdµ = c1(7.9)

and

ρ(t) sin t−
∫

(0,t]

ρ(t) cos t dt+

∫
(0,t]

sin tdµ = c3.(7.10)

By differentiating (7.9), we have (ρ̇(t) + µ̇(t)) cos t = 0. Similarly, we get from (7.10)
that (ρ̇(t) + µ̇(t)) sin t = 0. Therefore

ρ̇+ µ̇ = 0.(7.11)

On the other hand, it follows from the second component of (7.7) that ÿ2 + y2 = 0.
Hence

y2(t) = A cos t+B sin t,(7.12)

where A and B are real constants.
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Then it is easily seen that the connection condition (7.1) at t = 0 reduces to

d1 = ẏ1(0 + 0) = ρ(0), d2 = ẏ2(0 + 0) = B.(7.13)

Furthermore, since y(t) is continuous at t = 0, we have

d1 = 0, A = −d2t0.(7.14)

Combining (7.12), (7.13), and (7.14), we get

y2(t) = B(sin t− t0 cos t).(7.15)

Now, suppose that there exists a point c conjugate to t0 in this interval. Then we get
from (7.15) that tan c = t0 < 0, which contradicts that 0 ≤ c < π

2 . Therefore there is
no point conjugate to t0 in this interval.

Phase 3. π
2 ≤ t ≤ T . As was the case in Phase 1, it follows from (J1) that

dµ = 0, y2(t) and y3(t) are straight lines, and y1(t) is arbitrary. If there exists a
point c conjugate to t0 in [π2 , T ], then y2 and y3 are given by y2(t) = b2(t − c) and
y3(t) = b3(t−c), where bk’s are constants. Furthermore, it follows from the connection
condition (7.1) and the continuity of y(t) at t = π

2 that b2 = Bt0, B = b2(π2 − c), and
b3 = 0. Hence

B
{
t0

(π
2
− c
)
− 1
}

= 0.(7.16)

On the other hand, it follows from (4.39) that 0 < ẏ(c − 0)T f̄ẋẋ(c − 0)ẏ(c − 0) =
ẏ2
2(c− 0)2 + ẏ2

3(c− 0)2 = b22 = B2t20. Hence we get from (7.16) that

t0

(π
2
− c
)
− 1 = 0.(7.17)

In Figure 7.3, R indicates the point x̄(c). Since the inequality constraint is inactive
at t = c, conditions (4.37) and (4.38) are trivially satisfied. Furthermore, it is easily
seen that (J2)–(J6) are satisfied by taking β(t) ≡ 0. Therefore, when T > π

2 − 1
t0

,
x̄(t) is not a weak minimal solution.
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Abstract. This article deals with Neumann boundary optimal control problems associated with
the Boussinesq equations including solid media. These problems are first put into an appropriate
mathematical formulation. Then the existence of optimal solutions is proved. The use of Lagrange
multiplier techniques is justified and an optimality system of equations is derived.

Key words. flow control, temperature control, Boussinesq equations, optimization
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PII. S0363012998347110

1. Introduction. In this article we study boundary optimal control problems
for a steady natural convection fluid. The control is heat flux on a portion of the
boundary.

We consider the nondimensional Boussinesq equations (including solid media) as
follows:

−Pr∆u + (u · ∇)u = −∇p+ PrRaTe2 + f in Ωf ,(1.1)

∇ · u = 0 in Ωf ,(1.2)

−∇ · (κ∇T ) + (u · ∇)T = Q, in Ω(1.3)

with boundary conditions

u = 0 on ∂Ωf , u ≡ 0 in Ω− Ωf = Ωs,(1.4)

T = 0 on ΓD,
∂T

∂n
= g on ΓC ,(1.5)

where the regular bounded open set Ω in R
2 is made up of two subdomains Ωf (fluid

domain) and Ωs (solid domain) separated by a C∞, connected arc (a regular hy-
persurface) Σ, with the result that Ω = Ωf ∪ Σ ∪ Ωs. Moreover, we assume that Σ
intersects ∂Ω in two junction points x−, x+ under nonzero angles. We have, in addi-
tion, ∂Ωf ∩ ∂Ωs = Σ. In (1.5), ΓD = ∂Ω\ΓC , where ΓC is a regular open subset of ∂Ω
such that x−, x+ �∈ ΓC . In (1.1)–(1.5), u, p, and T denote the velocity, pressure, and
temperature fields, respectively, with f a given body force, Q a given heat source, and
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control g. The vector e2 is a unit vector in the direction of gravitational acceleration
and κ is a thermal conductivity parameter. In this article, we consider the case of
κ ≡ κf in Ωf and κ ≡ κs in Ωs, where κf and κs are positive constants. The vector
n denotes the outward unit normal to Ω, and Pr and Ra denote the Prandtl and
Rayleigh numbers, respectively.

Next, we introduce the functionals

J1(u, T, p, g) =
1

2

∫
Ω

|T − Td|2 dx +
δ

2

∫
ΓC

|g|2 ds(1.6)

and

J2(u, T, p, g) =
1

2

∫
Ω

|∇ × u|2 dx +
δ

2

∫
ΓC

|g|2 ds.(1.7)

The optimal control problem we consider is to seek state variables (u, p, T ) and a
control g such that the functional (1.6) or (1.7) is minimized subject to (1.1)–(1.5),
where Td is some desired temperature distribution. The functional (1.6) effectively
measures the difference between the temperature field T and a prescribed field Td.
The real goal of optimization is to minimize the first term appearing in the definition
(1.6). The functional (1.7) measures the vorticity of the flow. The control of vorticity
has significant applications in science and engineering, such as control of turbulence
and control of crystal growth process. The second terms in the cost functionals (1.6)
and (1.7) are added to limit the cost of controls. The positive penalty parameter δ can
be used to change the relative importance of the two terms appearing in the definition
of the functional.

In past years, considerable progress has been made in mathematical analyses
and computations of optimal control problems for viscous flows. Optimal control
problems for the viscous, incompressible Navier–Stokes equations have been stud-
ied very actively during the last ten years (see [8, 9, 10, 13, 14, 15, 21] and references
therein). An optimal control problem for the thermally coupled incompressible Navier–
Stokes equations by Neumann boundary heat control is considered in [12] in which
the Navier–Stokes equations and heat equations are not fully coupled. In [16], an
optimal control problem for a coupled solid/fluid temperature control is considered.
Linear feedback control of Boussinesq equations is considered in [22]. Also, control
problems for the time dependent Boussinesq equations and related problems are con-
sidered in [2, 4, 17, 18, 20]. In this article, we consider optimal control problems for
the stationary Boussinesq equations including solid media.

The plan of the paper is as follows. In the remainder of this section, we introduce
the notation that will be used throughout the paper. Then, in section 2, we give a
precise statement of a weak formulation of the Boussinesq equations and prove that a
sufficiently smooth solution to the Boussinesq equations exists. In section 3, we give
a precise statement of the optimization problem and prove that an optimal solution
exists. In section 4, we prove the existence of Lagrange multipliers and then use the
method of Lagrange multipliers to derive an optimality system. Some remarks and
further discussions are also given.

1.1. Notation. We introduce some function spaces and their norms, along with
some related notations used in subsequent sections; for details see [1].

Let Ω be a bounded domain of R
2 with a Lipschitz continuous boundary Γ. Let

L2(Ω) be the space of real-valued square integrable functions defined on Ω, and let
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‖ · ‖L2(Ω) be the norm in this space. We define the Sobolev space Hm(Ω) for the
nonnegative integer m by

Hm(Ω)
def
=
{
u ∈ L2(Ω) | Dαu ∈ L2(Ω) for 0 ≤ |α| ≤ m} ,

where Dα is the weak (or distributional) partial derivative and α is a multi-index.
The norm ‖ · ‖Hm(Ω) associated with Hm(Ω) is given by

‖u‖2Hm(Ω) =
∑

|α|≤m
‖Dαu‖2L2(Ω).

Note that H0(Ω) = L2(Ω). For the vector-valued functions, we define the Sobolev
space Hm(Ω) (in all cases, boldface indicates vector-valued) by

Hm(Ω)
def
= {u = (u1, u2) | ui ∈ Hm(Ω) for i = 1, 2} ,

and its associated norm ‖ · ‖Hm(Ω) is given by

‖u‖2Hm(Ω) =

2∑
i=1

‖ui‖2Hm(Ω).

We also define particular subspaces:

L2
0(Ω) =

{
f ∈ L2(Ω) :

∫
Ω

f dx = 0

}
, H1

0(Ω) =
{
u ∈ H1(Ω) : u = 0 on Γ

}
,

and

H1
D(Ω) =

{
S ∈ H1(Ω) : S = 0 on ΓD

}
.

We make use of the well-known space L4(Ω) equipped with the norm || · ||L4(Ω).
We also define the solenoidal spaces

V
def
=
{
u ∈ H1

0(Ωf ) | ∇ · u = 0
}
.

If Ω is bounded and has a Lipschitz continuous boundary (these are kinds of
domains under consideration here), Sobolev’s embedding theorem yields that H1(Ω)
↪→↪→ L4(Ω), where ↪→↪→ denotes compact embedding, i.e., a constant C exists such
that

||u||L4(Ω) ≤ C||u||H1(Ω).(1.8)

Obviously a similar result holds for the spaces H1(Ω) and L4(Ω).

2. A weak formulation of the Boussinesq equations. We introduce the
following bilinear and trilinear forms for u,v and w ∈ H1(Ωf ), T, S ∈ H1(Ω):

a0(u,v) =

∫
Ωf

∇u : ∇v dx ∀ u,v ∈ H1(Ωf ),

a1(T, S) =

∫
Ω

κ∇T · ∇S dx ∀ T, S ∈ H1(Ω),

b(v, q) = −
∫

Ωf

q∇ · v dx ∀ v ∈ H1(Ωf ), ∀ q ∈ L2(Ωf ),

c0(u,w,v) =

∫
Ωf

(u · ∇)w · v dx ∀ u,v,w ∈ H1(Ωf ),

c1(u, T, S) =

∫
Ωf

(u · ∇)T S dx ∀ u ∈ H1(Ωf ), ∀ T, S ∈ H1(Ω),
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and

d(T,v) =

∫
Ωf

Te2 · v dx ∀ v ∈ H1(Ωf ), ∀ T ∈ H1(Ω).

We first note that the bilinear forms a0(·, ·) and a1(·, ·) are clearly continuous,
i.e.,

|a0(u,v)| ≤ ||u||H1(Ωf )||v||H1(Ωf )(2.1)

and

|a1(T, S)| ≤ max(κf , κs)||T ||H1(Ω)||S||H1(Ω).(2.2)

We have the coercivity relations associated with a0(·, ·) and a1(·, ·):

a0(u,u) = ||∇u||2L2(Ωf )
≥ C1||u||2H1(Ωf )

∀ u ∈ H1
0(Ωf )(2.3)

and

a1(T, T ) ≥ min(κf , κs)||∇T ||2L2(Ω) ≥ C2||T ||2H1(Ω) ∀ T, S ∈ H1
D(Ω),(2.4)

which are direct consequences of Poincaré inequality.

2.1. A weak formulation of the equations. The weak form of the constraint
equations (1.1)–(1.5) is then given as follows: seek u ∈ H1

0(Ωf ), p ∈ L2
0(Ωf ), and

T ∈ H1
D(Ω) such that

ν a0(u,v) + c0(u,u,v) + b(v, p) = α d(T,v) + 〈f ,v〉 ∀ v ∈ H1
0(Ωf ),(2.5)

b(u, q) = 0 ∀ q ∈ L2
0(Ωf ),(2.6)

and

a1(T, S) + c1(u, T, S) = 〈Q,S〉+

∫
ΓC

κ g S ds ∀ S ∈ H1
D(Ω).(2.7)

Throughout the mathematical discussions, for the sake of convenience we set ν = Pr
and α = Pr ×Ra, which are not to be confused with the physical quantities such as
kinematic viscosity.

Lemma 2.1. Suppose 0 < min(κf , κs) ≤ max(κf , κs) < ∞. Then, for u,v,w ∈
H1(Ωf ) and T, S ∈ H1(Ω) there are constants C1,2,3,4 such that

|c0(u,w,v)| ≤ C1||u||H1(Ωf )||v||H1(Ωf )||w||H1(Ωf ),(2.8)

c0(u,v,v) = 0 if u ∈ V,(2.9)

|c1(u, T, S)| ≤ C2||u||H1(Ωf )||T ||H1(Ω)||S||H1(Ω) ∀ u ∈ V,(2.10)

c1(u, T, T ) = 0 if u ∈ V,(2.11)
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and

|d(T,u)| ≤ C3||T ||L2(Ω)||u||L2(Ωf ) ≤ C4||∇T ||L2(Ω)||∇u||L2(Ωf ).(2.12)

Proof. The first and third inequalities follow from the Hölders inequalities and
the continuous embeddings of H1 into L4 and L2 and H1 into L4 and L2, respectively.
We obtain

|c0(u,w,v)| ≤ ||u||L4(Ωf )||∇v||L2(Ωf )||w||L4(Ωf )

≤ C1||u||H1(Ωf )||v||H1(Ωf )||w||H1(Ωf )

and

|c1(u, T, S)| ≤ ||u||L4(Ωf )||∇T ||L2(Ω)||∇S||L2(Ω)

≤ C2||u||H1(Ωf )||T ||H1(Ω)||S||H1(Ω).

The second and fourth equalities follow from Green’s formulas

c0(u,v,v) =
1

2
(u,∇(v · v)) =

1

2
(n · u,v · v)∂Ωf = 0

and

c1(u, T, T ) =
1

2

∫
∂Ωf

(u · n)T 2 ds = 0,

provided that ∇ · u = 0 and u ∈ V. The last inequality follows from the Cauchy
Schwarz inequality.

We now show that at least one solution always exists for data g ∈ L2(ΓC), Q ∈
L2(Ω), and f ∈ L2(Ωf ). Further, that solution is unique for either small data or
an equivalent restriction on the Rayleigh and Prandtl numbers. Stationary boundary
value problems (1.1)–(1.5) were studied by many authors (see [3, 5] and references
therein). Here, we adapt and/or extend their results with suitable modifications.

Lemma 2.2 (Leray–Schauder). Let E be a Banach space, and let G : [0, 1]×E →
E be a continuous, compact map, such that G(0, v) = v0 is independent of v ∈ E.
Suppose that there exists M <∞ such that, for all (σ, x) ∈ [0, 1]× E,

G(σ, x) = x =⇒ ||x|| < M.

Then the map G1 : E → E given by G1(v) = G(1, v) has a fixed point.
Proof. For the proof, see [7, Theorem 8.1, p. 57].
Theorem 2.3. For every g ∈ L2(ΓC), Q ∈ L2(Ω), and f ∈ L2(Ωf ), the Boussi-

nesq equations (2.5)–(2.7) have a solution (u, T, p) ∈ V ×H1(Ω)× L2
0(Ωf ) satisfying

the estimate

||u||H1(Ωf ) + ||p||L2(Ωf )+ ||T ||H1(Ω)(2.13) ≤ C (||f ||L2(Ωf ) + ||Q||L2(Ω) + ||g||L2(ΓC)

)
.

Proof. From (2.2), (2.4), (2.10), and (2.11), it follows that for u ∈ V, a1(·, ·) +
c1(u, ·, ·) is a continuous and elliptic bilinear form on H1

0 (Ω) × H1
0 (Ω), and thus on

H1
D(Ω) × H1

D(Ω). Thus, for given g ∈ L2(ΓC) and Q ∈ L2(Ω), by the Lax–Milgram
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lemma and trace theorems there is a unique solution T ∈ H1
D(Ω) satisfying (2.7) and

the estimate

||T ||H1(Ω) + ||T ||L2(ΓC) ≤ C
(||g||L2(ΓC) + ||Q||L2(Ω)

)
.(2.14)

Thus, we may define a mapping F : V → H1(Ω) by F (u) = T . The theorem will be
proved if one can show that there is at least one u ∈ V such that

ν a0(u,v) + c0(u,u,v) = α d(F (u),v) + 〈f ,v〉 ∀ v ∈ V.(2.15)

From inequality (2.3) it follows that a0(·, ·) is a continuous and elliptic bilinear form
on V ×V and

| − c0(u,u,v) + d(F (u),v) + 〈f ,v〉|
≤ (C2||u||2H1(Ωf )

+ α C4||F (u)||H1(Ω) + ||f ||L2(Ωf )) ||v||H1(Ωf )

for all v ∈ V follows from (2.10) and (2.12). Thus we may define a mapping G : V→
V by

ν a0(G(u),v) = −c0(u,u,v) + α d(F (u),v) + 〈f ,v〉 ∀ v ∈ V.(2.16)

Clearly, u is a solution of (2.15) if it is a solution of

G(u) = u.(2.17)

Now we may apply the Leray–Schauder Principle to prove the existence of the
solution to (2.17). First, we verify the compactness of G. Let u1,u2 ∈ V. Set w =
G(u2) − G(u1). Subtracting the equations obtained from (2.16) by substituting u2

and u1 for u and w for v, we get

ν a0(w,w) = −c0(u2 − u1; u2,w)
(2.18)

+ c0(u1; u2 − u1,w) + α d(F (u2)− F (u1),w).

Now we estimate ||F (u2)− F (u1)||H1(Ω). Substitute u2 and u1 in (2.7) and subtract
to get

a1(F (u2)− F (u1), S) =− c1(u2 − u1;F (u2), S)
(2.19) − c1(u1;F (u2)− F (u1), S) ∀ S ∈ H1

D(Ω).

Substituting F (u2)− F (u1) for S and using (2.4), (2.10), and (2.11), we have

||∇F (u2)−∇F (u1)||L2(Ω) ≤ C(||g||L2(ΓC) + ||Q||L2(Ω)) ||u2 − u1||L4(Ωf ).(2.20)

Thus

||∇w||L2(Ωf )≤ ν−1(||u2||L4(Ωf ) + ||u1||L4(Ωf )

+α C(||g||L2(ΓC) + ||Q||L2(Ω))) ||u2 − u1||L4(Ωf )

follows from (2.18) and (2.20) using (2.3), (2.8), and (2.11). Since H1
0(Ωf ) is compactly

embedded in L4(Ωf ) and hence so is V, it follows that G is a continuous compact
map.

Now we define G(σ,v) = σG(v) for all (σ,v) ∈ [0, 1]×V. Clearly, G(0,v) = 0 is
independent of v.
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Suppose σ ∈ (0, 1] and v ∈ V satisfies σG(v) = v. Then

σ−1 ν a0(v,v) = −c0(v; v,v) + α d(F (v),v) + 〈f ,v〉.(2.21)

From the above fact, we have

||∇v||L2(Ωf ) ≤ σ
(α
ν
C4||∇F (v)||L2(Ω) + ||f ||L2(Ωf )

)
≤ C (||g||L2(ΓC) + ||Q||L2(Ω) + ||f ||L2(Ωf )

)
,

which completes the proof.
We now prove a global uniqueness of the Boussinesq equations (2.5)–(2.7) for the

case of small data.
Theorem 2.4. Let u and F (u) = T be a solution of (2.5)–(2.7), and suppose

N ||∇u||L2(Ωf ) +α M < ν, where

N = sup
{
c0(u,v,w) : ||∇u||L2(Ωf ) = ||∇v||L2(Ωf ) = ||∇w||L2(Ωf ) = 1,u,v,w ∈ V

}
and

M = sup

{
d(F (u)− F (v),u− v)

||∇u−∇v||2L2(Ωf )

: u �= v,u,v ∈ V

}
.

Then u and F (u) = T is the unique solution of (2.5)–(2.7).
Proof. Suppose (w, F (w)) is a solution of (2.5)–(2.7), where w �= u; then

ν a0(u,v) + c0(u,u,v) = α d(F (u),v) + 〈f ,v〉 ∀ v ∈ V

and

ν a0(w,v) + c0(w,w,v) = α d(F (w),v) + 〈f ,v〉 ∀ v ∈ V.

Subtracting with v = u−w and using the fact that c0(w,u−w,u−w) = 0, we have

ν a0(u−w,u−w) = −c0(u−w,u,u−w) + α d (F (u)− F (w),u−w) .

Hence,

ν‖∇(u−w)‖2L2(Ω) ≤
(
N‖∇u‖L2(Ω) + αM

) ‖∇(u−w)‖2L2(Ω)

< ν‖∇(u−w)‖2L2(Ω),

which is a contradiction. Therefore, w = u.

2.2. Regularity of solutions of the Boussinesq equations. We now exam-
ine the regularity of solutions of the Boussinesq equations (2.5)–(2.7).

Theorem 2.5. Suppose that the given data satisfies Q ∈ L2(Ω), f ∈ L2(Ωf ).
Then if (u, p, T ) ∈ H1

0(Ωf )×L2
0(Ωf )×H1

D(Ω) denotes a solution of the problem (2.5)–
(2.7), we have that (u, p, T ) ∈ H1

0(Ωf )∩H2(Ωf )×L2
0(Ωf )∩H1(Ωf )×H1

D(Ω)∩Hs(Ω)
for all s < 3

2 . Moreover, there exists a continuous function Ps for each s such that

||u||H2(Ωf ) + ||p||H1(Ωf ) + ||T ||Hs(Ω)(2.22) ≤ Ps
(||f ||L2(Ωf ) + ||Q||L2(Ω) + ||g||L2(ΓC)

)
.
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Proof. First we prove for the temperature T the regularity result and estimate.
Since in Theorem 2.3 we already obtained an a priori estimate for (u, T ) in H1

0(Ωf )×
H1(Ω), by a localization argument it suffices to prove an estimate for temperature
only in a vicinity of Σ. By our assumption, in the neighborhood of junction points T
equals zero on the boundary. Thus locally one can consider our transmission problem
as one with zero Dirichlet boundary conditions. Thus by Theorem 5 in [24], we have

||T ||Hs(Ω) ≤ C(s)
(||Q||L2(Ω) + ||g||L2(ΓC) + ||f ||L2(Ωf ) + 1

)2
(2.23)

for all s ∈ (0, 3/2).
We also note that by assumption the boundary ∂Ωf consists of two smooth arcs

which intersect two times with anglers θi ∈ (0, π). Then since Tf ∈ H1(Ωf ) and
f ∈ L2(Ωf ), the regularity of u and p follows from well-known theories concerning the
Navier–Stokes equations in polygons (see Theorem 7.3.3.4 in [11]). By (2.23) and a
priori estimates for the Stokes system in a polygon (see [11]) there exists a continuous
function Ps for each s such that

||u||H2(Ωf ) ≤ Ps
(||f ||L2(Ωf ) + ||Q||L2(Ω) + ||g||L2(ΓC)

)
.(2.24)

Thus, the proof is completed.
Remark 2.1. The regularity of temperature T achieved in the previous theorem

is optimal in the sense of scale of Sobolev spaces Hs(Ω). In fact, even if κs = κf , in

general T �∈ H 3
2 (Ω) (see [23]).

3. The optimization problem and the existence of optimal solutions.

3.1. The optimization problems. We state the optimal control problem. We
look for a (u, T, p, g) ∈ H1

0(Ωf )×H1
D(Ω)× L2

0(Ωf )× V such that the cost functional

(Problem 1) J1(u, T, p, g) =
1

2

∫
Ω

|T − Td|2 dx +
δ

2

∫
ΓC

|g|2 ds(3.1)

or

(Problem 2) J2(u, T, p, g) =
1

2

∫
Ω

|∇ × u|2 dx +
δ

2

∫
ΓC

|g|2 ds,(3.2)

subject to the constraints

ν a0(u,v) + c0(u,u,v) + b(v, p) = α d(T,v) + 〈f ,v〉 ∀ v ∈ H1
0(Ωf ),(3.3)

b(u, q) = 0 ∀ q ∈ L2
0(Ωf ),(3.4)

and

a1(T, S) + c1(u, T, S) = 〈Q,S〉 − (κg, S)ΓC ∀ S ∈ H1
D(Ω),(3.5)

where V is a nonempty, closed, and convex subset of L2(ΓC).
The admissibility set Uad is defined by

Uad =
{

(u, T, p, g)∈ H1
0(Ωf )×H1(Ω)× L2

0(Ωf )× V :
(3.6) J (u, T, p, g) <∞, and (3.3)–(3.5) are satisfied

}
,
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where J (u, T, p, g) is J1(u, T, p, g) or J2(u, T, p, g) depending on minimization prob-
lems. Then (u, T, p, g) ∈ Uad is called an optimal solution if there exists ε > 0 such
that

J (u, T, p, g) ≤ J (v, S, q, h) ∀ (v, S, q, h) ∈ Uad,(3.7)

satisfying

‖u− v‖H1(Ωf ) + ‖T − S‖H1(Ω) + ‖p− q‖L2(Ωf ) + ‖g − h‖L2(ΓC) < ε .(3.8)

If for an optimal solution (u, T, p, g) ∈ Uad the inequalities (3.7) and (3.8) hold true
with ε = +∞, we say that (u, T, p, g) is the global minimum. The optimal control
problem can now be formulated as a constrained minimization in a Hilbert space:

min
(v,S,q,h)∈Uad

J (v, S, q, h).(3.9)

Problems 1 and 2 can be analyzed in exactly the same manner. In this section, we
treat the first problem in detail.

3.2. The existence of an optimal solution. The existence of an optimal
solution can be proved based on the a priori estimates (2.13) and standard techniques.

Theorem 3.1. Let Q ∈ L2(Ω) and f ∈ L2(Ωf ). Then there is an optimal solution

(û, T̂ , p̂, ĝ) ∈ Uad to (3.9).
Proof. The set Uad is apparently nonempty because of Lemma 2.2. Thus we may

choose a minimizing sequence {u(n), T (n), p(n), g(n)} in Uad such that

lim
n→∞J1(u(n), T (n), p(n), g(n)) = inf

(v,S,q,z)∈Uad
J1(v, S, q, z).(3.10)

By the definition of Uad, we have

ν a0(u(n),v) + c0(u(n),u(n),v) + b(v, p(n))
(3.11)

= α d(T (n),v) + 〈f ,v〉 ∀ v ∈ H1
0(Ωf ),

b(u(n), q) = 0 ∀ q ∈ L2
0(Ωf ),(3.12)

and

a1(T (n), S) + c1(u(n), T (n), S) = 〈Q,S〉+ κf (g(n), S) ∀ S ∈ H1
D(Ω).(3.13)

From (1.6) and (3.6), we easily see that {||g(n)||L2(ΓC)} is uniformly bounded. Also, by

(2.13) we have that the sequences {||u(n)||H1(Ωf )}, {||T (n)||H1(Ω)} and {||p(n)||L2(Ωf )}
are uniformly bounded. We may then extract subsequences such that

g(n) ⇀ ĝ in L2(ΓC),

u(n) ⇀ û in H1
0(Ωf ) and ∇u(n) ⇀ ∇û in L2(Ωf ),

T (n) ⇀ T̂ in H1
D(Ω) and ∇T (n) ⇀ ∇T̂ in L2(Ω),

p(n) ⇀ p̂ in L2(Ωf ),

u(n) → û in L4(Ωf ) and L2(Ωf )

for some (û, T̂ , p̂, ĝ) ∈ H1
0(Ωf )×H1

D(Ω)×L2
0(Ωf )×L2(ΓC). The last convergence result

above follows from the compact embedding H1(Ωf ) ↪→↪→ L4(Ωf ) and H1(Ωf ) ↪→↪→
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L2(Ωf ). We may pass to the limit in (3.11)–(3.13) to determine that (û, T̂ , p̂, ĝ) sat-
isfies (3.3)–(3.5). Indeed, the only troublesome term when one passes to the limit is
the nonlinearity c0(·, ·, ·). However, note that

c0(u(n),u(n),v)

=

∫
∂Ωf

(u(n) · n)u(n) · v ds−
∫

Ωf

(u(n) · ∇)v · u(n) dx ∀ v ∈ D(Ω̄f ),

where D(Ω̄f ) is the space of test functions. Then, since u(n) → û in L2(Ωf ) and∫
∂Ωf

(u(n) · n)u(n) · v ds = 0 for all n, we have that

lim
k→∞

c0(u(k),u(k),v) = −
∫

Ωf

(û · ∇) v · û dx ∀ v ∈ D(Ω̄f ).

Since D(Ω̄f ) is dense in H1
0(Ωf ), we have that for each û ∈ H1

0(Ωf ),

lim
k→∞

c0(u(k),u(k),v) = c0(û, û,v) ∀ v ∈ H1(Ωf ).

Thus we have shown that (û, T̂ , p̂, ĝ) indeed satisfies (3.3)–(3.5) so that (û, T̂ , p̂, ĝ) ∈
Uad.

Finally, it is easy to see that J1(·, ·, ·, ·) is weakly lower-semicontinuous so that

J1(û, T̂ , p̂, ĝ) = inf
(v,S,q,z)∈Uad

J1(v, S, q, z).(3.14)

Thus an optimal solution belonging to Uad exists.

4. The existence of Lagrange multipliers and an optimality system.
This section is devoted to obtaining an optimality system to (3.9). We wish to use the
method of Lagrange multipliers to turn the constrained optimization problem (3.9)
into an unconstrained one. We establish also that there exists an open and dense set
of initial data such that the Lagrange multiplier with respect to functional (1.6) is
not equal to zero. We first show that suitable Lagrange multipliers exist.

Theorem 4.1. Let Q ∈ L2(Ω) and f ∈ L2(Ω). Assume (û, T̂ , p̂, ĝ) ∈ Uad is an
optimal solution to minimization problem (3.9). Then there exist Lagrange multipliers
(λ,w, R, q) ∈ R

1 ×V ∩H2(Ωf )×Hs(Ω)×H1(Ωf ) for all s < 3
2 such that

(λ,w, R, q) �= 0 ,(4.1)

−∇ · (κ∇R)− χ
Ωf

(û · ∇)R−αχ
Ωf

(w, e2) + λ(T̂ − Td) = 0 in Ω,(4.2)

∂R

∂n
|ΓC = 0, (λδĝ − κR, g− ĝ)L2(ΓC) ≥ 0 ∀ g ∈ V, R|ΓD = 0,(4.3)

−ν∆w − (û · ∇)w +B(û,w) +R∇T̂ = ∇q in Ωf ,(4.4)

and

∇ ·w = 0, w|∂Ωf = 0,(4.5)

where B(û,w) =
(
(w, ∂û∂x1

), (w, ∂û∂x2
)
)
. Moreover, if λ = 0 and V = L2(ΓC), then

R �= 0.
Proof. To prove the existence of Lagrange multipliers for the constrained min-

imization problem (3.9), we use the penalty method. Let us consider the auxiliary
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extremal problem : find (u, T, p, g) ∈ V×H1(Ω)×L2
0(Ωf )×L2(ΓC) which minimizes

the functional

Jε(u, T, p, g) = J1(u, T, p, g)

+
1

2ε
‖ − ν∆u + (u · ∇)u− αTe2 +∇p− f‖2L2(Ωf )

(4.6)

+
1

2ε
‖ − ∇ · (κ∇T ) + χ

Ωf
(u · ∇)T −Q‖2L2(Ω)

+
N

2
‖u− û‖2L2(Ωf )

+
N

2
‖T − T̂‖2L2(Ω) +

N

2
‖g − ĝ‖2L2(ΓC)

with

T |ΓD = 0,
∂T

∂n
|ΓC = g, g ∈ V, u|∂Ωf = 0, ∇ · u = 0,(4.7)

where (û, p̂, T̂ , ĝ) ∈ V ∩H2(Ωf )×H1(Ωf ) ∩ L2
0(Ωf )×H1

D(Ω) ∩Hs(Ω)× L2(ΓC) for
all s < 3

2 is a solution to extremal problem (3.9), such that inequality (3.8) holds
true with ε = ε̂ and N > 0, ε ∈ (0, 1) as parameters. The existence of this solution
(û, p̂, T̂ , ĝ) was established in Theorem 3.1. By a method similar to the one used in the
proof of Theorem 3.1, one can prove that there exists a solution of the problem (4.6)–
(4.7) (ûε, T̂ε, p̂ε, ĝε) ∈ V ∩H2(Ωf ) × H1

D(Ω) ∩ Hs(Ω) × H1(Ωf ) ∩ L2
0(Ωf ) × L2(ΓC)

for all s ∈ [1, 3
2 ). Moreover, from the fact that Jε(ûε, T̂ε, p̂ε, ĝε) ≤ Jε(û, T̂ , p̂, ĝ) =

J1(û, T̂ , p̂, ĝ) and the inequality (2.22), we have that{
(ûε, T̂ε, p̂ε, ĝε)

}
ε∈(0,1)

is bounded in
(4.8)

V ∩H2(Ωf )×H1
D(Ω) ∩Hs(Ω)× L2

0(Ωf )× L2(ΓC)

for all s ∈ [1, 3
2 ). Thus, from (4.6)–(4.8) for any ε̂ > 0, taking parameter N sufficiently

large, we obtain

‖ûε − û‖L2(Ωf ) + ‖T̂ε − T̂‖L2(Ω) + ‖ĝε − ĝ‖L2(ΓC) ≤ ε̂/2 .(4.9)

Denoting

f̂ε = −ν∆ûε + (ûε · ∇)ûε − αT̂εe2 +∇p̂ε − f ,

Q̂ε = −∇ · (κ∇T̂ε) + χΩf
(ûε · ∇)T̂ε −Q,

we obviously have

(f̂ε, Q̂ε)→ (0, 0) in L2(Ωf )× L2(Ω).(4.10)

By fact (4.8) and the Sobolev imbedding theorem and interpolation theorem, we have

‖(ûε · ∇)ûε − (û · ∇)û‖L2(Ωf )

≤ ‖((ûε − û) · ∇)ûε + (û · ∇)(ûε − û)‖L2(Ωf )

≤ C‖ûε − û‖
H

3
4 (Ωf )

(‖ûε‖H2(Ωf ) + ‖û‖H2(Ωf ))(4.11)

≤ C‖ûε − û‖ 1
4

V‖ûε − û‖ 3
4

H2(Ωf )
(‖ûε‖H2(Ωf ) + ‖û‖H2(Ωf ))

≤ C‖ûε − û‖ 1
4

V,
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where C is independent of ε ∈ (0, 1). Note that

−ν∆(ûε − û) + (ûε · ∇)ûε − (û · ∇)û
(4.12) − α(T̂ε − T̂ )e2 +∇(p̂ε − p̂) = f̂ε in Ωf

and

(ûε − û)|∂Ωf = 0, ∇ · (ûε − û) = 0.(4.13)

By (4.11) and a priori estimates for the Stokes problem (see [25]), we have

‖ûε − û‖H2(Ωf ) + ‖p̂ε − p̂‖H1(Ωf )(4.14)
≤ C(‖ûε − û‖ 1

4

V + ‖T̂ε − T̂‖L2(Ω) + ‖f̂ε‖L2(Ω)).

The inequalities (4.9), (4.10), and (4.14) imply that for any ε̂ > 0 there exists a
N(ε̂) > 0 such that

‖ûε − û‖H1(Ωf ) + ‖T̂ε − T̂‖H1(Ω) + ‖p̂ε − p̂‖L2(Ωf ) + ‖ĝε − ĝ‖L2(ΓC) ≤ ε̂,
∀ ε ∈ (0, 1).(4.15)

Therefore, without loss of generality, taking if necessary a subsequence, one can prove
that

(ûε, T̂ε, p̂ε, ĝε) ⇀ (ũ, T̃ , p̃, g̃) in V∩H2(Ωf )×H1
D(Ω)×H1(Ωf )∩L2

0(Ωf )×L2(ΓC).

In the same way, as was done in the proof of Theorem 3.1, one can show that
(ũ, T̃ , p̃, g̃) ∈ Uad.Moreover, inequality (4.15) and weak lower-semicontinuity of norms
in Hilbert spaces imply

‖ũ− û‖H1(Ωf ) + ‖T̃ − T̂‖H1(Ω) + ‖p̃− p̂‖L2(Ωf ) + ‖g̃ − ĝ‖L2(ΓC) ≤ ε̂.(4.16)

On the other hand, the inequality

Jε(ûε, T̂ε, p̂ε, ĝε) ≤ J1(û, T̂ , p̂, ĝ)

yields

J1(ûε, T̂ε, p̂ε, ĝε) ≤ J1(û, T̂ , p̂, ĝ).(4.17)

Since the functional J1 is weak lower-semicontinuous, we have

J1(ũ, T̃ , p̃, g̃) ≤ J1(û, T̂ , p̂, ĝ).(4.18)

By (4.16) and (4.18), we have that (ũ, T̃ , p̃, g̃) is a solution of the optimal control
problem (3.9).

Now if we assume that (ũ, T̃ , p̃, g̃) �= (û, T̂ , p̂, ĝ), then

J1(û, T̂ , p̂, ĝ)− J1(ũ, T̃ , p̃, g̃) ≥ 1

2
‖ũ− û‖2L2(Ωf )

+
1

2
‖T̃ − T̂‖2L2(Ω) > 0,

which contradicts the fact that (û, T̂ , p̂, ĝ) is the solution to problem (3.9). Thus,
(ũ, T̃ , p̃, g̃) = (û, T̂ , p̂, ĝ) and we have

(ûε, T̂ε, p̂ε, ĝε) ⇀ (û, T̂ , p̂, ĝ) in H2(Ωf )×H1
D(Ω)× L2(Ωf )× L2(ΓC).(4.19)
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Moreover, by (4.18) and (4.19) we have

lim
ε→0
J1(ûε, T̂ε, p̂ε, ĝε) = J1(û, T̂ , p̂, ĝ).(4.20)

Hence by (4.19) and (4.20) we have

ĝε → ĝ in L2(ΓC).(4.21)

On the other hand, the facts (4.10), (4.14), (4.19), and (4.21) imply

(ûε, T̂ε, p̂ε, ĝε)→ (û, T̂ , p̂, ĝ) in H2(Ωf )×H1
D(Ω)× L2(Ωf )× L2(ΓC)(4.22)

and

(ûε, p̂ε, T̂ε)→ (û, p̂, T̂ ) in V ×H1(Ωf )×Hs(Ω) ∀s ∈
(

1,
3

2

)
.(4.23)

Let v ∈ H2(Ω)∩V, p ∈ C2(Ω), and S1 ∈ H2(Ω) be arbitrary functions such that
S1 = 0 on ΓD and ∂S1

∂n = 0 on ΓC , and let S2 ∈ Hs(Ω) (s < 3/2) be the solution of
the boundary value problem

−∇ · (κ∇S2)= 0 on Ω,

S2 = 0 on ΓD,
∂S2

∂n
= g on ΓC ,

where g is an arbitrary element in V.
Now we introduce a function P defined by

P (λ1, λ2, λ3) = Jε(ûε + λ1v, T̂ε + λ2S1 + λ3(S2 − T̂ε), p̂ε, ĝε + λ3(g − ĝε)).
Clearly, the function P ∈ C2(R3) and attains its minimum at (0, 0, 0) on the set
{(λ1, λ2, λ3) ∈ R

3 |λ3 ∈ [0, 1]}. Thus, we have

∂P

∂λ1
(0, 0, 0) = 0,

∂P

∂λ2
(0, 0, 0) = 0,

∂P

∂λ3
(0, 0, 0) ≥ 0.(4.24)

From the equations and inequality in (4.24), we obtain the optimality system

Rε =
1

ε
(−∇ · (κ∇T̂ε) + χΩf

(ûε · ∇)T̂ε −Q),(4.25)

wε =
1

ε
(−ν∆ûε + (ûε · ∇)ûε +∇p̂ε − αT̂εe2 − f),(4.26)

−∇ · (κ∇Rε)− χΩf
(ûε · ∇)Rε − αχΩf

(wε, e2)
(4.27)

+ (T̂ε − Td) +N(T̂ε − T̂ ) = 0 in Ω,

∂Rε
∂n
|ΓC = 0, Rε|ΓD = 0,

(4.28)
(δĝε +N(ĝε − ĝ)− κRε, g − ĝε)L2(ΓC) ≥ 0 ∀ g ∈ V,

−ν∆wε − (ûε · ∇)wε +B(ûε,wε) +Rε∇T̂ε +N(ûε − û) = ∇qε in Ωf ,(4.29)
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and

∇ ·wε = 0, wε|∂Ωf = 0,(4.30)

where the first equality in (4.28) has a sense due to the estimate∥∥∥∥∂Rε∂n
∥∥∥∥
Hs(∂Ω)

≤ C(s)
(‖∇ · (κ∇Rε)‖L2(Ω) + ‖Rε‖H1(Ω)

)
whenever Rε ∈ H1

D(Ω), s < 0.

Setting Iε = (‖Rε‖2L2(Ω) + ‖wε‖2L2(Ωf )
)

1
2 , we consider two cases.

(A) Let lim infε→+0 Iε = +∞. Denote R̃ε = Rε/Iε, w̃ε = wε/Iε, q̃ = qε/Iε. From
(4.25)–(4.30) the triple (w̃ε, R̃ε, q̃ε) satisfies the equations

−∇ · (κ∇R̃ε)− χΩf
(ûε · ∇)R̃ε − αχΩf

(w̃ε, e2)
(4.31)

+
T̂ε − Td
Iε

+N
T̂ε − T̂
Iε

= 0 in Ω,

∂R̃ε
∂n
|ΓC = 0, R̃ε|ΓD = 0,

(4.32) (
δĝε +N(ĝε − ĝ)

Iε
− κR̃ε, g − ĝε

)
L2(ΓC)

≥ 0 ∀ g ∈ V,

−ν∆w̃ε − (ûε · ∇)w̃ε +B(ûε, w̃ε) + R̃ε∇T̂ε +N
ûε − û

Iε
= ∇q̃ε in Ωf ,(4.33)

and

∇ · w̃ε = 0, w̃ε|∂Ωf = 0.(4.34)

By the definitions of w̃ε and R̃ε, we have ‖w̃ε‖L2(Ωf ) ≤ 1 and ‖R̃ε‖L2(Ω) ≤ 1. Thus,
taking if necessary a subsequence, one can show that

(w̃ε, R̃ε) ⇀ (w̃, R̃) in L2(Ωf )× L2(Ω).(4.35)

Taking the inner product of (4.31) with Rε in L2(Ω) and integrating the product by
parts, we obtain∫

Ω

κ|∇R̃ε|2dx ≤ ‖R̃ε‖2L2(Ω)

(4.36)
+C(‖T̂ε − Td‖2L2(Ωs)

/I2ε + ‖T̂ε − T̂‖2L2(Ω)/I
2
ε + ‖w̃ε‖2L2(Ωf )

).

By the fact ‖R̃ε‖L2(Ω) ≤ 1 and the inequalities (4.15) and (4.36), we can assume
without loss of generality that

‖R̃ε‖H1(Ω) ≤ C,(4.37)
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where the constant C is independent of ε. Then again taking the inner product of
(4.33) with w̃ε in L2(Ω) and integrating the product by parts, we obtain

ν

∫
Ω

|∇w̃ε|2 dx = −
∫

Ω

(R̃ε(∇T̂ε, w̃ε) + (ûε − û, w̃ε) + (B(ûε, w̃ε), w̃ε)) dx

≤ C
(
‖∇T̂ε‖L2(Ω)‖R̃ε‖H1(Ω)‖w̃ε‖V + ‖ûε‖V ‖w̃ε‖

1
2

L2(Ωf )
‖w̃ε‖

3
2

V(4.38)

+
‖ûε − û‖L2(Ωf )‖w̃ε‖L2(Ωf )

Iε

)
.

By (4.22), (4.35), and (4.37) the above estimate implies immediately

‖w̃ε‖V ≤ C,(4.39)

where the constant C is independent of ε.
From the facts (4.35), (4.37), and (4.39), again taking if necessary a subsequence,

we obtain

(w̃ε, R̃ε) ⇀ (w̃, R̃) in V ×H1(Ω),
(4.40)

(w̃ε, R̃ε)→ (w̃, R̃) in L2(Ωf )× L2(Ω).

Furthermore, by (4.8) and (4.40) the sequence{
−(ûε · ∇)w̃ε +B(ûε, w̃ε) + R̃ε∇T̂ε +N

ûε − û

Iε

}
ε∈(0,1)

is bounded in L2(Ωf ), and thus we have

w̃ε ⇀ w̃ in H2(Ωf ).(4.41)

Once again, since (4.8), (4.40), and (4.41) imply the boundedness of the sequence{
−χ

Ωf
(û · ∇)R̃ε − αχΩf

(w̃ε, e2) +
T̂ε − Td
Iε

+
T̂ε − T̂
Iε

}
ε∈(0,1)

in the space L2(Ω), by (4.22) and (4.40) we have (see [24])

R̃ε ⇀ R̃ in Hs(Ω) as ε→ 0 ∀s ∈
(

1,
3

2

)
.(4.42)

Since ‖(w̃ε, R̃ε)‖L2(Ωf )×L2(Ω) = 1, it follows from (4.40) that

‖(w̃, R̃)‖L2(Ωf )×L2(Ω) = 1.(4.43)

Thus passing to the limit in (4.31)–(4.34) as ε→ +0, keeping in mind (4.19), (4.41),
and (4.42), we obtain the optimality system (4.1)–(4.5) with λ = 0:

−∇ · (κ∇R̃)− χ
Ωf

( û · ∇)R̃− αχ
Ωf

(w̃, e2) = 0 in Ω,(4.44)

∂R̃

∂n
|ΓC = 0, −(κR̃, g− ĝ)|L2(ΓC) ≥ 0 ∀ g ∈ V, R̃|ΓD = 0,(4.45)

−ν∆w̃ − (û · ∇)w̃ +B(û, w̃) + R̃∇T̂ = ∇q̃ in Ωf ,(4.46)
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and

∇ · w̃ = 0, w̃|∂Ωf = 0.(4.47)

The necessary regularity of Lagrange multipliers follows from (4.22), (4.41), and
(4.42).

Now we consider the case V = L2(ΓC). In that case the inequality

−(κR̃, g − ĝ)L2(ΓC) ≥ 0 ∀ g ∈ V

implies R̃|ΓC = 0. Then by the uniqueness theorem for the Cauchy problem for the
Laplace operator from (4.44) and (4.45) we have

R̃ ≡ 0 in Ωs.

Now let us show that R̃ �= 0 in Ωf . If our statement is not true, then (4.44) yields

(w̃(x), e2) = 0 in Ωf .

By (4.47) and the above equality there exists a vector a such that

∂w̃i

∂a
= 0 in Ωf ∀ i ∈ {1, 2}.(4.48)

Hence by (4.47) and (4.48) w̃ ≡ 0. But this contradicts (4.43).
(B) Let lim infε→0 Iε < +∞ or, put another way,

‖Rε‖L2(Ω) + ‖wε‖L2(Ωf ) ≤ C.(4.49)

Taking the inner product of (4.27) with Rε in L2(Ω) and integrating the product by
parts, we obtain∫

Ω

κ|∇Rε|2 dx ≤ ‖Rε‖2L2(Ω)

(4.50)
+ C(‖T̂ε − Td‖2L2(Ωs)

+ ‖T̂ε − T̂‖2L2(Ω) + ‖wε‖2L2(Ωf )
).

By (4.49) and (4.50) we can assume without loss of generality that

Rε ⇀ R in H1(Ω).(4.51)

Then again taking the inner product of (4.29) with wε in L2(Ω) and integrating the
product by parts, we obtain

ν

∫
Ω

|∇wε|2 dx = −
∫

Ω

(Rε(∇T̂ε,wε) + (ûε − û,wε) + (B(ûε,wε),wε)) dx

≤ C(‖∇T̂ε‖L2(Ω)‖Rε‖H1(Ω)‖wε‖V + ‖ûε‖V ‖wε‖
1
2

L2(Ωf )
‖wε‖

3
2

V(4.52)

+‖ûε − û‖L2(Ωf )‖wε‖L2(Ωf )).

By (4.22), (4.49), and (4.51) the above estimate implies immediately

wε ⇀ w in V.(4.53)

Once again, using arguments similar to (4.35) and (4.40), we obtain

(wε, Rε) ⇀ (w, R) in H2(Ωf )×Hs(Ω) ∀s ∈
(

1,
3

2

)
.(4.54)
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By (4.22), (4.51), (4.53), and (4.54) passing to the limit in (4.27)–(4.30), we obtain
optimality system (4.1)–(4.5) with λ = 1. The relations (4.22), (4.53), (4.54), and the
equation (4.4) imply the necessary regularity of Lagrange multipliers.

Remark 4.1. If Lagrange multiplier λ �= 0 in system (4.1)–(4.5), without loss
of generality we can assume that λ = 1. Instead of R,w, q one can just introduce the
new Lagrange multipliers R̃ = R/λ, w̃ = w/λ, q̃ = q/λ. Obviously, w̃, R̃, q̃ satisfy the
system of equations

(1, w̃, R̃, q̃) �= 0 ,(4.55)

−∇ · (κ∇R̃)− χΩf
(û · ∇)R̃−αχΩf

(w̃, e2) + (T̂ − Td) = 0 in Ω,(4.56)

∂R̃

∂n
|ΓC = 0, (δĝ − κR̃, g− ĝ)L2(ΓC) ≥ 0 ∀ g ∈ V, R̃|ΓD = 0,(4.57)

−ν∆w̃ − (û · ∇)w̃ +B(û, w̃) + R̃∇T̂ = ∇q̃ in Ωf ,(4.58)

and

∇ · w̃ = 0, w̃|∂Ωf = 0.(4.59)

Naturally, we are interested in the case when the optimality system has the La-
grange multiplier λ not equal to zero. Unfortunately, we could not prove that for an
arbitrary (f , Q) ∈ L2(Ωf ) × L2(Ω) the optimality system (4.1)–(4.5) holds true with
λ �= 0. But below we will prove this fact for the dense set of (f , Q) in L2(Ωf )×L2(Ω).
First, let us introduce the following definition.

Definition 4.1. We say that pair (f , Q) ∈ L2(Ωf )× L2(Ω) belongs to the set O
if and only if for all global minimums to problem (3.9) (with right-hand sides in (1.1)
and (1.3) equal to f and Q, respectively) the optimality system (4.1)–(4.5) holds true
with λ = 1.

Theorem 4.2. The set O is dense in L2(Ωf )× L2(Ω).
Proof. Let us consider the auxiliary extremal problem

Iε(u, T, p, g) = J1(u, T, p, g)

+
1

2ε
‖ − ν∆u + (u · ∇)u− αTe2 +∇p− f‖2L2(Ωf )

(4.60)

+
1

2ε
‖ − ∇ · (κ∇T ) + χΩf

(u · ∇)T −Q‖2L2(Ω) → inf,

and

T |ΓD = 0,
∂T

∂n
|ΓC = g ∈ V, u|∂Ωf = 0, ∇ · u = 0.(4.61)

By arguments similar to one in the proof of Theorem 4.1, one can show that there
exists at least one solution (ûε, T̂ε, p̂ε, ĝε) ∈ V ∩H2(Ωf )×H1(Ω)×L2

0(Ωf )×L2(ΓC)

to problem (4.60) and (4.61). Let us denote by (û, T̂ , p̂, ĝ) a solution to problem (3.9).
Since Iε(ûε, T̂ε, p̂ε, ĝε) ≤ Iε(û, T̂ , p̂, ĝ) = J1(û, T̂ , p̂, ĝ), we have

(εRε, εwε)→ (0, 0) in L2(Ω)× L2(Ωf ),(4.62)

where

Rε =
1

ε
(−∇ · (κ∇T̂ε) + χΩf

(ûε · ∇)T̂ε −Q)(4.63)
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and

wε =
1

ε
(−ν∆ûε + (ûε · ∇)ûε +∇p̂ε − αT̂εe2 − f).(4.64)

The optimality system to problem (4.60)–(4.61) is as follows:

−∇ · (κ∇Rε)− χΩf
(ûε · ∇)Rε − αχΩf

(wε, e2) + (T̂ε − Td) = 0 in Ω,(4.65)

∂Rε
∂n
|ΓC = 0, (δĝε − κRε, g − ĝε)L2(ΓC) ≥ 0 ∀ g ∈ V, Rε|ΓD = 0,(4.66)

−ν∆wε − (ûε · ∇)wε +B(ûε,wε) +Rε∇T̂ε + ûε − û = ∇qε in Ωf ,(4.67)

and

∇ ·wε = 0, wε|∂Ωf = 0.(4.68)

Note that a global minimum to problem (4.60)–(4.61) is simultaneously the global
minimum solution to problem (3.9); there, instead of (Q, f), we have (εRε+Q, εwε+f).
By (4.65)–(4.68) the Lagrange multiplier λ equals 1. On the other hand, let (ũ, T̃ , p̃, g̃)
be another global minimum to problem (3.9); there, in the right-hand side of (2.5)
and (2.7), instead of (Q, f), we have (εRε + Q, εwε + f). Obviously, (ũ, T̃ , p̃, g̃) are
also solutions to problem (4.60)–(4.61). Hence the pair (εRε +Q, εwε + f) ∈ O. Then
the statement of the our theorem follows from (4.62).

Unfortunately, in the general case we cannot prove that the set O constructed in
Theorem 4.2 is open. Below we consider the special case. Let us assume that

V = X ⊂ L2(ΓC), whereX is a linear space, dimX <∞.

We start from the following definitions.
Definition 4.2. Let E and E0 be Banach spaces and Ω ⊂ E. The mapping

A : E → E0 is called proper on Ω if the preimage A−1K ∩Ω of a compact K ⊂ E0 is
compact in Ω for any choice of a compact K ⊂ E0.

Definition 4.3. A linear operator L : E → E0 is called a Fredholm operator with
index k, k ∈ Z, if the image subspace L(E) ⊂ E0 is closed and has a finite codimension
codimL(E) = dim(E0/L(E)), and the kernel Ker L ⊂ E has a finite dimension
dimKer L. The number k is called the index of L : k = dimKer L− codimL(E).

Definition 4.4. Let A be an operator defined in an open domain O ⊂ E of a
Banach space E,A : O → E0, where E0 is another Banach space. It is supposed that
A is continuously differentiable on O and A′(u) is a Fredholm operator with the index
k for any u ∈ O. Such a mapping is called Fredholm with the index k on O.

Definition 4.5. Let B ⊂ O. A point y ∈ E0 is called a regular value of A on B,
where A is the operator defined in Definition 4.4, in two cases:

1. if y /∈ A(B),
2. if y ∈ A(B) and for any u ∈ A−1y ∩ B the differential A′(u) at the point
u maps E onto E0. All the values which are not regular are called critical
values.

The following Sard–Smale theorem was proved in [6].
Theorem 4.3 (Sard–Smale). Let A be a mapping of class Cr, r ∈ N, on a

domain O ⊂ E. Let A be Fredholm on O with the index k, r ≥ k. Let B ⊂ O be a
closed set, and let A be proper on B. Then the set D of all regular values of A on B
is an open and dense set in E0.
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The following theorem was proved in [19].
Theorem 4.4 (Kato). Let E and E0 be Banach spaces, and let operator K =

T + S : E → E0 be a sum of continuous linear Fredholm operator T and a compact
linear operator S. Then K is the Fredholm operator with IndK = Ind T.

Let us introduce the Banach spaces

E = V ∩H2(Ωf )×H1(Ωf ) ∩ L2
0(Ωf )× Y,

Ẽ = V ∩H2(Ωf )×H1(Ωf ) ∩ L2
0(Ωf )× Ỹ , and

E0 = L2(Ωf )× L2(Ω),

where

Y =

{
T ∈ H1

D(Ω),−∇ · (κ∇T ) ∈ L2(Ω),
∂T

∂n
∈ X

}
and

Ỹ =

{
T ∈ H1

D(Ω),−∇ · (κ∇T ) ∈ L2(Ω),
∂T

∂n
|ΓC = 0

}
are Banach spaces equipped with the norm

‖T‖Y = ‖T‖Ỹ = ‖T‖H1(Ω) + ‖∇ · (κ∇T )‖L2(Ω) +

∥∥∥∥∂T∂n
∥∥∥∥
L2(ΓC)

.

We introduce the mapping A : E → E0 defined by

A(u, p, T ) = (−ν∆u + (u · ∇)u +∇p− αTe2,−∇ · (κ∇T ) + (u · ∇)T ) .(4.69)

Proposition 4.5. The mapping A ∈ C∞(E,E0) is a Fredholm mapping on E
with the index k = dimX. Moreover, for any r > 0 the mapping A is proper on
Br = {x ∈ E0, ‖x‖E0

≤ r} .
Proof. We can write out the mapping A in the form

A(u, p, T ) = A1(u, p, T ) +A2(u, p, T ),

where A1(u, p, T ) = (−ν∆u + ∇p − αTe2,−∇ · (κ∇T )) : E → E0 is the linear
continuous operator and

A2(u, p, T ) = ((u · ∇)u, χΩf
(u · ∇)T )

is the bilinear operator. By the estimate

‖A2(u, p, T )‖L2(Ωf ) ≤ C
(‖u‖L4(Ωf )‖∇u‖L4(Ωf ) + ‖u‖L∞(Ωf )‖∇T‖L2(Ωf )

)
this bilinear operator is continuous. This implies (see [26]) A ∈ C∞(E,E0). One can
write out the derivative of this operator at the point (u0, p0, T0) as follows:

A′
2(u0, p0, T0)[u, p, T ] = ((u0 · ∇)u + (u · ∇)u0, (u0 · ∇)T + (u · ∇)T0) .

Also, the estimate

‖A′
2(u0, p0, T0)[u, p, T ]‖L2(Ωf )×L2(Ω)

≤ C(‖u0‖L4(Ωf )‖∇u‖L4(Ωf ) + ‖u‖L4(Ωf )‖∇u0‖L4(Ωf )

+‖u‖L∞(Ωf )‖∇T0‖L2(Ωf ) + ‖u0‖L∞(Ωf )‖∇T‖L2(Ωf )

)
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implies that for each (u0, p0, T0) ∈ E the derivative A′
2(u, p, T ) is the compact op-

erator. Note that A′(0)(u, p, T ) = A1(u, p, T ). Since ImA1 = E0, the index of this
operator equals dimX. Applying the Theorem 4.4, we obtain that A is a Fredholm
mapping with the index k = dimX as desired.

Now let us prove that the mapping A is proper. Let K be an arbitrary compact
set in E0. Then A−1K∩Br is a bounded set in E. On the other hand, A2(A−1K∩Br)
is a compact set, and, obviously, K1 = K + A2(A−1K ∩ Br) is also a compact set.
Then A−1K ∩Br ⊂ A−1

1 K1 ∩Br ⊂M1 +M2, where

M1 = {(u, p, T ) ∈ Ẽ, A1(u, p, T ) ∈ K1}
and

M2 =

{
(0, 0, T ), T ∈ B,∇ · κ∇T ≡ 0, g ∈ X, ∂T

∂n
|ΓC = g, ‖g‖L2(ΓC) ≤ r

}
.

Since M2 is a closed finite dimensional set, it is compact. On the other hand, since
the operator A1 is an isomorphism between Ẽ and E0, the set M1 is also compact.
This implies immediately that M1 + M2 is compact. The proof of the theorem is
finished.

Now we have the following theorem.
Theorem 4.6. Let V be a linear finite dimensional space in L2(ΓC). Then the

set O contains a set O1 which is open and dense in L2(Ωf )× L2(Ω).
Proof. We prove this theorem by contradiction. Let M ⊂ E0 be the set of (f , Q) ∈

L2(Ωf )×L2(Ω) such that there exists a solution of the system (4.1)–(4.5) with λ = 0
and Int M �= ∅. Let us show that M belongs to the set of critical values of the
mapping (4.69). By Theorem 2.3, we have that A(E) = E0. But by definition, for all
(f , Q) ∈ M, there exists (û, p̂, T̂ ) ∈ E such that A(û, p̂, T̂ ) = (f , Q) and (û, p̂, T̂ ) is a
solution to optimal problem (3.9) with the optimality system (4.1)–(4.5) and λ = 0.
Hence KerA′∗(û, p̂, T̂ )(·) �= ∅ and ImA′(û, p̂, T̂ ) �= E0. This implies that M belongs
to the set of critical values of the mapping A. On the other hand, by Proposition
4.5, A ∈ C∞(E,E0) is a Fredholm mapping with index k = dimX. Finally, let P
be an open bounded subset of Int M. Then there exists a ball Br ⊂ E such that for
all (f , Q) ∈ P all global minimum to problem (3.9) belong to Br. By Proposition
4.5 the mapping A is proper on Br. Hence, by the Sard–Smale theorem, the set
of regular values is dense in E0. We obtain a contradiction, and thus the proof is
completed.
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Abstract. The main purpose of this work is to prove a converse theorem for bounded-input
bounded-state stability of nonlinear systems in the framework of Liapunov’s second method. The
construction gives rise to an upper semicontinuous time-dependent Liapunov function. In certain
cases, the monotonicity conditions can be checked by means of contingent directional derivatives.
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Introduction. In this work we address the problem of characterizing uniform
bounded-input bounded-state (UBIBS) stability for time-varying, continuous time,
finite-dimensional nonlinear systems

ẋ = f(t, x, u), t ≥ 0, x ∈ R
n, u ∈ R

m,(0.1)

in the framework of Liapunov’s second method. Roughly speaking, a system is said
to be bounded-input bounded-state stable if for each initial pair (t0, x0) and each
admissible input u = u(t), the corresponding solution x = ϕ(t) of (0.1) remains
bounded for all t ≥ t0. In order to conceive a more formal and precise definition,
we insert a short digression about the time-invariant linear case. First, let us specify
some terminology and notation.

Throughout this paper, an admissible input is a measurable, essentially bounded
function u = u(t) : [0,+∞)→ R

m. The euclidean norm of a finite-dimensional vector
v is denoted by |v|. If u(·) is an admissible input, we shall write

‖u(·)‖ = ess sup
t≥0

|u(t)|.

Let I be an interval, and let u(·) be an admissible input. A (Carathéodory) solu-
tion of (0.1) on I corresponding to the input u(·) is a function ϕ(t) which is absolutely
continuous on every compact subinterval of I and which satisfies the differential equa-
tion ẋ = f(t, x, u(t)) almost everywhere (a.e.) on I. When we want to emphasize the
dependence of a solution ϕ(t) on the admissible input u(·) and a given initial pair
(t0, x0), we write x = ϕ(t; t0, x0, u(·)).

Let a linear system of the form

ẋ = Ax+Bu(0.2)

be given.
It is well known that A is Hurwitz (if and) only if there exist positive con-

stants γ1, γ2, and α such that for each initial state x0 and each admissible input
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u : [0,+∞)→ R
m one has

|ϕ(t; 0, x0, u(·))| ≤ γ1|x0|e−αt + γ2 · ‖u(·)‖(0.3)

for each t ≥ 0. In particular, (0.3) implies the weaker condition

|ϕ(t; 0, x0, u(·))| ≤ γ1|x0|+ γ2 · ‖u(·)‖(0.4)

for each t ≥ 0. This last condition has a characterization in terms of the Kalman
canonical decomposition of (0.2).

Proposition 0.1. Let the linear system (0.2) be given and let A11 and A22 be,
respectively, the controllable part and the uncontrollable part of A which appear in its
Kalman decomposition. There exist γ1, γ2 > 0 such that (0.4) holds for each x0 and
each u(·), if and only if

(i) the real part of all the eigenvalues of A11 is negative;

(ii) the real part of all the eigenvalues of A22 is nonpositive and all the eigenvalues
with zero real part are simple.

In fact, if the uncontrollable part is stable, the corresponding solutions remain
bounded. Hence, the controllable part can be viewed as a subsystem with Hurwitz
matrix and bounded input, so that (0.3) applies.

The estimates (0.3) and (0.4) turn out to be very useful in studying the behavior
of the state response of a system with respect to bounded inputs, as classical classroom
examples show. Both (0.3) and (0.4) can be extended to nonlinear systems. In this
context, it is convenient to introduce the formalism of the so-called functions of class
K. Although functions of class K are a classical tool in stability theory, the details of
the definition may vary from author to author. We adopt the following definition.

Definition 0.1. A real function defined on [0,+∞) is said to be of class K∞ if
it is continuous, strictly increasing, α(0) ≥ 0, and limr→+∞ α(r) = +∞.

The definitions of class K∞ available in the literature often include the require-
ment α(0) = 0. Since in this paper we are interested in the behavior for large x, we
also include functions with α(0) > 0.

The extension of (0.3) to the nonlinear case gives rise to the well-known notion of
input-to-state stability introduced by Sontag ([11]; see also [7, p. 501] for a definition
in the time-varying setting) and thoroughly studied in the last decade. In particular,
it has been proved that at least in the time-invariant case, input-to-state stability
can be characterized by means of C∞ Liapunov functions which satisfy certain growth
conditions and a monotonicity condition expressed in differential form (see [12]).

In this paper we are mainly interested in the extension of (0.4) to the nonlin-
ear case.

Definition 0.2. We say that system (0.1) satisfies the UBIBS stability property
if there exist maps γ1, γ2 ∈ K∞ such that, for each initial pair (t0, x0), each admissible
input u : [0,+∞)→ R

m, and each t ≥ t0,

|ϕ(t; t0, x0, u(·))| ≤ γ1(|x0|) + γ2(‖u(·)‖).

This definition has several equivalent formulations, reported in the following
proposition, whose proof is omitted. (The equivalence between (i) and (ii) is proved in
[1] for the time-invariant case; the equivalence between (ii) and (iii) can be obtained
by analogous arguments.)
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Proposition 0.2. The following statements are equivalent:
(i) System (0.1) has the UBIBS stability property.
(ii) For each R > 0 there exists S > 0 such that for each initial pair (t0, x0) and

each essentially bounded input u : [0,+∞)→ R
m

|x0| ≤ R, ‖u(·)‖ ≤ R, t ≥ t0 =⇒ |ϕ(t; t0, x0, u(·))| ≤ S.

(iii) There exists Σ ∈ K∞ such that for each t0 > 0, each R > 0, each x0 ∈ R
n,

and each admissible input u(·) : [0,+∞)→ R
m one has

|x0| ≤ R, ‖u(·)‖ ≤ R, t ≥ t0 =⇒ |ϕ(t; t0, x0, u(·))| ≤ Σ(R).

Remark 0.1. From (ii) it is clear in particular that the term “uniform” in Def-
inition 0.2 is intended to have a double interpretation: the dependence of S on R is
affected neither by the choice of x0 (within the ball of radius R) nor by the choice
of t0.

Notice also that for the map Σ in (iii), we necessarily have Σ(r) ≥ r for each
r ≥ 0. Indeed from (iii) it follows in particular that

|ϕ(t0; t0, x0, u(·))| = |x0| ≤ Σ(R)

for each |x0| ≤ R.
The main contribution of this paper is presented in section 1. We prove that (0.1)

is UBIBS stable if and only if there exists a Liapunov function satisfying some suitable
uniform growth conditions and the monotonicity condition. Our characterization is
valid under very general assumptions. The “if” part is easy and basically known
(see, for instance, [4]). The “only if” part is actually a converse Liapunov theorem
for UBIBS stability, and it requires a delicate and original procedure. The principal
difficulty is the construction of the Liapunov function in the presence of inputs. In
section 1, we also point out that in general an UBIBS stable system has no continuous
Liapunov function.

At this point, a comparison with some earlier, related results and some com-
ments on the regularity issue are necessary. It is evident that for systems without
input, UBIBS stability reduces to Lagrange stability (sometimes referred to as uni-
form boundedness of solutions). A characterization of Lagrange stability by means of
nonnecessarily continuous Liapunov functions is immediate and can be deduced, for
instance, from [15, Ch. V] and [2]. On the other hand, it is well known that continuous
Liapunov functions for Lagrange stability may not exist (see [8], [4]). More regular
Liapunov functions can be obtained either by strengthening the notion of stability (see
again [8], [4]) or for systems with Lipschitz continuous right-hand side [15, Ch. V].

Time-invariant systems deserve a particular mention. In this case, one would
expect Liapunov functions independent of t. However, a famous counterexample [5,
p. 87] shows that in general continuous time-invariant Liapunov functions for Lagrange
stable time-invariant systems do not exist, even if the right-hand side is C∞. To this
respect, it is worth mentioning Yorke’s (rarely quoted) paper [14], where it is proved
that for any stable, time-invariant, Lipschitz continuous system there exists a lower
semicontinuous Liapunov function.

Keeping in mind this last result, we come back to system (0.1) and UBIBS sta-
bility. In section 2, we prove that if a suitable Lipschitz condition is fulfilled, then the
Liapunov function constructed in section 1 is upper semicontinuous.
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Finally, in section 3 we show that, provided that V (t, x) is upper semicontinuous,
it is possible to recognize the monotonicity property by means of a differential in-
equality involving the so-called generalized contingent directional derivative. In fact,
this requires further restrictions on both f and the class of admissible inputs.

Dealing with Liapunov functions and UBIBS stability, it is worth mentioning the
pioneering paper [13]: while in the present paper we characterize UBIBS stability by
means of a single Liapunov function, in [13] the authors use a whole family Va(t, x)
of them. The parameter a is related to the bound of the input variable.

1. A necessary and sufficient condition. In this section, we need the follow-
ing hypotheses on (0.1).

Assumption (H). For any admissible input u(t), for any pair (t0, x0) ∈ R
+ × R

n,
there exists a unique solution ϕ(t; t0, x0, u(·)), defined for all t ≥ 0.

We shall systematically employ the reformulation of the UBIBS stability property
(iii) of Proposition 0.2. We denote by Hη = {x ∈ R

n : |x| > η} for η > 0.
Theorem 1.1. Assume that (0.1) satisfies assumption (H). System (0.1) has the

UBIBS stability property if and only if there exist η > 0, functions a, b, γ ∈ K∞, and
a function V (t, x) : [0,+∞)×Hη → R such that

(i) a(|x|) ≤ V (t, x) ≤ b(|x|) for each t ≥ 0 and each x ∈ Hη;
(ii) γ(r) ≥ r + η for each r ≥ 0;
(iii) for each R > 0, for each input u(·), and for each solution ϕ(t) of (0.1)

corresponding to the input u(·),
t1 < t2 =⇒ V (t1, ϕ(t1)) ≥ V (t2, ϕ(t2))(1.1)

provided that |u(t)| ≤ R and |ϕ(t)| ≥ γ(R) for all t ∈ [t1, t2].
A function V (t, x) satisfying the properties listed above is called a UBIBS-weak

Liapunov function or, simply, a weak Liapunov function. For the sake of brevity, we
shall refer to property (iii) of Theorem 1.1 by saying that V is decreasing along the
solutions of (0.1).

We remark that the Liapunov function V (t, x) we get in Theorem 1.1 is allowed
to be discontinuous.

Proof of the sufficient part. Without loss of generality, we assume that a(0) = 0,
so that a−1 ∈ K∞. We actually show that (iii) of Proposition 0.2 is fulfilled with

Σ(R) = (a−1 ◦ b ◦ γ)(R) + γ(R).

First, we notice that according to this definition, Σ ∈ K∞, and in fact, for each
R > 0, we have Σ(R) > γ(R) > R.

Now, fix R > 0 and take an arbitrary initial instant t0 ≥ 0, an initial state x0

with |x0| ≤ R, and an input u(·) : [t0,+∞) → R
m such that ‖u(·)‖ ≤ R. Assume

that for some t2 > t0, it may happen that

|ϕ(t2; t0, x0, u(·))| > S = Σ(R).

Since Σ(R) > γ(R) > R and ϕ(t; t0, x0, u(·)) is continuous, there exists an instant
t1 ∈ (t0, t2) such that |ϕ(t1; t0, x0, u(·))| = γ(R), while |ϕ(t; t0, x0, u(·))| ≥ γ(R) for
t ∈ [t1, t2].

For the sake of simplicity, we set x1 = ϕ(t1; t0, x0, u(·)) and x2 = ϕ(t2; t0, x0, u(·)).
Since a is strictly increasing we have

a−1(b(γ(R))) < Σ(R) = S =⇒ b(γ(R)) < a(S).
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In conclusion,

V (t1, x1) ≤ b(|x1|) = b(γ(R)) < a(S) < a(|x2|) ≤ V (t2, x2),

while |u(t)| ≤ R and |ϕ(t; t0, x0, u(·))| ≥ γ(R) for t ∈ [t1, t2]. This is a contradiction
to (1.1).

Proof of the necessary part. Of course, the necessary part of Theorem 1.1 is more
difficult, since it requires the construction of V (t, x). We begin by introducing some
notation and by proving one lemma.

For t > 0, x ∈ R
n (x �= 0), we define a subset of admissible inputs:

U(t, x) := {u(·) : ∃c > 0 such that |u(s)| ≤ min
0≤θ≤t

|ϕ(θ; t, x, u(·))| − c ∀s ≥ 0}.

The definition of U(t, x) can be extended to the case t = 0 by taking U(0, x) = {0},
where 0 denotes the zero input.

Lemma 1.1. Assume that (0.1) has the UBIBS property. We set η = Σ(1). Then,
U(t, x) �= ∅ for all x ∈ Hη, for all t ≥ 0.

Proof. We prove that u(·) ≡ 0 ∈ U(t, x) for all t > 0 and x ∈ Hη. The case t = 0
follows trivially from the definition. When t �= 0, we consider a solution ϕ(·; t, x, 0).
Since it is continuous, |ϕ(·; t, x, 0)| has a minimum at a point τ ∈ [0, t]. Let us assume
by contradiction that ϕ(τ ; t, x, 0) = 0. By uniqueness of solutions, x = ϕ(t; τ, 0, 0).
Then, according to the UBIBS stability property (applied with R = 1), we should
have |x| ≤ Σ(1). But this is impossible, since |x| > η = Σ(1).

Thus, it follows that min0≤θ≤t |ϕ(θ; t, x, 0)| > 0, and there exists c > 0 such that
0 ≡ |u(s)| < min0≤θ≤t |ϕ(θ; t, x, 0)| − c for each s ≥ 0.

We are now ready to define a function V (t, x). As in Lemma 1.1, let η = Σ(1).
For each t ≥ 0 and each x ∈ Hη, we set

V (t, x) := inf
u(·)∈U(t,x)

min
s∈[0,t]

|ϕ(s; t, x, u(·))|.(1.2)

The proof that this function actually fulfills all the requirements of Theorem 1.1 will
be accomplished through several steps.

Step 1. There exists b ∈ K∞ such that V (t, x) ≤ b(|x|) for x ∈ Hη.
The proof of Step 1 is obvious: indeed, from (1.2) it turns out immediately that

V (t, x) ≤ |x|.
Step 2. There exists a ∈ K∞ such that a(|x|) ≤ V (t, x) for x ∈ Hη.
To begin with, we remark that Σ−1(r) is defined for r ∈ [Σ(0),+∞), where

Σ(0) < η. Moreover, Σ−1 is continuous, strictly increasing on its domain, and
limr→+∞Σ−1(r) = +∞. We prove that the inequality

Σ−1(|x|) ≤ V (t, x)(1.3)

holds for x ∈ Hη. According to (1.2), for t ≥ 0, x ∈ Hη, and every fixed ε > 0 there
exist u(·) ∈ U(t, x) and τ ∈ [0, t] such that

|ϕ(τ ; t, x, u(·))| < V (t, x) + ε.

Let ξ = ϕ(τ ; t, x, u(·)) and set R = V (t, x) + ε. Therefore

min
s∈[0,t]

|ϕ(s; t, x, u(·))| < R.
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Since u(·) ∈ U(t, x), we have |u(s)| ≤ R for each s ≥ 0 as well. Applying the
definition of UBIBS stability, we obtain

|x| = |ϕ(t; τ, ξ, u(·))| ≤ Σ(R) = Σ(V (t, x) + ε),

which yields

Σ−1(|x|) ≤ V (t, x) + ε.

Inequality (1.3) follows since the choice of ε was arbitrary and independent of the
pair (t, x). To complete the proof of Step 2, it is sufficient to take any a ∈ K∞ such
that a(r) = Σ−1(r), for r > η.

Let us now set γ(r) = Σ(r) + η for r ≥ 0. By virtue of Remark 0.1, we trivially
have the following.

Step 3. γ fulfills (ii) of Theorem 1.1.
Thus, it remains to prove the following step.
Step 4. V (t, x) is decreasing along the trajectories of (0.1).
Let us fix R > 0 and let 0 ≤ t1 < t2. Pick up any admissible input u(·) such

that |u(t)| ≤ R for each t ∈ [t1, t2], and let ϕ(t) be any solution of (0.1), defined

for t ∈ [t1, t2], corresponding to the input u(·) and lying on the closed region Hγ(R).
Finally, we set x1 = ϕ(t1) and x2 = ϕ(t2). Since γ(R) > η, the values V (t1, x1) and
V (t2, x2) are well defined.

Claim A.

V (t2, x2) ≤ min
t1≤t≤t2

|ϕ(t)|.

We prove only the case t1 > 0, because the case t1 = 0 is a simplified version of
this one. Let us consider the admissible input:

u0(t) =

{
u(t), t ∈ [t1, t2],
0, t /∈ [t1, t2].

Obviously, |u0(t)| ≤ R for each t ≥ 0. On the other hand,

ϕ(t; t2, x2, u0(·)) = ϕ(t)

for t ∈ [t1, t2], so that
|ϕ(t; t2, x2, u0(·))| ≥ γ(R) > Σ(R) ≥ R(1.4)

for t ∈ [t1, t2]. Assume that there exists θ < t1 such that

|ϕ(θ; t2, x2, u0(·))| ≤ R.

According to the UBIBS stability property, this should imply |x2| ≤ Σ(R), a
contradiction to (1.4). Hence, we see that

|ϕ(t; t2, x2, u0(·))| > R

even when t < t1.
The minimum of |ϕ(·; t2, x2, u0(·))| on [0, t2] exists and, of course, it is strictly

greater than R. Hence, there exists some c > 0 such that

|u0(t)| ≤ R < min
s∈[0,t2]

|ϕ(s; t2, x2, u0(·))| − c

for t ≥ 0. This implies that u0(·) ∈ U(t2, x2).
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We are now ready to prove Claim A. Indeed,

V (t2, x2) = inf
u∈U(t2,x2)

min
0≤t≤t2

|ϕ(t; t2, x2, u(·))|

≤ min
0≤t≤t2

|ϕ(t; t2, x2, u0(·))| ≤ min
t1≤t≤t2

|ϕ(t)|

as required.
To carry on the proof of Step 4, we shall proceed now by contradiction. Assume

that the opposite inequality holds:

V (t1, x1) < V (t2, x2).

By definition, there exist τ ≤ t1, u1(·) ∈ U(t1, x1), and ξ1 ∈ R
n such that

ξ1 = ϕ(τ ; t1, x1, u1(·)) and
V (t1, x1) ≤ |ξ1| < V (t2, x2).(1.5)

Claim B.

min
t≤t1
|ϕ(t; t1, x1, u1(·))| > R.

Otherwise, for some t̃ ≤ t1 we should have

|ξ̃| = |ϕ(t̃; t1, x1, u1(·))| ≤ R.

Since u1(·) ∈ U(t1, x1), we should have

|u1(t)| < |ξ̃| ≤ R

for t ≥ 0, as well. Then, the UBIBS stability property should imply |x1| ≤ Σ(R),

and this is a contradiction (recall that x1 = ϕ(t1) = ϕ(t1; t1, x1, u1(·)) ∈ Hγ(R) and
γ(R) ≥ Σ(R)).

Claim B is thus proved. We now define

u2(t) =

{
u(t), t ∈ [t1, t2],
u1(t), t /∈ [t1, t2].

Of course,

ϕ(t; t2, x2, u2(·)) =
{
ϕ(t; t1, x1, u1(·)), t ∈ [0, t1),
ϕ(t), t ∈ [t1, t2].

Claim C.

u2(·) ∈ U(t2, x2).

We need to show that

|u2(t)| ≤ min
0≤s≤t2

|ϕ(s; t2, x2, u2(·))| − c

for some c > 0 and t ≥ 0. From (1.5) and Claim A it follows that

min
0≤s≤t1

|ϕ(s; t1, x1, u1(·))| < V (t2, x2) ≤ min
t1≤s≤t2

|ϕ(s)|.
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In other words, |ϕ(·; t2, x2, u2(·))| reaches its minimum on the interval [0, t1].
Hence,

min
0≤s≤t2

|ϕ(s; t2, x2, u2(·))| = min
0≤s≤t1

|ϕ(s; t1, x1, u1(·))|.(1.6)

Since u1(·) ∈ U(t1, x1), there exists c1 > 0 such that

|u1(t)| ≤ min
0≤s≤t1

|ϕ(s; t1, x1, u1(·))| − c1

for all t ≥ 0. But u1(·) and u2(·) coincide for t < t1 and t > t2. Taking into account
(1.6) we therefore have

|u2(t)| ≤ min
0≤s≤t2

|ϕ(s; t2, x2, u2(·))| − c1(1.7)

for t < t1 and t > t2. On the other hand, for t ∈ [t1, t2] we have |u2(t)| = |u(t)| ≤ R.
According to Claim B and the continuity of solutions, there exists c2 > 0 such that

min
0≤s≤t1

|ϕ(s; t1, x1, u1(·))| − c2 > R

or, from (1.6),

min
0≤s≤t2

|ϕ(s; t2, x2, u2(·))| − c2 > R ≥ |u(t)|.

Taking c = min{c1, c2}, we finally see that (1.7) holds even when t ∈ [t1, t2]. This
shows that u2(·) ∈ U(t2, x2) and Claim C is proved.

We can now get the conclusion. Claim C implies that

V (t2, x2) ≤ min
0≤s≤t2

|ϕ(s; t2, x2, u2(·))|.

On the other hand, it is clear that

ξ1 = ϕ(τ ; t1, x1, u1(·)) = ϕ(τ ; t2, x2, u2(·))
and that V (t2, x2) ≤ |ξ1|. Comparing this last conclusion with (1.5), we obtain a
contradiction. The proof of Step 4 and of the necessary part of Theorem 1.1 is
completed.

Remark 1.1. In general, it is not possible to construct a continuous Liapunov
function V (t, x) for any UBIBS-stable system (0.1). As a counterexample, we can
take the scalar system ẋ = f(x)+ bu, where f(x) is the function defined in [8, p. 269],
and b = 0. It is clear that the system is UBIBS-stable. If V (t, x) is a continuous
weak Liapunov function, V (t, x) also should be a continuous Liapunov function for
the Lagrange-stable equation ẋ = f(x). But it is well known that such a function
cannot exist (see [4]).

Remark 1.2. The proof of Theorem 1.1 can be carried out even if the set U(t, x)
is replaced by

U0(t, x) = {u(·) such that |u(s)| ≤ min
0≤θ≤t

|ϕ(θ; t, x, u(·))| ∀s ≤ 0}

(see [3], where a preliminary version of Theorem 1.1 was showed). In this case,
Lemma 1.1 becomes obvious and the proof of Step 4 is simplified as well. However,
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if the function V is defined by means of the set U0(t, x), the development of the next
section becomes impossible. For this reason, we preferred to adopt from the beginning
the stronger construction based on the set U(t, x).

Remark 1.3 (time-invariant systems). If we consider a time-invariant system

ẋ = f(x, u)

and we assume the existence and uniqueness of solutions for all t ∈ R, we are able to
obtain a time-invariant Liapunov function V (x) satisfying Theorem 1.1.

In this case we define the set of admissible inputs as

U(x) =
{
u(·) : |u(s)| ≤ inf

θ≤0
|ϕ(θ;x, u(·))|

}
.

Note that here, according to Remark 1.2, we have taken c = 0.
The Liapunov function V (x) can be defined as

V (x) = inf
u∈U(x)

inf
θ≤0
|ϕ(θ;x, u(·))|.

With these definitions, the proof of Theorem 1.1 works, with minor modifications.

2. An upper semicontinuous Liapunov function. The goal of this section
is to prove that, under additional assumptions, the Liapunov function constructed
in the previous section is at least semicontinuous. To begin with, the next lemma
shows that the definition of the set U(t, x) introduced in the previous section can be
reformulated in an apparently stronger form.

Lemma 2.1. For any pair (t, x),

U(t, x) = { u(·) : ∃δ > 0, ∃c > 0 such that
|u(s)| ≤ min0≤θ≤t+δ |ϕ(θ; t, x, u(·))| − c ∀s ≥ 0 } .

The proof is an easy consequence of continuity of solutions, and it is left to
the reader.

As already suggested, in order to proceed we need to strengthen the hypotheses
on system (0.1). So, from now on, we shall consider system (0.1) under the following
additional assumption.

Assumption (L).
(i) f(t, x, u) is locally bounded.
(ii) f(t, x, u) is locally Lipschitz with respect to x. More precisely, we require that

for each initial pair (t0, x0) and each admissible input u(t), there exists a compact
neighborhood Ω of (t0, x0) in R

+ × R
n and a positive function L(t) such that L(t) is

integrable and

|f(t, x, u(t))− f(t, y, u(t))| ≤ L(t)|x− y|(2.1)

for each pair (t, x), (t, y) ∈ Ω.
The main result of this section is based on Lemma 2.2. The arguments of its proof

are classical (see, for instance, [9, section 5]). A short sketch of the proof is reported,
for the reader’s convenience. Let

B0(δ) := {(t, x) ∈ [0,+∞)× R
n : |t− t0| < δ, |x− x0| < δ},

where (t0, x0) is a fixed point of [0,+∞)× R
n.
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Lemma 2.2. If (0.1) satisfies Assumptions (H) and (L), for any admissible input
u(·) there exist K > 0, ρ ∈ (0, 1) such that, for all δ ∈ (0, ρ) and all (t, x) ∈ B0(δ),

|ϕ(s; t, x, u(·))− ϕ(s; t0, x0, u(·))| ≤ Kδ ∀s ∈ [0, t0 + 1].

Proof. Let t0, x0, and the admissible input u(t) be fixed. The solution ϕ(s; t0, x0, u(·))
has compact image I on the interval [0, t0+1]. Let N be the tubular neighborhood of
radius 1 of I, and let L(t) be a function such that (2.1) holds for any (t, x), (t, y) ∈ N .
Moreover, let M be an upper bound for the norm of f(t, x, u(t)) on N . Finally, let ρ
be such that

ρ ≤ 1

2(1 +M)
e
−
∫ t0+1

0
L(s)ds

< 1

and

B0(ρ) ⊆ N.

We claim that for each (t, x) ∈ B0(ρ), ϕ(s; t, x, u(·)) ∈ N for each s ∈ [0, t0 + 1].
We study separately the intervals [0, t0] and [t0, t0 + 1], and we see the proof in the
first case; in the second one, the proof is analogous, and it is left to the reader.

By contradiction, let us assume that there exists s ∈ [0, t0] such that ϕ(s; t, x, u(·))
/∈ N . Let

τ = sup{s ∈ [0, t0] : ϕ(s; t, x, u(·)) /∈ N}.

Since (2.1) holds in the interval [τ, t0], we have

|ϕ(τ ; t, x, u(·))− ϕ(τ ; t0, x0, u(·))|

≤ |x− x0|+
∣∣∣∣∫ τ

t

|f(θ;ϕ(θ; t, x, u(·)), u(θ))− f(θ;ϕ(θ; t0, x0, u(·)), u(θ))| dθ
∣∣∣∣

+

∣∣∣∣∫ t

t0

f(θ;ϕ(θ; t0, x0, u(·)), u(θ)) dθ
∣∣∣∣

≤ |x− x0|+
∣∣∣∣∫ τ

t

L(θ) |ϕ(τ ; t, x, u(·))− ϕ(τ ; t0, x0, u(·))| dθ
∣∣∣∣+M |t− t0|

since |x− x0|+M |t− t0| ≤ (1 +M)ρ, and by Gronwall’s inequality we have

≤ (1 +M)ρe

∣∣∫ τ
t
L(θ) dθ

∣∣ ≤ (1 +M)ρe

∫ t0+1

0
L(θ) dθ ≤ 1

2
.

Therefore, ϕ(τ ; t, x, u(·)) ∈ N together with ϕ(τ − s; t, x, u(·)) for any small
enough s, and this is a contradiction to the choice of τ .

Let us now consider any δ ∈ (0, ρ). For (t, x) ∈ B0(δ), the image of the corre-
sponding solution lies in N , so that (2.1) applies, with the same L(t) used before. By
repeating the argument based on Gronwall’s inequality, we get

|ϕ(s; t, x, u(·))− ϕ(s; t0, x0, u(·))| ≤ Kδ ∀s ∈ [0, t0 + 1],

where K = (1 +M)e

∫ t0+1

0
L(s)ds

.
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Theorem 2.1. If the input system (0.1) satisfies the UBIBS property and As-
sumptions (H) and (L), then there exists an UBIBS-weak upper semicontinuous
Liapunov function.

Proof. We show that, under Assumption (L), the Liapunov function defined in
Theorem 1.1 is upper semicontinuous.

Step 1. For any pair (t0, x0), if u ∈ U(t0, x0), there exists δ0 > 0 such that
u ∈ U(t, x) for all (t, x) ∈ B0(δ0).

By Lemma 2.1, there exist δ1 > 0, c > 0 such that

|u(s)| ≤ min
0≤θ≤t0+δ1

|ϕ(θ; t0, x0, u(·))| − c ∀s ≥ 0.(2.2)

Let K > 0 be as in Lemma 2.2. Then, for each δ ∈ (0, ρ) we have
|ϕ(θ; t0, x0, u(·))| ≤ |ϕ(θ; t, x, u(·))|+Kδ, θ ∈ [0, t0 + 1](2.3)

for any (t, x) ∈ B0(δ).
Let us choose δ0 < min{ρ, δ1, cK }, and let us set c′ = c−Kδ0 > 0. By (2.2) and

(2.3), if (t, x) ∈ B0(δ0), then

|u(s)| ≤ min
0≤θ≤t0+δ1

|ϕ(θ; t0, x0, u(·))| − c

≤ min
0≤θ≤t0+δ0

|ϕ(θ; t0, x0, u(·))| − c

≤ min
0≤θ≤t0+δ0

|ϕ(θ; t, x, u(·))| − c+Kδ0

≤ min
0≤θ≤t

|ϕ(θ; t, x, u(·))| − c+Kδ0

≤ min
0≤θ≤t

|ϕ(θ; t, x, u(·))| − c′ ∀s ≥ 0.

This means that u(s) ∈ U(t, x) for all (t, x) ∈ B0(δ0).
Step 2. V (t, x) is upper semicontinuous.
Let V be defined at (t0, x0). By construction, for all ε > 0 there exist v ∈ U(t0, x0)

and τ ∈ [0, t0] such that

|ϕ(τ ; t0, x0, v(·))| ≤ V (t0, x0) +
1

2
ε.(2.4)

By Step 1, there exists δ0 > 0 such that v ∈ U(t, x) for all (t, x) ∈ B0(δ0).
Therefore, by the definition of V (t, x),

V (t, x) ≤ |ϕ(τ ; t, x, v(·))| ∀(t, x) ∈ B0(δ0).(2.5)

By Lemma 2.2, there exists K = K(v) > 0 such that, for all δ < δ0 and all
(t, x) ∈ B0(δ),

|ϕ(τ ; t, x, v(·))| ≤ |ϕ(τ ; t0, x0, v(·))|+Kδ.(2.6)

Summing up (2.4), (2.5), and (2.6) we get

V (t, x) ≤ |ϕ(τ ; t, x, v(·))| ≤ |ϕ(τ ; t0, x0, v(·))|+Kδ

≤ V (t0, x0) +
1

2
ε+Kδ.

If we choose δ < min
(
δ0,

ε
2K

)
, we get

V (t, x) < V (t0, x0) + ε

for all (t, x) ∈ B0(δ).
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3. Monotonicity and generalized derivatives. As far as Liapunov-like func-
tions are concerned, the regularity issue is strictly related to the monotonicity con-
dition (iii) of Theorem 1.1. For instance, if the function V (t, x) turns out to be
differentiable for each t > 0 and for x ∈ Hη, condition (iii) of Theorem 1.1 can be
reformulated in the following way:

∀R > 0, ∀x ∈ Hη, ∀u ∈ R
m,

|u| ≤ R, |x| ≥ γ(R) =⇒ ∂V

∂t
(t, x) +∇xV (t, x) · f(t, x, u) ≤ 0, a.e. t ≥ 0.(3.1)

The obvious advantage of (3.1), with respect to (iii) of Theorem 1.1, is that it
can be checked without explicitly solving the differential equation. We are interested
in getting some characterization of (iii) in terms of a differential inequality even with
the less regular Liapunov function we are able to obtain.

It is well known that when V (t, x) is locally Lipschitz, its monotonicity along
a trajectory x = ϕ(t) can be checked by looking at the sign of one of the Dini
derivatives of V (t, ϕ(t)) (see [15]). Unfortunately, the Liapunov function we get is only
upper semicontinuous. Therefore, we need to adjust previous results to our weaker
assumptions. We start with the following lemma, which establishes a relation between
monotonicity of semicontinuous functions of a single variable and Dini derivatives.
The lemma can be obtained as a consequence of [6, Theorem 1.4], or as an easy
generalization of the argument used in [10, p. 347].

Lemma 3.1. Let ψ : [a, b]→ R be upper semicontinuous. Then

(i) ψ is nonincreasing on [a, b] if and only if D−ψ(t) ≤ 0 for each t ∈ [a, b];
(ii) ψ is nondecreasing on [a, b] if and only if D+ψ(t) ≥ 0 for each t ∈ [a, b].
This result, together with the use of contingent derivatives, allows us to get a

characterization of monotonicity of V (t, x) along trajectories by means of a differential
inequality. We recall the following definition.

Definition 3.1. Given a function g : R
N → R, the upper left contingent gener-

alized directional derivative of g at z, with respect to v ∈ R
N , is

D−
Kg(z, v) = lim sup

h→0−
w→v

g(z + hw)− g(z)

h
.

When g is locally Lipschitz, D−
Kg(z, v) is equal to the corresponding directional

Dini derivative, but in generalD−
Kg(z, v) is greater than the corresponding Dini deriva-

tive.

Since we are interested in the case N = 1+ n, z = (t, x), and v = (1, w), we shall

use the notation D−
Kg(t, x, w) instead of D−

Kg((t, x), (1, w)).

In order to state the main result of this section, we introduce appropriate assump-
tions.

Assumption (C).

(i) f(t, x, u) is continuous.

(ii) The class of admissible inputs is restricted to the one of continuous maps
u : [0,+∞)→ R

m.

Under these hypotheses, any solution ϕ(t) corresponding to an admissible input
is a classical solution, and it satisfies (0.1) everywhere on its domain.
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Theorem 3.1. Let (0.1) satisfy Assumption (C), and let V (t, x) be an upper
semicontinuous function satisfying the following property: ∃γ ∈ K∞ such that, ∀R >
0, ∀x ∈ R

n, ∀u ∈ R
m, ∀t ≥ 0,

|u| ≤ R, |x| ≥ γ(R) =⇒ D−
k V (t, x, f(t, x, u)) ≤ 0.

Then V is decreasing along the solutions of (0.1); that is, condition (iii) of Theo-
rem 1.1 is fulfilled.

Proof. Let ψ(t) = V (t, ϕ(t)), where ϕ(t) is as in (iii) of Theorem 1.1 and u(t) is
the corresponding input. By Lemma 3.1, it is sufficient to prove that D−ψ(t) ≤ 0 for
each t ∈ [t1, t2]. We have

D−ψ(t) = lim sup
h→0−

ψ(t+ h)− ψ(t)

h

= lim sup
h→0−

V (t+ h, ϕ(t+ h))− V (t, ϕ(t))

h

= lim sup
h→0−

V (t+ h, ϕ(t) + hϕ̇(t) + o(h))− V (t, ϕ(t))

h
.

We write o(h) = hα(h), where limh→0 α(h) = 0. Then

D−ψ(t) = lim sup
h→0−

V (t+ h, ϕ(t) + h[ϕ̇(t) + α(h)])− V (t, ϕ(t))

h
.

Notice that w(h) = ϕ̇(t) + α(h) → ϕ̇(t) for h → 0. Thus, if we set x = ϕ(t) and
v = ϕ̇(t) = f(t, x, u(t)), we get

D−ψ(t) ≤ lim sup
h→0−
w→v

V (t+ h, x+ hw)− V (t, x)

h

= D−
k V (t, x, v) = D−

k V (t, x, f(t, x, u(t))).

The conclusion is immediate.
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Abstract. The decentralized supervisory control problem is to construct for a discrete-event
system a set of supervisors each observing only part of the system and each controlling only part of
the events such that the interconnection of the system and the supervisors meets control objectives
of safety and liveness. Definitions are provided of the concepts of a maximal solution, of a Nash
equilibrium, and of a strong Nash equilibrium for a set of supervisors with as order relation the
inclusion relation on the set of closed-loop languages. The main result is that a set of supervisors is
a maximal solution if and only if it is a strong Nash equilibrium. A procedure to determine a Nash
equilibrium is described and illustrated by an example. There is no guarantee that the procedure
halts in finite time. However, in the case that it halts in finite time, then it is proven that a Nash
equilibrium is obtained.

Key words. discrete-event system, decentralized supervisory control, maximal solution, Nash
equilibrium

AMS subject classification. 93C30
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1. Introduction. The purpose of this paper is to show how the concept of a
Nash equilibrium can be used to obtain maximal solutions of supervisors for decen-
tralized control of discrete-event systems.

Decentralized supervisory control problems arise very naturally in protocol design
problems for computer and communication networks but also occur in transporta-
tion and manufacturing problems. The network may be modeled as a discrete-event
system. The physical separation between the sender and the receiver implies that
observations of the operation of the network are available only locally. The problem
is then to synthesize a set of controllers in a protocol problem—one at the sender end
and one at the receiver end of the communication channel. The interconnection of
the network with the supervisors has then to meet control objectives of safety and
liveness according to a specification.

Decentralized control is a conceptually difficult problem. Results are available
mainly for decentralized control of linear systems and of stochastic systems (see the
survey [18]). Fundamental results are partly based on the analogy with game, dy-
namic game, and team problems. The decentralized supervisory control problem was
formulated by R. Cieslak et al. (see [2]), in which the alternating bit protocol is used
as an example. The authors presented a necessary and sufficient condition for the ex-
istence of a controller for which the closed-loop language equals a specified language.
A generalization of this result to the closed-loop language was fit between an upper
and lower bound, and an analysis of the set of supervisors was derived by K. Rudie
and W. M. Wonham (see [14, 17]). These authors also studied the protocol synthe-
sis problem (see [15, 16]). P. Kozak and W. M. Wonham proposed another solution
procedure based on projection of the supremal supervisor (see [4]). Recent work on
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decentralized supervisory control of nondeterministic systems using prioritized syn-
chronization is presented by R. Kumar and M.A. Shayman (see [5]). The synthesis
procedures proposed so far do not satisfy the need of engineering decentralized control
problems. The performance of the resulting controllers is in general too conservative.

The approach of this paper is based on an analogy with dynamic game problems.
The restriction is imposed to consider a model with only two supervisors. The concept
of a maximal solution of a pair of supervisors is defined with respect to the inclusion
relation on the set of languages of the closed-loop system. Because the set of pairs of
supervisors is a large discrete set, there may be many such pairs. The determination
of a maximal pair of supervisors is achieved indirectly. The concept of a strong Nash
equilibrium of a pair of supervisors is introduced based on analogy with game theory.
It is shown that a pair of supervisors that is a strong Nash equilibrium is also a
maximal solution and conversely. A procedure is proposed to compute a strong Nash
equilibrium of a pair of supervisors. The procedure is illustrated with an example.

A description of the paper by section follows. Section 2 contains a definition
of a discrete-event system that differs slightly from the case usually considered in
the literature, the formulation of the decentralized supervisory control problem, and
the definition of maximal solution and Nash equilibrium. The result, that a pair of
supervisors that is a strong Nash equilibrium is also a maximal solution and conversely,
is established in section 3. The procedure for a Nash equilibrium is stated in section
4. Section 5 contains conclusions.

The results of this paper were announced in the conference paper [11] and form
part of the thesis [10, Chap. 6] of the first author.

2. Problem formulation.

2.1. Framework. A simple framework will be introduced that allows us to con-
centrate on the decentralized aspects of the control problem.

Throughout this paper denote the global set of events by Σ, the global set of
controllable events by Σc, the uncontrolled system by G, and the specification by
E. The discrete-event system will be modeled as a finite state automaton with the
notation G = (Σ, Q, δ, q0), with Q the discrete state space, δ : Σ × Q → Q the
transition function, and q0 the initial state. For a string s ∈ Σ∗ denote by s̄ ⊆ Σ∗ the
set of prefixes of this string.

Definition 2.1. A supervisor or discrete-event controller is defined by a triple

S = (Σ(S), Σc(S), γ(S)),

where

Σ(S) ⊆ Σ, Σc(S) ⊆ Σ(S), γ(S) : ps(L(G))→ 2Σc(S),

and ps is the projection from Σ to Σ(S).
Define the controlled language of supervisor S with respect to G or, for short, the

language of S as

L(S/G) = {s ∈ L(G) : ∀vσ ∈ s̄, σ �∈ γ(S, ps(v))}.

Note that L(S/G) ⊆ Σ∗.
Let C(Σa) denote the set of all supervisors S with event set Σ(S) = Σa and

controllable event set Σc(S) = Σc ∩ Σa. The function γ(S) will be called the control
law of supervisor S. Note that γ(S, s) is defined for all s ∈ ps(L(G)).
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The control law γ(S) maps each trace s ∈ ps(L(G)) onto the set of disabled events.
In the literature, often the set of enabled events is specified [13]. Both approaches are
equivalent.

In the definition above the set of controllable events is taken to be contained
in the set of events observable by the supervisor. In general it is possible that a
supervisor can influence events it cannot observe. In [10, Sect. 5.2] it is shown how in
this situation a control problem can be remodeled such that all controllable events are
observable. As that reference is not widely available, the approach is briefly sketched.
The idea is based on flags. Controllable, unobservable events are usually implemented
with flags. If a flag is set, then the event can execute. If the flag is cleared, then the
event is disabled. The plant is remodelled such that it includes the events that set
and clear the flags. These so-called flag events are observable and controllable. In this
remodeled plant the original events are no longer controllable as they are enabled and
disabled via the flag events. If the flag events are, via projection, removed from the
language of the remodeled plant, then the language of the original plant is obtained.

Attention will be focused on the decentralized aspects of the supervisory control
problem. Marking, nondeterminism, or failure semantics will not be considered. The
argument for a simple framework also justifies the restriction to only two supervisors.
The authors are confident that in the future the results can be extended to more
general frameworks and more supervisors.

The basic supervisory control problem needs to be redefined for the new frame-
work. Note that supervisors, as stated in Definition 2.1, can disable only controllable
events. So they are always complete. It is not necessary to add a completeness
requirement as is done in [13].

Definition 2.2. Consider a discrete-event system and a legal language L(E) ⊂
Σ∗. The basic supervisory control problem (BSCP) is to find a supervisor S, such that
L(S/G) ⊆ L(E).

Ramadge and Wonham showed that there exists a unique supremal solution to this
control problem. This supremal can be effectively computed [13]. It is characterized
by a language called the supremal controllable sublanguage contained in L(G)∩L(E).
As the notion of controllability will not be used any further, we refer the interested
reader to the given reference for more information. The only aspect of controllability
that will be used in this chapter is that the supremal controllable language can be
effectively computed.

Definition 2.3. Let K↑ be the supremal controllable sublanguage contained in
L(G) ∩ L(E). The supremal supervisor, denoted by S↑, is defined by

γ(S↑, s) =

{ {σ ∈ Σc : sσ ∈ L(G) and sσ �∈ K↑}, if s ∈ K↑,
∅, otherwise.

It is not difficult to show that L(S↑/G) = K↑. As S↑ is supremal it holds for all
supervisors S which solve the given BSCP, that L(S/G) ⊆ L(S↑/G).

In this paper it will be assumed that the BSCP is already solved and that the
supremal supervisor S↑ is given. It is sufficient to find a supervisor that implements
S↑, with respect to the implementation relation defined below. Proposition 2.7 shows
that this is a valid approach. A supervisor implements the supremal supervisor if and
only if the supervisor solves the BSCP.

Definition 2.4. Let Sa, Sb be two supervisors such that Σ(Sa) = Σ(Sb). Super-
visor Sa implements Sb, denoted by Sa  Sb, if

γ(Sb, s) ⊆ γ(Sa, s) ∀ s ∈ p(L(Sa/G)),
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where p is the projection on Σ(Sa) = Σ(Sb).
Supervisor Sa implements Sb if it disables at least as much as Sb.
Lemma 2.5. Let Sa, Sb be two supervisors such that Σ(Sa) = Σ(Sb).

Sa  Sb ⇒ L(Sa/G) ⊆ L(Sb/G).

The proof of the preceding lemma and that of Proposition 2.7 are simple and may
be found in [10, Chap. 6].

The following example will show why the converse of Lemma 2.5 does not hold.
Example 2.6. Let G be the system such that L(G) = {ε, a}. Define Sa by

γ(Sa, ε) = ∅ and γ(Sa, a) = ∅. Define Sb by γ(Sb, ε) = ∅ and γ(Sa, a) = {a}. Then
L(Sa/G) = {ε, a} = L(Sb/G), but γ(Sb, a) �⊆ γ(Sa, a). So Sa � Sb. �

In [10, Thm. 2.17] it was shown that in the failure-semantics-based framework
a supervisor solves the BSCP if and only if it implements the supremal supervisor.
Proposition 2.7 states the same result for the framework of this paper. Because the
proof is analogous to that of [10, Thm. 2.17], it is omitted.

Proposition 2.7. Let the uncontrolled system G, the specification E, and the
set of controllable events Σc be given. Let S↑ be the supremal supervisor of the BSCP.

∀S ∈ C(Σ), S  S↑ ⇐⇒ L(S/G) ⊆ L(S↑/G) ⇐⇒ L(S/G) ⊆ L(E).

In the rest of this paper we will consider control problems that place extra con-
straints on the supervisor besides the ones given in the BSCP. Proposition 2.7 states
that we can first solve the BSCP to get the supremal supervisor S↑. Next we can look
for supervisors that satisfy the extra constraints and that implement S↑. In this last
step we can concentrate on the extra requirement. As we are mainly interested in the
extra requirements imposed by the decentralized nature of the control problem, we
will assume that the first step is already solved and that the supremal supervisor S↑

is given.
Definition 2.8. The basic supervisory synthesis problem (BSSP) is to find a

supervisor S ∈ C(Σ(S↑)) such that S  S↑.
Often in the literature supervisors are defined as languages instead of control

maps. We choose to use control maps as they allow us to divide the control problem
into two steps. In the first step the supremal supervisor is synthesized. In this
step the controllability condition plays an important role. In the second step we can
concentrate on the decentralized aspect of the control problem. Proposition 2.7 shows
that we do not have to consider the controllability condition in this step. If supervisors
are defined as languages, then also the problem can be divided into two parts. The
synthesis problem of the second part is then defined as follows: find a supervisor S
such that L(S/G) ⊆ L(S↑/G) and L(S/G) is controllable. It is necessary to check for
controllability, as L(S/G) ⊆ L(S↑/G) does not imply that L(S/G) is controllable. So
in the second step we still have to consider controllability. Using control maps, we can
forget about controllability in the second step and concentrate on the decentralized
aspects of the control problem. It is not too difficult to adapt the results of this paper
to a language-based approach.

2.2. Decentralized supervisory synthesis problem. Up until now we have
only looked at supervisors that can observe the whole event set and that enable or
disable all controllable events. Now we will look at the decentralized control problem
where we have two supervisors, each observing a part of the event set, and each
controlling only part of the controllable events (see Figure 1). The two supervisors
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Fig. 1. The decentralized supervisory control problem.

together have to control G such that the language of the controlled system is contained
in the language of E. Note that the specification is given for the whole controllable
system. This is usually referred to as a global specification [14, 17]. If the specification
can be decomposed into two local specifications, one for each supervisor, then the
decentralized control problem can be reduced to two independent supervisory control
problems. In each of these local control problems a single supervisor is synthesized.
This control problem has already been solved by F. Lin and W. M. Wonham [7]. In
what follows we will assume that the specification is global and cannot be decomposed
into local specifications.

As stated before, we will assume the BSCP is already solved and the supremal
supervisor S↑ is known. By Proposition 2.7 it is sufficient to find a decentralized
implementation of S↑ to solve the decentralized supervisory control problem.

First it will be defined how two decentralized supervisors co-operate. An event is
disabled by the combination of the two supervisors if it is disabled by at least one of
them.

Definition 2.9. Let S1 and S2 be two supervisors. The composition of S1 and
S2 is denoted S1 ∧ S2 and defined by

Σ(S1 ∧ S2) = Σ1 ∪ Σ2,

Σc(S1 ∧ S2) = Σc(S1) ∪ Σc(S2),

γ(S1 ∧ S2, s) = γ(S1,p1(s)) ∪ γ(S2,p2(s)) ∀ s ∈ p1,2(L(G)),

where p1 denotes the projection on Σ(S1), p2 denotes the projection on Σ(S2), and
p1,2 denotes the projection on Σ(S1 ∧ S2).

Proposition 2.10. L(S1 ∧ S2/G) = L(S1/G) ∩ L(S2/G).
Proof. The reasoning follows from Definition 2.1.

s ∈ L(S1 ∧ S2/G)

⇐⇒ s ∈ L(G) ∀vσ ∈ s, σ �∈ γ(S1 ∧ S2,p1,2(v))

⇐⇒ s ∈ L(G)∀vσ ∈ s, σ �∈ γ(S1,p1(v)), σ �∈ γ(S2,p2(v))

⇐⇒ s ∈ L(S1/G), s ∈ L(S2/G)

⇐⇒ s ∈ L(S1/G) ∩ L(S2/G).
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Definition 2.11. Consider the discrete-event system specified before and a global
specification. Let the supremal supervisor S↑ be given. Let Σ1,Σ2 ⊆ Σ be two event
sets such that Σ1 ∪ Σ2 = Σ. The decentralized supervisory synthesis problem (DSSP)
is to find a pair of supervisors (S1, S2) ∈ C(Σ1)× C(Σ2) such that

S1 ∧ S2  S↑.

In this definition we made two important assumptions. The one is that Σ1∪Σ2 =
Σ. The other is that, according to the definition of C(Σi), the set of controllable
events of supervisor Si, Σc,i, is equal to Σi ∩ Σc for i = 1, 2.

Consider the case where Σ1 ∪Σ2 � Σ. If Σc ⊆ Σ1 ∪Σ2, then we can compute the
supremal supervisor under partial observation, with observation alphabet Σ1 ∪ Σ2.
See [2, 6] and section [10, Sect. 5.1]. Equivalently to Proposition 2.7, it can be shown
that a supervisor implements this supremal supervisor if and only if it solves the
control problem under partial observation. We can assume that this control problem
is already solved and that the supremal supervisor under partial observation is given.
So this control problem can be reduced to the DSSP.

If Σc �⊆ Σ1 ∪ Σ2, then the control problem can be remodeled in such a way that
all controllable events are observable. See [10, Sect. 5.2].

The other assumption is that Σc,i = Σi ∩ Σc, i = 1, 2. That is, the controllable
events of supervisor Si are observable by Si, and an event that is controllable by S↑

and observable by Si is also controllable by Si. This is the same constraint as given by
Rudie [14, 17] under which decomposability of the closed-loop language is necessary
and sufficient for the existence of a decentralized solution. It is argued that in most
communication problems these constraints are satisfied. Again, as we want to keep
the model simple, we do not consider systems that fail to satisfy this constraint. The
authors hope that in the future these constraints can be relaxed.

2.3. Maximal solutions. Traditionally in discrete-event control, supervisors
are synthesized that restrict the uncontrolled system as little as possible. A solution is
considered optimal if the language of the system controlled by this optimal supervisor
is larger than the languages of all other solutions.

Definition 2.12. Consider the DSSP of Definition 2.11. A pair of supervisors
(S↑

1 , S
↑
2 ) ∈ C(Σ1)×C(Σ2) is called an optimal decentralized solution if it is a solution,

i.e.,

S↑
1 ∧ S↑

2  S↑,(1)

and for all pairs (S1, S2) ∈ C(Σ1)× C(Σ2)

S1 ∧ S2  S↑ ⇒ L(S1 ∧ S2/G) ⊆ L(S↑
1 ∧ S↑

2/G).(2)

Recall from [14, 17] the definition of decomposability. A language K ⊆ L(G) is
called decomposable if

K = p−1
1 (p1(K)) ∩ p−1

2 (p2(K)) ∩ L(G).(3)

Rudie showed that, under the given assumptions, there exists a decentralized solution,
(S1, S2) ∈ C(Σ1) × C(Σ2), such that the language of the controlled system, L(S1 ∧
S2/G), is equal to a given language K ⊆ L(G) if and only if K is decomposable. The
set of decomposable languages is not closed under arbitrary unions. It is therefore
not guaranteed that this set contains a unique supremal element. This implies that
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in general the optimal decentralized solution does not exist. There may exist several,
mutually incomparable, maximal solutions.

Definition 2.13. Consider the DSSP of Definition 2.11. A pair of supervisors
(S✷

1 , S
✷
2 ) ∈ C(Σ1)×C(Σ2) is called a maximal decentralized solution if it is a solution,

i.e.,

S✷
1 ∧ S✷

2  S↑,

and there does not exist a pair (S1, S2) ∈ C(Σ1)× C(Σ2) such that

S1 ∧ S2  S↑ and L(S✷
1 ∧ S✷

2 /G) � L(S1 ∧ S2/G).

The set of decomposable languages is closed under arbitrary intersections. It
therefore contains a unique infimal element. Rudie posed the following control prob-
lem. Given lower bound L(A) ⊆ Σ∗ and upper bound L(E) ⊆ Σ∗, find a pair
(S1, S2) ∈ C(Σ1)× C(Σ2), such that

L(A) ⊆ L(S1 ∧ S2/G) ⊆ L(E).

She showed there exists a solution to this control problem if and only if the infimal
decomposable language containing L(A) is contained in L(E). Although this infimal
is useful to solve the existence question, it often does not give a satisfactory solution.
The following example shows that it is in general not trivial to define the lower bound
L(A).

Example 2.14. Consider the alternating bit protocol [14, 17, 19]. This protocol
achieves the reliable transmission of messages across an unreliable connection. To
achieve this, the sender attaches to each message an extra bit containing either a
zero or a one. The protocol can start with either a zero or a one attached to the
first message. Consequently, the message with either a one or a zero attached is
disabled initially. If the lower bound allows a zero attached to the first message,
then the protocol cannot disable this message. It cannot choose the option where a
one is attached to the first message. The lower bound L(A) should allow for both
options. Therefore it cannot contain either of the options as this would exclude the
other option. The only lower bound that allows both options is the empty language.
Unfortunately the infimal decomposable language derived from the empty language
does not give a satisfactory solution. See also [10, Sect. 2.5].

Another suggestion presented in [14, 17] was to look for the suboptimal solution
characterized by the strong decomposability condition. A language K ⊆ L(G) is
called strongly decomposable (with respect to Σ1 and Σ2) if

K =
(
p−1

1 (p1(K)) ∪ p−1
2 (p2(K))

) ∩ L(G).(4)

This condition is closed under arbitrary unions. So the supremal strongly decompos-
able language exists. Recall from [6] the definition of normality. A languageK ⊆ L(G)
is called normal (with respect to Σo ⊆ Σ) if

K = p−1
o (po(K)) ∩ L(G).(5)

Normality of a language K is a sufficient condition for the existence of supervisor that
can observe events in Σo and that achieves K as language of the controlled system.

Proposition 2.15. If K ⊆ L(G) is strongly decomposable with respect to Σ1 and
Σ2, then K is normal with respect to Σ1 and normal with respect to Σ2.
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Proof. The inclusion K ⊆ p−1
i (pi(K)) ∩ L(G) is satisfied for all languages con-

tained in L(G). So, it is sufficient to prove K ⊇ p−1
i (pi(K))∩L(G). By the definition

of strong decomposability

K =
(
p−1

1 (p1(K)) ∪ p−1
2 (p2(K))

) ∩ L(G)

=
(
p−1

1 (p1(K)) ∩ L(G)
) ∪ (p−1

2 (p2(K)) ∩ L(G)
)

⊇ p−1
i (pi(K)) ∩ L(G) for i = 1, 2.

The consequence of this proposition is that, if language K is strongly decom-
posable, then one supervisor, either S1 ∈ C(Σ1) or S2 ∈ C(Σ2), can obtain K as
language of the controlled system. The other supervisor is not needed. Obviously,
strong decomposability is too strong a restriction for decentralized control problems.

It can be concluded that the existing results for decentralized supervisory control
problems do not satisfy the needs from control engineering.

In this paper a characterization of maximal solutions for decentralized control
problems will be derived. Is it useful to look for maximal solutions? If a solution
is maximal, then this does not imply that it is a good solution. For instance, a
maximal solution may allow a lot of unimportant traces and disable all important
ones. Another solution which allows less unimportant traces but more important
ones may be considered a better solution. However, the authors believe there are
some good reasons to investigate the characteristics of maximal solutions. The first
and most important reason is that it gives us valuable insight into the fundamental
properties of decentralized control problems. This insight may be used to derive
algorithms that can synthesize “good” (in whatever sense) solutions, whether they
are maximal or not.

Another reason why the authors believe maximality is important is that these
“good” solutions will probably be maximal. So, although maximality of a solution
does not imply that this solution is useful, a solution that is useful (good in some
sense) will most likely be maximal. If a characterization of all maximal solutions
can be given, then all “good” solutions will satisfy this characterization. So this
characterization limits the class of solutions in which the good ones can be found.

Suppose a solution is given, but it is not fully satisfactory. One can ask the
question whether the solution can be extended to obtain a better one. This is possible
only if the given solution is not yet maximal. So also in this case a characterization
of the maximal solutions will be useful.

2.4. Projections. In [4], Kozak and Wonham propose projections of the supre-
mal supervisor as a solution to the decentralized control or synthesis problem.

Definition 2.16. The projection of the supremal supervisor to event set Σa ⊆
Σ(S↑) is denoted by proj(S↑,Σa). It is defined for all sa ∈ pa(L(G)) by

γ(proj(S↑,Σa), sa)
=
{
σ ∈ Σc ∩ Σa : ∃s ∈ p-1

a (sa) ∩ L(S↑/G)such that σ ∈ γ(S↑, s)
}
.

Proposition 2.17 ([4], Lem. 5.1).

proj(S↑,Σ1) ∧ proj(S↑,Σ2)  S↑.(6)

Kozak and Wonham call proj(S↑,Σ1) ∧ proj(S↑,Σ2) the fully decentralized solu-
tion. In general the infimal decomposable solution of Rudie and the projected solution
of Kozak and Wonham are incomparable. However, if the given lower bound, L(A), is
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proj(S↑,Σ1) : proj(S↑,Σ2) : proj(S↑,Σ1) ∧ proj(S↑,Σ2) :

S1 : S2 : S1 ∧ S2 :

[a1]

b2

[a2]

a1

[a2]

b2

S↑ :

[a2]

[a2]

b1 b2

[a1, a2]

[ ]
a1,

b1

[ ]

b1 b2

a2 a1

[a1] [a2]

Fig. 2. The fully decentralized solution is in general not maximal.

the empty trace, then the projected solution is larger than the infimal decomposable
solution. But, even if Σ1 ∩ Σ2 = ∅, the fully decentralized solution is in general not
maximal. Consider the following example.

Example 2.18. Consider the supremal supervisor and the fully decentralized
solution given in Figure 2. In this example Σ1 = {a1, b1}, Σ2 = {a2, b2}, and
Σc = {a1, a2}. The pair (proj(S↑,Σ1),proj(S↑,Σ2)) is not maximal, because the
pair (S1, S2) results in a strictly larger controlled language.

Supervisor proj(S↑,Σ1) disables event a1 because the uncontrolled system can
execute event a2, after which event a1 must be disabled. However, as supervisor S2

disables a2 it is not necessary for supervisor S1 to disable a1. The pair of supervisors
obtained by projection from the supremal supervisor is in general not maximal because
the supervisors only take into account the control actions of the supremal supervisor.
They do not consider the control law of the other supervisor. In order to obtain a
maximal solution it is necessary that the supervisors take into account the control
law of the other supervisor. So, to synthesize supervisor S1 one should already know
the control law of supervisor S2, and to synthesize S2 one should already know the
control law of supervisor S1. It is this cyclic dependency that makes the synthesis of
decentralized controllers such a hard problem.

3. Nash equilibria and maximal solutions. Decentralized stochastic control
has been studied extensively. It is related to game and team theory (see [1, 3, 8, 12]).
In these fields of research a so-called cost function is used. This cost function maps
a decentralized control law to a real number. A solution is considered optimal if it
has the lowest cost. Using cost functions, all solutions can be compared with each
other. In the field of decentralized supervisory control, solutions are compared by the
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S◦
1 : S◦

2 : S◦
1 ∧ S◦

2 :

S′
1 :

S↑ :
[ ]

[ ]

[ ][ ]
S′

2 :
[a1] [a1]

b2

b2

b2

S′
1 ∧ S′

2 :

[a1]

[b2] [b2]

[a1]

Fig. 3. The pair (S◦
1 , S

◦
2 ) is a Nash equilibrium, yet it is not maximal.

language of the controlled system. This ordering is not complete. Some solutions may
not be comparable.

In game and team theory the notion of Nash equilibrium plays an important role.
It will be shown that Nash equilibria are also important for decentralized supervisory
control. A pair of supervisors forms a Nash equilibrium if a supervisor cannot improve
the controlled language when the other supervisor is kept fixed and conversely.

Definition 3.1. Consider the DSSP of Definition 2.11. A pair of supervisors
(S◦

1 , S
◦
2 ) ∈ C(Σ1)× C(Σ2) is called a Nash equilibrium if it is a solution, i.e.,

S◦
1 ∧ S◦

2  S↑,

and

∀S2 ∈ C(Σ2)S
◦
1 ∧ S2  S↑⇒ L(S◦

1 ∧ S2/G) ⊆ L(S◦
1 ∧ S◦

2/G), and

∀S1 ∈ C(Σ1)S1 ∧ S◦
2  S↑⇒ L(S1 ∧ S◦

2/G) ⊆ L(S◦
1 ∧ S◦

2/G).

In game theory, controllers have conflicting optimization criteria, whereas in team
theory all controllers try to optimize the same cost criterion. Note that in the above
definition the closed-loop language is analogous to the cost function in a team or game
problem. The notion of Nash equilibrium has been introduced in game theory. In
team theory it is also known as a person-by-person optimal solution.

In team theory, under certain convexity conditions, a set of controllers is maximal
if and only if it is a Nash equilibrium [12]. This equivalence is quite useful because it
is relatively easier to determine a Nash equilibrium than a maximum.

The following example shows that for discrete-event systems the Nash equilibrium
condition is not sufficient to guarantee maximality.

Example 3.2. Consider the supremal supervisor S↑ and the decentralized im-
plementation (S◦

1 , S
◦
2 ) given in Figure 3. Σ1 = {a1}, Σ2 = {b2}. All events are

controllable. It is not difficult to check that the pair (S◦
1 , S

◦
2 ) is a Nash equilibrium.

However, it is not maximal, because the pair (S′
1, S

′
2) is a solution with a strictly

larger controlled language.
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For discrete-event systems we need the stronger condition of a strong Nash equi-
librium to guarantee maximality of a pair of supervisors.

Definition 3.3. Consider the DSSP of Definition 2.11. A pair of supervisors
(S◦

1 , S
◦
2 ) ∈ C(Σ1)×C(Σ2) is called a strong Nash equilibrium if it is a Nash equilibrium,

and for all (S1, S2) ∈ C(Σ1)× C(Σ2),

L(S1 ∧ S2/G) = L(S◦
1 ∧ S◦

2/G)⇒ (S1, S2) is a Nash equilibrium.(7)

An intuitive interpretation of the need for the concept of a strong Nash equi-
librium follows. The aim of the paper is to obtain a characterization of a maximal
decentralized solution in terms of a person-by-person characterization as in game and
team theory. Example 3.2 shows that there exists a pair of supervisors that is a
Nash equilibrium but not a maximal solution. The condition for a pair of supervi-
sors (S◦

1 , S
◦
2 ) to be a Nash equilibrium is phrased solely in terms of the closed-loop

language L(S◦
1 ∧ S◦

2/G). Because of this formulation, it appears that it is necessary
that any pair of languages that achieves the same closed-loop language is also a Nash
equilibrium. If such a pair was not a Nash equilibrium, one would be able to construct
a pair of supervisors with a strictly larger closed-loop language. This in turn would
contradict maximality. The next theorem shows that the concept of a strong Nash
equilibrium is appropriate.

By Proposition 2.7, L(S1 ∧ S2/G) = L(S◦
1 ∧ S◦

2/G) and S◦
1 ∧ S◦

2  S↑ together
imply that S1 ∧ S2  S↑.

Theorem 3.4. A pair of supervisors (S1, S2) ∈ C(Σ1)×C(Σ2) is maximal if and
only if it is a strong Nash equilibrium.

Proof (strong Nash ⇒ Maximal). Assume (S◦
1 , S

◦
2 ) ∈ C(Σ1) × C(Σ2) is strong

Nash but not maximal. Then there exists a pair (S1, S2) ∈ C(Σ1) × C(Σ2) such that
S1 ∧ S2  S↑ and L(S◦

1 ∧ S◦
2/G) � L(S1 ∧ S2/G). Define S✷

1 ∈ C(Σ1) by

γ(S✷
1 , s1) = γ(S◦

1 , s1) ∪ γ(S1, s1) ∀s1 ∈ p1(L(G)).

We will prove the following points.

1. L(S✷
1 /G) = L(S◦

1/G) ∩ L(S1/G),
2. S✷

1 ∧ S◦
2  S↑,

3. S✷
1 ∧ S2  S↑,

4. L(S◦
1 ∧ S◦

2/G) = L(S✷
1 ∧ S◦

2/G),
5. L(S✷

1 ∧ S◦
2/G) ⊆ L(S✷

1 ∧ S2/G).

(Point 1.) This point will be proven by complete induction. The initial step
follows from ε ∈ L(S✷

1 /G) and ε ∈ L(S◦
1/G) ∩ L(S1/G). For the inductive step let

s ∈ L(S✷
1 /G) and s ∈ L(S◦

1/G) ∩ L(S1/G). Then

sσ ∈ L(S✷
1 /G) ⇐⇒ sσ ∈ L(G), σ �∈ γ(S✷

1 ,p1(s))

⇐⇒ sσ ∈ L(G), σ �∈ γ(S◦
1 ,p1(s)), σ �∈ γ(S1,p1(s))

⇐⇒ sσ ∈ L(S◦
1/G), sσ ∈ L(S1/G)

⇐⇒ sσ ∈ L(S◦
1/G) ∩ L(S1/G).

It follows that L(S✷
1 /G) = L(S◦

1/G) ∩ L(S1/G).



DECENTRALIZED SUPERVISORY CONTROL 503

(Points 2 and 4.) From point 1 and Proposition 2.10, it follows that

L(S✷
1 ∧ S◦

2/G) = L(S◦
1/G) ∩ L(S1/G) ∩ L(S◦

2/G)

= L(S◦
1 ∧ S◦

2/G) ∩ L(S1/G)

=
[
because L(S◦

1 ∧ S◦
2/G) ⊆ L(S1 ∧ S2/G) and

by Proposition 2.10 L(S1 ∧ S2/G) ⊆ L(S1/G)
]

L(S◦
1 ∧ S◦

2/G).

This proves point 4. Point 2 follows from S◦
1 ∧ S◦

2  S↑ and Proposition 2.7.
(Point 3.) From point 1 and Proposition 2.10, it follows that

L(S✷
1 ∧ S2/G) = L(S◦

1/G) ∩ L(S1/G) ∩ L(S2/G)

⊆ L(S1/G) ∩ L(S2/G) = L(S1 ∧ S2/G) ⊆ L(S↑/G).

So, by Proposition 2.7, S✷
1 ∧ S2  S↑.

(Point 5.) From point 4, it follows that

L(S✷
1 ∧ S◦

2/G) = L(S◦
1 ∧ S◦

2/G)

=
[
because L(S◦

1 ∧ S◦
2/G) ⊆ L(S1 ∧ S2/G)

]
L(S◦

1 ∧ S◦
2/G) ∩ L(S1 ∧ S2/G)

= L(S◦
1/G) ∩ L(S◦

2/G) ∩ L(S1/G) ∩ L(S2/G)

⊆ L(S✷
1 /G) ∩ L(S2/G) = L(S✷

1 ∧ S2/G).

As the pair (S◦
1 , S

◦
2 ) is strong Nash, it follows from point 4 that (S✷

1 , S
◦
2 ) is Nash.

So, by point 3 and the definition of Nash, L(S✷
1 ∧S2/G) ⊆ L(S✷

1 ∧S◦
2/G). Then, from

points 4 and 5, L(S◦
1 ∧S◦

2/G) = L(S✷
1 ∧S◦

2/G) = L(S✷
1 ∧S2/G). As (S◦

1 , S
◦
2 ) is strong

Nash, the pair (S✷
1 , S2) is Nash. So

L(S1 ∧ S2/G) ⊆ L(S✷
1 ∧ S2/G) = L(S◦

1 ∧ S◦
2/G).

But this contradicts our assumption that L(S◦
1∧S◦

2 ) � L(S1∧S2/G). We can conclude
that if (S◦

1 , S
◦
2 ) is strong Nash, then it is maximal.

(Maximal ⇒ Strong Nash.) Assume (S1, S2) ∈ C(Σ1) × C(Σ2) is maximal but
not strong Nash. Then there exists a pair (S′

1, S
′
2) ∈ C(Σ1)× C(Σ2) such that L(S′

1 ∧
S′

2/G) = L(S1 ∧ S2/G) and (S′
1, S

′
2) is not Nash. So

∃S′′
1 ∈ C(Σ1) such thatS′′

1 ∧ S′
2  S↑and L(S′′

1 ∧ S′
2/G) �⊆ L(S′

1 ∧ S′
2/G)

or

∃S′′
2 ∈ C(Σ2) such that S′

1 ∧ S′′
2  S↑ and L(S′

1 ∧ S′′
2 /G) �⊆ L(S′

1 ∧ S′
2/G).

Assume, without loss of generality, that such an S′′
2 exists. Let S✷

2 ∈ C(Σ2) be defined
by

γ(S✷
2 , s2) =


γ(S′

2, s2) ∩ γ(S′′
2 , s2), if s2 ∈ p2(L(S′

2/G)) and s2 ∈ p2(L(S′′
2 /G)),

γ(S′
2, s2), if s2 ∈ p2(L(S′

2/G)) and s2 �∈ p2(L(S′′
2 /G)),

γ(S′′
2 , s2), if s2 �∈ p2(L(S′

2/G)) and s2 ∈ p2(L(S′′
2 /G)),

Σ2,c, otherwise.
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We will prove the following points.

1. L(S✷
2 /G) = L(S′

2/G) ∪ L(S′′
2 /G),

2. S′
1 ∧ S✷

2  S↑,
3. L(S′

1 ∧ S′
2/G) ⊆ L(S′

1 ∧ S✷
2 /G),

4. L(S′
1 ∧ S′′

2 /G) ⊆ L(S′
1 ∧ S✷

2 /G).

(Point 1.) This point will be proven by complete induction. The initial step
follows from ε ∈ L(S✷

2 /G) and ε ∈ L(S′
2/G) ∪ L(S′′

2 /G). For the inductive step let
s ∈ L(S✷

2 /G) and s ∈ L(S′
2/G) ∪ L(S′′

2 /G). Trace s can be in one of the three sets
L(S′

2/G) ∩ L(S′′
2 /G), L(S′

2/G)− L(S′′
2 /G), or L(S′′

2 /G)− L(S′
2/G). If s ∈ L(S′

2/G) ∩
L(S′′

2 /G), then

sσ ∈ L(S✷
2 /G) ⇐⇒ sσ ∈ L(G) ∧ σ �∈ γ(S✷

2 ,p2(s))

⇐⇒ sσ ∈ L(G) ∧ (σ �∈ γ(S′
2,p2(s)) ∨ σ �∈ γ(S′′

2 ,p2(s))
)

⇐⇒ sσ ∈ L(S′
2/G) ∨ sσ ∈ L(S′′

2 /G)

⇐⇒ sσ ∈ L(S′
2/G) ∪ L(S′′

2 /G).

If s ∈ L(S′
2/G) but s �∈ L(S′′

2 /G), then

sσ ∈ L(S✷
2 /G) ⇐⇒ sσ ∈ L(G) ∧ σ �∈ γ(S✷

2 ,p2(s))

⇐⇒ sσ ∈ L(G) ∧ σ �∈ γ(S′
2,p2(s))

⇐⇒ sσ ∈ L(S′
2/G)

⇐⇒ sσ ∈ L(S′
2/G) ∪ L(S′′

2 /G).

A similar reasoning holds if s ∈ L(S′′
2 /G) but s �∈ L(S′

2/G). Hence, it follows that
L(S✷

2 /G) = L(S′
2/G) ∪ L(S′′

2 /G).
(Points 2, 3, and 4.) From point 1 and Proposition 2.10, it follows that

L(S′
1 ∧ S✷

2 /G) = L(S′
1/G) ∩ (L(S′

2/G) ∪ L(S′′
2 /G)

)
=
(
L(S′

1/G) ∩ L(S′
2/G)

) ∪ (L(S′
1/G) ∩ L(S′′

2 /G)
)

= L(S′
1 ∧ S′

2/G) ∪ L(S′
1 ∧ S′′

2 /G).

This directly proves points 3 and 4. Point 2 follows from S′
1 ∧S′

2  S↑, S′
1 ∧S′′

2  S↑,
and Proposition 2.7.

As (S1, S2) is maximal, so is (S′
1, S

′
2). Then, by point 3, L(S′

1 ∧ S′
2/G) =

L(S′
1 ∧ S✷

2 /G). From point 4 it follows that L(S′
1 ∧ S′′

2 /G) ⊆ L(S′
1 ∧ S′

2/G). But
this contradicts our assumption that L(S′

1 ∧ S′′
2 /G) �⊆ L(S′

1 ∧ S′
2/G). Hence it can be

concluded that if (S1, S2) is maximal, then it is strong Nash.
Consider two pairs of supervisors to be control equivalent if their controlled lan-

guages are equal, or

(S1, S2) ≡ (S3, S4) ∈ C(Σ1)× C(Σ2) if L(S1 ∧ S2/G) = L(S3 ∧ S4/G).

Then a pair of supervisors is maximal if and only if all control equivalent pairs are
Nash equilibria. Let the control equivalence class corresponding with the language
K ⊆ L(G) be the set of pairs for which the controlled language is equal to K. A
prefix closed and decomposable language can be considered maximal if and only if all
pairs in its corresponding control equivalence class are Nash equilibria.
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If the event sets Σ1 and Σ2 are disjoint, then a weaker condition can be found
to characterize maximal solutions. Define (Ŝ1, Ŝ2) as the pair of most restrictive
supervisors in the control equivalence class of (S1, S2).

Definition 3.5. Let (S1, S2) ∈ C(Σ1) × C(Σ2). The supervisor Ŝ1 ∈ C(Σ1) is
defined by

γ(Ŝ1, s1) = {σ ∈ Σc(S1) : s1σ �∈ p1(L(S1 ∧ S2/G))} ∀s1 ∈ p1(L(G)).

The supervisor Ŝ2 ∈ C(Σ2) is defined analogously.

Supervisor Ŝ1 can be seen as the most restrictive supervisor of all supervisors
S′

1 for which there exists a supervisor S′
2 such that L(S′

1 ∧ S′
2/G) = L(S1 ∧ S2/G).

That is, if such an S′
1 disables event σ after trace s, then sσ is not an element of

L(S′
1/G) ⊇ L(S′

1 ∧ S′
2/G) = L(S1 ∧ S2/G). So Ŝ1 will also disable this event.

First it needs to be proven that (Ŝ1, Ŝ2) is a solution and that it is control equiv-
alent with (S1, S2).

Proposition 3.6. Let (S1, S2) ∈ C(Σ1) × C(Σ2) be a decentralized solution im-

plementing S↑, and let (Ŝ1, Ŝ2) be defined as above. Then

1. Ŝ1 ∧ Ŝ2  S↑, and
2. L(Ŝ1 ∧ Ŝ2/G) = L(S1 ∧ S2/G).

Proof (point 2, L(Ŝ1 ∧ Ŝ2/G) ⊆ L(S1 ∧ S2/G)). First we will prove by induction

that L(Ŝ1/G) ⊆ L(S1/G). The initial step follows from ε ∈ L(Ŝ1/G) and ε ∈ L(S1/G).

For the inductive step let s ∈ L(Ŝ1/G) and s ∈ L(S1/G).

sσ ∈ L(Ŝ1/G)⇒ sσ ∈ L(G) ∧ σ �∈ γ(Ŝ1,p1(s))

⇒ sσ ∈ L(G) ∧ (σ �∈ Σc(S1) ∨ p1(s)σ ∈ p1(L(S1 ∧ S2/G))
)

⇒ [
because L(S1 ∧ S2/G) ⊆ L(S1/G)

]
sσ ∈ L(G) ∧ (σ �∈ Σc(S1) ∨ p1(s)σ ∈ p1(L(S1/G))

)
⇒ sσ ∈ L(G) ∧ (σ �∈ Σc(S1) ∨ σ �∈ γ(S1,p1(s))

)
⇒ [

because σ �∈ Σc(S1)⇒ σ �∈ γ(S1,p1(s))
]

sσ ∈ L(G) ∧ σ �∈ γ(S1,p1(s))

⇒ sσ ∈ L(S1/G).

By symmetry it follows that L(Ŝ2/G) ⊆ L(S2/G). So

L(Ŝ1 ∧ Ŝ2/G) = L(Ŝ1/G) ∩ L(Ŝ2/G) ⊆ L(S1/G) ∩ L(S2/G) = L(S1 ∧ S2/G).

(Point 2, L(S1 ∧ S2/G) ⊆ L(Ŝ1 ∧ Ŝ2/G).) First it will be proven by induction

that L(S1 ∧ S2/G) ⊆ L(Ŝ1/G). The initial step follows from ε ∈ L(S1 ∧ S2/G) and

ε ∈ L(Ŝ1/G). For the inductive step let s ∈ L(S1 ∧ S2/G) and s ∈ L(Ŝ1/G).

sσ ∈ L(S1 ∧ S2/G)

⇒ σ �∈ Σ1 ∨
(
σ ∈ Σ1 ∧ p1(sσ) = p1(s)σ ∈ p1(L(S1 ∧ S2/G))

)
⇒ [

by construction of γ(Ŝ1,p1(s))
]

σ �∈ Σ1 ∨ (σ ∈ Σ1 ∧ σ �∈ γ(Ŝ1,p1(s)))

⇒ [
because γ(Ŝ1,p1(s)) ⊆ Σ1

]
σ �∈ γ(Ŝ1,p1(s))

⇒ [
because s ∈ L(Ŝ1/G) and sσ ∈ L(G)

]
sσ ∈ L(Ŝ1/G).
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By symmetry it follows that L(S1 ∧ S2/G) ⊆ L(Ŝ2/G). So

L(S1 ∧ S2/G) ⊆ L(Ŝ1/G) ∩ L(Ŝ2/G) = L(Ŝ1 ∧ Ŝ2/G).

(Point 1.) This follows directly from point 2 and Proposition 2.7.

Theorem 3.7. Let Σ1 ∩ Σ2 = ∅. Let (S1, S2) ∈ C(Σ1) × C(Σ2). Let (Ŝ1, Ŝ2) ∈
C(Σ1) × C(Σ2) be defined by Definition 3.5. Then (S1, S2) is maximal if and only if

(Ŝ1, Ŝ2) is a Nash equilibrium.
Proof (Maximal ⇒ Nash). If (S1, S2) is maximal, then by Theorem 3.4 (S1, S2)

is a strong Nash equilibrium, which by points 1 and 2 of Proposition 3.6 implies that
(Ŝ1, Ŝ2) is a Nash equilibrium.

(Nash ⇒ Maximal.) Assume (Ŝ1, Ŝ2) is a Nash equilibrium, but (S1, S2) is not

maximal. Then, by point 2 of Proposition 3.6 (Ŝ1, Ŝ2) is not maximal. There exists a

pair (S′
1, S

′
2) ∈ C(Σ1)×C(Σ2) such that S′

1∧S′
2  S↑ and L(Ŝ1∧Ŝ2/G) � L(S′

1∧S′
2/G).

We will first prove that

Ŝ1 ∧ S′
2  S↑ and S′

1 ∧ Ŝ2  S↑.

It will be proven by induction that L(Ŝ1/G) ⊆ L(S′
1/G). The initial step follows

from ε ∈ L(Ŝ1/G) and ε ∈ L(S′
1/G). For the inductive step let s ∈ L(Ŝ1/G) and

s ∈ L(S′
1/G).

sσ ∈ L(Ŝ1/G)⇒ sσ ∈ L(G) ∧ σ �∈ γ(Ŝ1,p1(s))

⇒ sσ ∈ L(G) ∧ (σ �∈ Σc(S1) ∨ p1(s)σ ∈ p1(L(S1 ∧ S2/G)))

⇒ [because L(S1 ∧ S2/G) ⊆ L(S′
1 ∧ S′

2/G) ⊆ L(S′
1/G)]

sσ ∈ L(G) ∧ (σ �∈ Σc(S1) ∨ p1(s)σ ∈ p1(L(S′
1/G)))

⇒ sσ ∈ L(G) ∧ (σ �∈ Σc(S1) ∨ σ �∈ γ(S′
1,p1(s)))

⇒ [because σ �∈ Σc(S1)⇒ σ �∈ γ(S′
1,p1(s))]

sσ ∈ L(G) ∧ σ �∈ γ(S′
1,p1(s))

⇒ sσ ∈ L(S′
1/G).

It follows that L(Ŝ1/G) ⊆ L(S′
1/G). Now

L(Ŝ1 ∧ S′
2/G) = L(Ŝ1/G) ∩ L(S′

2/G) ⊆ L(S′
1/G) ∩ L(S′

2/G)

= L(S′
1 ∧ S′

2/G) ⊆ L(S↑/G).

So, by Proposition 2.7, Ŝ1 ∧ S′
2  S↑. It follows by symmetry that S′

1 ∧ Ŝ2  S↑.
As L(Ŝ1 ∧ Ŝ2/G) � L(S′

1 ∧S′
2/G) there exists a trace s ∈ L(S′

1 ∧S′
2/G) such that

s �∈ L(Ŝ1 ∧ Ŝ2/G). Let vσ be the prefix of s such that σ ∈ Σ, v ∈ L(Ŝ1 ∧ Ŝ2/G), and

vσ �∈ L(Ŝ1 ∧ Ŝ2/G). Assume without loss of generality that σ ∈ Σ2. Then, by the

assumption that Σ1∩Σ2 = ∅, σ �∈ Σ1. So σ �∈ γ(Ŝ1,p1(v)) ⊆ Σ1. Thus vσ ∈ L(Ŝ1/G).

As vσ ∈ L(S′
1 ∧ S′

2/G) ⊆ L(S′
2/G), it follows that vσ ∈ L(Ŝ1 ∧ S′

2/G). But this

contradicts the fact that (Ŝ1, Ŝ2) is a Nash equilibrium. Hence we can conclude that

if (Ŝ1, Ŝ2) is a Nash equilibrium, then (S1, S2) is maximal.
A prefix closed and decomposable language K ⊆ L(G) can be considered maximal

if and only if the pair of most restricting supervisors in the control equivalence class
corresponding with language K is a Nash equilibrium.
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4. Construction of Nash equilibria. Theorems 3.4 and 3.7 give characteri-
zations of the maximal solutions in terms of Nash equilibria. However, they do not
state how Nash equilibria can be obtained. For dynamic games in the field of game
and team theory, a necessary condition for a Nash equilibrium can be given by the
coupled Bellman–Hamilton–Jacobi equations. A solution to these equations is under
certain additional conditions also sufficient for a Nash equilibrium. A procedure for
the construction of a solution is known [9]. It alternately keeps one of the controllers
fixed and tries to optimize the other. At each iteration only one of the controllers
is optimized. For dynamic games it is not guaranteed that the procedure converges.
And if it converges, it is not guaranteed that it does so in a finite number of steps.

For supervisory control the Bellman–Hamilton–Jacobi equations are not applica-
ble. Yet, the procedure can still be used. At each iteration one of the supervisors
is kept fixed and the other is optimized. Only one supervisor is synthesized in each
step. This can be seen as a supervisory control problem for a single supervisor. The
combination of the fixed supervisor and the uncontrolled system is taken as the un-
controlled system for this control problem. As only one supervisor is synthesized (and
all controllable events are observable) a unique optimal solution exists. In the next
iteration this optimal supervisor is taken fixed and the other supervisor is optimized.
This procedure is repeated until the pair of supervisors remains invariant. Below this
procedure is formalized.

Assume without loss of generality that S1 is the supervisor which is kept fixed.
Consider the supervisory control problem with partial observations for the plant S1/G
and with legal language L(S↑). Then define

K = sup


K ′ ⊆ L(S1/G)|(1) K ′ ⊆ L(S↑),
(2) K ′ controllable with respect to (L(S1/G),Σc(Σ2)),
(3) and normal with respect to L(S1/G) and p2

 .(8)

The supremal supervisor S2 with respect to the uncontrolled system S1/G is defined
by

γ(S2, s2) = {σ ∈ Σc(S2) : s2σ �∈ p2(K)} ∀s2 ∈ p2(L(G)).(9)

If S2 is kept fixed, then S1 is computed analogously. The formula for K in this case
is obtained from that of (8) by interchanging the indices 1 and 2.

Lemma 4.1. Let S1 be the supervisor which is kept fixed. Let S2 and K be as
defined above. Then L(S1 ∧ S2/G) = K.

Proof. The proof will be by complete induction. As ε ∈ L(S1 ∧ S2/G) and ε ∈ K
the initial step is satisfied. For the inductive step let s ∈ L(S1 ∧ S2/G) and s ∈ K.

sσ ∈ L(S1 ∧ S2/G) ⇐⇒ sσ ∈ L(S1/G) ∧ σ �∈ γ(S2,p2(s))

⇐⇒ sσ ∈ L(S1/G) ∧ (σ �∈ Σc(Σ2) ∨ p2(s)σ ∈ p2(K))

⇐⇒ [because s ∈ K and K is controllable]

sσ ∈ L(S1/G) ∧ (sσ ∈ K ∨ p2(s)σ ∈ p2(K))

⇐⇒ [because K ⊆ p−1
2 (p2(K))]

sσ ∈ L(S1/G) ∧ sσ ∈ p−1
2 (p2(K))

⇐⇒ [
because K is normal with respect to L(S1/G)

]
sσ ∈ K.

The procedure is described by the following steps.
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Procedure 4.2.
1. Choose a pair of most restrictive supervisors (S0

1 , S
0
2) as starting point of

the procedure. Take, for instance, the pair of most restrictive supervisors
corresponding with the fully decentralized solution. Let j = 0.

2. If j is even, then let Sj+1
2 be the supremal supervisor with respect to uncon-

trolled system Sj1/G and event set Σ2. Let Sj+1
1 = Sj1. If j is odd, then let

Sj+1
1 be the supremal supervisor with respect to uncontrolled system Sj2/G and

event set Σ1. Let Sj+1
2 = Sj2.

3. If (Sj+1
1 , Sj+1

2 ) �= (Sj1, S
j
2), then increment j and continue with step 2.

First it will be shown that all pairs of supervisors (Sj1, S
j
2) are most restricting.

Lemma 4.3. Let j ∈ N and assume that (Sj1, S
j
2) is most restrictive. Then

(Sj+1
1 , Sj+1

2 ) obtained in the second step of the procedure is also most restrictive.

Proof. Assume without loss of generality that j is odd. So Sj+1
2 = Sj2 and

Sj+1
1 is the supremal supervisor with respect to Sj2/G. Let Kj = L(Sj1 ∧ Sj2/G) and

Kj+1 = L(Sj+1
1 ∧ Sj+1

2 /G). Comparing (9) with Definition 3.5, it is not difficult to

see that Sj+1
1 is most restrictive with respect to Kj+1. Supervisor Sj+1

2 = Sj2 is most
restrictive with respect to language Kj . It remains to show that it is most restrictive
with respect to Kj+1.

σ ∈ γ(Sj+1
2 , s2) = γ(Sj2, s2)⇒ σ ∈ Σc(S

j
2) ∧ s2σ �∈ L(Sj2/G)

⇒ [because Kj+1 ⊆ L(Sj2/G)] σ ∈ Σc(S
j
2) ∧ s2σ �∈ Kj+1.

As Kj+1 is supremal it follows that Kj ⊆ Kj+1.

σ �∈ γ(Sj+1
2 , s2) = γ(Sj2, s2)⇒

[
because Sj2 is most restrictive with respect toKj

]
σ �∈ Σc(S

j
2) ∨ s2σ ∈ Kj

⇒ [
because Kj ⊆ Kj+1

]
σ �∈ Σc(S

j
2) ∨ s2σ ∈ Kj+1.

It follows that Sj+1
2 is most restrictive with respect to Kj+1. And thus (Sj+1

1 , Sj+1
2 )

is most restrictive.
Next it will be shown that if (Sj+1

1 , Sj+1
2 ) = (Sj1, S

j
2), then (Sj1, S

j
2) forms a Nash

equilibrium. So if Σ1 and Σ2 are disjoint, then this pair is a maximal solution.
Theorem 4.4. Let j ∈ IN and let Sj1, S

j
2, S

j+1
1 , Sj+1

2 be constructed by the proce-

dure above. If (Sj+1
1 , Sj+1

2 ) = (Sj1, S
j
2), then (Sj1, S

j
2) forms a Nash equilibrium.

Proof. Assume without loss of generality that j is odd. Then, according to the
second step of the procedure, Sj+1

2 = Sj2 and Sj+1
1 is the supremal supervisor with

respect to Sj2/G. As Sj+1
1 = Sj1 it follows that Sj1 is optimal if Sj2 is kept fixed. This

proves the first part of the Nash equilibrium condition.
From the previous iteration of the procedure it follows that Sj1 = Sj−1

1 and that Sj2
is the supremal supervisor with respect to Sj−1

1 /G. In the next iteration supervisor

Sj+2
2 will be synthesized. Supervisor Sj+2

2 is the optimal solution with respect to

Sj+1
1 /G = Sj1/G = Sj−1

1 /G. So Sj+2
2 will be equal to Sj2. Supervisor Sj2 is optimal if

Sj1 is kept fixed. This proves the second part of the Nash equilibrium condition. And

thus (Sj1, S
j
2) is a Nash equilibrium.

Example 4.5. Consider the system described in Example 2.18 and Figure 2.
Take the pair of most restrictive supervisors corresponding with the fully decentralized
solution as starting point of the procedure. In this case S0

1 = proj(S↑,Σ1) and S0
2 =

proj(S↑,Σ2). Let Σ1 = {a1, b1}, Σ2 = {a2, b2}, and Σc = {a1, a2}. Note that
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G :

b1

a2

b2

a1

S01 :

[a1]

b1

S02 :

[a2]

b2

S01/G : a2

b1

S12 :

[]
b2

[a2]

a2a1

a2 b2

S12/G :
a2

b1

a1

a1

a2 b2

a1

b2

S21 = S01 S21 ∧ S12/G = S01/G

Fig. 4. Construction of a Nash equilibrium pair of supervisors for Example 4.5.

the event sets Σ1 and Σ2 are disjoint. The construction of the Nash equilibrium is
summarized in Figure 4. In this construction use is made of the expression for the
control law of (9). First S0

1 is kept fixed and the optimal supervisor S1
2 with respect

to the uncontrolled system S0
1/G is derived. Note that L(S0

1/G) ⊆ L(S↑) and thus
by (8) K = L(S0

1/G).

Next, S1
2 is kept fixed. The language L(S1

2/G) �⊆ L(S↑), so K is a proper subset of
L(S1

2/G). The optimal supervisor S2
1 with respect to the uncontrolled system S1

2/G is
derived. It turns out that S2

1 = S0
1 . In subsequent steps the pair of supervisors remains

invariant. The pair (S2
1 , S

1
2) is thus a Nash equilibrium, and therefore, according to

Theorem 3.7, a maximal solution. The closed-loop system according to this Nash
equilibrium is identical to S0

1/G.

Example 4.6. Now, consider a slight alteration of the control problem of Ex-
ample 4.5. Let Σc = Σ and let the rest be unchanged. Take, as before, the pair of
most restrictive supervisors corresponding with the fully decentralized solution as a
starting point. In this case also the b-events are disabled. The construction of the
pair of supervisors is then illustrated in Figure 5.

The procedure will converge to the limit pair (S∗
1 , S

∗
2 ). However, this solution will

not be obtained in a finite number of steps.

The example shows that a small change in the parameters of the problem may
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[a1, b1]
S0

2 :
[a2, b2]

S0
1/G :

S0
1 :

a2

[b2]

a2

[a2, b2]
S1

2 :

S1
2/G :

a2

a1a2

b1
a1

a1

S2
1 :

[a1]

b1

[b1]

a1

[a1, b1]

S2
1/G :

a2 b1 a1

a2a1

b2
a2

a2

S3
2 :

a2

[b2]

b2

[a2]

a2

[b2] [a2, b2]

b1

a1[a1] [b1]

S∗
2 :S∗

1 :

a2

b2[b2] [a2]

Fig. 5. Construction of a Nash equilibrium pair of supervisors for Example 4.6.

lead to a different solution. It may even cause the procedure to become nonhalting.

Up until now these particularities are not fully understood. Further research is
needed to adapt the algorithm such that it always converges in a finite number of steps.
Also, further research is required to understand the relationship between the initial
parameters and the eventual solution. For decentralized control of finite-dimensional
linear systems, there is an example for which the procedure does not stop after a
finite number of steps and for which a decentralized controller is infinite-dimensional
(see [18]). For concrete decentralized supervisory control problems a few steps of the
procedure may yield a useful pair of supervisors.

It would be ideal if the procedure could produce a representation of all maximal
solutions. It is not certain whether such a representation is finite.

5. Conclusions. For decentralized supervisory control a pair of supervisors is
defined to be a maximal solution if there does not exist another such pair with a
strictly larger closed-loop language. It has been argued that a maximal solution is of
interest to control synthesis of decentralized discrete-event systems. The construction
of a maximal solution is handled by analogy with game and team problems. A pair of
supervisors is defined to be a Nash equilibrium if, when one supervisor is kept fixed,
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the other cannot be changed so as to enlarge the closed-loop language and conversely.
The main result is then that a pair of supervisors is a strong Nash equilibrium if and
only if it is a maximal solution.

A procedure is presented for the construction of a strong Nash equilibrium of a
pair of supervisors. The procedure alternatingly keeps one supervisor fixed and solves
a supervisory control problem for the other supervisor. The procedure is shown to
work on an example. Another example establishes that the procedure may not stop
after any finite number of steps.

Major open questions are (1) the classification of all maximal solutions for the
decentralized supervisory control problem, and (2) conditions under which Proce-
dure 4.2 stops after a finite number of steps. Experience should be gained with this
approach to decentralized supervisory control.
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ON THE SYNTHESIS OF OPTIMAL SCHEDULERS IN DISCRETE
EVENT CONTROL PROBLEMS WITH MULTIPLE GOALS∗
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Abstract. This paper deals with a new type of optimal control for discrete event systems. Our
control problem extends the theory of [R. Sengupta and S. Lafortune, SIAM J. Control Optim., 36
(1998), pp. 488–541] that is characterized by the presence of uncontrollable events, the notion of
occurrence and control costs for events, and a worst-case objective function. A significant difference
with [R. Sengupta and S. Lafortune, SIAM J. Control Optim., 36 (1998), pp. 488–541] is that our aim
is to make the system evolve through a set of multiple goals, one by one, with no order necessarily
prespecified, whereas the previous theory only deals with a single goal. Our solution approach is
divided into two steps. In the first step, we use the optimal control theory in [R. Sengupta and S.
Lafortune, SIAM J. Control Optim., 36 (1998), pp. 488–541] to synthesize individual controllers for
each goal. In the second step, we develop the solution of another optimal control problem, namely,
how to modify if necessary and piece together, or schedule, all of the controllers built in the first
step in order to visit each of the goals with the least total cost. We solve this problem by defining
the notion of a scheduler and then by mapping the problem of finding an optimal scheduler to an
instance of the well-known traveling salesman problem (TSP) [E. L. Lawler, J. K. Lenstra, A. H. G.
Rinooy Kan, and D. B. Shmoys, The Traveling Salesman Problem, John Wiley, 1985]. We finally
suggest various strategies to reduce the complexity of the TSP resolution while still preserving global
optimality.

Key words. discrete event systems, optimal control, scheduler, traveling salesman problem
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1. Introduction and motivation. We are interested in a new class of optimal
control problems for discrete event systems (DES). We adopt the formalism of super-
visory control theory [16] and model the system as the regular language generated by
a finite state machine (FSM). Our control problem follows the theory in [19, 20, 21]
and is characterized by the presence of uncontrollable events, the notion of occurrence
and control costs for events, and a worst-case objective function. A significant differ-
ence with the work in [21] and with the other works dealing with optimal control of
DES [6, 11, 14, 24] is that we wish to make the system evolve through a set of marked
states (or multiple goals) one by one, with no order necessarily specified a priori; in
contrast, the previous theories only deal with a single marked state.

Our problem formulation is motivated by several application domains such as
test objective generation in verification and diagnostics, planning in environments
with uncertain results of actions, and routing in communication networks.

• In test objective generation, a given system has been designed to meet some
specific requirements. However, it may happen that some of these require-
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ments have been overlooked or neglected. Failures can occur as a consequence
of negligence. Test objective generation is a way of (ideally exhaustively)
checking for inconsistencies in the behavior of the system [1, 3, 17]. The
marked states (the states of interest) would be some particular states in which
the behavior of the system to be tested is suspected to be flawed. The method
that we develop generates a behavior for the system that allows it to reach
all these states in an optimal way, with respect to the given occurrence and
control cost functions for the events. Each time a state of interest is reached,
a behavioral test can be performed on this particular state in order to check if
it meets the requirements and conforms to the designed or expected behavior.
• In artificial intelligence (AI), the behavior of an agent is often sought to

be optimized with respect to an optimality criterion [5]. Moreover, dealing
with multiple goals is an active area of research in AI [13]. The model and
the methods that we develop in this work can easily be applied to an agent
evolving in an environment where the results of its actions are not always the
ones expected. Under certain restrictions, there is a mapping between partial
controllability in DES and the notion of a nondeterministic environment1 in
AI [18]. The notion of an optimal scheduler that we define and construct can
be used to do planning with multiple goals.
• Broadcasting and multicasting in a communication network is an instance

of a multiagent system. Here, the marked states would represent the nodes
of the network to which we would want the information to be sent. The
uncontrollability of certain events would be interpreted as the uncertainty
regarding the actual route that the information would take, since the entire
route is not up to the decision of the single sending agent. The solution that
we generate can be used to determine the number of duplicated messages
that must be sent in parallel through the network in order for all the desired
recipients to receive the piece of information.

Our solution approach consists of two steps. The starting point is an FSM which
represents the desired behavior of a given system. From this FSM, we can generate
a controller that verifies any property that we would wish to associate to it, from
the set of acceptable controllers. The desirable property is often taken to minimize a
quantitative performance measure. In our case, we generate a controller which veri-
fies a range of properties. This is what has been called the DP-optimality property
of an FSM [21]. DP-optimality stands for dynamic programming optimality. This
comes from the fact that we use back-propagation from the goal state to generate the
controller, based on event cost functions. The controller is represented as an FSM
also. The theory of DP-optimal controllers has been developed in the restricted case
of one unique marked state [19, 20, 21]. We use the theory in [21] to synthesize a set
of optimal controllers corresponding to the different marked states, each treated indi-
vidually. This yields a set of FSMs that are generated independently from each other.
These controllers are synthesized in a manner that gives them an optimal substruc-
ture, consistent with the notion of DP-optimality of [21]. The objective function has
a worst-case form. The total worst-case computational complexity of the first step is

1The notion of a nondeterministic environment in AI is different from the notion of a nonde-
terministic FSM in control of DES. In AI, a nondeterministic environment is one where the actions
undertaken by the agent might not lead to the expected arrival state of the world, whereas in control
of DES, a nondeterministic FSM is one in which there are identically labeled transitions that lead
from one state to different states.
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cubic in the number of states in the systems. At this point, the notion of a DP-optimal
controller is replaced by the notion of a stepwise DP-optimal scheduler. By scheduler,
we mean a sequence of behaviors that are modeled by FSMs. We develop the solution
of a “higher-level” optimal control problem, where we use all the controllers built in
the first step in order to visit each of the marked states with least total cost; we call
this problem that of finding a “stepwise DP-optimal scheduler.” We solve this prob-
lem by defining the notion of a scheduler and then by mapping the problem of finding
a stepwise DP-optimal scheduler to an instance of the well-known traveling salesman
problem (TSP) [8]. We finally suggest different strategies to reduce the computational
complexity of this step while still preserving global optimality by taking advantage of
some particular properties of the structure of stepwise DP-optimal schedulers.

One of the differences between DP-optimality and stepwise DP-optimality resides
in the controller having an FSM structure, whereas the scheduler is a concatenation
of FSMs. All the states appear only once in a controller, whereas states can appear
several times in a scheduler, but under different circumstances, i.e., in different sub-
machines. Also, another difference between DP-optimal controllers and a stepwise
DP-optimal scheduler for an FSM is the existence of a unique maximal DP-optimal
controller which contains all the other DP-optimal controllers as submachines, whereas
there is no notion of a unique maximal stepwise DP-optimal scheduler.

This paper is organized as follows. In section 2, the necessary notations are
introduced. In section 3, we recall the basic definitions and properties of the optimal
control theory of DES of [19, 20, 21]. More precisely, we review the notion of a DP-
optimal submachine of an FSM G. This definition is used as a springboard to section
4, where we introduce the enlarged problem in the case of multiple marked states. In
section 5, we define the notion of an optimal scheduler; such a scheduler ensures that
the system will visit each state in a given set of states at least once while minimizing
a given cost function over the trajectories of the system. We then suggest possible
simplifications that can be made to reduce the overall complexity of the computation
of a stepwise DP-optimal scheduler. Section 6 illustrates this new notion of optimality
with an example. Section 7 presents some possible applications of the theory that is
developed throughout this paper. A conclusion and discussion on future works are
presented in section 8.

2. Preliminaries. In this section, the main concepts and notations are defined
(more definitions will be made when necessary in the following sections). The system
to be controlled is modeled as an FSM defined by a 5-tuple G = 〈Σ, Q, q0, Qm, δ〉,
where Σ is the set of events, Q is the (finite) set of states, q0 is the initial state,
Qm is the set of marked states, and δ is the partial transition function defined over
Σ∗ × Q → Q. The notation δG(σ, q)! means that δG(σ, q) is defined, i.e., there is a
transition labeled by event σ out of state q in machine G. Likewise, δG(s, q) denotes
the state reached by taking the sequence of events defined by trace s from state q in
machine G. The behavior of the system is described by the prefix-closed language
L(G) [2], generated by G. L(G) is a subset of Σ∗, where Σ∗ denotes the Kleene closure
of the set Σ [4]. Similarly, the language Lm(G) corresponds to the marked behavior
of the FSM G, i.e., the set of trajectories of the system ending in one of the marked
states of G.

Some of the events in Σ are uncontrollable, i.e., their occurrence cannot be pre-
vented by a controller, while the others are controllable. In this regard, Σ is parti-
tioned as Σ = Σc ∪ Σuc, where Σc represents the set of controllable events and Σuc
represents the set of uncontrollable events. In what follows, we will only be interested
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in trim FSMs (i.e., FSMs whose states are all accessible from q0 and coaccessible
to Qm). For explicit mathematical definitions, the reader may refer to [2]. We say
that an FSM A = 〈Σ, QA, q0A, QmA, δA〉 is a submachine of G if ΣA ⊆ Σ, QA ⊆
Q, QmA ⊆ Qm, and ∀σ ∈ ΣA, q ∈ QA, δA(σ, q)! ⇒ (δA(σ, q) = δ(σ, q)). The
statement A ⊆ G denotes that A is a submachine of G. We also say that A is a
submachine of G at q whenever q0A = q ∈ Q and A ⊆ G. For any q ∈ Q, we will
use M(G, q,Qm) = {A ⊆ G : A is trim with respect to QmA and q0A = q} to
represent the set of trim submachines of G at q with respect to Qm. This set has a
maximal element in the sense that this maximal element contains all other elements
as submachines. It is denoted as M(G, q,Qm). For convenience, we write M(G, q)
and M(G, q) when there is only one marked state, i.e., when Qm = {qm}.

As stated in [21], to take into account the numerical aspect of the optimal control
problem, costs are associated with each event of Σ. To this effect, we introduce
an occurrence cost function ce : Σ → R

+ ∪ {0} and a control cost function cc :
Σ → R

+ ∪ {0,∞}. Occurrence cost functions are used to model the cost incurred in
executing an event (energy, time, etc.). Control cost functions are used to represent
the fact that disabling a transition possibly incurs a cost. The control cost function
is infinity for events of Σuc. These cost functions are then used to introduce a cost
on the trajectories of a submachine A of G. To this effect, we first define a projection
pj that, when applied to a trace of events s = σs1σ

s
2 . . . σs‖s‖, gives the subtrace of s of

length j starting from σs1 ( pj(s) = σs1σ
s
2 . . . σsj if j ≤ ‖s‖, and is undefined otherwise).

We also introduce ΣGd (A, q) as the set of disabled events at state q for the system to
remain in submachine A of G.

Definition 2.1. Let A be a submachine of G, and let Lm(A) be the marked
language of A. Then the following are defined.

• For any state q ∈ QA and string s = σs1σ
s
2 . . . σs‖s‖ such that δ∗A(s, q) exists,

the cost of the string s is given by

cg(q,A, s) =

‖s‖∑
j=1

ce(σ
s
j ) +

‖s‖∑
j=1

∑
σ∈ΣG

d
(A,q′)

q′=δA(pj(s),q)

cc(σ).(2.1)

• The objective function denoted as cgsup(.) is given by

cgsup(A) = sup
s∈Lm(A)

cg(q0A, A, s).(2.2)

Basically, the cost of a trajectory is the sum of the occurrence costs of the events
belonging to this trajectory to which is added the cost of disabling events on the
way to remain in A. If an uncontrollable event is disabled, this renders the cost of
a trajectory infinite because the second term of (2.1) becomes infinity. The notation
cgsup(A) represents the worst-case behavior that is possible in submachine A.

3. Review of the DP-optimal problem for one final state. In general,
the purpose of optimal control is to study the behavioral properties of a system, to
take advantage of a particular structure, and to generate a controller which constrains
the system to a desired behavior according to quantitative and qualitative aspects.
In the basic setup of supervisory control theory (see [15, 16] and Chapter 3 of [2]),
optimality is with respect to set inclusion, and thus all legal behaviors are equally
good (zero cost) and illegal behaviors are equally bad (infinite cost). The work in [21]
enriches this setup by the addition of quantitative measures in the form of occurrence
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and control cost functions, to capture the fact that some legal behaviors are better
than others. The problem is then to synthesize a controller that is not only legal, but
also “good” in the sense of given quantitative measures. Some other studies appear
in [6, 11, 14, 24]. In this section, we present some results of [21] that are necessary
for developing the solution procedure for optimal schedulers. Our aim here is not to
describe in detail all the theory, which can be found in [19, 20, 21], but to present the
principal notations and results that we use in what follows.

Definition 3.1. A submachine A of G is said to be controllable if ∀ q ∈ QA,
such that there exists s ∈ Σ∗ and δ(s, qoA) = q, the following is satisfied:

∀σ((σ ∈ Σuc) ∧ (δ(σ, q)!))⇒ δA(σ, q)!

We now define the optimization problem for a single marked state qm.
Definition 3.2. ∀q ∈ Q, Ao ∈M(G, q) is an optimal submachine if

cgsup(Ao) = min
A∈M(G,q)

cgsup(A) <∞.

For such a submachine Ao, cgsup(Ao) represents the optimal cost (in fact, the worst
inevitable cost) necessary to reach qm from q0. It means that a submachine with a
lower cost could not ensure the accessibility of qm from q0. The following lemma
(Lemma 2.15 in [19]) is stated to note that optimal solutions lie within the class of
controllable submachines.

Lemma 3.3. Let A ∈M(G, q,Qm). If cgsup(A) <∞, then A is controllable.
Theorem 4.2 of [19] gives necessary and sufficient conditions for the existence of op-
timal submachines as follows.

Theorem 3.4. An optimal submachine of G exists if and only if there exists a
submachine A of G such that A is trim, controllable and ∀s ∈ L(G) and q ∈ Q such
that δ(s, q) = q we have cg(q,A, s) = 0.

Intuitively, this theorem states that an optimal solution exists when there are
controllable submachines of G in which all cycles have a zero cost. The controllability
assumption ensures that the positive cost cycles can be broken using controllable
events alone. We now introduce the notion of DP-optimal submachines. This kind of
submachine will be used intensively in the next sections.

Definition 3.5. A submachine ADO ∈ M(G, q) is DP-optimal if it is optimal
and ∀q′ ∈ QADO , M(ADO, q′) is an optimal submachine inM(G, q′).

If a particular DP-optimal FSM includes all other DP-optimal FSMs as subma-
chines of itself, then we call it the maximal DP-optimal submachine. The maximal
DP-optimal submachine of a machine G at q with respect to the final marked state qm
will be denoted by Mo

D(G, q, qm). Note that all DP-optimal submachines are acyclic.
The existence of a DP-optimal submachine of G is given by the following theorem
(Theorem 4.3 of [19]).

Theorem 3.6. If an optimal submachine of G exists, then the unique maximal
DP-optimal submachine Gm

des = Mo
D(G, q0, qm) of G with respect to the final state qm

also exists.
The cyclic DP-optimal algorithm. Consider an FSM G = 〈Σ, Q, q0, qm, δ〉

with a unique initial state q0 and a unique marked state qm. Assume that all occur-
rence costs are strictly positive; then there exists an algorithm [21], named DP-Opt,
with a worst-case complexity O(|Q|2|Σ| log(|Σ|)+|Q|3|Σ|) (Theorem 6.10 of [21]), that
constructs the desired maximal DP-optimal submachine of the FSM G with respect
to q0 and qm, that we denote as Gm

des. The algorithm also returns the worst inevitable
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Fig. 3.1. The initial system G, the event cost function, and the maximal DP-optimal subma-
chine G4des.

cost cgsup(G
m
des). Moreover, during the computation of the algorithm, we can recover

the submachines Mo
D(G, q, qm) associated with cgsup(M

o
D(G, q, qm)) for each state vis-

ited during the computation. A simplified version of this algorithm can be found
in [10] (when the control cost function is reduced to the null function for controllable
events).

Example of the DP-optimal problem. We conclude this section by illustrat-
ing the DP-optimal problem through an example that is reused in section 6. Let G be
an FSM and Σ = {a, b, c, d, e, f, g, u, v} such that a, b, c, d, e, f , and g are controllable;
u and v are uncontrollable. G and the event cost function defined on Σ are as in
Figure 3.1. We assume cc ∈ {0,∞}. Finally, the initial state is q0 and the final state
is X4.

Using the DP-Opt program, we obtain the maximal DP-optimal submachine of
G, denoted G4

des, for which the worst inevitable cost is equal to cgsup(G
4
des) = 6.

We can observe all the properties of the generated submachine. First, it is con-
trollable, since from any state, there exists a path that leads surely to the goal X4.
Also, it is optimal, since all the paths leading to X4 have a finite and minimized
worst-case cost (notably, no uncontrollable event at state X4 needs to be disabled).
Finally, the DP-optimality property can be observed. From every state q of G4

des, the
path from q to X4 which has the highest cost contains an uncontrollable event u that
cannot be disabled.

We have reviewed the optimal control problem and the notion of DP-optimal
submachines when only one marked state is present in the system. We now turn our
attention to the case of multiple marked states and present our results for this new
problem. This will require the introduction of a new, more comprehensive, optimality
criterion.

4. The optimal control problem with multiple marked states. In the
previous section, we were interested in finding a DP-optimal submachine of G that
makes the system evolve from an initial state q0 to a final state qm by minimizing a cost
function along the various trajectories of the system. Here, our goal is different. We
consider an FSM G with a set of multiple marked (or final) states X = (Xi)i∈[1,...,n].
Our aim is now to have the system reach each and every one of the states of X . To
account for the fact that it may not be possible to find such a path, we assume in the
following the possibility of resetting the system to its initial state q0, when the system
has evolved in one of the states of X . The Reset event that is added in this section is
much more than an artifact for developing the theory. Indeed, many interpretations
can be associated with it. First, there are physical systems that can actually be
reset to their initial state (like a World Wide Web browser, for example). Second,
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the Reset event can be seen as an event whose occurrence signals the impossibility
of visiting all the states of X without visiting the initial state q0 more than once.
This apparent impossibility can be alleviated by having multiple systems perform in
parallel. For example, in the case of a communication network, a message that is sent
cannot be brought back to the initial state. However, it can be regenerated, and then
the number of Reset events can be regarded as an indicator of the number of copies of
the message that must be generated and sent in parallel in a broadcast or a multicast
(See section 7).

4.1. Stepwise DP-optimality definition. Due to the Reset event, the sys-
tem is now represented by the following FSM G = 〈Σ ∪ {Reset}, Q, q0,X , δ〉, with
δ(Reset,Xi) = q0 ∀Xi ∈ X . As in the previous section, we introduce cost func-
tions that take into account the particular Reset event: the occurrence cost function
ce : Σ∪ {Reset} → R

+ ∪ {0} such that ∀σ ∈ Σ, ce(σ) ≥ 0 and ce(Reset) = 0, and the
control cost function cc : Σ ∪ {Reset} → R

+ ∪ {0,∞} such that ∀σ ∈ Σ, cc(σ) ≥ 0
and cc(Reset) = 0.

Definition 4.1. Let s ∈ Lm(G). The trajectory s is said to be valid if there
exists at least n prefixes of s, (si)i∈[1,...,n], such that δ(q0, si) = Xi ∈ X .

In other words, a trajectory is valid if it makes the system evolve into each of
the marked states in X . Note that the definition does not require that the trajectory
visit each marked state exactly once. Besides, due to the Reset event, the system has
the possibility of coming back in its initial state along the trajectory. The set of valid
trajectories of the FSM G will be denoted as S.

Given that our primary interest is in the states of X , we introduce the notion of
a valid state trajectory.

Definition 4.2. Let s be a valid trajectory in S, such that s = ts1 . . . tsl , with
l > n and δ(q0, t

s
1 . . . tsk) = Xs

k ∈ X ∪ {q0}. We define the function D from S into
{q0}(X ∗{q0})∗, such that D(s) = (Xs

k)k∈[1,...,l].
2 Such a trajectory is called a valid

state trajectory with respect to X . We denote as D the set of valid state trajectories
in G, with respect to the set of valid trajectories S: D = D(S).

A valid state trajectory d ∈ D corresponds to a trajectory in {q0}(X ∗{q0})∗ that
contains all the states of X (with possible repetitions).

Since we must deal with a set of marked states rather than with a single marked
state, we need to introduce a model that comprises all the states of the set X and
that accounts for the global behavior of the system. It is not possible to use a clas-
sical merge operation (⊕, Definition 6.2 in [21]), because states might appear in
different submachines in different contexts, i.e., with different partial transition func-
tions associated with them. Therefore, instead of using a merge, we introduce the
notion of a scheduler. A scheduler can be thought of as a concatenation of (DP-
optimal, in our case) submachines. The role of the scheduler is then to make the
system evolve according to one submachine at a time and to account for switching
between them at appropriate instants. In what follows, the symbol “◦” will denote
the concatenation of two submachines A and A′ of G. It is defined in terms of
languages. Let Lm(A) and Lm(A′) be the marked languages of A and A′. Then
Lm(A ◦A′) = {st : s ∈ Lm(A), t ∈ Lm(A′)}. Note that Lm(A ◦A′) ⊆ Lm(G) if and
only if QmA = {q0A′ } and QmA′ ⊆ QmG = X . Also note that, due to possible cycles
in the FSM G, A ◦A′ is in general no longer a submachine of G since some state q of
G may be shared by the two submachines A and A′ but without the same transitions.

2This function allows the “extraction” of the state trajectory in G from the valid trajectory s.
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Definition 4.3. Let d = (Xd
k′)k′∈[0,...,l] ∈ D be a valid state trajectory of X∪{q0},

and let (Ak)k∈[1,...,l] such that l ≥ n and Ak ∈ M(G,Xd
k−1, X

d
k ) ∀k ∈ [1, . . . , l]; then

the structure A = A1 ◦A2 ◦ · · · ◦Al is called a scheduler with respect to G and X . The
set of schedulers with respect to G and X is denoted asMsc(G,X ).

In this particular case, for each submachine of the scheduler, there is only one
initial state and one final state. Hence, for two consecutive submachines Ai and Ai+1,
we have qmAi = q0Ai+1

. Note that for a scheduler A = A1 ◦A2 ◦ · · · ◦Al, some Ak may

be simply reduced to the simple FSM (Xd
k
Reset−→ q0). This FSM is clearly a DP-optimal

submachine from Xd
k to q0. Besides, in some cases, Msc(G,X ) can be reduced to ∅.

The cost associated with a scheduler A = A1 ◦ A2 ◦ · · · ◦ Al, denoted as Csc
sup(A), is

given by

Csc
sup(A) =

l∑
i=1

cgsup(Ai).(4.1)

The following definition extends the notion of DP-optimality to the notion of stepwise
DP-optimality.

Definition 4.4. Let A ∈ Msc(G,X ) be a scheduler, such that A makes the
system evolve through a valid state trajectory d = (Xd

k′)k′∈[0,...,l] of D. A = A1 ◦
A2 ◦ · · · ◦ Al is said to be stepwise DP-optimal if each of the submachines Ak ∈
M(G,Xd

k−1, X
d
k ) is DP-optimal with respect to its initial state Xd

k−1 and final state

Xd
k , and if the following condition is satisfied:

Csc
sup(Ao) = min

A∈Msc(G,X )
Csc
sup(A) <∞.

We wish to draw attention to the following assumption.
Assumption 4.1. From now on, we assume that the DP-optimal submachines

under consideration, with the exception of (Xd
k
Reset−→ q0), are maximal. This is done

for two main reasons. First, the algorithm DP-Opt (see Appendix A of [10]) out-
puts exactly the maximal DP-optimal submachines. Second, taking the maximal
DP-optimal submachines allows the system greater freedom. Indeed, it contains all
the other DP-optimal submachines; therefore, it has more possible paths from the
initial state to the final marked state. In most applications, it is desirable to lower
the probability of taking the worst-case cost path, which is the intent of taking the
maximal DP-optimal submachine for (Gi

des)i∈[1,...,n]. The more possible paths there
are, the less likely it is for the system to take the worst-case cost path. Note that the

Reset machine (Xd
k
Reset−→ q0) need not be maximal (this can only happen if occurrence

costs cannot be equal to zero); in this case, however, given our interpretation of the

Reset event, we will include the single transition (Xd
k
Reset−→ q0) in the scheduler.

Under this assumption, the following property is a direct consequence of Defini-
tion 4.4.

Property 4.2. Let G be an FSM, and let X be the set of marked states of G.
Let A be a stepwise DP-optimal scheduler, such that A = A1 ◦ A2 ◦ · · · ◦ Al. Let d =
(Xd

k )k∈[0,...,l] of D be the associated valid state trajectory. Then ∀k ∈ [1, . . . , l], Ak =

Mo
D(G,Xd

k−1, X
d
k ). Furthermore, the global cost of the scheduler is

Csc
sup(A) =

l∑
k=1

cgsup(M
o
D(G,Xd

k−1, X
d
k )) <∞.(4.2)
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This property states that if a stepwise DP-optimal scheduler exists, then all the sub-
machines constituting this scheduler are the respective Mo

D(G,Xk−1, Xk). Moreover
the cost of the scheduler is then simply equal to the sum of the costs of these DP-
optimal submachines. We will refer to this important result as the additivity property
of the stepwise DP-optimal scheduler. In what follows, the set of all schedulers A such
that all the submachines of A are of the form Mo

D(G,Xi, Xj) for Xi, Xj ∈ X ∪ {q0},
is denoted Msc

D (G,X ).
Now that we have defined the notion of a stepwise DP-optimal scheduler and

given some of its properties, we need to give necessary and sufficient conditions for
its existence. The next subsection gives these conditions and also proves desirable
properties of such a scheduler.

4.2. Existence of a stepwise DP-optimal scheduler. Theorem (4.7) pre-
sented below gives necessary and sufficient conditions for the existence of a stepwise
DP-optimal scheduler. First we prove the following lemma.

Lemma 4.5. If the DP-optimal submachines Mo
D(G,Xi, Xj) and Mo

D(G,Xj , Xk)
of G exist, then there exists a DP-optimal submachine Mo

D(G,Xi, Xk). Moreover, we
have the following triangular inequality:

cgsup(M
o
D(G,Xi, Xk)) ≤ cgsup(M

o
D(G,Xi, Xj)) + cgsup(M

o
D(G,Xj , Xk)).(4.3)

Proof. Assume the existence of Mo
D(G,Xi, Xj) = 〈Σij , Qij , Xi, Xj , δij〉 and of

Mo
D(G,Xj , Xk) = 〈Σjk, Qjk, Xj , {Xk}, δjk〉. Consider the intersection of the states

of these two submachines as being Qij ∩ Qjk = {Xj , q1, . . . , qn}. Note that this
intersection might be reduced to {Xj}. We construct a new submachine Gik =
〈Σik, Qik, q0ik , Qmik , δik〉 from these submachines:

Gik =



Σik = Σij ∪ Σjk, Qik = Qij ∪Qjk,

q0ik = Xi, Qmik = {Xk},

δik(σ, q) =


δjk(σ, q) if it exists and q ∈ Qjk,

δij(σ, q) if it exists and q ∈ Qij − {Xj , q1, . . . , qn},
undefined otherwise.

This submachine Gik is well defined. Any possible ambiguity has been eliminated
by separately dealing with the states {Xj , q1, . . . , qn} in the definition of δik. Gik

is obtained by always following the partial transition function of Mo
D(G,Xj , Xk) as

a default behavior, and following the partial transition function of Mo
D(G,Xi, Xj)

otherwise whenever possible. First, the machines Mo
D(G,Xi, Xj) and Mo

D(G,Xj , Xk)
are trim. Second, Gik is constructed by forward propagation; therefore, all the states
of Gik are accessible with respect to the initial state Xi and are coaccessible with
respect to the marked state Xk. Therefore, Gik is trim.

Moreover, Gik is controllable. Indeed, the partial transition function δik says that
as long as the system has not reached a state of the set {Xj , q1, . . . , qn}, it follows the
partial transition function of δij . Due to the DP-optimality of Mo

D(G,Xi, Xj), the
system will always reach a state of the set {Xj , q1, . . . , qn} with a finite cost. Indeed,
if the system never visits a state in {q1, . . . , qn}, it will eventually reach Xj . Let
us call q the first state of the set {Xj , q1, . . . , qn} that is visited by the system as it
evolves. At this point, the default partial transition function becomes δjk; therefore,
the system will eventually reach the marked state Xk with a finite cost since the
submachine Mo

D(G,Xi, Xj) is DP-optimal. Since the cost of reaching Xk from q is
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finite, the overall cost of reaching Xk is necessarily finite. From Lemma 3.3, Gik is
controllable.

Finally, Gik has no positive cost cycles. Mo
D(G,Xi, Xj) and Mo

D(G,Xi, Xk) do
not have positive cost cycles (by definition of DP-optimality). As we have described
previously, before the system reaches a state of {Xj , q1, . . . , qn} for the first time, it will
not complete a positive cost cycle (from the DP-optimal nature of Mo

D(G,Xi, Xj)).
After the system reaches a state of {Xj , q1, . . . , qn} for the first time, it will not
complete a positive cost cycle either (from the DP-optimal nature of Mo

D(G,Xj , Xk)).
Therefore, no new cycles have been introduced. The only cycles that may exist in Gik

are those of Mo
D(G,Xi, Xj) and Mo

D(G,Xj , Xk).

Given that Gik is trim, controllable, and contains no cycles of positive cost in
G, FSM Gik satisfies the preconditions of Theorem (3.4), and there exists an optimal
submachine of Gik. Following Theorem 3.6, there also exists a DP-optimal submachine
Mo
D(G,Xi, Xk) of Gik.

The proof of the triangular inequality relies on what we have said previously. The
cost of reaching a state of the set {Xj , q1, . . . , qn}, from the initial state Xi, is less
than cgsup(M

o
D(G,Xi, Xj)) (equality is possible but not necessary when Xj is reached).

Once one of the states {Xj , q1, . . . , qn} has been reached, the cost for the system to
reach the marked state Xk is less than cgsup(M

o
D(G,Xj , Xk)) (equality is possible but

not necessary when the system visits Xj) because the corresponding machine is DP-
optimal. More formally, let us take a trace s of events that leads from the initial state
Xi to the final state Xk, i.e., such that δik(s,Xi) = Xk. As seen earlier, s visits at
least one state of the set {Xj , q1, . . . , qn}. Let us call it q again. We can now subdivide
s into s1 and s2 such that s = s1s2, δik(s1, Xi) = q, and δik(s2, q) = Xk. From the
DP-optimality of the two submachines Mo

D(G,Xi, Xj) and Mo
D(G,Xj , Xk)∀s such

that s = s1s2, δik(s1, Xi) = q, δik(s2, q) = Xk, we can compare{
cg(Xi,M

o
D(G,Xi, Xj), s1) ≤ cgsup(M

o
D(G,Xi, Xj)),

cg(q,Mo
D(G,Xj , Xk), s2) ≤ cgsup(M

o
D(G,Xj , Xk)).

Since this is true for all traces leading from Xi to Xj , we can deduce the triangular
inequality.

The following corollary uses the construction in the proof of Lemma 4.5 to intro-
duce a necessary condition for the existence of a stepwise DP-optimal scheduler. The
proof is straightforward and can be found in [10].

Corollary 4.6. If Gk
des does not exist, then there exists no subscheduler that

makes the system evolve from q0 to Xk, should it be indirectly via states of X .
As a consequence of these results, we can ensure that a state Xk is accessible

in an optimal way if and only if Gk
des exists. We are now able to give the necessary

and sufficient conditions of the existence of a stepwise DP-optimal scheduler. This is
stated by Theorem 4.7.

Theorem 4.7. There exists a corresponding stepwise DP-optimal scheduler A ∈
Msc

D (G,X ) if and only if the n DP-optimal submachines Gi
des of G exist ∀Xi ∈ X , i ∈

[1, . . . , n].

Proof. The necessary condition is given by Corollary 4.6, which states that if
there is a state Xi of X such that there does not exist a DP-optimal submachine
Gi
des, then there is no way to reach this state with a finite cost (thus in a DP-optimal

way) and the goal cannot be achieved. All the states of X cannot be visited, since
one of them cannot be visited. The condition is sufficient since FSM A, such that
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A = G1
des◦(X1

Reset−→ q0)◦G2
des◦(X2

Reset−→ q0)◦· · ·◦Gn
des◦(Xn

Reset−→ q0), visits all the states
of X . A is then a possible scheduler allowing the achievement of the goal.

This theorem implies that the stepwise DP-optimal problem has a solution when
there exists a DP-optimal submachine for each of the Xi. Besides, if a stepwise DP-
optimal solution exists, it need not be unique in general. There is no notion of a
maximal stepwise DP-optimal scheduler, as in the DP-optimal problem [21]. The
problem of finding one of the optimal schedulers is now explored.

5. Determination of a stepwise DP-optimal scheduler. In this section, we
need to assume that the occurrence costs are strictly positive: ∀σ ∈ Σ, ce(σ) > 0.
This assumption is necessary when we use the DP-Opt algorithm in order to ensure
polynomial complexity. We also assume that a DP-optimal submachine exists for
all the states Xi ∈ X . From here on, Gi

des will denote the maximal DP-optimal
submachine of the particular FSM Gi = 〈Σ, Q, q0, Xi, δ〉 output by the DP-Opt
algorithm. We take advantage of the DP-optimal structure of each of the Gi

des. We
explore the possibility of starting the system at q0, reaching a state Xi, and instead of
doing a Reset, continuing the graph to a state Xj . To do so, we convert the problem
to a path-cost minimization problem on a graph equivalent to a TSP.

5.1. Modeling of the problem. In order to convert the stepwise DP-optimal
problem into a path-cost minimization problem, we use the DP-Opt algorithm. This
algorithm computes for each Xi ∈ X the DP-optimal submachine Gi

des. During this
computation, a state Xj belonging to X may be reached. Due to the DP-optimality
definition, the algorithm also gives the DP-optimal submachine between Xj and Xi.
The worst inevitable case cost between these two states can be collected as well and
placed in a matrix C ∈ R

n+1 × R
n+1 that has the following form (see [10] for the

algorithm and further details):

• C[i, i] =∞, • C[i, 0] = 0, i �= 0,

• C[0, i] = cgsup(G
i
des), i �= 0, • C[k, i] =

{
cgsup(M

o
D(G,Xk, Xi)) if it exists,

∞ otherwise.

(5.1)

From additivity Property 4.2, the cost of a scheduler A = A1 ◦A2 ◦ · · · ◦Al ofMsc
D is

equal to

Csc
sup(A) =

l∑
k=1

cgsup(Ak) =

l∑
k=1

cgsup(M
o
D(G,Xdk−1

, Xdk)) =

l∑
k=1

C[dk−1, dk].(5.2)

Considering (5.2), the new optimization problem is now reduced to finding a path
with a minimal cost in the directed graph associated with the matrix C. This closely
resembles the TSP with the slight difference that multiple visits to states of X are
possible. In this new problem, the “cities” are represented by the set of nodes X , and
the “streets” are represented by machines (Gi

des)i∈[1,...,n] and Mo
D(G,Xi, Xj) when

these are available. The costs of these paths are given by the maximum costs for
each machine, i.e., the (cgsup(G

i
des))i∈[1,...,n] and the (cgsup(M

o
D(G,Xi, Xj)))i,j∈[1,...,n].

Figure 5.1 illustrates this conversion from the graph of the FSM to the reachability
graph.

Note that some elements of C might be equal to ∞ after all Gi
des have been

computed, which does not mean that the corresponding DP-optimal submachines do
not exist. This means that they have not been computed in the algorithm DP-Opt.
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Fig. 5.1. Conversion from the FSM to a reachability graph on the marked states.

Indeed, let us suppose that some Mo
D(G,Xi, Xj) has not been computed (and that

therefore C[i, j] = ∞). It means that it is less costly to perform a Reset from state
Xi to state q0, and to reach Xj through Gj

des. Another way of seeing this is to look at
what the DP-Opt algorithm does. It backtracks from the marked state, say Xj . If it
reaches Xi before q0, this means that the cost from Xi to Xj is less than the cost from
q0 to Xj , in which case it is less costly to go directly from Xi to Xj than to reset the
system. On the other hand, if state Xi is not reached when the algorithm reaches q0

during its backtracking, it means that the cost to go from Xi to Xj is greater than the
cost of resetting the system (0 in our case) and taking the DP-optimal submachine
Gj
des. This explains why these paths are not taken into account as possible paths and

are directly replaced in the matrix C by an infinite cost.

5.2. Generation of the stepwise DP-optimal scheduler. The problem of
finding a stepwise DP-optimal scheduler A0 has been brought down to solving an
instance of the TSP, a classic combinatorial optimization problem. Many methods
exist to solve the problem in an acceptable amount of time [8]. We specify once more
the conditions in which we solve the TSP. The costs of the paths are all nonnegative.
The nodes of X must be visited at least once. One requirement of the TSP is that
the salesman come back to the city he started from. This condition does not change
anything in our problem since this maps to a Reset, which has null cost in our model.
Finally, note that the cost matrix C, given in section 5.1, is not necessarily symmetric.

The first step is to transform our modified version of the TSP, where we can visit
a node more than once (but at least once), into an ordinary TSP where we must visit
each node exactly once. This is typically done by transforming the matrix C into
a matrix C ′, called the all-pairs shortest-paths matrix [8]. Many techniques exist to
perform such a computation. Among them is the Floyd–Warshall algorithm [8], which
runs in a worst case of O(n3), where n represents the number of vertices. Once the
all-pairs shortest-paths matrix C ′ is obtained, we can feed it to a TSP solver.

C and C ′ have the same dimension but represent different features of the graph.
C contains, as noninfinite elements, the costs of the links that actually exist in the
graph of the TSP. C ′ contains the minimum costs necessary to go from one marked
state to another, along DP-optimal submachines. C ′ is a reachability matrix, whereas
C is a connectivity matrix. Notably, C ′ shows if states can be reached by using the
Reset event. Concretely, to obtain C ′ from C, one only needs to replace any infinite
value in C by the value in the same column in the first line (the cost of the Gi

des

associated with column i).

Resolution of the TSP. The actual solving of the TSP from matrix C ′ can be
done by using several methods. The most common method is the branch and bound
method (see Chapters 9 and 10 of [9] and [12, 7]). An outline of the method can
be found in Appendix B of [10]. The worst-case complexity for solving the TSP is
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(n + 1)!. However, the branch and bound method is expected to give a solution to
the TSP in a tolerable amount of time. (To give a feel of the time complexity of this
method, a 1,000 node fully-connected TSP can be solved in about 20 minutes on a
standard workstation.)

The principle of the branch and bound method is quite natural. A branching
strategy and a bounding strategy are used alternatively. The branching strategy
consists of forcing a supplementary constraint to the system, usually by forcing a set
of subpaths in the graph. This allows us to find a solution that is suboptimal in
general but that is sometimes optimal. The bounding strategy focuses on finding a
lower bound on the cost of the optimal solution by relaxing one of the constraints
of the problem (usually by relaxing the constraint that the solution must be a tour).
The branching yields a search tree, and the bounding yields a way of quickly finding
a suboptimal solution which is close to the optimal solution of the problem. The final
solution is optimal.

5.3. Restitution of the stepwise DP-optimal scheduler. From a solution of
the TSP, we now build a corresponding stepwise DP-optimal scheduler. The resolution
of the TSP provides an optimal solution that gives the ordering in which the states
should be visited so as to minimize the worst-case cost. A solution is under the form
of a set of n + 1 pairs (there are n + 1 = |X ∪ {q0}| states), in which each state
appears exactly once as an initial state and exactly once as a final state of a pair. For
pairs (Xi, Xj) that represent a physically existing submachine Mo

D(G,Xi, Xj), i.e., for
which C[i, j] < ∞, it is sufficient to map these pairs to their associated submachine.
As for the pairs (Xi, Xj) that do not map to an existing DP-optimal submachine,
i.e., those for which C[i, j] = ∞ and C ′[i, j] < ∞, they are divided into two pairs,
namely, (Xi, q0) and (q0, Xj). The first is mapped to a Reset to the initial state, and

the second is mapped to the DP-optimal submachine Gj
des.

Theorem 5.1. Given a solution of the TSP, by adopting the previous mapping,
the obtained scheduler is stepwise DP-optimal.

Proof. The initial solution of the TSP with respect to the matrix C ′ is given
by a tour of the form {(q0, Xi1); (Xi1 , Xi2); . . . (Xij , Xij+1); . . . ; (Xin , q0)} with a cor-
responding cost TSP (C ′) = C ′[0, i1] + C ′[i1, i2] + · · · + C ′[ij , ij+1] + · · · + C ′[in, 0].
Consider now the transformation previously adopted. If the pair (Xi, Xj) originally
exists, i.e., C[i, j] < ∞, then the path is admissible in the original problem and we
replace the pair by the submachine Mo

D(G,Xi, Xj), where the corresponding cost
cgsup(M

o
D(G,Xi, Xj)) is equal to C[i, j]. If the pair (Xi, Xj) does not map to an exist-

ing DP-optimal submachine, i.e., C[i, j] =∞, then we need to Reset the system before
directly going to Xj through Gj

des. The triangular inequality of Lemma (4.5) ensures

that in this case, C ′[i, j] = cgsup(G
j
des). The pair is then replaced by the subscheduler

(Xi
Reset−→ q0) ◦Gj

des, with the corresponding cost equal to cgsup(G
j
des).

We then obtain a new sequence of pairs, with a cost equal to TSP (C ′) but for
which all the submachines actually exist in the original problem. The DP-optimality
of each submachine of the scheduler is given by construction, since we only consider
submachines of the form Mo

D(G,Xi, Xj) or Gj
des. The minimal cost of the scheduler

is ensured by the optimality of the TSP solution and by the fact that the mapping
does not add new costs.

An interesting property is given next. It states that all the submachines that con-
stitute a stepwise DP-optimal scheduler are directly derived from all the DP-optimal
submachines built during the computation of the matrix C (see section 5.1 and (5.1)).
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Proposition 5.2. A stepwise DP-optimal scheduler Ao obtained by the TSP
solution is composed of exactly n different DP-optimal submachines (not counting the
possible Resets of the system). Moreover, all these submachines are obtained from the
DP-optimal submachines (Gi

des)i∈[1,...,n] computed during the matrix generation step
(see (5.1)).

Proof. The general solution of the TSP for the matrix C ′ is a tour of the form
{(q0, Xi1); (Xi1 , Xi2); . . . ; (Xij , Xij ); . . . ; (Xin , q0)}. Note that there are exactly n + 1
pairs in this tour (but the last pair is a trivial one, i.e., a Reset). If a pair (Xi, Xj)
originally exists, i.e., if C[i, j] < ∞, then the path is in the original problem and it
is replaced by the submachine Mo

D(G,Xi, Xj). If not, i.e., if C[i, j] = ∞, then the

system is reset before directly going to Xj through Gj
des. The pair is then replaced

by the subscheduler (Xi
Reset−→ q0) ◦ Gj

des. The n pairs are then replaced by either the

DP-optimal submachine Mo
D(G,Xi, Xj) = Trim(Gj

des, Xi, Xj), or by the subsched-

uler (Xi
Reset−→ q0)◦Gj

des. The final solution of our problem has then exactly n nontrivial
submachines that can be obtained from the n DP-optimal submachine (Gi

des)i=[1,...,n]

of G, by a trim operation.

Corollary 5.3. In a stepwise DP-optimal scheduler obtained by the TSP solu-
tion, the states of X are visited exactly once by the stepwise DP-optimal scheduler.3

We wish to draw attention to the following fact. The stepwise DP-optimal sched-
uler visits each marked state exactly once when it is obtained from the TSP solution.
However, the system itself, through its evolution described by the FSM G, may visit
a marked state of G more than once. This comes from the fact that the scheduler is
constructed on C ′, whereas the behavior of the system modeled by the FSM G should
be observed at a less abstract level, namely at the level of the FSM, G.

Remark 5.1. In [10], we also presented the resolution of the stepwise DP-optimal
problem in the case of a nonzero occurrence cost for the Reset event (see section 5.3
of [10] for further details).

5.4. Some simplifications of the TSP resolution. In order to solve the
stepwise DP-optimal problem, we have to solve the corresponding TSP for the matrix
C. The TSP is an NP-complete problem. It is then greatly advantageous to find
some simplification methods, taking advantage of the special structure of a stepwise
DP-optimal scheduler, in order to reduce the computational complexity of the corre-
sponding TSP without loss of global optimality. Proofs and algorithms are omitted
in this section due to lack of space. They can be found in the companion paper [10].

5.4.1. Divide and conquer. In some cases, it is possible to divide the matrix
C into several smaller ones. In such cases, it suffices to solve the TSP on each of these
submatrices. The following proposition states the necessary and sufficient conditions
for this simplification.

Proposition 5.4. Assume there exists a partition of X = ∪k∈[1,...,l](Xk) such
that ∀k1, k2 ∈ [1, . . . , l], ∀Xi ∈ Xk1 , and ∀Xj ∈ Xk2 , the submachine Mo

D(G,Xi, Xj)
is not defined.

If Ao is a stepwise DP-optimal scheduler with respect to X , then it is possible
to find a set of schedulers AXk , where each AXk is stepwise DP-optimal with respect
to Xk with an optimal cost cscsup(AXk) to visit of all the states of Xk, and such that

Ao = ◦lk=1AXk with cscsup(Ao) =
∑l
k=1 cscsup(AXk).

3The proof is omitted and can be found in [10].
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In view of Proposition 5.4, the global problem can be solved on each submatrix
Ck, k ∈ [1, . . . , l], corresponding to the particular set of states Xk∪{q0}. The necessary
computation to find the connected components before applying Proposition 5.4 can
be performed in O(n + E), where E is the number of vertices of the directed graph
associated to matrix C (see [10] for details).

5.4.2. Terminal path simplification. We address here a property of the sched-
uler that can lead to a simplification on the matrix C. This property states that if
there exists a kind of “dead-end” in the graph of the matrix, then it is always better
to follow this path until the end than to perform a Reset and come back to visit the
end of this path later.

Proposition 5.5. Assume that there exists a subset Xi = (Xik)k∈[1,...,m] of X ,
with m < n and such that

1. ∀k ∈ [1, . . . ,m− 1], Mo
D(G,Xik , Xik+j ) exists for j ∈ [1, . . . ,m− k],

2. ∀k ∈ [2, . . . ,m], Mo
D(G,Xik , Xik−j ) does not exist for j ∈ [1, . . . , k − 1],

3. ∀k ∈ [1, . . . ,m] and ∀Xl ∈ X − Xi, Mo
D(G,Xik , Xl) is not defined.

Under these assumptions, the submachines (Gik
des)k∈[2,...,m] do not belong to the step-

wise DP-optimal scheduler Ao.

Proposition 5.5 deals with situations where a dead-end occurs. By dead-end, we
mean a set of states {q1, . . . , qn} in which ∀i ∈ [1, . . . , n], (qj)j>i are the only states
coaccessible from qi. If there exists a dead-end in the graph of marked states, the
system will never enter that dead-end directly through one of the Gi

des but will only
enter indirectly from the initial state q0. This means that no direct submachine of
the type Gi

des will be used by a scheduler to enter a dead-end. Any visit to a state of
the dead-end is done via a visit to a state that does not belong to the dead-end.

An algorithm that performs this simplification on the matrix C according to the
three assumptions in Proposition 5.5 is presented in [10]. Its complexity is linear in
the number of states of X . With this simplification, the paths of the form q0 → Xik

do not constitute valid paths any longer and, consequently, will not be taken into
account as possible solutions in the corresponding TSP solution. This terminal path
simplification can narrow down the search space when solving the TSP.

5.4.3. Predefined partial order for the visit of X . Throughout section 5,
we have assumed that we had no prespecified order in which to visit the marked states
in X . This may be the case in several applications. However, in other applications,
such as test-generation, we may be interested in the path taken by a system more than
in the final state it reaches. The designer may want to enforce the system to follow a
given path. The path would be characterized by the states it traverses, which would be
marked. This would yield an ordering, not on the marked states, but on the subpaths
themselves. A possible extension of this predefined partial order assumption would
be to consider our problem in a hierarchical setting in the same spirit as in [23, 22].

Let us consider a simple example. Assume that we have the marked states
{X1, . . . , X10} to visit in an optimal way. If we do not prespecify the order in which
they should be visited, the TSP will be solved on a 10 × 10 matrix. The designer
may want to observe the behavior of the system when it visits states X1 through X3

in that order, X4 through X7 in that order, and X7 through X10 in that order. This
would reduce the TSP to a 3 × 3 matrix, abstracting away from the ten states to four
macrostates: {q0}, {X1, X2.X3}, {X4, X5, X6, X7}, and {X8, X9, X10}. The solution
thus obtained will not be stepwise DP-optimal per se. It will be optimal given the
additional constraints imposed by the designer.
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Fig. 6.2. The DP-optimal FSMs for the different state of X .

6. Example. The following example is constructed to illustrate the essential
stages of the optimal control problem for multiple marked states to visit. For the sake
of simplicity, we have assumed that all control costs have zero cost for controllable
events and infinite costs for uncontrollable events. We here consider a system modeled
by the FSM G, which represents its legal behavior. In this example, there are seven
states denoted (Xi)i∈[1,...,7] = X to visit in no particular order. Some costs are
allocated to each of the events of the FSM G. The event costs and their status
(controllable or not) are as depicted in Figure 6.1.

Note that in Figure 6.1, the Reset events are not represented but exist between
each of the (Xi)i∈[1,...,7] and the initial state q0. The first phase of the algorithm
consists of computing the various DP-optimal submachines (Gi

des)i∈[1,...,7] for each
of the final states of X . This part is performed using the DP-Opt algorithm (see
Appendix A of [10]). The seven figures given next (Figure 6.2) correspond to the
DP-optimal submachines for each of the final states (Xi)i∈[1,...,7]. We also give the
worst inevitable cost for each submachine (Gi

des)i∈[1,...,7].
According to (5.1) in section 5.1, we obtain the matrix C, encoding the worst

inevitable cost between two states Xi and Xj .
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q0 X1 X2 X3 X4 X5 X6 X7

q0 ∞ 6 4 5 5 4 5 6
X2 0 2 ∞ 1 2 ∞ ∞ ∞
X3 0 ∞ ∞ ∞ ∞ ∞ ∞ ∞
X4 0 ∞ ∞ ∞ ∞ ∞ ∞ ∞
X5 0 ∞ ∞ ∞ ∞ ∞ 1 2
X6 0 ∞ ∞ ∞ ∞ ∞ ∞ 1
X7 0 ∞ ∞ ∞ ∞ ∞ ∞ ∞

Following Proposition 5.4, we can see that X1 = {X1, X2, X3, X4} and X2 =
{X5, X6, X7} form a partition of the set of states X = (Xi)i∈[1,...,7]. Moreover, the
states of X2 satisfy Proposition 5.5. Thus, in order to solve the TSP, we can now
consider the two following matrices. Note that in the second one, we have replaced
C[0, 6] and C[0, 7] by ∞ as stated by Proposition 5.5.

q0 X1 X2 X3 X4

q0 ∞ 6 4 5 5
X1 0 ∞ 1 2 3
X2 0 2 ∞ 1 2
X3 0 ∞ ∞ ∞ ∞
X4 0 ∞ ∞ ∞ ∞

q0 X5 X6 X7

q0 ∞ 4 ∞ ∞
X5 0 ∞ 1 2
X6 0 ∞ ∞ 1
X7 0 ∞ ∞ ∞

One solution (there are several) of the TSP for each submatrix is

{(q0, X4); (X4, X1); (X1, X2); (X2, X3); (X3, q0)},
{(q0, X5); (X5, X6); (X6, X7); (X7, q0)}.

This is the output of the TSP resolution method run on each of the subproblems.
The optimal worst-case costs are 13 and 6, respectively. From Theorem (5.1), there
exist two stepwise DP-optimal schedulers A01 and A02 . We need to retrieve them
from the output of the resolution of the TSP and build a global stepwise DP-optimal
scheduler A0.

We look at each one of the pairs and see if they correspond to a DP-optimal
submachine. In this case (q0, X4), (X1, X2), (X2, X3), and (X3, q0) correspond to

G4
des, Mo

D(G,X1, X2), Mo
D(G,X2, X3), and X3

Reset−→ q0, respectively. (X4, X1) does
not have any associated DP-optimal submachine. We decompose it: (X4, X1) be-

comes (X4
Reset−→ q0) concatenated with G1

des. An optimal DP-optimal scheduler Ao1 is
the following:

Ao1 = G4
des ◦ (X4

Reset−→ q0) ◦G1
des ◦Mo

D(G,X1, X2) ◦Mo
D(G,X2, X3) ◦ (X3

Reset−→ q0).

For the second subproblem of the divide and conquer method, we also map the pairs
to original DP-optimal submachines, yielding scheduler Ao2 .

Ao2 = G5
des ◦Mo

D(G,X5, X6) ◦Mo
D(G,X6, X7) ◦ (X7

Reset−→ q0).

Note that we use exactly four DP-optimal submachines for the first subproblem
and three for the second, as expected from Proposition 5.3. We finally generate the
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global stepwise DP-optimal scheduler Ao as the concatenation of the two subschedulers
Ao1 and Ao2 , yielding the following scheduler, Ao.

Ao = Ao1 ◦Ao2

= G4
des ◦ (X4

Reset−→ q0) ◦G1
des ◦Mo

D(G,X1, X2) ◦Mo
D(G,X2, X3) ◦ (X3

Reset−→ q0)

◦ G5
des ◦Mo

D(G,X5, X6) ◦Mo
D(G,X6, X7) ◦ (X7

Reset−→ q0).

In fact, this scheduler is actually composed of three different nontrivial subschedulers.
The stepwise DP-optimal Ao can be rewritten as

Ao = G4
des ◦ (X4

Reset−→ q0) ◦A1 ◦ (X3
Reset−→ q0) ◦A2 ◦ (X7

Reset−→ q0).

where

{
A1 = Mo

D(G,X1, X2) ◦Mo
D(G,X2, X3),

A2 = G5
des ◦Mo

D(G,X5, X6) ◦Mo
D(G,X6, X7).

(6.1)

This last expression shows the minimum number of Resets that are necessary to visit
all the Xi in an optimal way (three, in this case).

7. Potential applications of the theory. Applications of the theory that we
have elaborated cover various fields of engineering. One application that can be de-
veloped from the theory is test objective generation. In test objective generation, the
goal is to check whether a particular system meets the expectations or the require-
ments that are associated with it. In this framework, the states of interest may be
states in which the system is suspected to behave incoherently or incorrectly, or states
in which misbehavior could be dramatic or dangerous. These would be the states that
would be marked. The theory that we developed allows us to visit all these states and
to test the behavior of the system in each one. Once the system has reached one of
the marked states, all the known events can be disabled to check if the system stops
or enters a forbidden state. A timeout can be set, for example. If the system has
not behaved incoherently after that timeout, we can decide to pursue the visit of the
marked states. Other more involved strategies can be applied to determine whether a
state is faulty or not. For each state, either the behavior of the system is acceptable,
or it is not. In the first case where the state is flawless, the next submachine of the
scheduler is activated in order to make the system evolve in the next state of interest
to be tested. In the case where a failure has been detected in the state, either we stop
since the system is faulty and does not correspond to the awaited specifications, or we
proceed to determine other possible faults. To do so, we reset the system to its initial
state q0, and go directly to the next state, say Xi, through its direct DP-optimal
submachine, namely Gi

des, and the process continues.
Another application area is planning in the case of multiple goals in AI. Several

search algorithms exist when one unique goal is sought (see part II of [18]). Planning
in the case of multiple goals remains challenging and interesting. The framework
in which we have developed the theory allows goals to be independent or related.
Once again, the Reset event has an interesting interpretation in AI. It represents
the impossibility to meet all the goals without returning to the initial state. It may
represent the possibility of using several agents to achieve the goals, each running in
parallel. The number of Reset events gives the necessary and sufficient number of
agents that are needed to perform the goal of reaching all the subgoals in parallel,
without any conflicts. These applications constitute interesting further work.

We give a last potential application example of our theory: routing in a com-
munication network. In the same way that several agents can perform in parallel to
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achieve different tasks, in a communication network a message can be broadcast by
generating multiple copies of it and sending these copies in parallel, along the step-
wise DP-optimal paths. These paths are actually the stepwise DP-optimal schedulers
seen as stepwise DP-optimal subnetworks. The marked states represent the agents to
whom the messages are destined. The costs may be the energy consumed for each
transmission between nodes. The uncontrollability of certain events may reflect the
possibility of other agents changing the terminal path to certain nodes, based on their
own view of the network.

Example 7.1. Consider the example of section 6 as a routing problem in a commu-
nication problem. Relation (6.1) (i.e., the solution of the stepwise DP-optimal prob-
lem) highlights the manner in which the information would need to be sent through
the communication network. Given that there are exactly three Reset events, the
sender should generate exactly three messages and send them in parallel. For each
message, the sender can specify (in each header, for example) the desired route that
each message should take, according to the sender’s view of the network and calcu-
lations. (This routing is actually given by the corresponding stepwise DP-optimal
subscheduler.) However, the uncontrollability is represented by the fact that other
intermediate routing nodes may have a view of the network that is different from that
of the sender, in which case the former might decide on a new route.

8. Conclusion. In this paper, we have introduced a new type of optimal control
for DES. Previous work in optimal control deals with numerical performances in
supervisory control theory when the goal to achieve is a unique state of interest. In
contrast, our goal was to make the system evolve through a set of goals one by one,
with no order necessarily specified a priori. The order in which the states are visited
was part of the optimization problem since it had an influence on the cost of visiting
all the goal states.

The system to be controlled is represented by an FSM with a set of multiple
marked states X = (Xi)i∈[1,...,n] representing the states of interest. Our aim was
to have the system reach each and every one of the (Xi)i∈[1,...,n]. To do so, we have
introduced the notion of a scheduler. A scheduler can be thought of as a concatenation
of submachines. The role of the scheduler is to make the system evolve according to
one submachine at a time and account for switching between them at appropriate
instants, i.e., when one of the states of interest has been reached. We have then
introduced the notion of a stepwise DP-optimal scheduler of an FSM G with respect
to the set X . This particular type of scheduler is custom made given the system
on which the optimization is to be run. It has the particularity of being composed
of DP-optimal submachines which allow optimality from state of interest to state of
interest (stepwise). Moreover, the ordering of these DP-optimal submachines allows
global optimality in the sense that the total worst-case cost of visiting all the states
of X is minimized.

We gave a necessary and sufficient condition for the existence of a stepwise DP-
optimal scheduler, namely, the existence of n DP-optimal submachines between the
initial state q0 and each state of the n states of X . This condition is not very restrictive,
since if it does not hold, that means that one of the states is not reachable in a
controllable manner, i.e., not surely reachable from the initial state q0. In such a
case, it is obvious that the state in question will never be reachable with a surely
finite cost.

From a computational point of view, we showed that our optimal problem could
be brought down to an instance of the TSP. The solution of this particular TSP



OPTIMAL SCHEDULERS IN DISCRETE EVENT CONTROL 531

gives a direct access to both the structure of a stepwise DP-optimal scheduler and
the worst-case cost for visiting all the states of interest. Considering the high com-
putational complexity of this step, we also gave ways of taking advantage of some
particular properties of the structure of a stepwise DP-optimal scheduler, leading to
the reduction of the computational complexity of the corresponding TSP without loss
of global optimality.

Finally, besides the possible applications briefly presented in section 7, future
work will most probably extend the theory to the case of a system where the events
are partially observable.

Acknowledgment. The authors wish to thank the reviewers for their relevant
comments.
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Abstract. We study almost-sure limiting properties, taken as ε ↘ 0, of the finite horizon
sequence of random estimates {θε0, θε1, θε2, . . . , θε�T/ε�} for the linear stochastic gradient algorithm

θεn+1 = θεn + ε
[
an+1 − (θεn)′Xn+1

]
Xn+1, θε0

�
= θ∗ nonrandom,

where T ∈ (0,∞) is an arbitrary constant, ε ∈ (0, 1] is a (small) adaptation gain, and {an} and
{Xn} are data sequences which drive the algorithm. These limiting properties are expressed in the
form of a functional law of the iterated logarithm.

Key words. stochastic gradient algorithm, L-mixing processes, functional law of the iterated
logarithm
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1. Introduction. A commonly used stochastic gradient algorithm has the fol-
lowing structure:

θε
n+1 = θε

n + ε [an+1 − (θε
n)′Xn+1]Xn+1, θε

0
�
= θ∗, ∀ n = 0, 1, . . .(1.1)

Here ε ∈ (0, 1] is a (small) constant called the adaptation gain; θ∗ ∈ �d is a fixed
nonrandom initial condition; and {an, n = 1, 2, . . .} and {Xn, n = 1, 2, . . .} are,
respectively, � and �d-valued data processes which “drive” the algorithm and in turn
give rise to the �d-valued process of estimates {θε

n, n = 0, 1, 2, . . .}.
Within this context one often wants to characterize asymptotic properties of the

random sequence {θε
0, θ

ε
1, θ

ε
2, . . . , θ

ε
�Tε−1�} as ε → 0, where T ∈ (0,∞) is a fixed but

arbitrary constant called the horizon. Such asymptotic properties deal with the finite
horizon characteristics of (1.1). Perhaps the most basic of these asymptotic properties
is given by the so-called ODE method which, in the present context, essentially says
the following. Under reasonably general conditions on the processes {an} and {Xn},
one can relate the sequence of estimates {θε

n} to the solution {θ0(τ), τ ∈ [0,∞)} of
the ODE

θ̇0(τ) = b̄− R̄θ0(τ), θ0(0) = θ∗,(1.2)

(where the d-vector b̄ and d × d-matrix R̄ in (1.2) are typically given by conditions
such as (C2) in section 2) by the following finite horizon weak law of large numbers.
For each δ ∈ (0,∞) and T ∈ (0,∞) we have

lim
ε→0

P

[
max

0≤τ≤T
|θε

�τ/ε� − θ0(τ)| > δ

]
= 0(1.3)
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(see Kushner and Shwartz [19, Theorem 1, p. 178]), where �x� denotes the integer
part of x ∈ [0,∞). The ODE method is comprehensively covered in, for example,
the books of Benveniste, Métivier, and Priouret [1], Kumar and Varaiya [17], and
Kushner and Yin [18].

In classical probability, the law of large numbers is complemented by Donsker’s
functional central limit theorem (CLT), which has the following form. Suppose that
{ξk, k = 1, 2, . . .} is an independent and identically distributed (i.i.d.) sequence of
random variables with Eξk = 0, Eξ2

k = 1. Define the partial sums

Sn
�
=

n∑
k=1

ξk ∀ n = 1, 2, . . .(1.4)

and, for each m = 1, 2, . . . , let {Ξm(τ), τ ∈ [0,∞)} be the continuous piecewise-linear
process given by

Ξm(τ)
�
=


0 if τ = 0,

m− 1
2Sn if τ = n/m, ∀ n = 1, 2, . . . ,

linear interpolation, otherwise.
(1.5)

Then, for each T ∈ (0,∞), the process {Ξm(τ), τ ∈ [0, T ]} converges weakly to
a standard Wiener process {W (τ), τ ∈ [0, T ]} as m → ∞ (see Theorem 10.1 of
Billingsley [2]). An analogous finite horizon functional CLT can be established for
the random sequence {θε

0, θ
ε
1, θ

ε
2, . . . , θ

ε
�Tε−1�} obtained from (1.1). For each ε ∈ (0, 1]

define the �d-valued continuous piecewise-linear process {Θε(τ), τ ∈ [0,∞)} by

Θε(τ)
�
=

 ε−
1
2

(
θε
τ/ε − θ0(τ)

)
, τ = kε, ∀ k = 0, 1, 2, . . . ,

linear interpolation, otherwise.

(1.6)

Then, subject to certain regularity conditions on the data sequences {an} and {Xn},
for each T ∈ (0,∞) the process {Θε(τ), τ ∈ [0, T ]} converges weakly in C[0, T ] (the
space of continuous functions from [0, T ] into �d) to a limiting Gauss–Markov process
{Θ̂(τ), τ ∈ [0, T ]} as ε → 0. A precise formulation of this result, pertaining to
a general class of algorithms which includes (1.1) as a special case and providing a
complete characterization of the Gauss–Markov limit, may be found in [1, Theorem 1,
p. 107] and [3, Theorem 2, p. 969]. The Gauss–Markov limit is also discussed further
in Remark 3.4.

In the context of a sum of i.i.d. random variables {ξk, k = 1, 2, . . .} with Eξk = 0
and Eξ2

k = 1, Donsker’s functional CLT is complemented by another basic result,
namely, Strassen’s functional law of the iterated logarithm (see Theorem 3 of [25]). To
see the form of this result, fix some T ∈ (0,∞) and put

KT
ξ

�
=

{
φ : [0, T ] → � : φ(0)=0, φ(·) abs. continuous,

1

2

∫ T

0

|φ̇(s)|2 ds ≤ 1

}
.(1.7)

It is well known that KT
ξ is a compact set of continuous functions (with the supremum

norm of uniform convergence over [0, T ]), and Strassen’s functional law of the iterated
logarithm (LIL) says the following. For P -almost all ω the sequence of continuous
functions {Ξm(τ, ω)/

√
2 log logm, τ ∈ [0, T ]}, indexed by m = 1, 2, . . ., converges

towards KT
ξ as m → ∞, and the set of its accumulation points coincides exactly
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with KT
ξ , the sense of convergence being that of uniform convergence over [0, T ].

This result—called by Williams [26, page 208] a “staggering generalization” of Kol-
mogorov’s classical LIL—can be used as a tool for deriving many subtle fine-structure
properties of the sample-paths of the partial-sum sequence {Sn}. For example, it can
be used to show that, with probability one, the quantity

1

N
cardinality

({
1 ≤ n ≤ N : Sn >

1

2

√
2n log log n

})
, N = 1, 2, . . . ,

exceeds 0.99999 for infinitely many values of N , whereas (again with probability one)
the same quantity exceeds the slightly larger number 0.999999 for only finitely many
N (see Strassen [25] for this as well as other examples of how one can use the functional
LIL to analyze the partial sum process).

The preceding discussion suggests the problem of establishing a functional LIL for
the random sequence {θε

0, θ
ε
1, θ

ε
2, . . . , θ

ε
�Tε−1�} arising from (1.1). This should have the

same relation to the finite horizon functional CLT indicated previously as Strassen’s
functional LIL has to Donsker’s functional CLT, and therefore should be of the fol-
lowing general form. For each fixed T ∈ (0,∞) there is a compact set KT

Θ ⊂ C[0, T ]
(with a characterization analogous to that of KT

ξ in (1.7)) and, for P -almost all ω,

the family of continuous functions {Θε(τ, ω)/
√

2 log log ε−1, τ ∈ [0, T ]}, indexed by
ε ∈ (0, 1], converges towards KT

Θ (as ε → 0) and the set of its C[0, T ]-accumulation
points coincides exactly with KT

Θ . This is a finite horizon functional LIL for the se-
quence of estimates {θε

0, θ
ε
1, θ

ε
2, . . . , θ

ε
�Tε−1�}, and our goal is to establish a result of this

kind (see Theorem 3.3 to follow) subject to certain conditions on the data sequences
{an} and {Xn} which are set forth in section 2. We choose to concentrate attention
on the algorithm (1.1) because there seem to be major technical obstacles to getting
this result for the more general classes of fixed-gain algorithms proposed, for example,
in [1] and [3], whereas the linear structure of (1.1) simplifies matters considerably.

The usual method for establishing a functional LIL, pioneered by Strassen [25],
is to first prove a so-called strong invariance principle for the partial-sum sequence
{Sn}. Essentially, this says that one can always construct a Wiener process {Wt} on
the same probability space on which the Sn of (1.4) are defined (or perhaps on some
extension of this space) such that

S�t� −Wt = o(
√

t log log t) (t→∞) almost surely (a.s.).(1.8)

Then one uses (1.8), together with known sample-path properties of the Wiener pro-
cess, as the basis for establishing Strassen’s functional LIL. In the context of stochastic
algorithms with decreasing gain one can follow a similar approach (see [12] and [24])
but for constant-gain algorithms, such as (1.1), it is not at all obvious how to formu-
late and prove an analogue of (1.8). Accordingly, we shall adopt a different approach,
in the spirit of a method pioneered by Chover [5], who showed how to establish
Strassen’s functional LIL using a CLT with rate of convergence in place of the strong
invariance principle (1.8). This general approach, which was made to work in [15] for
the stochastic averaging principle, will be extended here to work for the algorithm
(1.1).

The organization of the paper is as follows: in section 2 we state and discuss
conditions on the sequences {an} and {Xn} which drive the algorithm (1.1). In
section 3 we establish the main result, namely Theorem 3.3. The proof in section 3
relies on two key technical results, namely an auxiliary LIL (see Theorem 3.5) and
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an a.s. approximation theorem (see Theorem 3.6). These are established in sections
4 and 5, respectively. Another essential technical result, needed for the proofs in
section 4, is a functional CLT with rate of convergence (see Theorem 4.4), and this
is proved in section 6. In section 7 we develop a miscellany of subsidiary technical
lemmas which are used in the previous sections. In section 8 we restate, in a form best
suited to our needs, some results from probability theory which are used in section 3
to section 7. Finally, we define the notation at the beginning of each section where it
is first needed.

2. Conditions.
Notation 2.1. We use the following notation: �d, �d×r denote the usual vec-

tor spaces of real d-dimensional column vectors and real d by r matrices, respec-

tively, with vector norm |x|�= (
∑d

i=1 x
2
i )1/2 for all x ∈ �d, and matrix operator norm

|A|�= maxx∈�r, |x|=1 |Ax| for all A ∈ �d×r. Write (B)′ for the transpose of a matrix B.

For an �d or �d×r-valued random element X and p ∈ [1,∞), put ‖X‖p �
= (E[|X|p])

1/p
.

For x ∈ [0,∞), �x� is the largest integer n such that n ≤ x.
The data sequences {an, n = 1, 2, . . .} and {Xn, n = 1, 2, . . .} driving the algo-

rithm (1.1) will always be special instances of the class of L-mixing processes intro-
duced by Gerencsér [9], and formulated in a discrete-parameter setting as follows.
Definition 2.2. Suppose that {Fn, n = 1, 2, . . .} and {F+

n , n = 1, 2, . . .} are
sequences of sub-σ-algebras in the probability triple (Ω,F , P ), increasing and decreas-
ing, respectively, with Fn and F+

n independent for each n = 1, 2, . . .. An �d×r-
valued random process {zn, n = 1, 2, . . .} on (Ω,F , P ) is L-mixing with respect to
the system (Fn,F+

n ) when (i) {zn} is {Fn}-adapted, (ii) for each p ∈ [1,∞) we have
supn ‖zn‖p<∞, and, for

γp(s)
�
= sup

n>s
‖zn − E

[
zn | F+

n−s

] ‖p ∀ s = 1, 2, . . . , we have
∑

1≤s<∞
γp(s)<∞.

We shall require the following strengthened notion of L-mixing.
Definition 2.3. Suppose that {Fn, n = 1, 2, . . .} and {F+

n , n = 1, 2, . . .} are
sequences of sub-σ-algebras in the probability triple (Ω,F , P ), as in Definition 2.2. An
�d×r-valued random process {zn, n = 1, 2, . . .} on (Ω,F , P ) is geometrically L-mixing
with respect to the system (Fn,F+

n ), when (i) {zn} is {Fn}-adapted, (ii) supn ‖zn‖p<
∞ for each p ∈ [0,∞), (iii) there is a constant λ ∈ (0, 1) and, for each p ∈ [1,∞), a
constant Cp ∈ [0,∞) such that

sup
n>s

‖zn − E
[
zn | Fn

n−s

] ‖p ≤ Cp λs ∀ s = 1, 2, . . . ,

where

Fn
m

�
=Fn ∩ F+

m, when 1 ≤ m < n.(2.1)

(Thus, Fn
m is the collection of all events which are members of both Fn and F+

m.) The
constant λ ∈ (0, 1) is called a rate of the geometrically L-mixing process.

Remark 2.4. Notice that conditioning is on the σ-algebra F+
n−s in Definition

2.2, whereas it is on the smaller σ-algebra Fn
n−s in Definition 2.3 (see Remark 2.5

for more discussion on this). Using the elementary inequality ‖z − E [z | H] ‖p ≤
2‖z − E [z | G] ‖p, which holds for z ∈ Lp(Ω,F , P ), p ∈ [1,∞), and sub-σ-algebras
G ⊂ H ⊂ F , one sees immediately that a geometrically L-mixing process with respect
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to a given system (Fn,F+
n ) is also L-mixing with respect to the system (Fn,F+

n ).
Besides being motivated by L-mixing, the notion of geometric L-mixing in Definition
2.3 is also closely related to that of exponential stability introduced by Ljung [20] and
Ljung and Caines [21] (see also Caines [4, p. 488] and Davis and Vinter [6, p. 217]).
An important instance of a geometrically L-mixing process is the output of a stable
finite-dimensional linear system with the form

xn+1 = Axn + Ben, zn = Cxn + Den, n = 1, 2, . . . ,

where {e1, e2, e3, . . .} is a “driving” sequence of independent random vectors, and x1

and σ{e1, e2, . . .} are independent, with supn ‖en‖p < ∞ and ‖x1‖p < ∞ for each
p ∈ [1,∞). Here one defines

Fn
�
=σ{x1, e1, e2, . . . , en}, F+

n
�
=σ{en+1, en+2, . . .} ∀ n = 1, 2, . . . ,(2.2)

and, by the argument in [4, pages 488-489] it is easily shown that {zn} is geomet-
rically L-mixing with respect to the system (Fn,F+

n ). It is this close link to stable
linear systems that makes L-mixing a very appropriate model for signals in data com-
munication problems. The Lp-bounds established for L-mixing in [9] and [10] also
render this class of processes extremely tractable, and will be used frequently in the
arguments that follow.

Remark 2.5. Suppose that {Fn, n = 1, 2, . . .} and {F+
n , n = 1, 2, . . .} are

sequences of sub-σ-algebras in the probability triple (Ω,F , P ), as in Definitions 2.2
and 2.3, and {zn, n = 1, 2, . . .} is some �d×r-valued and geometrically L-mixing
process with respect to the system (Fn,F+

n ). For each s = 1, 2, . . ., define the process
{zn[s], n = 1, 2, . . .} by

zn[s]
�
=E

[
zn | Fn

n−s

] ∀ n = 1, 2, . . . ,(2.3)

where we put Fn
n−s

�
=Fn

1 when n ≤ s. Observe that, for each s = 1, 2, . . ., the process
{zn[s], n = 1, 2, . . .} is s-dependent, since, from (2.3), one has σ{z1[s], z2[s], . . . , zm[s]}
⊂ Fm, while σ{zn[s], zn+1[s], . . . , zn+k[s]} ⊂ F+

n−s, and the σ-algebras Fm and F+
n−s

are clearly independent when n − m > s. Thus, we see from Definition 2.3 that a
geometrically L-mixing process {zn} can be nicely approximated by the s-dependent
process {zn[s]}. This approximation property was used by Ljung and Caines [21] to
establish asymptotic normality in off-line system identification, and will likewise be
necessary for proving the main results of this work.

From now on we shall always suppose that the data processes {an, n = 1, 2, . . .}
and {Xn, n = 1, 2, . . .}, which drive the recursion (1.1), are � and �d-valued, respec-
tively, defined on a common probability triple (Ω,F , P ), and subject to the following
conditions (C1) to (C4).

(C1) There are sequences {Fn, n = 1, 2, . . .} and {F+
n , n = 1, 2, . . .} of sub-σ-

algebras, as in Definition 2.2, such that {an} and {Xn} are geometrically
L-mixing with respect to the system (Fn,F+

n ).
(C2) There exists a d-vector b̄ and a d×d matrix R̄ such that the limits

b̄
�
= lim

N→∞
1

N + 1

N+n0∑
n=n0

E[anXn] , R̄
�
= lim

N→∞
1

N + 1

N+n0∑
n=n0

E[Xn(Xn)′](2.4)

exist uniformly with respect to n0 = 1, 2, . . . .
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To state the remaining conditions we need the following notation:{
bn

�
= anXn, b̄n

�
=E[bn] , b̃n

�
= bn − b̄n, b̂n

�
= b̄n − b̄,

Rn
�
=Xn(Xn)′, R̄n

�
=E[Rn] , R̃n

�
=Rn − R̄n, R̂n

�
= R̄n − R̄.

(2.5)

Also, recall that {θ0(τ), τ ∈ [0,∞)} is the (unique) solution of (1.2). The remaining
conditions are as follows.

(C3a) For each T ∈ (0,∞) there exist constants C1(T ) ∈ [0,∞) and ε(T ) ∈ (0, 1]
such that

max
0≤k≤1+�Tε−1�

∣∣∣∣∣∣
k−1∑
j=0

(b̂j+1 − R̂j+1θ
0(εj))

∣∣∣∣∣∣ ≤ C1(T )

for each ε ∈ (0, ε(T )].
(C3b) There exist constants ε0 ∈ (0, 1], α ∈ [0, 3/4), and C2 ∈ [0,∞) such that∣∣∣∣∣∣

k+N∑
j=k+1

R̂j+1(I − εR̄)j

∣∣∣∣∣∣ ≤ C2N
α

for all ε ∈ (0, ε0] and all k,N =1, 2, . . ..
(C4) There is a constant C3 ∈ [0,∞) and a function A : �d → �d×d such that

A(θ) is symmetric positive definite for each θ ∈ �d, and∣∣∣∣∣ 1

N + 1
cov

(
N+n0∑
n=n0

H̃n(θ)

)
−A(θ)

∣∣∣∣∣ ≤ C3[1 + |θ|2]

N + 1
(2.6)

for all θ ∈ �d and N,n0 = 1, 2, 3, . . ., where

H̃n(θ)
�
= b̃n − R̃nθ ∀ θ ∈ �d, ∀ n = 1, 2, . . . .(2.7)

Remark 2.6. Condition (C2) defines the d-vector b̄ and the d × d-matrix R̄,
which then gives the right side of the ODE (1.2). Conditions (C2), (C3a), and (C3b)
control the “amount of nonstationarity” in the data processes {an} and {Xn}. (C3a)
is the same as the first of the conditions appearing in (3.4) of Khas’minskii [13] but
is just rewritten in the context of algorithm (1.1) and plays a role similar to that of
its counterpart in [13], while (C3b) is a mild condition which limits fluctuations of

R̄n
�
=E[Xn(Xn)′] about R̄ defined in (C2).
Remark 2.7. Suppose the �d×r-valued process {zn, n = 1, 2, . . .} is geometrically

L-mixing with respect to a system (Fn,F+
n ). Then it follows at once that the cen-

tralized process {zn − Ezn, n = 1, 2, . . .} is geometrically L-mixing with respect to
the system (Fn,F+

n ). Moreover, if the �r×q-valued process {yn, n = 1, 2, . . .} is also
geometrically L-mixing with respect to the system (Fn,F+

n ), then it is easily verified
using Definition 2.3 that the �d×q-valued process {znyn, n = 1, 2, . . .} is geometri-
cally L-mixing with respect to system (Fn,F+

n ). In view of these observations and
condition (C1), it follows that the processes {b̃n, n = 1, 2, . . .} and {R̃n, n = 1, 2, . . .}
given by (2.5) are zero-mean and geometrically L-mixing with respect to the system
(Fn,F+

n ), and {H̃n(θ), n = 1, 2, . . .} given by (2.7) is zero-mean and geometrically
L-mixing for each θ ∈ �d.
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Remark 2.8. Condition (C4) gives the function A(·) which will be used to formu-
late the limiting set KT

Θ in the main result (see Theorem 3.3). In some special cases it is
possible to give explicit formulae for A(θ). For example, suppose that the driving data
{an, Xn} is weakly stationary so that, for each θ, we have E[H̃1(θ)] = E[H̃1+r(θ)] and
E[H̃1(θ)H̃ ′

n(θ)] = E[H̃1+r(θ)H̃ ′
n+r(θ)] for all r, n = 1, 2, . . .. Then it is easily shown

that (C4) follows from (C1) with A(θ) given by

A(θ)
�
=E[H̃1(θ)H̃ ′

1(θ)] +

∞∑
n=2

E[H̃1(θ)H̃ ′
n(θ)] +

∞∑
n=2

E[H̃n(θ)H̃ ′
1(θ)].

For another example, suppose that the driving data is cyclostationary. This implies
that there is a positive integer constant P such that, for each θ, we have E[H̃n(θ)] =

E[H̃n+P (θ)] and, for Λ(θ,m, n)
�
=E[H̃m(θ)H̃ ′

n(θ)], we have Λ(θ,m, n) = Λ(θ,m +
P, n + P ) for all m,n = 1, 2, . . .. With the help of the periodicity relation we can
extend Λ(θ,m, n) to all integers −∞ < m,n < ∞. By a straightforward adaptation
of the argument on page 222 of [13] or page 76 of [14] it may be shown that (C4)
follows from (C1) with A(θ) given by

A(θ) =
1

P

P∑
m=1

∞∑
n=−∞

Λ(θ,m, n).

A property of the mapping A(θ) in (C4) that will soon be needed is the following
lemma.
Lemma 2.9 (proved in section 7). Suppose conditions (C1) and (C4). Then the

function A(·) given by (2.6) is locally Lipschitz continuous over �d.

3. The main result.
Notation 3.1. For the results of this and later sections we need the following

additional notation. C[0, T ] indicates the space of continuous functions f : [0, T ] →
�d, for some T ∈ (0,∞), with norm ‖ · ‖C defined by ‖f‖C �

= sup0≤τ≤T |f(τ)|, and

AC0[0, T ]
�
= {ψ ∈ C[0, T ] : ψ(0) = 0, ψ(·) abs. continuous}. Also, for x ∈ C[0, T ]

and K ⊂ C[0, T ], put ‖x−K‖C �
= infy∈K ‖x−y‖C . If {xm, m=1, 2 . . .} is a sequence

in C[0, T ], then acc{xm} denotes the set of its accumulation points in C[0, T ] (if any),
and the notation {xm(τ), τ ∈ [0, T ]} →→ K for some set K ⊂ C[0, T ] means that
(i) limm→∞ ‖xm −K‖C = 0 and (ii) acc{xm} = K. The →→ symbol (due to Kuelbs
[16]) provides a succinct language for expressing Strassen’s functional LIL formulated
in section 1, namely, for each T ∈ (0, T ) and processes {Ξm(τ), τ ∈ [0, T ]} given by
(1.5), we have {

Ξm(τ)√
2 log logm

, τ ∈ [0, T ]

}
→→ KT

ξ a.s.(3.1)

For the main result of this paper, we must slightly extend this symbolism. If xε ∈
C[0, T ] for all ε ∈ (0, 1], then acc{xε} denotes the set of accumulation points in
C[0, T ] (if any) as ε↘0, and the notation {xε(τ), τ ∈ [0, T ]} →→ K means that (i)
limε→0 ‖xε −K‖C = 0 and (ii) acc{xε} = K.

Remark 3.2. From now on we fix an arbitrary finite horizon T ∈ (0,∞). Using
the →→ notation of the preceding paragraph, our main result is the following LIL for
algorithm (1.1), which characterizes a.s. limiting properties of {Θε(τ), τ ∈ [0, T ]},
the restriction to [0, T ] of the process Θε defined by (1.6).
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Theorem 3.3. Suppose conditions (C1)–(C4) of section 2, fix some finite hori-
zon T ∈ (0,∞), and let R̄, A(·), {θ0(τ), τ ∈ [0, T ]} and {Θε(τ), τ ∈ [0, T ]}, be defined
by (2.4), (2.6), (1.2), and (1.6), respectively. Define the mapping IT

Θ : AC0[0, T ] →
[0,∞] by

IT
Θ(φ)

�
=

1

2

∫ T

0

(φ̇(s) + R̄φ(s))′A−1(θ0(s))(φ̇(s) + R̄φ(s)) ds,(3.2)

and let

KT
Θ

�
= {φ ∈ AC0[0, T ] : IT

Θ(φ) ≤ 1}.(3.3)

Then KT
Θ is a compact subset of C[0, T ], and we have{

Θε(τ)√
2 log log ε−1

, τ ∈ [0, T ]

}
→→ KT

Θ a.s.(3.4)

Remark 3.4. To motivate the proof of Theorem 3.3 we briefly recall how one can
establish the functional CLT giving weak convergence of {Θε(τ), τ ∈ [0, T ]} to some
limiting Gauss–Markov process {Θ̂(τ), τ ∈ [0, T ]} (see section 1). For each ε ∈ (0, 1]

define the piecewise-linear continuous process {W ε(τ), τ ∈ [0,∞)} by W ε(0)
�
= 0, and

W ε(τ)
�
=

{
ε

1
2

∑k
j=1 b̃j − R̃jθ

0((j − 1)ε) ∀ τ = kε, k = 1, 2, . . . ,

linear interpolation, otherwise.
(3.5)

Fix some arbitrary T ∈ (0,∞) as in Remark 3.2. For ε ∈ (0, 1], define the mapping
Gε : C[0, T ] → C[0, T ] as follows. For every w ∈ C[0, T ], let Gε(w) be given by the
solution v ∈ C[0, T ] of the recursion

v(τ) =


w(0), if τ = 0,

w(τ)− ε
∑k−1

j=0 R̄ v(εj), if τ = kε, k = 1, 2, . . . ,

linear interpolation, otherwise.

(3.6)

By a detailed analysis of the recursion (1.1) (which is not given here) we can show

Θε(·) ≈ Gε(W ε)(·),(3.7)

in the sense that {Θε(τ), τ ∈ [0, T ]} and {Gε(W ε)(τ), τ ∈ [0, T ]} have approximately
the same distributions in C[0, T ] for small ε ∈ (0, 1]. This suggests that we can get
a weak limit for {Θε(τ), τ ∈ [0, T ]} when we establish a weak limit for {W ε(τ), τ ∈
[0, T ]} and show that Gε converges suitably to some limiting mapping G : C[0, T ] →
C[0, T ] as ε → 0. Indeed, using the fact that {b̃j} and {R̃j} are geometrically L-
mixing (see Remark 2.7) and trivially modifying the arguments of [1, pp. 105–106], it
can be proved that {W ε(τ), τ ∈ [0, T ]} converges weakly in C[0, T ] to the restriction
to [0, T ] of the Gauss–Markov process {Ŵ 0(τ), τ ∈ [0,∞)} given by

Ŵ 0(τ)
�
=

∫ τ

0

A
1
2 (θ0(s)) dB̂(s) ∀ τ ∈ [0,∞),(3.8)

for some standard �d-valued Brownian motion B̂(·) on a probability triple (Ω̂, F̂ , P̂ ).
In addition, it is easily seen from elementary analysis that Gε(·) converges uniformly
on compact subsets of C[0, T ] to the mapping G : C[0, T ] → C[0, T ] defined as follows.
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For every w ∈ C[0, T ], let G(w) be given by the solution v ∈ C[0, T ] of the linear
integral equation

v(τ) = w(τ)−
∫ τ

0

R̄ v(s) ds ∀ τ ∈ [0, T ].(3.9)

These facts suggest that {Gε(W ε)(τ), τ ∈ [0, T ]} converges weakly to the limit
{G(Ŵ 0)(τ), τ ∈ [0, T ]} and thus, in view of (3.7), that the weak limit of {Θε(τ), τ ∈
[0, T ]} is likewise the process {G(Ŵ 0)(τ), τ ∈ [0, T ]} or, equivalently, the process
given by the solution of the stochastic differential equation

dΘ̂(τ) = dŴ 0(τ)− R̄Θ̂(τ) dτ, Θ̂(0) = 0, ∀ τ ∈ [0, T ].(3.10)

In short, one first proves a CLT giving weak convergence of the simpler process
{W ε(τ), τ ∈ [0, T ]} to the limit {Ŵ 0(τ), τ ∈ [0, T ]} defined by (3.8), then uses
the approximation (3.7) to transfer this result into a CLT giving weak convergence of
{Θε(τ), τ ∈ [0, T ]} to the limit {Θ̂(τ), τ ∈ [0, T ]} defined by (3.10). Our strategy for
establishing Theorem 3.3 will be based on a very analogous method. First establish
a functional LIL for the process {W ε(τ), τ ∈ [0, T ]} as follows.
Theorem 3.5 (proved in section 4). Suppose conditions (C1)–(C4) of section 2,

and fix some finite horizon T ∈ (0,∞). Let {θ0(τ), τ ∈ [0, T ]}, {W ε(τ), τ ∈ [0, T ]},
and A(·) be defined by (1.2), (3.5), and (2.6), respectively, and write

KT
W

�
=

{
φ ∈ AC0[0, T ] :

1

2

∫ T

0

(φ̇(s))′A−1(θ0(s))φ̇(s) ds ≤ 1

}
.(3.11)

Then KT
W is a compact subset of C[0, T ], and{

W ε(τ)√
2 log log ε−1

, τ ∈ [0, T ]

}
→→ KT

W a.s.(3.12)

It remains to transfer the LIL of Theorem 3.5 for the process {W ε(τ), τ ∈ [0, T ]}
into the one given by Theorem 3.3 for the process {Θε(τ), τ ∈ [0, T ]}. To this end,
the following almost-sure version of (3.7) is essential.
Theorem 3.6 (proved in section 5). Suppose conditions (C1)–(C3) of section 2,

and fix some finite horizon T ∈ (0,∞). Then, for the process {W ε(τ), τ ∈ [0, T ]}
and mapping Gε : C[0, T ] → Gε defined by (3.5) and (3.6), respectively, we have

lim
ε↘0

‖Gε(W ε)−Θε‖C = 0 a.s.(3.13)

With Theorems 3.5 and 3.6 available, the proof of the main result is easy.
Proof of Theorem 3.3. One sees from (3.6) and (3.9) that Gε(·) and G(·) are linear

and continuous on C[0, T ]. Using the Arzela–Ascoli theorem, it is easily seen that
Gε(·) → G(·) uniformly on compact subsets of C[0, T ] as ε↘0. In view of this fact, if
Y ε ∈ C[0, T ] for all ε ∈ (0, 1] is such that {Y ε(τ), τ ∈ [0, T ]} →→ K for some compact
K ⊂ C[0, T ], then it follows by easy analysis that {Gε(Y ε), τ ∈ [0, T ]} →→ G(K).

Thus, identifying Y ε(τ) with W ε(τ)/
√

2 log log ε−1 and using Theorem 3.5, we get{
Gε(W ε)(τ)√
2 log log ε−1

, τ ∈ [0, T ]

}
→→ G(KT

W ), a.s.(3.14)



542 J. A. JOSLIN AND A. J. HEUNIS

Next, from the definitions of KT
Θ and KT

W (see (3.3), (3.11)), and the definition of
G(·) given by (3.9), we see that

G(KT
W ) = KT

Θ .(3.15)

Now KT
W is compact (by Theorem 3.5), thus KT

Θ is compact, and (3.4) follows from
(3.14), (3.15), and Theorem 3.6.

Remark 3.7. One immediate consequence of Theorem 3.3 is that, subject to
conditions (C1)–(C4), we have

max
0≤τ≤T

|θε
�τ/ε� − θ0(τ)| = O(ε

1
2

√
2 log log ε−1) a.s.(3.16)

for each T ∈ (0,∞). We thus complement the finite horizon weak law of large numbers
(1.3) with a strong law of large numbers together with an a.s. rate of convergence,
which, by an argument identical to that in ([12], page 120), may be seen to be the
best possible rate of convergence.

Remark 3.8. The general methodology used for establishing Theorem 3.3 is sug-
gested by an approach developed in [15] for proving a functional LIL for random
ODEs. The methods of [15] depend in an essential way on rather restrictive bound-
edness hypotheses which, when carried over directly into the context of (1.1), entail
uniform boundedness of the driving data sequence {Xn} with respect to n = 1, 2, . . .
and ω ∈ Ω. Although this boundedness may be reasonably acceptable for differential
equations, it is not realistic for algorithms, and it is necessary to significantly redesign
the overall approach used in [15] for differential equations to suit the system (1.1).
In the following sections we shall extensively use (i) nice properties of geometric L-
mixing processes, in particular their approximability (see Remark 2.5) by s-dependent
processes, (ii) Lp-bounds for sums of L-mixing processes over “triangular” domains
(see Theorem 5.2), and (iii) the linear structure of (1.1), in order to deal with the
problems caused by unboundedness of the data sequences in (1.1).

4. Proof of Theorem 3.5.
Notation 4.1. For this section we need the following additional notation: If

(S, ρ) is a metric space then B(S) denotes its Borel σ-algebra, and if Y is a F/B(S)-
measurable mapping from a triple (Ω,F , P ) into (S, ρ), then L(Y ) is the probability

measure on B(S) defined by L(Y )(A)
�
=P{ω : Y (ω) ∈ A} for all A ∈ B(S). For

probability measures P1 and P2 on the metric space C[0, T ] with metric given by the
norm ‖ · ‖C (see Notation 3.1), let ΠC(P1, P2) denote the Prohorov distance between
P1 and P2 (see section 8 for a general definition of Prohorov distance). If {αn} and
{βn} are sequences of real numbers, then the notation αn � βn indicates the existence
of a constant C ∈ [0,∞) such that |αn| ≤ C|βn| for all n = 1, 2, . . . If αε and βε are
real numbers for each ε ∈ (0, 1] then αε � βε indicates the existence of numbers
ε0 ∈ (0, 1] and C ∈ [0,∞) such that |αε| ≤ C|βε| for all ε ∈ (0, ε0].

The proof of Theorem 3.5 relies on the following result which is an immediate
consequence of combining Lemma 2.1(iv) and Theorem 4.3 of Kuelbs [16].
Theorem 4.2. Fix some T ∈ (0,∞), and suppose that M : [0, T ] → �d×d is

continuous with M(s) being positive-definite symmetric for each s ∈ [0, T ]. Then the
set

K
�
=

{
φ ∈ AC0[0, T ] :

1

2

∫ T

0

(φ̇(s))′M−1(s)φ̇(s) ds ≤ 1

}
(4.1)
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is a compact subset of C[0, T ]. Define a Gaussian process {Ŷ (τ), τ ∈ [0, T ]} by

Ŷ (τ)
�
=

∫ τ

0

M
1
2 (s) dB̂(s) ∀ τ ∈ [0, T ],(4.2)

where B̂(·) is a standard �d-valued Brownian motion on a triple (Ω̂, F̂ , P̂ ), and let
{Yr, r = 1, 2, . . .} be a sequence of C[0, T ]-valued random variables defined on a triple
(Ω,F , P ). Then the following hold. (i) If

∞∑
r=1

ΠC(L(Yr),L(Ŷ )) <∞,(4.3)

then

lim
r→∞

∥∥∥∥ Yr√
2 log r

−K

∥∥∥∥
C

= 0, a.s.(4.4)

(ii) If, in addition to (4.3), the sequence {Yr} is independent, then

acc

{
Yr(ω)√
2 log r

}
= K, a.s.(4.5)

Remark 4.3. In Theorem 4.2 the set K is defined in terms of the covariance
function M(·) of a Gaussian process {Ŷ (τ)}. The theorem says that if a sequence
of C[0, T ]-valued random functions {Yr} converges fast enough in distribution to the
Gaussian limit Ŷ (see (4.3)), then all accumulation points of the sequence {Yr(ω)/√

2 log r, r = 1, 2, . . .} are included within the set K for P -almost all ω (see (4.4)),
regardless of any dependence which may exist in the sequence {Yr}. This is true, in
particular, when the Yr are Gaussian with common distribution equal to that of Ŷ , for
then (4.3) is automatically satisfied. If, in addition, the sequence {Yr} is independent,
then the set of accumulation points of {Yr(ω)/

√
2 log r, r = 1, 2, . . .} is not only

included within K but actually coincides exactly with K for P -almost all ω (see
(4.5)). Taken together, (4.4) and (4.5) constitute a law of the noniterated logarithm.
In the present section we shall use Theorem 4.4 (to follow) as a tool for verifying (4.3),
and then establish Theorem 3.5 on the basis of the law of the noniterated logarithm
resulting from Theorem 4.2.
Theorem 4.4 (proved in section 6). Suppose conditions (C1)–(C4) of section 2

hold and fix some finite horizon T ∈ (0,∞). Let {Ŵ 0(τ), τ ∈ [0, T ]} be defined
by (3.8), and let {W ε(τ), τ ∈ [0, T ]} be defined by (3.5). Then there is a constant
η ∈ (0,∞) such that

ΠC(L(W ε),L(Ŵ 0)) � εη.

Remark 4.5. Fix an arbitrary finite horizon T ∈ (0,∞). For the proofs in this
and in later sections we shall need the �d-valued process {ξε

n, n = 1, 2, . . .} defined
for each ε ∈ (0, 1] by

ξε
n

�
= H̃n(θ0(((n− 1)ε) ∧ T )) ≡ b̃n − R̃nθ

0(((n− 1)ε) ∧ T ) ∀ n = 1, 2, . . .(4.6)

(recall (2.7) and (2.5)). To simplify the notation, we do not indicate dependence of
ξε
n upon the horizon T , which is fixed throughout this work. It follows at once from
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(3.5) that we have

W ε(τ) = ε
1
2

�τ/ε�∑
ν=1

ξε
ν + (τ/ε− �τ/ε�)ξε

�τ/ε�+1

 ∀ τ ∈ [0, T ].(4.7)

Since {b̃n} and {R̃n} are zero-mean and geometrically L-mixing (see Remark 2.7), and
θ0(((n− 1)ε) ∧ T ) is uniformly bounded with respect to ε ∈ (0, 1], n = 1, 2, . . ., and
nonrandom, it follows at once that {ξε

n, n = 1, 2, . . .} is zero-mean and geometrically
L-mixing. In fact, if

ξε
n[s]

�
=E

[
ξε
n | Fn

n−s

]
= b̃n[s]− R̃n[s]θ0((n− 1)ε ∧ T ) ∀ s, n = 1, 2, . . . ,(4.8)

then there is a constant λ ∈ (0, 1), and, for each p ∈ [1,∞), a constant Cp ∈ [0,∞),
such that

sup
n>s

‖ξε
n − ξε

n[s]‖p ≤ Cp λs ∀ s = 1, 2, . . . , ∀ ε ∈ (0, 1],(4.9)

and it follows from Remark 2.5 that {ξε
n[s], n = 1, 2, 3, . . .} is a zero-mean s-dependent

process for each s = 1, 2, . . . and ε ∈ (0, 1]. Notice that λ and Cp in (4.9) are uniform
with respect to ε ∈ (0, 1].

Remark 4.6. We can apply Theorem 8.5 separately to the geometrically L-
mixing processes {b̃n} and {R̃n} in (4.6), and use the uniform boundedness in (ε, n)
of θ0(((n− 1)ε) ∧ T ) to get the following. For each p ∈ [2,∞) there is a constant
C1

p ∈ [0,∞) such that for any nonrandom sequence {An} of d× d-matrices we have

∥∥∥∥∥
N∑

n=1

Anξ
ε
n

∥∥∥∥∥
p

≤ C1
p

(
N∑

n=1

|An|2
) 1

2

∀ N = 1, 2, . . . , ∀ ε ∈ (0, 1].

Notice that the dependencies of the constants in Theorem 8.5, and uniformity in
ε ∈ (0, 1] of Cp and λ in (4.9), entail that C1

p does not depend on ε, N , or the
sequence {An}.

Proof of Theorem 3.5. From Lemma 2.9 we know that A(θ0(s)) is continuous in
s ∈ [0, T ]. Upon comparing (3.11) and (4.1), we see from Theorem 4.2 that KT

W is
compact. We now use Theorem 4.2 to show that a.s.

(i) lim
ε↘0

∥∥∥∥∥ W ε√
2 log log ε−1

−KT
W

∥∥∥∥∥
C

= 0, (ii) KT
W = acc

{
W ε√

2 log log ε−1

}
,(4.10)

which gives Theorem 3.5.

Proof of (4.10)(i). Without loss of generality take T = 1. Fix σ ∈ [ 9
10 , 1) and put

εr
�
= exp(−rσ) ∀ r = 1, 2, 3, . . . .(4.11)

Then, for each ε ∈ [εr+1, εr], we have
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∥∥∥∥∥ W ε(·)√
2 log log ε−1

− KT
W√
σ

∥∥∥∥∥
C

≤
∥∥∥∥∥ W ε(·)√

2 log log ε−1
− W εr (·)√

2 log log ε−1

∥∥∥∥∥
C

+

∥∥∥∥∥ W εr (·)√
2 log log ε−1

− W εr (·)√
2 log log ε−1

r

∥∥∥∥∥
C

+

∥∥∥∥∥ W εr (·)√
2 log log ε−1

r

− KT
W√
σ

∥∥∥∥∥
C

,

and thus

sup
εr+1≤ε≤εr

∥∥∥∥∥ W ε√
2 log log ε−1

− KT
W√
σ

∥∥∥∥∥
C

≤ sup
εr+1≤ε≤εr

‖W ε −W εr‖C√
2 log log ε−1

r

(4.12)

+

∥∥∥∥∥ W εr√
2 log log ε−1

r

∥∥∥∥∥
C

(
1−

√
log log ε−1

r

log log ε−1
r+1

)
+

∥∥∥∥∥ W εr√
2 log log ε−1

r

− KT
W√
σ

∥∥∥∥∥
C

.

Remark 4.7. We will show that the three terms on the right of (4.12) go to zero
a.s. when r → ∞ for each σ ∈ [ 9

10 , 1). Since we can choose σ arbitrarily close to 1,
this gives (4.10)(i). Our choice of the sequence {εr} is determined by the following
considerations. From (4.7) we see that the number of terms in the sum for W ε(τ)
increases reciprocally with decreasing ε. Thus, to control the supremum appearing
in the first term on the right side of (4.12), we want the difference (ε−1

r+1 − ε−1
r ) to

not be too large, which means that {εr} must go to zero quite slowly. On the other
hand, in the course of the following proof, we shall need Theorem 4.2(i) to deal with
the last term on the right of (4.12), using Theorem 4.4 to verify a bound of the form

(4.3) (with Yr
�
=W εr , Ŷ

�
= Ŵ 0), and for this it is important that {εr} not go to zero

too slowly. Our choice of the sequence {εr} turns out to be the right compromise,
meeting both of these requirements.

We now deal with the first term on the right of (4.12). For each γ ∈ [0,∞), define
piecewise-constant process {Sγ(τ), τ ∈ [0, 1]} by

Sγ(τ)
�
=

{ ∑�τγ�
j=1

[
b̃j − R̃jθ

0((j − 1)/γ)
]
, when γ > 0,

0, when γ = 0,
(4.13)

and observe, from (4.7) and (4.13), that

W ε(τ) = ε
1
2 {Sε−1(τ) + (τ/ε− �τ/ε�) ξε

�τ/ε�+1} ∀ τ ∈ [0, 1].(4.14)

Put Nε
�
=

⌊
ε−1

⌋
for all ε ∈ (0, 1], and observe from (4.14) that

‖W ε −W εr‖C ≤ ε
1
2 max

k=1,...,Nε
|ξε

k|+ ‖ε
1
2Sε−1 − ε

1
2
r Sε−1

r
‖C + ε

1
2
r max

k=1,...,Nεr
|ξεr

k |(4.15)

for all ε ∈ [εr+1, εr]. Now we need the following result.
Lemma 4.8 (proved in section 7). Suppose that {γn} is a sequence of random

variables (either �d- or �d×r-valued for all n) on a probability space (Ω,F , P ), such
that supn ‖γn‖8 <∞. Then, for almost always (a.a.) ω, there exists some constant
C(ω) ∈ [0,∞) such that

max
n=1,2,...,N

|γi(ω)| ≤ C(ω)N
1
7 ∀ N = 1, 2, . . . .
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By (4.6) and Lemma 4.8, for P -a.a. ω there are constants c1(ω), c2(ω) ∈ [0,∞)
such that

ε
1
2 max

k=1,...,Nε
|ξε

k(ω)| ≤ ε
1
2

{
max

k=1,2,...,Nε
|b̃k(ω)|+ max

k=1,...,Nε
|R̃k(ω)||θ0((k − 1)ε)|

}
(4.16)

≤ ε
1
2 c1(ω)

(
N

1
7
ε + N

1
7
ε max

0≤τ≤1
|θ0(τ)|

)
≤ c2(ω)ε

5
14
r ∀ ε ∈ [εr+1, εr], ∀ r = 1, 2, 3, . . . .

For the second term on the right of (4.15), fix some integer p≥3 and observe that

E

[
sup

εr+1≤ε≤εr

‖ε 1
2Sε−1 − ε

1
2
r Sε−1

r
‖2p

C

]
(4.17)

≤ 22p

{
E

[
sup

εr+1≤ε≤εr

(|ε 1
2
r − ε

1
2 |‖Sε−1‖C)2p

]
+ E

[
sup

εr+1≤ε≤εr

(ε
1
2
r ‖Sε−1 − Sε−1

r
‖C)2p

]}
.

To deal with the expectations on the right side of (4.17) we need the next result,
which is a slight variant of Lemma 3.7 in [15], and is proved in exactly the same way.
Lemma 4.9. Suppose conditions (C1)–(C2) of section 2 hold, and define Sγ(τ),

τ ∈ [0, 1], as in (4.13) for each γ ∈ [0,∞). Then, corresponding to each integer p≥3,
there exists a constant αp ∈ (0,∞) such that

E

[
sup

γ≤u≤η
‖Su − Sγ‖2p

C

]
≤ αpη(η − γ)p−1 ∀ 0 ≤ γ < η <∞.

Since σ < 1 in (4.11), we see from the mean-value theorem applied to r → rσ

that εr/εr+1 ≤ eσ. Thus, from Lemma 4.9,

E

[
sup

εr+1≤ε≤εr

(ε
1
2
r ‖Sε−1 − Sε−1

r
‖C)2p

]
= εp

rE

[
sup

ε−1
r ≤u≤ε−1

r+1

‖Su − Sε−1
r
‖2p

C

]
(4.18)

≤ αpε
p
rε

−1
r+1

(
ε−1
r+1 − ε−1

r

)p−1 ≤ eσαp{(εr−εr+1)(ε−1
r+1)}p−1 �

= eσαpB
p
r ∀ r = 1, 2, . . . .

In the same way, one shows that the first expectation on the right side of (4.17) has
an identical upper bound, and thus the quantity on the left side of (4.17) is O(Bp

r ),
where the constant implied by O depends only on p. By applying the mean value
theorem to r → exp(−rσ), we easily see that Bp

r ≤ {σeσr(σ−1)}(p−1). Then, fixing
integer p > 2−σ

1−σ , it follows that r(σ−1)(p−1) = O(r−β−1) for some β > 0, and thus
the sequence {Bp

r , r = 1, 2, . . .} is summable. Hence, from (4.17) and the monotone
convergence theorem,

E

∑
r≥1

sup
εr+1≤ε≤εr

‖ε 1
2Sε−1 − ε

1
2
r Sε−1

r
‖2p

C

 <∞,

which implies

lim
r→∞

[
sup

εr+1≤ε≤εr

‖ε 1
2Sε−1 − ε

1
2
r Sε−1

r
‖C

]
= 0 a.s.(4.19)
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Similarly to (4.16), one sees that the third term on the right side of (4.15) is O(ε
5
14
r )

a.s., and hence using (4.15), (4.16), and (4.19), we get

lim
r→∞

{
sup

εr+1≤ε≤εr

‖W ε −W εr‖C
}

= 0 a.s.(4.20)

This controls the first term on the right of (4.12). As for the third term, use Theorem
4.4 to find some constants c1 > 0, η > 0 and r0 > 0 such that ΠC(L(W εr ),L(Ŵ 0)) ≤
c1 exp(−ηrσ) for all r ≥ r0, thus

∑
r ΠC(L(W εr ),L(Ŵ 0)) < ∞. Hence Theorem

4.2(i) (with M(τ)
�
=A(θ0(τ)), Yr(·) �

=W εr (·), Ŷ (·) �
= Ŵ 0(·), and K

�
=KT

W ) establishes

the convergence limr→∞ ‖ W εr (·)√
2 log r

− KT
W ‖C = 0 a.s. Now σ log r = log log ε−1

r (see

(4.11)); therefore,

lim
r→∞

∥∥∥∥∥ W εr√
2 log log ε−1

r

− KT
W√
σ

∥∥∥∥∥
C

= 0 a.s.(4.21)

As for the second term on the right side of (4.12), clearly limr
log log ε−1

r

log log ε−1
r+1

= 1 (by

L’Hôpital formula), and thus (4.21) and boundedness of KT
W in C[0, 1] shows that

this term goes a.s. to zero with r → ∞. It follows that the quantity on the left side
of (4.12) tends a.s. to zero as r →∞.

Proof of (4.10)(ii). Fix σ ∈ (1, 3/2), and define εr as in (4.11).
Remark 4.10. In contrast to the situation of Remark 4.7, where σ < 1 so that

ε−1
r increases quite slowly with r, here we take σ > 1 in (4.11) so that ε−1

r increases
extremely rapidly with r. In view of (4.7), this ensures that the sum for W εr+1(τ)
involves many more terms than does the sum for W εr (τ), or, equivalently, the sums
for W εr+1(τ) and W εr (τ) have few terms in common. The geometric L-mixing of {ξε

ν}
then suggests that the sequence {W εr (·)} of C[0, 1]-valued random variables should be
approximately independent, and we can then expect to use Theorem 4.2(ii) to obtain
(4.10)(ii). Indeed, in the course of the following proof we shall make this intuition
rigorous, using the geometric L-mixing of {ξε

ν} and rapid increase of {εr} to construct
a sequence {W r

2 (·)} of independent C[0, 1]-valued random variables to which we can
apply Theorem 4.2(ii), and which approximates the sequence {W εr (·)} in a strong
sense (see (4.31)). From this it is easy to deduce (4.10)(ii).

Recalling λ ∈ (0, 1) in (4.9), define

q(r)
�
=

⌊
r2

2 lnλ−1

⌋
, τr

�
= εr

(
1 + q(r) +

1

εr−1

)
∀ r = 1, 2, . . . ,(4.22)

ζε
u

�
= ξε

�u�+1, ζε
u[q]

�
= ξε

�u�+1[q] ∀ ε ∈ (0, 1], ∀u ∈ [0,∞), ∀ q = 1, 2 . . . �u� .(4.23)

For each r = 1, 2, . . . , define {W r
1 (τ), τ ∈ [0, 1]} and {W r

2 (τ), τ ∈ [0, 1]} by

W r
1 (τ)

�
=


0, if 0 ≤ τ ≤ τr,

ε
1
2
r

∫ τ/εr

τr/εr

ζεr
u du, if τr <τ≤1,

(4.24)

W r
2 (τ)

�
=


0, if 0 ≤ τ ≤ τr,

ε
1
2
r

∫ τ/εr

τr/εr

ζεr
u [q(r)] du, if τr <τ≤1.

(4.25)
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We first show that {W r
2 (·)} is a sequence of C[0, 1]-valued independent random vari-

ables. To this end, observe from (4.22), (4.23), and (4.25) that

Ar
�
=σ{W r

2 (τ), 0≤τ≤1} ⊂ σ{ξεr
2+q(r)+�ε−1

r−1�[q(r)], . . . , ξεr
1+�ε−1

r �[q(r)]}.(4.26)

Now ξεr
j [q] is Fj

j−q-measurable for all q, j = 1, 2, . . . (see (4.8)), and thus from (4.26)
we find

Ar ⊂ F1+�ε−1
r �

2+�ε−1
r−1�,(4.27)

where Fn
m is given by (2.1). Now one sees from Definition 2.3 that the finite collection

of σ-algebras {Fn1
m1

,Fn2
m2

, . . . ,Fnr
mr
} is independent when m1 < n1 < m2 < n2 < · · · <

mr < nr; hence (4.27) shows that {W r
2 (·), r=1, 2, . . .} is a sequence of C[0, 1]-valued

independent random variables. In order to use Theorem 4.2(ii) on this sequence, we
next show that

∞∑
r=1

ΠC(L(W r
2 ),L(Ŵ 0)) <∞,(4.28)

where {Ŵ 0(τ), τ ∈ [0, 1} is defined by (3.8). By the triangle inequality we have

ΠC(L(W r
2),L(Ŵ 0))≤ ΠC(L(W r

2),L(W r
1)) + ΠC(L(W r

1),L(W εr))(4.29)

+ ΠC(L(W εr),L(Ŵ 0)),

and it remains to upper-bound the three terms on the right side of (4.29). To this
end we require the following lemma.
Lemma 4.11 (proved in section 7). Suppose the hypotheses of Theorem 3.5. Then

we have

E

[
max

0≤τ≤1
|W r

1 (τ)−W r
2 (τ)|4

]
� εr.

Then, from Lemma 8.6(ii) (with c
�
= 4) we get ΠC(L(W r

1 ),L(W r
2 )) � (ε

1
4
r )

4
5 = ε

1
5
r .

Next, we need the following lemma.
Lemma 4.12 (proved in section 7). Suppose the hypotheses of Theorem 3.5. Then

we have

E

[
max

0≤τ≤1
|W εr (τ)−W r

1 (τ)|4
]
� r−10.

By Lemmas 4.12 and 8.6(ii) (with c
�
= 4) we get ΠC(L(W r

1 ),L(W εr )) � (r−
5
2 )

4
5 =

r−2. By Theorem 4.4 there exists r0, η ∈ (0,∞) such that ΠC(L(W εr ),L(Ŵ 0)) � εη
r

for all r≥r0, and hence by (4.29), we get ΠC(L(W r
2 ),L(Ŵ 0)) � ε

1
5
r + εη

r + r−2, and
(4.28) follows. Thus, by independence of the sequence {W r

2 (·), r = 1, 2, . . . , } and

Theorem 4.2(ii) (with M(τ)
�
=A(θ0(τ)), Yr(·) �

=W r
2 (·), Ŷ (·) �

= Ŵ 0(·), and K
�
=KT

W ),

we get acc{ W r
2√

2 log r
} = KT

W a.s. Now σ log r = log log ε−1
r (see (4.11)), and hence

acc

{
W r

2√
2 log log ε−1

r

}
=

KT
W√
σ
.(4.30)
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From Lemma 4.11 and Borel–Cantelli, we have limr→∞ ‖W r
1 −W r

2 ‖C = 0 a.s. Simi-
larly, by Lemma 4.12, limr→∞ ‖W r

1 −W εr‖C = 0 a.s. Thus, by the triangle inequality,

lim
r→∞ ‖W

r
2 −W εr‖C = 0 a.s.(4.31)

From (4.30), (4.31), and the fact that {W εr} is a subnet of {W ε},

KT
W√
σ

= acc

{
W εr√

2 log log ε−1
r

}
⊂ acc

{
W ε√

2 log log ε−1

}
a.s.(4.32)

Since (4.32) holds for σ arbitrarily near 1 with σ > 1, we have

KT
W ⊂ acc

{
W ε√

2 log log ε−1

}
a.s.(4.33)

Now (4.10)(i) and (4.33) yield (4.10)(ii) as required.

5. Proof of Theorem 3.6.
Remark 5.1. For ease of notation put

Zε(τ)
�
=Gε(W ε)(τ) ∀ τ ∈ [0, T ].(5.1)

From (3.6) and (4.7) we see that, for each ε ∈ (0, 1], the sequence {Zε(εk)} is given
by

Zε(ε(k + 1)) = (I − εR̄)Zε(εk) + ε
1
2 ξε

k+1, Zε(0) = 0,(5.2)

which is a linear system driven by the geometrically L-mixing process {ξε
k}. Theorem

3.6 effectively relates {Θε(εk)} to the output of this system.

Without loss of generality we shall take T = 1. Put Nε
�
=

⌊
ε−1

⌋
for all ε ∈ (0, 1].

From (1.1), (1.2), and (2.5),

θε
k = θ∗ + ε

k−1∑
j=0

(
bj+1 −Rj+1θ

ε
j

)
, θ0(εk) = θ∗ +

∫ εk

0

(
b̄− R̄θ0(s)

)
ds.(5.3)

In view of (1.6) we have Θε(εk)
�
= ε−

1
2 (θε

k − θ0(εk)), and thus, using (5.3), (3.5), and
(2.5),

Θε(εk) = ε
1
2

k−1∑
j=0

bj+1 − ε
1
2

k−1∑
j=0

Rj+1θ
ε
j + ε

1
2

k−1∑
j=0

(b̃j+1 − R̃j+1θ
0(εj))

− ε
1
2

k−1∑
j=0

((bj+1−b̄j+1)− (Rj+1−R̄j+1)θ0(εj))− kε
1
2 b̄ + ε−

1
2

∫ εk

0

R̄θ0(s) ds

= W ε(εk)− ε
1
2

k−1∑
j=0

Rj+1(θε
j − θ0(εj)) + ε

1
2

k−1∑
j=0

(
(b̄j+1 − b̄)

− (R̄j+1 − R̄)θ0(εj)) + ε−
1
2

(∫ εk

0

R̄θ0(s) ds− ε

k−1∑
j=0

R̄θ0(εj)

)
,
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and hence, again using (2.5),

Θε(εk) = W ε(εk)− ε

k−1∑
j=0

Rj+1Θε(εj) + ε
1
2

k−1∑
j=0

(b̂j+1 − R̂j+1θ
0(εj))(5.4)

+ ε−
1
2

(∫ εk

0

R̄θ0(s) ds− ε

k−1∑
j=0

R̄θ0(εj)

)
for all ε ∈ (0, 1] and k=1, 2, . . . , Nε. Define

∆ε(εk)
�
= Θε(εk)− Zε(εk) ∀ k = 0, 1, 2, . . . , Nε.(5.5)

From (2.5) we know that R̄ = Rj+1− (R̃j+1 + R̂j+1), and thus, using (5.1) and (3.6),

Zε(εk) = W ε(εk)− ε

k−1∑
j=0

Rj+1Z
ε(εj) + ε

k−1∑
j=0

(R̃j+1 + R̂j+1)Zε(εj).(5.6)

The quantity in brackets in the fourth term on the right side of (5.4) is clearly O(ε)
uniformly with respect to k = 1, 2, . . . , Nε, while condition (C3a) ensures that the

third term on the right side of (5.4) is O(ε
1
2 ) uniformly in k = 1, 2, . . . , Nε. Subtracting

(5.6) from (5.4) and taking magnitudes gives

|∆ε(εk)| ≤ ε

k−1∑
j=0

|Rj+1| |∆ε(εj)|+ (|Iε
k|+ |Jε

k |+ O(ε
1
2 )),(5.7)

where the constant implied by O(ε
1
2 ) is uniform with respect to k = 1, 2, . . . , Nε, and

Iε
k

�
= ε

k−1∑
j=0

R̃j+1Z
ε(εj), Jε

k
�
= ε

k−1∑
j=0

R̂j+1Z
ε(εj) ∀ k = 1, 2, . . . , 1 + Nε.(5.8)

By (5.7), the fact that ∆ε(0) = 0, and the discrete-parameter version of Gronwall–
Bellman’s inequality (obtained by taking µ(·) to be counting measure with weights
ε|Rj+1| over the nonnegative integers j = 0, 1, 2, . . . in Theorem 5.1 on page 498 of
[8]), we get

max
0≤k≤Nε+1

|∆ε(εk)| ≤ exp

ε

Nε∑
j=1

|Rj |
 max

1≤k≤Nε+1
(|Iε

k|+ |Jε
k |+ O(ε

1
2 ))(5.9)

for all ε ∈ (0, 1]. The proof proceeds by showing that, as ε ↘ 0, the right-hand
side of (5.9) converges to zero a.s. Since Zε(·) and Θε(·) are both linear on intervals
of the form [(k−1)ε, kε), k = 1, 2, . . . , Nε and continuous, this gives Theorem 3.6.
Now products of geometrically L-mixing processes are geometrically L-mixing (see
Remark 2.7), and thus one easily sees from condition (C1) and (2.5) that {|Rn|2}
is geometrically L-mixing; in view of Theorem 8.5 and a standard use of the Borel–
Cantelli lemma, it then follows that

lim sup
ε↘0

ε

Nε∑
j=1

|Rj | <∞, a.s.(5.10)
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In light of (5.9) and (5.10), Theorem 3.6 will be established when we show that

lim sup
ε↘0

max
0≤k≤Nε+1

|Iε
k| = 0 a.s. and lim sup

ε↘0
max

0≤k≤Nε+1
|Jε

k | = 0 a.s.(5.11)

To establish the first limit of (5.11), note from (5.2) that Zε(εj) = ε
1
2 (I−εR̄)j

∑j−1
i=0 (I−

εR̄)−i−1ξε
i+1 for all j=0, 1, . . . , Nε+1, from which we see that Iε

k in (5.8) can be written
as

Iε
k = ε

3
2

k−1∑
j=0

R̃j+1(I − εR̄)jΓε
j , where Γε

j
�
=

j∑
i=1

(I − εR̄)−iξε
i , Γε

0
�
= 0.(5.12)

The following very special case of Theorem 1.1 of Gerencsér [10] is essential for estab-
lishing (5.11).
Theorem 5.2. Let {f1(i)}∞i=0 and {f2(i)}∞i=0 be real-valued nonrandom sequences,

and let {u1(i)}∞i=0 and {u2(i)}∞i=0 be zero-mean geometrically L-mixing processes with
rate λ ∈ (0, 1). Then there exists a constant c ∈ (0,∞) such that, for l, k = 1, 2 . . .,
with l > k, we have∥∥∥∥∥∥

l−1∑
j=k

j−1∑
i=0

f1(i)u1(i)f2(j)u2(j)

∥∥∥∥∥∥
4

≤ c[ψ1(l, k) + ψ2(l, k)],

where (taking f1(i)
�
= f2(i)

�
= 0 when i<0){

ψ1(l, k)
�
= (

∑l
i=k h(i, l, k)(|f2(i− 1)|+ |f2(i− 2)|)ϕ2

1(i))
1
2 ,

ψ2(l, k)
�
=

∑l
i=1 h(i, l, k)|f1(i− 2)|,

(5.13)

ϕ1(i)
�
=

i−1∑
j=0

f2
1 (j)


1
2

, h(i, l, k)
�
=

l∑
j=i∨k

|f2(j − 1)|λj−i, i=1, . . . , l.(5.14)

Remark 5.3. The constant c is invariant with respect to l, k = 1, 2, . . ., and the
sequences {f1(i)} and {f2(i)}, but may depend on the quantities λ, supi≥0 ‖u1(i)‖8
and supj≥0 ‖u2(j)‖8. Theorem 1.1 of [10] is established in a continuous-parameter set-
ting and gives general Lp-bounds on arbitrarily many multiple integrals of L-mixing
processes. Theorem 5.2 stated here is a specialization of this result to the discrete-
parameter case for an L4-bound on two summations of geometrically L-mixing pro-
cesses.

Since we can diagonalize R̄ (by condition (C2)) there is no loss of generality in
supposing that d = 1. For each ε ∈ (0, 1) and i, j = 0, 1, 2, . . ., define

u1(ε; i)
�
= ξε

i+1 and u2(j)
�
= R̃j+1,(5.15)

f1(ε; i)
�
=

{
(1− εR̄)−i−1, if i≥0,
0, if i<0,

f2(ε; j)
�
=

{
(1− εR̄)j , if j≥0,
0, if j<0,

(5.16)

and note by Remark 4.5 that u1(ε; ·) and u2(·) are zero-mean geometrically L-mixing
with some rate λ ∈ (0, 1). From (5.12), (5.15), and (5.16) we can write
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E[|Iε
l − Iε

k|4] = ε6E

[(
l−1∑
j=k

j−1∑
i=0

f1(ε; i)u1(ε; i)f2(ε; j)u2(j)

)4 ]
(5.17)

for all 1 ≤ k < l ≤ 1 + Nε. Now define ψ1(l, k; ε), ψ2(l, k; ε), ϕ1(i; ε), and h(i, l, k; ε)
exactly as in (5.13) to (5.14), but allowing for the parametrization by ε in (5.15) and

(5.16). Put ε0
�
= 1/2 when R̄ = 0, and put ε0

�
= 1/(2R̄) when R̄ > 0. In view of (5.14)

and (5.16), we have h(i, l, k; ε) ≤ ∑l
j=i∨k λj−i, and clearly max1≤i≤Nε(1 − εR̄)−i =

O(1) for all ε ∈ (0, ε0]. Now
∑k

i=1{
∑l

j=k λj−i} = {∑k
i=1 λ

k−i}(1−λl−k+1)/(1−λ) =

O(1 − λl−k+1) = O(l − k). Thus, from (5.13) and λ ∈ (0, 1), there are constants
c1, c2 ∈ (0,∞) such that

ψ2(l, k; ε) ≤ c1

 k∑
i=1

l∑
j=k

λj−i +

l∑
i=k+1

l∑
j=i

λj−i

 ≤ c2(l − k)(5.18)

for all ε ∈ (0, ε0], and 1 ≤ k < l ≤ 1+Nε. Similarly, from the fact that max1≤i≤Nε(1−
εR̄)−2i = O(1) for all ε ∈ (0, ε0], and (5.14), we get ϕ2

1(i; ε) ≤ c3i for all ε ∈ (0, ε0],

i = 1, . . . , Nε. Then, from (5.13), and h(i, l, k; ε) ≤∑l
j=i λ

j−i (when i ≥ k),

ψ2
1(l, k; ε) ≤ c4

l∑
i=k

 l∑
j=i

λj−i

ϕ2
1(i; ε) ≤ c5

l∑
i=k

i ≤ c6(l2 − k2)(5.19)

for all ε ∈ (0, ε0], and 1 ≤ k < l ≤ 1 + Nε, where c3, c4, c5, c6 ∈ (0,∞) are constants.
Using Theorem 5.2, (5.17), (5.18), and (5.19), we find a constant c7 ∈ (0,∞) such
that

E[|Iε
l − Iε

k|4] ≤ c7ε
6[(l2 − k2)2 + (l − k)4] ≤ 2c7ε

6[l2 − k2]2(5.20)

for all ε ∈ (0, 1], and 1 ≤ k < l ≤ 1 + Nε. Since Iε
1 = 0 (see (5.2), (5.8)), from (5.20)

and Theorem 8.1(ii) (with γ
�
= 2, ν

�
= 4, h(i, j)

�
= j2 − i2, 1 ≤ i ≤ j ≤ 1 + Nε), there

are constants c8, c9 ∈ (0,∞) such that

E

[
max

1≤k≤Nε+1
|Iε

k|4
]

= E

[
max

1≤k≤Nε+1
|Iε

k − Iε
1 |4

]
≤ c8ε

6[h(1, 1 + Nε)]2 ≤ c9ε
2(5.21)

for all ε ∈ (0, ε0]. From (5.21) (with ε
�
= 1/n) and the Borel–Cantelli theorem,

lim
n→∞ max

1≤k≤n+1

∣∣∣I1/n
k

∣∣∣ = 0 a.s.,

and thus

lim
ε↘0

max
1≤k≤Nε+1

∣∣∣I1/Nε
k

∣∣∣ = 0 a.s.(5.22)

To get the first limit of (5.11) from (5.22) we must fill the gaps between successive
1/Nε. For this we observe

max
1≤k≤Nε+1

|Iε
k| ≤ max

1≤k≤Nε+1

∣∣∣I1/Nε
k

∣∣∣ + B1
ε + B2

ε ,(5.23)
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which results from the triangle inequality, (5.12), N
3
2
ε ε

3
2 ≤ 1, and the definition of B1

ε

and B2
ε in (5.24) and (5.25). Now we need the following lemma.
Lemma 5.4 (proved in section 7). Suppose (C1)–(C3) of section 2. Let Γε

j be

defined by (5.12) and Nε
�
=

⌊
ε−1

⌋
. Then (a) we have

B1
ε
�
= ε

3
2 max

1≤k≤Nε+1

∣∣∣∣∣∣
k−1∑
j=0

R̃j+1((I − εR̄)j − (I −N−1
ε R̄)j)Γ

N−1
ε

j

∣∣∣∣∣∣� ε
1
2 ,(5.24)

B2
ε
�
= ε

3
2 max

1≤k≤Nε+1

∣∣∣∣∣∣
k−1∑
j=0

R̃j+1(I − εR̄)j(Γε
j − Γ

N−1
ε

j )

∣∣∣∣∣∣� ε
3
14 ,(5.25)

and (b) we have bounds identical to (5.24) and (5.25), but with R̂j+1 in place of R̃j+1.
The first limit of (5.11) follows from (5.22), (5.23), and Lemma 5.4 (a). In the

same way, using condition (C3b) and Lemma 5.4(b), we can establish the second limit
in (5.11) (the proof is similar to, but easier than that of the first limit in (5.11) since
the matrices R̂j+1 in the definition of Jε

k are nonrandom, whereas the R̃j+1 in the
definition of Iε

k are random—see (5.8)).

6. Proof of Theorem 4.4.
Notation 6.1. In this section we shall require the following additional notation:

Z �
= {. . . ,−2,−1, 0, 1, 2, . . .}, Z+

�
= {1, 2, . . .}. Also, #A indicates the cardinality of

a finite set A. For positive integer m, let Πm
2 (P1, P2) denote the Prohorov distance

between probability measures P1 and P2 on the metric space �m with metric given
by the norm | · | (see Notation 2.1), and let Nm(b,Q) denote the normal distribution
in �m with m-dimensional mean vector b and covariance Q.

Remark 6.2. Theorem 4.4 is a functional CLT with rate of convergence for the
process {W ε(τ), τ ∈ [0, T ]}, which is derived from summing the geometrically L-
mixing random vectors {ξε

n} (see Remark 4.5), and may be regarded as a general-
ization to a function-space setting of [11, Lemma A.2.1]. This latter result gives
rates of convergence in a classical (i.e., nonfunctional) CLT for a sum of geometrically
L-mixing random vectors in terms of bounds on characteristic functions over finite-
dimensional Euclidean space. The function-space result is considerably more difficult
to establish because the Prohorov distance for probability measures on C[0, T ] does
not relate nicely to characteristic functions. Theorem 4.4 also extends the result of
Yurinskii [27, section 2], which is a functional CLT with rate of convergence for sums
of independent random vectors, and bears clear similarities to [14, Lemma A6.1],
which is a functional CLT with rate of convergence for a sum of strong mixing ran-
dom vectors subject to quite stringent boundedness conditions that do not generally
apply to algorithms. We emphasize that Theorem 4.4 involves a combination of a
function-space rate of convergence (as contrasted with the classical rate in [11]) for
a sum of dependent random vectors (compared with the independent case in [27]),
and subject to only weak boundedness (as contrasted with uniform boundedness in
[14]). The combination of all these elements presents technical challenges not found
in [11], [14], or [27], and is the main reason for the somewhat lengthy proofs of this
section.

Without loss of generality we shall prove Theorem 4.4 with T = 1. For all
k=1, 2, . . . and ε ∈ (0, 1] define the kd-dimensional vectors Ξε

k and Ξ̂0
k by
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Ξε
k

�
=


W ε( 1

k )
W ε( 2

k )
...

W ε(1)

 and Ξ̂0
k

�
=


Ŵ 0( 1

k )

Ŵ 0( 2
k )

...

Ŵ 0(1)

 .(6.1)

In order to establish Theorem 4.4 we need the following CLT giving weak convergence
of Ξε

k to Ξ̂0
k as ε → 0 and k → ∞, where k increases slowly enough that it is much

less than ε−1 (the slowly increasing k is needed when we establish weak convergence
in a function space setting).
Theorem 6.3. Let Ξε

k and Ξ̂0
k be as defined in (6.1). Under conditions (C1)–(C4)

of section 2, there are constants c ∈ (0,∞) and ε0 ∈ (0, 1) such that, for all ε ∈ (0, ε0]

and k=1, 2, . . . , �ε− 1
36 �, we have

Πkd
2 (L(Ξε

k),L(Ξ̂0
k)) ≤ cε

1
48 .(6.2)

Proof of Theorem 6.3. Fix arbitrary ε ∈ (0, 1] and k=1, 2, . . .. Recalling that we
take T = 1 in the proof, we can use (4.7) to write the lth element W ε(l/k) of Ξε

k in
the form

W ε(l/k) = ε
1
2

 l∑
j=1

 ∑
ν∈Jε,k

j

ξε
ν

 + V ε,k
l

 ∀ l = 1, 2, . . . , k,(6.3)

where V ε,k
l is a small “interpolation term” given by

V ε,k
l

�
=

(
l

εk
−

⌊
l

εk

⌋)
ξε
�l/(εk)�+1 ∀ l = 1, 2, . . . , k,(6.4)

and Jε,k
j is the block of consecutive integers given by

Jε,k
j

�
=

{
1 +

⌊
j − 1

εk

⌋
, . . . ,

⌊
j

εk

⌋}
∀ j = 1, 2, . . . , k.(6.5)

We will call the Jε,k
j the “basic blocks.” We see from (6.3) that the lth row of Ξε

k

involves summation over the basic blocks Jε,k
1 , . . . Jε,k

l .
Remark 6.4. The proof is based on the Markov–Bernstein technique of long

blocks alternated with short blocks. The basic idea is as follows. If
∑m

ν=1 ρν is a sum
of weakly-dependent random vectors {ρν} (e.g., the elements of a geometric L-mixing
sequence), then we can study its asymptotic properties by partitioning the interval
of summation 1, 2, . . . ,m into long blocks Gm

i of integers, all of equal length pm,
separated by short blocks Hm

i of integers, likewise of equal length qm, giving a pattern
of adjacent blocks Gm

1 , Hm
1 , Gm

2 , Hm
2 , . . . , Gm

r , Hm
r , Hm

r+1. Here the integer r ≡ rm is
equal to themaximum number of long block/short block pairs (of total length pm+qm)
which one can fit completely into the interval of summation 1, 2, . . . ,m, and Hm

r+1 is
a “remainder block” whose cardinality is less than that of a long block/short block
pair, namely pm +qm. On the one hand, if the short blocks Hm

i are long enough, then
terms of the form

∑
ν∈Gm

i
ρν and

∑
ν∈Gm

j
ρν for i != j involve widely separated (hence

approximately independent) summands, and are thus themselves almost independent.
On the other hand, if the long blocks are much longer than the short blocks then
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the contribution to the total sum of the ρν for ν belonging to the short blocks Hm
i

is negligible, and thus
∑m

ν=1 ρν ≈
∑rm

i=1{
∑

ν∈Gm
i
ρν}. We thus have a sum (over

i = 1, 2, . . . , rm) of almost independent terms on the right-hand side, and we can
use this independence to study the limiting properties of the original sum of random
vectors.

In our problem matters are slightly more complicated because we do not have
a fixed interval of summation. Instead, different entries W ε(l/k) of the vector Ξε

k

involve different intervals of summation, as may be seen from (6.3). We therefore
partition not the overall intervals of summation for W ε(l/k), but rather the basic

blocks Jε,k
j in (6.3), into adjacent long and short blocks Gε,k

i,j and Hε,k
i,j of consecutive

integers ordered according to the pattern

Gε,k
1,j , Hε,k

1,j , Gε,k
2,j , Hε,k

2,j , Gε,k
3,j , H

ε,k
3,j , . . . , G

ε,k
r,j , Hε,k

r,j , Hε,k
r+1,j .(6.6)

The blocks Gε,k
i,j , i = 1, 2, . . . , r have common cardinality pε,k and the alternate

blocks Hε,k
i,j , i = 1, 2, . . . , r have common cardinality qε,k given by

pε,k
�
= �k−1ε−

1
3 �, qε,k

�
= �k−1ε−

1
9 �,(6.7)

while r is chosen to completely fit the largest number of consecutive pairs of blocks
Gε,k

i,j , H
ε,k
i,j (of total length pε,k + qε,k) into Jε,k

j , namely

r ≡ rε,k
�
= �(#Jε,k

j )/(pε,k + qε,k)�.(6.8)

The Gε,k
i,j are long blocks and the Hε,k

i,j are short blocks for all i = 1, 2, . . . , r, while

the last block Hε,k
r+1,j is a “remainder block” whose cardinality is less than pε,k + qε,k.

Thus,

#
(
Gε,k

i,j

)
= p, #

(
Hε,k

i,j

)
= q, and 0 ≤ #

(
Hε,k

r+1,j

)
< p + q,(6.9)

where, for brevity, p and q are now used for pε,k and qε,k, respectively. Denoting the

first integer of the block Gε,k
i,j by bε,k

i,j , from (6.6) we see that

bε,k
i,j

�
= 1 +

⌊
j − 1

kε

⌋
+ (i− 1)(p + q) ∀ i = 1, . . . , r + 1,(6.10)

and, for each j = 1, 2, . . . , k, we clearly have Gε,k
i,j = [bε,k

i,j , bε,k
i,j + p) and Hε,k

i,j =

[bε,k
i,j + p , bε,k

i,j + p + q), for all i = 1, . . . , r, while Hε,k
r+1,j = [bε,k

r,j + p + q , j/(kε)].
Remark 6.5. To summarize, the lth entry W ε(l/k) of Ξε

k is partitioned into a

sum of ξε
ν over the basic blocks Jε,k

j indexed by j = 1, 2, . . . , l (see (6.3)), and each

basic block Jε,k
j is itself partitioned into a sequence of long block/short block pairs

Gε,k
i,j , H

ε,k
i,j , indexed by i = 1, 2, . . . , rε,k, and a remainder block Hε,k

r+1,j (see (6.6)).
For each j=1, . . . , k and i=1, . . . , r, define the d-vectors

Y ε,k
i,j

�
=

∑
ν∈Gε,k

i,j

ξε
ν , Zε,k

i,j

�
=

∑
ν∈Hε,k

i,j

ξε
ν , Zε,k

r+1,j

�
=

∑
ν∈Hε,k

r+1,j

ξε
ν ,(6.11)

and observe from (6.3) that

W ε(l/k) = ε
1
2

l∑
j=1

{
r∑

i=1

(Y ε,k
i,j + Zε,k

i,j ) + Zε,k
r+1,j

}
+ ε

1
2V ε,k

l(6.12)
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for all l = 1, 2, . . . , k. Next, define the kd-vector Ỹ ε,k
i,j by concatenating the d-

dimensional zero vector (j − 1) times, and then by joining to this the (k− j + 1)-fold

concatenation of the d-vector Y ε,k
i,j , namely, for each j = 1, 2, . . . , k and i = 1, 2, . . . , r,

Ỹ ε,k
i,j

�
= (0, 0, . . . , 0︸ ︷︷ ︸

d(j−1) 0’s

, (Y ε,k
i,j )′, . . . , (Y ε,k

i,j )′︸ ︷︷ ︸
(k−j+1) Y ε,k

i,j ’s

)′.(6.13)

Likewise, for each j = 1, 2, . . . , k and i = 1, 2, . . . , r + 1, put

Z̃ε,k
i,j

�
= (0, 0, . . . , 0︸ ︷︷ ︸

d(j−1) 0’s

, (Zε,k
i,j )′, . . . , (Zε,k

i,j )′︸ ︷︷ ︸
(k−j+1) Zε,k

i,j ’s

)′,(6.14)

and let Ṽ ε,k be the kd-vector formed by concatenating the d-vectors V ε,k
l , l =

1, 2, . . . , k:

Ṽ ε,k �
= ((V ε,k

1 )′, (V ε,k
2 )′, . . . , (V ε,k

k )′)′.(6.15)

From (6.1), (6.12), and (6.13) to (6.15), we find

Ξε
k = ε

1
2

k∑
j=1

{
r∑

i=1

Ỹ ε,k
i,j +

r+1∑
i=1

Z̃ε,k
i,j

}
+ ε

1
2 Ṽ ε,k.(6.16)

Remark 6.6. In the context of summing independent random vectors, Yurinskii
[27] introduced the trick of adding a concatenation of zero-vectors to get sums of
vectors of common length kd. This motivates the definitions of (6.13) and (6.14).
Observe, from (6.11), (6.13), and (6.14), that for all i = 1, 2, . . . , r and j = 1, 2, . . . , k,

the kd-vectors Ỹ ε,k
i,j and Z̃ε,k

i,j are derived by effectively summing ξε
ν over the long

blocks Gε,k
i,j and short blocks Hε,k

i,j , respectively, while Z̃ε,k
r+1,j is obtained by summing

ξε
ν over the (infrequent) remainder blocks Hε,k

r+1,j . In the light of (6.16), this suggests

Ξε
k ≈ ε

1
2

k∑
j=1

r∑
i=1

Ỹ ε,k
i,j ,

and, since Gε,k
i,j is separated from Gε,k

i1,j1
by blocks of length q or more when (i, j) !=

(i1, j1), it seems plausible that the Ỹ ε,k
i,j for different (i, j) are approximately indepen-

dent. For this intuition to help in establishing Theorem 6.3 we must use the fact that
{ξε

ν} is geometrically L-mixing (see Remark 4.5). To this end, with q given by (6.7),
and recalling (4.8), for each j=1, . . . , k and i=1, . . . , r, define the d-vectors

Y ε,k
i,j [q]

�
=

∑
ν∈Gε,k

i,j

ξε
ν [q], Zε,k

i,j [q]
�
=

∑
ν∈Hε,k

i,j

ξε
ν [q], Zε,k

r+1,j [q]
�
=

∑
ν∈Hε,k

r+1,j

ξε
ν [q].(6.17)

Motivated by (6.13) to (6.15), for each j = 1, 2, . . . , k, put

Ỹ ε,k
i,j [q]

�
= (0, 0, . . . , 0︸ ︷︷ ︸

d(j−1) 0’s

, (Y ε,k
i,j [q])′, . . . , (Y ε,k

i,j [q])′︸ ︷︷ ︸
(k−j+1)Y ε,k

i,j [q]’s

)′ ∀ i = 1, . . . , r,(6.18)
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Z̃ε,k
i,j [q]

�
= (0, 0, . . . , 0︸ ︷︷ ︸

d(j−1) 0’s

, (Zε,k
i,j [q])′, . . . , (Zε,k

i,j [q])′︸ ︷︷ ︸
(k−j+1)Zε,k

i,j [q]’s

)′ ∀ i = 1, . . . , r + 1,(6.19)

Ṽ ε,k[q]
�
= ((V ε,k

1 [q])′, (V ε,k
2 [q])′, . . . , (V ε,k

k [q])′)′,(6.20)

where (motivated by (6.4)) V ε,k
l [q]

�
= (l/(kε)−�l/(εk)�)ξε

�l/(εk)�+1[q] for all l = 1, 2, . . . , k.
Also put

Ξε
k[q]

�
= ε

1
2

k∑
j=1

{
r∑

i=1

Ỹ ε,k
i,j [q] +

r+1∑
i=1

Z̃ε,k
i,j [q]

}
+ ε

1
2 Ṽ ε,k[q].(6.21)

Using the triangle inequality for the Prohorov metric, we can write

Πkd
2 (L(Ξε

k),L(Ξ̂0
k)) ≤ Πkd

2 (L(Ξε
k),L(Ξε

k[q]))(6.22)

+ Πkd
2

(
L(Ξε

k[q]), L
(
ε

1
2

k∑
j=1

r∑
i=1

Ỹ ε,k
i,j [q]

))

+ Πkd
2

(
L
(
ε

1
2

k∑
j=1

r∑
i=1

Ỹ ε,k
i,j [q]

)
, Nkd

(
0, ε

k∑
j=1

r∑
i=1

cov(Ỹ ε,k
i,j [q])

))

+ Πkd
2

(
Nkd

(
0, ε

k∑
j=1

r∑
i=1

cov(Ỹ ε,k
i,j [q])

)
, L(Ξ̂0

k)

)
.

To get Theorem 6.3 we must establish upper bounds for each term on the right-hand
side of (6.22). We will write c, c1, etc. for nonnegative finite constants that may vary
from one use to the next.

First term on RHS of (6.22). Define the d-vectors W ε
q (l/k)

�
= ε

1
2

∑�l/(kε)�
ν=1 ξε

ν [q]+

V ε,k
l [q] for all l = 1, 2, . . . , k, (compare (4.7)). Using Cauchy–Schwarz for discrete

sums and (4.9), we get constant c such that

E[|W ε(l/k)−W ε
q (l/k)|2] ≤ εE

[(
1 +

l

εk

) 1+�l/(εk)�∑
ν=1

|ξε
ν − ξε

ν [q]|2
]
≤ cε−1λq(6.23)

for each ε ∈ (0, 1], k = 1, 2, . . ., and 1 ≤ l ≤ k. From (6.21) it follows that Ξε
k[q]

is given by the concatenation of the d-vectors W ε
q (l/k), l = 1, 2, . . . , k (in just the

same way that Ξε
k is given in (6.1) by the concatenation of the d-vectors W ε(l/k),

l = 1, . . . , k), and so, from (6.23):

‖Ξε
k − Ξε

k[q]‖2 =

(
k∑

l=1

E[|W ε(l/k)−W ε
q (l/k)|2]

) 1
2

≤ c
1
2 k

1
2 ε−

1
2λ

q
2 .(6.24)

By (6.24) and Lemma 8.6(ii), for all ε ∈ (0, 1] and k=1, 2, . . ., we get

Πkd
2 (L(Ξε

k),L(Ξε
k[q])) ≤ (c

1
2 k

1
2 ε−

1
2λ

q
2 )

2
3 = c

1
3 k

1
3 ε−

1
3λ

q
3 .(6.25)

Second term on RHS of (6.22). From (6.21), (6.19), and (6.20), one easily

verifies that the kd-dimensional vector (Ξε
k[q]− ε

1
2

∑k
j=1

∑r
i=1 Ỹ

ε,k
i,j [q]) is the concate-

nation of the sequence of d-dimensional vectors ε
1
2 (
∑m

j=1

∑r+1
i=1 Zε,k

i,j [q] + V ε,k
m [q]) for
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all m = 1, 2, . . . , k, and thus

∥∥∥∥Ξε
k[q]− ε

1
2

k∑
j=1

r∑
i=1

Ỹ ε,k
i,j [q]

∥∥∥∥
2

= ε
1
2

(
k∑

m=1

∥∥∥∥r+1∑
i=1

m∑
j=1

Zε,k
i,j [q] + V ε,k

m [q]

∥∥∥∥2

2

) 1
2

(6.26)

≤ ε
1
2

k∑
m=1

(∥∥∥∥ r∑
i=1

m∑
j=1

Zε,k
i,j [q]

∥∥∥∥
2

+

∥∥∥∥ m∑
j=1

Zε,k
r+1,j [q]

∥∥∥∥
2

+

∥∥∥∥V ε,k
m [q]

∥∥∥∥
2

)
,

where we have used the inequality (
∑k

m=1 a
2
i )

1
2 ≤ ∑k

m=1 |ai| and then Minkowski’s
inequality to get the inequality in (6.26). To bound the terms in brackets on the right
of (6.26) we shall assume that d = 1; the general multivariate case only involves more
cumbersome notation. Since {ξε

ν [q]} is a q-dependent zero-mean process (see Remark

4.5) and distinct blocks Hε,k
i,j are separated by long blocks of cardinality greater than

q (recall (6.6) and (6.9)), we see from (6.17) that Zε,k
i,j [q] and Zε,k

i1,j1
[q] are independent

zero-mean random variables when (i, j) != (i1, j1), and thus∥∥∥∥ r∑
i=1

m∑
j=1

Zε,k
i,j [q]

∥∥∥∥
2

=

(
r∑

i=1

m∑
j=1

E|Zε,k
i,j [q]|2

)1/2

.(6.27)

Now {ξε
ν} is a geometrically L-mixing zero-mean process; hence Remark 4.6, (6.9), and

(6.11) give a constant c such that ‖Zε,k
i,j ‖2 ≤ cq

1
2 for all ε ∈ (0, 1], for all k = 1, 2, . . .,

for all i = 1, . . . , r, and for all j = 1, . . . , k. Also, from (4.9), (6.11), (6.17), and

Minkowski’s inequality, we find ‖Zε,k
i,j − Zε,k

i,j [q]‖2 ≤ c1qλ
q, and thus

‖Zε,k
i,j [q]‖2 ≤ ‖Zε,k

i,j ‖2 + ‖Zε,k
i,j [q]− Zε,k

i,j ‖2 ≤ cq
1
2 + c1qλ

q ≤ c2q
1
2(6.28)

for some constants c1, c2. Hence, by (6.27), we get ‖∑r
i=1

∑m
j=1 Z

ε,k
i,j [q]‖2 ≤ c2(rmq)

1
2

for all ε ∈ (0, 1], for all k = 1, 2, . . ., and for all m = 1, . . . , k. Similarly, we have

‖∑m
j=1 Z

ε,k
r+1,j [q]‖2 ≤ c2(m(p + q))

1
2 . Now, from (6.8), (6.7), and #Jε,k

j =
⌊
k−1ε−1

⌋
(see (6.5)), we can find some ε2 ∈ (0, 1] such that

r ≡ rε,k ≤ 2ε−
2
3 ∀ k = 1, 2, . . . ,

⌊
ε−

1
36

⌋
, ∀ ε ∈ (0, ε2](6.29)

(e.g., ε2
�
= 1/16). But clearly ‖V ε,k

m [q]‖2 = O(1) (uniformly with respect to ε, k,m);
thus from (6.26), (6.7),∥∥∥∥Ξε

k[q]− ε
1
2

k∑
j=1

r∑
i=1

Ỹ ε,k
i,j [q]

∥∥∥∥
2

≤ c3ε
1
2

k∑
m=1

{(rmq)
1
2 + (m(p + q))

1
2 + O(1)}(6.30)

≤ c4ε
1
2 k{(ε− 2

3 kk−1ε−
1
9 )

1
2 + (kk−1ε−

1
3 )

1
2 + O(1)} ≤ c5kε

1
9

for some constants c3, c4, c5; hence, by Lemma 8.6(ii), for each ε ∈ (0, ε2] we have

Πkd
2

(
L(Ξε

k[q]),L
(
ε

1
2

k∑
j=1

r∑
i=1

Ỹ ε,k
i,j [q]

))
≤ (c5kε

1
9 )

2
3 = c

2
3
5 k

2
3 ε

2
27(6.31)

for all k = 1, 2, . . . , �ε− 1
36 �.
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Third term on RHS of (6.22). Here we shall need the following special case
of a finite-dimensional CLT for sums of independent random vectors due to Yurinskii
[27, Theorem 1]. Note that the upper-bound we state here is somewhat less precise
than the bound given in [27, Theorem 1] but is easier to use.
Theorem 6.7. There is a constant γ ∈ (0,∞) with the following property. For

all positive integers m and finite sequences {u1, u2, . . . , un} of zero-mean independent
�m-valued random vectors we have

Πm
2

(
L
(

n∑
α=1

uα

)
,Nm

(
0,

n∑
α=1

cov(uα)

))
≤ γm

1
3 (µn)

2
9 when µn

�
=

n∑
α=1

E|uα|3 < 1.

The Ỹ ε,k
i,j [q] given by (6.18) are zero-mean and independent as i and j vary (since

{ξε
ν [q]} is a q-dependent process, and the long blocks Gε,k

i,j are separated by either

short blocks Hε,k
i,j or short block/remainder block pairs Hε,k

r,j , H
ε,k
r+1,j , all of which

have length at least q). In Theorem 6.7 we will identify m with kd, n with kr, the

summation index α with (i, j) (for j = 1, . . . , k and i = 1, . . . , r), uα with ε
1
2 Ỹ ε,k

i,j [q],

and µn with µkr
�
=

∑k
j=1

∑r
i=1 ε

3
2E|Ỹ ε,k

i,j [q]|3. From (6.18) we have |Ỹ ε,k
i,j [q]|2 = (k −

j+1)|Y ε,k
i,j [q]|2 ≤ k|Y ε,k

i,j [q]|2, and, exactly as for (6.28), we can use Remark 4.6 to find

constant c1 such that ‖Y ε,k
i,j [q]‖3 ≤ c1p

1
2 for all ε ∈ (0, 1], for all k = 1, 2, . . ., for all i =

1, . . . , r, and for all j = 1, . . . , k. Thus, from (6.7), we have E|Ỹ ε,k
i,j [q]|3 ≤ c31k

3
2 p

3
2 =

c31ε
− 1

2 ; hence (6.29) gives µkr =
∑k

j=1

∑r
i=1 ε

3
2E|Ỹ ε,k

i,j [q]|3 ≤ 2c31kε
1
3 . Define

T̃ ε,k �
= ε

k∑
j=1

r∑
i=1

cov(Ỹ ε,k
i,j [q]) ≡

∑
α

cov(uα),(6.32)

and fix some ε3 ∈ (0, ε2] such that 2c31kε
1
3 < 1 for all ε ∈ (0, ε3], k = 1, 2, . . . , �ε− 1

36 �.
Then Theorem 6.7 gives a constant c2 such that, for all ε ∈ (0, ε3], k = 1, 2, . . . , �ε− 1

36 �,
we have

Πkd
2

(
L
(
ε

1
2

k∑
j=1

r∑
i=1

Ỹ ε,k
i,j [q]

)
,Nkd(0, T̃ ε,k)

)
≤ c1(kd)

1
3 (kε

1
3 )

2
9 = c2k

5
9 ε

2
27 .(6.33)

Fourth term on RHS of (6.22). To simplify the notation, we use the following
convention. If B is a kd × kd matrix, then Bm,n denotes the (m,n)th of the d × d
submatrices into which B can be partitioned for all m,n = 1, 2, . . . , k. If v is a kd-
vector, then vm denotes the d-vector consisting of the (d(m−1) + 1)th to (dm)th
elements of v. Fix arbitrary ε ∈ (0, 1] and k = 1, 2, . . .. Define the kd × kd matrices
T̂ ε,k and T k such that their (m,n)th d-dimensional submatrices are respectively given
by

T̂ ε,k
m,n

�
= ε

m∧n∑
j=1

r∑
i=1

∑
ν∈Gε,k

i,j

A(θ0((ν − 1)ε)) and T k
m,n

�
= (covΞ̂0

k)m,n(6.34)

for all m,n = 1, 2, . . . , k, where A(·) is given by condition (C4). Then, from (6.1) and
(3.8), we see that L(Ξ̂0

k) =Nkd(0, T k), so that the fourth term on the right side of
(6.22) is bounded as follows:

Πkd
2 (Nkd(0, T̃ ε,k),L(Ξ̂0

k)) ≤ Πkd
2 (Nkd(0, T̃ ε,k),Nkd(0, T̂ ε,k))(6.35)

+ Πkd
2 (Nkd(0, T̂ ε,k),Nkd(0, T k)).
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We will now use Theorem 8.7 to bound each of the terms on the right side of (6.35).
In order to deal with the first term we find an expression for |T̃ ε,k

m,n − T̂ ε,k
m,n|. From

(6.18),

[cov(Ỹ ε,k
i,j [q])]m,n =

{
cov(Y ε,k

i,j [q]), when j ≤ (m ∧ n),

0, when (m ∧ n) < j,

and thus, using (6.32),

T̃ ε,k
m,n = ε

m∧n∑
j=1

r∑
i=1

cov(Y ε,k
i,j [q]).(6.36)

On combining (6.36), (6.34), and (6.17), we get, for all m,n = 1, 2, . . . , k,

|T̃ ε,k
m,n − T̂ ε,k

m,n| = ε

∣∣∣∣∣
m∧n∑
j=1

r∑
i=1

[
cov

( ∑
ν∈Gε,k

i,j

ξε
ν [q]

)
−

∑
ν∈Gε,k

i,j

A(θ0((ν − 1)ε))

]∣∣∣∣∣.(6.37)

To upper-bound the term in square braces on the right-hand side of (6.37), partition

the long block Gε,k
i,j into adjacent blocks of integers Qε,k

α,i,j ordered according to the
pattern

Qε,k
1,i,j , Q

ε,k
2,i,j , . . . , Q

ε,k
l,i,j , Q

ε,k
l+1,i,j ,(6.38)

where l
�
=

⌊
p/q2

⌋
. The blocks Qε,k

α,i,j , α = 1, . . . , l have common cardinality q2, and

Qε,k
l+1,i,j is a “remainder block” whose cardinality is less than q2. Recalling (6.7), fix

some ε41 ∈ (0, ε3] such that

l ≡ lε,k
�
=

⌊
p/q2

⌋ ≤ 2kε−
1
9 ∀ k = 1, 2, . . . , �ε− 1

36 �, ∀ ε ∈ (0, ε41].(6.39)

If sε,k
α,i,j denotes the first integer of the block Qε,k

α,i,j then clearly

sε,k
α,i,j

�
= bε,k

i,j + (α−1)q2 ∀ α = 1, . . . , l + 1(6.40)

(recall that bε,k
i,j is the first integer in Gε,k

i,j ), so that Qε,k
α,i,j

�
= [sε,k

α,i,j , s
ε,k
α,i,j + q2) for all

α = 1, . . . , l, while Qε,k
l+1,i,j

�
= [sε,k

l+1,i,j , b
ε,k
i,j + p). Henceforth, to lighten the notation,

we write Qα for Qε,k
α,i,j and sα for sε,k

α,i,j when convenient. Also, recalling (2.7) and
(2.3), put

H̃n(θ)[s]
�
=E[H̃n(θ)|Fn

n−s] = b̃n[s]− R̃n[s]θ ∀ s, n = 1, 2, . . . , θ ∈ �d,(6.41)

and observe from (4.8) that ξε
ν [q] = H̃ν(θ0((ν − 1)ε))[q] for all ν ∈ Gε,k

i,j . One then
sees from (6.37) that, for each m,n = 1, . . . , k,

|T̃ ε,k
m,n − T̂ ε,k

m,n| ≤ ε

m∧n∑
j=1

r∑
i=1

{Iε,k
i,j + IIε,k

i,j + IIIε,k
i,j + IVε,k

i,j },(6.42)
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where

Iε,k
i,j

�
=

∣∣∣∣∣cov

( ∑
ν∈Gε,k

i,j

ξε
ν [q]

)
−

l+1∑
α=1

cov

( ∑
ν∈Qα

ξε
ν [q]

)∣∣∣∣∣,(6.43)

IIε,k
i,j

�
=

∣∣∣∣∣
l+1∑
α=1

{
cov

( ∑
ν∈Qα

ξε
ν [q]

)
− cov

( ∑
ν∈Qα

H̃ν(θ0(εsα))[q]

)}∣∣∣∣∣,(6.44)

IIIε,k
i,j

�
=

∣∣∣∣∣
l+1∑
α=1

{
cov

( ∑
ν∈Qα

H̃ν(θ0(εsα))[q]

)
−

(
#Qα

)
A(θ0(εsα))

}∣∣∣∣∣,(6.45)

IVε,k
i,j

�
=

∣∣∣∣∣
l+1∑
α=1

(#Qα)A(θ0(εsα))−
∑

ν∈Gε,k
i,j

A(θ0((ν − 1)ε))

∣∣∣∣∣.(6.46)

Remark 6.8. Our calculation of an upper-bound for |T̃ ε,k
m,n− T̂ ε,k

m,n| is closely based
on the proof of Lemma 3.1 of Khas’minskii [13], which motivates introduction of the
blocks Qα and the upper-bound (6.42) in terms of the quantities (6.43) to (6.46). The
idea is that over the blocks Qα we “freeze” the time-varying quantity θ0(ε(ν − 1)),

ν ∈ Gε,k
i,j , at the value θ0(εsα) corresponding to the first member sα of Qα. The block

Qα is long enough for the averaging postulated in condition (C4) to come into play
(where we identify {n0, . . . , N +n0} and θ in (2.6) with Qα and θ0(εsα), respectively)
and provide an upper bound for (6.45). At the same time, Qα is short enough to
ensure that θ0((ν − 1)ε) ≈ θ0(εsα), and this will give us upper-bounds for (6.44) and
(6.46). Finally, we shall use L-mixing of {ξε

ν} to bound (6.43). We now proceed to
make this intuition precise. For the term in (6.43), put

Bε,k
i,j

�
= (Gε,k

i,j ×Gε,k
i,j )−

l+1⋃
α=1

(Qα ×Qα)(6.47)

(recall that Qα is short for Qε,k
α,i,j) and let B+

�
= {(ν, µ) ∈ Bε,k

i,j : µ > ν}, Dα
�
= {(ν, µ) ∈

Z2 : −∞ < ν < sα ≤ µ <∞} for all α = 2, . . . , l + 1. It follows from (6.47) that

B+ ⊂
l+1⋃
α=2

Dα.(6.48)

By (6.39), (6.48), and Remark 8.4, we have constants λ ∈ (0, 1) and c, c1 with

Iε,k
i,j =

∣∣∣∣∣ ∑
(ν,µ)∈Bε,k

i,j

E
[
(ξε

ν [q])(ξε
µ[q])′

]∣∣∣∣∣ ≤ c
∑

(ν,µ)∈B+

λµ−ν(6.49)

≤ c

l+1∑
α=2

{ ∑
(ν,µ)∈Dα

λµ−ν

}
≤ c

l+1∑
α=2

{ ∞∑
n=1

nλn

}
≤ c1l = c1lε,k ≤ c1kε

− 1
9

for all ε ∈ (0, ε41], k=1, . . . , �ε− 1
36 �, i = 1, . . . , r, j = 1, . . . , k. Next, we upper-bound

the term in (6.44): put η1
ν
�
= ξε

ν [q] ≡ H̃ν(θ0((ν − 1)ε))[q] and η2
ν
�
= H̃ν(θ0(εsα))[q] for
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all ν ∈ Qα. Then

cov

( ∑
ν∈Qα

η1
ν

)
− cov

( ∑
ν∈Qα

η2
ν

)
(6.50)

=
∑

ν,µ∈Qα

E
[
(η1

ν − η2
ν)(η1

µ)′ + (η2
ν)(η1

µ − η2
µ)′

]
.

Since {θ0(τ), τ ∈ [0, 1]} is Lipschitz continuous and {R̃n[s]}, {η1
n} are clearly L2-

bounded (uniformly in s, n = 1, 2, . . .), we find constant c such that∣∣E [
(η1

ν − η2
ν)(η1

µ)′
]∣∣ ≤ ‖R̃ν [q]‖2 ‖η1

µ‖2|θ0(εsα)− θ0(ε(ν − 1))| ≤ cε(#Qα)(6.51)

for all µ, ν ∈ Qα, with an identical bound for |E[(η2
ν)(η1

µ−η2
µ)′]|. From (6.39), (6.50),

and (6.51), we find

IIε,k
i,j ≤ cεl(#Qα)3 ≤ cε(2kε−

1
9 )(k−2ε−

2
9 )3 ≤ c1ε

2
9(6.52)

for all ε ∈ (0, ε41], k = 1, 2, . . . , �ε− 1
36 �, i = 1, . . . , r, j = 1, . . . , k. For the term given

by (6.45), we need the following lemma.
Lemma 6.9 (proved in section 7). Suppose conditions (C1)–(C4) of section 2,

and let {H̃n(θ)[s]} be defined by (6.41). Then there are constants C ∈ [0,∞) and
λ ∈ (0, 1) such that∣∣∣∣∣cov

(
N+n0∑
n=n0

H̃n(θ)[s]

)
−A(θ)(N + 1)

∣∣∣∣∣ ≤ C[1 + |θ|2][1 + (N + 1)2λs]

for all θ ∈ �d, s,N, n0 = 1, 2, 3, . . ..
By Lemma 6.9 (identifying θ, s, and the interval {n0, . . . , n0 + N} in Lemma 6.9

with θ0(εsα), q, and Qα, respectively), uniform boundedness of θ0(((n− 1)ε) ∧ T ) (in
(ε, n)), and recalling # (Qα) = q2, we find constants c, c1, such that

IIIε,k
i,j ≤ c

l+1∑
α=1

[1 + q4λq] ≤ c1l ≤ c1kε
− 1

9(6.53)

for all ε ∈ (0, ε41] and k = 1, 2, . . . , �ε− 1
36 �, i = 1, . . . , r, j = 1, . . . , k. Now we bound

the term given by (6.46). From Lemma 2.9 we see that τ → A(θ0(τ)) is globally
Lipschitz continuous over the interval τ ∈ [0, 1], and hence there are constants c, c1
such that, for all ε ∈ (0, ε41] and k = 1, 2, . . . , �ε− 1

36 �,

IVε,k
i,j ≤ c

l+1∑
α=1

∑
ν∈Qα

|εsα − (ν−1)ε| ≤ c1εl (#Qα)
2

(6.54)

≤ c1ε(kε−
1
9 )(k−2ε−

2
9 )2 ≤ c1ε

4
9 .

Combining (6.42), and (6.49) to (6.54), and using (6.29) gives constants c, c1, such

that for all ε ∈ (0, ε41] and all k = 1, 2, . . . , �ε− 1
36 �,

max
1≤m,n≤k

|T̃ ε,k
m,n − T̂ ε,k

m,n| ≤ cε

k∑
j=1

r∑
i=1

{kε− 1
9 + ε

2
9 + kε−

1
9 + ε

4
9 }(6.55)

≤ c1(εkr)(kε−
1
9 ) ≤ c1ε

1
6 .
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Thus, there must exist some ε42 ∈ (0, ε41] such that kd
1
2 max1≤m,n≤k |T̃ ε,k

m,n−T̂ ε,k
m,n| ≤

c1ε
1
6 kd

1
2 < 1 for all ε ∈ (0, ε42] and k = 1, 2 . . . �ε− 1

36 �, and we can use Theorem 8.7
with (6.55) to find a constant c such that

Πkd
2 (Nkd(0, T̃ ε,k),Nkd(0, T̂ ε,k)) ≤ ck

3
4 (ε

1
6 )

1
4 ≤ cε

1
48(6.56)

for all ε ∈ (0, ε42] and k=1, 2, . . . , �ε− 1
36 �. To bound the second term on the right side

of (6.35), fix some 1≤m,n≤k. One sees from (3.8) that {Ŵ 0(τ), 0≤τ≤1} is a zero-
mean Gaussian process with independent increments and covariance

∫ τ

0
A(θ0(s)) ds.

Thus, from (6.1) and (6.34), we have T k
m,n = ε

∫ m∧n/(kε)

0
A(θ0(uε)) du, and hence

T k
m,n − T̂ ε,k

m,n = ε

m∧n∑
j=1

r∑
i=1

∑
ν∈Hε,k

i,j

A(θ0((ν − 1)ε))(6.57)

+ ε

(∫ m∧n/(kε)

0

[A(θ0(uε))−A(θ0(�u� ε))] du

)
.

Now, the last term on the right of (6.57) is clearly O(ε) uniformly with respect to

1≤m,n≤k≤�ε− 1
36 � (since Lemma 2.9 ensures that τ→A(θ0(τ)) is globally Lipschitz

continuous over τ ∈ [0, 1]). Hence, using (6.57), there must be constants c, c1 such

that for ε ∈ (0, ε42] and k = 1, 2, . . . , �ε− 1
36 �, we have

max
1≤m,n≤k

|T̂ ε,k
m,n − T k

m,n|≤ cεkr(#Hε,k
i,j ) + O(ε)(6.58)

≤ cεk(2ε−
2
3 )k−1ε−

1
9 + O(ε) ≤ c1ε

2
9 .

By (6.58) there is clearly some ε43 ∈ (0, ε42] such that kd
1
2 max1≤m,n≤k |T̂ ε,k

m,n−T k
m,n| <

1 for all ε ∈ (0, ε43] and k = 1, 2 . . . �ε− 1
36 �, and hence, by Theorem 8.7 and (6.58),

we get

Πkd
2 (Nkd(0, T̂ ε,k),Nkd(0, T k)) ≤ c1k

3
4 (ε

2
9 )

1
4 ≤ c1ε

5
144(6.59)

for all ε ∈ (0, ε43] and k = 1, 2 . . . �ε− 1
36 �. Combining (6.32), (6.35), (6.56), and (6.59),

we find a constant c such that

Πkd
2

(
Nkd

(
0, ε

k∑
j=1

r∑
i=1

covỸ ε,k
i,j [q]

)
,L(Ξ̂0

k)

)
≤ cε

1
48(6.60)

for all ε ∈ (0, ε43], k = 1, 2, . . . , �ε− 1
36 �. Finally, we see that the four terms on the

right of (6.22) are upper-bounded by (6.25), (6.31), (6.33), and (6.60), respectively.

Since λ ∈ (0, 1) we have λε−β
= O(εα) for constants α, β ∈ (0,∞). Thus, there must

be constants c, c1, such that

Πkd
2 (L(Ξε

k),L(Ξ̂0
k)) ≤ c(k

1
3 ε−

1
3λ

q
3 + k

2
3 ε

2
27 + k

5
9 ε

2
27 + ε

1
48 ) ≤ c1ε

1
48

for all ε ∈ (0, ε43] and k = 1, 2, . . . , �ε− 1
36 �. Now Theorem 6.3 follows with

ε0
�
= ε43.
Proof of Theorem 4.4. For each k=1, 2, 3, . . ., ε ∈ (0, 1] define continuous process

{W ε
k (τ), τ ∈ [0, 1]} by

W ε
k (τ)

�
=

{
W ε(τ) for τ = i/k, i=0, 1, . . . , k,
linear interpolation, otherwise.

(6.61)
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In the same way, define {Ŵ 0
k (τ), 0≤τ≤1} in terms of {Ŵ 0(τ), 0≤τ≤1}. Also, put

γ
�
= 72 and k(ε)

�
= �ε− 1

γ � for all ε ∈ (0, 1]. By the triangle inequality we can write

ΠC(L(W ε),L(Ŵ 0))≤ ΠC(L(W ε),L(W ε
k(ε))) + ΠC(L(W ε

k(ε)),L(Ŵ 0
k(ε)))(6.62)

+ΠC(L(Ŵ 0
k(ε)),L(Ŵ 0)).

Now upper-bound each term on the right side of (6.62) as follows.
Third term on RHS of (6.62). By the definition of {Ŵ 0

k (τ), 0 ≤ τ ≤ 1}
(following (6.61)), we have

‖Ŵ 0 − Ŵ 0
k(ε)‖C ≤ 2 max

i=0,1,...,k(ε)−1

{
max

i
k(ε)

≤τ≤ i+1
k(ε)

∣∣∣∣Ŵ 0(τ)− Ŵ 0

(
i

k(ε)

)∣∣∣∣
}

,(6.63)

and thus, from the Chebyshev inequality,

P̂ [‖Ŵ 0 − Ŵ 0
k(ε)‖C ≥ ε

1
8γ ](6.64)

≤
k(ε)−1∑

i=0

P̂

{
max

i
k(ε)

≤τ≤ (i+1)
k(ε)

∣∣∣∣Ŵ 0(τ)− Ŵ 0

(
i

k(ε)

)∣∣∣∣ ≥ 1

2
ε

1
8γ

}

≤ 16ε−
1
2γ

k(ε)−1∑
i=0

Ê

{
max

i
k(ε)

≤τ≤ (i+1)
k(ε)

∣∣∣∣Ŵ 0(τ)− Ŵ 0

(
i

k(ε)

)∣∣∣∣4
}

.

By Doob’s maximal Lp inequality [8, Proposition 2.16, p. 63] applied to the nonneg-

ative submartingale {|Ŵ 0(τ)− Ŵ 0(i/k(ε))|, τ ∈ [i/k(ε), 1]}, we get

Ê

{
max

i
k(ε)

≤τ≤ (i+1)
k(ε)

∣∣∣∣Ŵ 0(τ)− Ŵ 0

(
i

k(ε)

)∣∣∣∣4
}

(6.65)

≤
(

4

3

)4

Ê

∣∣∣∣Ŵ 0

(
i + 1

k(ε)

)
− Ŵ 0

(
i

k(ε)

)∣∣∣∣4 � k−2(ε).

Combining (6.64) and (6.65) gives

P̂ [‖Ŵ 0 − Ŵ 0
k(ε)‖C ≥ ε

1
8γ ] � k−1(ε)ε−

1
2γ ≤ ε

1
2γ ≤ ε

1
8γ ,

and thus, by Lemma 8.6(i), we get

ΠC(L(Ŵ 0),L(Ŵ 0
k(ε))) � ε

1
8γ .(6.66)

Second term on RHS of (6.62). We need the next result, which is suggested
by the arguments on page 246 of Yurinskii [27].
Lemma 6.10 (proved in section 7). For Ξε

k and Ξ̂0
k given by (6.1), and W ε and

Ŵ 0 given by (6.61), we have

ΠC(L(W ε
k ),L(Ŵ 0

k )) ≤ Πkd
2 (L(Ξε

k),L(Ξ̂0
k)) ∀ k = 1, 2, . . . , ε ∈ (0, 1].

From Lemma 6.10, Theorem 6.3, and the fact that k(ε) < �ε− 1
36 �,

ΠC(L(W ε
k(ε)),L(Ŵ 0

k(ε))) ≤ Πkd
2 (L(Ξε

k(ε)),L(Ξ̂0
k(ε))) � ε

1
48 .(6.67)
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First term on RHS of (6.62). For continuous ϕ : [0, 1] → � and 0 ≤ τ1 ≤
µ1 < µ2 ≤ τ2 ≤ 1 we have maxµ1≤τ≤µ2

|ϕ(τ)− ϕ(µ1)| ≤ 2 maxτ1≤τ≤τ2
|ϕ(τ)− ϕ(τ1)|.

Thus, from (3.5) and (4.6), we get

max
i

k(ε)
≤τ≤ (i+1)

k(ε)

∣∣∣∣W ε(τ)−W ε

(
i

k(ε)

)∣∣∣∣(6.68)

≤ 2 max
� i
εk(ε)

�≤k≤1+� (i+1)
εk(ε)

�

∣∣∣∣W ε(εk)−W ε

(
ε

⌊
i

εk(ε)

⌋)∣∣∣∣
≤ 2 max

1+� i
εk(ε)

�≤k≤1+� i+1
εk(ε)

�
ε

1
2

∣∣∣∣∣∣
k∑

j=1+�i/(εk(ε))�
ξε
j

∣∣∣∣∣∣
for all i = 0, 1, . . . , k(ε) − 1. Now fix integers M,N with 1 ≤ M < N . We see from
Remark 4.6 that there is a constant C1 ∈ [0,∞), not depending on the sequence {ξε

j},
or M,N , such that E[|∑k

j=i ξ
ε
j |4] ≤ C1[k − i + 1]2 for all M ≤ i ≤ k ≤ N and each

ε ∈ (0, 1]. Hence, by Theorem 8.1(i) (with γ
�
= 2, ν

�
= 4, g(i, k)

�
= k−i+1, M ≤ i ≤ k ≤

N), there is some constant A(4, 2) ∈ [0,∞) such that E[maxM≤k≤N |
∑k

j=M ξε
j |4] ≤

A(4, 2)[g(M,N)]2 for all 1 ≤ M < N and ε ∈ (0, 1]. Taking M
�
= 1 + �i/(εk(ε))�,

N
�
= 1 + �(i + 1)/(εk(ε))�, we see from (6.68) that there are constants C2, C3 ∈ [0,∞)

such that

E

[
max

i
k(ε)

≤τ≤ (i+1)
k(ε)

∣∣∣∣W ε(τ)−W ε

(
i

k(ε)

)∣∣∣∣4
]
≤ ε2C2[g(M,N)]2 ≤ C3k(ε)−2(6.69)

for all ε ∈ (0, 1]. Now (6.63) and (6.64) continue to hold with P̂ , Ê, and Ŵ 0 replaced
by P , E, and W ε, respectively. Thus, we can repeat the argument which gave (6.66),
but using (6.69) in place of (6.65), to see

ΠC(L(W ε),L(W ε
k(ε))) � ε

1
8γ .(6.70)

The conclusion follows from (6.62) and the upper-bounds given by (6.66), (6.67), and
(6.70).

7. Proofs of technical lemmas.
Proof of Lemma 2.9. It is enough to take d = 1. From (C4) we have A(θ) =

limN→∞ cov(
∑N

ν=1 H̃ν(θ)), and thus (see (2.7)),

|A(θ1)−A(θ2)| ≤ 2 lim sup
N→∞

1

N

N∑
ν=1

N∑
ν=1

|E[b̃νR̃µ]| |θ1 − θ2|

+ lim sup
N→∞

1

N

N∑
ν=1

N∑
ν=1

|E[R̃νR̃µ]| |θ2
1 − θ2

2|.

From Lemma 8.3(i) it easily follows that the double sums on the right-hand side are
O(N), as required for local Lipschitz continuity.

Proof of Lemma 4.8. Since P (|γn| ≥ n
1
7 ) ≤ E

[|γn|8
]
/n

8
7 , we must have

that
∑∞

n=1 P (|γn| ≥ n
1
7 ) < ∞. By Borel–Cantelli, for a.a. ω there exists an inte-

ger L(ω) such that |γn(ω)| ≤n
1
7 a.s. for all n > L(ω). Hence we can find C(ω) such
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that |γn| ≤ C(ω)n
1
7 for all n ≥ 1, and the result follows from the monotonicity of

n→ n
1
7 .

Proof of Lemma 4.11. Recall the notation defined in (4.22) to (4.25). Clearly,

max
0≤τ≤1

|W r
1 (τ)−W r

2 (τ)| ≤ ε
− 1

2
r

∫ 1

τr

|ζεr
t/εr
− ζεr

t/εr
[q(r)]| dt.

Hence, by Jensen’s inequality,

max
0≤τ≤1

|W r
1 (τ)−W r

2 (τ)|4 ≤ ε−1
r

∫ 1/εr

0

I[τr/εr, 1/εr](u) |ζεr
u − ζεr

u [q(r)]|4 du.

Then, by (4.23), (4.22), (4.9), the fact that (τr/εr) ≥ 1 + q(r), and Fubini,

E

[
max

0≤τ≤1
|W r

1 (τ)−W r
2 (τ)|4

]
� ε−1

r

∫ 1/εr

0

λ4q(r) du� exp(2(rσ − r2)).

By the mean value theorem for the mapping α→ rα (r constant), there exists γ ∈ [σ, 2]

such that rσ − r2 = (σ − 2)(ln r)rγ ≤ (σ − 2)rσ, so exp
(
2(rσ − r2)

) ≤ ε
2(2−σ)
r ≤ εr

(since σ < 3/2).
Proof of Lemma 4.12. Recall the notation defined in (4.22)–(4.25). From (3.5),

W εr (τ) = ε
1
2
r

∫ τ/εr

0

ζεr
u du, 0≤τ≤1.(7.1)

Thus, from (7.1) and (4.24),

W εr (τ)−W r
1 (τ) =


ε

1
2
r

∫ τ/εr

0

ζεr
u du, if 0≤τ≤τr,

ε
1
2
r

∫ τr/εr

0

ζεr
u du, if τr≤τ≤1.

(7.2)

Therefore, from (7.2) and (4.23) we have

max
0≤τ≤1

|W εr (τ)−W r
1 (τ)| = ε

1
2
r max

1≤k≤1+�τr/εr�

∣∣∣∣∣
k∑

j=1

ξεr
j

∣∣∣∣∣.(7.3)

By Remark 4.6 and Theorem 8.1(i) (with ν=4, γ=2, and g(i, j)
�
= j− i+1), we easily

see there is a constant c ∈ [0,∞), not depending on r, such that

E

[
max

1≤k≤1+�τr/εr�

∣∣∣∣∣
k∑

j=1

ξεr
j

∣∣∣∣∣
4]
≤ c

(
τr

εr

)2

.(7.4)

Combining (7.4) with (7.3) and using the fact that (τr/εr) � ε−1
r−1 gives

E

[
max

0≤τ≤1
|W εr (τ)−W r

1 (τ)|4
]
� ε2

r

(
τr

εr

)2

(7.5)

�
(

εr

εr−1

)2

= exp (2(r − 1)σ − 2rσ) .
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Now rσ − (r− 1)σ = σsσ−1 for some s ∈ [r− 1, r], and hence exp(2((r− 1)σ − rσ)) ≤
exp(−2σ(r − 1)σ−1). Observe that, since σ > 1, we have 5 ln r � σ(r − 1)σ−1, or,
equivalently, exp

(−σ(r − 1)σ−1
) � r−5 for all r ≥ 1. Now the result follows from

(7.5).
Proof of Lemma 5.4. We use the notation defined in the proof of Lemma 3.6. For

(5.24) we have

ε
3
2 max

1≤k≤Nε+1

∣∣∣∣∣
k−1∑
j=0

R̃j+1

(
(I − εR̄)j − (I −N−1

ε R̄)j
)

Γ
N−1
ε

j

∣∣∣∣∣(7.6)

≤ ε
3
2Nε · max

0≤j≤Nε
|R̃j+1| · max

0≤j≤Nε

∣∣(I−εR̄)j − (I−N−1
ε R̄)j

∣∣ · max
0≤j≤Nε

|ΓN−1
ε

j |.

We bound the maxj | · | factors on the right of (7.6). For the third factor, we see from
max1≤i≤n |I − n−1R̄|−2i = O(1) (uniformly in n) and Remark 4.6, that there is a
constant c1 ∈ (0,∞) such that

E

[ ∣∣∣∣∣
j∑

k=i

(I − n−1R̄)−kξn−1

k

∣∣∣∣∣
8]
≤ c1(j − i + 1)4 ∀ 1≤j≤k≤n.(7.7)

From (5.12), (7.7), and Theorem 8.1(i) (with ν
�
= 8, γ

�
= 4, g(i, j)

�
= j − i + 1, 1 ≤ i ≤

j ≤ n), we have

E

[
max

0≤j≤n

∣∣∣Γn−1

j

∣∣∣8]� n4,(7.8)

and thus, from Borel–Cantelli,

max
0≤j≤n

|Γn−1

j | = O(n
6
7 ) a.s.(7.9)

so that the third maxj | · | factor on the right of (7.6) is O(ε−
6
7 ) a.s. It follows from

Lemma 4.8 that the first maxj | · | factor on the right of (7.6) is O(ε−
1
7 ) a.s. while the

second maxj | · | factor is easily shown by Taylor’s theorem to be O(ε). Thus, from

(7.6), the quantity in (5.24) is a.s. O(ε
1
2 ε−

1
7 εε−

6
7 ) = O(ε

1
2 ). The proofs for (5.25)

and part (b) are similar and are omitted.
Proof of Lemma 6.9. From Remark 2.7 we know that {b̃n} and {R̃n} are geomet-

rically L-mixing and zero-mean. Thus (recalling (2.7) and (6.41)), there are constants
λ ∈ (0, 1) and C1 ∈ [0,∞) such that ‖H̃n(θ)‖2 ≤ C1[1+ |θ|], ‖H̃n(θ)[s]‖2 ≤ C1[1+ |θ|],
and ‖H̃n(θ)− H̃n(θ)[s]‖2 ≤ C1[1 + |θ|]λs for all θ ∈ �d, for all s, n = 1, 2, . . .. Put

D1(n,m, s, θ)
�
= (H̃n(θ)− H̃n(θ)[s])(H̃m(θ))′.

By Cauchy–Schwarz and the preceding bounds,

|ED1(n,m, s, θ)| ≤ ‖H̃n(θ)− H̃n(θ)[s]‖2‖H̃m(θ)‖2 ≤ C2[1 + |θ|2]λs,

and the same upper-bound clearly holds for the expectation of

D2(n,m, s, θ)
�
= H̃n(θ)[s](H̃m(θ)− H̃m(θ)[s])′.
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Then ∣∣∣∣∣cov

(
N+n0∑
n=n0

H̃n(θ)

)
− cov

(
N+n0∑
n=n0

H̃n(θ)[s]

)∣∣∣∣∣(7.10)

=

∣∣∣∣∣
N+n0∑
n=n0

N+n0∑
m=n0

E[D1(n,m, s, θ) + D2(n,m, s, θ)]

∣∣∣∣∣
≤ 2C2[1 + |θ|2](N + 1)2λs.

The result now follows from condition (C4) and (7.10).
Proof of Lemma 6.10. Fix some k = 1, 2, . . ., and let | · |∞ denote the maximum

norm on �kd (i.e., |x|∞ �
= max1≤i≤kd |xi|). Let Πkd

∞(P1, P2) denote Prohorov distance
between probability measures P1 and P2 on �kd with norm | · |∞, and let Ck[0, 1] be
the subset of C[0, 1] comprising all continuous functions f : [0, 1] → �d, with f(0) = 0,
which are piecewise linear with break-points at i/k, i = 1, . . . , k−1 (see right-hand side
of (6.61)). Then the metric spaces (�kd, | · |∞) and (Ck[0, 1], ‖·‖C) are homeomorphic.
Since the paths of {W ε

k (τ), τ ∈ [0, 1]} and {Ŵ 0
k (τ), τ ∈ [0, 1]} are in Ck[0, 1], it easily

follows from (6.1) and (6.61) that ΠC(L(W ε
k ),L(Ŵ 0

k )) = Πkd
∞(L(Ξε

k),L(Ξ̂0
k)). Now,

for η > 0 and closed A ⊂ �kd, put Aη �
= {x ∈ �kd : |x − a| < η for some a ∈ A} and

Aη
∞

�
= {x ∈ �kd : |x− a|∞ < η for some a ∈ A}. Since |x|∞ ≤ |x|, we have Aη ⊂ Aη

∞,
and from this, together with (8.1), we get Πkd

∞(L(Ξε
k),L(Ξ̂0

k)) ≤ Πkd
2 (L(Ξε

k),L(Ξ̂0
k)),

as required.

8. Useful results. In this section we collect for easy reference some simple
adaptations of results from probability which are used in the previous sections. The
following maximal inequalities, due to Móricz [23, Theorem 1] and Longnecker and
Serfling [22], are needed for lines (5.21), (6.69), (7.4), and (7.8).
Theorem 8.1. Suppose that M and N are integers, 1 ≤M < N <∞, and Y is

a normed vector space with norm ‖ · ‖.
(i) Let {zk, k=M,M+1, . . . , N} be arbitrary Y-valued random variables. Suppose

there are constants c, ν ∈ (0,∞), γ ∈ (1,∞), and an �-valued mapping g(i, j) defined

for M ≤ i ≤ j ≤N, such that E[‖∑j
k=i zk‖ν ] ≤ c[g(i, j)]γ for all M ≤ i ≤ j ≤ N , and

g(i, j) + g(j + 1, k) ≤ g(i, k) for all M ≤ i ≤ j < k ≤ N . Then there is a constant
A(ν, γ) ∈ [0,∞) such that E[maxM≤n≤N ‖

∑n
k=M zk‖ν ] ≤ cA(ν, γ)[g(M,N)]γ . The

constant A(ν, γ) depends on ν and γ only.
(ii) Let {Qk, k=M,M + 1, . . . , N} be arbitrary Y-valued random variables. Sup-

pose there are constants c, ν ∈ (0,∞), γ ∈ (1,∞), and an �-valued mapping h(i, j)
defined for M ≤ i ≤ j ≤ N , such that E[‖Qj −Qi‖ν ] ≤ c[h(i, j)]γ for all M ≤ i ≤
j ≤ N , and h(i, j) + h(j, k) ≤ h(i, k) for all M ≤ i ≤ j ≤ k ≤ N . Then, for the
constant A(ν, γ) of (i), we have E[maxM≤n≤N ‖Qn −QM‖ν ] ≤ cA(ν, γ)[h(M,N)]γ .

Remark 8.2. The constant A(ν, γ) has nothing to do with M,N , the random
variables {zk}, {Qk}, or the functions g(·, ·), h(·, ·) in (i) and (ii). Indeed, (2.1)–(2.3)
of [22] give A(ν, γ) explicitly as a function of ν > 0 and γ > 1 only. Notice that (ii)
follows upon applying (i) of Theorem 8.1 to the sequence {zk, k = M,M+1, . . . , N−1}
defined by zk

�
=Qk+1 −Qk for all k = M,M + 1, . . . , N − 1, with g(i, j)

�
=h(i, j + 1)

for all M ≤ i ≤ j ≤ N − 1.
By trivially adapting the arguments for Lemma A.1.2(a)(b) of [11], we get the

following lemma.
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Lemma 8.3. Suppose that {z1
n, n = 1, 2, . . .} and {z2

n, n = 1, 2, . . .} are �-valued
zero-mean geometrically L-mixing processes with respect to the system (Fn,F+

n ). Then
there are constants C1, C2 ∈ [0,∞) and λ ∈ (0, 1) such that (i) |E{z1

nz
2
m}| ≤ C1λ

|n−m|

for all m,n = 1, 2, . . ., and (ii) |E{z1
n[s]z2

m[s]}| ≤ C2λ
|n−m| for all m,n, s = 1, 2, . . .

(recall (2.3)).
Remark 8.4. Since θ0((n− 1)ε ∧ T ) is uniformly bounded (in ε ∈ (0, 1], n =

1, 2, . . .) and {b̃n} and {R̃n} are zero-mean geometrically L-mixing (by Remark 2.7),
we see from (4.8) and Lemma 8.3(ii) that there are constants C ∈ [0,∞) and λ ∈ (0, 1)
such that |E[(ξε

ν [s])(ξε
µ[s])′]| ≤ C λ|µ−ν| for all ε ∈ (0, 1], for all s,µ, ν = 1, 2, . . ..

The following result, which is a special case of Theorem 1.1 of Gerencsér [9], is
repeatedly used.
Theorem 8.5. Suppose that {uj} is a zero-mean �l×r-valued geometrically L-

mixing process, and {Aj} is a nonrandom sequence of d×l matrices. Then, for each

p ∈ [2,∞), ‖∑N
j=1 Ajuj‖p � (

∑N
j=1 |Aj |2)

1
2 . The constant implied by� depends only

upon p, supj≥1 ‖uj‖p, and the rate λ of the geometrically L-mixing process {uj}, in
particular, does NOT depend on N or the sequence {Aj}.

In the remainder of this section we summarize some relevant facts about the
Prohorov metric for probability measures on a metric space. Suppose that (S, ρ) is a
metric space, and let P1 and P2 be two probability measures on (S,B(S)). Define the
number

Π(P1, P2)
�
= inf {η ∈ (0,∞) : P1(A) ≤ P2(Aη) + η for all closed A ⊂ S} ,(8.1)

where Aη �
= {s ∈ S : ρ(s, a)≤ η for some a ∈ A} for A ⊂ S. All we need to know is

that the mapping Π(·, ·) defined by (8.1) is indeed a metric in the set of all probability
measures on (S,B(S)), called the Prohorov metric, and when (S, ρ) is a separable
metric space then Π(·, ·) is a metric for the topology of weak convergence of probability
measures on (S,B(S)). See [8, Theorem 3.1, p. 108]. Thus, one can use the Prohorov
metric to quantify rates of weak convergence of probability measures. In fact, this is
the significance of condition (4.3) in Theorem 4.2. We also make repeated use of the
following simple result which is an immediate consequence of (8.1) and the Chebyshev
inequality.
Lemma 8.6. Suppose that X and Y are random variables defined on (Ω,F , P )

with values in a metric space (S, ρ). (i) If, for some β ∈ (0,∞), we have P{ρ(X,Y ) ≥
β} ≤ β, then Π(L(X),L(Y )) ≤ β. (ii) If, for some β ∈ (0,∞) and c ∈ [1,∞), we
have ‖ρ(X,Y )‖c ≤ β, then Π(L(X),L(Y )) ≤ β

c
c+1 .

The next result (used for (6.56) and (6.59)) is a special case of Dehling [7, Theo-
rem 7, p. 400], and upper-bounds the Prohorov distance between Gaussian distribu-
tions on Euclidean space.
Theorem 8.7. There exists a constant β ∈ [0,∞) such that

Πkd
2 (Nkd(0, T ),Nkd(0, S)) ≤ βk

3
4 d

5
8

(
max

1≤m,n≤k
|Tm,n − Sm,n|

) 1
4

for all k, d = 1, 2, . . ., and all kd×kd symmetric positive semidefinite matrices T and
S such that kd

1
2 max1≤m,n≤k |Tm,n − Sm,n| < 1.

Acknowledgment. Many thanks indeed to the referee for an exceptionally care-
ful and detailed review which led to numerous improvements in this work.
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PROPERTIES OF A MULTIVALUED MAPPING ASSOCIATED
WITH SOME NONMONOTONE COMPLEMENTARITY PROBLEMS∗
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Abstract. Using the homotopy invariance property of the degree and a newly introduced
concept of the interior-point-ε-exceptional family for continuous functions, we prove an alternative
theorem concerning the existence of a certain interior-point of a continuous complementarity problem.
Based on this result, we develop several sufficient conditions to assure some desirable properties
(nonemptyness, boundedness, and upper-semicontinuity) of a multivalued mapping associated with
continuous (nonmonotone) complementarity problems corresponding to semimonotone, P(τ, α, β)-,
quasi-P∗-, and exceptionally regular maps. The results proved in this paper generalize well-known
results on the existence of central paths in continuous P0 complementarity problems.

Key words. nonlinear complementarity problems, central path, interior-point-ε-exceptional
family, weakly univalent maps, generalized monotonicity

AMS subject classifications. 90C30, 90C33

PII. S0363012998345196

1. Introduction. Consider the nonlinear complementarity problem (NCP)

f(x) ≥ 0, x ≥ 0, xT f(x) = 0,

where f is a continuous function from Rn into itself. This problem has now gained
much importance because of its many applications in optimization, economics, engi-
neering, etc. (see [8, 12, 16, 18]).

There are several equivalent formulations of the NCP in the form of a nonlinear
equation F (x) = 0, where F is a continuous function from Rn into Rn. Given such an
equation F (x) = 0, the most used technique is to perturb F to a certain Fε, where ε
is a positive parameter, and then consider the equation Fε(x) = 0. If Fε(x) = 0 has a
unique solution denoted by x(ε) and x(ε) is continuous in ε, then the solutions {x(ε)}
describe, depending on the nature of Fε(x), a short path denoted by {x(ε) : ε ∈ (0, ε̄]},
or a long path {x(ε) : ε ∈ (0,∞)}. If a short path {x(ε) : ε ∈ (0, ε̄]} is bounded,
then for any subsequence {εk} with εk → 0, the sequence {x(εk)} has at least one
accumulation point, and by the continuity each of the accumulation points is a solution
to the NCP. Thus, a path can be viewed as a certain continuous curve associated
with the solution set of the NCP. Based on the path, we may construct various
computational methods for solving the NCP, such as interior-point path-following
methods (see, e.g., [15, 25, 26, 27, 28, 32, 39]), regularization methods (see [8, 10, 11,
41]), and noninterior path-following methods (see [1, 2, 3, 5, 7, 17, 21]). The most
common interior-point path-following method is based on the central path. The curve
{x(ε) : ε ∈ (0,∞)} is said to be the central path if for each ε > 0 the vector x(ε) is
the unique solution to the system

x(ε) > 0, f(x(ε)) > 0, X(ε)f(x(ε)) = εe,(1)
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where X(ε) = diag(x(ε)), e = (1, . . . , 1)T , and x(·) is continuous on (0,∞).
In the case when f is a monotone function and the NCP is strictly feasible (i.e.,

there is a vector u ∈ Rn such that u > 0 and f(u) > 0), the existence of the central
path is well known (see, for example, [14, 25, 30, 31]). This existence result has been
extended to some nonmonotone complementarity problems. Kojima, Mizuno, and
Noma [27] proved that the central path exists if f is a uniform-P function. If f is a
P0-function satisfying a properness condition and the NCP is strictly feasible, Kojima,
Megiddo, and Noma [25] showed that there exists a class of interior-point trajectories
which includes the central path as a special case. If f is a P0-function and NCP
has a nonempty and bounded solution set, Chen, Chen, and Kanzow [4] and Gowda
and Tawhid [13] proved that the NCP has a short central path {x(ε) : ε ∈ (0, ε̄)}.
Under a certain properness condition, Gowda and Tawhid [13] showed that the NCP
with a P0-function has a long central path [13, Theorem 9]. It should be pointed out
that noninterior-point trajectories have also been extensively studied in the recent
literature (see [1, 2, 3, 5, 10, 11, 13, 17, 35, 37]).

However, for a general complementarity problem, the system (1) may have multi-
ple solutions for a given ε > 0, and even if the solution is unique, it is not necessarily
continuous in ε. As a result, the existence of the central path is not always guaranteed.
We define the (multivalued) mapping U : (0,∞)→ S(Rn++) by

U(ε) = {x ∈ Rn++ : f(x) > 0, Xf(x) = εe},(2)

where X = diag(x) and S(Rn++) is the set of all subsets of Rn++, the positive orthant
of Rn. The main contribution of this paper is to describe several sufficient condi-
tions which ensure that the multivalued mapping U(ε) has the following desirable
properties.

(a) U(ε) 
= ∅ for each ε ∈ (0,∞).
(b) For any fixed ε̄ > 0, the set

⋃
ε∈(0,ε̄] U(ε) is bounded.

(c) If U(ε) 
= ∅, then U(ε) is upper-semicontinuous at ε. (That is, for any suffi-
ciently small δ > 0, we have that ∅ 
= U(ε′) ⊆ U(ε) + δB for all ε′ sufficiently close to
ε, where B = {x ∈ Rn : ‖x‖ < 1} is the Euclidean unit ball.)

(d) If U(·) is single-valued, then U(ε) is continuous at ε provided that U(ε) 
= ∅.
If the mapping U(·) satisfies properties (a), (b), and (c), then the set

⋃
ε∈(0,∞) U(ε)

can be viewed as an “interior band” associated with the solution set of the NCP.
The “interior band” can be viewed as a generalization of the concept of the central
path. Indeed, if U(·) satisfies properties (a), (b), and (d), then the set

⋃
ε∈(0,∞) U(ε)

coincides with the central path of the NCP.
There exist several ways of generating the central path of the NCP, including

maximal monotone methods [14, 30], minimization methods [31], homeomorphism
techniques [6, 14, 15, 25, 33], the parameterized Sard theorem [42], and weakly uni-
valent properties of continuous functions [13, 35, 37]. In this paper, we develop a
different method for the analysis of the existence of the central path. By means of
the homotopy invariance property of the degree and a newly introduced concept of
interior-point-ε-exceptional family for continuous functions, we establish an alterna-
tive theorem for the nonemptyness of the mapping U(ε). For a given ε > 0, the result
states that there exists either an interior-point-ε-exceptional family for f or U(ε) 
= ∅.
Consequently, to show the nonemptyness of the mapping U(·), it is sufficient to verify
conditions under which the function f possesses no interior-point-ε-exceptional fam-
ily for any ε > 0. Along with this idea, we provide several sufficient conditions that
guarantee the aforementioned desirable properties of the multivalued mapping U(·).
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These sufficient conditions are related to several classes of (nonmonotone) functions
such as semimonotone, quasi-P∗-, P(τ, α, β)-, and exceptionally regular maps. The
results proved in the paper include several known results on the central path as special
instances.

This paper is organized as follows. In section 2, we introduce some definitions
and some basic results that will be utilized in the paper. In section 3, we show
an essential alternative theorem that is useful in later derivations. In section 4, we
establish some sufficient conditions to guarantee the nonemptyness, boundedness, and
upper-semicontinuity of the map U(ε), and the existence of the central path. Some
concluding remarks are given in section 5.

Notations: Rn+ (respectively, Rn++) denotes the space of n-dimensional real vectors
with nonnegative components (respectively, positive components), and Rn×n stands
for the space of n × n matrices. For any x ∈ Rn, we denote by ‖x‖ the Euclidean
norm of x, by xi the ith component of x for i = 1, . . . , n, and by [x]+ the vector whose
ith component is max{0, xi}. When x ∈ Rn+(Rn++), we also write it as x ≥ 0 (x > 0)
for simplicity.

2. Preliminaries. We first introduce the concept of an E0-function, which is
a generalization of an E0-matrix, i.e., semimonotone matrix, (see [8]). Recall that
an n × n matrix M is said to be an E0-matrix if for any 0 
= x ≥ 0, there exists a
component xi > 0 such that (Mx)i ≥ 0. M is a strictly semimonotone matrix if for
any 0 
= x ≥ 0, there exists a component xi > 0 such that (Mx)i > 0.

Definition 2.1. A function f : Rn → Rn is said to be an E0-function (i.e.,
semimonotone function) if for any x 
= y and x ≥ y in Rn, there exists some i such
that xi > yi and fi(x) ≥ fi(y). f is a strictly semimonotone function if for any x 
= y
and x ≥ y in Rn, there exists some i such that xi > yi and fi(x) > fi(y).

It is evident that f = Mx + q, where M ∈ Rn×n and q ∈ Rn, is an E0-function
if and only if M is an E0-matrix. We recall that a function f is said to be a P0(P)-
function if for any x 
= y in Rn

max
xi �=yi

(xi − yi)(fi(x)− fi(y)) ≥ 0(> 0).

Clearly, a P0-function is an E0-function. However, the converse is not true (see [8,
Example 3.9.2]). Thus the class of E0-functions is larger than that of P0-functions.

Definition 2.2. (D1) [23, 24]. A map f : Rn → Rn is said to be quasi monotone
if for x 
= y in Rn, f(y)T (x− y) > 0 implies that f(x)T (x− y) ≥ 0.

(D2) [26, 44]. A map f : Rn → Rn is said to be a P∗-map if there exists a scalar
κ ≥ 0 such that for any x 
= y in Rn we have

(1 + κ)
∑

i∈I+(x,y)

(xi − yi)(fi(x)− fi(y)) +
∑

i∈I−(x,y)

(xi − yi)(fi(x)− fi(y)) ≥ 0,

where

I+(x, y) = {i : (xi − yi)(fi(x)− fi(y)) > 0},(3)

I−(x, y) = {i : (xi − yi)(fi(x)− fi(y)) < 0}.
(D3) [26]. M is said to be a P∗-matrix if there exists a scalar κ ≥ 0 such that

(1 + κ)
∑
i∈I+

xi(Mx)i +
∑
i∈I−

xi(Mx)i ≥ 0,
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where I+ = {i : xi(Mx)i > 0} and I− = {i : xi(Mx)i < 0}.
Clearly, for a linear map f(x) = Mx + q, f is a P∗-map if and only if M is a

P∗-matrix. Väliaho [40] showed that the class of P∗-matrices coincides with the class
of sufficient matrices [8, 9]. A new equivalent definition of the P∗-matrix is given in
[46]. The next concept is a generalization of the quasi monotone function and the
P∗-map.

Definition 2.3. [46] A function f : Rn → Rn is said to be a quasi-P∗-map if
there exists a constant τ ≥ 0 such that the following implication holds for all x 
= y
in Rn.

f(y)T (x− y)− τ
∑

i∈I+(x,y)

(xi − yi)(fi(x)− fi(y)) > 0⇒ f(x)T (x− y) ≥ 0,

where I+(x, y) is defined by (3).
From the above definition, it is evident that the class of quasi-P∗-maps includes

quasi monotone functions and P∗-maps. (see [46] for details). The following concept
of a P (τ, α, β)-map is also a generalization of the P∗-map. In [46], it is pointed out
that monotone functions and P∗-maps are special cases of P(τ, α, β)-maps.

Definition 2.4. [46] A mapping f : Rn → Rn is said to be a P(τ, α, β)-map if
there exist constants τ ≥ 0, α ≥ 0, and 0 ≤ β < 1 such that the following inequality
holds for all x 
= y in Rn :

(1 + τ) max
1≤i≤n

(xi − yi)(fi(x)− fi(y)) + min
1≤i≤n

(xi − yi)(fi(x)− fi(y)) + α‖x− y‖β ≥ 0.

The concept of exceptional regularity that we are going to define next has a close
relation to such concepts as copositive, R0-, P0-, and E0-functions. It is shown that
the exceptional regularity is a weak sufficient condition for the nonemptyness and the
boundedness of the mapping U(ε) (see section 4.4 for details).

Definition 2.5. Let f be a function from Rn into Rn. f is said to be exceptionally
regular if, for each β ≥ 0, the following complementarity problem has no solution of
norm 1:

G(x) + βx ≥ 0, x ≥ 0, xT (G(x) + βx) = 0,

where G(x) = f(x)− f(0).
The following two results are employed to prove the main result of the next

section. Let S be an open bounded set of Rn. We denote by S and ∂(S) the closure
and boundary of S, respectively. Let F be a continuous function from S into Rn. For
any y ∈ Rn such that y 
∈ F (∂(S)), the symbol deg(F, S, y) denotes the topological
degree associated with F, S, and y (see [34]).

Lemma 2.1. [34] Let S ⊂ Rn be an open bounded set and F,G be two continuous
functions from S into Rn.

(i) Let the homotopy H(x, t) be defined as

H(x, t) = tG(x) + (1− t)F (x), 0 ≤ t ≤ 1,

and let y be an arbitrary point in Rn. If y /∈ {H(x, t) : x ∈ ∂S and t ∈ [0, 1]},
then deg(G,S, y) = deg(F, S, y).

(ii) If deg(F, S, y) 
= 0, then the equation F (x) = y has a solution in S.
The following upper-semicontinuity theorem of weakly univalent maps is due to

Ravindran and Gowda [35].
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Lemma 2.2. [35] Let g : Rn → Rn be weakly univalent; that is, g is continuous
and there exist one-to-one continuous functions gk : Rn → Rn such that gk → g
uniformly on every bounded subset of Rn. Suppose that q∗ ∈ Rn such that g−1(q∗) is
nonempty and compact. Then for any given scalar δ > 0 there exists a scalar γ > 0
such that for any weakly univalent function h : Rn → Rn and for any q ∈ Rn with

sup
Ω̄

‖h(x)− g(x)‖ < γ, ‖q − q∗‖ < γ,

we have

∅ 
= h−1(q) ⊆ g−1(q∗) + δB,

where B denotes the open unit ball in Rn and Ω = g−1(q∗) + δB.

3. Interior-point-ε-exceptional family and an alternative theorem. We
now introduce the concept of the interior-point-ε-exceptional family for a continuous
function, which brings us to a new idea, to investigate the properties of the map-
ping U(ε) defined by (2), especially the existence of the central path for NCPs. This
concept can be viewed as a variant of the exceptional family of elements which was
originally introduced to study the solvability of complementarity problems and vari-
ational inequalities [19, 20, 36, 43, 44, 45, 46].

Definition 3.1. Let f : Rn → Rn be a continuous function. Given a scalar
ε > 0, we say that a sequence {xr}r>0 ⊂ Rn++ is an interior-point-ε-exceptional
family for f if ‖xr‖ → ∞ as r → ∞ and for each xr there exists a positive number
0 < µr < 1 such that

fi(x
r) =

1

2

(
µr − 1

µr

)
xri +

εµr
xri

for all i = 1, . . . , n.(4)

Based on the above concept, we can prove the following result which plays a key
role in the analysis of the paper.

Theorem 3.1. Let f be a continuous function from Rn into Rn. Then for each
ε > 0 there exists either a point x(ε) such that

x(ε) > 0, f(x(ε)) > 0, xi(ε)fi(x(ε)) = ε, i = 1, . . . , n(5)

or an interior-point-ε-exceptional family for f .
Proof. Let F (x) = (F1(x), . . . , Fn(x))T be the Fischer–Burmeister function of f

defined by

Fi(x) = xi + fi(x)−
√
x2
i + f2

i (x), i = 1, . . . , n.

It is well known that x solves the NCP if and only if x solves the equation F (x) = 0.
Given ε > 0, we perturb F (x) to Fε(x) given by

[Fε(x)]i = xi + fi(x)−
√
x2
i + f2

i (x) + 2ε, i = 1, . . . , n.(6)

It is easy to see that x(ε) solves the equation Fε(x) = 0 if and only if x(ε) satisfies
the system (5). We now consider the convex homotopy between the mapping Fε(x)
and the identity mapping, that is,

H(x, t) = tx + (1− t)Fε(x), 0 ≤ t ≤ 1.
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Let r > 0 be an arbitrary positive scalar. Consider the open bounded set Sr = {x ∈
Rn : ‖x‖ < r}. The boundary of Sr is given by ∂Sr = {x ∈ Rn : ‖x‖ = r}. There are
only two cases.

Case 1. There exists a number r > 0 such that 0 /∈ {H(x, t) : x ∈ ∂Sr and t ∈
[0, 1]}. In this case, by (i) of Lemma 2.1, we have that deg(I, Sr, 0) = deg(Fε(x), Sr, 0),
where I is the identity mapping. Since deg(I, Sr, 0) = 1, from the above equation and
(ii) of Lemma 2.1, we deduce that the equation Fε(x) = 0 has a solution, denoted by
x(ε), which satisfies the system (5).

Case 2. For each r > 0, there exists some point xr ∈ ∂Sr and tr ∈ [0, 1] such that

0 = H(xr, tr) = trx
r + (1− tr)Fε(x

r).(7)

If tr = 0 for some r > 0, then the above equation reduces to Fε(x
r) = 0, which

implies that x(ε) := xr satisfies the system (5).
We now verify that tr 
= 1. In fact, if tr = 1 for some r > 0, then from (7) we

have that xr = 0, which is impossible since xr ∈ ∂Sr.
Therefore, it is sufficient to consider the case of 0 < tr < 1 for all r > 0. In

this case, it is easy to show that f actually has an interior-point-ε-exceptional family.
Indeed, in this case, (7) can be written as

xri + (1− tr)fi(x
r) = (1− tr)

√
(xri )

2 + f2
i (xr) + 2ε, i = 1, . . . , n.(8)

Squaring both sides of the above and simplifying, we have

xri fi(x
r) =

1

2

[
(1− tr)− 1

1− tr

]
(xri )

2 + (1− tr)ε, i = 1, . . . , n.

Since tr ∈ (0, 1), the above equation implies that xri 
= 0 for all i = 1, . . . , n. Denote
µr = 1− tr. We see from the above equation that

fi(x
r) =

1

2

(
µr − 1

µr

)
xri +

µrε

xri
, i = 1, . . . , n.(9)

We further show that xr ∈ Rn++. In fact, it follows from (8) that

xri + µrfi(x
r) > µr

√
2ε > 0, i = 1, . . . , n.(10)

On the other hand, by using (9) we obtain

xri + µrfi(x
r) =

1

2
(µ2
r + 1)xri +

µ2
rε

xri
, i = 1, . . . , n.

Combining (10) and the above equation yields xr ∈ Rn++. Since ‖xr‖ = r, it is clear
that ‖xr‖ → ∞ as r → ∞. Consequently, the sequence {xr} is an interior-point-ε-
exceptional family for f .

The above result shows that if f has no interior-point-ε-exceptional family for
each ε > 0, then property (a) of the mapping U(·) holds. From the result, it is
interesting to study various practical conditions under which a continuous function
does not possess an interior-point-ε-exceptional family for every ε ∈ (0,∞). In the
next section, we provide several such conditions ensuring the aforementioned desirable
properties of the mapping U(·).
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4. Sufficient conditions for properties of U(·).
4.1. E0-function. In this section, we prove that the multivalued mapping U(·)

has properties (a) and (b) if f is a continuous E0-function satisfying a certain proper-
ness condition. Moreover, if Fε(x) given by (6) is weakly univalent, then property (c)
also holds. Applied to P0 complementarity problems, this existence result extends a
recent result due to Gowda and Tawhid [13]. The following lemma is quite useful.

Lemma 4.1. Let f : Rn → Rn be an E0-function. Then for any sequence
{uk} ⊂ Rn++ with ‖uk‖ → ∞, there exist an index i and a subsequence of {uk},
denoted by {ukj}, such that u

kj
i →∞ and fi(u

kj ) is bounded below.
Proof. This proof has appeared in several works, see [11, 13, 35, 38]. Let {uk} ⊂

Rn++ be a sequence satisfying ‖uk‖ → ∞. Choosing a subsequence if necessary, we
may suppose that there exists an index set I ⊆ {1, . . . , n} such that uki →∞ for each
i ∈ I, and {uki } is bounded for each i /∈ I. Let vk ∈ Rn be a vector constructed as
follows:

vki = uki for i /∈ I, vki = 0 for i ∈ I.

Thus, {vk} is a bounded sequence. Clearly, uk ≥ vk. Since f is an E0-function,
there exist an index i ∈ I and a subsequence of {uk}, denoted by {ukj}, such that

u
kj
i > v

kj
i and fi(u

kj ) ≥ fi(v
kj ) for all j. Thus,

fi(u
kj ) ≥ inf

j
fi(v

kj ).

Note that the right-hand side of the above inequality is bounded. The desired result
follows.

To show the main result of this subsection, we will make use of the following
assumption which is weaker than several previously known conditions.

Condition 4.1. For any sequence {xk} satisfying
(i) {xk} ⊂ Rn++, ‖xk‖ → ∞ and [−f(xk)]+/‖xk‖ → 0, and
(ii) for each index i with xki →∞, the corresponding sequence {fi(xk)} is bounded

above, and
(iii) there exists at least one index i0 such that xki0 →∞ and {fi0(xk)} is bounded,

it holds that

max
1≤i≤n

xkli fi(x
kl)→∞

for some subsequence {xkl}.
As we see in the following result the above condition encompasses several partic-

ular cases; we omit the details.
Proposition 4.1. Condition 4.1 is satisfied if one of the following conditions

holds.
(C1) For any positive sequence {xk} ⊂ Rn++ with ‖xk‖ → ∞ and [−f(xk)]+/‖xk‖ →

0, it holds that max1≤i≤n xkli fi(x
kl)→∞ for some subsequence {xkl}.

(C2) For any sequence {xk} ⊂ Rn++ with ‖xk‖ → ∞ and min1≤i≤n fi(xk)/‖xk‖ →
0, it holds that max1≤i≤n xkli fi(x

kl)→∞ for some subsequence {xkl}.
(C3) [22, 29] For any sequence {xk} with ‖xk‖ → ∞, [−xk]+/‖xk‖ → 0, and

[−f(xk)]+/‖xk‖ → 0, it holds that

lim inf
k→∞

(xk)T f(xk)/‖xk‖ > 0.
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(C4) [13] For any sequence {xk} with ‖xk‖ → ∞,

lim inf
k→∞

min1≤i≤n xki
‖xk‖ ≥ 0, and lim inf

k→∞
min1≤i≤n fi(xk)

‖xk‖ ≥ 0,

there exist an index j and a subsequence {xkl} such that xklj fj(x
kl)→∞.

(C5) [6, 39] f is a R0-function.
(C6) [14, 25, 30, 31] f is monotone and the NCP is strictly feasible.
(C7) [27] f is a uniform P-function.
Remark 4.1. The condition (C1) of the above proposition is weaker than each of

the conditions (C2) through (C7). (C2) is weaker than each of the conditions (C4)
through (C7). The concept of the R0-function, a generalization of the R0-matrix [8],
was introduced in [39] and later modified in [6].

In what follows, we show under a properness condition that the short “interior
band”

⋃
ε∈(0,ε̄] U(ε) is bounded for each given ε̄ > 0. The boundedness is important

because it implies that the sequence {x(εk)}, where x(εk) ∈ U(εk) and εk → 0,
is bounded and each accumulation point of the sequence is a solution to the NCP
provided that f is continuous. We impose the following condition on f .

Condition 4.2. For any positive sequence {xk} ⊂ Rn++ such that ‖xk‖ → ∞,
limk→∞[−f(xk)]+ = 0, and the sequence {fi(xk)} is bounded for each index i with
xki →∞, it holds that

max
1≤i≤n

xkli fi(x
kl)→∞

for some subsequence {xkl}.
Clearly, Condition 4.2 is weaker than Condition 4.1 and thereby weaker than all

conditions listed in Proposition 4.1. We now prove the boundedness of the short
“interior band” under the above condition.

Lemma 4.2. Suppose that Condition 4.2 is satisfied. If U(ε) 
= ∅ for each ε > 0,
then for any ε̄ > 0 the set

⋃
ε∈(0,ε̄] U(ε) is bounded, i.e., property (b) holds. Particu-

larly, U(ε) is bounded for each ε > 0.
Proof. Suppose that there exists some ε̄ > 0 such that

⋃
ε∈(0,ε̄] U(ε) is unbounded.

Then there exists a sequence {x(εk)}, where εk ∈ (0, ε̄], such that ‖x(εk)‖ → ∞ as
k →∞. Since x(εk) ∈ U(εk), we deduce that [−f(x(εk))]+ = 0 for all k, and that

0 < fi(x(εk)) =
εk

xi(εk)
<

ε̄

xi(εk)
for all i = 1, . . . , n.

Thus, for each i such that xi(εk) → ∞, the sequence {fi(x(εk))} is bounded. By
Condition 4.2, we deduce that there exists a subsequence {x(εkl)} such that

max
1≤i≤n

xi(εkl)fi(x(εkl))→∞.

This is a contradiction since xi(εkl)fi(x(εkl)) = εkl < ε̄ for all i = 1, . . . , n.
The main result on E0-functions is given as follows. Even for P0-functions, this

result is new.
Theorem 4.1. Suppose that f is a continuous E0-function and Condition 4.1 is

satisfied. Then the properties (a) and (b) of the mapping U(ε) hold. Moreover, if Fε(x)
defined by (6) is weakly univalent in x, then the mapping U(·) is upper-semicontinuous,
i.e., property (c) also holds.
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Proof. To prove property (a), by Theorem 3.1, it suffices to show that there exists
no interior-point-ε-exceptional family of f for any ε > 0. Assume to the contrary that
for certain ε > 0 the function f has an interior-point-ε-exceptional family {xr}. Since
‖xr‖ → ∞, {xr} ⊂ Rn++, and f is an E0-function, by Lemma 4.1 there exist some
index m and a subsequence {xrj}, such that x

rj
m →∞ and fm(xrj ) is bounded below.

From (4), we have

0 >
1

2

(
µrj −

1

µrj

)
xrjm = fm(xrj )− µrjε

x
rj
m

.

Since x
rj
m → ∞ and fm(xrj ) is bounded below, the right-hand side of the above

equation is bounded below. It follows that limj→∞ µrj = 1.
On the other hand, we note that for any 0 < µ < 1 the function

φ(t) =
1

2

(
µ− 1

µ

)
t +

µε

t
(11)

is monotonically decreasing with respect to the variable t ∈ (0,∞). Passing through a
subsequence, we may suppose that there exists an index set I ⊆ {1, . . . , n} such that
x
rj
i →∞ for each i ∈ I, and {xrji } is bounded for each i /∈ I.

If i /∈ I, then there exists some scalar C > 0 such that x
rj
i ≤ C for all j. Since

φ(t) is decreasing and µrj → 1, we have

fi(x
rj ) =

1

2

(
µrj −

1

µrj

)
x
rj
i +

µrjε

x
rj
i

≥ 1

2

(
µrj −

1

µrj

)
C +

µrjε

C
→ ε

C
> 0.

Thus, for all sufficiently large j, we have

[−fi(xrj )]+ = 0 for all i /∈ I.

If i ∈ I, by using (4) and the facts µrj → 1 and x
rj
i →∞, we have

fi(x
rj )

‖xrj‖ =
1

2

(
µrj −

1

µrj

)
x
rj
i

‖xrj‖ +
µrjε

x
rj
i ‖xrj‖

→ 0,

which implies that

[−fi(xrj )]+/‖xrj‖ → 0 for all i ∈ I.

Therefore, [−f(xrj )]+/‖xrj‖ → 0. Moreover, it follows from (4) that

fi(x
rj ) ≤ µrjε

x
rj
i

≤ ε

x
rj
i

→ 0 for all i ∈ I,

which implies that {fi(xrj )} is bounded above for all i ∈ I. Since m ∈ I and {fm(xrj )}
is bounded below, the sequence {fm(xrj )} is indeed bounded. From Condition 4.1,
there is a subsequence of {xrj}, denoted also by {xrj}, such that

max
1≤i≤n

x
rj
i fi(x

rj )→∞.

However, from (4) we have

x
rj
i fi(x

rj ) =
1

2

(
µrj −

1

µrj

)
(x
rj
i )2 + µrjε ≤ µrjε < ε(12)
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for all i ∈ {1, . . . , n}. This is a contradiction. Property (a) of U(ε) follows.
Since Condition 4.1 implies Condition 4.2, the boundedness of the set

⋃
ε∈(0,ε̄] U(ε)

follows immediately from Lemma 4.2. It is known that x(ε) ∈ U(ε) if and only if x(ε)
is a solution to the equation Fε(x) = 0, i.e., U(ε) = F−1

ε (0). Since U(ε) is bounded,
the set F−1

ε (0) is bounded (in fact, compact, since f is continuous). If Fε(x) is weakly
univalent in x, by Lemma 2.2, for each scalar δ > 0 there is a γ > 0 such that for any
weakly univalent function h : Rn → Rn with

sup
x∈Ω̄

‖h(x)− Fε(x)‖ < γ, where Ω = F−1
ε (0) + δB,(13)

we have

∅ 
= h−1(0) ⊆ F−1
ε (0) + δB.(14)

It is easy to see that for the given γ > 0 there exists a scalar β > 0 such that

sup
x∈Ω̄

‖Fε′(x)− Fε(x)‖ < γ for all |ε′ − ε| < β.

Setting h(x) := Fε′(x) in (13) and (14), we obtain that ∅ 
= F−1
ε′ (0) ⊆ F−1

ε (0) + δB
for all |ε′ − ε| < β, i.e., U(ε′) ⊆ U(ε) + δB for all ε′ sufficiently close to ε. Thus, U(ε)
is upper-semicontinuous.

Ravindran and Gowda [35] showed that if f is a P0-function, then Fε(x) given by
(6) is a P-function in x, and hence the equation Fε(x) = 0 has at most one solution
x(ε). In this case, the upper-semicontinuity of U(·) reduces to the continuity of x(ε).
By the fact that every P0-function is an E0-function and is weakly univalent, we have
the following result from Theorem 4.1.

Corollary 4.1. Suppose that f : Rn → Rn is a continuous P0-function and
Condition 4.1 is satisfied. Then the central path exists and any slice of it is bounded,
i.e., for each ε > 0 there exists a unique x(ε) satisfying the system (1), x(ε) is con-
tinuous on (0,∞), and the set {x(ε) : ε ∈ (0, ε̄]} is bounded for each ε̄ > 0 .

When f is a P0-function, Gowda and Tawhid [13, Theorem 9] showed that the
(long) central path exists if condition (C4) of Proposition 4.1 is satisfied. Corollary 4.1
can serve as a generalization of the Gowda and Tawhid result. It is worth noting that
the consequences of Corollary 4.1 remain valid if condition (C1) or (C2) of Proposition
4.1 holds.

4.2. Quasi-P∗-maps. The concept of the quasi-P∗-map that is a generalization
of the quasi monotone function and the P∗-map was first introduced in [46] to study
the solvability of the NCP. Under the strictly feasible assumption as well as the
following condition, we can show the nonemptyness and the boundedness of U(·) if f
is a continuous quasi-P∗-map .

Condition 4.3. For any sequence {xk} ⊂ Rn++ such that

‖xk‖ → ∞, lim
k→∞

[−f(xk)]+ = 0,

and {f(xk)} is bounded, it holds that

max
1≤i≤n

xkli fi(x
kl)→∞

for some subsequence {xkl}.
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Clearly, the above condition is weaker than Conditions 4.1 and 4.2. It is also
weaker than Condition 3.8 in [4] and Condition 1.5(iii) in [25]. The following is the
main result of this subsection.

Theorem 4.2. Let f be a continuous quasi-P∗-map with the constant τ ≥ 0 (see
Definition 2.3). Suppose that Condition 4.3 is satisfied. If the NCP is strictly feasible,
then property (a) of U(ε) holds. Moreover, if Condition 4.2 is satisfied, then property
(b) holds, and if Fε(x) is weakly univalent in x, then property (c) also holds.

While the nonemptyness of U(ε) is ensured under Condition 4.3, it is not clear if
the boundedness of U(ε) can follow from this condition. However, from the implica-
tions Condition 4.1⇒ Condition 4.2 ⇒ Condition 4.3, we have the next consequence.

Corollary 4.2. Suppose that f is a continuous quasi-P∗-map and Fε(x) is
weakly univalent in x. If the NCP is strictly feasible and Condition 4.1 or 4.2 is
satisfied, then the mapping U(·) has properties (a), (b), and (c).

The proof of Theorem 4.2 is postponed until we have proved two technical lemmas.
Lemma 4.3. Let f satisfy Condition 4.3. Assume that {xr}r>0 is an interior-

point-ε-exceptional family for f . If there exists a subsequence of {xr}, denoted by
{xrk}, such that for some 0 < γ < 1,

lim
k→∞

(
µrk −

1

µrk

)
‖xrk‖1+γ = 0,(15)

then we have

lim
k→∞

(
min

1≤i≤n
xrki

)
= 0.

Proof. Suppose that {xrk} is an arbitrary subsequence of {xr} such that (15)
holds. Since φ(t) defined by (11) is decreasing on (0,∞), for each i ∈ {1, . . . , n} we
have

fi(x
rk) ≤ 1

2

(
µrk −

1

µrk

)
min

1≤i≤n
xrki +

µrkε

min1≤i≤n xrki
(16)

and

fi(x
rk) ≥ 1

2

(
µrk −

1

µrk

)
max

1≤i≤n
xrki +

µrkε

max1≤i≤n xrki
.(17)

Suppose to the contrary that there exists a subsequence of {xrk}, denoted also by
{xrk}, such that min1≤i≤n xrki ≥ α > 0 for all k > 0, where α is a constant. We
derive a contradiction. Indeed, since µrk − 1

µrk
< 0, from (16) we have

fi(x
rk) ≤ µrkε

min1≤i≤n xrki
≤ ε

α
for all i = 1, . . . , n.

From (17) and the above relation, we obtain

ε

α
≥ fi(x

rk) ≥ 1

2

(
µrk −

1

µrk

)
max

1≤i≤n
xrki for all i = 1, . . . , n.(18)

Since ‖xrk‖ → ∞, we deduce from (15) that

lim
k→∞

(
µrk −

1

µrk

)
max

1≤i≤n
xrki = 0.
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Therefore, it follows from (18) that there exists a scalar c such that c ≤ fi(x
rk) ≤ ε/α

for all i = 1, . . . , n and limk→∞[−fi(xrk)]+ = 0. By Condition 4.3, there exists a
subsequence of {xrk}, denoted still by {xrk}, such that max1≤i≤n xrki fi(x

rk) → ∞.
However, from (12) we have that xrki f(xrki ) ≤ µrkε < ε for all i = 1, . . . , n. This is a
contradiction.

Lemma 4.4. Let f satisfy Condition 4.3. Assume that {xr} is an interior-point-
ε-exceptional family for f . Let u > 0 be an arbitrary vector in Rn. Then for any
subsequence {xrk} (where rk → ∞ as k → ∞) there exists a subsequence of {xrk},
denoted still by {xrk}, such that f(xrk)T (xrk − u) < 0 for all sufficiently large k.

Proof. Let {xrk} be an arbitrary subsequence of {xr} (where rk →∞ as k →∞).
By using (4) we have

f(xrk)T (xrk − u)

=
1

2

(
µrk −

1

µrk

)
‖xrk‖2 + nεµrk −

1

2

(
µrk −

1

µrk

)
(xrk)Tu−

n∑
i=1

µrkεui
xrki

=
1

2

(
µrk −

1

µrk

)
(‖xrk‖2 − (xrk)Tu) + µrkε

(
n−

n∑
i=1

ui
xrki

)
.(19)

We suppose that f(xrk)T (xrk −u) ≥ 0 for all sufficiently large k. We derive a contra-
diction. From (19), we have

0 ≤ f(xrk)T (xrk − u) ≤ 1

2

(
µrk −

1

µrk

)
(‖xrk‖2 − (xrk)Tu) + µrkεn.

Since ‖xrk‖ → ∞, for all sufficiently large k we have

0 ≤ 1

2

(
µrk −

1

µrk

)
(‖xrk‖2 − (xrk)Tu) + µrkεn ≤ µrkεn,

which implies that

lim
k→∞

(
µrk −

1

µrk

)
‖xrk‖1+γ

= lim
k→∞

(
µrk −

1

µrk

)
(‖xrk‖2 − (xrk)Tu)

‖xrk‖1+γ
‖xrk‖2 − (xrk)Tu

= 0

for any scalar 0 < γ < 1. Thus, we see from Lemma 4.3 that

min
1≤i≤n

xrki → 0.(20)

Notice that

1

2

(
µrk −

1

µrk

)
(‖xrk‖2 − (xrk)Tu) < 0

for all sufficiently large k. From (19), (20), and the above inequality, we have

f(xrk)T (xrk − u) ≤ µrkε

(
n−

n∑
i=1

ui
xrki

)
≤ µrkε

(
n− min1≤i≤n ui

min1≤i≤n xrki

)
< 0
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for all sufficiently large k. This is a contradiction.
We are now ready to prove the results of Theorem 4.2.
Proof of Theorem 4.2. To show property (a) of the mapping U(ε), by Theorem

3.1, it suffices to show that f has no interior-point-ε-exceptional family for any ε > 0.
Assume to the contrary that there exists an interior-point-ε-exceptional family for f ,
denoted by {xr}. By the strict feasibility of the NCP, there is a vector u > 0 such
that f(u) > 0. Consider two possible cases.

Case (A). There exists a number r0 > 0 such that

max
1≤i≤n

(xri − ui)(fi(x
r)− fi(u)) < 0 for all r ≥ r0.

In this case, the index set I+(xr, u) is empty. Since f(u) > 0, xr > 0, and ‖xr‖ → ∞,
it is easy to see that

f(u)T (xr − u) > 0

for all sufficiently large r. Since f is a quasi-P∗-map and I+(xr, u) is empty, the
above inequality implies that f(xr)T (xr − u) ≥ 0 for all sufficiently large r. How-
ever, by Lemma 4.4 there exists a subsequence of {xr}, denoted by {xrk}, such that
f(xrk)T (xrk − u) < 0 for all sufficiently large k. This is a contradiction.

Case (B). There exists a subsequence of {xr} denoted by {xrj}, where rj → ∞
as j →∞, such that

max
1≤i≤n

(x
rj
i − ui)(fi(x

rj )− fi(u)) ≥ 0 for all j.

By using (4), for each i we have

A
(rj)
i : = (x

rj
i − ui)(fi(x

rj )− fi(u))

= (x
rj
i − ui)

(
−1

2

(
1

µrj
− µrj

)
x
rj
i − fi(u) +

µrjε

x
rj
i

)
.(21)

There exist a subsequence of {xrj}, denoted also by {xrj}, and a fixed index m such
that

A(rj)
m := (xrjm − um)(fm(xrj )− fm(u)) = max

1≤i≤n
(x
rj
i − ui)(fi(x

rj )− fi(u)).

For each i such that x
rj
i →∞, (21) implies that A

(rj)
i → −∞. Since A

(rj)
m ≥ 0 for all

j, we deduce that {xrjm} is bounded, i.e., there is a constant δ̄ such that 0 < x
rj
m ≤ δ̄

for all j.
If x

rj
m ≤ um, setting i = m in (21), we have

A(rj)
m ≤ (um − xrjm)

(
1

2

(
1

µrj
− µrj

)
xrjm + fm(u)

)
≤ um

(
1

2

(
1

µrj
− µrj

)
um + fm(u)

)
.(22)

If um < x
rj
m ≤ δ̄, setting i = m in (21), we obtain

A(rj)
m ≤ (xrjm − um)

µrjε

x
rj
m
≤ µrjε < ε.(23)
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We consider two subcases, choosing a subsequence whenever it is necessary.

Subcase 1. µrj → 1. From (22) and (23), for all sufficiently large j we have

A(rj)
m ≤ max

{
ε, um

(
fm(u) +

um
2

)}
.

Thus, for all sufficiently large j, we obtain

f(u)T (xrj − u)− τ max
1≤i≤n

(x
rj
i − ui)(fi(x

rj )− fi(u))

≥ f(u)T (xrj − u)− τ max{ε, um(fm(u) + um/2)}
> 0.

The last inequality above follows from the fact that f(u) > 0, {xrj} ⊂ Rn++, and
‖xrj‖ → ∞. Since f is a quasi-P∗-map, the above inequality implies that f(xrj )T (xrj−
u) ≥ 0 for all sufficiently large j, which is impossible according to Lemma 4.4.

Subcase 2. There exists a subsequence of {µrj}, denoted also by {µrj}, such that
µrj ≤ δ∗ for all j, where 0 < δ∗ < 1. In this case, from (22) and (23), we have

A(rj)
m ≤ max

{
ε, umfm(u) +

u2
m

2

(
1

µrj
− µrj

)}
.

It follows from (4) that

T (rj) : = f(xrj )T (u− xrj )− τ max
1≤i≤n

(x
rj
i − ui)(fi(x

rj )− fi(u))

=
1

2

(
1

µrj
− µrj

)
(‖xrj‖2 − (xrj )Tu) + µrjε

(
n∑
i=1

ui

x
rj
i

− n

)
− τA(rj)

m .

We now show that T (rj) > 0 for all sufficiently large j.

If ε ≤ umfm(u) +
u2
m

2 ( 1
µrj
− µrj ), noting that µrj ≤ δ∗ and ‖xrj‖2 − (xrj )Tu −

τu2
m →∞ as j →∞, we obtain

T (rj) ≥ 1

2

(
1

µrj
− µrj

)
(‖xrj‖2 − (xrj )Tu− τu2

m)− τumfm(u)− µrjεn

≥ 1

2

(
1

δ∗
− δ∗

)
(‖xrj‖2 − (xrj )Tu− τu2

m)− τumfm(u)− δ∗εn > 0.

If ε > umfm(u) +
u2
m

2 ( 1
µrj
− µrj ), by the same argument as the above, we can

show that

T (rj ) ≥ 1

2

(
1

δ∗
− δ∗

)
(‖xrj‖2 − (xrj )Tu)− δεn− τε > 0

for all sufficiently large j. Thus, by the quasi-P∗-property of f , we deduce from
T (rj) > 0 that f(u)T (u − xrj ) ≥ 0 for all sufficiently large j. It is a contradiction
since {xrj} ⊂ Rn++, ‖xrj‖ → ∞, and f(u) > 0.

The above contradictions show that f has no interior-point-ε-exceptional family
for each ε > 0. By Theorem 3.1, the set U(ε) 
= ∅ for any ε > 0. The boundedness of
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the short “interior band ” follows from Lemma 4.2, and the upper-semicontinuity of
U(ε) follows easily from Lemma 2.2.

The class of quasi-P∗-maps includes the quasi monotone functions as particular
cases. The following result is an immediate consequence of Theorem 4.2.

Corollary 4.3. Suppose that f is a continuous quasi monotone (in particular,
pseudomonotone) function, and the NCP is strictly feasible.

(i) If Condition 4.3 is satisfied, then property (a) of U(ε) holds.
(ii) If Condition 4.2 is satisfied, then properties (a) and (b) of U(ε) hold.

In the case when Fε(x) is univalent (continuous and one-to-one) in x, the equation
Fε(x) = 0 has at most one solution. Combining this fact and Theorem 4.2, we have
the following result concerning the existence of the central path of the NCP. To our
knowledge, this result can be viewed as the first existence result on the central path
for the NCP with a (generalized) quasi monotone function. Up to now, there is
no interior-point type algorithms designed for solving (generalized) quasi monotone
complementarity problems.

Corollary 4.4. Let f be a quasi-P∗-map, and Fε(x) is univalent in x. If the
NCP is strictly feasible and Condition 4.2 is satisfied, then the central path exists and
the set {x(ε) : ε ∈ (0, ε̄]} is bounded for any given ε̄ > 0.

Particularly, if f is a P0-function, then Fε(x) is univalent in x (see [35]). We have
the following result.

Corollary 4.5. Let f be a continuous P0 and quasi-P∗-map. If the NCP is
strictly feasible and Condition 4.2 is satisfied, then the conclusions of Corollary 4.4
are valid.

4.3. P (τ, α, β)-maps. It is well known (see [14, 25, 30, 31]) that the monotonic-
ity combined with strict feasibility implies the existence of the central path. In this
section, we extend the result to a class of nonmonotone complementarity problems.
Our result states that if f is a P(τ, α, β) and P0-map (see Definition 2.4), the central
path exists provided that the NCP is strictly feasible. This result gives an answer
to the question “What class of nonlinear functions beyond P∗-maps can ensure the
existence of the central path if the NCP is strictly feasible?” We first show properties
of the mapping U(·) when f is a P (τ, α, β)-map.

Theorem 4.3. Let f be a continuous P (τ, α, β)-map. If the NCP is strictly fea-
sible, then properties (a) and (b) of U(ε) hold. Moreover, if Fε(x) is weakly univalent
in x, property (c) also holds.

Proof. Suppose that there exists a scalar ε > 0 such that f has an interior-point-
ε-exceptional family denoted by {xr}. Since {xr} ⊂ Rn++ and ‖xr‖ → ∞ as r → ∞,
there exist some p and a subsequence denoted by {xrj}, where rk → ∞ as j → ∞,
such that ‖xrj‖ → ∞ and

xrjp − up = max
1≤i≤n

(x
rj
i − ui).

Clearly, x
rj
p →∞ as j →∞. On the other hand, there exists a subsequence of {xrj},

denoted also by {xrj}, such that for some fixed index m and for all j we have

(xrjm − um)(fm(xrj )− fm(u)) = max
1≤i≤n

(xrj − ui)(fi(x
rj )− fi(u)).

By the definition of the P(τ, α, β)-map, we have
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(xrjp − up)(fp(x
rj )− fp(u))

≥ min
1≤i≤n

(x
rj
i − ui)(fi(x

rj )− fi(u))

≥ −(1 + τ) max
1≤i≤n

(x
rj
i − ui)(fi(x

rj )− fi(u))− α‖xrj − u‖β

= −(1 + τ)(xrjm − um)(fm(xrj )− fm(u))− α‖xrj − u‖β .(24)

From (4), we have that fp(x
rj ) < ε/x

rj
p , and hence

B(rj)
p :=

(x
rj
p − up)(fp(x

rj )− fp(u))

‖xrj − u‖β ≤ (x
rj
p − up)

‖xrj − u‖β
(

ε

x
rj
p
− fp(u)

)
.(25)

It is easy to see that

‖xrj − u‖β
x
rj
p − up

=

(‖xrj − u‖
x
rj
p − up

)β
· 1

(x
rj
p − up)(1−β)

≤ nβ/2

(x
rj
p − up)1−β

.(26)

Combining (25) and (26) leads to

B(rj)
p → −∞ as j →∞.

From

B(rj)
p ≥ B

rj
min := min

1≤i≤n
(x
rj
i − ui)(fi(x

rj )− fi(u))

‖xrj − u‖β ,

we deduce that

B
rj
min → −∞ as j →∞.(27)

We now show that {xrjm} is bounded. Assume that there exists a subsequence of {xrjm},
denoted still by {xrjm}, such that x

rj
m →∞. Then, from (21), we have

(xrjm − um)(fm(xrj )− fm(u))→ −∞,

and hence for all sufficiently large j we have

B(rj)
m :=

(x
rj
m − um)(fm(xrj )− fm(u))

‖xrj − u‖β = max
1≤i≤n

(x
rj
i − ui)(fi(x

rj )− fi(u))

‖xrj − u‖β < 0.

By (27) and the above relation, we obtain

(1 + τ)B(rj)
m + B

rj
min → −∞ as j →∞.(28)

However, since f is a P(τ, α, β)-map, we have

(1 + τ)B(rj)
m + B

rj
min ≥ −α,

which contradicts (28). This contradiction shows that the sequence {xrjm} is bounded.
By using (4) and (24), we have

−(xrjp − up)

(
1

2

(
1

µrj
− µrj

)
xrjp + fp(u)− µrjε

x
rj
p

)
≥ (1 + τ)(xrjm − um)

(
1

2

(
1

µrj
− µrj

)
xrjm + fm(u)− µrjε

x
rj
m

)
− α‖xrj − u‖β .
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Multiplying both sides of the above inequality by 1/(x
rj
p − up), rearranging terms,

and using (26), we have

−1

2

(
1

µrj
− µrj

)(
xrjp +

(1 + τ)x
rj
m(x

rj
m − um)

x
rj
p − up

)
≥ fp(u)− µrjε

x
rj
p

+ (1 + τ)

(
fm(u)(x

rj
m − um)

x
rj
p − up

− µrjε(x
rj
m − um)

x
rj
m(x

rj
p − up)

)
− α‖xrj − u‖β

x
rj
p − up

≥ fp(u)− ε

x
rj
p
− (1 + τ)fm(u)um

x
rj
p − up

− (1 + τ)ε

x
rj
p − up

− αnβ/2

(x
rj
p − up)1−β

.

For all sufficiently large j, the left-hand side of the above inequality is negative, but
the right-hand side tends to fp(u) > 0 as j → ∞. This is a contradiction. The
contradiction shows that f has no interior-point-ε-exceptional family for every ε > 0.
By Theorem 3.1, property (a) of U(ε) follows. The proof of the boundedness of the
set

⋃
ε∈(0,ε̄] U(ε) is not straightforward. It can be proved by the same argument as

the above. Indeed, we suppose that {x(εk)}0<εk<ε̄ ⊆
⋃
ε∈(0,ε̄] U(ε) is an unbounded

sequence. Replacing {xrj} by {x(εk)}, using

f(x(εk)) =
εk

x(εk)
<

ε̄

x(εk)

instead of (4), and repeating the aforementioned proof, we can derive a contradic-
tion. The upper-semicontinuity of U(·) can be obtained by Lemma 2.2. The proof is
complete.

The class of P(τ, α, β)-maps includes several particular cases such as P (τ, α, 0)-,
P(τ, 0, 0)-, and P(0, α, β)-maps. It is shown in [46] that the class of P(τ, 0, 0)-maps
coincides with the class of P∗-maps. Therefore, f is said to be a P∗-map if and only
if there exists a nonnegative scalar κ ≥ 0 such that

(1 + κ) max
1≤i≤n

(xi − yi)(fi(x)− fi(y)) + min
1≤i≤n

(xi − yi)(fi(x)− fi(y)) ≥ 0.

Particularly, a matrix M ∈ Rn×n is a P∗-matrix if and only if there is a constant
κ ≥ 0 such that

(1 + κ) max
1≤i≤n

xi(Mx)i + min
1≤i≤n

xi(Mx)i ≥ 0.

This is an equivalent definition of the concept of a P∗-matrix (sufficient matrix) intro-
duced by Kojima et al. [26] and Cottle, Pang, and Venkateswaran [9]. The following
result follows immediately from Theorem 4.3.

Corollary 4.6. Let f be a continuous P0 and P(τ, α, β)-map. If the NCP is
strictly feasible, then the central path exists and any slice of it is bounded.

It is worth noting that each P∗-map is a P0 and a P(τ, α, β)-function. The fol-
lowing result is a straightforward consequence of the above corollary.

Corollary 4.7. Let f be a continuous P∗-map. If the NCP is strictly feasible,
then the central path exists and any slice of it is bounded.

It should be pointed out that P∗-maps are also special instances of quasi-P∗-
maps. A result similar to Corollary 4.3 can be stated for P∗-maps. However, as we
have shown in Corollary 4.7, the additional conditions such as Conditions 4.1, 4.2,
and 4.3 are not necessary for a P∗-map to guarantee the existence of the central path.
While P∗-maps and quasi monotone functions are contained in the class of quasi-P∗-
maps, Zhao and Isac [46] gave examples to show that a P∗-map, in general, is not a
quasi monotone function, and vice versa.
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4.4. Exceptionally regular functions. In section 4.1, we study the properties
of the mapping U(ε) for E0-functions satisfying a properness condition, i.e., Condi-
tion 4.1. In sections 4.2, we show properties of U(ε) for quasi-P∗-maps under the
strictly feasible condition as well as some properness conditions. In the above section,
properness assumptions are removed, and properties of U(ε) for P (τ, α, β)-maps are
proved under the strictly feasible condition only. In this section, removing both the
strictly feasible condition and properness conditions, we prove that properties of U(ε)
hold if f is an exceptionally regular function. The exceptional regularity of a function
(see Definition 2.5) was originally introduced in [46] to investigate the existence of a
solution to the NCP.

Definition 4.1. [16] A map v : Rn → Rn is said to be positively homogeneous
of degree α > 0 if v(tx) = tαv(x) for all x ∈ Rn.

When α = 1, the above concept reduces to the standard concept of positive
homogeneity. Under the assumption of positively homogeneous of degree α > 0, we
can show that properties (a) and (b) of U(ε) hold if f is exceptionally regular. See
the following result.

Theorem 4.4. Let f be a continuous and exceptionally regular function from
Rn into Rn. If G(x) = f(x) − f(0) is positively homogeneous of degree α > 0, then
properties (a) and (b) of U(ε) hold. Moreover, if Fε(x) is weakly univalent, property
(c) also holds.

Proof. Suppose that there is a scalar ε > 0 such that f has an interior-point-ε-
exceptional family {xr}. We derive a contradiction. Indeed, since G(x) is positively
homogeneous of degree α > 0, we have

f(xr) = f(0) + ‖xr‖α(f(xr/‖xr‖)− f(0)).

Without loss of generality, assume that xr/‖xr‖ → x̂. From the above relation, we
have

lim
r→∞ f(xr)/‖xr‖α = f(x̂)− f(0) = G(x̂).(29)

From (4), we have

1

2

(
1

µr
− µr

)
= −fi(x

r)

xri
+

µrε

(xri )
2

for all i = 1, . . . , n.(30)

Let I+(x̂) = {i : x̂i > 0}. Since ‖xr‖ → ∞ and xri /‖xr‖ → x̂i, we deduce that xri →∞
for each i ∈ I+(x̂). We now show that

lim
r→∞

1

2

(
1

µr
− µr

) ‖xr‖
‖xr‖α = µ̂(31)

for some µ̂ ≥ 0. It is sufficient to show the existence of the above limit. Indeed, for
each i ∈ I+(x̂), by using (30) and (29) we have

lim
r→∞

1

2

(
1

µr
− µr

) ‖xr‖
‖xr‖α = lim

r→∞
‖xr‖
xri

(
−fi(x

r)

‖xr‖α +
µrε

xri ‖xr‖α
)

= −Gi(x̂)

x̂i
.

Thus, (31) holds, with

Gi(x̂)

x̂i
= −µ̂ for all i ∈ I+(x̂).(32)
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Now, we consider the case of i /∈ I+(x̂). In this case, x̂i = 0. By using (4), (31), and
(29), we see from xri /‖xr‖ → 0 that

0 ≤ lim
r→∞

µrε

xri ‖xr‖α
= lim
r→∞

(
fi(x

r)

‖xr‖α +
(1/µr − µr)x

r
i

2‖xr‖α
)

= lim
r→∞

(
fi(x

r)

‖xr‖α +
(1/µr − µr)‖xr‖

2‖xr‖α · xri
‖xr‖

)
= Gi(x̂),

i.e.,

Gi(x̂) ≥ 0 for all i /∈ I+(x̂).

Combining (32) and the above relation implies that f is not exceptionally regular.
This is a contradiction. The contradiction shows that f has no interior-point-ε-
exceptional family for each ε > 0, and hence property (a) of U(ε) follows from Theorem
3.1. Property (b) of U(ε) can be easily proved. Actually, suppose that there exists
a sequence {x(εk)}0<εk<ε̄ with ‖x(εk)‖ → ∞, where x(εk) ∈ U(εk). Without loss of
generality, let x(εk)/‖x(εk)‖ → x̄, where ‖x̄‖ = 1. As in the proof of (29) we have

0 ≤ lim
k→∞

f(x(εk))/‖x(εk)‖α = G(x̄).

Since x(εk) ∈ U(εk), we have that xi(εk)fi(x(εk)) = εk for all i = 1, . . . , n. Thus,

0 = lim
k→∞

xi(εk)fi(x(εk))

‖x(εk)‖1+α = x̄iGi(x̄) for all i = 1, . . . , n.

Therefore,

Gi(x̄) = 0 whenever x̄i > 0, and Gi(x̄) ≥ 0 whenever x̄i = 0,

which contradicts the exceptional regularity of f(x).
It is not difficult to see that a strictly copositive map and a strictly semimonotone

function are special cases of exceptionally regular maps. Hence, we have the following
result.

Corollary 4.8. Suppose that G(x) = f(x) − f(0) is positively homogeneous
of degree α > 0. Then conclusions of Theorem 4.4 are valid if one of the following
conditions holds.

(i) f is an E0-function, and for each 0 
= x ≥ 0 there exists an index i such that
xi > 0 and fi(x) 
= fi(0).

(ii) f is strictly copositive, that is, xT (f(x)− f(0)) > 0 for all 0 
= x ≥ 0.
(iii) f is a strictly semimonotone function.
Proof. Since each of the above conditions implies that f(x) is exceptionally reg-

ular, the result follows immediately from Theorem 4.4.
Motivated by Definition 2.5, we introduce the following concept.
Definition 4.2. M ∈ Rn×n is said to be an exceptionally regular matrix if for

all β ≥ 0,M + βI is an R0-matrix.
It is evident that an exceptionally regular matrix is an R0-matrix, but the converse

is not true. The following result is an immediate consequence of Theorem 4.4 and its
corollary.

Corollary 4.9. Let f = Mx+q, where M ∈ Rn×n, and q is an arbitrary vector
in Rn. If one of the following conditions is satisfied, then properties (a) and (b) of
the mapping U(ε) hold:
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(i) M ∈ Rn×n is an exceptionally regular matrix.
(ii) M is a strictly copositive matrix.
(iii) M is a strictly semimonotone matrix.
(iv) M is an E0-matrix, and for each 0 
= x ≥ 0 there exists an index i such that

xi > 0 and (Mx)i 
= 0 (possibly, (Mx)i < 0).
Furthermore, if M is also a P0-matrix, then the central path of a linear comple-

mentarity problem exists and any slice of it is bounded.
The R0-property of f has played an important role in the complementarity theory.

We close this section by considering this situation. The concept of a nonlinear R0-
function was first introduced by Tseng [38] and later modified by Chen and Harker
[6]. We now give a definition of the R0-function that is different from those in [38]
and [6].

Definition 4.3. f : Rn → Rn is said to be an R0-function if x = 0 is the unique
solution to the following complementarity problem:

G(x) = f(x)− f(0) ≥ 0, x ≥ 0, xTG(x) = 0.

This concept is a natural generalization of the R0-matrix [8]. In fact, for the linear
function f(x) = Mx+ q, it is easy to see that f is an R0-function if and only if M is
an R0-matrix. In the case when f is an E0-function, we have shown in Theorem 4.1
that there exists a subsequence {µrk} such that µrk → 1. Moreover, if G is positively
homogeneous, then from (31) we deduce that µ̂ = 0. By using these facts and the
above R0-property and repeating the proof of Theorem 4.4, we have the following
result.

Theorem 4.5. Suppose that G(tx) = tG(x) for each scalar t ≥ 0 and x ∈ Rn,
and that f is an E0 and R0-function. Then the conclusions of Theorem 4.4 remain
valid. Moreover, if f is a P0 and R0 -function, the central path exists and any slice
of it is bounded.

5. Conclusions. We introduced the concept of the interior-point-ε-exceptional
family for continuous functions, which is important since it strongly pertains to the
existence of an interior-point x(ε) ∈ U(ε) and the central path, even to the solvability
of NCPs. By means of this concept, we proved that for every continuous NCP the set
U(ε) is nonempty for each scalar ε > 0 if there exists no interior-point-ε-exceptional
family for f . Based on the result, we established some sufficient conditions for the
assurance of some desirable properties of the multivalued mapping U(ε) associated
with certain nonmonotone complementarity problems. Since properties (a) and (b)
of U(ε) imply that the NCP has a solution, the argument of this paper based on
the interior-point-ε-exceptional family can serve as a new analysis method for the
existence of a solution to the NCP.

It is worth noting that any point in U(ε) is strictly feasible, i.e., x(ε) > 0 and
f(x(ε)) > 0. Therefore, the analysis method in this paper can also be viewed as a
tool for investigating the strict feasibility of a complementarity problem. In fact, from
Theorems 3.1, 4.1, 4.4, and 4.5, we have the following result.

Theorem 5.1. Let f be a continuous function. Then the complementarity prob-
lem is strictly feasible whenever one of the following conditions holds.

(i) There exists a scalar ε∗ > 0 such that f has no interior-point-ε∗-exceptional
family.

(ii) f is an E0-function and Condition 4.1 is satisfied.
(iii) G(x) = f(x) − f(0) is positively homogeneous of degree α > 0 and f is

exceptionally regular.
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(iv) f(x) = Mx + q, where M is an E0 and R0-matrix.
It should be pointed out that the results and the argument of this paper can

be easily extended to other interior-point paths. For instance, we can consider the
existence of the path

{(x(ε), y(ε)) > 0 : ε > 0, y(ε) = f(x(ε)) + εb, xi(ε)yi(ε) = εai for all i}(33)

(where b and a > 0 are fixed vectors in Rn) first studied by Kojima, Megiddo, and
Noma [25]. (When a = εe, b = 0, the above path reduces to the central path). This
path can be studied by the concept of interior-point-ε(a, b)-exceptional family. For a
continuous function f : Rn → Rn, we say that a sequence {xr} ⊂ Rn++ is an interior-
point-ε(a, b)-exceptional family for f if ‖xr‖ → ∞ as r → ∞, and for each xr there
exists a positive number µr ∈ (0, 1) such that for each i

fi(x
r) = −εbi +

1

2

[
µr − 1

µr

]
xri +

µrεai
xri

.

Using

Fi(x, ε) = xi + (fi(x) + εbi)−
√
x2
i + (fi(x) + εbi)2 + 2εai

and arguing as in the same proof of Theorem 3.1, we can show that for any ε > 0 there
exists either a point x(ε) satisfying (33) or an interior-point-ε(a, b)-exceptional family
for f . This result enables us to develop some sufficient conditions for the existence of
the path (33).
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Abstract. We present some systematic approaches to the mathematical formulation and nu-
merical approximation of the time-dependent optimal control problem of tracking the velocity for
Navier–Stokes flows in a bounded, two-dimensional domain with boundary control. We study the
existence of optimal solutions and derive an optimality system from which optimal solutions may be
determined. We also define and analyze semidiscrete-in-time and full space-time discrete approxi-
mations of the optimality system and a gradient method for the solution of the fully discrete system.
The results of some computational experiments are provided.

Key words. optimal control, Navier–Stokes equations, fluid mechanics

AMS subject classifications. 35B40, 35B37, 35Q30, 65M60

PII. S0363012999353771

1. Introduction. In this paper, we study a class of optimal flow control prob-
lems for which the fluid motion is controlled by velocity forcing, i.e., injection or
suction, along a portion of the boundary and the cost or objective functional is a
measure of the discrepancy between the flow velocity and a given target velocity. The
fluid motion is constrained to satisfy the time-dependent Navier–Stokes equations for
viscous, incompressible flows. In order to regularize the problem, e.g., to limit the
size of the control, a quadratic penalization functional depending on the control is
added to the cost functional.

Time-dependent optimal flow control problems have been considered by numerous
authors, e.g., [1], [4], [5], [6], [7], [13], [14], [15], [16], [22], [23], [24], [25], [26], [27],
[29], [30], [31], and [33]. A number of these papers deal with distributed force control
in the momentum equation; this type of control is not realizable in most practical
situations. Some of these papers only treat questions concerning the existence of
optimal solutions and the derivation of optimality systems from which optimal controls
and states may be deduced. Others present formal derivations of optimality systems,
define algorithms for the approximation of solutions of these systems, and the results of
numerical experiments. The objective functionals considered in most of these papers
differ from the one considered here, although in many cases, including the one of
this paper, the analysis can be extended. Furthermore, in much of the literature,
controls are assumed to be separable, i.e., to be the product of a function of time
and a function of the space variables; in some cases the second function is assumed
known so that control is effected only through a function depending on time. Finally,
in some papers, the optimal control problems are set in function spaces that are not
practical for numerical approximations.
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For example, in [1], partial results about optimal boundary control problems are
given. The formulation is not suitable for some applications and the function space
proposed for the solution may not allow easy finite element implementations. More
consistent are the results in [16] for the drag minimization problem in unbounded
domains. In that paper, the method used for the derivation of the optimality system
is different from the one used here. Their analyses also apply to bounded domains and
the method can be applied with small changes to other cost functionals. However,
the function spaces used there are again not useful in practical calculations and no
numerical algorithms or numerical analyses are given. In [4], algorithmic issues are
discussed and numerical experiments are presented for separable boundary controls,
but no numerical analyses are given.

The aim of this paper is to provide a complete and consistent analysis of an
optimal boundary control problem for the Navier–Stokes equations and to present
the results of some simple numerical experiments. The mathematical framework of
this paper, as well as the algorithms developed and analyzed, can be extended to a
broad class of practical boundary control problems for partial differential equations
in bounded domains.

We now describe the problem of time-dependent boundary control for the Navier–
Stokes system that models the velocity tracking problem through a quadratic func-
tional. This problem reflects the desire to steer, over time, a candidate velocity field
�u to a given target velocity field �U by appropriately controlling the velocity along a
portion of the boundary of the flow domain. We consider a two-dimensional flow over
the time interval [0, T ] in the physical domain Ω with boundary Γ with control effected
over Γc ⊂ Γ. The equations considered here are the nondimensional incompressible
Navier–Stokes equations

�ut + (�u · ∇)�u− ν∆�u+∇p = �0 in (0, T )× Ω,

∇ · �u = 0 in (0, T )× Ω,

�u = �g on (0, T )× Γc,

�u = �0 on (0, T )× (Γ \ Γc)

(1)

with initial velocity �u(0, �x) = �u0(�x). The vector �u = (u1, u2) denotes the velocity,
p the pressure, and ν the constant kinematic viscosity coefficient. We note that
for appropriate nondimensionalizations, the Reynolds number is equal to 1/ν. The
boundary velocity control is denoted by �g and is required to satisfy the compatibility
conditions ∫

Γc

�g · �n d�x = 0,(2)

where �n denotes the unit outward normal vector along Γ, and

�g|t=0 = �u0|Γc .(3)

Thus, the control is required to effect zero mass flow across the boundary and to
match, at the initial time, the initial flow �u0 on the boundary. The first of these is
necessary in view of the incompressibility condition and the second in order to obtain
the appropriate regularity for the solution of the Navier–Stokes system.
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The optimal control problem is formulated as follows:
find a boundary control �g and a velocity field �u such that the cost functional

J (�u,�g) = α

2

∫ T

0

∫
Ω

|�u− �U |2 d�xdt+ β

2

∫ T

0

∫
Γc

(|�g|2 + β1|�gt|2 + β2|�gx|2) d�xdt(4)

is minimized subject to (�u,�g) satisfying (1)–(2).

The minimization of the first term involving (�u− �U) in (4) is the real goal of the
velocity tracking problem; the other terms have been introduced in order to bound the
control function and to prove the existence of an optimal control. We can effectively
limit the size of the control through an appropriate choice of the positive coefficients
β, β1, and β2.

This paper is organized as follows. In the remainder of this section we introduce
some notation and results that will be useful in what follows. In section 2, we give a
precise definition of the optimal control problem and prove the existence of optimal
solutions. Also, first-order necessary conditions are derived and optimal solutions
are characterized as solution of a system of partial differential equations. Semidis-
cretizations in time and full space-time discretizations are treated in sections 3 and 4,
respectively. Issues related to the numerical implementation of the fully discrete algo-
rithms are discussed in section 5 and the results of some computational experiments
are presented in section 6.

1.1. Notation and preliminary results. We introduce the following standard
notations over a bounded, connected, open set Ω in R

2 with boundary Γ ∈ C2. Let
�n = (n1, n2) and �τ denote the unit normal and tangent vectors, respectively. Let
I = (0, T ), Q = I × Ω, S = I × Γ, and Sc = I × Γc, where Γc denotes the part of the
boundary on which control is applied. Also, we denote Ω0 = Ω×{0} and Γ0 = Γ×{0}.

We shall use the standard notations for the Sobolev spaces (and their vector-
valued, i.e., R

2-valued, counterparts) Hm(Ω) with norm ‖ · ‖m; we also use the nota-
tions L2(Ω) = H0(Ω) with ‖ · ‖ = ‖ · ‖0 and D(Ω) for the space of distributions. Let
Hm

0 (Ω) denote the closure of C∞
0 (Ω) under the norm ‖ · ‖m and H−m

0 (Ω) denote the
dual space of Hm

0 (Ω). We introduce the solenoidal spaces V(Ω), V (Ω), and W (Ω) as

V(Ω) = {�u ∈ C∞
0 (Ω) : ∇ · �u = 0},

V (Ω) = {�u ∈ H1
0 (Ω) : ∇ · �u = 0},

W (Ω) = {�u ∈ L2(Ω) : ∇ · �u = 0}.
The dual space of V (Ω) is denoted by V (Ω)∗. Also, we define

L2
0(Ω) =

{
p ∈ L2(Ω) :

∫
Ω

p d�x = 0

}
.

Let X be a Banach space and (a, b) an open set of R. We denote by Lp((a, b);X)
(1 ≤ p <∞) the space of functions f(t) : (a, b)→ X such that f is measurable and

‖f‖Lp((a,b);X) =

(∫ b

a

‖f(t)‖pX
)1/p

is finite. We also denote by L∞((a, b);X) the space of functions f from (a, b) into X
such that f is measurable and is bounded almost everywhere (a.e.) over (a, b) and we
set

‖f‖L∞((a,b);X) = inf
‖f(t)‖≤Ma.e.

(M).
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We define the following anisotropic Sobolev spaces. Let r and s ≥ 0 and Q =
(a, b)× Ω. We let

Hr,s(Q) = L2((a, b);Hr(Ω)) ∩Hs((a, b);L2(Ω))(5)

with the norm

‖u‖Hr,s = (‖u‖2L2((a,b);Hr) + ‖u‖2Hs((a,b);L2))
1/2.

For details about these spaces, see, e.g., [2], [12], [17], [19], and [28].
In order to define a weak form of the Navier–Stokes equations, we introduce two

continuous bilinear forms

a(�u,�v) = 2ν

n∑
i,j=1

∫
Ω

Dij(�u)Dij(�v) d�x ∀ �u, �v ∈ H1(Ω),(6)

b(�v, q) = −
∫

Ω

q∇ · �v d�x ∀ q ∈ L2(Ω), ∀�v ∈ H1(Ω),(7)

where Dij(�v) =
1
2 (∂vi/∂xj + ∂vj/∂xi), and the continuous trilinear form

c(�w; �u,�v) =

n∑
i,j=1

∫
Ω

wj

(
∂ui
∂xj

)
vi d�x ∀ �w, �u, �v ∈ H1(Ω).

We will also make use the following operators:

A : H1(Ω)→ H−1(Ω)(8)

〈A�u,�v〉 = a(�u,�v) ∀ �u ∈ H1(Ω), ∀�v ∈ H1
0 (Ω),

C : H1(Ω)×H1(Ω)→ H−1(Ω)(9)

〈C(�w)�u,�v〉 = c(�w; �u,�v) ∀ �w, �u ∈ H1(Ω), ∀�v ∈ H1
0 (Ω),

B : H1(Ω)→ L2
0(Ω)(10)

〈B�u, p〉 = b(�u, p) ∀ p ∈ L2
0(Ω), ∀ �u ∈ H1(Ω),

B∗ : L2
0(Ω)→ H−1(Ω)(11)

〈�u,B∗p〉 = b(�u, p) ∀ p ∈ L2
0(Ω), ∀ �u ∈ H1

0 (Ω).

We will denote by πA and πC the projections of these operators on V (Ω).
In the rest of the paper, we limit our domain Ω ⊂ R

2 to be an open bounded set
with simply connected boundary Γ ∈ C2. We define

curl(H2)(Ω) =

{
�v ∈ H1(Ω) : ∇ · �v = 0,

∫
Γ

�v · �n d�x = 0

}
,

H1
n(Γ) =

{
�g ∈ H1(Γ) :

∫
Γ

�g · �n d�x = 0

}
,

H1
n0(Γc) = H1

0 (Γc) ∩H1
n(Γc),

where Γc is part of the boundary Γ. The set curl(H2)(Ω) is a closed subspace of
H1(Ω), and H1

n(Γ) and H1
n0(Γ) are closed subspaces of H1(Γ). For details concerning

these subspaces, see, e.g., [12]. We remark that the space H1(Γ) can be decomposed
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in H1
n(Γ) ⊕ (H1

n(Γ))
⊥, where (H1

n(Γ))
⊥ is the space of vectors normal to the surface

with constant length. If �g ∈ H1(Γ), one can write �g = �g1 + �g2, where

�g2 = a�n, a =

∫
Γ
�g · �n d�x

µ(Γ)
,

�g1 = �τ(�g · �τ) + �n(�g · �n− a),

where �g1 ∈ H1
n(Γ) and �g2 ∈ (H1

n(Γ))
⊥.

Some useful properties of the trilinear form c(�u;�v, �w) can be summarized as fol-
lows (see [1] and [29]):

(i){
c(�u;�v, �w) = −c(�u; �w,�v) ∀ �u ∈ V (Ω), ∀�v, �w ∈ H1(Ω),
c(�u;�v, �w) = −c(�u; �w,�v) ∀ �u ∈ curl(H2)(Ω), ∀�v ∈ H1(Ω), ∀ �w ∈ H1

0 (Ω),
(12)

(ii){
c(�u;�v,�v) = 0 ∀ �u ∈ V (Ω), ∀�v ∈ H1(Ω),
c(�u;�v,�v) = 0 ∀ �u ∈ curl(H2)(Ω), ∀�v ∈ H1

0 (Ω),
(13)

(iii){ |c(�u;�v, �w)| ≤ √2‖�u‖1/2‖∇�u‖1/2‖�w‖1/2‖∇�w‖1/2‖∇�v‖ ∀ �u,�v, �w ∈ H1(Ω),
|c(�u;�v, �w)| ≤ C‖�u‖1‖�v‖1‖�w‖1 ∀ �u,�v, �w ∈ H1(Ω),

(14)

where C is independent of the functions �u,�v, and �w.
We remark that (iii) cannot be extended to a three-dimensional domain. Since we

shall make extensive use of this result, all our results will hold only for two-dimensional
domains.

The form c(�u; �u, �w) is differentiable in �u from V (Ω) into V (Ω)∗. We denote by
c′(�u;�v, �w) its variation with respect to a variation �v in �u and by c∗(�u;�v, �w) the adjoint
of c(�v; �u, �w) for the duality between V (Ω) and V (Ω)∗. For details about these derived
forms, one may refer to [1].

In the rest of the paper we shall use γ and γk to denote trace operators, i.e.,
γ �f = γ0

�f = �fΓ and γ0∂
k
n
�f = γk �f , where ∂n �f = n1∂1

�f + n2∂2
�f, with ∂j �f = ∂ �f/∂xj .

2. Formulation and analysis of the optimal control problem.

2.1. Weak formulation of the optimal control problem. We consider an
open bounded set Ω ⊂ R

2 with a boundary Γ ∈ C2. �U(t, �x) is said to be in the set of
admissible target velocities Uad if{

�U = �U(t, �x) ∈ C([0, T ];H1(Ω)),

�F�U (t, �x) ∈ L∞((0, T );L2(Ω)),
(15)

where �F�U = �Ut − ν∇2�U + (�U · �∇)�U .
Let �u ∈ L2((0, T );H1(Ω)) and p ∈ L2((0, T );L2

0(Ω)) denote the state variables,
i.e., the velocity and pressure fields, respectively. Let the boundary control �g belong to
L2((0, T );H1

n0(Γc)) with �gt ∈ L2((0, T );L2(Γc)). The state variables are constrained
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to satisfy the weak form of the Navier–Stokes system (1) for almost all t in (0, T ), i.e.,

〈�ut, �v〉+ νa(�u,�v) + c(�u; �u,�v) + b(�v, p) = 0 ∀�v ∈ H1
0 (Ω),

b(�u, q) = 0 ∀ q ∈ L2
0(Ω),

(�u,�s )Γ = (�g(t, �x), �s )Γc ∀�s ∈ H−1/2(Γ),

�u(0, �x) = �u0(�x) ∈ curl(H2)(Ω).

(16)

More precisely, let �g ∈ H1,1(Sc) ∩ L2((0, T );H1
n0(Γc)) and �u0,∈ curl(H2)(Ω). Then,

(�u, p) ∈ L2((0, T );H1(Ω))×L2((0, T );L2
0(Ω)) is called a weak solution for the Navier–

Stokes equations if it satisfies (16).
If �u is a solution of (1), then it is also solution of the weak formulation (16).

If �u is solution of (16), then it satisfies (1) in the sense of distributions on (0, T ).
If �g, �u0 are given as above, then we can show that there exists a unique admissible
weak solution (�u, p) of (16) such that �u ∈ L∞((0, T );W (Ω)) ∩ L2((0, T );H1(Ω)) and
�ut ∈ L2((0, T );H−1(Ω)); i.e, it is a.e. equal to a continuous function [12].

Theorem 2.1. Let Ω ⊂ R
2 be an open, bounded domain with boundary Γ of

class C2. Let �g(t, �x) be a function belonging to H1/2,1(S) satisfying the compatibility
conditions ∫

Γ

�g · �n dΓ = 0,(17)

�g(0, �x) = �u0|Γ.(18)

Then, there exists a unique �u ∈ L2((0, T );H1(Ω)) ∩ L∞((0, T );L2(Ω)) and p ∈
L2((0, T );L2

0(Ω)) that are the solution of the nonhomogeneous Navier–Stokes prob-
lem 

〈�ut, �v〉+ ν a(�u,�v) + c(�u; �u,�v) + b(�v, p) = 0 ∀�v ∈ H1
0 (Ω),

b(�u, q) = 0 ∀ q ∈ L2
0(Ω),

�u = �g(t, �x) ∀ �x ∈ Γ,

�u(0, �x) = �u0(�x) ∈ curl(H2)(Ω)

(19)

for almost all t ∈ (0, T ). Moreover,

‖�u‖2L2((0,T );H1) + ‖�u‖2L∞((0,T );L2) ≤ K(‖�g‖2H1/2,1(S) + ‖�u0‖2H1/2(Γ)),(20)

where K depends on �g.
A proof can be found in [29]. It is worthwhile to recall that that if ‖�g‖2

H1/2,1(S)
is

uniformly bounded, then also the norms on the left-hand side of (20) are uniformly
bounded.

From the previous discussion we can define more precisely the set of admissible
solutions which we denote by Ad.

Given T > 0 , �u0 ∈ curl(H2)(Ω), and �U ∈ Uad, then (�u, p,�g) is called
an admissible solution for the optimal control problem if (�u, p,�g) ∈
L2((0, T );H1(Ω))×L2((0, T );L2

0(Ω))× ∈ H1,1(Sc)∩L2(0, T ;H1
n0(Γc))

is a solution of (16), the control �g satisfies the compatibility condi-
tions (17)–(18), and the functional J (�u,�g) is bounded.
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The optimal control problem can then be formulated as follows:
given �u0 ∈ curl(H2)(Ω) and �U ∈ Uad, find (�u, p,�g) ∈ Ad such that
the control �g minimizes the cost functional

J (�u,�g) = α

2

∫ T

0

∫
Ω

(�u− �U)2 d�xdt+
β

2

∫ T

0

∫
Γc

(�g 2 + β1�g
2
x + β2�g

2
t ) d�xdt(21)

with α, β, β1, β2 > 0.
The first term represents the goal of our optimization and the second term is the
penalty term necessary to regularize the solution. The requirement that β must
be positive has similarities with the distributed control case; see, e.g., [1] and [22].
The requirement that β1, β2 should be different from zero is necessary if we want
�g ∈ H1,1(Sc).

2.2. Existence of an optimal solution. In this section, we prove that the
optimal control problem (21) is well posed and has at least one solution.

Theorem 2.2. Given T > 0 and �u0 ∈ curl(H2)(Ω), then there exists a solution
(�u, p,�g) ∈ Ad of the optimal control problem (21).

Proof. We consider the following equivalent problem. Let �g ∈ H1,1(Sc)∩L2(0, T ;
H1

n0(Γc)) and (ũ, p̃) satisfy the linear Stokes equation

〈ũt, �v〉+ νa(ũ, �v) + b(�v, p̃) = 0 ∀�v ∈ H1
0 (Ω),

b(ũ, q) = 0 ∀ q ∈ L2
0(Ω),

(ũ, �s )Γ = (�g(t, �x), �s )Γc ∀�s ∈ H−1/2(Γ),

ũ(0, �x) = u0 ∈ curl(H2)(Ω).

(22)

The problem is now to find ũ and a solution (û, p̂) of the system
〈ût, �v〉+ νa(û, �v) + c(û; û, �v) + c(ũ; ũ, �v)

+ c(û; ũ, �v) + c(ũ; û, �v) + b(�v, p̂) = 0 ∀�v ∈ H1
0 (Ω),

û ∈ V (Ω),

(23)

such that the control �g minimizes the cost functional

J (ũ+ û, �g) =
α

2

∫ T

0

∫
Ω

(ũ+ û− �U)2 d�xdt+
β

2

∫ T

0

∫
Γc

(�g 2 + β1�g
2
t + β2�g

2
x ) d�xdt.(24)

An admissible solution can be found by solving the above systems with boundary
conditions �g = γ�u0 ∀t ∈ [0, T ]. Since the admissible set is not empty and the set
of values assumed by the functional is bounded from below, let �gn be a minimizing
sequence for the problem in (22)–(24) and set ũn = ũ(�gn) and ûn = û(ũn, �gn). In the
rest of the proof, we denote gt by g′. The sequences {�gn} and {�g′n} are uniformly
bounded in L2((0, T );H1

n0(Γc)) and L2((0, T );L2(Γc)), respectively; in fact we can
easily choose the sequences such that J (�un, �gn) ≤ M ∀n, where M is the value of
the functional for an admissible solution. The boundary velocity ũ is thus uniformly

bounded in L2((0, T );H
1/2
0 (Γc)) and the corresponding solutions ũn and ûn are uni-

formly bounded in the set L∞((0, T );L2(Ω)) ∩L2((0, T );H1(Ω)). Hence, there is a
(ũ, û, �g) and a subsequence of (ũm, ûm, �gm) that converges weakly to (ũ, û, �g). We
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write

�gm → �g in L2((0, T );H1
n0(Γc)) weakly,

�g′m → �g′ in L2((0, T );L2(Γc)) weakly,
ũm → ũ in L2((0, T );H1(Ω)) weakly,
ûm → û in L2((0, T );V (Ω)) weakly,
ûm → û in L∞((0, T );W (Ω)) ∗-weakly.

Now, (ũ, û, �g) satisfies the system of (22)–(23) and minimizes the functional. In fact,
by the lower semicontinuity of the functional (24), we have

J (ũ+ û, �g) ≤ lim inf
m→∞ J (ũm + ûm, �gm).

Let �w be in V(Ω) and ψ(t) be a continuously differentiable function on [0, T ] with
ψ(T ) = 0. We multiply (22) and (23) by ψ(τ)�w and then integrate by parts in τ to
obtain

−
∫ T

0

(ûm, ψ′(τ)�w) dτ + ν

∫ T

0

a(ûm, ψ(τ)�w) dτ +

∫ T

0

c(ûm; ûm, ψ(τ)�w) dτ

=

∫ T

0

(f̂m, ψ(τ)�w) dτ −
∫ T

0

(ũm, ψ′(τ)�w) dτ

+ν

∫ T

0

a(ũm, ψ(τ)�w) dτ = (�u0, ψ(0)�w).

We can pass to the limit inside the linear and the nonlinear terms. In fact, the a priori
estimate (see [11] or [32]) for û in a fractional time order Sobolev space yields that
ûm converges strongly to û ∈ L2((0, T );V (Ω)). If ψ ∈ D((0, T )), the limit (û, ũ, �g)
satisfies the Navier–Stokes equation (22) in the sense of distributions. Since V(Ω) is
dense in H1

0 (Ω), this is still true for any �w ∈ H1
0 (Ω) by a continuity argument.

2.3. First-order necessary conditions. In this section, we derive the first-
order necessary conditions. Let G be the set of all �g ∈ H1,1(S) ∩ L2(0, T ;H1

n0(Γ))
satisfying the compatibility conditions in (17)–(18). For all �g ∈ G, the first-order
necessary condition is available if the map

�u(�g) : G→ L2((0, T );H1(Ω))

is Gâteaux differentiable. In the following theorem, we state and prove the existence
of the Gâteaux derivative for directions h̃ in H1,1(S) ∩ L2(0, T ;H1

n0(Γ)).
Theorem 2.3. Given Ω ∈ C2, �u0 ∈ curl(H2), and �g ∈ G, the mapping

�u(�g) : G→ L2((0, T );H1(Ω))

has a Gâteaux derivative D�u
D�g · h̃ in every direction h̃ ∈ H1,1(S)∩L2(0, T ;H1

n0(Γ)) with

h̃ = 0 at t = 0. Furthermore, w̃(h) = D�u
D�g · h̃ is the solution of the problem

〈w̃t, �v〉+ ν a(w̃, �v) + c(�u; w̃, �v) + c(�w; ũ, �v) + b(�v, p) = 0 ∀�v ∈ H1
0 (Ω),

b(w̃, q) = 0 ∀ q ∈ L2
0(Ω),

(w̃(t, �x), �s ) = (h̃(t, �x), �s ) ∀�s ∈ H−1/2(Γ),

w̃(0, �x) = 0, �x ∈ Ω,

(25)
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where w̃ ∈ L∞((0, T );L2(Ω)) ∩ L2((0, T );H1(Ω)).

Proof. Let �g and h̃ be given in H1,1(S) ∩L2(0, T ;H1
n0(Γ)). We need to prove the

following result:

lim
s→0

‖(�u�g+s̃h
− �u�g)− sw̃(h̃)‖L2((0,T );H1)

|s|

 = 0.(26)

We set ũ = (�u
�g+s̃h

− �u�g)− sw̃(h̃) so that ũ is the solution of the evolution equation
dũ

dt
+ ν(πA)ũ+ (πC)(�u

�g+s̃h
)�u

�g+s̃h
− (πC)(�u�g)�u�g − (πC)′(�u�g)sw̃ = 0,

ũ ∈ V (Ω),

ũ(0, �x) = 0, �x ∈ Ω.

(27)

If we define the function �k ∈ L2((0, T );H−1(Ω)), as follows,

�k = (πC)(�u
�g+s̃h

)�u
�g+s̃h

− (πC)(�u�g)�u�g − (πC)′(�u�g)(�u�g+s̃h
− �u�g),

then (27) becomes 

dũ

dt
+ ν(πA)ũ+ (πC)′(�u�g)ũ = �k,

ũ ∈ V (Ω),

ũ(t, �x) = 0, �x ∈ Γ, t ∈ (0, T ),

ũ(0, �x) = 0, �x ∈ Ω.

(28)

In order to estimate ‖ũ‖1 we recall the following result, which can be easily found
by standard techniques [29]. If �w is the solution of{

�wt + ν(πA)�w + δ[(πC)(�w)�u+ (πC)(�u)�w] + σ(πC)(�w)�w = �f,

�w ∈ V (Ω),
(29)

with initial value �w(0, �x) = 0 and homogeneous boundary condition, then the so-
lution �w for all nonnegative real values of δ and σ has the following property: if
�f ∈ L2((0, T );H−1(Ω)) and �u ∈ L∞((0, T );H1(Ω))∩L2((0, T );V (Ω)), then the solu-
tion �w ∈ L∞((0, T );W (Ω)) ∩ L2((0, T );V (Ω)) and

‖�w‖L∞((0,T );L2) ≤ C1‖�f‖L2((0,T );H−1),(30)

‖�w‖L2((0,T );H1) ≤ C2‖�f‖L2((0,T );H−1),(31)

where C1, C2, given �u, δ, and σ, are constants depending only on Ω and ν.
Using (πC)′(�u) · ũ = (πC)(�u)ũ + (πC)(ũ)�u and (31) with σ = 0, δ = 1, �f = �k ∈

L2((0, T );H−1(Ω)), we obtain∫ T

0

‖ũ‖21 dτ ≤ C2

∫ T

0

‖�k‖2H−1 dτ.
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Now we need to evaluate the right-hand side term above. From the definition of the
norm in H−1(Ω), we have

‖�k‖H−1 = sup
‖�v‖

H1
0
(Ω)

≤1

|〈�k,�v〉|
‖�v‖1 .

The evaluation of the duality pairing on H−1 ×H1
0 yields

|〈�k,�v〉| = |c(�u
�g+s̃h

; �u
�g+s̃h

, �v)− c(�u�g; �u�g, �v)− c′(�u�g; û, �v)|

= |c(�u
�g+s̃h

; �u
�g+s̃h

, �v)− c(�u�g; �u�g, �v)− c(�u�g; û, �v)− c(û; �u�g, �v)|(32)

= |c(û, �u
�g+s̃h

, �v)− c(û; �u�g, �v)| = |c(û; û, �v)| ≤ K‖∇û‖‖û‖‖∇�v‖,
where û = �u

�g+s̃h
− �u�g. Hence, the estimate for ũ yields∫ T

0

‖ũ(t)‖21 dt ≤ KC2

∫ T

0

‖û‖2‖û‖21 dt,(33)

where û = �u
�g+s̃h

− �u�g is the solution of the system

〈ût, �v〉+ νa(û, �v) + c(�u�g; û, �v) + c(û; �u�g, �v)

+ c(û; û, �v) + b(�v, p) = 0 ∀�v ∈ H1(Ω),

b(û, q) = 0 ∀ q ∈ L2
0(Ω),

(û(t, �x), �r) = (sh̃, �r) ∀�r ∈ H−1/2(Γ),

û(0, �x) = 0, �x ∈ Ω.

(34)

Again, in order to estimate the norm of û in L∞((0, T );L2(Ω)) and in L2((0, T );H1(Ω)),
we set û2 = û− û1 and decompose the nonhomogeneous Navier–Stokes equation into
two systems: a linear system defined by the Stokes problem

〈û1t, �v〉+ νa(û1, �v) + b(�v, p) = 0 ∀�v ∈ H1
0 (Ω),

b(û1, q) = 0 ∀ q ∈ L2
0(Ω),

(û1, �r) = (sh̃, �r) ∀�r ∈ H−1/2(Γ),

û1(0, �x) = u0 ∈ curl(H2)(Ω)

(35)

and the homogeneous Navier–Stokes system
〈û2t, �v〉+ νa(û2, �v) + c(�u�g + û1; û2, �v) + c(û2; �u�g + û1, �v)

+ c(û2; û2, �v) = (f̂ , �v) ∀�v ∈ V (Ω),

û2 ∈ V (Ω),

(36)

where f̂ = −c(û1; û1, �v). From the Stokes system, we have û1 ∈ L∞((0, T );L2(Ω))

with ‖û1‖L∞((0,T );L2(Ω)) ≤ sC3‖h̃‖H1,1 and∫ T

0

‖û1‖21 dt ≤ C4|s|2‖h̃‖2H1,1(S)
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so that ‖f̂‖L2((0,T );H−1) ≤ C5|s|2‖h̃‖2H1,1(S). Also, by using (31) (δ = 1, σ = 1) to

estimate the solution in (36), we have ‖û2‖L∞((0,T );L2(Ω)) ≤ sC6‖h̃‖H1,1 and∫ T

0

‖û2‖21 dt ≤ C7|s|2‖h̃‖2H1,1 .

Further details on the above estimates can be found in [29]. Combining the above
inequalities we obtain the estimates

‖û‖L∞((0,T );L2(Ω)) ≤ C8s‖h̃‖H1,1 ,(37) ∫ T

0

‖û(t)‖21 dt ≤ C9|s|2‖h̃‖2H1,1(S).

If we use (37) in (33), (26) is satisfied. From the regularity of h̃, it follows that
w̃ ∈ L∞((0, T );L2(Ω)) ∩L2((0, T );H1(Ω)).

The canonical extension h̃c → h̃ from H1
n0(Γc) to H1(Γ), where

h̃ =

{
h̃c, �x ∈ Γc,

0, �x ∈ Γ \ Γc
is a continuous mapping; see [12]. This allows us to take variations in subdomains
of the boundary, i.e., H1(Γc), and to claim the existence of the Gâteaux deriva-

tive for such configurations. For a variation h̃c ∈ H1,1(Sc) ∩ L2(0, T ;H1
n0(Γc)), i.e.,

h̃c ∈ L2((0, T );H1
n0(Γc)) and h̃ct ∈ L2((0, T );L2(Γc)), of the control �g, the Gâteaux

derivative of the Navier–Stokes system can be written in this following form:

〈w̃t, �v〉+ νa(w̃, �v) + c(w̃; �u,�v) + c(�u; w̃, �v) + b(�v, p1) = 0 ∀�v ∈ H1
0 (Ω),

b(w̃, q) = 0 ∀ q ∈ L2
0(Ω),

(w̃, �s )Γ = (h̃c(t, �x), �s )Γc ∀�s ∈ H−1/2(Γ),

w̃(0, �x) = 0, �x ∈ Ω.

(38)

Now, we can show that that the optimal solution must satisfy a first-order neces-
sary condition. If (�u,�g) is an optimal pair, then for every h̃ ∈ H1,1(Sc)∩L2(0, T ;H1

n0(Γc))
and for every λ ∈ R we have, from the definition of an optimal solution,

J (�g + λh̃) ≥ J (�g).

The above inequality implies

J (�g + λh̃)− J (�g)
λ

≥ 0 if λ ≥ 0 and
J (�g + λh̃)− J (�g)

λ
≤ 0 if λ ≤ 0.

The limit must vanish when λ tends to zero and this leads to the following first-order
necessary condition.

Theorem 2.4. If (�u, p,�g) is an optimal pair for the problem in (21), then the
Gâteaux derivative of J (·, ·) vanishes at (�u, p,�g).

We would like to write the first-order necessary condition in a more explicit form.
In order to do this we need this interesting preliminary result.
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Lemma 2.5. Given Ω ∈ C2 and �u0 ∈ curl(H2)(Ω). Let h̃c be given in H1,1(Sc)∩
L2(0, T ;H1

n0(Γc)) and let w̃(h̃c) be defined by (38). Then, for every h̃2 belonging to
L2((0, T );H1(Ω)), we have∫ T

0

∫
Ω

h̃2w̃(h̃c) d�xdt = −
∫ T

0

∫
Γc

�ξ · �w d�xdt,

where �w is the solution of the adjoint linearized problem

−(�wt, �v) + νa(�w,�v) + c(�v; �u, �w) + c(�u;�v, �w)

+ b(�v, σ) = (h̃2, �v) ∀�v ∈ H1
0 (Ω),

b(�w, q) = 0 ∀ q ∈ L2
0(Ω),

�w = 0 ∀ �x ∈ Γ,

�w(T, �x) = 0 ∀ �x ∈ Ω.

(39)

The function �ξ = (νγ1 �w − σ�n) ∈ L2((0, T );H−1/2(Γc)) is defined by∫
Γc

�ξ · �v d�x = −(�wt, �v) + νa(�w,�v) + c(�v; �u, �w) + c(�u;�v, �w)

+b(�v, σ)− (h̃2, �v) ∀�v ∈ H1(Ω).
(40)

Proof. We remark that h̃2 ∈ L2((0, T );H1(Ω)); then, (39) has a solution �w ∈
L∞((0, T );W (Ω)) ∩L2((0, T );V (Ω)) and σ ∈ L2((0, T );L2

0(Ω)). The definition in (40)
makes sense since the weak formulation of the adjoint equation tested against H1(Ω)

has solution for all h̃2 ∈ (H1)∗(Ω); one can use the same techniques as in [21]. Hence,

there exists a �ξ ∈ H−1/2(Γc), defined by (40). We need to evaluate the integral over

time of (w̃, h̃2). The integral contains h̃2, for which we can use (40). We set �v = w̃ in
that equation and then we integrate by parts with respect to the time variable. We
then obtain∫ T

0

(h̃2, w̃) dt =

∫ T

0

[−(�wt, w̃) + νa(�w, w̃)c(w̃; �u; �w)

+c(�u; w̃, �w) + b(w̃, σ)] dt−
∫ T

0

∫
Γc

�ξ · h̃c d�xdt

=

∫ T

0

[(w̃t, �w) + νa(w̃, �w) + c(w̃; �u; �w) + c(�u; w̃, �w)] dt−
∫ T

0

∫
Γc

�ξ · h̃c d�xdt.

The result then follows from the fact that the first term vanishes; it satisfies (39), the
weak equation for the Gâteaux derivative, with �v = �w.

In the next theorem we shall show that if the Gâteaux derivative vanishes, then
�g must be a solution of a differential equation.

Theorem 2.6. If (�u,�g) is an optimal pair for the problem in (21), then �g ∈
H1,1(Sc) ∩ L2(0, T ;H1

n0(Γc)) with �g(0, �x) = γ�u0 is solution of∫ T

0

∫
Γc

[
�g · h̃+ β1�gt · h̃t + β2∂s�g · ∂sh̃− 1

β
(�ξ · h̃)

]
d�xdt = 0(41)
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∀ h̃ ∈ H1,1(Sc)∩L2(0, T ;H1
n0(Γc)) with h̃ = 0 at t = 0. The function �w ∈ L∞((0, T );

L2(Ω)) ∩ L2((0, T );V (Ω)) and is the solution of the adjoint linearized problem

−(�wt, �v) + ν a(�w,�v) + c(�u;�v, �w) + c(�v; �u, �w)

+ b(�v, σ) = α(�u− �U,�v) ∀ �w ∈ H1
0 (Ω),

b(�w, q) = 0 ∀ q ∈ L2
0(Ω),

�w = 0 ∀ �x ∈ Γ,

�w(T, �x) = 0 ∀ �x ∈ Ω

(42)

and �ξ = (νγ1 �w − σ�n) on Γc is defined by∫
Γc

�ξ · �v d�x =

∫
Γc

(νγ1 �w · γ0�v − σγ0�v · �n) d�x
= −(�wt, �v) + ν a(�w,�v) + c(�u;�v, �w)

+c(�v; �u, �w) + b(�v, σ)− α(�u− �U,�v) ∀�v ∈ H1(Ω).

(43)

Proof. Let (�u,�g) be an optimal solution of the problem (21). We compute the

Gâteaux derivative of the functional J (�u(�g), �g) in the direction of h̃ and then Lemma
2.5 completes the proof. We have

DJ (�u,�g)
D�g

· h̃ = α

∫ T

0

∫
Ω

(�u− �U) ·
(
D�u

D�g
· h̃
)

d�xdt

+β

∫ T

0

∫
Γc

[�g · h̃+ β1�gt · h̃t + β2∂s�g · ∂sh̃] d�xdt.

Now, by using Lemma 2.5, we can integrate by parts to obtain

DJ (�u,�g)
D�g

· h̃ = α

∫ T

0

∫
Ω

(�u− �U) · w̃ d�xdt

+β

∫ T

0

∫
Γc

[�g · h̃+ β1�gt · h̃t + β2∂s�g · ∂sh̃] d�xdt

=

∫ T

0

∫
Γc

[β(�g · h̃+ β1�gt · h̃t + β2∂s�g · ∂sh̃)− (�ξ · h̃)] d�xdt,

where �w is the solution of (42). Now, from Theorem 2.4, if (�u,�g) is a solution of the
optimal control problem, the Gâteaux derivative must vanish. The regularity of �g
follows from the regularity properties shown for γ1 �w.

Equation (41) provides the solution for the boundary control. Since h̃ ∈ H1,1(Sc)∩
L2(0, T ;H1

n0(Γc)) with h̃(0, �x) = 0, we can take h̃ = ψ(t)�r(�x), where ψ ∈ D((0, T ))
with ψ(0) = 0 and �r(�x) in H1

n0(Γc). After integration by parts, we have

β1(�gt(T ), �r)ψ(T ) +

∫ T

0

ψ(t)

[
(�g, �r)− β1(�gtt, �r) + β2(∂s�g, ∂s�r)− 1

β
(�ξ, �r)

]
dt = 0(44)

∀ ψ ∈ D((0, T )) with ψ(0) = 0 and ∀�r ∈ H1
n0(Γc). In this way, a necessary condition

to satisfy (41) is to satisfy the differential equation

(�g, �r)− β1(�gtt, �r) + β2(∂s�g, ∂s�r)− 1

β
(�ξ, �r) = 0 ∀�r ∈ H1

n0(Γc)(45)
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with �g(0, �x) = γ0�u0(�x) and �gt(T, �x) = 0. The first of these boundary conditions is
imposed on candidate minimizers in order to ensure the regularity of solutions; see
(18). The second boundary condition is a result of the minimization process. Now we
can use the space H1

n(Γc) for the test functions. Because of the orthogonality between
H1

n(Γc) and (H1
n)

⊥(Γc), we can write a weak formulation of (45) with test functions
in H1(Γc) by adding an arbitrary constant vector in the normal direction. We recall
that H1(Γc) = H1

n(Γc)⊕ (H1
n(Γc))

⊥ and thus

�r = �r1 − �n

∫
Γc

�r1 · �n d�x

µ(Γc)
,

where �r1 ∈ H1(Γc). Now, the equation can be tested against �r1 ∈ H1
0 (Γc) in the

following weak form:

(�g, �r1)− β1(�gtt, �r1) + β2(∂s�g, ∂s�r1) + k(t)(�n,�r1) =
1

β
(�ξ, �r1) ∀�r1 ∈ H1

0 (Γc),(46)

where k(t) is specified by the constraint∫
Γ

�g · �nd�x = 0.

Finally, in order to obtain the solution of the optimal control problem, we have to
solve the Navier–Stokes system

〈�ut, �v〉+ νa(�u,�v) + c(�u; �u,�v) + b(�v, p) = 0 ∀�v ∈ H1
0 (Ω),

b(�u, q) = 0 ∀ q ∈ L2
0(Ω),

(�u,�s )Γ = (g(t, �x), �s )Γ ∀�s ∈ H−1/2(Γ),

�u(0, �x) = �u0(�x) ∈ curl(H2)(Ω);

(47)

the adjoint system

−〈�wt, �v〉+ νa(�w,�v) + c(�w; �u,�v) + c(�u; �w,�v)

+ b(�v, σ) = α(�u− �U,�v) ∀�v ∈ H1
0 (Ω),

b(�w, q) = 0 ∀ q ∈ L2
0(Ω),

�w = 0 ∀ �x ∈ Γ,

�w(T, �x) = 0 ∀ �x ∈ Ω;

(48)

the boundary control equation

(�g, �r)− β1(�gtt, �r) + β2(∂s�g, ∂s�r) + k(t)(�n,�r)

=
1

β
[(γ1 �w,�r)− (�nσ,�r)] ∀�r ∈ H1

0 (Γc),

�g(0, �x) = γ0�u0 ∀ �x ∈ Γc,

�gt(T, �x) = 0 ∀ �x ∈ Γc,

�g = 0 ∀ �x ∈ ∂Γc;

(49)
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and the compatibility condition for the boundary control∫
Γ

�g · �n dΓ = 0.(50)

Equation (50) is needed in order to calculate the variable k(t). If the control is a
tangential control, then the adjoint pressure and the term with k(t) can be neglected.

3. Semidiscrete-in-time approximations.

3.1. Formulation of the semidiscrete-in-time optimal control problem.
Let σN = {tn}Nn=0 be a partition of [0, T ] into equal intervals ∆t = T/N with t0 = 0
and tN = T . For each fixed ∆t (or N) and for every quantity q(t, �x), we associate
the corresponding set {q(n)(�x)}Nn=0 and a continuous piecewise linear function qN =
qN (t, �x) such as qN (tn, �x) = q(n)(�x) ∀ n = 0, 1, . . . , N. We will denote with boldface
letter q the vector (q(1), q(2), . . . , q(N)) of the discrete time components. Also, the
space XN will be denoted asX. On this partition we define the discrete target velocity
as �U (n)(�x) = �U(tn, �x) for n = 0, 1, . . . , N when �U ∈ Uad. Let Γc be part of the
boundary on which we apply the boundary control �g and

H1
n(Γc) =

{
�g ∈ H1(Γc) :

∫
Γc

�g (n) · �n d�x = 0

}
for n = 1, 2, . . . , N,

and H1
n0(Γ) = H1

0 (Γ \ Γc) ∩ H1
n(Γc) denote the spaces of all the functions that are

compatible with the divergence free motion of the fluid. We remark that the sub-
spaces H1

n0(Γ) and H1
n(Γ) are closed subspaces of H1(Γ) and the space H1(Γ) can

be decomposed in H1
n(Γ) ⊕ (H1

n)
⊥(Γ). We assume no-slip boundary conditions on

the rest of the boundary Γ \ Γc. Hence, the component of the velocity �u (n) on the
boundary is the canonical extension of �g (n) from H1

n(Γc) to H1(Γ). We recall that this
extension is a continuous map. The state variables �u (n) ∈ H1

0 (Ω) and p(n) ∈ L2
0(Ω)

are constrained to satisfy the semidiscrete Navier–Stokes equations

1
∆t (�u

(n) − �u (n−1), �v) + νa(�u (n), �v)

+ c(�u (n); �u (n), �v) + b(�v, p(n)) = 0 ∀�v ∈ H1
0 (Ω),

b(�u (n), q) = 0 ∀ q ∈ L2
0(Ω),

(�u (n)(�x), �s )Γ = (�g (n)(�x), �s )Γc ∀�s ∈ H−1/2(Γ),

(51)

for n = 1, 2, . . . , N with �u (0) = �u0(�x) ∈ curl(H2)(Ω).
Optimization is achieved by means of the minimization of the discretized func-

tional

JN (�u, �g) =
α

2

N∑
n=1

‖�u (n) − �U (n)‖2∆t

+
β

2

N∑
n=1

[
‖�g (n)‖2Γc∆t+ β1‖∂s�g (n)‖2Γc∆t+ β2‖�g (n) − �g (n−1) ‖2Γc

]
.

(52)

Of course, if ∆t tends to zero, this functional tends to the corresponding continuous
functional (4).

The admissibility set Aad is defined by

Aad = {(�u,p, �g) ∈ H1(Ω)× L2
0(Ω)×H1

n0(Γc) such that (�u,p, �g) is

solution of (51), �g (0) = γ�u0, and the functional in (52) is bounded }.
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The formulation of the optimal control problem in the semidiscrete approximation
is given as follows:

given ∆t = T/N, �u0 ∈ curl(H2)(Ω), and �U ∈ Uad, then (�u,p, �g) ∈ Aad

is called an optimal solution if there exists ε > 0 such that

JN (�u, �g) ≤ JN (ũ, h̃) ∀ h̃ ∈ H1
n0(53)

whenever ‖�g (n) − h̃(n)‖Γc ≤ ε, with n = 1, 2, . . . , N.
For the semidiscrete Navier–Stokes nonhomogeneous boundary problem, one can

prove the following theorem [29].
Theorem 3.1. Let ∆t = T/N and �u0 ∈ curl(H2)(Ω). Let ε > 0, �g ∈ H1

n0(Ω)

such that
∑N

i=1(‖�g (n)‖21∆t + ‖�g (n) − �g (n−1)‖2) ≤ ε, i.e., �gN and �g ′N are uniformly
bounded by ε in L2((0, T );H1(Γc)) and in L2((0, T );L2(Γc)), respectively. Then, there
exists a function �u ∈ H1(Ω) that is a solution of the system

1
∆t (�u

(n) − �u (n−1), �v) + νa(�u (n), �v) + c(�u (n); �u (n), �v)

+ b(�v, p(n)) = 0 ∀�v ∈ H1
0 (Ω), for n = 1, . . . , N,

b(�u (n), q) = 0 ∀ q ∈ L2
0(Ω), for n = 1, . . . , N,

�u (n)(�x) = �g (n) for �x ∈ Γc, for n = 1, . . . , N,

�u (n)(�x) = 0 for �x ∈ Γ \ Γc, for n = 1, . . . , N,

�u (0) = �u0(�x) ∈ curl(H2)(Ω),

(54)

with the following estimates:

‖�u (n)‖21 ≤ K, n = 1, 2, . . . , N,(55)
N∑
n=1

‖∇�u (n)‖2∆t ≤ K,(56)

N∑
n=1

‖�u (n) − �u (n−1)‖2H−1 ≤ K,(57)

where the constant K is independent of ∆t.
If �g and its time derivative are uniformly bounded, then the existence of solutions

of the semidiscrete-in-time optimal control problem can be proved. This fact is an
easy consequence of the definition of the optimal control problem and the boundedness
of the functional.

Lemma 3.2. Let ∆t = T/N, �u0 ∈ curl(H2)(Ω), and �U ∈ Uad. If (�u, �g) is the
solution of the semidiscrete optimal control problem, then for all β1 and β2 > 0 there
exists a constant C independent of ∆t such that

N∑
n=1

‖�g (n)‖21,Γ∆t ≤ C,(58)

N∑
n=1

‖�g (n) − �g (n−1)‖2Γ ≤ C,(59)

N∑
n=1

‖�u (n)‖2Ω∆t ≤ C.(60)
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Hence, we have that �gN ∈ L2((0, T );H1(Γ)), �g ′N ∈ L2((0, T );L2(Γ)), and �uN ∈
L2((0, T );W (Ω)) ∀ N .

The proof can be obtained by using standard techniques and can be found in [29].
We can recall that if the norm of �gN ∈ L2((0, T );H1(Γ)) and the norm of �g ′N ∈
L2((0, T );L2(Γ)) are uniformly bounded for all N , then �gN is uniformly bounded in
L2((0, T );L2(Γ)) ∀ N. Now we can state and prove the existence of solutions for the
optimal control problem in an open bounded domain Ω with boundary Γ in C2.

Theorem 3.3. Given ∆t = T/N, �u0 ∈ curl(H2)(Ω), and �U ∈ Uad, there exists
a solution (�u,p, �g) ∈ Aad of (51) such that �g minimizes the cost functional.

Proof. The proof proceeds as in the continuous case. Let ∆t = T/N and {�gk}∞k=1

be a minimizing sequence in H1
n0(Γc). Using Theorem 3.1 and the result in (58)–(59),

we find that the corresponding sequence �uk is uniformly bounded in H1(Ω). Now, we
can proceed with a weakly convergent subsequence and show that this subsequence
converges to the solution of the optimal control problem in the semidiscrete approxi-
mation. We can write

�g
(n)
k → �g (n) in H1

0 (Γc) weakly,

�u
(n)
k → û (n) in H1(Ω) weakly

for n = 1, 2, . . . , N. By using the fact that the injection of H1(Ω) into L2(Ω) is com-
pact, the subsequence converges strongly. The lower semicontinuity of the functional
in (52) allows the pair (�u, �g) to minimize the functional. Since we can pass to the
limit in the linear and the nonlinear terms, the pair also satisfies the semidiscrete
Navier–Stokes system (51). In fact, since �uk converges to �u strongly in L2(Ω), then
for any �z ∈ V(Ω), we have

lim
k→∞

c(�uk; �uk,�z) = c(�u; �u,�z) .

Since V(Ω) is dense in H1
0(Ω), this is still true for any �w in H1

0(Ω) by a continuity
argument. This allows us to pass to the limit in the semidiscrete equations and
complete the proof.

3.2. First-order necessary condition. In this section, we derive the first-
order necessary condition in a different way. Denote by B1,B2 the following sets:{

B1 = H1(Ω)× L2
0(Ω)×H1

n0(Γc),
B2 = H−1(Ω)× L2

0(Ω)×H1/2(Γc).
(61)

We define the nonlinear map

M(�u,p, �g) : B1 → B2

as M(�u,p, �g) = (�f , z, �b) if and only if

1
∆t (�u

(n) − �u (n−1), �v) + νa(�u (n), �v) + c(�u (n); �u (n), �v)

+ b(�v, p(n)) = (�f (n), �v) ∀�v ∈ H1
0 (Ω), for n = 1, . . . , N,

b(�u (n), q) = (z(n), q) ∀ q ∈ L2
0(Ω), for n = 1, . . . , N,

(�u (n), �s )Γ − (�g (n), �s )Γc = (�b (n), �s )Γ ∀�s ∈ H−1/2(Γ), for n = 1, . . . , N,

�u (0) = �u0(�x) ∈ curl(H2)(Ω).

(62)
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In the same manner, let ĝ be an optimal solution and define

N(�u,p, �g) : B1 → R×B2

as N(�u,p, �g) = (a,�f , z, �b) if and only if( JN (�u, �g)− JN (û, ĝ)
M(�u,p, �g)

)
=

(
a

(�f , z, �b)

)
.(63)

Thus, the constraints can be expressed as M(�u,p, �g) = (0, 0, 0) and the optimal
control problem can be reformulated as follows:

find (û, p̂, ĝ) and a ≤ 0 such that the equation N(�u,p, ĝ) = (a, 0, 0, 0)
is satisfied for all �g such that ‖�g (n) − ĝ(n)‖ ≤ ε for n = 1, 2, . . . , N
for some ε > 0.

Since we are looking for local minimum points, it is natural to define the operators
M ′(�u,p, �g) and N ′(�u,p, ĝ). Given a (�u,p, �g), we define the linear operator

M ′(�u,p, �g) : B1 → B2

as M ′(�u,p, �g) · (w̃, r, h̃) = (f̄ , z̄, b̄) if and only if

1
∆t (w̃

(n) − w̃(n−1), �v) + νa(w̃(n), �v) + c(w̃(n); �u (n), �v) + c(�u (n), w̃(n), �v)

+b(�v, r(n)) = (f̄ (n), �v) ∀�v ∈ H1
0 (Ω), for n = 1, . . . , N,

b(w̃(n), q) = (z̄ (n), q) ∀q ∈ L2
0(Ω), for n = 1, . . . , N,

(w̃(n), �s )Γ − (h̃(n), �s )Γc = (b̄ (n), �s )Γ ∀�s ∈ H−1/2(Γ), for n = 1, . . . , N,

w̃(0) = �0.

(64)

Let

N ′(�u,p, �g) : B1 → R×B2

be defined as N ′(�u,p, �g) · (ã, w̃, r, h̃) = (ā, f̄ , z̄, b̄) if and only if(
JN ′

(�u, �g)) · (ã, w̃, r, h̃))

M ′(�u,p, �g) · (ã, w̃, r, h̃))

)
=

(
ā
(f̄ , z̄, b̄)

)
.(65)

Now we have to prove that these operators are well defined, i.e., the equations for the
Gâteaux derivatives are well posed and have solutions.

Lemma 3.4. Given ∆t = T/N, �u0 ∈ curl(H2)(Ω), and �u ∈ H1(Ω). Then, we
have

(i) the operator M ′(�u,p, �g) has closed range and is onto in B2;
(ii) the operator N ′(�u,p, �g) has closed range in R×B2.
Proof. (i) We set{

νã(w̃(n), �v) = νa(w̃(n), �v) + 1
∆t (w̃

(n), �v) ∀�v ∈ H1
0 (Ω), n = 1, 2, . . . , N,

(f̃ (n), �v) = (�f (n), �v) + 1
∆t (w̃

(n−1), �v) ∀�v ∈ H1
0 (Ω), n = 1, 2, . . . , N.
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With this notation, the operator M ′(�u,p, �g) can be written as

νã(w̃(n), �v) + c(w̃(n); �u (n), �v)

+ c(�u (n), w̃(n), �v) + b(�v, r(n)) = (f̃ (n), �v) ∀�v ∈ H1
0 (Ω),

b(w̃(n), q) = (z̄ (n), q) ∀ q ∈ L2
0(Ω),

(w̃(n), �s )Γ − (h̃(n), �s )Γc = (b̄ (n), �s )Γ ∀�s ∈ H−1/2(Γ),

(66)

for n = 1, 2, . . . , N with w̃(0) = �0. The function f̃ is still in H−1(Ω) and the range of
M ′ is still the same if Ran(M ′(�u,p, �g)) = B2. This is a steady system and one can
apply the standard techniques for the stationary case; see [21]. Let S be the Stokes
operator

S =

 A B∗

B 0
γ0 0

 .

By the trace theorem, using the ellipticity of A and the inf-sup property, one can
see [8], [17], [18] that the Stokes operator is an isomorphism from H1(Ω) × L2

0(Ω)
→ H−1(Ω) × L2

0(Ω) × H−1/2(Γ). The operator C(�w (n))�u (n) is continuous in �w (n)

from H1/2(Γ) into H−1(Ω) ∀ �u (n) ∈ H1(Ω) and n = 1, 2, . . . , N and thus compact
from H1(Ω) into H−1(Ω). The operator C(�u (n))�w (n) is continuous ∀ �u ∈ H1(Ω)
and ∀ n = 1, 2, . . . , N from H1(Ω) into H−1/2(Γ) and thus compact from H1(Ω) into
H−1(Ω). The perturbation operator

M ′(n)(�u,p, �g) = S(n) +

 C(�u (n))�w (n) + C(�w (n))�u (n)

0
0


is a Fredholm operator ∀ n = 1, 2, . . . , N , i.e., it has a closed range and a finite-
dimensional kernel.

(ii) The operator M ′(�u,p, �g) belongs to L(B1, Ran(M ′(�u,p, �g)) and therefore its

kernel is a closed subspace. We recall that a linear functional �f on a Banach space can
have either Ran(�f) = {0} or Ran(�f) = {R}. Now, N ′(�u,p, �g) acting on the kernel
is either identically zero or onto R. Let X,Y, Z be Banach spaces and A : X → Y
and B : X → Z be linear continuous operators. If the range of B is closed in Z
and the subspace A · ker(B) is closed in Y, then, if we define C : X → Y × Z by
Cx = (Ax,Bx), the range of C is closed in Y ×Z. Applying this result we prove that
Ran(N ′(�u,p, �g)) is a closed set.

The operator N ′(�u,p, �g) cannot be onto. If it were, by the implicit function
theorem, we would have that there exists a solution, which is different from the optimal
solution, that minimizes the functional for every small neighborhood of (û, p̂, ĝ).
This contradicts the hypothesis that (û, p̂, ĝ) is an optimal solution. Therefore the
optimality condition implies the following theorem.

Theorem 3.5. Given ∆t = T/N and �u0 ∈ curl(H2)(Ω). If (û, p̂, ĝ) ∈ (H1(Ω)×
L2

0(Ω) × H1
n0(Γc)) is a solution of the semidiscrete optimal control problem, then the

operator N ′(�u,p, �g) is not onto in R×B2.
In the next theorem, we write the first-order necessary condition and character-

ize the optimal control solution as a solution of the corresponding Euler system of
equations.
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Theorem 3.6. Given ∆t = T/N and �u0 ∈ curl(H2)(Ω). If (û,p, ĝ) ∈ H1(Ω) ×
L2

0(Ω) × H1
n0(Γc) is an optimal solution, i.e., the operator N ′(�u,p, �g) is not onto,

then there exists a nonzero Lagrangian multiplier �w, σσσ,�ξξξ ∈ H1
0(Ω)×L2

0(Ω)×H−1/2(Γ)
satisfying the Euler equations

JN ′
(û, ĝ) · (w̃, r, h̃) +

〈
(�w, σσσ,�ξξξ),M ′(û, p̂, ĝ) · (w̃, r, h̃)

〉
= 0

∀ (w̃, r, h̃) ∈ H1(Ω)× L2
0(Ω)×H1

n0(Γc),(67)

where 〈·, ·〉 denotes the duality pairing between R×B2 and R×B∗
2.

Proof. From Lemma 3.4, the range ofN ′(�u,p, �g) is a closed set and, from Theorem
3.5, this range is a closed proper subspace of R×B2. The Hahn–Banach theorem then
implies that there exists a nonzero element of R×B∗

2 = R×H1
0(Ω)×L2

0(Ω)×H1/2(Γ)

that annihilates the range of N ′(û, p̂, ĝ). One can find an (â, �w, σσσ,�ξξξ) ∈ R×B2
∗ such

that 〈
(ã, f̃ , z̃, b̃), (â, �w, σσσ,�ξξξ)

〉
= 0 ∀ (ã, f̃ , z̃, b̃) ∈ Ran(N ′(û, p̂, ĝ)),

where â is different from zero as this solution is nontrivial, i.e., M ′(û, p̂, ĝ) is onto. If
we set â = 1, we have (67).

3.3. The optimality system. From the first-order necessary condition, we can
further characterize the optimal control as a solution of an differential equation.

Theorem 3.7. Given ∆t = T/N and �u0 ∈ curl(H2)(Ω). Let (�u, �p, �g) ∈ (H1(Ω)×
L2

0(Ω) × H1
n0(Γc)) denote an optimal control solution. Then, the control �g (n) satis-

fying the compatibility conditions

�g (0) = γ0�u0,

∫
Γ

�g (n) · �n d�x = 0 for n = 0, 1, . . . , N

is solution of the system∫
Γc

[
�g (n) · h̃− β1

∆t2
(�g (n+1) − 2�g (n) + �g (n−1)) · h̃+ β2∂s�g

(n) · ∂sh̃+ k(n)�n · h̃
]
d�x

=
1

β

∫
Γc

(�ξ (n) · h̃) d�x ∀h̃ ∈ H1
0 (Γc),

for n = 1, . . . , N − 1 ( �gN = �gN−1 ). The function �ξ ∈ H−1/2(Γc) is defined by∫
Γc

�ξ (n−1) · ṽ d�x =

∫
Γc

(γ1 �w
(n−1) − σ(n−1)�n) · ṽ d�x(68)

= −α(�u (n) − �U (n), ṽ)− 1

∆t
(�w (n) − �w (n−1), ṽ)Ω + νa(�w (n−1), ṽ)

+ c(ṽ; �u(n), �w (n−1)) + c(�u (n); ṽ, �w (n−1)) + b(ṽ, σ(n−1))

∀ṽ ∈ H1(Ω), for n = 1, . . . , N,
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where �w and σσσ satisfies

− 1
∆t (�w

(n) − �w (n−1), �v) + νa(�w (n−1), �v) + c(�w (n−1); �u (n), �v)

+ c(�u (n); �w (n−1), �v) + b(�v, σ(n−1)) = α(�u (n) − �U (n), �v)

∀�v ∈ H1
0 (Ω), for n = 1, . . . , N,

b(�w (n−1), q) = 0 ∀ q ∈ L2
0(Ω), for n = 1, . . . , N,

(�w (n−1), �s ) = 0 ∀�s ∈ H−1/2(Γ), for n = 1, . . . , N,

�w (N) = 0.

(69)

Proof. Given h̃ ∈ H1
n0(Γc), the first-order necessary condition (67) can be written

as

α

N∑
n=1

((�u (n) − �U (n))w̃(n), 1)∆t

+ β

N∑
n=1

∫
Γc

[
�g (n) · h̃(n) +

β1

∆t2
(�g (n) − �g (n−1))(h̃(n) − h̃(n−1)) + β2∂s�g

(n) · ∂sh̃(n)

]
d�x∆t

+
N∑
n=1

(f̄ (n), �w (n))Ω∆t+

N∑
n=1

(z̄ (n), σ(n))Ω∆t+

N∑
n=1

(b̄ (n), �ξ (n))Γ∆t = 0

∀ (f̄ , z̄, b̄) ∈ H−1(Ω)× L2
0(Ω)×H−1/2(Γ). We have

α

N∑
n=1

((�u (n) − �U (n))w̃(n), 1)∆t

+ β

N∑
n=1

∫
Γc

[
�g (n) · h̃(n) +

β1

∆t2
(�g (n) − �g (n−1))(h̃(n) − h̃(n−1)) + β2∂s�g

(n) · ∂sh̃(n)

]
d�x∆t

−
N∑
n=1

[
1

∆t
(w̃(n) − w̃(n−1), �w (n)) + νa(w̃(n), �w (n)) + c(w̃(n); �u (n), �w (n))

+ c(�u (n); w̃(n), �w (n)) + b(�w (n), r(n))

]
∆t+

N∑
n=1

b(w̃(n), σ(n))∆t

+

N∑
n=1

[(�w (n), �ξ (n))Γ − (h̃(n), �ξ (n))Γc ]∆t = 0

∀ (w̃,�r, h̃) ∈ H1(Ω) × L2
0(Ω) × H1

n0(Γ). After integration by parts, we define the

quantity �ξξξ, as in (68), with �w satisfying the adjoint equations in (69). Thus, we write

β1

∆t

∫
Γc

h̃(N)(�g (N) − �g (N−1)) d�x∆t+

N−1∑
n=1

∫
Γc

[�g (n) · h̃(n) + β2∂s�g
(n) · ∂sh̃(n)] d�x∆t

+
N−1∑
n=1

∫
Γc

[
− β1

∆t2
(�g (n+1) − 2�g (n) + �g (n−1))− 1

β
�ξ (n) · h̃(n)

]
d�x∆t = 0.
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As the variation h̃ is independent in the space H1
n0(Γc), we have∫

Γc

[
�g (n) · h̃− β1

∆t2
(�g (n+1) − 2�g (n) + �g (n−1)) · h̃+ β2∂s�g

(n) · ∂sh̃− 1

β
�ξ (n) · h̃

]
d�x = 0

∀h̃ ∈ H1
n0(Γc), n = 1, . . . , N − 1,(70)

with �g (N) = �g (N−1). We recall that H1(Γc) = H1
n(Γc)⊕ (H1

n)
⊥(Γc) and thus

h̃ = h̃1 − �n

∫
Γc

h̃1 · �n d�x

µ(Γc)
,

where h̃1 ∈ H1(Γc). We can write a weak formulation of (70) in the space H1
n(Γc)

and then, by using the above decomposition, write a new formulation in H1(Γc). In
this new formulation a constant vector in the normal direction appears. The weak
formulation in H1

n0(Γc) reads∫
Γc

[
�g

(n)
1 · h̃1 − β1

∆t2
(�g

(n+1)
1 − 2�g

(n)
1 + �g

(n−1)
1 ) · h̃1 + β2∂s�g

(n)
1 · ∂sh̃1

+k(n)�n · h̃1

]
d�x =

1

β

∫
Γc

(�ξ (n) · h̃1) d�x ∀�h1 ∈ H1
0 (Γc), for n = 1, . . . , N − 1.

The constant k(n) can be calculated by using the constraint∫
Γ

�g (n) · �n d�x = 0.

Now, in order to obtain the solution of the semidiscrete-in-time optimal control
problem, we have to solve the semidiscrete Navier–Stokes system

1
∆t (�u

(n) − �u (n−1), �v) + νa(�u (n), �v) + c(�u (n); �u (n), �v)

+ b(�v, p(n)) = 0 ∀�v ∈ H1
0 (Ω), for n = 1, . . . , N,

b(�u (n), q) = 0 ∀ q ∈ L2
0(Ω), for n = 1, . . . , N,

(�u (n), �s )Γ = (�g (n), �s )Γc ∀�s ∈ H−1/2(Γ), for n = 1, . . . , N,

�w (0) = �u0 ∈ curl(H2)(Ω),

(71)

the semidiscrete adjoint system

− 1
∆t (�w

(n) − �w (n−1), �v) + νa(�w (n−1), �v) + c(�u (n);�v, �w (n−1))

+ c(�v; �u (n), �w (n−1)) + b(�v, σ(n−1)) = α(�u (n) − �U (n), �v)

∀�v ∈ H1
0 (Ω), for n = 1, . . . , N,

b(�w (n), q) = 0 ∀ q ∈ L2
0(Ω), for n = 1, . . . , N,

�w (n−1) = 0 on Γ, for n = 1, . . . , N,

�w (N) = 0 in Ω,

(72)
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and the optimality condition

− β1

∆t2 (�g
(n+1) − 2�g (n) + �g (n−1), h̃) + β2(∂s�g

(n), ∂sh̃) + (�g (n), h̃) + k(n)(�n, h̃)

= 1
β (γ1�ω

(n) − �nσ(n), h̃) ∀h̃ ∈ H1
0 (Γc), for n = 1, . . . , N − 1,

(�g (n), �n)Γ = 0 for n = 1, . . . , N − 1,

�g (n) = 0 on Γ \ Γc for n = 1, . . . , N − 1,

�g (0) = γ0�u0 on Γc,

�g(N) = �g (N−1) on Γc.

(73)

4. Fully discrete space-time approximations.

4.1. Assumptions on the finite element spaces. We consider only conform-
ing finite element approximations. Let Xh ⊂ H1(Ω) and Sh ⊂ L2(Ω) be two families
of finite dimensional subspaces parameterized by h that tends to zero. We also denote
Xh

0 = Xh ∩H1
0 (Ω) and Sh

0 = Sh ∩L2
0(Ω). We make the following assumptions on Xh

and Sh

(a) The approximation hypotheses: there exists an integer l and a constant C,
independent of h, �u, and p, such that for 1 ≤ k ≤ l we have

inf
�uh∈Xh

‖�uh − �u‖1 ≤ Chk‖�u‖k+1 ∀ �u ∈ Hk+1(Ω) ∩H1
0 (Ω),(74)

inf
ph∈Sh

‖p− ph‖ ≤ Chk‖p‖k ∀ p ∈ Hk(Ω) ∩ L2
0(Ω).(75)

(b) The inf-sup condition or LBB condition: there exists a constant C ′, indepen-
dent of h, such that

inf
0 �=qh∈Sh

sup
0 �=�uh∈Xh

∫
Ω

qh div�uh dx

‖�uh‖1‖qh‖ ≥ C ′ > 0.(76)

This condition assures the stability of the discrete Navier–Stokes solutions.
To preserve the antisymmetry of the trilinear form c(�u;�v, �w) on the finite element

spaces, we introduce the modified trilinear form (see [32])

c̃(�u;�v, �w) =
1

2
{c(�u;�v, �w)− c(�u; �w,�v)} ∀ �u,�v, �w ∈ H1(Ω),

from which we have{
c̃(�u;�v, �w) = −c̃(�u; �w,�v) ∀ �u,�v, �w ∈ H1(Ω),
c̃(�u;�v,�v) = 0 ∀ �u,�v, �w ∈ H1(Ω)

(77)

and

c(�u;�v, �w) = c̃(�u;�v, �w) ∀ �u ∈ H1
0 (Ω) ∩W (Ω), ∀�v ∈ H1(Ω), ∀�w ∈ H1

0 (Ω).

In the framework of the conforming finite element approximation and only in the
two-dimensional case (see [32]), we have{ |c̃(�u;�v, �w)| ≤ K1‖�u‖1‖�v‖1‖�w‖1,

|c̃(�u;�v, �w)| ≤ K2‖�u‖ 1
2 ‖∇�u‖ 1

2 ‖∇�v‖‖�w‖ 1
2 ‖∇�w‖ 1

2
(78)

∀ �u,�v, �w ∈ H1(Ω).
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Next, let Ph = Xh|Γ, i.e., Ph consists of the restriction, to the boundary Γ,
of functions belonging to Xh. For all choices of conforming finite element space Xh

we then have that Ph ⊂ H−1/2(Γ). For the subspaces Ph = Xh|Γ, we assume the
approximation property: there exists an integer l and a constant C, independent of
h,�s such that for 1 ≤ k ≤ l we have

inf
�sh∈ph

‖�sh − �s ‖−1/2,Γ ≤ Chk‖�u‖k−1/2 ∀�s ∈ Hk−1/2(Γ).(79)

Now, let Qh = Xh|Γc , i.e., Qh consists of the restriction, to the boundary segment
Γc, of the functions belonging toXh. For all choices of conforming finite element spaces
Xh, we have that Qh ⊂ H1(Γc). We define Qh

0 = Qh ∩H1
n0(Γc). If the same type of

polynomials are used in Qh
0 = Qh ∩ (Γc) we have the following.

(c) boundary approximating property: there exists an integer k and a constant C,
independent of h,�s such that for 1 ≤ m ≤ k we have

inf
�sh∈Qh0

‖�sh − �s ‖s,Γc ≤ Chm−s+1/2‖�s ‖m+1/2 ∀�s ∈ H1
n0(Γc), 0 ≤ s ≤ 1.(80)

See [3] and [9] for details concerning the approximation on the boundary.

4.2. Formulation of the fully discrete optimal control approximation.
Let σN = {tn}Nn=0 be a partition of [0, T ] in equal intervals ∆t = T/N with t0 = 0
and tN = T . For each fixed ∆t (or N) and for every quantity q(t, �x), we associate

the corresponding set {q(n)
h }Nn=1. We will denote the vector (q

(1)
h , q

(2)
h , . . . , q

(N)
h ) with

bold-faced letter qh and the space Y N as Y. The continuous linear function �qN
h (t, �x)

is defined by �qN
h (tn, �x) = qh(tn, �x) ∀ n = 0, 1, 2 . . . , N.

Given ∆t = T/N, �g ∈ H1/2(Γ), and �u0 ∈ curl(H2)(Ω), then (�uh,ph) is called a
generalized solution of the fully discrete time-space approximate Navier–Stokes equa-

tions if �u
(n)
h ∈ Xh, p

(n)
h ∈ Sh

0 and (�u
(n)
h , p

(n)
h ) satisfies the following system of equa-

tions: 

1
∆t (�u

(n)
h − �u

(n−1)
h , �vh) + νa(�u

(n)
h , �vh)

+ c̃(�u
(n)
h ; �u

(n)
h , �vh) + b(�vh, p

(n)) = 0 ∀�vh ∈ Xh
0 ,

b(�v
(n)
h , qh) = 0 ∀ qh ∈ Sh

0 ,

(�u
(n)
h , �s)Γ = (�g

(n)
h , �s)Γc ∀�s ∈ Qh

0 ,

(81)

for n = 1, 2, . . . , N , with initial velocity �u
(0)
h = πh�u0(�x).

The formulation of the problem in the fully discrete approximation becomes the
following:

given ∆t = T/N, �u0 ∈ curl(H2)(Ω), and �U ∈ Uad, find (�uh,ph, �gh)

in Xh × Sh
0 × Qh

0 such that (�u
(n)
h , p

(n)
h , �g

(n)
h ) is the solution of (81)

and minimizes the cost function

JN
h (�uh, �gh) =

α

2

N∑
n=1

‖�u (n)
h − �U (n)‖2∆t(82)

+
β

2

N∑
n=1

[‖�g (n)
h ‖2Γc∆t+ β1‖∂s�g (n)

h ‖2Γc∆t+ β2‖(�g (n)
h − �g

(n−1)
h )‖2Γc ],
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with �g (0) = πhγ�u0.
In the above definition, the operator πh approximates the trace of a function in the

corresponding finite element space. In the framework of conforming finite elements,
the existence can be proved by using the same standard techniques. We state the
theorem for completeness.

Theorem 4.1. Given ∆t = T/N, �u0 ∈ curl(H2)(Ω), and �U ∈ Uad, there exists a
solution (�uh,ph, �gh) in Xh × Sh

0 ×Qh
0 of the fully discrete optimal control problem.

4.3. First-order necessary condition and the optimality system. We can
derive the first-order necessary condition, the Euler equation, and the final charac-
terization for the optimal control. All these results can be obtained proceeding in a
manner similar to the semidiscrete case. For conforming finite elements we can state
the following theorem.

Theorem 4.2. Given ∆t = T/N and �u0 ∈ curl(H2)(Ω). Let (�uh, σσσh, �gh) ∈ Xh×
Sh

0× Qh
0 denote an optimal control solution of the discrete optimal control problem.

Then, the control �gh satisfies the following system:∫
Γc

[
�g

(n)
h · r̃h − β1

∆t2
(�g

(n+1)
h − 2�g

(n)
h + �g

(n−1)
h ) · r̃h + β2∂s�g

(n)
h · ∂sr̃h

+ k(n)�n · r̃h − 1

β
(�ξ

(n)
h · r̃h)

]
d�xdt = 0 for n = 1, . . . , N − 1,

with ∫
Γ

�g
(n)
h · �n d�x = 0 for n = 1, . . . , N − 1,

�g (0) = γ0�u0 and �g (N) = �g (N−1) on Γc,

where �ξξξh ∈ Ph(Γ) is defined by

(�ξ
(n−1)
h , ṽh)Γc =

(
∂ �w

(n−1)
h

∂n
− σ

(n−1)
h �n, ṽh

)
Γc

= −α(�u (n)
h − �U (n), �vh)Ω − 1

∆t
(�w

(n)
h − �w

(n−1)
h , ṽh)Ω

+νa(�w
(n−1)
h , ṽh) + c̃(ṽh; �u

(n)
h , �w

(n−1)
h ) + c̃(�u

(n)
h ; ṽh, �w

(n−1)
h )

+b(ṽh, σ
(n−1)
h ) ∀ ṽh ∈ Xh(Ω), for n = 1, . . . , N,

and �wh and σσσh satisfy

− 1
∆t (�w

(n)
h − �w

(n−1)
h , �vh) + νa(�w

(n−1)
h , �vh) + c̃(�vh; �u

(n)
h , �w

(n−1)
h ) + c̃(�u

(n)
h , �vh; �w

(n−1)
h )

+b(�vh, σ
(n−1)
h ) = α(�u

(n)
h − �U (n), �vh) ∀�vh ∈ Xh

0 (Ω), for n = 1, . . . , N,

b(�w
(n−1)
h , qh) = 0 ∀ q ∈ Sh

0 (Ω) for n = 1, . . . , N,

�w
(n−1)
h = 0 on Γ for n = 1, . . . , N,

�w
(N)
h = 0.

We remark that an optimal solution is a solution of the above system but among
the solutions of this system there may be solutions that are not optimal.
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5. Implementation of fully discrete space-time approximations. In our
numerical tests we consider only tangential control. This enables us to dispense with
the unknown function k(n) in the optimality system. The equations for tangential
control consist of

(a) the Navier–Stokes system

1
∆t (�u

(n)
h − �u

(n−1)
h , �vh) + νa(�u

(n)
h , �vh) + c̃(�u

(n)
h ; �u

(n)
h , �vh)

+b(�vh, p
(n)
h ) = 0 ∀�vh ∈ Xh

0 (Ω), for n = 1, . . . , N,

b(�u
(n)
h , qh) = 0 ∀qh ∈ Sh

0 (Ω), for n = 1, . . . , N,

(�u
(n)
h , �sh)Γ = (�g

(n)
h , �sh)Γc ∀�sh ∈ Ph(Γ), for n = 1, . . . , N,

�w
(0)
h = πh�u0 in Ω;

(83)

(b) the adjoint system

− 1
∆t (�w

(n)
h − �w

(n−1)
h , �vh) + νa(�w

(n−1)
h , �vh) + c̃(�u

(n)
h ;�vh, �w

(n−1)
h )

+c̃(�vh; �u
(n)
h , �w

(n−1)
h ) + b(�vh, σ

(n−1)
h ) = α(�u

(n)
h − �U (n), �vh)

∀�vh ∈ Xh
0 (Ω), for n = 1, . . . , N,

b(�w
(n−1)
h , qh) = 0 ∀qh ∈ Sh

0 (Ω), for n = 1, . . . , N,

�w
(n−1)
h = 0 on Γ, for n = 1, . . . , N,

�w
(N)
h = 0 in Ω;

(84)

(c) the control equation

− β1

∆t2 (
�λ

(n+1)
h − 2�λ

(n)
h + �λ

(n−1)
h , �rh) + β2(∂s�λ

(n)
h , ∂s�rh) + (�λ

(n)
h , �rh)

= 1
β (

∂ �w (n)

∂n , �rh) ∀�rh ∈ Qh
0 (Γc), for n = 1, . . . , N − 1,

�λ
(n)
h = 0 on Γ \ Γc, for n = 1, . . . , N − 1,

�λ
(0)
h = πhγ0�u0 on Γc,

�λ
(N)
h = �λ

(N−1)
h on Γc;

(85)

(d) the compatibility boundary equation

�λ (n) = �g (n) for n = 1, . . . , N,(86)

where it is understood that �g (n) is a tangential vector.
In order to solve this numerical system, let us consider the gradient method for

the optimal control problem. We have to split the system into three parts in order to
apply the algorithm: the Navier–Stokes system (83), the adjoint system (84), and the
control equation (85). In the gradient algorithm, we satisfy the relation in (86) only
when convergence is achieved. Let JN

h (k) = JN
h (�uh(k), �gh(k)) and τ be the tolerance

required for the convergence of the functional.
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The gradient algorithm we study proceeds as follows:
(a) initialization:

(i) given �gh(0), τ , and ε = 1;
(ii) solve (83) with �gh(0) for �uh(0);
(iii) evaluate JN

h (0);
(b) main loop:

(iv) solve (84) with �uh(k − 1) for �wh(k);

(v) solve (85) with �wh(k) for �λλλh(k);

(vi) set �g
(n)
h (k) = �g

(n)
h (k − 1)− ε(�g

(n)
h (k − 1)− �λ

(n)
h (k))

(vii) solve (83) for �uh(k);
(viii) evaluate JN

h (k);
(ix) if JN

h (k) ≤ JN
h (k − 1), set ε = 1.5ε and go to (iv);

if JN
h (k) > JN

h (k − 1), set ε = 0.5ε and go to (vi).
The algorithm stops when |JN

h (k)− JN
h (k − 1)|/JN

h (k) ≤ τ. We can show that this
gradient algorithm converges to a solution of the discrete optimality system.

Theorem 5.1. Let (�uh(k), �wh(k),ph(k), σσσh(k), �gh(k)) be the kth iterate of the
gradient algorithm and let (�uh, �wh,ph, σσσh, �gh) denote a solution of the fully discrete
optimality system (83)–(85). Then, for ∆t sufficiently small, there exists a ball B ∈
Qh

0 , whose radius depends on the ratio α/β, such that, if �gh(0) ∈ B, the solution of
the gradient algorithm converges to (�uh, �wh,ph, σσσh, �gh) as k →∞.

Proof. The theorem follows if we make use of this classical result on the gradient
algorithm. Let X be a Hilbert space with norm ‖ · ‖ and let J (·) be a real-valued
functional on X. Suppose that J (·) is of class C2; suppose that x̂ is a local minimizer
of J (·); suppose that there exists a ball B of X, centered at x̂, such that there exist
two real numbers c1 and c2 such that ∀ g̃ ∈ B and ∀ δx1, δx2 ∈ X

J ′′(x̃)(δx1, δx2) ≤ c1‖δx1‖‖δx2‖ and c2‖δx1‖2 ≤ J ′′(x̃)(δx1, δx1),(87)

where J ′′(x̃)(δx1, δx2) is the bilinear form associated with the second derivatives of
J (·); and suppose that ρk is chosen so that

0 < a ≤ ρk ≤ b <
2c2
c1

∀ k(88)

for some positive numbers a and b. Then, the iterates of the gradient algorithm

x(k + 1) = x(k)− ρk∇J (x(k)), k = 0, 1, 2 . . . ,

converge to x̂ for any initial iterate x(0) ∈ B. For details and proof see, e.g., [10] or
[20].

In order to bound the second variation of the functional, we follows the technique

used in [22, Thm. 5.21]. Here the norm ‖�qh‖i is defined by ‖�qh‖2i =
∑N

n=1 ∆t‖�q (n)
h ‖2i

and ‖�qh‖1,1,Γc by ‖�qh‖1,1,Γc = ‖�qh‖1,Γc+
∑N

n=1 ‖�q (n)
h −�q

(n−1)
h ‖Γc . For each g̃h ∈ Qh

0 ,
the nonvanishing terms of the second variation of JN

h (ũh(g̃h), g̃h) are given by

D2JN
h (�uh, �gh)

D�g1hD�g2h
· δ�g1h · δ�g2h

= α

N∑
n=1

∫
Ω

(
w̃

(n)
1h · w̃(n)

2h + (�u
(n)
h − �U

(n)
h ) · z̃(n)

h

)
d�x∆t
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+ β

N∑
n=1

∫
Γc

[
�g

(n)
1h δ�g

(n)
2h + β2∂sδ�g

(n)
1h ∂sδ�g

(n)
2h

+
β1

∆t2
(δ�g

(n)
1h − δ�g

(n−1)
1h )(δ�g

(n)
2h − δ�g

(n−1)
2h )

]
d�x∆t,

where the first variations w̃
(n)
1h ∈ Xh and w̃

(n)
2h ∈ Xh are solutions of w̃

(0)
ih = �0 and

1

∆t
(w̃

(n)
ih − w̃

(n−1)
ih , �vh) + νa(w̃

(n)
ih , �vh) + c̃(w̃

(n)
ih ; �u

(n)
h , �vh)

+c̃(�u
(n)
h ; w̃

(n)
ih , �vh) + b(�vh, r̃

(n)
ih ) = (δ�g

(n)
ih , �vh) ∀�vh ∈ Xh

0 (Ω),

b(w̃
(n)
ih , qh) = 0 ∀ qh ∈ Sh

0 (Ω),

(w̃
(n)
ih , �s )Γ = (δ�g

(n)
ih , �s )Γc ∀�s ∈ H−1/2(Γ),

(89)

for n = 1, 2, . . . , N and for i = 1, 2, respectively, and the second variation z̃
(n)
h ∈ Xh

0

is the solution of z̃
(0)
h = �0 and

1

∆t
(z̃

(n)
h − z̃

(n−1)
h , �vh) + νa(z̃

(n)
h , �vh) + c̃(z̃

(n)
h ; ũ

(n)
h , �vh) + c̃(ũ

(n)
h ; z̃

(n)
h , �vh)

+b(�vh, s̃
(n)
h ) = −c̃(w̃(n)

1h ; w̃
(n)
2h , �vh)− c̃(w̃

(n)
2h ; w̃

(n)
1h , �vh) ∀�vh ∈ Xh

0 (Ω),

b(z̃
(n)
h , qh) = 0 ∀ qh ∈ Sh

0 (Ω),

(90)

for n = 1, 2, . . . , N .

Let �w
(n)
h ∈ Xh

0 be the solution of the adjoint system w̃
(N)
h = 0 and

− 1

∆t
(�w

(n)
h − �w

(n−1)
h , �vh) + νa(�vh, �w

(n−1)
h ) + c̃(�vh; �u

(n)
h , �w

(n−1)
h )

+c̃(�u
(n)
h ;�vh, �w

(n−1)
h ) + b(�vh, r

(n−1)
h )

= α(�u
(n)
h − �U (n), �vh) ∀�vh ∈ Xh

0 (Ω),

b(�w
(n−1)
h , qh) = 0 ∀qh ∈ Sh

0 (Ω),

(91)

for n = 1, 2, . . . , N .
By following arguments similar to those used in [22], we have

α∆t
N∑
n=1

∫
Ω

(�u (n) − �U (n)) · z̃(n)
h

= −∆t

N∑
i=1

(
c̃(w̃

(n)
1h ; w̃

(n)
2h , �w

(n−1)
h ) + c̃(w̃

(n)
2h ; w̃

(n)
1h , �w

(n−1)
h )

)
and the estimates

‖�wh‖1 ≤ αf2(‖�gh − g̃h‖1,Γc),

‖w̃h‖1 ≤ f1(‖�gh − g̃h‖1,Γc)‖δ�gh‖1,1,Γc ,
where f1(·) and f1(·) are continuous functions. Therefore, for some constants C1, C2 >
0, we have

|D2JN
h (ũh(g̃h), g̃h)(δ�g1h, δ�g2h)|

≤
(
3ββmax +

(
α+ αC1f2(‖g̃h − ĝh‖1,Γc)

)
f2
1 (‖g̃h − ĝh‖1,Γc)

)
‖δ�g1h‖1,1,Γc‖δ�g2h‖1,1,Γc



622 M. D. GUNZBURGER AND S. MANSERVISI

and

|D2JN
h (ũh(g̃h), g̃h)(δ�g1h, δ�g1h)|
≥
(
ββmin − C2αf2(‖g̃h − ĝh‖1,Γc)f2

1 (‖g̃h − ĝh‖1,Γc)
)
‖δ�g1h‖21,1,Γc ,

where βmin = min{1, β1, β2} and βmax = max{1, β1, β2}.
Now, assume that ‖ĝh − g̃h‖1,Γc ≤ ξ so that consequently f1(‖ĝh − g̃h‖1,Γc) ≤ ξ1

and αf2(‖ĝh − g̃h‖1,Γc) ≤ ξ2 for some ξ1, ξ2 ≤ ∞ and small β. Then, we may choose
c1 and c2 such that

c1 = 3ββmax + (αC1ξ2)ξ
2
1 and c2 = ββmin − αC2ξ2ξ

2
1 .

It follows that, for small enough values of the ratio α/β, there exists a constant c1
such that

D2JN
h (�gh)

D�g1hD�g2h
· δ�g1h · δ�g2h ≤ c1‖δ�g (n)

1h ‖21,1,Γc‖δ�g (n)
2h ‖21,1,Γc

and there exists a constant c2 > 0 such that

D2JN
h (�gh)

D�g1hD�g2h
δ�g1hδ�g1h = α

N∑
n=1

‖�w (n)
h1 ‖2∆t

+ β

N∑
n=1

[‖δ�g (n)
1h ‖2∆t+ β2‖∂sδ�g (n)

1h ‖2∆t+ β1‖�g (n)
1h − �g

(n−1)
1h ‖2] ≥ c2‖δ�gh2‖21,1,Γc .

6. Computational examples.

6.1. Test 1. We consider a unit square domain (0, 1)× (0, 1) ⊂ R
2. We assume

that the time interval [0, T ] is divided into N equal intervals (∆t = T/N). The finite
element spaces are chosen to be the Taylor–Hood finite element pair with respect
to a rectangular mesh, i.e., continuous piecewise biquadratic for the velocity and
continuous piecewise bilinear for the pressure. The same polynomials are used for
the restriction on the boundary. The mesh size is denoted by h and calculations with
varying mesh sizes have been performed. In this first test, the control is the tangential
velocity on the boundary and the target flow velocity is defined by

φ(t, z) = (1− cos(2πtz))× (1− z)
2
,

U(x, y) = 10
d

dy
(φ(.4, x)φ(.4, y)) , V (x, y) = −10 d

dx
(φ(.4, x)φ(.4, y)) ;

note that the target velocity field vanishes on the boundary Γ.

Velocity tracking evolution. The initial velocity is chosen to be

u0(x, y) = −5U(x, y), v0(x, y) = −5V (x, y),(92)

i.e., it is a high energy flow rotating in an opposite direction with respect to the
target flow. Note that the initial velocity field vanishes on the boundary so that, by
the compatibility condition (18), the control �g vanishes at t = 0.
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In this test, ∆t = 0.05, 1/ν = 300, α has been set to 1, β to 0.0001, and β1 = β2

to 0.1. The control is the right-side tangential boundary velocity. This evolution is
described in Figure 1 with the controlled fluid depicted on the left and the desired
flow on the right. All the pictures are normalized by the maximum values. At the
beginning, the effect of control is felt in a very limited area near the control boundary
because the high energy initial flow prevails in the central part of the domain. Then,
the control gains force and progressively reaches the whole domain and finally, the
controlled flow reaches the optimal approximation and keeps this stationary configu-
ration. Figure 2 shows the error ‖�u− �U‖ between the controlled flow �u and the target

flow �U. As we can see, the error rapidly goes to a constant value which represents the
optimal steady approximation. Figures 3 and 4, respectively, show the corresponding
values of the norm of the control �g and its time derivative as functions of time. The
control vanishes at t = 0 due to the compatibility condition (18), but then works
hard for a short time in order to steer the controlled flow to the desired one; it then
decreases and remains flat. Near t = T , it is not necessary to drive the flow and a
decreasing boundary velocity minimizes the functional. This small change does not
affect the norm error in Figure 2 due to the scale of the graph but we can see a small
improvement in the match at t = 4. We remark that the optimal stationary controlled
flow is very different from the target flow. One-sided control is not enough and the
result can be considered poor. Smaller values of β cannot help and for a better control
we need to extend the extent of the boundary on which control is applied.

Velocity tracking with different values of β, β1, and β2. We want to study
the effect of changing the form of the functional by changing the parameters β and
β1 (β2 = β1). The initial velocity field is set to zero.

In Figure 5, we show the error ‖�u − �U‖ between the controlled flow �u and the

target flow �U for different values of β1 = β2. We have β1 = β2 equal to 0.01 (a),
0.1 (b), and 1 (c). The value of β in this computation is held constant at 0.0001.
The time step ∆t is again 0.05 and h = 1/16. We note that changing β1 has little
effect on the optimal solution. Of course, the reduction in the error is a little quicker
when β1 is smaller. The norm of �g and its derivative are shown in Figures 6 and 7.
For low values of β1, the control is allowed to move quicker and the sensibility of the
system is greater. We note that there is a small change in control magnitude but the
optimal stationary flow is still approximately the same. Differences can be noted in
the nonsteady part of the evolution flow.

For different values of β we do obtain different optimal controls. In Figure 8,
we see the error ‖�u − �U‖ between the controlled flow �u and the target flow �U for β
equal to 0.0001 (a), 0.001 (b), and 0.01 (c). For small values of β, the optimal control
solution is limited by the magnitude of the control and its derivatives. For values of
β > 0.005, the control is poor. Generally, a good control involves small values of β
(around 0.001). In Figures 9 and 10, we show, respectively, the norm of the control �g
and its time derivative for the corresponding values of β. As expected, the control �g
approaches zero for low values of β.

Different number of controlled sides. Now we examine the effect of applying
control on more sides of the flow domain. We try to repeat the evolution problem
changing the number of sides. In Figures 11 to 14, we have the norm of the error,
the control norm, the derivative norm in time and in space, respectively, for applying
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control on different numbers of sides. One-sided control is (a), two-sided control is
(b), three-sided control is (c), and finally the control on the whole boundary is (d).
Of course the match is improving with increasing number of controlled sides. As we
can see in Figure 12, the control behaves better and the maximum strength required
decreases when the number of controlled sides increases. A picture of the stationary
match can be found in Figure 15. The improvement is evident. The tracking time
evolution for the four-sided case is reported in Figure 16.
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Fig. 1. Test 1. Controlled (left) and target (right) flows at t = 0, 0.1, 0.2, 0.4, 0.6 (left pair of
columns) and t = 0.8, 1, 2, 3, 4 (right pair of columns) for one-sided control.
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Fig. 2. Test 1. Error ‖�u− �U‖.
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Fig. 3. Test 1. Control norm ‖g‖.
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Fig. 4. Test 1. Control norm ‖�gt‖.
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Fig. 5. Test 1. Error for different β1.
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Fig. 6. Test 1. Control norm ‖g‖ for different β1.
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Fig. 7. Test 1. Control norm ‖gt‖ for different β1.
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Fig. 8. Test 1. Error ‖�u− �U‖ for different β.
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Fig. 9. Test 1. Control norm ‖g‖ for different β.
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Fig. 10. Test 1. Control norm ‖gt‖ for different β.
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Fig. 11. Test 1. Error ‖�u− �U‖ for different number of controlled sides.
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Fig. 12. Test 1. Control norm ‖g‖ for different number of controlled sides.
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Fig. 13. Test 1. Control norm ‖�gt‖ for different number of controlled sides.
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Fig. 14. Test 1. Control norm ‖gx‖ for different number of controlled sides.
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Fig. 15. Test 1. Desired flow (top), stationary one-sided (middle left), two-sided (middle right),
three-sided (bottom left), and four-sided (bottom right) controlled flows.
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Fig. 16. Test 1. Controlled (left) and target (right) flows at t = 0, 0.1, 0.2, 0.4, 0.6 (left pair of
columns) and t = 0.8, 1, 2, 3, 4 (right pair of columns) for four-sided control.

6.2. Test 2. We consider a unit square domain (0, 1)× (0, 1) ⊂ R
2. We assume

that the time interval [0, T ] is divided in equal intervals of time ∆t = T/N . The
Taylor–Hood finite elements are used in this calculation on a rectangular mesh. We
report only the final result with h = 1/16, but calculations with varying mesh sizes

has been performed. The target velocity �U for this test is time dependent and is given
by
φ(k, t, z) = (1− cos(2kπtz))× (1− z)

2
,

a(k, t, x, y) =
d

dy
(φ(k, t, x)φ(k, t, y)) , b(k, t, x, y) = − d

dx
(φ(k, t, x)φ(k, t, y)) ,

U = a(.25, .4, x, y) + a(.5, t, x, y)/(4πt+ 1),

V = b(.25, .4, x, y) + b(.5, t, x, y)/(4πt+ 1).
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Fig. 17. Test 2. Controlled (left) and target (right) flows at t = 0, 0.5, 1, 1.5, 2 (left pair of
columns) and t = 2.5, 3, 3.5, 3.75, 4 (right pair of columns) for four-sided control.

With this velocity field we have the superposition of two flows: one flow with a vor-
tex at the center of the domain and another flow with four vortices. Each of these flows
prevails at different times of the evolution. The initial velocity for the controlled flow is

u0(x, y) = −5U(1, x, y), v0(x, y) = −5V (1, x, y).(93)

The evolution is given in Figure 17. In this computation α = 1, β = 0.001, and
β1 = β2 = 0.1, and 1/ν = 300. The control �g is a four-sided control and that covers
the whole boundary Γ. The controlled fluid is on the left, the desired flow is on the
right, and all the pictures are normalized. As we can see at t = 0.5, the controlled
flow reaches the optimal approximation and follows the motion of the target fluid.
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Fig. 18. Test 2. Error ‖�u− �U‖.
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Figure 18 shows the error ‖�u − �U‖ between the controlled flow �u and the target

flow �U. At the beginning the error rapidly decreases but after this initial interval of
time this error increases due to changes in the desired flow. The boundary velocity
cannot control the interior of the domain if the desired flow moves rapidly. However,
this represents the optimum that can be achieved with the energy available. For the
same flow, Figures 19 and 20, respectively, show the values of the norm of the control
variable �g and its time derivative.
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OPTIMAL POLICIES FOR n-DIMENSIONAL SINGULAR
STOCHASTIC CONTROL PROBLEMS. PART II: THE RADIALLY

SYMMETRIC CASE. ERGODIC CONTROL∗
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Abstract. We consider a singular stochastic control problem with a radially symmetric running
cost. We show that the value function is smooth, the nonaction region is a ball, and the problem has
an explicit solution in terms of power series. Also, for a singular ergodic control problem with the
class of admissible processes constrained to Brownian motions reflected normally at the boundary of
some open, connected Caccioppoli set, we show existence, regularity, and basic properties of optimal
domains using a geometric measure-theoretic approach.

Key words. singular stochastic control, radial symmetry, optimal policy, normally reflected
Brownian motion, geometric measure theory

AMS subject classifications. 93E20, 34A25, 49F22
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1. Introduction. The goal of the first part of this article is to minimize

uM (x) = Ex
∫ ∞

0

e−t[h(Xt)dt+ dξt],(1)

where x ∈ Rn is fixed and h is a nonnegative, convex, radially symmetric function
(suitably smooth),

Xt = x+
√
2Wt +Mt,(2)

with Wt an n-dimensional Brownian motion, Mt any adapted process of bounded
variation over finite time-intervals, and ξt the variation of M up to time t. This
problem, without the assumption of radial symmetry of h, has been investigated
thoroughly in the existing literature. It is known that in one (see, e.g., [6, 10, 27, 28,
29, 34, 35, 40]; consult [41] or [14] for more complete references) or two [45] dimensions
the corresponding value function u is twice continuously differentiable (smooth fit) and
the optimal policy is the Brownian motion reflected at the boundary of the nonaction
region C = {x ∈ Rn : |∇u(x)| < 1}. In higher dimensions it is only known that the
value function is W 2,∞

loc and that the optimal policy exists, is unique [42, 46], and
solves a generalized Skorokhod problem [36].

Under our additional assumption of radial symmetry, thanks to symmetry of the
Brownian motion, the value function u itself is radially symmetric. This allows us
to use one-dimensional methods, yielding a simple n-dimensional example of smooth
fit and providing an explicit solution in terms of power series under an additional
assumption that h is real analytic. Our work generalizes some of the recently published
results of [11], where a special case of the value function h(x) = λ|x|2 was considered.
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In the second part of this article we consider a similar (not necessarily radially
symmetric) problem for ergodic control in which we limit the admissible controlled
processes to Brownian motions reflected normally at the boundary of some open, con-
nected Caccioppoli set. We show existence, regularity, and some properties of optimal
domains like their simple-connectedness, convexity for n = 2, and the mean curvature
equation satisfied by their boundaries. Singular ergodic control of diffusion processes
has been investigated, e.g., in [41] and the references given there. Our approach,
however, differs from the results contained in those papers in both constraining the
class of admissible controls and the methods used. In the context of optimizing the
ergodic cost of controlling the normally reflected Brownian motion, regularity theory
for domain-dependent functionals and the prescribed mean curvature equation seem
to be convenient tools for establishing the desired properties of an optimal region.

2. The radially symmetric case.

2.1. The smooth fit. Let (Wt,Ft, t ≥ 0) be a standard n-dimensional Brownian
motion defined on a complete probability space (Ω,F , P ). Let {Ft} be the augmen-
tation of the filtration generated by W (see [33]). For a given x ∈ Rn, let a process
Xt be defined by (2), where Mt is a left-continuous process adapted to Ft such that,
for all T > 0 P -a.s., the variation of M.(ω) on the interval [0, T ] is finite. We write

Mt =

∫ t
0

Nsdξs,(3)

where |Nt| = 1 for every t ≥ 0 almost surely (a.s.) and ξ is nondecreasing and
left-continuous. In what follows, we shall always describe Mt as (Nt, ξt).

Let h : Rn → R be a strictly convex, radially symmetric function satisfying, for
appropriate positive constants C0, c0, and q > 1, the following conditions:

h ∈ C2,1(Rn),(4)

0 ≤ h(x) ≤ C0(1 + |x|q),(5)

|h(x)− h(x+ x′)| ≤ C0(1 + h(x) + h(x+ x′))1−1/q|x′|,(6)

h(x+ λx′) + h(x− λx′)− 2h(x) ≤ C0λ
2(1 + h(x))r, r =

(
1− 2

q

)+

,(7)

c0|y|2 ≤ D2h(x)y · y(8)

for all x, x′ ∈ Rn, |x′| ≤ 1, and 0 ≤ λ ≤ 1 (see [36]). We assume that infx∈Rn h(x) =
h(0) = 0.

For a given control process (N, ξ), we define the corresponding cost by

V(N,ξ)(x) = Ex
∫ ∞

0

e−t[h(Xt)dt+ dξt].(9)

The task is to minimize V(N,ξ)(x) in the class of all admissible controls, i.e., to find

u(x) = inf
N,ξ

V(N,ξ)(x),(10)

where (Nt, ξt) are as described above. If this minimum is attained for some (Ñ , ξ̃),
we say that

νt =

∫ t
0

Ñsdξ̃s(11)
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is an optimal policy (for x).
Recall [42, 45] that the value function u is a unique, nonnegative, convex W 2,∞

loc

solution of the HJB equation

max(u−�u− h, |∇u|2 − 1) = 0(12)

in Rn.
Moreover, because h is radially symmetric, the value function u also enjoys this

property, thanks to the following simple lemma.
Lemma 2.1. Let O be any n×n orthogonal matrix (i.e., a matrix of an isometry

in Rn), and let h be such that h ◦O ≡ h. Then u ◦O ≡ u.
Proof. Let v = u ◦ O. Then, by (12), spherical symmetry of the Laplacian, and

h ◦O ≡ h, for any x ∈ Rn we have

max(v(x)−�v(x)− h(x), |∇v(x)|2 − 1)

= max(u(Ox)−�u(Ox)− h(Ox), |∇u(Ox)|2 − 1) = 0,

so v also solves (12). u is a W 2,∞
loc nonnegative, convex function, so v also enjoys this

property. But (12) admits a unique W 2,∞
loc nonnegative, convex solution, so v ≡ u and

the proof is complete.
In particular, if O is a matrix of any rotation in Rn (i.e., a rotation about some

hyperplane in Rn of codimension 2 containing 0) and h ◦ O ≡ h, then u ◦ O ≡ u.
This easily yields radial symmetry of u if h is radially symmetric. In particular, in
this case C is radially symmetric. As was noticed in [14, pp. 332–333], the argument
given in [45] shows that in any dimension C is connected. Also, by [45], C is bounded
and contains the unique minimizer of u, which in our case is clearly 0 (otherwise we
get a contradiction with convexity and symmetry of u). Thus, C is a ball BR(0) with
center 0 and radius R > 0. Also, by spherical symmetry of u, the vector field ∇u on
∂C is perpendicular to ∂C, so in BR(0) u solves

u−�u = h(13)

with the Neumann boundary condition

∂u

∂η
= 1(14)

on ∂BR(0), where η denotes the outer normal to ∂BR(0), or with the Dirichlet bound-
ary condition

u = c = const(15)

on ∂BR(0), where c is the value u takes on ∂BR(0). Thus, by the well-known elliptic
regularity theory (see, e.g., [22]), if h ∈ Ck,α(Rn) for any α ∈ (0, 1), then u ∈
Ck+2,α(BR(0)). Let

w(x) = |∇u(x)|2.(16)

Corollary 5.3 in [45] shows that w ∈ C1,α(Rn) for every α ∈ (0, 1). But in our case u
is radially symmetric, so w = (∂u∂r )

2. Thus, at least away from 0, where ∇u vanishes,

∂u

∂r
=
√
w ∈ C1,α(17)
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for r = |x|. In particular, u, considered as a function of r only, is C2,α away from 0
for every α ∈ (0, 1). We have arrived at the following theorem.

Theorem 2.2. If, in the control problem (9)–(10), we assume that h is radially
symmetric, then u ∈ C2,α for every α ∈ (0, 1) and C = BR(0) for some R > 0.
Moreover, if h ∈ Ck,α(Rn) for some k ≥ 2 and α ∈ (0, 1), then u ∈ Ck+2,α in
BR(0).

Of course, in this case the optimal policy makes Xt a Brownian motion reflected
at ∂BR(0) in the inner normal direction, with a possible initial jump to the closest
point of BR(0) if the process starts outside BR(0).

2.2. The O.D.E. approach. As we have just shown, for a radially symmetric h
the value function u is “essentially one-dimensional.” Thus, it seems natural to solve
our problem for u using the O.D.E. approach similar to that used for the 1-d control
problem (see, e.g., [6], [12], [13]). Let u(x) = v(r), where r = |x|, R as in Theorem
2.2. For r > R

dv

dr
(r) ≡ 1(18)

and, by the well-known form of the Laplacian in polar coordinates (see, e.g., [31]) and
the smooth fit, v satisfies

v(r)− d2v

dr2
(r)− n− 1

r

dv

dr
(r)− h(r) = 0(19)

in (0, R) with boundary conditions

dv

dr
(0) = 0(20)

(by the fact that u has a minimum at 0) and

dv

dr
(R) = 1(21)

and the “smooth fit” condition

d2v

dr2
(R) = 0(22)

resulting from (18) and the fact that u (hence v) ∈ C2. (We are, in fact, slightly
abusing the notation by using the same symbol h for the running cost, defined on Rn,
and the function of one variable r equal to h(x) for |x| = r, but it should not lead
to any ambiguity.) If we know h and want to solve for v, R is also unknown, so our
task is to solve (19)–(22) for both v and R. Of course, v(r) defined as the value of u
(the value function for our stochastic control problem) for an argument x such that
|x| = r solves (19)–(22), but it is not clear whether it is the only solution, because,
as we shall soon see, (19)–(22) lead to a nonlinear equation for R. We want to show
that (19)–(22) indeed admits a unique C2([0, R]) solution.

From now on, we assume that v is any function satisfying (19)–(22) on some
interval [0, R], R > 0, and belonging to C2([0, R]). It is easy to show, using the
maximum principle, that both vr and vrr are nonnegative on [0, R]. Thus v is convex
in [0, R]; in particular, vr achieves its extreme values at the endpoints of this interval.
By (20) and (21) we get

0 ≤ dv

dr
(r) ≤ 1(23)
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for every r ∈ [0, R]. Extending v to [0,∞) by

v(r) = v(R) + (r −R) for r > R,(24)

we get, by (21)–(22), a C2([0,∞)) convex function satisfying (23) on [0,∞). Now we
want to show that

v(r)− d2v

dr2
(r)− n− 1

r

dv

dr
(r)− h(r) ≤ 0(25)

for r > R. By (19),

v(r)− n− 1

r

dv

dr
(r) ≥ h(r) on [0, R].(26)

Also, by (19) and (22), equality in (26) holds for r = R. Thus(
d

dr

(
v − n− 1

r

dv

dr

))
(R) ≤ hr(R),(27)

which yields, by (21) and (22) once again,

1 +
n− 1

R2
≤ hr(R).(28)

Also, by (19)–(21),

v(R)− n− 1

R
= h(R).(29)

To prove (25) we need, by (24),

v(R) + (r −R)− n− 1

r
≤ h(r),(30)

i.e.,

h(R) +
n− 1

R
+ (r −R)− n− 1

r
≤ h(r).(31)

By convexity of h and (28) we have

h(r) ≥ h(R) + hr(R)(r −R)

≥ h(R) +

(
1 +

n− 1

R2

)
(r −R).(32)

Thus, if we show

n− 1

R
− n− 1

r
≤ n− 1

R2
(r −R)(33)

for r > R, then, by (32), (31), (so also (25)) is true. But (33) follows easily from the
mean value theorem. Thus, by (19), (23), (24), and (25), if we define, for x ∈ Rn,

u(x) = v(|x|),(34)
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we see that u is a C2 convex solution of (12) in Rn. Invoking uniqueness of a nonneg-
ative, convex W 2,∞

loc solution of the HJB equation (12), once again we see that such u
(thus v) is uniquely determined. We have proved the following theorem.

Theorem 2.3. A function v ∈ C2([0, R]) for some R > 0 satisfies (19)–(22)
iff v(x) = u(|x|) for every x ∈ Rn, |x| ≤ R, where u is the value function for the
stochastic control problem (9)–(10) with a radially symmetric running cost function
h. Moreover, extending v to [0,∞) by (24), we get v(x) ≡ u(|x|) in the whole Rn.

Thus, for a solution v of the boundary value problem (19)–(21), the smooth fit
condition (22) is not only necessary, but also sufficient for v(x) ≡ u(|x|). An analo-
gous result—sufficiency of (22) for describing the value function—for one-dimensional
singular stochastic control problems may be found in [32] and, for more general dif-
fusions, in [38].

It is natural to pose a similar question in dimension n. Suppose we have a bounded
region G in Rn, say simply connected, and a vector field w defined on ∂G and pointing
outside G. Let v be a real function defined in G such that

v −�v = h in G,(35)

∂v

∂w
= 1,(36)

and

∂2v

∂w2
= 0(37)

on ∂G. Is v the restriction of the value function u for the stochastic control problem
(9)–(10) to G ? If it does not have to be the case, is it true at least under an additional
assumption that w = ∇u on ∂G ? We do not know the answer to this question and,
because of the fact that the n-dimensional problem is much more complicated, it
might be negative.

Now we turn to the special case of a radially symmetric real analytic running cost
h satisfying the conditions given above. Then it is well known that u satisfying (13)
with the boundary condition (15) is itself real analytic in BR(0) = C and, as we have
explained before, also radially symmetric. Then we can easily find u explicitly as the
sum of a power series.

Let again u(x) = v(r), r = |x|. v is real analytic on [0, R], and let

h =
∞∑
i=0

b2i r
2i(38)

(the odd coefficients drop out because of symmetry of h). We want to find the real
analytic solution v of (19)–(22) on [0, R]. The corresponding homogeneous equation

v(r)− d2v

dr2
(r)− n− 1

r

dv

dr
(r) = 0(39)

is similar to the well-known Bessel equation (see, e.g., [30]),

z′′ +
1

x
z′ + z = 0,(40)

and can be solved in more or less the same way. Let

v(r) =

∞∑
i=0

air
i(41)
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be a solution of (39). Differentiating (41) term by term twice, plugging the results
into (39), and equating the corresponding terms, we get

v1(r) = a0

(
1 +

∞∑
i=1

r2i

2 · 4 · · · · · (2i) · n · (n+ 2) · · · · · (n+ 2i− 2)

)
(42)

(we took a1 = 0 to cancel the singular term 1
r in (39)). Of course, the radius of

convergence of this series is ∞. As in the case of the Bessel equation, it may be
shown that the second solution v2, linearly independent on v1, behaves at 0 similarly
as the function log r. Solving (19) using (38), we get

ai+2 =
ai − bi

(i+ 2)(i+ n)
(43)

for i = 0, 2, 4, . . . and ai = 0 for i odd. Thus, once a0 is determined, all the remaining
coefficients of the solution v can be found from (43) and, because of the singularity
of v2 at 0, all real analytic solutions of (19) in intervals containing 0 have this form.
For any such solution, (20) is satisfied automatically because a1 = 0. Thus, our task
amounts to find constants a0 and R > 0 such that the solution v of (19)–(21) on [0, R]
given by (41), (43) satisfies (22). By Theorem 2.3 and our previous remarks, there
always exists a unique pair a0, R (R > 0) satisfying this condition, and the value
function u(x) for the stochastic control problem (9)–(10) equals v(|x|).

As an example, let us take perhaps the simplest possible running cost satisfying
our assumptions, namely h(x) = |x|2 = r2. Then

v(r) = a0 +
a0

2n
r2 +

∞∑
i=2

a0 − 2n

2 · 4 · · · · · (2i) · n · (n+ 2) · · · · · (n+ 2i− 2)
r2i.(44)

Regarding R as a variable and computing a0 in terms of R from (21), we get

a0 = a0(R) =
1 + 2nS(R)
R
n + S(R)

,(45)

where

S(R) =
∞∑
i=2

R2i−1

2 · 4 · · · · · (2i− 2) · n · (n+ 2) · · · · · (n+ 2i− 2)
.(46)

Thus, (22) gives us the following equation for R:

1

n
+ 2S(R) + (1− 2R) · S1(R) = 0,(47)

where

S1(R) =

∞∑
i=2

(2i− 1)R2i−2

2 · 4 · · · · · (2i− 2) · n · (n+ 2) · · · · · (n+ 2i− 2)
.(48)

These equations can be solved numerically, yielding, e.g., for n = 2, R = 1.4857650660 . . .,
a0 = 1.9624905574 . . . with accuracy to ten decimal points. See [11, Theorem 8] for
a more elegant description of this solution in terms of the modified Bessel function
(42).
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Another simple experiment we can do is to take h ≡ 0 and to solve (19)–(21) in
[0, R], obtaining the total discounted cost of control

v(x) = Ex
∫ ∞

0

e−tdξt(49)

necessary to keep the process in the ball BR(0). The solution is of the form (42),
where a0 is chosen to match (21). We can easily check that the solution approaches
∞ as R → 0. This is the reason why the optimal region C cannot be too small: if
we try to keep the process very close to the minimum h(0) = 0 of the running cost,
the control costs grow enormously. Thus, the optimal control can be thought of as a
compromise between keeping the running cost h(Xt) small and using a small amount
of control.

3. Ergodic control.

3.1. Posing a problem. Now we turn to investigating the following problem.
Let E be an open, connected set in Rn. To simplify the exposition, we initially
assume that E is bounded and with sufficiently smooth (say C2) boundary. (Even-
tually, we will remove the boundedness assumption and significantly relax the reg-
ularity requirement.) Let x ∈ E and let (Wt,Ft, t ≥ 0) be, as before, a standard
n-dimensional Brownian motion. Finally, let Xt be defined by (2), (3), where (Nt, ξt)
is the solution to the Skorokhod problem for the domain E and the normal reflec-
tion direction at ∂E starting at x. See, e.g., [37] for a definition and a construction
of such a process. Let h be a nonnegative, Borel measurable function bounded on
compact subsets of Rn with lim|x|→∞ h(x) =∞ (for some of the results to follow, the
assumptions on h will be strengthened). Now let, for T > 0,

wE(x, T ) =
1

T
Ex
∫ T

0

[h(Xt)dt+ dξt],(50)

uE(x) = lim
T→∞

wE(x, T ).(51)

By the ergodic theorem, the time-average of a quantity converges to its mean under
the equilibrium measure, which is the Lebesgue measure on the domain E, properly
normalized, i.e., divided by |E|, the Lebesgue measure of E. The limit of the expected
average time spent by Xt inside E weighted by h is equal to 1

|E|
∫
E
h(x)dx. The limit

of the occupation time on the boundary for the Brownian motion
√
2Wt is equal to

the surface area |∂E| of E divided by its volume:

lim
T→∞

1

T
Ex
∫ T

0

dξt =
|∂E|
|E| .(52)

Thus, actually, uE does not depend on the starting point x ∈ E (i.e., is a functional
of the domain E only) and equals

J(E) =
|∂E|
|E| +

1

|E|
∫
E

h(x)dx.(53)

Our goal is to find a region E∗ minimizing the ergodic value function uE , i.e., a
suitably smooth minimizer of (53).
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This problem is, in a sense, a counterpart of the one with exponential discounting
considered before. See [41] for an analysis of connections between singular ergodic
control and singular control with exponentially discounted running cost for multidi-
mensional Gaussian processes.

Instead of seeking an optimal control for (51) in the class of C2 domains directly,
we enlarge the domain of definition of (53) to the class of Caccioppoli sets E in Rn.
Below, we recall some basic definitions; for a more complete discussion we refer to [23].

Definition 3.1 (see [23, p. 3]). Let G ⊆ Rn be an open set and let f ∈ L1(G).
Define ∫

G

|Df | = sup{
∫
G

f div gdx : g = (g1, . . . , gn) ∈ C1
0 (G,Rn),

and |g(x)| ≤ 1 for all x ∈ G},(54)

where, as usual, div g =
∑n
i=1

∂gi
∂xi
.

Definition 3.2 (see [23, p. 4]). A function f ∈ L1(G) is said to have bounded
variation in G if

∫
G
|Df | < ∞. We define BV (G) as the space of all functions in

L1(G) with bounded variation.
It can be shown [23, Remark 1.12] that, under the norm

‖f‖BV = ‖f‖L1 +

∫
G

|Df |,(55)

BV (G) is actually a Banach space.
In what follows, let φE denote the characteristic function (indicator) of a Borel

set E ⊆ Rn.
Definition 3.3 (see [23, p. 5]). Let E be a Borel set and G an open set in Rn.

Define the perimeter of E in G as

P (E,G) =

∫
G

|DφE | = sup

{∫
E

div gdx :g ∈ C1
0 (G,Rn), |g(x)| ≤ 1

}
.(56)

If G = Rn, denote P (E,Rn) by |∂E|.
It is known that if the boundary of E is C2, then P (E,G) = Hn−1(∂E ∩ G),

where Hn−1 denotes the n− 1-dimensional Hausdorff measure.
Definition 3.4 (see [23, p. 6]). If a Borel set E has locally finite perimeter, that

is, if P (E,G) <∞ for every bounded open set G, then E is called a Caccioppoli set.
Thus, we are looking for a minimizer of (53) in the class of all Caccioppoli sets,

i.e., for a Caccioppoli set E∗ such that

J(E∗) ≤ J(E) for every Caccioppoli set E.(57)

For every x ∈ Rn and ρ > 0, denote

Bρ(x) = {y : |x− y| < ρ}.

Definition 3.5 (see [23, p. 43]). A point x belongs to the reduced boundary,
∂∗E, of a set E if ∫

Bρ(x)

|DφE | > 0
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for all ρ > 0, the limit v(x) = limρ→0 vρ(x) exists, where

vρ(x) =

∫
Bρ(x)

DφE∫
Bρ(x)

|DφE | ,

and |v(x)| = 1.
The vector v(x) defined above can be regarded as the generalized unit inner

normal vector to ∂E at x. Indeed, if ∂E is C2, then ∂∗E = ∂E and v(x) is the unit
inner normal vector to ∂E at x [23, p. 44]. Thus, ∂∗E is the part of ∂E on which the
generalized inner normal v(x) to ∂E can be defined.

3.2. Existence of minimizers. Now we shall prove, using standard tools, that
a minimizer indeed exists.

Let Ek be a minimizing sequence of Borel sets, i.e.,

J(Ek)→ c = inf
E

J(E).(58)

Clearly, c <∞.
Step 1. |Ek| ≤ C for all k natural and some C <∞.
Indeed, suppose |Ek| → ∞, k → ∞. Let M > 0 be an arbitrary constant.

h(x) → ∞ for x → ∞, so the Lebesgue measure of a set F = {x ∈ Rn : h(x) ≤ M}
is finite. Let |Ek| ≥ 2|F |. Then, by h ≥ 0,∫

Ek

hdx =

∫
Ek∩F

hdx+

∫
Ek−F

hdx

≥
∫
Ek−F

hdx

≥M |Ek − F |
≥M(|Ek| − |F |)
≥ M

2
|Ek|,

so

J(Ek) ≥ 1

|Ek|
∫
Ek

hdx ≥ M

2
.(59)

Thus, c ≥ M
2 for an arbitrary M , which is a clear contradiction.

Step 2. |∂Ek|
|Ek| ≤ C for all k natural and some C <∞.

This follows at once from (53) and (58).
Step 3. |∂Ek| ≤ C for all k natural and some C <∞.
This follows easily from (58) and the previous two steps.
Step 4. |Ek| ≥ c0 for all k and some c0 > 0.
Suppose this is not true, e.g., there exists a minimizing sequence Ek such that

|Ek| → 0 as k →∞.(60)

Let us recall the isoperimetric inequality [23, Corollary 1.29]: there exists a posi-
tive constant c1 = c1(n) depending only on the dimension n such that, for every
Caccioppoli set E ⊆ Rn, we have

|E|n−1
n ≤ c1(n) |∂E|.
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(Actually, as is well known, the best constant c1(n) = |B|
n−1
n

|∂B| , where B is an n-

dimensional ball.) Using this inequality, we get

J(Ek) >
|∂Ek|
|Ek| ≥

1

c1(n)|E| 1n
.(61)

But, by (60), the right-hand side of (61) diverges to∞, and thus so does J(Ek), which
is a contradiction.

Step 5. We want to prove that a subsequence of Ek converges to a minimizer of
(53). Say that J(Ek) ≤ c+ 1, where c is given by (58). Let M > 0 and let R > 0 be
large enough to assure h ≥M outside BR(0). Then, for all k,

|Ek −BR(0)| ≤ |Ek ∩ [h ≥M ]|
≤ 1

M

∫
Ek

hdx

≤ |Ek|
M

J(Ek)

≤ C

M
(c+ 1) → 0(62)

as M →∞ (R→∞) (the last inequality follows from step 1). Also, it is known that

|∂(E ∩Br)| ≤ |∂E|(63)

for any Borel set E ⊆ Rn such that |E| < ∞ and any ball Br ([50]; see also [47]).
Thus,

|∂(Ek ∩BR(0))| ≤ |∂Ek| < C(64)

for every k, R > 0 by step 3. Thus, we see that φEk∩BR(0) is a bounded subset of
BV (BR(0)). It is known (see Theorem 1.19 in [23]) that bounded sets in BV (BR)
are relatively compact in L1(BR), so φEk∩BR(0) has a convergent subsequence in
L1(BR). But a sequence converging in Lp, 1 ≤ p < ∞, contains a subsequence
converging almost everywhere (a.e.), so the limit of φEk∩BR(0) in L1(BR) must also
be an indicator of some set E∗

R. By an usual diagonal argument, we can extract a
subsequence, still called Ek, such that for E∗ =

⋃∞
m=1 E

∗
m , φEk∩Bm(0) → φE∗∩Bm(0)

in L1(Bm) for every natural m. In particular, φEk → φE∗ in L1
loc. By semicontinuity

(see Theorem 1.9 in [23])

|∂E∗| ≤ lim inf
n→∞ |∂Ek|.(65)

By Fatou’s lemma ∫
E∗

hdx ≤ lim inf
k→∞

∫
Ek

hdx.(66)

We want to show that also |Ek| → |E∗|, because this, together with step 1, (65),
and (66) finishes the proof. Without any loss of generality we can, by steps 1 and 4,
assume that the sequence |Ek| is convergent. Define a family of Borel measures µk on
Rn by

µk(A) = |A ∩ Ek|.(67)
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Then (62) assures that this family is tight, so there exists a measure µ on Rn such
that a subsequence of µk converges weakly to µ (see, e.g., [7, Theorem 5.1]) and thus
µ(Rn) = limk→∞ µk(R

n). But, as we know from our previous reasoning, µ(A) =
|A ∩ E∗| (it is true for bounded sets by φEk → φE∗ in L1

loc, so it is also true for all
Borel sets A), so |Ek| → |E∗|. Existence of minimizers for (53) is shown.

3.3. Some properties of minimizers.

3.3.1. Boundedness. For convenience, we assume that a minimizer E∗ under
consideration is open (Caccioppoli sets are defined only up to a set of the Lebesgue
measure zero and their boundaries have measure zero). We want to prove the bound-
edness of E∗. Assume, to the contrary, that E∗ is unbounded. Choose a large constant
M and let

R = sup{x ∈ Rn : h(x) ≤M}.(68)

Let E∗∗ = E∗ ∩ BR(0) and let ε = ε(M) = |E∗ − E∗∗|. By assumption, ε > 0. By
(63), |∂E∗∗| ≤ |∂E∗|, and thus

J(E∗) =
|∂E∗|
|E∗| +

1

|E∗|
∫
E∗

h(x)dx

>
|∂E∗∗|+ ∫

E∗∗ h(x)dx+Mε

|E∗∗|+ ε

>
|∂E∗∗|
|E∗∗| +

1

|E∗∗|
∫
E∗∗

h(x)dx

= J(E∗∗)

if M is large enough and, consequently, if ε is small enough. This contradicts the fact
that E∗ is a minimizer of J and proves our claim.

3.3.2. Regularity. At this stage, the only thing we can guarantee is that a min-
imizer E∗ is a bounded Caccioppoli set. In general, the boundary ∂E of a Caccioppoli
set E is, up to a set of |DφE | (or, equivalently, the Haussdorff measure Hn−1) mea-
sure zero, a countable union of C1 hypersurfaces [23, Theorem 4.4], and usually you
cannot expect anything better than that. Fortunately, problems of the same nature
have been studied thoroughly in variational calculus and related domains, starting
from a classic theory of minimal surfaces (see, e.g., [23]), through minimizing

I(E) = |∂E|+
∫
E

hdx(69)

[39] until more recent developments posed in a much more abstract and general frame-
work (see, e.g., [1, 2]). In particular, regularity of E∗ can be easily deduced from
known results in the following way. Define, for a Caccioppoli set E and an open,
bounded set A ⊆ Rn,

ψ(E,A) =

∫
A

|DφE | − inf

{∫
A

|DφF | : F�E ⊂⊂ A

}
,(70)

where F�E = (F−E)∪(E−F ) and B ⊂⊂ A means that B ⊆ A. It is known [39, 48]
that if G is an open subset of Rn, n ≥ 2, and E is a Caccioppoli set such that

ψ(E,Bρ(x)) ≤ Cρn(71)
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for every x ∈ G and every ρ ∈ (0, R), with C and R local positive constants, then the

reduced boundary ∂∗E of E is a C1, 12 -hypersurface in G and the Haussdorf measure

Hs[(∂E − ∂∗E) ∩G] = 0(72)

for every s > n− 8. In particular, if n ≤ 7, ∂E is C1, 12 . Taking E = E∗, a minimizer
of (53), and G = Rn, we show (71) using an argument similar to that given in [48] for
a minimizer of (69). For completeness, we provide a sketch of the argument.

Suppose (71) is violated. Then for any M > 0 we can find a small ball Bρ(x) and
a set F ⊂⊂ Bρ(x) such that∫

Bρ(x)

|DφF | ≤
∫
Bρ(x)

|Dφ∗
E | −Mρn.(73)

Then, if we take

E∗∗ = (E∗ −Bρ(x)) ∪ F,

we get, for M big enough,

J(E∗∗) < J(E∗),(74)

because of (73) and the fact that |E∗| and ∫
E∗ hdx differ from |E∗∗| and ∫

E∗∗ hdx,
correspondingly, at most by Cρn for some constant C depending on maxBρ(x)h only.
However, (74) contradicts the definition of E∗.

Thus, we get ∂∗E∗ ∈ C1, 12 and (72); in particular, for n ≤ 7 we have ∂E∗ ∈ C1, 12 .
In fact, the only assumption about h we need at this stage is h ∈ L∞

loc. Now we can
improve the regularity of ∂E using the existence of multipliers in the nonparametric
case (see [21, 24, 25]). Thus we have the following proposition.

Proposition 3.6. Let h ∈ Ck, k ≥ 1, and let E∗ be a minimizer of (53). Then
∂∗E∗ is a Ck+1- hypersurface in Rn and (72) holds for every s > n−8. In particular,
for n ≤ 7, ∂E∗ is a Ck+1-hypersurface in Rn.

Let us mention that, in general, in problems of this type, smoothness of minimizers
in dimensions bigger than 7 cannot be expected. A counterexample (the Simons cone)
can be found in [23, Theorem 16.4].

Proposition 3.6 says that, for n ≤ 7, the regularity of ∂E∗ is precisely the same
as that of a solution of the mean curvature equation (see, e.g., [22, Corollary 16.7]).
We shall further discuss the reason for this in the next subsection.

An alternative way to establish an initial regularity result for ∂E∗ is based on an
observation that E∗ also minimizes (69) under a constraint

|E| = const = |E∗|.(75)

Thus, we can use known regularity results for the problem of minimizing (69) under
a volume constraint in the parametric case. However, proofs of such results usually
require serious work to show (71) or a similar inequality, either directly (see, e.g.,
[26, 49]) or by using Lagrange multipliers (see, e.g., [3]), and then use (71) in the way
we have just done it, so it seems more natural to take advantage of a simple proof of
(71) which can be given in the unconstrained case.
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3.3.3. The mean curvature equation. Assume that h ∈ C1. By Proposi-
tion 3.6, for n ≤ 7, ∂E∗ ∈ C2. Thus we can obtain, from the first variation of (53),
the mean curvature equation satisfied by ∂E∗. Let x ∈ ∂E∗. Let κ1, . . . , κn−1 be the
principal curvatures of ∂E∗ ∈ C2 at x, and let

H(x) =
1

n− 1

n−1∑
i=1

κi(76)

be the mean curvature of ∂E∗ ∈ C2 at x (see, e.g., [22, section 14.6]). Then, computing
the first variation of (53) at E∗ under domain deformations, by the well-known fact
that the first variation of the area equals −(n − 1)H [23, Theorem 10.4, equation
(10.12), and Remark 10.6] (notice that our definition of the mean curvature differs
from the one used in [22] by a normalizing factor −(n− 1)), we get

H(x) =
h(x)− c

n− 1
,(77)

where c is defined by (58), because E∗ is a minimizer of (53).
By Proposition 3.6, for dimensions n ≥ 8 we have ∂∗E∗ ∈ C2. Thus, (77) holds

for x ∈ ∂∗E∗, but ∂E∗ − ∂∗E∗ may be nonempty. However, in this case we can still
regard ∂E∗ as a generalized solution to (77).

3.3.4. Connectedness and simple connectedness. From now on, in addition
to h ≥ 0 and lim|x|→∞ h(x) =∞, we assume that h is convex. We want to prove that,
in any dimension n, a minimizer of (53) is simply connected in the following sense:
its complement in Rn ∪ {∞} (Rn compacted by adding a point at infinity) has only
one component. Intuitively, it means that there are no holes inside a minimizer. We
shall need the following lemma, which generalizes (63).

Lemma 3.7. Let E be a Caccioppoli set in Rn and let C ⊆ Rn be convex. Then

|∂(E ∩ C)| ≤ |∂E|.(78)

This result is contained in [50, Lemma 8].
Now, let E∗ be a minimizer of (53). We can, with no loss of generality, assume

that E∗ is open. Suppose, to the contrary, that E∗ is not simply connected, i.e., its
complement in Rn∪{∞} has at least 2 components: A∞ containing∞ and a bounded
component A. Choose a positive number b such that the set

Cb = {x ∈ Rn : h(x) ≤ b},(79)

which is convex by convexity of h, contains A and |A| > d := |E∗ −Cb| > 0. Let e be
a fixed unit vector in Rn and let b̃ be such that

|A ∩Hb̃| = d,(80)

where

Hb̃ = {x : e · x ≤ b̃}.(81)

Define

E∗∗ = (E∗ ∩ Cb) ∪ (A ∩Hb̃).(82)
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Clearly, E∗∗ is a Caccioppoli set, |E∗∗| = |E∗|, and∫
E∗∗

hdx <

∫
E∗

hdx(83)

by construction (h takes bigger values on E∗−Cb than on A∩Hb̃ and their measures
are the same). Also, by Lemma 3.7 applied twice,

|∂E∗∗| ≤ |∂(E∗ ∩ Cb)| ≤ |∂E∗|,(84)

which yields

J(E∗∗) < J(E∗),(85)

which is a clear contradiction.
Remark. We can always (also in the case of nonconvex h) take a connected

minimizer E∗. Indeed, we know already that ∂E∗ ∈ C2. From now on, assume
that E∗ is actually open (Caccioppoli sets are defined up to a set of measure zero)
and let x ∈ E∗. Let C be the component of E∗ containing x. From our previous
considerations it follows that the solution to the Skorokhod problem for E∗ starting
at x with normal reflection direction is optimal for ergodic discounting, i.e., minimizes
(51). But it is clear that this solution never leaves C, so this policy also solves an
analogous Skorokhod problem for C. Thus, by the ergodic theorem, C also minimizes
(53).

3.3.5. Convexity in two dimensions. Let n = 2 and let the assumptions
about h be the same as in the last subsection. We want to prove that E∗, a minimizer
of (53), is convex. The proof is similar to the one we have just given. Suppose that
our claim is false. Then, there exist points x1, x2 ∈ ∂E∗ such that

B ∩ E∗ = ∅,(86)

where B is the open, nonempty set, the boundary of which consists of the interval
joining x1 to x2 and the shorter arc joining x1 to x2 in ∂E∗, and moreover,

B ⊆ Cb(87)

for Cb defined by (79), and b is such that

|E∗ − Cb| = |B|.(88)

Let

E∗∗ = (E∗ ∩ Cb) ∪B.(89)

Similarly as in the last proof, we check that |E∗∗| = |E∗|,∫
E∗∗

hdx <

∫
E∗

hdx,(90)

and |∂(E∗ ∩ Cb)| ≤ |∂E∗|. Finally, |∂E∗∗| < |∂(E∗ ∩ Cb)| because the length of the
interval [x1, x2] is smaller than the length of the corresponding arc. Thus, again, (85)
holds, leading to a contradiction.

Remark. This argument clearly does not go through for n ≥ 3. In this case,
a similar question, whether or not a minimizer of (69) with convex h is convex,
remains open [47]. Modifications of the above argument, however, can give us partial
answers to the convexity question in higher dimensions. For example, there is no
point x ∈ ∂∗E∗ at which all the principal curvatures of ∂∗E are strictly negative and
if h (hence, by Proposition 3.8 of the next subsection, E∗) is axisymmetric, then E∗

is convex.
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3.3.6. Symmetry. Let a ∈ Rn − {0}, and let

N = Na = {x ∈ Rn : a · x = 0}(91)

be a hyperplane in Rn. We say that a function h is symmetric with respect to N iff
for every x ∈ N and t ∈ R we have h(x− ta) = h(x+ ta).

Proposition 3.8. Let the function h be nonnegative, strictly convex, and sym-
metric with respect to N and such that lim|x|→∞ h(x) =∞. Then, any minimizer of
(53) is also symmetric with respect to N .

For simplicity of the proof, assume that a = en = (0, . . . , 0, 1), so N = {x : xn =
0}. Let E∗ be a nonsymmetric minimizer of (53). Let E∗∗ be the set which results
from E∗ by its Steiner symmetrization with respect to the hyperplane N , i.e., for
every x = (x′, 0) ∈ N , x′ ∈ Rn−1,

E∗∗ ∩ {x+ ten : t ∈ R} =
{
x+ ten : − b

2
≤ t ≤ b

2

}
,(92)

where b is the one-dimensional Lebesgue measure of E∗ ∩ {x + ten : t ∈ R}. By
definition and Fubini’s theorem, |E∗∗| = |E∗|. It is also well known (see, e.g., [20, 43])
that |∂E∗∗| ≤ |∂E∗|. Thus, if we show that∫

E∗∗
h(x)dx <

∫
E∗

h(x)dx,(93)

we get J(E∗∗) < J(E∗), which is a contradiction. (93) follows easily from a simple
lemma.

Lemma 3.9. Let f be an even, strictly convex function on R and let a > 0 be
a given finite number. Then, the minimum of F (E) =

∫
E
f(x)dx over all Lebesgue

measurable sets E ⊆ R such that |E| = a is∫ a
2

− a
2

f(x)dx(94)

and is attained iff E differs from [−a2 , a2 ] by a set of measure zero.
Proof. Let E ⊆ R be a set such that |E| = a and let b− = |E ∩ {x < 0}|,

b+ = |E ∩ {x > 0}|. Obviously, by the fact that f is strictly increasing on [0,∞),∫
E∩{x>0}

f(x)dx ≥
∫ b+

0

f(x)dx,(95)

and the equality holds iff |E∩{x > 0}�[0, b+]| = 0. By the same reasoning applied to
E∩{x < 0}, we get that F (E) ≥ F ([−b−, b+]) with equality only if E = [−b−, b+] a.e.
To complete the proof, we need to show that the minimum is attained iff b+ = b−.
Suppose, for example, that b+ > b−. (The argument in the opposite case is essentially
the same.) Then∫ b+

−b−
f(x)dx =

∫ b−
−b−

f(x)dx+

∫ b−+
b+−b−

2

b−
f(x)dx+

∫ b+
b−+

b+−b−
2

f(x)dx

>

∫ −b−

−b−− b+−b−
2

f(x)dx+

∫ b−
−b−

f(x)dx+

∫ b−+
b+−b−

2

b−
f(x)dx

=

∫ b−+
b+−b−

2

−b−− b+−b−
2

f(x)dx
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by symmetry of h and its monotonicity on [0,∞) ((−∞, 0]) and |[−b−, b+]| = |[−b−−
b+−b−

2 , b− + b+−b−
2 ]|. The proof is complete.

In particular, if h is radially symmetric, then a minimizer of (53) is a ball BR =
BR(0). Putting I(R) = J(BR) and using calculus methods, we can find the radius of
the optimal ball. For example, consider again the case of n = 2 and h(x) = |x|2. We
have

I(R) =
2

R
+

π

2
R4.(96)

This function attains its unique minimum at R0 =
1
5
√
π
, so in this case E∗ = B 1

5√π
(0).

3.4. A generalization. The initial assumption of smoothness and boundedness
of the domains E under consideration was convenient for two reasons. First, path-by-
path constructions of strong solutions to the corresponding Skorokhod problem for
this case are known. Second, in this context the ergodic result

lim
T→∞

1

T
Ex
∫ T

0

[h(Xt)dt+ dξt] = J(E)(97)

for all x ∈ E is easy to get. In fact, we do not even need ergodic theorems here; it is
enough to use the Ito’s rule and the necessary and sufficient condition for solvability of
the Neumann problem for the Laplace operator (see, e.g., [31, p. 95]). However, as we
have already seen, it is natural to extend the class of allowed domains to Caccioppoli
sets. See [9, 18, 51] for the construction of the Brownian motion reflected normally at
the boundary of a bounded Caccioppoli set E; the case of an unbounded Caccioppoli
domain is considered in [8, 19]. In the appendix we show that (97) actually holds
for a.e. x ∈ E (with respect to the Lebesgue measure) if E is bounded Caccioppoli.
Moreover, we have, for an arbitrary Caccioppoli set E,

lim inf
T→∞

1

T
Ex
∫ T

0

[h(Xt)dt+ dξt] ≥ J(E)(98)

quasi-everywhere (q.e.) in x, i.e., for all starting points x ∈ E−N , where N is a set of
the Newtonian capacity zero. J(E), the right-hand side of (98), should be interpreted
as +∞ if |E| = +∞. Both (97) and (98) follow from ergodic theorems given in [16, 17]
after some technical details are taken care of. The only assumptions about h we need
for (97)–(98) is that h is nonnegative, Borel measurable, and bounded on compact
subsets of Rn, and lim|x|→∞ h(x) = ∞. These facts, together with the arguments
given in subsections 3.2-3.3, allow us to state the following theorem.

Theorem 3.10. Assume that h ≥ 0 is Borel and locally bounded and lim|x|→∞ h(x) =
∞. There exists an open, connected Caccioppoli set E∗ such that the Brownian motion
reflected normally at ∂E∗ minimizes the ergodic cost

lim inf
T→∞

1

T
Ex
∫ T

0

[h(Xt)dt+ dξt]

in the class of all Brownian motions Xt reflected normally at the boundary of some
open, connected Caccioppoli set E for q.e. starting point x ∈ E. The family of such
minimizing sets E∗ coincides with the family of open, connected minimizers of the
functional J(E) defined by (53) in the class of all Caccioppoli sets.
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Recall that some properties of minimizing sets E∗ were investigated in the last
subsection.

Let us also remark that, in general, we cannot expect uniqueness of a minimizer
E∗ of J . See, e.g., [49] for related work.

3.5. Concluding remarks. Can we use analogous geometric-measure theoretic
techniques in the exponentially discounted cost problem of minimizing (9)–(10)? In
particular, can we establish or at least improve regularity of the free boundary ∂C
by considerations based on regularity for the mean curvature equation? We have not
found any results along this line. Admittedly, if we know from the outset that the
optimal reflection direction −∇u is normal to ∂C on the whole ∂C, then u satisfies
(13) in C with the Neumann boundary condition (14) and an additional free-boundary
condition

∂2u

∂η2
= 0,(99)

where η = ∇u is the outer normal at ∂C. The last equation follows from the fact that
w = |∇u|2 is C1,

∂2u

∂η2
=

∂
√
w

∂η
(100)

on ∂C (compare (17)), and w attains its maximum value 1 on ∂C. Moreover, because
∇u is perpendicular to ∂C, we get another free-boundary condition (15). Thus, if ∂C
is regular enough to assure that (13) holds up to the boundary (it suffices to have
∂C ∈ C2), writing (13) in the local normal-tangential system of coordinates at x ∈ ∂C,
we get

u−�u = u− ∂2u

∂η2
− (n− 1)H

∂u

∂η
= h(101)

on ∂C, where H is again the mean curvature of ∂C. Thus, by (14), (15), and (99) we
get

H(x) =
c− h(x)

n− 1
(102)

resembling (77), with a different meaning of c of course. In fact, by Theorem 3.1
in [44], we can get both (15) and (99) under a weaker assumption that the Brownian
motion reflected normally at ∂C minimizes (9)–(10) in the class of all solutions for
the Skorokhod problem with normal reflection for C2 domains containing x for every
x ∈ C. Thus, under this weaker condition (102) holds also, where, again, c is the
(constant) value which the solution u of (13), (14) in C takes on ∂C. Thus, one might
attempt to find C as a maximizer of a (69)-type functional

|∂E|+
∫
E

(c− h(x))dx(103)

with a suitably chosen constant c.
As we have seen before, ∇u is normal to ∂C on ∂C if h is radially symmetric, but

we are not sure whether a different example can be given. Additionally, in the radially
symmetric case, ∂C is just a sphere, so any further considerations of its regularity are
superfluous.
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4. Appendix. Let E be an open, connected Caccioppoli set in Rn and let m be
the Lebesgue measure on E. Let the process Xt defined by (2), (3) be the Brownian
motion reflected normally at ∂E. See [9, 18, 51] for the construction of such a process
for bounded E, the case of an unbounded domain is considered in [8, 19]. The aim of
this appendix is to show that (98) holds q.e. in x, i.e., for all starting points x ∈ E−N ,
where N is a set of capacity zero and J(E), the right-hand side of (98), is interpreted
as +∞ if |E| = +∞. In this appendix we will use terms such as capacity, exceptional
set, positive continuous additive functional, measure of finite energy integral, etc.
from potential theory unified with the theory of Markov processes. Their definitions
can be found, for example, in [15].

We also want to show that in the case of a bounded Caccioppoli domain E (98)
can be refined to (97) for a.e. x ∈ E.

Let pt = pt(x, dy), t > 0, be the transition function of the process Xt. For a Borel
function f : R→ R let

ptf(x) =

∫
E

f(y)pt(x, dy) = Exf(Xt)

if the integral on the right-hand side exists.
It is clear that {pt} is irreducible; in other words, any pt-invariant (i.e., such that

ptf = f a.s. for all t > 0) bounded function on E, integrable with respect to m, is
constant a.e. in E. This follows from the fact that E is open, connected, and from
known averaging properties of the transition functions pt.

First assume that E is bounded. Then h is bounded on E. Thus, by the corollary
following [16, Theorem 1], we have

lim
t→∞ pth =

1

|E|
∫
E

h(y)dy(104)

for almost every x ∈ E. In fact, this is true for q.e. x ∈ E by [17, Theorem 2]. This
clearly implies

lim
T→∞

1

T
Ex
∫ T

0

h(Xt)dt =
1

|E|
∫
E

h(y)dy(105)

for q.e. x ∈ E.
Fix s, t > 0, and let, for x ∈ E,

f(x) = Exξt.(106)

By [18, Theorem 1.1], f is integrable with respect to m on E.
We want to show that

Ex(ξt+s − ξs|Xs) = f(Xs)(107)

P x a.s. for q.e. x ∈ E.
First note that, by the construction of the Brownian motion Xt reflected normally

at ∂E [9, 18, 51], ξt is a positive continuous additive functional of Xt. Thus

ξt+s(ω)− ξs(ω) = ξt(θsω)(108)

for ω ∈ Λ, where P x(Λ) = 1 for all x ∈ E −N , where N is an exceptional subset of
E and θs : Ω→ Ω is the so-called shift operator

Xt ◦ θs(ω) = Xt+s(ω)
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for all ω ∈ Ω, t, s ≥ 0 (see, e.g., [15, p. 89], [33, p. 77]).
Fix x ∈ E − N . It is not hard to show (107) under the assumption that ξt is

FXt := σ{Xu, 0 ≤ u ≤ t}-measurable. (Follow the proof below without modifying
ξt.) However, in general we only know that ξt is {F̃t}-measurable, where {F̃t} is the
minimum completed admissible family for the Markov process Xt [15, pp. 89, 124],
so some additional care must be taken. Using [15, Lemma 4.1.3], we can, as in the
solution to [33, Problem 2.5.7], construct a FXt+-measurable modification ξ̃t of the
process ξt such that

P y[ξt �= ξ̃t] = 0

for y = x and for P x ◦ X−1
s a.e. y ∈ E (in [15, Lemma 4.1.3] use the measure

µ = 1
2 (P

x ◦X−1
s + δx), where δx is the probability measure concentrated at the point

x). To proceed further, we need to verify that

ξt ◦ θs = ξ̃t ◦ θs P xa.s.(109)

First, by construction,

PP
x◦X−1

s [ξt �= ξ̃t] = 0.(110)

Fix an ε > 0. [ξt �= ξ̃t] ∈ Ft+ε, so, by the definition of the minimum completed
admissible family for Xt, there exists a set F ∈ B(R[0,t+ε]), the Borel σ-field on
R[0,t+ε] equipped with the product topology, such that

[ξt �= ξ̃t] ⊆ Z := [X· ∈ F ],

where X· in the above formula denotes the path of X on [0, t+ ε], and

PP
x◦X−1

s (Z) = 0,

i.e.,

P y(Z) = 0(111)

for P x ◦X−1
s a.e. y. Thus, by the Markov property of Xt,

P x[ξt ◦ θs �= ξ̃t ◦ θs] = P x[θ−1
s [ξt �= ξ̃t]]

≤ P x[θ−1
s Z]

= ExP x[θ−1
s Z|Fs]

= ExPXs [Z] = 0,

where the last equality follows from (111). This proves (109).
Thus, by (108), (109), and (110), we have

Ex(ξt+s − ξs|Xs) = Ex(ξt ◦ θs|Xs) = Ex(ξ̃t ◦ θs|Xs)
= Ex(Ex[ξ̃t ◦ θs|Fs]|Xs) = Ex(EXs ξ̃t|Xs)
= EXs ξ̃t = EXsξt

= f(Xs).

The fourth inequality follows from the Markov property of Xt. (Here EXs ξ̃t, E
Xsξt

should be interpreted as the compositions of real functions y → Ey ξ̃t, y → Eyξt, and
the random variable Xs.) We have shown (107).
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Next, we need the fact that

lim
t→∞ ptf =

1

|E|
∫
E

f(y)dy(112)

for almost every x ∈ E. Similarly as in the proof of [16, Theorem 1], we argue that the
limit limt→∞ ptf = g exists a.e. and in L1(E,m) (we have f ∈ L1(E,m) instead of
Lp(E,m) for some p > 1, but the argument still goes through, because every backward
martingale is convergent a.s. and in L1). Moreover, it follows from the proof cited
above that

Emg = Emf(X0) =

∫
E

f(y)dy.(113)

By [16, Corollary to Theorem 1], for any natural N we have

lim
t→∞ pt(f ∧N) =

1

|E|
∫
E

(f ∧N)(y)dy,

so

g = lim
t→∞ ptf ≥ g0 :=

1

|E|
∫
E

f(y)dy.

But, by (113), g and g0 have the same expectations under P
m, so they must be equal

a.e. This proves (112).
Now take t = 1 in the definition (106) of f and denote by σ the Borel measure

on Rn defined by

σ(G) = P (E,G)(114)

for all open sets G. σ is a smooth measure, i.e., it charges no set of zero capacity [18].
It also follows from [18, Theorem 1.1 and Lemma 2.1] that σ is the Revuz measure
corresponding to the positive continuous additive functional ξt in the sense of [15,
Theorem 5.1.3].

We want to show that∫
E

f(y)dy = Emξ1 = σ(E) = |∂E|.(115)

If σ is of finite energy integral, this follows immediately from [15, Lemma 5.1.4(iii)].
In general, by [15, Theorem 3.2.3], there exists an increasing sequence {Fn} of closed
subsets of E such that

σ

(
E −

∞⋃
n=1

Fn

)
= 0,(116)

E−⋃∞
n=1 Fn is an exceptional set, and the measures IFn ·σ, n = 1, 2, . . . , are of finite

energy integral. By [15, Theorem 5.1.3], IFn · σ corresponds to the functional IFnξ
defined by

(IFnξ)t =

∫ t
0

IFn(Xs)dξs.(117)
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Using [15, Lemma 5.1.4(iii)] for IFn · σ and IFnξ, we get

Em(IFnξ)1 = (IFn · σ)(E) = σ(E ∩ Fn).(118)

Letting n→∞, we get (115).
To finish the proof of (97), it suffices to show (still under the assumption that E

is bounded), that

lim
T→∞

ExξT
T

=
|∂E|
|E|

for a.e. x ∈ E. Indeed, this together with (105) gives (97). To this end, let us remark
that

Exξ[T ]

[T ] + 1
≤ ExξT

T
≤ Exξ[T ]+1

[T ]
,

where [T ] denotes the integer part of T , so it actually suffices to show

lim
n→∞

Exξn
n

=
|∂E|
|E|(119)

for a.e. x ∈ E, where the limit is taken over the integers n. We have, by (107),

Exξn = Ex

(
n−1∑
i=0

Ex(ξi+1 − ξi|Xi)
)

= Ex

(
n−1∑
i=0

f(Xi)

)

=

n−1∑
i=0

(pif)(x)

for a.e. x ∈ E. Thus, by (112) and (115), (119) holds for a.e. x ∈ E. This ends the
proof of (97).

Now let us analyze the case of an unbounded Caccioppoli domain E. The con-
struction of a normally reflected Brownian motion in E can be found in [8, 19].

Case 1. |E| <∞.
Again, let σ be defined by (114). As in the previous case, σ is the Revuz measure

corresponding to the positive continuous additive functional ξt and, by [15, Theorem
3.2.3], there exists an increasing sequence {Fn} of closed subsets of E such that
σ(Fn) < ∞ for each n, (116) holds, E − ⋃∞

n=1 Fn is an exceptional set, and the
measures IFn · σ, n = 1, 2, . . . , are of finite energy integral.

Arguing as in the case of a bounded domain, but with (IFnξ)t defined by (117)
instead of ξt, and using (118), we get, for a.e. x ∈ E,

lim
T→∞

Ex(IFnξ)T
T

=
Em(IFnξ)1
|E| =

σ(E ∩ Fn)

|E| .

Thus,

lim inf
T→∞

ExξT
T
≥ σ(E ∩ Fn)

|E|
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for every n ≥ 1, i.e.,

lim inf
T→∞

ExξT
T
≥ σ(E)

|E| =
|∂E|
|E|(120)

for a.e. x ∈ E.
Carefully examining this argument and using [17, Theorem 2], we can get (120)

for q.e. x ∈ E.
For any natural number N , h ∧N ∈ Lp for all p ≥ 1. Thus, proceeding as in the

bounded case, we get (104) and (105) with h ∧N instead of h, which yields

lim inf
T→∞

1

T
Ex
∫ T

0

h(Xt)dt ≥ 1

|E|
∫
E

h(y)dy(121)

for q.e. x ∈ E. This, together with (120), ends the proof of (98) in the case of |E| <∞.
Case 2. |E| =∞.
Define, for any natural number N ,

fN = N − (h ∧N).

fN ∈ Lp for all p ≥ 1, because lim|x|→∞ h(x) =∞. By [16, Corollary (ii) to Theorem
1] and [17, Theorem 2] once again, we get

lim
t→∞ ptfN = 0

q.e. in E, so

lim
t→∞ pt(h ∧N) = N

q.e. in E. From this we easily get

lim inf
T→∞

1

T
Ex
∫ T

0

h(Xt)dt =∞

q.e. in E by the same reasoning as in the previous cases. This ends the proof of (98).
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Abstract. In this paper we prove an abstract theorem of noncontrollability for the evolution
equation associated to a Douglis–Nirenberg elliptic system of mixed order with nonempty essential
spectrum. In particular, we show by Weyl’s characterization of the essential spectrum that the
condition of exact controllability does not hold true. We discuss examples concerning the elasticity
operator in the framework of the linear membrane shell theory.
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1. Introduction. The exact controllability of the vibrations of mixed order sys-
tems frequently arises in the control theory of distributed parameters systems and
techniques of harmonic analysis, and results of spectral theory are often involved in
the solution of the control problem. Excitable systems can otherwise produce vibra-
tions which are not exactly controllable. It is the aim of our paper to describe such a
situation and get an abstract noncontrollability result via spectral analysis.

In order to fix the notations we consider a system of differential equations
vtt +Av = 0 in Ω× (0, T ),

Bv = 0 on ∂Ω× (0, T ),
(1.1)

where A is a Douglis–Nirenberg elliptic operator of mixed order and B is a system of
normal boundary conditions. We restrict our attention to a linear selfadjoint operator
associated with a sesquilinear form. Following the spectral analysis results given in [6],
[7], [8], [9], we show that the exact controllability problem is strictly connected to the
spectral properties of A; in particular, we point out that when the operator A has a
nonempty essential spectrum, that is, the operator A contains a block of zero order,
the system (1.1) is not exactly controllable. The proof of our main result is obtained by
Weyl’s characterization of the essential spectrum here recalled and reformulated. We
adopt the Weyl sequences (or singular sequences) to show that the exact controllability
problem cannot in general be solved.

In many physical situations the operator A depends on a small parameter ε and
the limit as ε→ 0 may lead to a singular perturbation problem. When ε vanishes and
the existence of eigenvalues which form a discrete spectrum is still ensured, the con-
trollability problem may be solved, but if the limit problem has an essential spectrum,
the system is no longer controllable; the phenomenon of the loss of exact controllability
is therefore connected to the appearance of the essential spectrum.
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For example, in the case of a thin shell, the perturbation parameter is represented
by the shell thickness. In the spectral analysis for thin shells carried out in [5], the
dependence on the thinness parameter in the formula that gives the distribution of
the eigenvalues has been studied. The established result suggested, in particular, the
existence of a finite accumulation point for a subsequence of eigenvalues of the limit
problem. Moreover, an explicit computation of the eigenfunctions allowed us to deduce
the nonexact controllability of the spherical membrane. Results of exact controllability
of thin shells, including shallow shells, can be found in [4], [5], [12], [14].

This paper presents a result of independent interest which in the framework of the
linear thin shell theory also generalizes the previous one and shows the phenomenology
of the loss of the exact controllability in the transition shell-membrane. Although
in this paper we repeatedly refer to the membrane shell operator, we insist on the
interest in a criterion of noncontrollability for other applications in the control theory
of distributed parameters systems. Moreover, the general formulation of our examples
allows us to consider membrane shells of arbitrary shapes which can also take part in
the modelling of more complex phenomena (see, for example, [11]).

2. Mixed order systems and spectral analysis. Most of the arguments in
this section have been introduced in [6], [7], [8], [9]. We consider mixed order operators
which exhibit an essential spectrum.

2.1. Some assumptions. Let Ω̄ be a compact d-dimensional C∞ manifold with
C∞ boundary Γ, and let A = (Ast)s,t=1,...,q (with q > 1) be a selfadjoint matrix of
differential operators Ast of order ms +mt, where

m1 ≥ m2 · · · ≥ mq−p > mq−p+1 = · · · = mq ≥ 0 (1 ≤ p < q).

We assume the following.
(A.I) A is elliptic in the sense of Douglis–Nirenberg (see [1]), i.e., the matrix
of principal symbols σ0(A)(x, ξ) is invertible for all (x, ξ) in the nonzero
cotangent bundle T ∗(Ω̄)\0.

In this paper we consider operators A which contain a block of order 0, that is,
mq = 0. In this case it is useful to split A in blocks of positive order and zero order,
respectively,

A =

(
ANN ANQ

AQN AQQ

)
,(2.1)

where we have adopted the notations

N = 1, 2, . . . , q − p, Q = q − p+ 1, . . . , q,
ANN = (Ast)s,t∈N , ANQ = (Ast)s∈N,t∈Q,
AQN = (Ast)s∈Q,t∈N , AQQ = (Ast)s,t∈Q.

In (2.1) the block AQQ is of order 0 while the other blocks are of positive order, and
we assume for simplicity that the operator ANN is elliptic.

Along with the operatorA we consider a matrix of differential boundary operators
B = (Brs)r∈M,s=1,...q, where M = {1, 2, . . . ,m}, m =

∑q
s=1 ms. Each operator Brs

has order σr +ms, where −m1 ≤ σ1 ≤ σ2 · · · ≤ σm ≤ m1 − 1, and if σr +ms < 0,
then Brs ≡ 0. When σr ≤ −1 for r = 1, . . . , �, then we consider the decomposition

B =

(
B0

B1

)
, B0 = (Brs)r=1,...�; s=1,...q.(2.2)



A NONCONTROLLABILITY RESULT 663

(A.II) B defines a system of normal boundary conditions, i.e., there exists a
complementary system C of boundary conditions such that {B,C} are the
reduced Cauchy data of A (see [9]), and the following Green formula holds
for smooth functions:

((Av, ṽ))Ω − ((v,Aṽ))Ω = ((Cv, Bṽ))Γ + ((Bv, Cṽ))Γ.

In what follows, we denote by H = H0 the vector space L2(Ω), and we denote by
V the vector space of functions u ∈ Hm1(Ω)×Hm2(Ω) · · ·×Hmq (Ω) with the boundary
condition B0u = 0, equipped with the norm ‖u‖V induced by

∏q
i=1 H

mi(Ω).
The realization AB of A associated to the boundary conditions B is defined via

the following assumption.
(A.III) AB is a selfadjoint lower bounded operator in H associated with
the sesquilinear and continuous form a(u,v) on V × V which satisfies the
inequality

a(v,v) + τ‖v‖2H ≥ c0 ‖v‖2V , c0 > 0 and τ ∈ R.

Under this assumption AB is the operator in H with domain

D(AB) =

u ∈
∏

i=1,...,q

Hmi(Ω); Au ∈ H, Bu = 0

 ⊂ V,

defined by (ABu,v)H = a(u,v) for any u ∈ D(AB) and v ∈∏q
i=1 H

mi(Ω).
Realizations AB verifying assumption (A.III) are determined in [9].

We can also introduce the operator Amin
B defined by Amin

B u = Au with domain

D(Amin
B ) =

u ∈
∏

i=1,...,q

Hm1+mi(Ω), Bu = 0

 .

Examples. In the linear thin shell theory we consider themembrane approximation
of the elasticity operator. Let Ω be a bounded open set of boundary Γ of the plane
R

2; the surface S of an elastic membrane is defined by two curvilinear coordinates x1

and x2; it is the image in R
3 of Ω by the map

ϕ : (x1, x2) ∈ Ω→ R
3.

In each point of S two tangent vectors aα = ∂ϕ/∂xα α = 1, 2 and a normal vector
a3 =

a1×a2

|a1×a2| are considered.
Adopting the summation convention (Greek indices take values in the set {1, 2}

and the Latin indices take values in the set {1, 2, 3}) and denoting by f,α the partial
derivative of f with respect to xα, the first fundamental form (aαβ) and the second
fundamental form (bαβ) are given by

aαβ = aα · aβ , α, β = 1, 2,

bαβ = a3 · aα,β , α, β = 1, 2;

moreover, if (aαβ) denotes the inverse matrix of (aαβ), the reciprocal basis a
α is defined

by aα = aαβaβ . Let v(x1, x2) = v1a
1+ v2a

2+ v3a
3 = via

i be the displacement vector
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of S; the deformed surface is given by ϕ+ v. In the framework of a linearized theory
small displacements v are considered.

The energy of membrane deformation is defined by the symmetric form

am(v, ṽ) =

∫
S

aαβλµγαβ(v)γλµ(ṽ) dS,(2.3)

where dS = |a1 × a2|d x1 d x2 and

aαβλµ =
E

2(1 + ν)

[
aαλaβµ + aαµaβλ +

2ν

(1− ν)
aαβaλµ

]
(2.4)

is the tensor of “elastic moduli,” with E and ν as the Young modulus and Poisson
ratio, respectively.

The deformation tensor of the middle surface (γαβ(v)) is given by

γαβ(v) =
1

2
(vβ|α + vα|β)− bαβv3,(2.5)

where the bar | denotes the covariant derivative defined by means of the Christoffel
symbols Γαβλ = aα · aβ,λ and vα|β = vα,β − Γλαβvλ.

Since the component v3 appears in (2.3) by zero order derivative, while the com-
ponent vα appears by first order derivatives, we have that the differential selfadjoint
operator Am, associated to the form am, is a linear system of differential operators
of mixed order with indices m1 = m2 = 1, m3 = 0, which we can write in block
decomposition as

Am =

(
Am

NN Am
N3

Am
3N Am

33

)
,(2.6)

whereAm
33 = aαβλµbαβbλµ is a zero order operator, andAm

NN (resp.,A
m
N3,A

m
3N )(N=1,2)

is a matrix of differential operators of order 2m1 (resp., m1+m3, m1+m3). Let u be
the vector (v1, v2) so that v = (v1, v2, v3) = (u, v3), and let V = (H1(Ω))2 × L2(Ω).
We may consider three different types of boundary conditions:

(a) vα = 0, α = 1, 2 (Dirichlet conditions);
(b) aαβσµγσµ(v)νβ = 0, α = 1, 2 (Neumann conditions),

where ν is the unit outward normal vector in the surface at points of ∂S;
(c) vα να = 0, aαβσµγσµ(v)νβ τα = 0 (intermediate conditions),

where τα denotes the components of the tangent unit vector.
We define the operator Am

D , Am
N , and Am

I corresponding to the boundary conditions
(a), (b), and (c), respectively. According to the mentioned boundary conditions and
the position (2.2), we introduce the following vector spaces:

V(a) = {v ∈ V, | B0v = 0, with B0 = (B0
αβ) = I},

V(b) = V,
V(c) = {v ∈ V, | B0v = 0, with B0 = (B0

1β) = νβ}.
Moreover, let H be the space (L2(Ω))3 equipped with the standard scalar product

(v, ṽ)H = ((v, ṽ)) =

∫
S

aαβvαṽβ + v3ṽ3dS.

We refer to the papers of Ciarlet and Sanchez-Palencia for ellipticity results and
uniqueness and existence theorems for linear membrane shell equations (see, for in-
stance, [2] and the references therein).
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2.2. The essential spectrum. Let σess(AB) be the essential spectrum of the
selfadjoint operator AB , and one can prove (see [7], [8]) that

σess(AB) = ω ∪ ωb,(2.7)

where ω is the closed set of λ ∈ R such that A− λI is not Douglis–Nirenberg elliptic,
and ωb is the closed set of λ ∈ R\ω for which the boundary condition does not cover
A− λI, i.e., does not satisfy the Shapiro–Lopatinskii condition.

We recall that the set ω is formed by the points λ such that the determinant of
the principal symbol of A − λI, which we denote by σ0(A − λI)(x, ξ), vanishes for
some real ξ different from zero.

Since we consider the casemq = 0, A−λI is not always Douglis–Nirenberg elliptic
and the set ω is nonempty.

The characterization of the essential spectrum is also given in terms of singular
sequences.

Proposition 2.1 (Weyl characterization of the essential spectrum [7], [16]). Let
T be a selfadjoint linear operator on a Hilbert space H, λ∗ ∈ σess(T) if and only if
there exists a singular sequence for T − λ∗I, i.e., a sequence wn of elements of the
Hilbert space H such that

(i0) wn ∈ D(T),
(i1) ‖wn‖H = 1,
(i2) (T− λ∗I)wn → 0 in H strongly,
(i3) wn has no strongly convergent subsequence in H ( wn → 0 in H weakly).
In our situation we can verify further properties.
Proposition 2.2. Under the assumptions (A.I)-(A.III) if λ∗ = λ(x∗, ξ∗) ∈ ω,

then there is a singular sequence for AB − λ∗I such that
(i4) a(wn,wn)→ λ∗,
(i5) Cwn → 0 in L2(Γ) strongly.
Proof. In order to prove (i5) we recall a technique for the construction of a singular

sequence. We assume by translation x∗ = 0 and take w ∈ C∞
0 (R

d) with ‖w‖H = 1.
Now we formally write the operator A in the form

A =

(
ANN 0
AQN I

)(
I A−1

NNANQ

0 S

)
,(2.8)

where S = AQQ − AQNA−1
NNANQ. Note that we use the same symbol I for unit

matrices of different dimension. Since detσ0(A−λ∗I) = detσ0(ANN ) detσ
0(S−λ∗I),

we have that detσ0(ANN ) �= 0 implies that σ0(S)− λ∗I is not bijective at (0, ξ∗).
We consider the eigenvector ϑ corresponding to the eigenvalue λ∗ for σ0(S); then

the sequence

w̃n(x) = nd/2ei(x,n
2ξ∗

)w(nx)ϑ(2.9)

is a singular sequence for S − λ∗I. The singular sequence (2.9) is often quoted in
literature (see, for example [6], [7], [15]) and can be used to construct a singular
sequence for A − λ∗I. Let P be a parametrix of ANN , whose kernel as an integral
operator has its support close to the diagonal; the sequence

wn =
w′

n

‖w′
n‖H

, w′
n =

( −PANQw̃n

w̃n

)
,(2.10)
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is a singular sequence for A − λ∗I and hence for AB − λ∗I since λ∗ ∈ ω. Indeed,
conditions (i0) and (i1) are verified for construction, and since

(A− λ∗I)w′
n =

(
(−ANNP+ I)ANQw̃n + λ∗ PANQw̃n,

(S− λ∗I)w̃n,

)
,(2.11)

we have (S−λ∗I)w̃n → 0 strongly inH, and ((−ANNP+I)ANQ+λ∗PANQ)w̃n → 0
strongly inH (using that w̃n → 0 weakly inH and that (−ANNP+I)ANQ+λ∗PANQ

is a regularizing operator); then (A− λ∗I)wn → 0 strongly in H. The condition (i2)
is therefore satisfied, and hence, in the hypotheses defined by the assumptions (A.I)–
(A.III), we get (i4).

Moreover, we denote by Tn the application Tnf = nd/2f(nx) which defines an
isometry of L2 in itself; we see that Tnw concentrates the support of w̃n (and hence
of w′

n, since the support of PANQw̃n is close to w̃n) near the origin (i.e., x
∗ = 0).

It follows that for any given ε > 0 there exists an index nε such that for n > nε
the function wn has compact support in Ωε, where Ωε ⊂ Ω and ε is the positive
distance from Ωε to the boundary of Ω. That implies on the boundary of Ω

(Cwn,Cwn)Γ → 0 as n→∞,(2.12)

and hence (i5) is verified.

2.3. The asymptotics of the unbounded discrete spectrum. When AB

is selfadjoint lower bounded, the essential spectrum is bounded and there is an un-
bounded discrete spectrum. Following the works of Grubb and Geymonat [7], [8], we
find that there exists a sequence of real eigenvalues λ+

j of finite multiplicity and dis-
joint from the essential spectrum going to +∞. Let λo be large enough in order that
λo /∈ σess(AB); then the asymptotic behavior of λ

+
j is given in first approximation by

the asymptotic behavior of the eigenvalues of ANN . That is, there exists a constant
c(ANN ) such that

N(λ,A) =
∑

λo<λ+
j
<λ

1 = c(ANN )λ
d/2mq−p + o(λd/2mq−p), λ→∞,(2.13)

where

c(ANN ) =
1

d(2π)d

∫
Ω

∫
|ξ|=1

tr(p(x, ξ)−d/2mq−p)dσdx

with

p(x, ξ) = σ0(Aq−p,q−p)− σ0(Aq−p,N̂ )σ
0(AN̂,N̂ )

−1σ0(AN̂,q−p)

and N̂ = {1, 2, . . . , q − p − 1}. We point out that the asymptotic behavior defined
by (2.13) does not depend on the choice of the boundary conditions.

Examples (continued). The eigenvalue problem for the operator Am reads

−aαβσµγσµ(v)|β − λaαβvβ = 0, α = 1, 2,(2.14a)

−aαβσµγσµ(v)bαβ − λv3 = 0.(2.14b)

With reference to the operators Am
D , Am

N , and Am
I defined above, we may state that

if λ in the system (2.14) is large enough, the asymptotic behavior of that part of the
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discrete spectrum, formed by eigenvalues with finite multiplicity which accumulate
to +∞, can be easily computed according to (2.13). In each of the above situations
(examples (a), (b), and (c)), taking into account that mq−p = m1 = m2 = 1, we have

c(Am
NN ) =

1

2(2π)2

∫
Ω

∫
|ξ|=1

tr(σ0(Am
NN )

−1)dσdx

with

σ0(Am
NN ) = (aαβ)(t

σµ)

and

tσµ = aσγµαξαξγ , σ, µ = 1, 2.

Although the asymptotic behavior of the unbounded discrete spectrum is independent
on the choice of the boundary conditions, we remark that the essential spectrum and
hence the problems related to the operators Am

D , Am
N , and Am

I may be very different.
We recall that for the axially symmetric deformations of hemispherical membranes,
as considered in [4], [5], and [17], a simple computation of the essential spectrum gives
(1 − ν2) ∈ ω. In this situation, since we treat a one-dimensional problem, we have
to restrict our attention to the boundary conditions (a) and (b). In both cases the
discrete spectrum is formed by two disjoint subsequences of eigenvalues: one going to
∞ and the other one with an accumulation point (1− ν2).

3. A noncontrollability result. In the hypotheses assumed for the operator
A in the previous section, we consider the following exact controllability problem.

(EC) Given T > 0 and an initial state Φ0,Φ1 find the control function g such
that the unique solution Φ of

Φ̈+AΦ = 0 in Q = Ω× (0, T ),(3.1a)

BΦ = g on Σ = Γ× (0, T ),(3.1b)

Φ(0) = Φ0 , Φ̇(0) = Φ1 in Ω(3.1c)

satisfies the following conditions:

Φ(T ) = 0 , Φ̇(T ) = 0 in Ω.(3.1d)

To solve the exact controllability problem, we have to look at the existence of a
solution g of the functional equation∫

Σ

Cη g(s, t) d sd t = ((η0,Φ1))− ((η1,Φ0))(3.2)

for all initial data {η0,η1} of the homogeneous problem associated to (3.1a)–(3.1c)
which we refer to in its variational setting.

Let T > 0, η0 ∈ V, and η1 ∈ H be given; find a function

η(t) ∈ C([0, T ]; V) ∩ C1([0, T ];H)
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such that for any η̃ ∈ V

((η̈, η̃))Ω + a(η, η̃) = 0, η(0) = η0, η̇(0) = η1, Cη ∈ L2(Σ).(3.3)

The existence, uniqueness, and regularity of the solution η of (3.3) follow from the
assumptions (A.I)–(A.III) in section 2.

We have the existence of a solution g of (3.2) if and only if [3](∫
Σ

(Cη)2 d sd t

)1/2

≥ const‖{η0,η1}‖V×H .(3.4)

The Hilbert uniqueness method of J. L. Lions [10], [13] gives a constructive result for
exact controllability problems. If we put g = Cv in (3.2), the problem is to find the
initial data {v0,v1} of the homogeneous problem which solve the functional equation∫

Σ

Cη Cvd sd t = ((η0,Φ1))− ((η1,Φ0)).

If we show that for T large enough(∫
Σ

(Cv)2 d sd t

)1/2

= ‖{v0,v1}‖F

defines a norm on the set of initial data {v0,v1} ∈ F = V ×H of the homogeneous
problem, then the controllability problem can be solved, and we have exact control-
lability for any {Φ1,Φ0} ∈ F′ (F′ = V′ × H). Indeed, after introducing the linear
operator Λ : F→ F′ we can solve the equation

〈Λ{v0,v1}, {η0,η1}〉 = ((η0,Φ1))− ((η1,Φ0))

for any {η0,η1} in F and

〈Λ{v0,v1}, {v0,v1}〉 =
∫

Σ

(Cv)2 d sd t.

We are now in a position to prove the main result of this paper.
Theorem 3.1. We assume that the hypotheses (A.I)–(A.III) and the following

assumption (A.IV) are satisfied.

(A.IV) There is a positive λ∗ in the set ω.

For each finite positive T, there exist some initial data {Φ1,Φ0} ∈ F′ = V′×H such
that the evolution system (3.1a), (3.1b), (3.1c) is not exactly controllable.

Proof. We consider the singular sequence {wn} for λ∗ ∈ ω as we introduced in
Proposition 2.2. If we choose the sequence {v0

n,v
1
n} ∈ V ×H of initial data for the

homogeneous problem associated to (3.1a), (3.1b), (3.1c), with

v0
n = wn , v1

n = 0,

from (i1) of Proposition 2.1, we have

‖{v0
n,v

1
n}‖H×H = ‖v0

n‖H = 1.
Moreover, from assumption (A.IV),

‖{v0
n,v

1
n}‖2V×H = ‖v0

n‖2V = a(v0
n,v

0
n)→ λ∗ > 0 as n→∞.(3.5)
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We denote by vn the unique solution of the homogeneous problem

v̈n +Avn = 0 in Q = Ω× (0, T ),(3.6)

Bvn = 0 on Σ = Γ× (0, T ),(3.7)

vn(0) = wn , v̇n(0) = 0 in Ω,(3.8)

and we introduce the function fn = cos(
√
λ∗ t)wn.

From the definition of singular sequence we have λ∗wn−Awn → 0 strongly in H
as n→∞; moreover, we have that Sn = f̈n+Afn = − cos(

√
λ∗ t)(λ∗wn−Awn)→ 0

strongly in L∞(0, T ;H) as n→∞. Now we consider the function en = vn− fn which
is in C([0, T ];V) ∩ C1([0, T ];H) and satisfies

ën +Aen = Sn in Q = Ω× (0, T ),(3.9)

Ben = 0 on Σ = Γ× (0, T ),(3.10)

en(0) = 0, ėn(0) = 0 in Ω.(3.11)

More regularity of the function en is a consequence of the compatibility condition and
the regularity of the function Sn. Indeed, we can introduce, by means of the standard
technique involving the incremental quotient (en(t+ dt)− en(t))/dt, the differential
system in the unknown ėn = kn, that is,

k̈n +Akn = Ṡn in Q = Ω× (0, T ),(3.12)

Bkn = 0 on Σ = Γ× (0, T ),(3.13)

kn(0) = 0, k̇n(0) = Sn(0)−Aen(0) = Awn − λ∗wn in Ω.(3.14)

Multiplying (3.12) by k̇n, it follows from Gronwall’s inequality the energy estimate

E(kn(t)) =
1

2

{
a(kn,kn) +

∫
Ω

|k̇n|2
}
≤ eT

2
[‖Awn − λ∗wn‖2H + T‖Ṡn‖2L∞(0,T ;H)],

and since Ṡn =
√
λ∗ sin(

√
λ∗ t)(λ∗wn −Awn), we obtain

E(kn(t)) ≤ C1(T ) ‖Awn − λ∗wn‖2H .(3.15)

The previous inequality allows us to multiply (3.9) byAėn and get an a priori estimate
for the function en. We have

Ẽ(en(t)) =
1

2

{
a(ėn, ėn) +

∫
Ω

|Aen|2
}
=

∫
Q

Sn Aėn =

∫
Ω

Sn Aėn −
∫ t

0

∫
Ω

Ṡn Aen.

With simple algebraic manipulations, again from the Gronwall’s inequality and from
the definition of Sn and Ṡn, we get

Ẽ(en(t)) ≤ C(T ) ‖Awn − λ∗wn‖2H ,(3.16)
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where C(T ) is a constant depending on T such that limT→∞ C(T ) = ∞, and hence
for any fixed positive T

en ∈ L∞(0, T ; D(Amin
B )), ėn ∈ L∞(0, T ; V).

Moreover, taking into account our assumptions, Amin
B is a maximal and monotone

operator and from the Hille–Yosida theorem we have en ∈ C(0, T ;D(Amin
B )) and

Cen ∈ L2(Σ). In these regularity hypotheses the boundary operator C is continuous
and surjective [8], [9] and from the estimate (3.16)∫

Σ

(Cen)
2dsdt→ 0 as n→∞;

hence from Proposition 2.2∫
Σ

(Cvn)
2dsdt ≤ 2

{∫
Σ

(Cen)
2dsdt+

∫
Σ

(Cfn)
2dsdt

}
→ 0 as n→∞.

The last condition and the behavior of (3.5) are in contradiction with the necessary
(and sufficient) condition for the exact controllability∫

Σ

(Cvn)
2 dsdt ≥ c‖{v0

n,v
1
n}‖2V×H ,

and that completes the proof.
Examples (continued). The procedure proposed in the proof of the Proposition 2.2

can be applied to the operator Am (see (2.6)). The vibrations of the membrane shell
are described by the system

aαβσµγσµ(z)|β = aαβ(zβ)tt, α = 1, 2,

aαβσµγσµ(z)bαβ = (z3)tt.

On the boundary we assume one of these conditions:
zα = gα, α = 1, 2 (the example (a));
aαβσµγσµ(z)νβ = gα, α = 1, 2 (the example (b));
zα να = g1, aαβσµγσµ(z)νβ τα = g2 (the example (c)).

And at the initial time we prescribe

zα(0) = z
0
α, (zα)t(0) = z

1
α.

The controllability problem requires us to find the control function gα such that at a
given time T

zα(T ) = 0, (zα)t(T ) = 0.

From Theorem 3.1 it follows that the control function gα (α = 1, 2) does not exist for
any choice of the initial data. The eigenfunctions corresponding to the eigenvalues
with finite accumulation point are used to prove the lack of the exact controllability
for spherical membranes (see [4] and [5]). We briefly mention that case. The axially
symmetric vibrations are described by two unknowns u and w: the meridional and
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radial component, respectively, of the displacement vector v = (u,w). The equations
for the hemispherical membrane vibrations take the form

utt = u′′ + u′cotθ − u(ν + cot2θ)− (1 + ν)w′,

wtt =
(1 + ν)

sinθ
(usinθ)′ − 2(1 + ν)w,

where the prime stands by the derivative with respect to θ ∈]0, θ0 =
π
2 [. We consider

the following types of homogeneous boundary conditions:
(a) u(θ0, t) = 0 (Dirichlet condition);
(b) u′ − (1 + ν)w|(θ0,t) = 0 (Neumann condition).

The corresponding boundary conditions in 0 are a consequence of the symmetry of the
problem. The spectral analysis of these problems can be easily carried out (see [4], [5]
for (a)); in particular, we recall that the related eigenfunctions are derived by the
spherical functions of even order (in case (a)) and odd order (in case (b)).

The same spectral asymptotics allow us to treat the problems in an analogous
way. The positive number (1− ν2) which is in the set ω is the accumulation point of
two subsequences of eigenvalues (for the eigenvalues problems defined by (a) and (b),
respectively). In this particular situation a more simple proof of Theorem 3.1 can
be established if we take the corresponding subsequences of eigenfunctions as initial

data of the control problems. Indeed, we denote these last subsequences by v
(a)
n and

v
(b)
n , and we easily check as n → ∞ that (u

(a)
n (θ0))

′ − (1 + ν)w
(a)
n (θ0) → 0 and

u
(b)
n (θ0) → 0.
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Abstract. The value function for the average cost control of a class of partially observed Markov
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corresponding discounted cost problems. The limiting procedure is justified by bounds derived using
a simple coupling argument.
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1. Introduction. Deriving the dynamic programming equations for average cost
control of partially observed Markov chains has been an elusive task. Only scattered
results are available which achieve this under very restrictive conditions [5], [6], [9],
[10], [11]. (See [1], section 7, for a slightly dated survey.) Our aim here is to achieve this
under a fairly broad condition. This is done by first relaxing the control problem to
include the class of the so-called “wide sense admissible” controls, a notion borrowed
from continuous time stochastic control literature [7], and then using a simple coupling
argument to get the kind of bounds we need on the discounted cost value function in
order to justify the “vanishing discount” limit.

The paper is organized as follows. The next section introduces the notation and
the formal statement of the average cost control problem. It also introduces the
associated nonlinear filter and the class of “wide sense admissible” controls alluded to
above. Section 3 contains the coupling argument leading to the key estimates on the
discounted value functions. Section 4 presents the main results, viz., the derivation
of the average cost dynamic programming equation as the vanishing discount limit of
the dynamic programming equations for the discounted cost problem.

2. The control problem. We consider a controlled Markov chain {Xn} on
a finite state space S = {1, 2, . . . , s}, controlled by a control process {Zn} taking
values in a compact metric “action space” A, and with an associated observation
process {Yn} taking values in a finite “observation space” W with cardinality d ≥ 1.
These are realized on an underlying probability space (Ω,F , P ). The evolution law of
(Xn, Yn) is given by

P (Xn+1 = i, Yn+1 = j/Xm, Ym, Zm,m ≤ n) = p(Xn, Zn, i, j)(2.1)

for i ∈ S, j ∈W , where p : X ×A×S×W → [0, 1] is a continuous function satisfying∑
j,k

p(i, u, j, k) = 1 ∀i, u.
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Call {Zn} strict sense admissible if it is adapted to σ(Ym,m ≤ n), n ≥ 0. The
average cost control problem under partial observations, in its original formulation,
is to minimize over all such {Zn} the average cost

lim sup
n→∞

1

n

n−1∑
m=0

E[h(Xm, Zm)](2.2)

for a prescribed “running cost” function h ∈ C(S ×A).
We shall denote by P(S) the space of probability measures on S, with topol-

ogy of weak convergence. Since S is finite, this is the simplex of probability vec-
tors in Rs. Keeping in mind the larger class of {Zn} we introduce later, define
Fn = σ(Ym, Zm,m ≤ n), n ≥ 0, and let {πn} be the P(S)-valued process of regular
conditional laws of Xn given Fn for n ≥ 0. Define h̄ ∈ C(P(S)×A) by

h̄(ν, a) =
∑
i∈S

ν(i)h(i, a),

where we write ν(i) for ν({i}) by abuse of notation. The average cost control problem
above can then be shown to be equivalent to the “separated” average cost control
problem of controlling the P(S)-valued controlled Markov process {πn}, so as to
minimize over strict sense admissible {Zn} the quantity

lim sup
n→∞

1

n

n−1∑
m=0

E[h̄(πm, Zm)].(2.3)

This in fact equals (2.2), as seen by a simple conditioning argument. The dynamics
of {πn} are given by the nonlinear filter (derivable by an elementary application of
the Bayes rule—see, e.g., [3, Chapter VIII])

πn+1 = πnP (Zn, Yn+1)/(πnP (Zn, Yn+1)1c), n ≥ 0,(2.4)

where {πn} is written as a row vector, P (u, k) is the matrix [[p(·, u, ·, k)]] for u ∈
A, k ∈W , and 1c is the column vector of all l’s. The initial condition π0 is the known
law of X0.

Before we proceed, we need to exhibit {Xn} explicitly as a noise-driven dynamical
system, i.e., as

Xn+1 = F (Xn, Zn, ξn), n ≥ 0,(2.5)

where F : S×A× [0, 1]→ S is measurable and {ξn} are independently and identically
distributed (i.i.d.) uniformly on [0,1]. This is possible by the stochastic realization
theoretic results of [2] and may require an augmentation of the underlying probability
space.

We shall now reproduce (in law) the above processes on a more convenient prob-
ability space. Let Ω̄ = [0, 1]∞ × A∞ × W∞ × S, and let F be the corresponding
product σ-field. Let (u, v, w, x) denote a typical element of Ω̄ with u = [u0, u1, . . .] ∈
[0, 1]∞, v = [v0, v1, . . .] ∈ A∞, w = [w0, w1, . . .] ∈ W∞. Let un = [u0, u1, . . . , un],
and define vn, wn accordingly for n ≥ 0. By the definition of strict sense admissible
controls, we have

Zn = ψn(Y0, . . . , Yn), n ≥ 0,(2.6)
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for some ψn : Wn+1 → A. Define

ψ̄n(w
n) = [ψ0(w

0), ψ1(w
1), . . . , ψn(w

n)], n ≥ 0.

Let l1, l2 denote the uniform probability measures on [0,1], W, resp. Define a prob-
ability measure P0 on (Ω̄, F̄) by the following. If B1 ⊂ [0, 1]n+1, B2 ⊂ An+1, B3 ⊂
Wn+1, and B4 ⊂ S are Borel, then

P0

(
Π4
i=1Bi

)
= ln+1

1 (B1)l
n+1
2 (B3 ∩ {wn : ψ̄n(w

n) ∈ B2})π0(B4),

where lni denote the appropriate product measures. Define processes {ξn}, {Zn},
{Yn}, and a random variable X0 canonically on (Ω̄, F̄ , P0) by

ξn(u, v, w, x) = un,
Zn(u, v, w, x) = vn,
Yn(u, v, w, x) = wn,
X0(u, v, w, x) = x

for n ≥ 0. Then under P0,
(i) {ξi} are i.i.d. uniformly distributed on [0,1],
(ii) {Yn} are i.i.d. uniformly distributed on W ,
(iii) law of X0 is π0,
(iv) ({ξn}, {Yn}, X0) is an independent family, and,
(v) {Zn} is specified by (2.6).

Define {Xn} recursively using (2.5). Then by construction, {Xn} is a controlled
Markov chain satisfying

P (Xn+1 = j/Xm, Zm, m ≤ n) = p̄(Xn, Zn, j),

j ∈ S, n ≥ 0, where

p̄(i, u, j)
∆
=
∑
k

p(i, u, j, k), i, j ∈ S, u ∈ A.

For n ≥ 0, let Gn = σ(Xm, Ym, ξm, Zm,m ≤ n), and let P0n be the restriction of
P0 to (Ω̄,Gn). Define a new probability measure P̄ on (Ω̄, F̄) as follows. If P̄n denotes
its restriction to (Ω̄,Gn), then P̄n << P0n ∀n with

Λn
∆
=

dP̄n
dP0n

=

n−1∏
m=0

p(Xm, Zm, Xm+1, Ym+1)

p̄(Xm, Zm, Xm+1)(1/d)
, n ≥ 0.

It is easily verified that (Λn,Gn) is a nonnegative martingale with mean 1, and there-
fore this defines in a consistent and unique manner a probability measure P̄ on
(Ω,
∨
n Gn). Since F =

∨
n Gn by construction, we are through. Furthermore, un-

der P̄ , (Xn, Yn, Zn, ξn) have the same joint law as the corresponding processes on
(Ω,F , P ) we started with, again by construction.

This construction permits us to define wide sense admissible controls along the
lines of [7]: {Zn} is said to be wide sense admissible if for each n, Zn is independent of
({ξm}, X0, {Yi, i > n}) under P0. Note that this includes strict sense admissible con-
trols. (Intuitively, this relaxation allows for extraneous randomization of controls that
does not use any information that it shouldn’t.) Our “relaxed” partially observed sep-
arated control problem then is to minimize (2.3) over all wide sense admissible {Zn}.



676 V. S. BORKAR

This is to be interpreted in the following sense. Under P0, the laws of {Yn}, {ξn}, X0

are fixed and {Xn} is specified once {Zn} is. Thus the above framework is specified
“in law” by specifying the conditional law of {Zn} given {Yn} or, equivalently, the
joint law of {Yn}, {Zn} (where the marginal corresponding to the law of {Yn} is fixed).
Thus it makes sense to refer to either of these as the wide sense admissible control.
We denote by Φ the set of wide sense admissible controls, and, by a slight abuse of
notation, we denote by {Zn} a typical element thereof.

3. The discounted value function. In anticipation of the “vanishing dis-
count” argument to be used later, we consider here the family of value functions
associated with the discounted cost problem, indexed by the discount factor α > 0.
Recall that the discounted cost under a wide sense admissible control {Zn} ∈ Φ and
initial law π is

Jα({Zn}, π) ∆
= E

[ ∞∑
m=0

αmh(Xm, Zm)/π0 = π

]

∆
= E

[ ∞∑
m=0

αmh̄(πm, Zm)/π0 = π

]
.

The associated value function

Vα(π) = inf
Φ
Jα({Zn}, π)

then satisfies the dynamic programming equation

Vα(π) = min
u

(h̄(π, u) + α

∫
η(π, u, dπ′)Vα(π′)), π ∈ P(S),(3.1)

where (π, u) ∈ P(S)× A→ η(π, u, dπ′) ∈ P(P(S)) is the controlled transition kernel
of the P(S)-valued controlled Markov process {πn}. From (2.4) and conditions on
p(·, ·, ·, ·), one easily verifies that η(·, ·, dπ′) is a continuous map. (See [3, Chapter
VIII] for a detailed treatment of the separated discounted cost problem.)

We shall need to compare Vα(·) for two different values of its argument. With this
in view, we construct on a common probability space two controlled Markov chains
satisfying (2.1) with a “common” {Zn} ∈ Φ, but different initial laws, say π̃ and π̂.
This is done by a small modification of the construction of the preceding section. Note
that specification of {Zn} ∈ Φ for initial law π̃ entails specification of its joint law
with {Yn} under P0, assumed to satisfy the independence/conditional independence
constraints in the definition of wide sense admissible controls. Denote this joint law
by φ(dy∞, dz∞) ∈ P(W∞ ×A∞). Define

Ω̂ = ([0, 1]∞ × S)× ([0, 1]∞ × S)×A∞ ×W∞ ×W∞

with F̂ = the corresponding product σ-field and P̂0 the probability measure on (Ω̂, F̂)
defined by

P̂0((dũ
∞ × dx̃)× (dû∞ × dx̂)× dz∞ × dỹ∞ × dŷ∞)
= -∞1 (dũ∞)π̃(dx̃)-∞1 (dû∞)π̂(dx̂)φ(dỹ∞, dz∞)-∞2 (dŷ∞).

On (Ω̂, F̂ , P̂0), define processes {ξ̃n}, {ξ̂n}, {Zn}, {Ỹn}, {Ŷn}, and random vari-
ables X̃0, X̂0 canonically as follows: For ω = (ũ∞, x̃, û∞, x̂, z∞, ỹ∞, ŷ∞), let ξ̃n(ω) =
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ũn, ξ̂n(ω) = ûn, X̃0 = x̃, X̂0 = x̂, Zn = zn, Ỹn = ỹn, Ŷn = ŷn, n ≥ 0. Define {X̃n},
{X̂n} recursively by

X̃n+1 = F (X̃n, Zn, ξ̃n),

X̂n+1 = F (X̂n, Zn, ξ̂n),

n ≥ 0. For n ≥ 0, let Γn = σ(X̂m, X̃m, ξ̂m, ξ̃m, Ŷm, Ỹm, Zm, m ≤ n). Then F̂ =∨
n Γn. Define a new probability measure P̂ on (Ω̂, F̂) by the following. If P̂n, P̂0n

are restrictions of P̂ , P̂0, resp. to (Ω̂,Γn), then

Λ̂n
∆
=

dP̂n

dP̂0n

=

n−1∏
m=0

(
p(X̃m, Zm, X̃m+1, Ỹm+1)

p̄(X̃m, Zm, X̃m+1)(1/d)

)(
p(X̂m, Zm, X̂m+1, Ŷm+1)

p̄(X̂m, Zm, X̂m+1)(1/d)

)
,

n ≥ 0. Then the controlled Markov chains {X̃n}, {X̂n} defined on (Ω̂, F̂ , P̂ ) form the
desired pair in so far as their initial laws are π̃, π̂, resp., and they are governed by a
“common” {Zn} ∈ Φ, as argued below.

Lemma 3.1. {X̃n} (resp., {X̂n}) is a controlled Markov chain on (Ω̂, F̂ , P̂ ) with
associated observation process {Ỹn} (resp., {Ŷn}) and wide sense admissible control
{Zn}, with its evolution governed by (2.1).

Proof. It suffices to observe that if we consider the probability measure

P1(dũ
∞ × dx̃× dz∞ × dỹ∞) = P̂ (dũ∞ × dx̃× [0, 1]∞ × S × dz∞ × dỹ∞ ×W∞)

on [0, 1]∞ × S × A∞ ×W∞, it is precisely a special case of the construction in the
preceding section of (Ω̄, F̄ , P̄ ). Thus ({X̃n}, {Ỹn}, {Zn}) obey (2.1) with {Zn} wide
sense admissible and the law of X̃0 = π̃0. Likewise, consider the probability measure

P2(dû
∞ × dx̂× dz∞ × dŷ∞) = P̂ ([0, 1]∞ × S × dû∞ × dx̂× dz∞ ×W∞ × dŷ∞)

on [0, 1]∞ × S × A∞ × W∞ to draw a similar conclusion about ({X̂n}, {Ŷn},
{Zn}).

What this construction achieves is to identify each wide sense admissible control
{Zn} for π̃ with one wide sense admissible control for π̂. (This identification can be
many-one.) By a symmetric argument that interchanges the role of π̃, π̂, one may
identify every wide sense admissible control for π̂ with one for π̃. Suppose Vα(π̃) ≤
Vα(π̂). Then for a wide sense {Z̃n} that is optimal for π̃,

|Vα(π̃)− Vα(π̂)| = Vα(π̂)− Vα(π̃)
≤ Jα({Z̃n}, π̂)− Jα({Z̃n}, π̃)
≤ sup

Φ
|Jα({Zn}, π̂)− Jα({Zn}, π̃))|,

where the above identification is used to derive the first and the second inequalities.
If Vα(π̃) > Vα(π̂), a symmetric argument works, interchanging the roles of π̃, π̂. Thus

|Vα(π̃)− Vα(π̂)| ≤ sup
Φ
|Jα({Zn}, π̃)− Jα({Zn}, π̂)|,

a fact we use in Lemma 3.2 below.
The stage is now set for stating our key assumption in this paper. Let τ =

min{n ≥ 0 : X̃n = X̂n}(=∞ if the set in question is empty).
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Assumption A. There exist K0 > 0, δ ∈ (0, 1) such that

sup
i,j

sup
Φ

P (τ > n/X̂0 = i, X̃0 = j) ≤ K0δ
n, n ≥ 0.(3.2)

Note that for an uncontrolled chain, (3.2) would follow from irreducibility and
aperiodicity. The latter, in fact, are necessary. In our case, however, we need a
statement over all wide sense admissible controls, which is what (3.2) does. Simpler
sufficient conditions imposing restrictions on the graph of the Markov chain can be
given (see Appendix), but these would be much more restrictive. Note also that
the above conditional probability summed over n gives the corresponding conditional
expectation, which will then be bounded by K0

1−δ . As our proofs will show, the weaker
hypothesis that

sup
i,j

sup
Φ

E[τ/X̂0 = i, X̃0 = j] ≤ K0

will in fact suffice. However, in most interesting cases where this is available, so is
(3.2).

Note also that τ = 0 almost surely (a.s.) on {X̂0 = X̃0}. Using this, we shall cast
(3.2) in a more convenient form. View S = {1, 2, . . . , s} ⊂ R, allowing S to inherit
the Euclidean metric from R. Then for i �= j in S, |i− j| ≥ 1. Thus without any loss
of generality, we may rewrite (3.2) as

sup
Φ

P (τ > n/X̂0 = i, X̃0 = j) ≤ K0δ
n|i− j|, n ≥ 0, i, j ∈ S.(3.3)

The last bit of technicality we need is the metric ρ(·, ·) on P(S) defined by

ρ(µ1, µ2) = inf E[|X1 −X2|],
where the infimum is over all pairs (X1, X2) of S-valued random variables such that
the law of Xi is µi for i = 1, 2. This metric is equivalent to the Prohorov metric [4, p.
29] and thus metrizes the Prohorov topology which, because S is finite, is the same as
the total variation norm topology, which in turn coincides with the Euclidean topology
of Rs relativized to P(S). Note also that as P(S) is compact, every compatible metric
on it, in particular ρ, is complete. The main result of this section is the following
lemma.

Lemma 3.2. There exists a K1 > 0 such that

|Vα(µ1)− Vα(µ2)| ≤ K1ρ(µ1, µ2) ∀µ1, µ2 ∈ P(S), α > 0.(3.4)

Proof. Consider the above construction with π̂ = µ1, π̃ = µ2. Define an S-valued
process X̄m,m ≥ 0, and a W -valued process Ȳm,m ≥ 0, by

X̄m = X̂m, Ȳm = Ŷm for m < τ,

X̄m = X̃m, Ȳm = Ỹm for m ≥ τ.

That is (X̄m, Ȳm) is obtained from (X̂m, Ŷm) by “gluing” it to (X̃m, Ỹm) from τ
on, a standard construction in coupling arguments. We claim that {X̄m} is a con-
trolled Markov chain as in (2.1) with {Ȳm} the associated observation process, with
initial law π̂ = µ1 and the same control process {Zn} ∈ Φ as before. To see
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this, observe first that the claim (except for the wide sense admissibility of {Zn})
is equivalent to the statement that for i ∈ S, j ∈ W ,

∑n
m=1(I{X̄m = i, Ȳm =

j} − p(X̄m−1, Zm−1, i, j)), n ≥ 1, is a {Γn}-martingale. The corresponding state-
ments for ({X̃n}, {Ỹn}) and ({X̂n}, {Ŷn}) are immediate. Thus

E[(I{X̃n = i, Ỹn = j} − p(X̃n−1, Zn−1, i, j))/Γn−1] = 0

and

E[(I{X̂n = i, Ŷn = j} − p(X̂n−1, Zn−1, i, j))/Γn−1] = 0,

whereas we need to prove

E[(I{X̄n = i, Ȳn = j} − p(X̄n−1, Zn−1, i, j))/Γn−1] = 0.

But the left-hand side equals

E[(I{X̃n = i, Ỹn = j} − p(X̃n−1, Zn−1, i, j))I{τ ≥ n}
+ (I{X̂n = i, Ŷn = j} − p(X̂n−1, Zn−1, i, j))I{τ < n}/Γn−1]

= E[(I{X̃n = i, Ỹn = j} − p(X̃n−1, Zn−1, i, j)/Γn−1]I{τ ≥ n}
+ E[(I{X̂n = i, Ŷn = j} − p(X̂n−1, Zn−1, i, j))/Γn−1]I{τ < n}

=0,

proving the claim. The wide sense admissibility of {Zn} for ({X̄n}, {Ȳn}) can be
verified easily by reference to the probability measure P̂0 above. Under P̂0, Ỹn and
Ŷn are both independent of Γn−1

∨
σ(ξ̃m, ξ̂m,m ≥ 0) and are identically distributed,

therefore so will be θỸn + (1 − θ)Ŷn for any Γn−1-measurable {0, 1}-valued random
variable θ. Ȳn is a special case of this. Now let {π̄n} denote the corresponding process
of conditional laws. Now,

|Vα(µ1)− Vα(µ2)| ≤ sup
{Zn}∈Φ

|Jα({Zn}, µ1)− Jα({Zn}, µ2)|

≤ sup
Φ

∞∑
m=0

αmE[|h(X̄m, Zm)− h(X̃m, Zm)|]

= sup
Φ

∞∑
m=0

αmE[|h(X̄m, Zm)− h(X̃m, Zm)|I{τ > m}]

≤ 2K2 sup
Φ

∞∑
m=0

αmP (τ > m)

≤ 2K2K0

∞∑
m=0

αmδmE[|X̄0 − X̃0|],

where K2 is a bound on |h(·, ·)|. Let ε > 0. By a judicious choice of the joint law of
(X̄0, X̃0), this can be made

≤ 2K2K0

1− αδ
(ρ(µ1, µ2) + ε)

≤ 2K2K0

1− δ
(ρ(µ1, µ2) + ε).

Since ε > 0 was arbitrary, the claim follows.
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4. The dynamic programming equations. Fix a µ∗ ∈ P(S) and set V̄α(µ) =
Vα(µ)−Vα(µ∗) for µ ∈ P(S), α ∈ (0, 1). By Lemma 3.2, {V̄α(·), α ∈ (0, 1)} is bounded
equicontinuous. Letting α → 1, we conclude from the Arzela–Ascoli theorem that
V̄α(·) converges in C(P(S)) to some V (·) along a subsequence {α(n)}, α(n) → 1.
By dropping to a further subsequence if necessary, we may also suppose that {(1 −
α(n))Vα(n)(µ

∗)}, which is clearly bounded, converges to some ∆ ∈ R as n→∞.
Before stating our main theorem, recall that for a separated control problem,

a control policy is said to be stationary if Zn = v(πn) ∀n and some measurable
v : P(S)→ A, and stationary randomized if for all n,Zn is conditionally independent
of X0, ξm, πm, Zm−1, Ym, m ≤ n, given πn and the regular conditional law thereof
given the latter is ϕ(πn) for some measurable ϕ : P(S)→ P(A) ([3, Chapter VIII]). It
is also easy to verify that these are wide sense admissible. By abuse of terminology, we
refer to the map v(·) (resp., ϕ(·)) itself as the stationary (resp., stationary randomized)
policy.

Theorem 4.1. (i) (V (·),∆) solve the dynamic programming equation for the
average cost control problem

V (π) = min
u

(
h̄(π, µ) +

∫
η(π, u, dπ′)V (π′)−∆

)
.(4.1)

(ii) ∆ is the optimal cost, independent of the initial condition. Furthermore, a
stationary policy v(·) (resp., a stationary randomized policy ϕ(·)) is optimal for any
initial condition if

v(π) ∈ (resp., support(ϕ(π)) ⊂) Argmin

(
h̄(π, ·) +

∫
η(π, ·, dπ′)V (π′)

)
.

In particular, an optimal stationary policy exists.
Proof. (i) Rewrite (3.1) as

V̄α(π) = min
u

(
h̄(π, u) + α

∫
η(π, u, dπ′)V̄α(π′)− (1− α)Vα(µ

∗)
)
.

Letting α→ 1 along an appropriate subsequence, we get (4.1).
(ii) The first two statements follow by a standard argument which may be found,

e.g., in [8, Theorem 5.2.4, pp. 80–81]. The last claim follows from a standard mea-
surable selection theorem—see, e.g., [12].

Theorem 4.2. If ϕ is an optimal stationary policy and γ is a corresponding

ergodic probability measure, then, for ϕ(π, du)
∆
= ϕ(π)(du),

V (π) =

∫
h̄(π, u)ϕ(π, du) +

∫ ∫
ϕ(π, du)η(π, u, dπ′)V (π′)−∆(4.2)

for γ—a.s. π. (In particular, if v is an optimal stationary policy, then (4.2) holds for
γ—a.s. π for every ergodic probability measure γ under v).

Proof. Clearly, (4.3) always holds with “≤” replacing “=.” If the claim were false,
we can integrate both sides of this inequality with respect to γ(dπ) to obtain

∆ <

∫ ∫
h̄(π, ·)dϕ(π)γ(dπ),

a contradiction to the optimality of ϕ. The claim follows.
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Corollary 4.3. If V, V ′ are two bounded measurable solutions to (4.1), V (π)−
V ′(π) is a constant a.s. with respect to any ergodic probability measure under any
optimal stationary randomized policy.

Proof. Let ϕ, γ be as in Theorem 4.2, and let {πn} be the corresponding ergodic
process of conditional laws, with law of πn = γ ∀n. By Theorem 4.2,

V (πn)− V ′(πn), n ≥ 0,

is a bounded martingale with respect to the natural filtration of {πn} and therefore
converges a.s. But since it is also a stationary process, this is possible only if the
claim holds.

Appendix. Here is a simple sufficient condition for (3.2) to hold. Suppose that
there exist i0 ∈ S, η > 0, and N ≥ 1 such that

infi,j infΦP (X̂N = X̃N = i0/X̂0 = i, X̃0 = j) ≥ η.

That is, there is a path of length N from any i ∈ S to i0 with a minimum probability
of η. (For uncontrolled chains, aperiodicity would ensure this condition for all N
sufficiently large. Thus we need aperiodicity that is in some sense uniform in Φ.)
Now,

P (τ > N/X̂0 = i, X̃0 = j) ≤ 1− η.

Also, by a simple conditioning argument, for m ≥ 1,

P (τ > mN/X̂0 = i, X̃0 = j) = E[P (τ > mN/Γ(m−1)N )I{τ > (m− 1)N}/X̂0 = i, X̃0 = j]

≤ (1− η)P (τ > (m− 1)N/X̂0 = i, X̃0 = j).

Iterating, P (τ > mN/X̂0 = i, X̃0 = j) ≤ (1− η)m, m ≥ 1, from which (3.2) follows.

REFERENCES

[1] A. Arapostathis, V.S. Borkar, E. Fernández-Gaucherand, M.K. Ghosh, and S.I. Mar-
cus, Discrete-time controlled Markov processes with average cost criterion: A survey,
SIAM J. Control Optim., 31 (1993), pp. 282–344.

[2] V.S. Borkar, White-noise representations in stochastic realization theory, SIAM J. Control
Optim., 31 (1993), pp. 1093–1102.

[3] V.S. Borkar, Topics in Controlled Markov Chains, Pitman Res. Notes Math. 240, Longman
Scientific and Technical, Harlow, UK, 1991.

[4] V.S. Borkar, Probability Theory: An Advanced Course, Springer-Verlag, New York, 1995.
[5] E. Fernández-Gaucherand, A. Arapostathis, and S.I. Marcus, On the average cost op-

timality equation and the structure of optimal policies for partially observable Markov
decision processes, Ann. Oper. Res., 29 (1991), pp. 439–470.

[6] E. Fernández-Gaucherand, A. Arapostathis, and S.I. Marcus, Remarks on the existence
of solutions to the average cost optimality equation in Markov decision processes, Systems
Control Lett., 15 (1990), pp. 425–432.

[7] W.H. Fleming and E. Pardoux, Optimal control of partially observed diffusions, SIAM J.
Control Optim., 20 (1982), pp. 261–285.

[8] O. Hernández-Lerma and J.B. Lasserre, Discrete-Time Markov Control Processes,
Springer-Verlag, New York, 1996.

[9] L.K. Platzman, Optimal infinite-horizon undiscounted control of finite probabilistic systems,
SIAM J. Control Optim., 18 (1980), pp. 362–380.

[10] W.J. Runggaldier and L. Stettner, Approximations of Discrete Time Partially Observed
Control Problems, Applied Maths. Monographs 6, Giardini Editori e Stampatori, Pisa,
1994.

[11] L. Stettner, Ergodic control of partially observed Markov processes with equivalent transition
probabilities, Appl. Math. (Warsaw) 22 (1993), pp. 25–38.

[12] D.H. Wagner, Survey of measurable selection theorems, SIAM J. Control Optim., 15 (1977),
pp. 859–903.



GLOBAL STABILIZATION OF NONLINEAR SYSTEMS WITH
INPUTS SUBJECT TO MAGNITUDE AND RATE BOUNDS:

A PARAMETRIC OPTIMIZATION APPROACH∗
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Abstract. A bounded feedback control design approach is proposed for the global asymptotic
stabilization of a class of nonlinear systems with stable free dynamics. The control inputs and their
derivatives are constrained to take values on sets defined by a Cartesian product of η-dimensional
closed balls Bη

r (p), which are defined by means of a p-norm and a radius vector parameter r. In order
to derive the bounded control stabilizer, the resulting procedure implies that gains (as state-functions)
are obtained from the solution to a set of c-parameterized nonlinear programming problems. In
general, the resulting closed-loop system could be implicitly defined, i.e., consisting of a system of
differential equations plus a set of nonlinear algebraic equations (required to compute the control).
Special interest is focused on an important class of homogeneous systems that includes a class
of globally asymptotically stabilizable systems by linear feedback and bilinear systems. For those
systems, the problem of inputs subject to globally bounded rates is also addressed.
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1. Introduction. Consider the multiple input continuous-time affine system

·
x= f(x) +

m∑
j=1

uj gj(x),(1.1)

where x ∈ R
n and f , gj : R

n → R
n, for j = 1, . . . ,m, are smooth functions. Without

loss of generality, we shall assume that the origin is an equilibrium point of the
associated free dynamics of (1.1), i.e., f(0) = 0.

Define the η-dimensional p, r-normed closed ball by

Bηr (p) :=
{
v ∈ R

η : ‖v‖p,r ≤ 1
}
, where ‖v‖p,r :=

[(
v1
r1

)p
+ · · ·+

(
vη
rη

)p]1/p
,(1.2)

for r a radius vector parameter r := (r1, . . . , rη)
�, ri > 0, for i = 1, . . . , η, and

p := s/d > 1, with s even and d odd positive numbers. We will say that ‖v‖p,r is the
r-weighed p-norm. Observe that the usual p-norm ‖ · ‖p is simply the p, r-norm when
r = (1, . . . , 1). We assume that, by renaming the control input entries (if necessary),
the control input is given by u = (u1, . . . ,uµ)

� with control blocks ui taking values
in different p, r-normed balls. Thus, the control-value set consists on a Cartesian
product of p, r-normed closed balls,

U =

µ∏
i=1

Bmi
ri (pi) := Bm1

r1
(p1)× · · · × Bmµ

rµ (pµ)(1.3)
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for 1 ≤ µ ≤ m and m1+ · · ·+mµ = m. We have, for instance, the following examples:
(a) if p = 2, then Bmr (2) is an ellipsoid in R

m with rj the length of its jth-semiaxe;
(b) if r1 = · · · = rm = r > 0, then Bmr (p) = {v ∈ R

m : ‖v‖p ≤ r} is a p-normed
(Minkowski) ball of radius r in R

m; (c) if m = m1 +m2 = 3, then B1
r1(∞) × B2

r2
(p)

is a “cylinder” with its base being a p-normed ball of radius r > 0; and (d) if µ = m,
then (1.3) is an m-dimensional r-hyperbox Bmr (∞) = [−r1, r1]× · · · × [−rm, rm].

By an admissible input u, it is meant a Cα
L function (i.e., a Cα (α ≥ 1) function

with the possible exception of x = 0, and everywhere Lipschitz continuous) that takes
values in a (prescribed) Cartesian product of p, r-normed closed balls, that is, the set
of admissible controls is given by

U = Cα
L (Rn, U) :=

{
u : R

n →
µ∏
i=1

Bmi
ri (pi) : u(·) is a Cα

L function

}
.(1.4)

In this paper, we first address the problem of global asymptotic stabilization (GAS)
of the system (1.1) by means of a bounded feedback control (BFC) function u =
u(x), admissible in the aforementioned sense. As a second aim, we will study the
GAS problem when further subject to input derivatives restricted to lie in prescribed
constraint sets (1.3). Throughout this paper, stabilization will always be understood
as stabilization at the origin.

In the last years, there has been a growing interest concerning the GAS problem
of systems by means of BFC functions. The characterization of a class of linear sys-
tems for which it can be solved led to the concept of asymptotic null controllability
with bounded controls (ANCBC). It is well known that a linear system is ANCBC iff
it is stabilizable by arbitrarily small controllers (SASC) (cf. Sontag [24] and references
therein). Different methodologies have been proposed for GAS of linear systems via
BFC functions. See, for instance, Gavrilyako, Korobov, and Sklyar [10], Sussmann,
Sontag, and Yang [27] and Suárez, Álvarez-Ramírez, and Soĺıs-Daun [26]. When
further assuming the problem of rate-limited actuators, see Lin [16] and Soĺıs-Daun,
Álvarez-Ramírez, and Suárez [23] for semiglobal results, and Shewchun and Feron [22]
for a global solution. In contrast to the case of linear control systems, the characteri-
zation of the class of nonlinear systems which have the SASC property remains as an
open problem.

Lyapunov analysis is a tool usually employed for the stabilization of nonlinear sys-
tems. Indeed, many systems admit a variational approach for deriving their dynamical
equations and, in that framework, the energy function provides typically a positive-
definite and proper function, such that it is nonincreasing along the solution of the
uncontrolled system. This idea was the subject of many works on feedback stabiliza-
tion, see, for instance, [11, 13, 4, 14] and references therein. For that aim, Jurdjevic
and Quinn (J–Q) [13] developed a successful approach, based on a controllability-like
rank condition defined in terms of Lie derivatives: the ad-condition. In [4], Byrnes,
Isidori and Willems introduced the concept of zero state detectability (ZSD) in order
to address the GAS problem for the important class of passive (and feedback pas-
sive) nonlinear systems by means of smooth (generally unbounded) feedback control
functions. Further, they presented a criterion (an ad -like condition) for testing ZSD.
Recently, Coron [5] and Lin [14] obtained GAS of passive systems by using arbitrarily
small stabilizers. Those results can be thought of as a first attempt towards the char-
acterization of the class of nonlinear systems sharing the SASC property. Lin also
provided a criterion for testing ZSD that generalized previously reported results.
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Different methods of the J–Q approach for the stabilization of nonlinear systems
by means of bounded controls have been proposed. Mazenc and Praly [20] have given
sufficient conditions under which GAS of a certain subsystem by saturated control
implies GAS of the overall system; further, their method served to solve the stabi-
lization problem of feedforward systems. Teel [28] presented a small gain theorem
that was used for analyzing control system design: e.g., a stabilizing algorithm for
feedforward systems was obtained, which in turn was applied to the control of stabi-
lizable linear systems with input magnitude and rate saturation. Freeman and Praly
[6] presented a backstepping procedure for the design of global feedback stabilizers
which are bounded both in magnitude and rate (though the achieved bounds do not
satisfy prescribed constraints). Finally, Sontag and coworkers have proposed explicit
formulae for almost smooth BFC laws that stabilize a general system (1.1), under the
assumption that an appropriate control-Lyapunov function (CLF) (see [1]) is known.
Such formulae were designed to guarantee CLF stabilization under specific control-
value sets U : the Euclidean open unit ball in [15] and a family of Minkowski open
unit balls (with 1 < p ≤ 2) in [19].

On the other hand, it is important to note that depending on some applications,
e.g., robot manipulators, chemical control processes, etc., unlimited feedback control
rate can be conceived as a disadvantage of most of the existing methods for designing
bounded stabilizers. In the case of polynomial systems, the designed control often
resembles a bang-bang control, especially when states are far from the origin. That
behavior precludes their use in the mentioned applications, due to the natural re-
sponses (e.g., controller inertia) of those systems to external stimuli. Hitherto, a
general methodology for the GAS problem of nonlinear systems subject to prescribed
input magnitude and rate bounds is still lacking.

Taking into account the above problems, in this paper we propose a design ap-
proach that allows the GAS of a class of nonlinear systems with stable free dynamics,
using BFC functions with bounded derivatives. Following the basic ideas introduced in
[26], the (high-gain) control law proposed in this work increases the feedback “gain”
as the controlled trajectory converges towards the origin, guaranteeing that input
bounds will not be exceeded. In the general nonlinear systems case with control-value
set given by a p, r-normed ball, the proposed procedure implies that: (a) in order to
derive the bounded stabilizer, the “gains” (as state-functions) are obtained from the
solution of a c-parameterized nonlinear programming problem; and (b) the resulting
closed-loop system could be implicitly defined, in the sense that it consists of a system
of differential equations plus a nonlinear algebraic equation (required to compute the
control). With respect to existing results available in the literature [5, 6, 14, 20, 28],
in this work we make the following contributions.

(a) We extend Lyapunov-based designs to account for more general control-value
sets.

(b) We address the problem of both magnitude and rate constraints in the control
input.

(c) We introduce a state-dependent control gain to achieve a suboptimal stability
margin.

The paper is organized as follows. In section 2 we present some definitions, review
some previous work, and state the problem. In section 3, a stabilizing BFC function
is designed in the case when the control-value set is given by an m-dimensional p, r-
normed ball. In section 4, we show that the proposed control is suboptimal. In section
5, the result is extended to the case when the control-value set is a Cartesian product
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of p, r-normed balls. In section 6, we study an important class of homogeneous systems
(that includes those GAS systems via linear feedback and bilinear systems), for which
the constructed control law is explicitly defined, so that the problem of inputs subject
to prescribed globally bounded rates can be addressed. Finally, in section 7, we present
some concluding remarks.

2. Preliminaries and statement of the problem. Recall that a function V :
R
n → R is said to be proper iff, for any c ∈ R, the set V −1(c) = {x ∈ R

n : V (x) = c}
is compact, and it is positive-definite iff V (0) = 0 and V (x) > 0 for all x �= 0. In
general, LgjV (x) denotes a Lie derivative of function V (x) in the direction of function
gj(x). If g denotes the matrix g(x) = (g1(x), . . . , gm(x)), gj : R

n → R
n, j = 1, . . . ,m,

then we define LgV (x) := (Lg1V (x), . . . , LgmV (x)).
In this work, we assume the following.
Hypothesis H1. Suppose there exists a Cα (α ≥ 2) function V : R

n → R that is

positive-definite and proper on R
n, such that the uncontrolled system

·
x= f(x) ((1.1)

with u = 0) satisfies

LfV (x) ≤ 0.(2.1)

In particular, it is Lyapunov stable.
Choose a dummy output y := (LgV (x))� for the system (1.1). Then, the input-

output system (1.1) with dummy output

h(x) := (LgV (x))
�

(2.2)

is passive [4, 14] with storage function V (x).
In addition to Hypothesis H1, system (1.1) is assumed to satisfy the following.
Hypothesis H2. The input-output system (1.1)–(2.2) is zero state detectable

(ZSD). That is, for all x ∈ R
n,

if ∀t ≥ 0, h (x(t, x0; 0)) |u=0 = 0, then lim
t→∞x(t, x0; 0) = 0,(2.3)

where x(t, x0;u) is a trajectory of (1.1) with initial condition x(0) = x0.
We will need the following simple extension of a result presented in [4].
Proposition 2.1. Assume that system (1.1) satisfies Hypotheses H1–H2. Then,

any Cα
L feedback control function

u(x) = ρ v(x),(2.4)

with ρ > 0, satisfying that

(i) v(0) = 0, (ii) LgV (x) v(x) ≤ 0, and
(iii)LgV (x) v(x) = 0 only if LgV (x) = 0

(2.5)

achieves GAS of the system (1.1). In particular, any control v(x) such that v(0) = 0
and sign vj(x) = −signhj(x) for j = 1, . . . ,m satisfies conditions (2.5).

Hitherto, the control given in (2.4) is not necessarily bounded. Nevertheless, in
the case of passive systems, Coron and Lin, independently, provided the following
SASC result.

Theorem 2.2 (see [5, 14]). Assume that Hypotheses H1–H2 hold. Then GAS of
system (1.1) is achieved by means of arbitrarily small smooth feedbacks.
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Although one can use a smooth boundedness technique to obtain a globally defined
BFC function that globally asymptotically stabilizes the system, low-gain control
designing should usually be avoided, because it can result in sluggish responses and
poor performance for all initial conditions. One way to obtain a high-gain controller
is to define the parameter ρ = ρ(x) in (2.4) as a positive function that increases as the
distance to the origin is reduced, in such a way that the controller uses the maximum
input amplitude without violating the input constraint. Indeed, it is not difficult to
design such a function ρ(x). For instance, consider the scalar feedback control given
by

uσ(x) :=

{
0 if h(x) = 0,

−ρ(x)h(x) = − r σ(|h(x)|)
|h(x)| h(x) otherwise,

(2.6)

where σ(s) ≤ 1 for all s ≥ 0, σ(s) > 0 for s > 0, and σ is as smooth as desired. Clearly,
this feedback control is bounded: |uσ(x)| ≤ r for all x ∈ R

n, and it can be considered
as a smooth approximation to the singular bang-bang control ϑ(x) = −r sign(h(x)).
However, the problem is if the obtained controller has a globally bounded input rate.
Indeed, control (2.6) does not have a bounded derivative, even in the linear case. In

fact, suppose that the linear system with scalar control input
·
x= Ax+ b u, (A is an

n × n matrix and b ∈ R
n) satisfies Hypotheses H1–H2. In this case, h(x) = b�Px,

where P is a positive-definite symmetric matrix. Consider only the case when h(x) >
0, so that uσ(x) = −r σ(h(x)) < 0. The analysis of the case h(x) < 0 is analogous.
Thus,

·
uσ= −r ·

σ= −r∇σ ·
h= −r∇σ(h(x))

(
b�PAx+ (b�Pb)uσ(x)

)
.(2.7)

Let U(h) := {x ∈ R
n : h(x) = b�Px = h, with fixed h > 0}. Then,

·
uσ|U(h)= −r∇σ(h)

(
b�PAx+ (b�Pb)uσ

) |U(h),(2.8)

where uσ |h=h= uσ, is an unbounded function (unless A = λ In×n, with λ ≤ 0 and

In×n is the n×n identity matrix). Observe that for all x ∈ U(h), we have that ρ(x) =
ρ = r σ(h)/h > 0. Then, in virtue that the set U(h) (⊆ L(ρ) = {x ∈ R

n : ρ(x) = ρ,
ρ > 0}) is unbounded, we have that |duσ/dt| cannot be globally bounded.

The difference between control functions like (2.6) and the control function to be
proposed in the next section is that ρ(x) will be constant along the boundary of the
level sets of certain proper function E(x), i.e., ρ(x) will be constant on compact sets.
Based on this idea, we obtain control functions with derivatives restricted to lie in
prescribed constraint sets.

3. Control design when U = Bm
r (p). In general, V (x) (the Lyapunov func-

tion considered in Hypothesis H1) does not necessarily satisfy the condition that its
level sets are simply connected—a sufficient condition in the control function design
presented in this section. One case where that condition is satisfied, is the important
class of homogeneous systems studied in section 6. Thus, we assume the following
definition.

Definition 3.1. Suppose that E : R
n → R is a smooth, proper, and positive-

definite function satisfying that, for any c > 0, its c-level sets

E(c) := {x ∈ R
n : E(x) ≤ c}(3.1)
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are simply connected, with 0 ∈ int E(c). Then, we will say that E is an E-function.
Suppose that the control-value set U is an m-dimensional p, r-normed closed ball,

Bmr (p), with r a radius vector parameter r := (r1, . . . , rm)
�, and p ∈ Q

∗
>1, with

Q
∗
>1 :=

{
p ∈ Q : p =

s

d
> 1, with s, d ∈ N\{0}, even and odd numbers

}
,(3.2)

which is a dense subset of the open interval (1,∞) ⊂ R.
In this work, the proposed control function shall depend on the dual value q > 1,

related to the given p, r-norm, defined by

1

p
+

1

q
= 1.(3.3)

From this formula, we have that p ∈ Q
∗
>1 iff q ∈ Q

∗
>1. Consider the associated dual

q, 1/r-norm given by

‖v‖q,1/r :=
 m∑
j=1

(rj vj)
q

1/q

.(3.4)

The p, r and q, 1/r norms have the following properties. (1) Let R = diag(r1, . . . , rm);
then ‖Rv‖q = ‖v‖q,1/r and ‖R−1v‖p = ‖v‖p,r. (2) Hölder inequality : for all u,w ∈
R
m, |u�w| ≤ ‖u‖q,1/r ‖w‖p,r.

In what follows, we shall propose a control design methodology for GAS of system
(1.1) with smooth BFC functions. In addition, this technique will allow us to address
the problem of globally bounded input rates. To this aim, we define a smooth function
τ(x) that superestimates ‖v(x)‖q,1/r, and it is constant along the boundary of the c-
level sets of the proper function E(x).

Choose an arbitrary 0 �= x0 ∈ R
n and set c = E(x0) (> 0). Therefore, we pose

the optimization problem

τ(x0) = maxx ‖v(x)‖q,1/r subject to (s.t.)
x ∈ ∂E(c), with c = E(x0),

(3.5)

where v(x) was defined in Proposition 2.1 and ∂ denotes the boundary of a given
set. Optimization problem (3.5) is a one-parameter (c ≥ 0) family of programs with
a varying equality constraint [7, 12] such that its objective function ‖v(x)‖q,1/r does
not depend on c. In particular, since E(x) is proper, the family of programs given
above is proper [7]. A proper program (as (3.5)) has at least one global solution, since
the set ∂E(c) is compact. In order to exclude the case that ∂E(c) be a discrete set
for all c > 0, we should restrict the problem by taking n ≥ 2 (i.e., one-dimensional
systems will not be considered).

Remark 1. Note that E(x) must be an E-function because, otherwise, if for some
c > 0 the set E(c) (3.1) would not be simply (not even) connected, then it would lead
to hard troubles for implementation of program (3.5).

A solution τ = τ(x) to the optimization problem (3.5) will be called admissible
iff it is positive-definite. Hereafter, unless otherwise specified, τ(x) will be assumed
admissible. Then, for q ≥ 2 (more specifically, q ∈ Q

∗
>1 ∩ [2,∞) ⊂ R), we define the

τ -dependent control function as

uτ (x) :=
1

τ q−1(x)

(
r1 (r1v1(x))

q−1
, . . . , rm (rmvm(x))

q−1 )�
.(3.6)
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On the other hand, from (3.3) and the definition of p, it follows that q := s/(s−d),
so that q − 1 = d/(s− d), with both d and s− d > 0 being odd numbers. Thus, the
exponent q − 1 in (3.6) preserves the sign of each control component vj for j =
1, . . . ,m; and hence, based on Proposition 2.1, global stabilization using that control
is guaranteed provided that v(x) is a global stabilizer. Nevertheless, observe that
for p ≥ 2 we have q − 1 < 1, and vice versa. Thus, for q ∈ Q

∗
>1 ∩ (1, 2), the

proposed control given by (3.6) could be nonsmooth (even non-Lipschitz) whenever
vj(x) = 0 for some j, because all terms in (3.6) involve potential functions with
exponent 0 < q − 1 < 1. To overcome this difficulty, one can apply the following
smooth approximation (“regularization”) to odd root-like functions.

First of all, denote zj = ξq−1
j , where ξj = rjvj/τ , for j = 1, . . . ,m, so that control

(3.6) becomes

uτ (x) = (r1 z1(x), . . . , rm zm(x))
�
.(3.7)

Then, replace each function zj with a new function ẑj being implicitly defined from

the relation: ξj = (2 − q) ẑ
1/(q−1)
j + (q − 1) ẑj = ((p − 2) ẑp−1

j + ẑj)/(p − 1), for
j = 1, . . . ,m. Function ẑj(ξj) subestimates zj(ξj) (i.e., |ẑj | ≤ |zj | for all |ξj | ≤ 1)
and ẑj = zj iff ξj = −1, 0 or 1. Further, ẑj(ξj) is an everywhere differentiable and
bijective function in the variable ξj

ẑ′j(ξj) =
p− 1(

(p− 1)(p− 2) ẑp−2
j (ξj) + 1

) > 0 ∀ |ξj | ≤ 1.(3.8)

Observe that ẑ′j(0) = p−1, so that the slope at ξj = 0 increases as p→∞. Therefore,
the proposed control function when q ∈ Q

∗
>1 ∩ (1, 2), is the following:

uτ (x) := (r1 ẑ1(x), . . . , rm ẑm(x))
�
.(3.9)

It should be pointed out that both controllers (3.6) and (3.9) are not defined at the
origin. Hence, the origin is rather a singularity instead of an equilibrium point of the
corresponding closed-loop system. That means that the resulting system can be non-
Lipschitz at the origin (uniqueness of the solutions with respect to initial conditions is
not guaranteed), so that all trajectories could converge to x = 0 in finite-time. In view
that for a wide range of applications, this is an undesirable feature (e.g., causing the
so-called chattering of the controller), those controllers are redesigned by introducing
a tuning parameter ε > 0, which can be taken as small as desired. Denote

υε(x) :=
1

ε+ τ(x)
(r1 v1(x), . . . , rm vm(x))

�
=

1

ε+ τ(x)
Rv(x),(3.10)

where R = diag(r1, . . . , rm). Consequently, the proposed BFC function is defined as

uθ(x) := (r1 ζ1 (υε1) , . . . , rm ζm (υεm))
�
,(3.11)

where the functions ζj , for j = 1, . . . ,m, are defined
explicitly : ζj = (θυεj )

1/(p−1) if p ∈ Q
∗
>1 ∩ (1, 2],

implicitly : (p− 2)ζp−1
j + ζj = (p− 1) θυεj if p ∈ Q

∗
>1 ∩ [2,∞),

(3.12)
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with θ a parameter close to (and less than) 1, 0 < θ ≈ 1 (needed for proving Propo-
sition 3.3). In the implicit case, we have that ζ ′j(0) = p − 1, so that the value of the
slope of functions ζj(υεj ) at υεj = 0 increases as p does. Observe that if p = 2, both
explicit and implicit functions ζj coincide, so that ζj = υεj .

Control (3.11) fulfills the following important items. (1) It is bounded in the p, r-
normed ball Bmr (p), and (2) it achieves GAS of the system (1.1) under the hypotheses
of Proposition 2.1. These facts are proved in the following proposition.

Proposition 3.2. On the basis of the hypotheses of Proposition 2.1, if τ(x) is
an admissible solution to (3.5), then for any ε > 0, the control uθ(x) given by (3.11)
satisfies ‖uθ(x)‖p,r < 1 and the closed-loop system (1.1)–(3.11) is GAS.

Proof. First of all, we show that control uθ(x) is bounded in the p, r-norm. In
fact, departing from the fact that τ(x) ≥ ‖v(x)‖q,1/r for all x ∈ R

n, it follows that

rj

(
rj |vj |
τ

)q−1

≤ rj

(
rj |vj |
‖v‖q,1/r

)q−1

for j = 1, . . . ,m, and x �= 0.(3.13)

Hence, the proposed control (3.11) subestimates the singular control

ωp(x) := −
(
r1 ξ

q−1
1 (x), . . . , rm ξq−1

m (x)
)�

, where ξj =
rj vj
‖v‖q,1/r

,(3.14)

for j = 1, . . . ,m, that lies precisely on the boundary of the associated closed ball
Bmr (p). Then, control uθ(x) (3.11) takes values in the open ball intBmr (p) (‖uθ‖p,r <
1), for given p and vector parameter r. That means, control (3.11) never saturates.

Finally, assume that control v(x) fulfills the hypotheses of Proposition 2.1 and
τ(x) is admissible. Then, GAS of the closed-loop system (1.1)–(3.11) is achieved
observing that the control uθ(x) satisfies the required conditions on v(x), and further,
sign v(x) = signuθ(x) for all x ∈ R

n.
Clearly, if τ(x) is replaced with ‖v(x)‖q,1/r in (3.11), the resulting function has

the same features, but it would be a nonsmooth control: the problem of input rate
bounds is nonsense. As mentioned above, for p = 2 we have that ζj = υεj , and if,
further, r1 = · · · = rm = r, then uθ(x) = ρ(x) v(x), with ρ(x) = r2/(ε + τ(x)) being
constant along ∂E(c)—a condition for input rate boundedness that smooth estimates
to ‖v(x)‖q,1/r might not satisfy.

We now state that the τ -based control design is globally rate-limited. Assuming
a stabilization problem with control-value sets given by p, r-normed balls might be
conceived of only mathematical interest per se. Nevertheless, we will obtain an in-
terpretation of control rate bounds in terms of the associated ball. In fact, formula
(3.11) for uθ entails a relation between expressions uθ(x) and υε(x) (3.10), in such a
manner that duθ/dt can satisfy any prescribed constraint (defined as a p, κ-normed
ball), whenever dυε/dt is proven bounded for some system. Thus, the following re-
sult, based on the assumption that dυε/dt is bounded, is more subtle than one could
determine at first sight. The problem of bounded input rates is solved in the following
sense. Fix the control bound parameter r, and consider that inputs are constrained to
take values in the control-value set Bmr (∞) := [−r1, r1]× · · · × [−rm, rm] ⊂ R

m, with
rj > 0, for j = 1, . . . ,m. Then, given an a priori control rate bound κ = (κ1, . . . , κm),
with κj > 0, for j = 1, . . . ,m, there is a p, r-normed ball Bmr (p) (⊂ Bmr (∞)) and a
p, κ-normed ball Bmκ (p), such that control function uθ(x) and its derivative duθ(x)/dt
are bounded in the p, r-norm and p, κ-norm, respectively.

Proposition 3.3. For a fixed control bound r, assume that τ(x) is a Cα function
and dυε(x)/dt has a global bound, where υε(x) is given in (3.10). Then, for any κ =
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(κ1, . . . , κm)
� ∈ R

m
>0, there exists a rational number q ∈ Q

∗
>1 (depending on κ), such

that control uθ(x) (3.11) satisfies ‖uθ(x)‖p,r < 1 and its derivative ‖duθ(x)/dt‖p,κ < 1
for all x ∈ R

n, where p ∈ Q
∗
>1 is obtained from (3.3).

Proof. First of all, we have to consider two cases, depending on the value of q.
1. If q ≥ 2, from (3.11) we obtain

duθj
dt = rjθ z

′
j(υεj )

(
dυεj
dt

)
= rjθ (q − 1)

(
θυεj
)q−2

(
dυεj
dt

)
(3.15)

for j = 1, . . . ,m. Observe that, since for all x ∈ R
n, |θυεj (x)| < 1, then z′j(υεj (x)) is

globally bounded for fixed q, and limq→∞ z′j(υεj ) ≤ limq→∞(q − 1)θq−2 = 0.
2. If 1 < q < 2, from (3.11), we obtain

duθj
dt = rjθ ẑ

′
j(υεj )

(
dυεj
dt

)
=

rjθ (q−1)3(
(2−q) ẑ(2−q)/(q−1)

j
(υεj )+(q−1)4

) (dυεj
dt

)
(3.16)

for j = 1, . . . ,m. From this, it follows that limq→1 maxυεj ẑ
′
j(υεj ) = limq→1 ẑ

′
j(0) =

∞. Moreover, ẑ′j(υεj (x)) is globally bounded for fixed q.
Then, from the previous two items, we have that each function duθj (x)/dt will

have an a priori global bound value whenever dυεj (x)/dt is globally bounded for
j = 1, . . . ,m. Therefore,

∥∥∥∥duθdt
∥∥∥∥
p,κ

=

 m∑
j=1

1

κpj

(
duθj
dt

)p1/p

= θ

 m∑
j=1

(
rj
κj

dζj
dξj

(υεj )

)p(dυεj
dt

)p1/p

≤ θ

∥∥∥∥dυεdt
∥∥∥∥
p

 m∑
j=1

(
rj
κj

dζj
dξj

(υεj )

)p1/p

≤ θ

∥∥∥∥dυεdt
∥∥∥∥

1

∥∥RK−1 Dξζ(υεj )
∥∥

1
= (�),

where R = diag(r1, . . . , rm), K = diag(κ1, . . . , κm), and ‖ · ‖1 denotes the usual
1-norm. Since by assumption ‖dυε/dt‖1 ≤ κ̂ − λ globally bounded in any norm
(equivalence of norms in R

n), from (3.15) and (3.16) we obtain

(�) ≤ ϕ(q) :=


θκ̂
∥∥RK−1

∥∥
1
(q − 1)−1 if q ∈ Q

∗
>1 ∩ (1, 2],

θκ̂
∥∥RK−1

∥∥
1
(q − 1) θq−2 if q ∈ Q

∗
>1 ∩ [2,∞).

(3.17)

Denote by ϕ(q) the extension of ϕ(q) to the open interval (1,∞) ⊂ R. Observe
that ϕ : (1,∞) → (0,∞) is well defined. Further, it is a continuous and (via a
continuity argument) surjective function onto (0,∞). Given any ξ ∈ (0,∞), there
exists q ∈ (1,∞) such that ϕ(q) = ξ. Hence, recalling that set Q

∗
>1 is dense in

(1,∞), there exists a q∗ ∈ Q
∗
>1 which can be taken as closely as desired to q such that

ϕ(q∗) < ξ. Therefore, we have that there exists q∗ ∈ Q
∗
>1 such that ϕ(q∗) < 1.

Consequently, given any κ = (κ1, . . . , κm) with κj > 0 for j = 1, . . . ,m, there is a
rational number q ∈ Q

∗
>1 such that ‖duθ(x)/dt‖p,κ < 1 for all x ∈ R

n, where p ∈ Q
∗
>1

is obtained from (3.3).
Remark 2. On the basis of the above theorem, for fixed magnitude control bound

r, the q, 1/r-norm measures the maximal rate bounds that control uθ(x) is allowed
to have, assigning the corresponding control-value sets Bmr (p) ⊂ Bmr (∞). Hence, it
shows how close control uθ(x) is to the singular control ω∞(x) = sign v(x) ∈ ∂Bmr (∞).
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In fact, for q close to 1 (i.e., p is large enough), Bmr (p)↗ Bmr (∞), the maximum value
of rate bound κ is achieved, and uθ(x)→ ω∞(x); whereas for a larger q (i.e., p tends
to 1), Bmr (p)↘ Bmr (1), the value of κ is minimized, and uθ(x) is farther from ω∞(x).

In particular, if the Lyapunov function V (x) (considered in Hypothesis H1) is
an E-function, the BFC function can be redefined to take values on the closed ball
Bmr (p). First of all, we have that the equality Sτ∗ = {x ∈ R

n : τ(x) ≤ τ∗} = E(c(τ∗))
is fulfilled for any τ∗ > 0, so that Sτ∗ is an invariant set under all the trajectories
of the closed-loop system (1.1) with control uτ (x) given by either (3.6) or (3.9). As
mentioned above, both controls uτ (x) are smooth except at the origin, where they
are singular. Nevertheless, a redefinition yields the BFC function

u×(x) =


uτ (x) if x ∈ R

n\E(τ×),

uτ×(x) if x ∈ E(τ×),
(3.18)

where uτ×(x) := uτ (x) |τ=τ× and τ× > 0 is small enough. Observe that this controller
is Cα

L in R
n\∂E(τ×) (whenever τ(x) is) and it is everywhere Lipschitz continuous (a

Cα
L-like function).
Remark 3. Due to the fact that v(0) = 0, there exists a small enough τ > 0 (in a

neighborhood of 0, ‖v(x)‖q,1/r is a monotonic increasing function, so that τ(x) is also
an increasing function) such that for any τ× ∈ (0, τ ], we have uτ× : E(τ×)→ Bmr (p),
i.e., for all x ∈ E(τ×), control uτ×(x) is bounded in the p, r-norm.

Remark 4. In the case of those systems for which τ× > 0 can be taken as arbitrary,
the proper function E(x) should be chosen as the associated Lyapunov function V (x)
in the above control design, because the neighborhood E(τ×) must be an invariant set.
Otherwise, there could be many excursions of a closed-loop trajectory outside E(τ×),
so that the feedback control (3.18) will lose smoothness any time a trajectory crosses
∂E(τ×). Moreover, the optimization process to maintain the control’s boundedness
would be “set on” any time such a trajectory leaves that neighborhood.

Proposition 3.4. On the basis of the hypotheses of Proposition 2.1, if τ(x) is
an admissible solution to the optimization problem (3.5), there exists a τ > 0 such
that for any τ× ∈ (0, τ ], the control (3.18) satisfies ‖u×(x)‖p,r ≤ 1 and the closed-loop
system (1.1)–(3.18) is GAS.

Finally, if the Lyapunov function V (x) is an E-function, a combination of the
proposed control designs uθ(x) given in (3.11) and u×(x) given in (3.18) yields the
following BFC function. Given τ× > 0 and ε > 0, small enough parameters, we define
the BFC function

u×θ (x) :=
(
r1 ζ

×
1 (υε1(x)) , . . . , rm ζ×m (υεm(x))

)�
,(3.19)

with

ζ×j (υεj (x)) =


ζj(υεj (x)) if x ∈ R

n\E(τ×),

ζj(υ
×
εj (x)) if x ∈ E(τ×),

(3.20)

where ζj(υεj ) is given in (3.12) and υ×εj (x) := υεj (x) |τ=τ× , for j = 1, . . . ,m.
Even though control uθ(x) (3.11) is smooth (whenever τ(x) is), it has the dis-

advantage that the optimization process (3.5) to calculate τ(x) might be carried out
indefinitely, unless an explicit solution to it can be found. Besides, using u×θ (x) (3.19),
the “smoothness” (Cα) requirement on τ(x) from Proposition 3.3 can be relaxed to
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be a Cα
L function, as will be asked for in section 6. Thus, control u×θ (x) (3.19) has an

advantage over control design based on uθ(x) (3.11).
For the remainder of this section, we shall focus on the properties of the function

τ(x). First of all, it is obvious that (i) τ(x) is well defined on R
n since (3.5) is proper;

and (ii) τ(x) ≥ 0.
It should be pointed out that, as stated, the optimization problem (3.5) could

be nonsmooth over the set N = {x ∈ R
n : v(x) = 0}. That trouble is overcome if

‖v(x)‖qq,1/r is used instead as an objective function. On the other hand, control (3.19)

is smooth whenever the function τ(x) is. Thus, smoothness of τ(x) is an important
property that is guaranteed if the following two items hold:

1. smoothness of τ q(x), defined as the solution to (3.5) with ‖v(x)‖qq,1/r used as

objective function, and
2. positive definiteness of τ(x).
For the general optimization problem, smoothness results for a function as τ q(x)

are of generic nature (see [7, 8]). Besides its obvious relevance on precluding sin-
gularities (aside from x = 0) on the controllers uτ (x) and the stability results from
Propositions 3.2 and 3.4, the second item entails the importance of requiring posi-
tive definiteness of τ . Thereby, in view of its own importance, we will focus on the
latter problem, and further, we shall consider that the Lyapunov function V (x) is an
E-function and control v(x) is defined as v(x) = −h(x) = −(LgV (x))�.

Remark 5. Positive semidefiniteness of τ(x) can be reduced to the following
equivalences: τ(x) = 0⇐⇒‖h(x∗)‖q,1/r = 0, where x∗ is an optimal point of (3.5)⇐⇒
for all x ∈ ∂E(c), where c = V (x∗) ≥ 0, we have ‖h(x)‖q,1/r = 0 (since ‖h(x)‖q,1/r ≤
‖h(x∗)‖q,1/r = 0) ⇐⇒ for all x ∈ ∂E(c), h(x) = (LgV (x))� = 0 ⇐⇒ the set of vector
fields {g1(x), . . . , gm(x)} is tangential to the whole compact set ∂E(c).

Hereafter, in view of the previous remark, we will assume the following.
Hypothesis H3. Assume that n > 1 and, further, LgV (x) does not vanish on a

whole boundary level set ∂E(c) ( c = 0 being the only exception), i.e., no c > 0 exists
such that for all x ∈ ∂E(c), LgV (x) = 0.

The above hypothesis is not too restrictive, since the set of vector fields that are
transversal to a fixed proper function (V (x) in this case) is dense and open (with
respect to the Whitney topology) in the set of all vector fields defined on R

n. This
statement follows from the results presented in [29] for general k-jets. Consequently,
τ(x) is positive-definite, and hence an admissible function, in a generic sense.

Finally, we have that the function τ(x) is proved admissible in the following
particular, though important, cases. Recall that a function f : R

n → R
m is said to

be homogeneous of degree β iff for any λ ∈ R, f(λx) = λβf(x); and it is said to be an
odd (even) function iff for all x ∈ R

n, f(−x) = −f(x) (= f(x)).
Proposition 3.5. Consider system (1.1) and n > 1. Then, τ(x) is an admissible

function in the following special cases:
(a) if g(x) = B = (bj)—a constant n×m matrix;
(b) if gj(x) for j = 1, . . . ,m, and the associated Lyapunov function V (x) are

homogeneous;
(c) if g(x) = d(x)+ b, where 0 �= b ∈ R

n is a constant and dj(x) are odd functions
for j = 1, . . . ,m, and the uncontrolled system has an even Lyapunov function V (x).

Proof. The three items can be proved by reductio ad absurdum: assume that
there exists c > 0 such that τ(x)|∂E(c) ≡ 0.

Case (a). In this case, the systems
·
x= gj(x) = bj , j = 1, . . . ,m, have parallel

solutions, and thus ∆ =
⋂m
j=1 ker bj is a linear subspace with dim∆ < n. On the
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other hand, for each c > 0, the level set E(c) satisfies int E(c) �= ∅ (due to continuity
of V (x)), and the (boundary) level set ∂E(c) is compact (due to properness of V (x)).
Therefore, the set of vector fields {b1, . . . , bm} cannot be tangential to a whole compact
set ∂E(c), unless ∂E(c) ⊂ ∆, but this is a contradiction.

Case (b). In view that V (x) is positive-definite and c > 0, then 0 ∈ int E(c) �= ∅.
Due to compactness of E(c), a continuity argument shows that given any y ∈ R

n, there
exist x ∈ ∂E(c) and η > 0 such that y = η x. Therefore, since g1(x), . . . , gm(x) and
V (x) are homogeneous functions of degrees γj and β, respectively, we should obtain
that for all y ∈ R

n, −hj(y) = −LgjV (y) = −ηγj+β−1LgjV (x) = 0, j = 1, . . . ,m.
Consequently, if we assume that τ(x) vanishes in a whole boundary level set ∂E(c),
then either g(x) ≡ 0 or V (x) ≡ 0 in the whole space R

n.
Case (c). In this case, the set of vector fields gj(x) = dj(x) + bj , j = 1, . . . ,m,

should be tangential to the whole symmetric set ∂E(c) = {x ∈ R
n : V (x) = c}. In fact,

suppose that for all x ∈ ∂E(c), −hj(x) = −LgjV (x) = −∇V (x)(dj(x) + bj) = 0, j =
1, . . . ,m. However, by symmetry, −x ∈ ∂E(c), and thus, −hj(−x) = −LgjV (−x) =
−2∇V (x) bj = 0, j = 1, . . . ,m, but this contradicts case (a).

4. Suboptimal properties. In this section we identify a control problem that
involves a notion of optimality related to the associated Lyapunov function. Then,
we will show that the proposed control uθ(x) given in (3.11) is a suboptimal solution
to that problem.

Assume that the control-value set U ⊂ R
m is compact and 0 ∈ U , and denote by

U∗ the set of all U -valued piecewise continuous functions defined on R. Although the
Lyapunov approach based on Hypotheses H1–H2 suffices to analyze global stability,
the fact that V (x) is not strictly decreasing along the closed-loop solutions does not
give a “margin” that can be exploited for robustness analysis or achieving certain
performance. An approach based on the existence of a Lyapunov function for the
closed-loop system could be more convenient (see [1, 15, 3]). A Cα (α ≥ 1) function
V : R

n → R is a Lyapunov function for system (1.1) iff it is positive definite, proper,
and Lf+Σm

j=1
gjujV (x(t)) < 0, where x(t) is a solution to (1.1) with u(t) ∈ U∗. Since

dV/dt = Lf+Σm
j=1

gjujV (x(t)) represents the decay rate of V (x(t)), a reasonable crite-

rion for choosing u(t) is to minimize dV/dt subject to u ∈ U∗. The resulting minimal
control can be represented as a feedback control: for each value x(t) denote by ω(x(t))
the minimal value of u ∈ U∗.

Definition 4.1. Let V : R
n → R be a Cα (α ≥ 1) positive-definite function. We

say that ω : R
n → U is optimal with respect to V (x) iff for all x ∈ R

n and all u ∈ U∗

Lf+Σm
j=1

gjωjV (x) ≤ Lf+Σm
j=1

gjujV (x).(4.1)

If, further, V (x) satisfies that for all x �= 0, Lf+Σm
j=1

gjωjV (x) < 0, then V (x) is a

Lyapunov function for the closed-loop system
·
x= f(x(t)) +

∑m
j=1 gj(x(t))ωj(x(t)).

In [3], the problem of finding an optimal ω(x) has been illustrated by considering
special cases of set U : the Euclidean ball of radius r, Bmr (∞) and Bmr (1). Observe
that inequality (4.1) is equivalent to

min
u∈U∗

{LgV (x)u} .(4.2)

For control-value set U = Bmr (p) for 1 < p <∞, it can be proven (via the Hölder in-
equality) that the minimal value is given by−‖h(x)‖q,1/r and it is accomplished by the

BFC function ωp(x) given in (3.14) with v(x) = −h(x). Control ωp(x) lies on ∂Bmr (p)
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and is the unique optimal BFC function related to the p, r-norm, in the sense that
it is a solution to the equation minu∈U∗{∑m

j=1 LgjV (x)uj} =
∑m

j=1 LgjV (x)ωpj (x).
Uniqueness follows from the strict convexity of U = Bmr (p), but it is understood mod-
ulo the set N = {x ∈ R

n : LgV (x) = 0} because ωp(x)|N is arbitrary (a singular
control). Hence, control ωp(x) is not an admissible input with respect to the set U
given in (1.4). Thereby, given a Lyapunov function, ωp(x) is optimal in the sense that
it maximizes the robustness stability margin against bounded uncertainties (see [21]).

The aforementioned optimal problem is also the basis of the CLF approach for
feedback stabilization. Indeed, Artstein’s theorem [1] expresses that the existence of
a smooth CLF is equivalent to the existence of a continuous feedback control that
renders the GAS of the resulting closed-loop system. Moreover, Artstein’s theorem
holds for general convex (possibly constrained) control-value sets. However, in view
that control design derived from the proof in [1] is nonconstructive (based on partitions
of unity), Sontag and coworkers have proposed explicit “universal” formulae for almost
smooth feedback control laws that stabilize the system (1.1), provided an appropriate
CLF is known. In the bounded control case, such formulae were obtained to fullfil
specific control-value sets U : the Euclidean open unit ball in [15] and Minkowski open
unit balls (with 1 < p ≤ 2) in [19]. Along this line of thought, and possibly conceived
as a pure mathematical problem per se, in [25], Sontag presented the following as an
important open problem: Find universal formulas for CLF stabilization for general
(convex) control-value sets U .

Remark 6. It should be noted that feedback control uθ(x) given in (3.11) shares
a similar structure to the formula (3.14) for ωp(x) and, from the proof of Proposition
3.2, also subestimates it. Hence, if V is also a Lyapunov function for system (1.1),
uθ(x) is a smooth approximation to the optimal control ωp(x).

Summarizing, if Hypothesis H1 holds and V is a Lyapunov function for system
(1.1), the special control uθ(x) (3.11) is threefold: (1) it is an arbitrarily small control
(i.e., lies in arbitrary p, r-normed balls) that stabilizes system (1.1); (2) it is a smooth
suboptimal robust control ; and (3) it allows us to address the problem of input rates
constrained to lie in prescribed sets, in the context of CLF stabilization.

5. Control design when U =
∏µ

i=1 Bmi
ri

(pi). In this section we introduce a
natural extension of the control design method developed in section 3 that allows us
to consider all permutations of the m control input entries arbitrarily taking values
in possibly different p, r-normed balls. Without loss of generality, this condition is
accomplished by renaming the control input entries (if necessary) so that u is parti-
tioned as u = (u1, . . . ,uµ)

�, with each control block ui taking values in a different
pi, ri-normed ball. For this aim, let v be the global stabilizer considered in Proposition
2.1, and take the partition v = (v1, . . . ,vµ). Denote p = (p1, . . . , pµ) with pi ∈ Q

∗
>1,

and define the vector parameter q = (q1, . . . , qµ) in such a way that pi and qi satisfy
(3.3). Hence, each expression (qi − 1) is a quotient of two odd numbers, so that the
proposed control (see below in (5.3)) will preserve the sign of the original control block
vi(x). (This condition is needed for the stabilization result from Proposition 2.1.)

Assume that the control-value set is given by the following Cartesian product of
p, r-normed balls:

U = Bm1
r1

(p1)× · · · × Bmµ
rµ (pµ)(5.1)

for 1 ≤ µ ≤ m and m1 + · · ·+mµ = m.
Choose an arbitrary 0 �= x0 ∈ R

n and set c = E(x0) (> 0). In order to obtain
the stabilizing BFC function, we require the solution to the following µ parametric
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optimization problems:

τi(x0) := maxx∈∂E(c) ‖vi(x)‖qi,1/ri ,
s.t.

∂E(c) := {x ∈ R
n : E(x) = c = E(x0)} .

(5.2)

A vector of solutions τ(x) = (τ1(x), . . . , τµ(x)) to the set of optimization problems
(5.2) will be called admissible iff each τi(x) is a positive definite function.

Then, for admissible τ(x), the BFC function relative to U given in (5.1) is uθ =
(uθ1 , . . . ,uθµ)

�, where formulae for uθi are analogous to (3.11), i.e.,

uθi :=
(
r

[i]

1 ζ
[i]

1

(
υ

[i]

ε1

)
, . . . , r

[i]

mi
ζ

[i]

mi

(
υ

[i]

εmi

))�
, with υ

[i]

εj (x) :=
r

[i]

j v
[i]

j (x)

εi + τi(x)
,(5.3)

for j = 1, . . . ,mi, εi > 0, are tuning parameters for i = [i] = 1, . . . , µ, and the

state-functions ζ
[i]

j are defined
explicitly : ζ

[i]

j = (θυ
[i]

εj )
1/(pi−1) if pi ∈ Q

∗
>1 ∩ (1, 2],

implicitly : (pi − 2)(ζ
[i]

j )pi−1 + ζ
[i]

j = (pi − 1)θυ
[i]

εj if pi ∈ Q
∗
>1 ∩ [2,∞),

(5.4)

with 0 < θ ≈ 1 (needed in Proposition 5.2). In the implicit case, we have that

(ζ
[i]

j )′(0) = pi − 1.
The following result follows along the line of the proof of Proposition 3.2.
Proposition 5.1. On the basis of the hypotheses of Proposition 2.1, if τ(x) is

an admissible solution to the set of optimization problems (5.2), then for any ε =
(ε1, . . . εµ), with εi > 0, the control uθ(x) given in (5.3) satisfies ‖uθi(x)‖pi,ri < 1 for
i = 1, . . . , µ, and the closed-loop system (1.1)–(5.3) is GAS.

Moreover, the proposed control design (5.3) leads also to address the problem of
globally rate-limited actuators. Fix the control bound parameter r, and consider that
inputs are constrained to take values in them-dimensional r-hyperbox, Bmr (∞). Then,

given an a priori control rate bound κ = (κ1, . . . , κµ), with κi = (κ
[i]

1 , . . . , κ
[i]

mi
)� ∈

R
mi
>0, there is a vector of rational numbers q = (q1, . . . , qµ), with qi ∈ Q

∗
>1 for i =

1, . . . , µ, such that control block uθi takes values in Bmi
ri (pi) and duθi/dt takes values

in Bmi
κi (pi), with pi and qi satisfying (3.3).
The following result follows along the lines of the proof of Proposition 3.3.

Proposition 5.2. Consider a fixed control bound r and assume that dυ
[i]

εj (x)/dt

have global bounds for j = 1, . . . ,mi and i = 1, . . . , µ, where υ
[i]

εj (x) is given in (5.3).

Then, for any κ = (κ1, . . . , κµ)
� ∈ R

m
>0, there is a q = (q1, . . . , qµ)

� ∈ (Q∗
>1)

µ

(depending on κ), such that each control block (5.3) satisfies ‖uθi‖pi,ri < 1 and
‖duθi/dt‖pi,κi < 1, with pi and qi satisfying (3.3) for i = 1, . . . , µ.

Analogously to the case of control given in (3.19), if the associated Lyapunov
function V (x) (from Hypothesis H1) is an E-function, a combined control design
uθ(x) with u×(x) given in (3.18) can be proposed. Hence, given a set of small enough
parameters τ×i > 0, and tuning parameters εi > 0, i = 1, . . . , µ, we define the BFC
function u×θ = (u×

θ1
, . . . ,u×

θµ
)� with

u×
θi
:=
(
r

[i]

1 ζ
[i]×
1

(
υ

[i]

ε1

)
, . . . , r

[i]

mi
ζ

[i]×
mi

(
υ

[i]

εmi

))�
and(5.5)
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ζ
[i]×
j (υ

[i]

εj (x)) =


ζ

[i]

j (υ
[i]

εj (x)) if x ∈ R
n\E(τ×i ),

ζ
[i]

j (υ
[i]×
εj (x)) if x ∈ E(τ×i ),

(5.6)

where ζ
[i]

j (υ
[i]

εj ) is given in (5.4) and υ
[i]×
εj (x) := υ

[i]

εj (x) |τi=τ×
i
for i = 1, . . . , µ.

5.1. Control design in the m-dimensional r-hyperbox. Assuming that µ =
m, the control-value set U = Bmr (∞) := [−r1, r1]× · · · × [−rm, rm] ⊂ R

m is obtained.
This special constraint set is important for two main reasons: (i) among all norm-
based sets and fixed r, it is the maximal set (under ⊆), so that more control magnitude
is available in this way; and (ii) inputs are actually independent of each other, in
the sense that any input can take values without being acquainted with magnitudes
taken by the remaining inputs. In this case, formula (5.3) consists of scalar control

blocks uθ := (r1 ζ
[1]

1 (υ
[1]

ε1 ), . . . , rm ζ
[m]

m (υ
[m]

εm ))
�, with υ

[j]

εj (x) = (rj vj(x))/(εj + τj(x)),

j = 1, . . . ,m; and expressions ζ
[j]

j (υ
[j]

εj ) are given in (5.4), but parameters qj do not
depend on dual formula (3.3). This control design requires us to find the solution
to m parametric optimization problems (5.2) corresponding to the m scalar control
blocks. Thus, a closer look to the optimization problem (3.5) in the scalar input case
is crucial. The optimization problem (3.5) for scalar input is equivalent to solving the
two programs

τ(x0) = max
x
|v(x)| = max

{
max
x

v(x),−min
x

v(x)
}
,(5.7)

subject to x ∈ ∂E(c), where c = E(x0). This problem can be reduced to only one
optimization problem if the maximum is attained always at just one program. A
sufficient condition for this to hold proceeds as follows. Suppose that there exists
x0 ∈ ∂E(c) such that τ(x0) = maxx v(x) = −minx v(x) for x ∈ ∂E(c). Then, there
exist x∗1, x

∗
2 ∈ ∂E(c) such that v(x∗1) + v(x∗2) = 0, where x∗1 and x∗2 are optimal points

of the programs x∗1 = argmaxx v(x) and x∗2 = − argminx v(x), respectively. On the
basis that τ(x) is positive-definite, it follows that x∗1 �= x∗2. Then, there might exist an
open interval I = (−δ+c, c+δ), with δ > 0, such that if ΣI denotes the associated set
of optimal solutions to (5.7), then ΣI should be contained in the corresponding set of
critical points of the above programs. If this is the case, ΣI could be a disjoint union of
piecewise smooth curves (cf. [12]). Henceforth, from the perspective of implementing a
program, in order to avoid undesirable “jumps” between those curves, we can assume
that the function ψ : R→ R, defined by

ψ(c) := max
x

v(x) + min
x

v(x) s.t. x ∈ ∂E(c),(5.8)

is either nonnegative or nonpositive for all c > 0.
Assuming that function ψ defined by (5.8) is nonnegative, the optimization prob-

lem (5.7) reduces to solve

τ(x0) = max
x∈∂E(c)

v(x) ≥ 0, where c = E(x0).(5.9)

Expressing the above program in terms of the first-order necessary condition for
an extremum, we have that there exists (x∗, λ∗) ∈ R

n×R, where x∗ is a regular point
of the constraint and λ∗ ∈ R is a Lagrange multiplier, such that the Lagrangian

Lλ∗(x∗) = v(x∗)− λ∗(E(x)− c)(5.10)
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for fixed c > 0 satisfies

∇xLλ∗(x∗) = ∇xv(x
∗)− λ∗∇xE(x

∗) = 0.(5.11)

When ψ (5.8) is nonpositive, the negative version of (5.9) (τ(x0) = maxx(−v(x)) ≥ 0)
must be considered. The procedure developed here will be illustrated in section 6.2.

6. A class of homogeneous systems. In order to guarantee a constructive
solution to (3.5), a sufficient condition could be that there exists a homogeneous
Lyapunov function V (x) associated to system (1.1) and that functions gj(x), j =
1, . . . ,m, are also homogeneous. If this is the case, the optimization problem is not
only feasible, but the computational burden involved in solving it for each value of
the parameter c is drastically reduced. The problem is solved just once.

Theorem 6.1. Consider the one-parameter family of optimization problems
(3.5). Assume that (1.1) admits an homogeneous Lyapunov function V (x) of even
degree β ≥ 2, and g1(x), . . . , gm(x) are homogeneous functions of degrees all equal to
γ. Denote by ν (= β + γ − 1) the degree of hj(x) = LgjV (x), j = 1, . . . ,m, and set
ς := β/ν. Further assume that x∗ ∈ R

n is an optimal point of (3.5) satisfying, without
loss of generality, V (x∗) = 1/ς, such that it is a regular point of the constraint and
both g(x∗) and Dh(x∗)g(x∗) have full rank. Then, for any x ∈ R

n, we have

τ(x) = σ V 1/ς(x), where σ = ς1/ς ‖h�(x∗) (Dh(x∗) g(x∗))−1 ‖−1
p,r.(6.1)

Proof. Choose 0 �= x0 ∈ R
n, set c = V (x0) (> 0) and let x∗ ∈ R

n be an optimal
point of the proper program (3.5). Then, by hypothesis and based on the Lagrange
multiplier method, we have that x∗ is a regular point of the constraint and that there
exists λ∗ ∈ R such that the Lagrangian

Lςλ∗(x
∗) = ‖h(x∗)‖ςq,1/r − λ∗(V (x∗)− c)(6.2)

for fixed c > 0 satisfies

∇xL
ς
λ∗(x

∗) =
ς τ ς

q‖y∗‖qq,1/r
∇x(‖y∗‖qq,1/r)− λ∗∇xV (x∗) = 0,(6.3)

where y∗ = h(x∗). Obviously, ‖y‖qq,1/r is a positive-definite, convex, and homogeneous

function of degree q (in the variable y). Moreover, ‖h(x∗)‖qq,1/r �= 0, since τ(x∗) >
0 (Proposition 3.5 (b)). Then, by homogeneity of V (x) and h(x), ∇xL

ς
λ∗(x) is a

homogeneous function of degree β − 1. By assumption, g(x∗) has full rank. Thus,
postmultiply both sides of (6.3) by g(x∗) to obtain

∇xL
ς
λ∗ g =

ς τ ς

τ q
(
(r1h1)

q−1, . . . , (rmhm)
q−1
)
RDhg − λ∗h� = 0,(6.4)

where R := diag(r1, . . . , rm). Then, in virtue that Dhg is nonsingular at x∗, post-
multiplying both sides of (6.4) by (Dhg)−1 yields

ς τ ς−1u�τ = λ∗h� (Dhg)
−1

.(6.5)

On the other hand, control function uτ (x) given in (3.6) satisfies ‖uτ (x∗)‖p,r = 1 for
any q > 1. Thus, using that fact and expression (6.5), we have

λ∗ = ς τ ς−1 ‖h� (Dhg)
−1 ‖−1

p,r.(6.6)
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Consider again (6.3) and postmultiply both sides by x∗ to obtain

∇xL
ς
λ∗x

∗ =
ς

q
τ ς−q∇x(‖y∗‖qq,1/r)x∗ − λ∗∇V (x∗)x∗ = 0.(6.7)

Observe that V (x) and ‖h(x)‖qq,1/r are homogeneous functions of degrees β and qν, re-

spectively. Then, by (Euler’s formula) homogeneity, we have that ∇xV (x)x = β V (x)
and ∇x(‖h(x)‖qq,1/r)x = qν ‖h(x)‖qq,1/r. Then, from (6.7) and due to Proposition

3.5(b) (‖y∗‖qq,1/r �= 0), we obtain

∇xL
ς
λ∗x

∗ =
ς

q
τ ς−q (qν ‖y∗‖qq,1/r)− β λ∗V (x∗) = β (τ ς − λ∗V (x∗)) = 0.(6.8)

Thereby, we have

τ ς(x) = λ∗V (x) for any x ∈ ∂E(c).(6.9)

On the other hand, using homogeneity, we have that Σ = {x ∈ R
n : x = η x∗, η >

0} is a line of critical points of Lςλ∗ and also a set of regular points of the constraint
and g |Σ has full rank. Moreover, based on the proof of Proposition 3.5 (b), it follows
that Σ is also a set of maximal points for the optimization program (3.5). Hence any
optimal point x∗ can be represented as x∗ = η x∗0, where, without loss of generality,
x∗0 denotes an optimal point subject to V (x∗0) = 1/ς. Therefore, in order to define
τ(x) given in (6.9) on the whole R

n, we proceed as follows. Given an arbitrary x0,
set c = V (x0) and let x∗ ∈ ∂E(c) be the corresponding optimal point. In view that
x∗ = η x∗0, we have that c = V (x∗) = ηβ/ς, and substituting this expression into (6.9)
yields η as a function of τ : ηβ(τ) = ς τ ς/λ∗. Thus,

x∗(τ) =
( ς

λ∗ τ
ς
)1/β

x∗0.(6.10)

Rename x∗0 as x∗. Then, replacing x∗ with x∗(τ) in (6.6), taking into account the
homogeneity of the functions, and after some straightforward algebraic calculations,
we obtain

λ∗ = ς ‖h�(x∗) (Dh(x∗) g(x∗))−1 ‖−ςp,r.(6.11)

Finally, substituting the above expression into (6.9) yields (6.1), which is defined
in R

n.
Remark 7. It should be worth mentioning that τ(x) given in (6.1) is also a proper

Lyapunov function (i.e., it is positive-definite and radially unbounded, and dτ/dt < 0
for all x ∈ R

n \ {0}), provided that Hypothesis H2 holds, and it is a homogeneous
function of degree ν.

Theorem 6.2. Consider the affine system (1.1) for which Hypotheses H1–H2
hold. Under the additional hypotheses of the above theorem, we have that the control
u×θ (x) (3.19), where υε = (υε1 , . . . , υεm)

� given by

υεj (x) = −
rj

ε+ σ V 1/ς(x)
hj(x), j = 1, . . . ,m,(6.12)

satisfies ‖u×θ (x)‖p,r < 1 for arbitrary τ× > 0 and ε > 0, and renders the GAS of the
closed-loop system (1.1)–(3.19), where σ is given in (6.1) and x∗ is an optimal point
such that V (x∗) = 1/ς (without loss of generality). Furthermore, we have an a priori
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global bounded rate on the input, i.e., given any κ = (κ1, . . . , κm)
� ∈ R

m
>0, there is a

q ∈ Q
∗
>1 (depending on κ), such that ‖du×θ /dt‖p,κ < 1, with p ∈ Q

∗
>1, for any x ∈ R

n,
whenever LfV (x) ∈ O(‖x‖βp ), ‖Dh(x)f(x)‖p,1/r ∈ O(‖x‖νp) and either g(x) = B,
an n ×m constant matrix, or gj(x) = Djx, with Dj being n × n constant matrices,
j = 1, . . . ,m. The value of parameter q depends on the associated order-constants,
rate bound κ, control bound r, parameter value τ× > 0, and tuning parameter ε > 0.

Proof. The stabilization result follows from Proposition 3.2 and the above the-
orem. Only the last assertion on the boundedness of ‖du×θ /dt‖p,r must be proved.
Departing from Proposition 3.3, it turns out that duθ/dt has an a priori global bound,
whenever dυε/dt is globally bounded. Then, from υε(x) (6.12) and some calculations,
we obtain

dυε
dt

= (ε+ τ)−2∇xτ
·
x Rh− 1

ε+ τ
RDh

·
x

=
1

ε+ τ

(
σ

ς(ε+ τ)
V

1−ς
ς ∇xV

·
x Rh−RDh

·
x

)

=
1

ε+ τ

(
σς

(ε+ τ) ςτ ς−1
(LfV + LgV uθ)Rh−RDh (f + g uθ)

)
,

where R = diag(r1, . . . , rm). Due to the fact that for all x ∈ R
n, |υεj (x)| < 1, j =

1, . . . ,m, it follows that ‖υε‖p < m1/p, in any p-norm. Moreover, for any a, b ∈ R
m,

we have (1) ‖R−1a‖q,1/r = ‖a‖q and ‖R a‖p = ‖a‖p,1/r, and (2) |a�b| ≤ ‖a‖q,1/r ‖b‖p,r
(Hölder inequality). Recalling that ‖uθ‖p,r < 1, then ‖uθ‖p = C‖uθ‖p,r < C, with C
depending on r. Hence, from the above expression and some calculations, we obtain

∥∥∥∥dυεdt
∥∥∥∥
p

≤ σς

(ε+ τ) ςτ ς−1
(−LfV + |LgV uθ|) ‖υε‖p + 1

(ε+ τ)
‖RDh (f + g uθ)‖p

≤ σς m1/p

ςτ ς−1

(
− 1

(ε+ τ)
LfV + ‖R−1υε‖q,1/r ‖uθ‖p,r

)
+

1

(ε+ τ)
‖Dh (f + g uθ)‖p,1/r .

Finally,∥∥∥∥dυεdt
∥∥∥∥
p

≤ σςm

ςτ ς−1
− σς m1/p LfV

ςτ ς−1(ε+ τ)
+

1

(ε+ τ)
‖Dhf‖p,1/r +

C

(ε+ τ)
‖Dhg‖p,1/r .(6.13)

In virtue that by assumption τ(x) is a proper function, we have that the right-hand
side of the above expression is bounded in R

n\E(τ×) for arbitrary τ× > 0, if in the
latter three terms, the orders of the denominators (as functions of τ) are greater
than or equal to the corresponding ones of the numerators. Thus, observing that
τ(x) has (degree) order ν (= β + γ − 1), we obtain that LfV (x) ∈ O(‖x‖βp ) and
‖Dh(x) f(x)‖p,1/r ∈ O(‖x‖νp) are boundedness conditions for the second and third
terms of (6.13). Finally, the last term contains an x-dependent induced p-norm applied
to an m ×m matrix with homogeneous entries of even degree equal to β + 2γ − 2.
Thereby, we must have β+γ−1 ≥ β+2γ−2, i.e., γ ≤ 1, to obtain the desired result.
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However, smoothness on g(x) over R
n (specifically at x = 0) restricts the values of

γ to be 0 or 1, and, further, g(x) admits only two possibilities. Either g(x) = B,
an n ×m constant matrix, or gj(x) = Djx, where Dj are n × n constant matrices,
j = 1, . . . ,m. On the other hand, in E(τ×), the right-hand side of (6.13) is obviously
bounded. Therefore, the right-hand side of (6.13) is globally bounded, with bound
depending on the associated order-constants, p norm parameter, control bound r,
parameter value τ× > 0, and tuning parameter ε > 0.

Remark 8. From (6.13), it should be noted that if ς = 1 (e.g., as in the case of
bilinear systems), then control uθ(x) can be used instead of u×θ (x).

The class of homogeneous systems considered above includes those systems with
g(x) = B that can be globally asymptotically stabilized using a quadratic Lyapunov
function (linear systems included) and homogeneous bilinear systems. In particular,
for linear and bilinear systems, since their free dynamics are linear (i.e., f(x) = Ax),
the result on inputs subject to global bounded rate is guaranteed on the basis of the
above theorem. This fact will be explicitly shown below in Propositions 6.3 and 6.5.

6.1. Globally asymptotically stabilizable systems by linear feedback.
Assume that the n × m constant matrix B has full rank, and consider the class of
affine systems

·
x= f(x) +Bu.(6.14)

The proposed method is particularly well suited for any system (6.14) that can be
globally asymptotically stabilized by means of linear feedback v(x) = −(LBV (x))� =
−Kx and quadratic Lyapunov function V (x) = 1

2 x
�Px, where P is an n×n positive-

definite symmetric matrix. For such a system the optimization problem is easily
implemented, and assuming that Hypotheses H1–H2 hold, a globally stabilizing BFC
function is designed. Sufficient conditions for the existence of linear controllers are
available in the literature (cf. [2, 17]).

As has been pointed out above, the control constraint problem ‖u(x)‖p,r ≤ 1 can
be solved by means of the Lagrange multiplier method. In the present case, it reduces
to finding a function c = c(τ) as solution of the ellipsoidal boundary (a relation)

∂E(τ) =
{
x ∈ R

n : V (x) =
1

2
x�Px = c(τ)

}
,(6.15)

where P = P� > 0, s.t. ‖u(x)‖p,r ≤ 1.
Proposition 6.3. Consider the affine system (6.14) for which Hypothesis H1

holds with a quadratic Lyapunov function V (x) given in (6.15) and further assume,
without loss of generality, that B has full rank. Furthermore, if Hypothesis H2 holds,
then control u×θ (x) given in (3.19), where υε(x) is given by

υε(x) = − 1

ε+ σ
√
x�Px

RB�Px,(6.16)

with R = diag(r1, . . . , rm), satisfies ‖u×θ (x)‖p,r < 1 for any τ× > 0 and ε > 0
and globally asymptotically stabilizes the closed-loop system (6.14)–(3.19), where σ =
21/2/‖(x∗�PB) (B�PB)−1‖p,r and x∗ is an optimal point satisfying x∗�Px∗ = 1.
Furthermore, if f(x) is a globally Lipschitz function at the origin (i.e., there exists L >
0 such that for all x ∈ R

n, ‖f(x)‖2 ≤ L‖x‖2), then given any κ = (κ1, . . . , κm)
� ∈

R
m
>0, there is a q ∈ Q

∗
>1 (depending on κ), such that ‖du×θ /dt‖p,κ < 1, with p ∈ Q

∗
>1,



GLOBAL STABILIZATION OF NONLINEAR SYSTEMS 701

for all x ∈ R
n, where q is defined in terms of matrices B and P , Lipschitz constant

L, rate bound κ, control bound r, and parameter value τ×.
Proof. First of all, since g(x) = B has full rank, it follows that B�PB is non-

singular (indeed, it is a positive-definite matrix). Moreover, any extremum x∗ is a
regular point of the constraint (∇xV (x) �= 0 for all x �= 0). In view that β = 2 and

ν = 1, we have ς = 2. Thus, τ(x) is given by (6.1), that is, τ(x) = σ
√
x�Px, so that

it is admissible. Then, based on Theorem 6.2, the global stabilization result follows.
On the other hand, from υε(x) (6.16) and some algebraic calculations, we obtain

dυε
dt = 1

ε+τ (
σ2

2(ε+τ) τ (x
�Pf(x) + x�PB uθ)RB

�Px−RB�Pf(x) +R(B�PB)uθ).

Hence, working along the line of the proof of Theorem 6.2, we obtain

∥∥∥∥dυεdt
∥∥∥∥
p

=
σ2

2τ

(∥∥R−1υε
∥∥
q,1/r

‖uθ‖p,r −
(

1

ε+ τ

)
x�P f(x)

)
‖υε‖p

− 1

ε+ τ

( ∥∥RB�P f(x)
∥∥
p
+
∥∥RB�PB

∥∥
p
‖uθ‖p

)
.

From the fact that |υεj | < 1, j = 1, . . . ,m, we have that ‖υε(x)‖p < m1/p for any
p-norm. Moreover, recalling that ‖uθ‖p,r < 1, then ‖uθ‖p = C‖uθ‖p,r < C, with C
depending on r. Then, from the above expression, we have

∥∥dυε
dt

∥∥
p
≤ σ2m

2τ −
σ2m1/p

2τ(ε+ τ)
(x�Pf(x))︸ ︷︷ ︸

(a)

+

∥∥RB�Pf(x)
∥∥
p

(ε+ τ)︸ ︷︷ ︸
(b)

+
-‖RB�PB‖

p

(ε+τ) .
(6.17)

The expressions (a) and (b) from (6.17) admit the following bounds.
For (a) and recalling that for all x ∈ R

n, ‖f(x)‖2 ≤ L‖x‖2, we have

− σ2 m1/p

2τ(ε+ τ)

(
x�P f(x)

)
<

m1/p

2(x�Px)
‖Px‖2 ‖f(x)‖2 ≤

Lm1/p

2
∥∥P 1/2x

∥∥2
2

‖Px‖2 ‖x‖2

≤ Lm1/p

2

∥∥∥P 1/2
∥∥∥

2

∥∥∥P−1/2
∥∥∥

2
;

whereas, for (b), we obtain 1
(ε+τ)‖RB�P f(x)‖p < 1

σ‖P 1/2x‖2
‖RB�P‖p‖f(x)‖p ≤

Lµ
σ λmin(P 1/2)

‖B�P‖p,1/r, where µ > 0 is an appropriate constant (entailed from the

equivalence of norms).
Then, from the previous expressions and (6.17) and after some algebraic calcula-

tions, we finally obtain∥∥∥dυ×
ε

dt

∥∥∥
p
≤ D := L

(
m1/pλmax(P 1/2)

2λmin(P 1/2)
+

µ ‖B�P‖p,1/r
σλmin(P 1/2)

)
+

(
σ2m
2τ× +

-‖B�PB‖
p,1/r

ε+τ×

)
(6.18)

for all x ∈ R
n.

Remark 9. The bound D (right-hand side of (6.18)) admits a geometrical meaning
in terms of the curvature of the ellipsoid E(τ) (6.15). In fact, from (6.18) observe that

λmax(P
1/2)/λmin(P

1/2) = χmax/χmin,(6.19)
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where χmin andχmax are the minimal and the maximal lengths of the semiaxes of the
ellipsoid E(τ) |c=1/2 (6.15), respectively. Hence, the more that ellipsoid resembles a
ball, the smaller the attained bound value D becomes.

Consider the particular case when system (6.14) is linear, i.e., f(x) = Ax, where
A is an n×n matrix satisfying Hypothesis H1 and B is an n×m matrix. In this case,
Hypothesis H1 can be rephrased in terms of quadratic Lyapunov functions.

Hypothesis H1′. Suppose there exists a positive-definite symmetric matrix P
(P = P� > 0), solution of the Lyapunov equation

A�P + PA = −Q,(6.20)

where Q is a positive semidefinite matrix (Q ≥ 0). Then, the quadratic function

V (x) =
1

2
x�Px(6.21)

defines a Lyapunov function for the open-loop system (6.14).
From Theorem 6.2, if, in addition, Hypothesis H2 holds, GAS of that system with

bounded control is guaranteed.
Corollary 6.4. Consider the linear system case of (6.14) for which Hypothe-

ses H1′–H2 hold and further assume, without loss of generality, that B has full
rank. Then, the control function u×θ (x) (3.19), where υε(x), given in (6.16), sat-
isfies ‖u×θ (x)‖p,r < 1 and renders the GAS of the closed-loop system (6.14)–(3.19).
Further, given κ ∈ R

m
>0, there is q ∈ Q

∗
>1 such that ‖du×θ /dt‖p,κ < 1 for all x ∈ R

n.
Remark 10. Another approach to the problem presented in this subsection can

be found in [23]. In that paper, the control-value set was given by an S-Euclidean

normed ball, BmS = {u ∈ R
m : ‖u‖S :=

√
u� S u ≤ 1}, where S is an m×m positive-

definite symmetric matrix. Additional features developed in [23] were (i) addressing
globally bounded rates on inputs: ‖du/dt‖S ≤ κ, and (ii) the semiglobal stabilization
of ANCBC linear systems via feedback control laws with magnitude and rate bounds.

6.2. Homogeneous bilinear systems. Consider the class of homogeneous bi-
linear systems

·
x= Ax+

m∑
j=1

ujDjx,(6.22)

where A is an n × n matrix satisfying Hypothesis H1′ and Dj are n × n constant
matrices, j = 1, . . . ,m. In this case, from Remark 8, we have ς = 1 (= β/ν = 2/2),
so that uθ(x), given in (3.11), will be used instead of u×θ (x) given in (3.19).

Based on Theorem 6.2, if a quadratic Lyapunov function V (x), given by (6.21),
exists, then a globally bounded smooth stabilizer is designed for system (6.22).

Proposition 6.5. Consider the homogeneous bilinear system (6.22) for which
Hypothesis H1′ holds with a quadratic Lyapunov function V (x) given in (6.21). If Hy-
pothesis H2 also holds, then control uθ(x), given in (3.11), where υε = (υε1 , . . . , υεm)

�

is given by

υεj (x) = −
rj

2 (ε+ σ x�Px)
x�(PDj +D�

j P )x, j = 1, . . . ,m,(6.23)

satisfies ‖uθ(x)‖p,r < 1 for arbitrary ε > 0, and globally asymptotically stabilizes the
closed-loop system (6.22)–(3.11), where σ = ‖h�(x∗) (Dh(x∗) g(x∗))−1‖−1

p,r, x
∗ is an
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optimal point such that x∗�Px∗ = 2 and the set {D1x
∗, . . . , Dmx

∗} is linearly inde-
pendent. Moreover, given any κ ∈ R

m
>0, there is a q ∈ Q

∗
>1 such that ‖duθ/dt‖p,κ < 1

for all x ∈ R
n.

Proof. First of all, in view that the set {D1x
∗, . . . , Dmx

∗} is linearly indepen-
dent, it follows that Dhj(x

∗) gj(x∗) = x∗�(D�
j PDj + PD�

j Dj)x
∗ for j = 1, . . . ,m,

are also linearly independent (so that Dh(x∗) g(x∗) is nonsingular). Moreover, since
∇xV (x) �= 0 for all x �= 0, any extremum x∗ is a regular point of the constraint. Set
ς = 1, since β = 2 and ν = 2. Then, based on Theorem 6.1, τ(x) = σ x�Px and it is
(obviously) admissible, and from Theorem 6.2, the global stabilization result follows.

On the other hand, due to the fact that |υεj | < 1, j = 1, . . . ,m, it follows that

‖υε‖p < m1/p for any p-norm. Moreover, ‖uθ‖p ≤ C ‖uθ‖p,r < C, where C depends on
r. Then, from υε(x) (6.23) and (6.20), the corresponding expression (6.13) becomes∥∥∥∥dυεdt

∥∥∥∥
p

≤ σm+
1

ε+ τ

(
σm1/p

2
(x�Qx) + ‖DhAx‖p,1/r + C ‖Dhg‖p,1/r

)
,(6.24)

where Dh = g�P + x�PDg�. The result follows from Theorem 6.2 observing that
the right-hand side of the above expression is bounded for all x ∈ R

n and ε > 0.

For the remainder of this section, we will address the control design in Bmr (∞).
As pointed out in section 5.1, the solution to the associated optimization problem
for the control design in Bmr (∞) is achieved by solving an optimization problem with
scalar control constraint (5.7). Thereby, in the case of homogeneous bilinear systems,
the solution to (5.11) is reduced to finding a root of the polynomial

p(λ) = detHλ, where Hλ := (PD +D�P )− λP.(6.25)

If λ = λ∗ is the required root, considering (5.11) and (5.7), it follows that c(τ) = τ/|λ∗|
and τ(x) = 1

2 |λ∗|x�Px. Henceforth, the BFC function uθ(x) is defined in (5.3), where

the components υ
[j]

εj are given by

υ
[j]

εj (x) = −
rj

εj + |λ∗
j | (x�Px)

x�(PDj +D�
j P )x, j = 1, . . . ,m.(6.26)

The following theorem leads to the solution of convex and nonconvex optimization
problems (5.7) associated to the BFC problem for homogeneous bilinear systems with
scalar control. Depending on the definiteness of the function ψ (5.8), the sufficient
conditions are expressed in terms of λ∗ and the remaining roots of the polynomial
p(λ) (6.25). It should be noted that, from homogeneity, if ψ(c) > 0 (or < 0) for some
c > 0, then ψ is positive- (or negative-) definite.

Theorem 6.6. Assume that Hypotheses H1′–H2 hold. Set λ∗ = maxλ arg{p(λ) =
0}. Then: (i) if the optimization problem (5.9) holds, λ∗ is the unique positive root of
the polynomial p(λ); or (ii) if the negative version of (5.9) holds, then all roots of the
polynomial p(λ) are negative. In either case, GAS of the system (6.22) is obtained by

means of the control uθ(x) given in (5.3) with components υ
[j]

εj given by (6.26).

Proof. Case (i). As is well known [18], a (second-order) sufficient condition for
x∗ to be a maximum of the optimization problem (5.9) consists of

(a) the necessary condition: there exists λ∗ ∈ R such that

x∗�Hλ∗ = x∗�((PD +D�P )− λ∗P ) = 0, and(6.27)
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(b) the negative semidefiniteness of the Hessian matrix Hλ∗ (regular pencil of
matrices (6.25)) on

M =
{
z ∈ R

n : x∗�Pz = 0
}
:= ker(x∗�P ).(6.28)

Then, considering (6.27) and positive definiteness of τ(x) (5.9), it follows that λ∗ > 0.
The following two results, specialized to the present problem, are required (cf.

[9]).
(A) There exist n real characteristic values of Hλ, which can be assumed ordered:

λ1 ≤ · · · ≤ λn. Moreover, for every k (1 ≤ k ≤ n), the kth characteristic value λk is
given as the minimum ratio of the bilinear forms

λk = min
x

x�(PD +D�P )x
x�Px

,(6.29)

provided that the variable vector x is subject to k − 1 linear relations: there exist
k − 1 (P -)orthonormal vectors zi (1 ≤ i ≤ k − 1), i.e., z�i Pzj = δij (= {1, if i = j; or
0, if i �= j}), which are (P -)orthogonal to x, that is

x�Pz1 = 0, x�Pz2 = 0, . . . , x�Pzk−1 = 0.(6.30)

(B) There is a nonsingular transformation, x = Tξ, which reduces the bilinear
forms x�(PD +D�P )x and x�Px simultaneously to a sum of squares

ξ� diag(λ1, . . . , λn)ξ and ξ�ξ.(6.31)

Then, λ is a characteristic value of the pencil Hλ iff it is a root of the polynomial
p(λ) = detHλ.

We claim that the negative semidefiniteness sufficient condition on Hλ∗ holds if λ∗

is the unique positive root of p(λ). In fact, since dimM =dimker(x∗�P ) = n−1, from
(A), it follows that k = n. Based on this, taking into account (B) and recalling that,
by hypothesis, λ1, . . . , λn−1 are nonpositive roots of p(λ), we obtain that matrix Hλ∗

(6.25) is negative semidefinite onM . Moreover, λ∗ = λn > 0—the Lagrange multiplier
associated to x∗—is a root of the polynomial p(λ). Therefore, λ1 ≤ · · · ≤ λn−1 ≤ 0
and λn > 0 are all the characteristic values of Hλ.

Case (ii). If ψ (5.8) is nonpositive, the negative version of (5.9) holds. Then we
obtain the following necessary condition for an extremum:

x∗�Hν∗ = 0,(6.32)

where Hν∗ = (PD + D�P ) + ν∗P . From this and positive definiteness of τ(x), it
follows that ν∗ > 0. Denoting λ∗ := −ν∗, we obtain that λ∗ < 0. Then, considering
p(λ) = detHλ (6.25) and reasoning analogously to case (i) yields that all roots of p(λ)
must be negative, λ∗ being the greater one.

7. Concluding remarks. In this work, we addressed the GAS problem of a class
of nonlinear systems with stable free dynamics subject to both input magnitude and
rate bounds. In general, in order to derive the bounded stabilizer, the resulting pro-
cedure implies that “gains,” as state-functions, are the solution to a c-parameterized
nonlinear programming. On broad lines, the procedure consists of defining a func-
tion τ(x), such that it is constant along the boundary of the c-level (compact) sets
of certain functions. Then, taking a sequence of those c-level sets in decreasing size
(converging to the origin), it is assigned to each set the corresponding possible highest
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“gain” (via τ), while keeping the control bounded. For general nonlinear systems, the
resulting closed-loop system could be implicitly defined in the sense that the control
law is obtained from the solution to a nonlinear algebraic equation. Furthermore, we
show that the proposed control is suboptimal. For an important class of homogeneous
nonlinear systems (including a class of GAS systems by linear feedback and bilinear
systems), it is shown that the resulting programming problem can be explicitly solved,
and, further, the problem of inputs subject to global bounded rates is addressed. In
many applications, the control-value set is defined as the m-dimensional r-hyperbox
Bmr (∞) = {u ∈ R

m : |uj | ≤ rj , rj > 0, j = 1, . . . ,m}. Thereby, we presented a de-
sign approach for control laws considering more general control-value sets: Cartesian
products of p, r-normed balls.

Acknowledgment. The authors are grateful to Dr. Carlos Ibarra for his helpful
suggestions that improved the original version of this paper.
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Abstract. We present some statistical results on nonlinear adaptive control using kernel esti-
mators. We are concerned with a nonlinear autoregressive model of the form

Xn+1 = f(Xn) + Un + ξn+1, n ∈ N,

controlled using a nonparametric estimator of the unknown function f and derived from a tracking
control policy. We prove an almost sure convergence result for the noise density estimator, a pointwise
central limit theorem for f , and a test for linearity of the driving function f .

Key words. adaptive control, central limit theorem, discrete-time stochastic nonlinear system,
kernel estimation, test for linearity
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1. Introduction. In a previous paper [14], the problem of adaptive control of
nonlinear systems of the form

Xn+1 = f(Xn) + Un + ξn+1, n ∈ N,(1.1)

is considered, where Xn, Un, and ξn are the output, input, and noise of the system,
respectively. State Xn is observed, ξn is an unobservable noise, and control Un is to be
chosen. Initial conditions X0 and U0 are arbitrarily chosen. The main results of [14]
deal with the almost sure convergence over dilating sets of a nonparametric estimator
(based on a kernel method) of the unknown function f as well as the construction of
an optimal adaptive tracking control law.

In this paper, we propose some new statistical results in this context. First, we
propose a kernel method-based estimator of the probability density function (p.d.f.)
of ξn, and we prove a uniform almost sure convergence result. Next, we establish a
pointwise central limit theorem for the kernel estimator of function f as well as the
associated joint asymptotic normality. Finally, we derive a test for linearity of f which
can be used for identification purposes.

From a statistical viewpoint, the estimation of the regression function using the
kernel method is widely investigated in the uncontrolled case (Un ≡ 0 in model (1.1)).
See Härdle [10] for a comprehensive survey, Robinson [18], Truong and Stone [26]
under mixing assumptions (see Doukhan [4] for a full study of mixing notions), and
Duflo [5] and Yakowitz [27] under Markov chains framework. Nonparametric statis-
tical methods have been already used for the identification of nonlinear dynamical
systems. See Greblicki and Pawlak [8], Greblicki [7], Krzyzak [13], Georgiev [6], and
Hilgert, Senoussi, and Vila [11].

Let us now make some remarks about the existing literature on the different topics
related to the main results of the paper.
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Many authors have studied the pointwise asymptotic normality of the kernel esti-
mator in uncontrolled frameworks. For the regression model, Schuster [20] establishes

the joint asymptotic normality of (f̂n(x1), . . . , f̂n(xq)), where x1, . . . , xq are q distinct
points. In a mixing framework, Robinson [18] gives a multivariate central limit theo-
rem. More recently, Roussas and Tran [19] give a central limit theorem for a recursive
version of the kernel estimator of the regression function of an α-mixing process. For
nonlinear autoregressive models, Duflo [5] obtains the same results.

Tests of linearity of such models have been developed by several authors in the
uncontrolled case. See Tong [24], Hjellvik and Tjøstheim [12], Tjøstheim [23], and
Poggi and Portier [15] for reviews. A recent paper of Poggi and Portier [16] applies
the ideas previously developed for time series to control system area in a nonadaptive
framework.

For a practical use of the test, the estimation of the p.d.f. of the unobservable noise
ξn is required. Up to now, the available results deal with the uncontrolled case. For a
regression model, Ahmad [1] proposes a kernel estimator of the p.d.f. of the residuals
of the model. A result of almost sure convergence and a central limit theorem in the
scalar case are established. For model (1.1) with Un ≡ 0, Senoussi [21] builds a kernel
estimator of the p.d.f. of ξn and proves the almost sure convergence on compact sets
of its estimator.

The paper is organized as follows. In section 2, we present the model and the
control law. Section 3 then develops two asymptotic results (the proofs are postponed
to the appendices). These results are then used in section 4 for testing the linearity
of the leading function f . Finally, section 5 contains some simulation experiments.
Our simulations carried out for a simple model indicate that our asymptotic results
give a good approximation for moderate sample sizes. This study by simulations
concerns mainly three topics: the illustration of the behavior of the adaptive control,
the estimation of the noise p.d.f., and the test for linearity of the function f .

2. Framework and assumptions. Let us now further describe the model as-
sumptions and the control law. We assume the following properties on function f ,
noise ξn, and the initial conditions of model (1.1).

Assumption [A1].
(i) Function f is Lipschitz with Lipschitz constant rf .
(ii) ξ = (ξn)n≥1 is a sequence of independent and identically distributed random

vectors with mean 0 and unknown invertible covariance matrix Γ.
(iii) ξn has a finite moment of order m > 2 and its distribution is absolutely

continuous with respect to the Lebesgue measure. Its unknown p.d.f. denoted
by p is supposed to be C1-class; p > 0 and p and its gradient are bounded.

(iv) X0 has a finite moment of order m.
In order to estimate unknown function f , we use a recursive version of the classical

kernel estimator of the regression function. Then, for x ∈ R
d, we estimate f(x) by

f̂n(x) =

∑n−1
i=0 iαdK (iα(Xi − x)) (Xi+1 − Ui)∑n−1

i=0 iαdK (iα(Xi − x))
,(2.1)

whereK is a kernel and α is a real number in ]0, 1/d[, called the bandwidth parameter.
We shall call a kernel a Lipschitz positive bounded function N : R

d → R+ satisfying∫
N(t) dt = 1 and

∫ ‖t‖N(t) dt <∞, where ‖. ‖ denotes the usual norm on R
d.

Let us give some heuristics about the control law proposed in [14] and that we
use in this paper to control model (1.1). Since the control law is designed in order to
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track a given reference trajectory denoted by (X∗
n)n≥1, an “ideal” candidate for the

control is

Un = −f(Xn) +X∗
n+1.(2.2)

Since f is unknown, f(Xn) can be replaced by its estimate f̂n(Xn), leading to the
self-tuning control, which is a second “ideal” candidate,

Un = −f̂n(Xn) +X∗
n+1.(2.3)

The nonparametric estimation of function f in controlled models of the form (1.1)
using a kernel method involves some kind of stability of the controlled process Xn.
The tracking control law (2.3) uses a local estimation feedback and that creates new
problems for the analysis of the closed-loop behavior. Portier and Oulidi [14] have
investigated this question and have proposed to introduce some a priori knowledge on
the function to be estimated. (This kind of approach has been first experimentally
used in [17].) More precisely, this a priori knowledge about function f is modelled by

a function f̃ , supposed to be known and which satisfies the following assumption.
Assumption [A2]. Function f̃ is continuous and

∃ af ∈
[
0, 1/2

[ ∃ Af ∈
]
0, ∞[ ∀ x ∈ R

d,
∥∥∥f(x)− f̃(x)

∥∥∥ ≤ af ‖x‖+Af .

Let (X∗
n)n≥1 be a given bounded deterministic tracking trajectory such that

X∗
n −→

n→∞ x∗ with ‖x∗‖ < ∞. The adaptive tracking control with a priori knowl-

edge is at time n defined by

Un = X∗
n+1 − f̂n(Xn)1En(Xn)− f̃(Xn)1En(Xn),(2.4)

where En denotes the complementary set of En. The set En, defined by

En = {x ∈ R
d; ‖f̂n(x)− f̃(x)‖ ≤ bf ‖x‖+Bf}(2.5)

with bf ∈ ]af , 1− af [ and Bf ∈ ]Af , ∞[, is introduced to ensure the closed-loop

stability of the system. Function f̃ allows us to compensate for the possible lack of
observations which disrupts the local estimator f̂n. Under this kind of hypothesis,
both stability and convergence results are obtained and the optimality of the tracking
is proved. To make the paper self-contained, let us recall some previous results of
[14], useful for what follows and summarized in the following theorem.

Theorem 2.1. Assume that [A1] and [A2] hold.
1. Then, for any initial law (the law of X0),

sup
k≤n
‖Xk‖ = o(n1/m) and sup

n
E [‖Xn‖m] <∞.

2. Let (vn)n≥1 be a sequence of positive real numbers increasing to infinity such
that vn = O (nν) with ν > 0. Then, for a compactly supported kernel K and for a
bandwidth parameter α ∈ ]0, 1/2d[, we have for any s ∈ ]1/2 + αd, 1[,

sup
‖x‖≤vn

‖f̂n(x)− f(x)‖ = o

(
ns−1

mn

)
+O

(
n−α

mn

)
almost surely (a.s.),(2.6)

where mn = inf{p(z); ‖z‖ ≤ vn +R} for some constant R <∞.
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In addition, if m−1
n = inf

(
o (nα) , O

(
n1−s

))
, then we have

n−1∑
k=0

‖πk‖2 = o(n) a.s.,(2.7)

Γ̂n =
1

n

n∑
k=1

(Xk −X∗
k) (Xk −X∗

k)
T a.s.−→

n→∞ Γ,(2.8)

where πk = f(Xk) + Uk −X∗
k+1 = (f − f̂k)(Xk)1Ek(Xk) + (f − f̃)(Xk)1Ek(Xk).

Result (2.7) is the key point used to establish convergence results of an estimator

of the p.d.f. p as well as a pointwise central limit theorem for f̂n. Let us also mention
that the results, obtained in the next sections, hold for any control law (Un)n≥0 for
which it is possible to prove that

n−1∑
k=0

∥∥f(Xk) + Uk −X∗
k+1

∥∥2
= o(n) a.s.(2.9)

For more clarity, let us introduce the following hypothesis coming from part 2 of
Theorem 2.1.

Assumption [A3]. There is a sequence of positive real numbers (vn)n≥1 increasing
to infinity such that vn = O (nν) with ν > 0 and

(inf{p(z); ‖z‖ ≤ vn +R})−1 = inf{o (nα) , O
(
n1−s

)}
with s ∈ ]1/2 + αd, 1[, α ∈ ]0, 1/2d[ and for some constant R <∞.

For example, when ξn is Gaussian (a widely used noise model), this assumption

is fulfilled with vn = C (log log n)
1/2

, where C is any positive finite constant. In
addition, taking α = 1/2(d+ 1), we obtain

sup
‖x‖≤C(loglog n)1/2

∥∥∥f̂n(x)− f(x)
∥∥∥ = O

(
n−λ

)
a.s.

for any λ ∈ ]0, 1/2(d+ 1)[.

3. Main results. The first result states both the almost sure and almost sure
uniform convergence of the kernel estimator of the noise p.d.f. p. Let us remark that
if the tracking objective is fulfilled, then (Xn − X∗

n) is close in distribution to ξn,
leading to a natural kernel estimator of the noise p.d.f. p denoted by p̂n and defined
for all e ∈ R

d by

p̂n(e) =
1

n

n∑
i=1

iβd G
(
iβ(Xi −X∗

i − e)
)
,(3.1)

where G is a kernel and β is a real number in ]0, 1/d[.
Theorem 3.1. Assume that [A1]–[A3] hold.

(1) Then, for any e ∈ R
d, p̂n(e)

a.s.−→
n→∞ p(e).

(2) Moreover, if G(x) = O(‖x‖−δ
) with δ > mβ d

βm+1 , then

sup
e∈Rd

|p̂n(e)− p(e)| a.s.−→
n→∞ 0.
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Proof. The proof is straightforward using Corollary A.2 (see Appendix A) with
ϕ = G, λ = βd, and γ = β.

Remark. For the ARX model of the form

Xn+1 = θT Ψn + Un + εn+1

with Ψn = (Xn, . . . , Xn−p+1)
T
and Un = −θ̂Tn Ψn+X∗

n+1, where θ̂n is either the least
or the weighted least square estimator of θ, Bercu [2] (see also Guo [9]) shows that

(2.7) is fulfilled with πk = (θ − θ̂k)
TΨk. Therefore, in this context, the previously

defined p̂n is also a kernel estimator of the p.d.f. of εn and the results of Theorem 3.1
hold.

We present in the next theorem a pointwise central limit theorem and a result of
joint asymptotic normality for two slightly different estimators of function f whose
status will appear more clearly after the theorem. The first estimator is given by (2.1)

where K is a compactly supported kernel and the second one, denoted by F̂n, is given
by

F̂n(x) =

∑n−1
i=0 iβdG

(
iβ(Xi − x)

)
(Xi+1 − Ui)∑n−1

i=0 iβdG (iβ(Xi − x))
,(3.2)

where G is a kernel and β is a real number in ]0, 1/d[.
Theorem 3.2. Assume that [A1]–[A3] hold, that function f is C2-class with

bounded derivatives of order 2 and that kernels K and G satisfy
∫ ‖t‖2 N(t) dt < ∞

and for j = 1, . . . , d,
∫
tj N(t) dt = 0, where tj is the jth component of t and where

N stands for K and for G.
1) For α ∈ ]1/(d+ 4), 1/2d[ and x ∈ R

d,

ZK,α
n (x) = n(1−αd)/2(f̂n(x)− f(x))

L−→
n→∞ N

(
0,

‖K‖22
(1 + αd)p(x− x∗)

Γ

)
= ZK,α(x).

2) For β ∈ ]1/(d+ 4), 1/d[ and x ∈ R
d,

ZG,β
n (x) = n(1−βd)/2(F̂n(x)− f(x))

L−→
n→∞ N

(
0,

‖G‖22
(1 + β d)p(x− x∗)

Γ

)
= ZG,β(x).

3) Besides, for x1, . . . , xq, q distinct points of R
d,

(Zn(x1), . . . , Zn(xq))
L−→

n→∞ (Z(x1), . . . , Z(xq)),

where Z(x1), . . . , Z(xq) are independent and where Zn (respectively, Z) stands for
ZK,α
n or ZG,β

n (respectively, ZK,α or ZG,β), with the associated constraints on α and
β.

Proof. The proof is given in Appendix B.
Remark 3.3. In part 1 of Theorem 3.2, the range of admissible values for α comes

from two sources. First, α ∈ ]0, 1/2d[ coming from Theorem 2.1 and ensuring that

the key property
∑n−1

k=0 ‖πk‖2 = o(n) holds; second, α ∈ ]1/(d+ 4), 1/d[ coming
from the proof of the central limit theorem (see Appendix B). So, these conditions
on α imply that d ≤ 3. To obtain a central limit theorem for an estimator of f when
d ≥ 4, we consider two different estimators of f . The first one is f̂n, designed with
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respect to the control objective and defined using the compactly supported kernel K
and the bandwidth parameter α within ]0, 1/2d[. The second one is F̂n, designed for
statistical purposes. It is defined using the kernel G and the bandwidth parameter
β within ]1/(d+ 4), 1/d[. The parameters α and β have only to match their own
constraints, leading to a general central limit theorem with respect to the state-space
dimension (part 2 of Theorem 3.2).

4. Application to testing for linearity. In this section, we are concerned with
a test for linearity of function f . Let us consider within model (1.1) the following
hypotheses.

H0 : � f is linear of the form f(x) = AT
� x+B� �.

H1 : � f is nonlinear�.

The idea of the test statistic introduced by Poggi and Portier [15] in a slightly
different framework is to compare two distinct estimators of function f . The first one
is well suited under H1 and the second one is convenient for the linear case. More
precisely, this statistic of nonlinearity captures the quadratic deviations between the
nonparametric estimator f̂n(x) and the least squares estimator (ÂT

n x + B̂n) over q
points, weighted by the estimated density at these points. The least squares estimators
(LSE) Ân and B̂n are defined by

Ân = S−1
n−1

n−1∑
k=0

Xk Y
T
k −

1

n

(
n−1∑
k=0

Xk

)(
n−1∑
k=0

Yk

)T
 ,(4.1)

Sn−1 =

n−1∑
k=0

Xk X
T
k −

1

n

(
n−1∑
k=0

Xk

)(
n−1∑
k=0

Xk

)T

+ λ Id,(4.2)

B̂n =
1

n

n−1∑
k=0

(
Yk − ÂT

n Xk

)
,(4.3)

where Yk = Xk+1 − Uk, the real number λ is > 0, and Id denotes the identity matrix
of order d. The additional term λ Id, which plays no role in the asymptotics, ensures
that matrix Sn is always invertible.

We introduce the test statistic Tq(n) defined by

Tq(n) =
(1 + αd)n1−αd

‖K‖22

q∑
j=1

p̂n(xj − x∗)
∥∥∥f̂n(xj)− ÂT

n xj − B̂n

∥∥∥2

Γ̂−1
n

,(4.4)

where x1, . . . , xq are q distinct points of R
d, p̂n and Γ̂n are the estimators of p and Γ,

respectively, and ‖y‖2Γ̂−1
n

= yT (Γ̂n)
−1 y for y ∈ R

d.

For more clarity, we have used the nonparametric estimator f̂n in the construction
of the test statistic Tq(n). This choice leads to the constraint d ≤ 3 (see Remark 3.3).
However, the results on the test statistic (see Theorem 4.2) also hold true when we use

F̂n(x) instead of f̂n(x), replacing K by G and α by β, with the associated constraints.

First let us state some convergence results for Ân and B̂n.
Theorem 4.1. Assume that [A1]–[A3] hold and assume that m > 4.
(1) Then,

Ân
a.s.−→

n→∞ A = Γ−1
E
(
ξ1 f(ξ1 + x∗)T

)
,

B̂n
a.s.−→

n→∞ B = E (f(ξ1 + x∗))−AT x∗.
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(2) Under H0, A = A�, B = B�, and we have∥∥∥Ân −A
∥∥∥ = O

(
log log n

n

)1/2

a.s.,

∥∥∥B̂n −B
∥∥∥ = O

(
log log n

n

)1/2

a.s.

Part 1 of Theorem 4.1 shows that the LSE always converge to finite limits even
if the true model is nonlinear. Part 2 indicates that, when the true model is linear,
despite the fact that the control law uses a nonparametric estimator, the convergence
rates of the LSE are the same as those obtained with the standard linear state feedback
control law with appropriate excitation (see Bercu [2] and Guo [9]).

Proof. (1) Using (1.1), let us rewrite (4.1) and (4.3) under the form

1

n
Sn−1Ân =

1

n

n−1∑
k=0

Xk f(Xk)
T +

1

n

n−1∑
k=0

Xk ξ
T
k+1(4.5)

−
(
1

n

n−1∑
k=0

Xk

)(
1

n

n−1∑
k=0

f(Xk) +
1

n

n−1∑
k=0

ξk+1

)T

,

B̂n =
1

n

n−1∑
k=0

f(Xk) +
1

n

n−1∑
k=0

ξk+1 − 1

n

n−1∑
k=0

ÂT
n Xk.(4.6)

First, let us study the convergence of Sn. Let u ∈ R
d. Lemma A.3 gives

1

n

n−1∑
k=0

uTXk
a.s.−→

n→∞ uTE (ξ1 + x∗) = uTx∗,(4.7)

and

1

n

n−1∑
k=0

uTXk X
T
k u

a.s.−→
n→∞ uT

(
Γ + x∗(x∗)T

)
u.(4.8)

Therefore, combining these two results, we derive that

1

n
uTSn−1 u

a.s.−→
n→∞ uTΓu.(4.9)

This result holds for any u ∈ R
d. So we have, for any initial law,

1

n
Sn−1

a.s.−→
n→∞ Γ,(4.10)

and since Γ is supposed to be invertible,

lim
n→∞

λmin(Sn−1)

n
= λmin(Γ) > 0 a.s.,(4.11)

where λmin(M) denotes the minimum eigenvalue of the matrix M .
Since m > 2, we have∥∥∥∥∥ 1n

n−1∑
k=0

ξk+1

∥∥∥∥∥ = O

(
loglog n

n

)1/2

a.s.(4.12)
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Since supn E [‖Xn‖m] <∞ (part 1 of Theorem 2.1), for any n ≥ 1,
∑n−1

k=0 Xk ξ
T
k+1

is a square integrable martingale. In addition, since 1
n

∑n−1
k=0 XkX

T
k

a.s.−→
n→∞ Γ+x∗(x∗)T

and
∑∞

n=1(
‖Xn‖√

n
)γ <∞ for γ ∈]2, m], we obtain using a law of the iterated logarithm

for the martingales (cf. Bercu [2] adapting an original result of Stout [22]; see also
Touati [25]), that ∥∥∥∥∥

n−1∑
k=0

Xk ξ
T
k+1

∥∥∥∥∥ = O (n loglog n)
1/2

a.s.(4.13)

Let u ∈ R
d and v ∈ R

d. Using once again Lemma A.3, we deduce that

1

n

n−1∑
k=0

uTXk f(Xk)
T v

a.s.−→
n→∞ uTE

(
(ξ1 + x∗) f(ξ1 + x∗)T

)
v,(4.14)

1

n

n−1∑
k=0

uT f(Xk)
a.s.−→

n→∞ uTE (f(ξ1 + x∗)) .(4.15)

These results hold for all u ∈ R
d and v ∈ R

d. Hence, combining (4.10) and (4.12) to

(4.15), we prove that Ân
a.s.−→

n→∞ A, and, therefore, B̂n
a.s.−→

n→∞ B.

(2) Under H0, we have, for any x ∈ R
d, f(x) = AT x + B, and thus, rewriting

(4.5) and (4.6), we derive that

‖Ân −A‖ = O

((
λmin(Sn−1)

n

)−1
(
λ

n
‖A‖+

∥∥∥∥∥ 1n
n−1∑
k=0

Xk ξ
T
k+1

∥∥∥∥∥(4.16)

+

∥∥∥∥∥ 1n
n−1∑
k=0

Xk

∥∥∥∥∥
∥∥∥∥∥ 1n

n−1∑
k=0

ξk+1

∥∥∥∥∥
))

,

‖B̂n −B‖ = O

(∥∥∥∥∥ 1n
n−1∑
k=0

ξk+1

∥∥∥∥∥+ ‖Ân −A‖
∥∥∥∥∥ 1n

n−1∑
k=0

Xk

∥∥∥∥∥
)

.(4.17)

Then, part 2 of Theorem 4.1 is easily obtained using (4.7) and (4.11)–(4.13).
Now, collecting results of Theorems 3.1, 3.2, and 4.1, we derive the following

theorem leading to an asymptotic test for linearity of f .
Theorem 4.2. Assume that hypotheses of Theorem 3.2 are fulfilled and that

m > 4. Then, for α ∈ ]1/(d+ 4), 1/2d[ and for q distinct points x1, x2, . . . , xq of R
d,

we have the following.

(1) Under H0, Tq(n)
L−→

n→∞ χ2(dq).

(2) Under H1 and if there is x ∈ {x1, x2, . . . , xq
}

such that f(x) �= ATx+B, then

lim inf
n→∞ n−1+αd Tq(n) > 0, a.s.

Proof. For any x ∈ R
d, we have the following decomposition:

f̂n(x)− ÂT
nx− B̂n = (f̂n(x)− f(x)) +

(
f(x)−AT x−B

)
(4.18)

−(Ân −A)Tx− (B̂n −B).
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From Theorem 3.1, part 2 of Theorem 3.2, and the consistency of Γ̂n, we show that

n(1−αd)/2
√
1 + αd

‖K‖2

(√
p̂n(xj − x∗) Γ̂−1/2

n (f̂n(xj)− f(xj))

)
1≤j≤q

L−→
n→∞ N (0, Idq) .

Under H0, ‖Ân −A‖ + ‖B̂n −B‖ a.s.
= O( log log n

n )1/2 (see Theorem 4.1). Thus, it

turns out that these linear terms are not contributing to the asymptotics. Therefore,
we derive that under H0,

n(1−αd)/2
√
1 + αd

‖K‖2

(√
p̂n(xj − x∗) Γ̂−1/2

n (f̂n(xj)− ÂT
n xj − B̂n)

)
1≤j≤q

L−→
n→∞ N (0, Idq) ,

and then taking the square norm of this vector, we obtain the χ2(dq) limiting distri-
bution.

In addition, using the results of pointwise almost sure convergence of p̂n and f̂n,
the consistency of the LSE Ân and B̂n, and the almost sure limit of Γ̂n, we easily
derive that

nαd−1 ‖K‖22
1 + αd

Tq(n)
a.s.−→

n→∞

q∑
j=1

p(xj − x∗)
∥∥f(xj)−AT xj −B

∥∥2

Γ−1 ,

and under H1, the limit is strictly positive if there is x ∈ {x1, · · · , xq
}
such that

f(x) �= AT x+B, which closes the proof of part 2.

If F̂n(x) is used in the definition of the test statistic Tq(n) instead of f̂n(x), we
proceed similarly using Theorem 3.2 and Remark B.1 of AppendixB to justify the
different needed convergences of F̂n(x).

These asymptotic results make it possible to construct a test of linearity for
function f . Part 1 of Theorem 4.2 gives the null distribution, and part 2 guarantees
that the asymptotic power of the test is equal to 1 since the test statistic explodes
a.s.

5. Simulation study. Since only asymptotic results are available, this section
is devoted to the following three main topics: the illustration of the behavior of the
adaptive tracking control, the estimation of the noise p.d.f. and the results of the test
of linearity for moderate sample size realizations.

In addition, since the control strategy can be used to focus around a special state-
space location or, equivalently, to explore different operating points of the process, we
deeply examine the real-valued simulated nonlinear unstable open-loop model defined
by

Xn+1 =
(
1.4 + 0.5 sin(Xn/3) exp

(−(Xn − 118)2/50
))

Xn + Un + ξn+1,

where ξn ∼ N (0, (1.2)2), X0 = 5, and U0 = 0.
Let us denote by f the function defined by

f(x) =
(
1.4 + 0.5 sin(x/3) exp

(−(x− 118)2/50
))

x.

The graph of f is given by the dotted line on Figure 5.3. This function is linear for
large x and highly nonlinear for small x, and hence fits the theory maximally well. It
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also shows how the test for linearity can work in spite of “almost linearity” or “almost
nonlinearity.”

For the estimation of f , we take the bandwidth parameter α = 1/2 and we use
the Gaussian kernel with the usual normalization σK equal to the empirical standard
deviation based on the last observations Xn−51, . . . , Xn. The tracking trajectory is
defined as follows:

X∗
n = x∗ − (x∗ −X∗

0 ) exp(−τ n) with τ = −(1/100) ∗ log(0.05).
This kind of tracking trajectory is usual and is such that the deviation between X∗

n

and x∗ is of 5% when n = 100. We choose the control law

Un = −f̂n(Xn)1En(Xn)− f̃(Xn)1En(Xn) +X∗
n+1,

where f̃(x) = x and En = {x ∈ R
d; ‖f̂n(x)− f̃(x)‖ ≤ 0.4‖x‖+ 300}.

The first topic is the behavior of the adaptive control law as well as the closed-loop
tracking performance.

5.1. Study of the adaptive control law. We study two typical situations
depending on the value of x∗. With the first value of x∗ = 113 (see Figures 5.1 to
5.4), the controlled process mainly explores the nonlinear part of the function f . On
the other hand, with the second one, x∗ = 170 (see Figures 5.5 to 5.8), the linear part
of function f captures the data essentially.

Let us examine the “nonlinear” situation. In Figure 5.1, we can see the controlled
process Xn superimposed with the tracking trajectory. We distinguish two periods:
the transient part on the time interval [0, 200] and the near stationary part after time
200. The transient part can be divided again in two distinct periods: the starting
period on the time interval [0, 100] and the overshoot period [100, 200]. During the
starting period the closed-loop system is close to an unstable AR(1) process with
coefficient 1.4. Since X∗

n goes sufficiently slowly towards its limit, the value of Xn+1

is always in a small neighborhood of the last state-space locations leading to a local
nonparametric estimator of good quality. On the other hand, during the overshoot
period, the open-loop system is highly unstable andXn+1 is often far from the previous
observations of the process, and therefore the local nonparametric estimator explores
the nonlinear domain of the function f with only a few observations leading to a
crude estimation. Nevertheless, the number of observations around x∗ increases, and,
therefore, the estimation of the function f becomes better and better and Un matches
the control objective.

In Figure 5.2, we see that the control effort is moderate on the time interval
[0, 100] since the open-loop system is close to a linear system that is easy to be
controlled. The control effort is very high afterward, since the open-loop system is
locally highly unstable leading to the control burden (large slope). Nevertheless, this
behavior is expected.

On Figures 5.3 and 5.4, one can appreciate the quality of the functional estimation
of f explaining the good quality of the tracking performance after the learning period
ending at time 200. The lack of proper fit in Figure 5.3 is a consequence of “lack of
excitation” which is well known in a control context when tracking is the goal (see [3]).

Let us now examine the same plots but for x∗ = 170. In contrast to the previous
situation, the control effort is more regular since the local slope of function f is always
the same, except for the nonlinear part corresponding to the process values within
the time interval [100, 130]. As can be seen in Figure 5.5 and 5.6, both overshoots
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Fig. 5.1. The process Xn super-
imposed with the tracking trajectory for
x∗ = 113.

Fig. 5.2. The corresponding adap-
tive control Un.
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Fig. 5.3. The true function (dash-
ed line) superimposed with its nonpara-
metric estimator. x∗ = 113.

Fig. 5.4. Zoom in Figure 5.3
showing the nonlinear part around the
working point x∗ = 113.

for Xn and large values for Un occur only when the data lie in this nonlinear part of
function f . As in the above case, the nonparametric estimator behaves well.

A natural measure of the tracking performance is given by Γ̂n. The result of
Portier and Oulidi [14, Theorem 4.2], states that asymptotically, Γ̂n is equal to the

noise variance Γ. Let us evaluate the quantity (1/750)
∑1000

k=251(Xk−X∗
k)

2, which gives
a good idea of Γ. For x∗ = 113 and x∗ = 170, we find 1.45 and 1.51, respectively, to
be compared to the noise variance equal to 1.44.

Another way to illustrate the satisfactory behavior of the functional estimate of
function f is to examine the estimation of the noise p.d.f. One can find in Figures 5.9
and 5.10 the estimates of p(x−x∗) for x∗ = 113 and x∗ = 170, respectively, to compare
with the p.d.f. of N (x∗, (1.2)2). In both cases, these estimations are of good quality.

5.2. Test results for simulated data. The test defined in the previous section
is global since H0 assumes the function to be globally linear. Nevertheless, since n is
finite and small, the noise ξn can be considered as bounded, and since the tracking
objective is to put the process Xn near x∗, we can consider that we test the local
linearity of the function f only on a neighborhood of x∗ which contains almost all
the values of the controlled process Xn. Then, we investigate various values of x

∗ in
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Fig. 5.5. The process Xn super-
imposed with the tracking trajectory for
x∗ = 170.

Fig. 5.6. The corresponding adap-
tive control Un.
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Fig. 5.7. The true function (dash-
ed line) superimposed with its nonpara-
metric estimator. x∗ = 170.

Fig. 5.8. Zoom in Figure 5.7
showing the nonlinear part around the
working point x∗ = 170.
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Fig. 5.9. The true Gaussian den-
sity (dashed line) superimposed with its
nonparametric estimator (dotted line).
x∗ = 113.

Fig. 5.10. The true Gaussian den-
sity (dashed line) superimposed with its
nonparametric estimator (dotted line).
x∗ = 170.

order to illustrate the behavior of the test both under H0 and under H1. For x
∗ = 70

and x∗ = 170, the actual system is close to a linear one, and for x∗ ∈ [100, 130], the
actual system is nonlinear. One can find the selected working points in Figure 5.11.
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Table 5.1
Test results under H0. Level 5%. Percentage of rejections.

Working point n 200 500 1000

x∗ = 70 Reject (%) 2% 3.5% 3%
tlearn = 200 K.S 0.083 0.083 0.056

x∗ = 170 Reject (%) 2% 4% 4%
tlearn = 200 K.S 0.087 0.086 0.088
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Fig. 5.11. Function f around
its nonlinear part and some working
points of interest marked by a circle.

Fig. 5.12. On the left, densities
of
∑10

i=1 Z
2
f (xi) and χ

2(10), and on the

right, density of T10(500).

For each model, m = 200 independent realizations of length n = 200, 500, and
1000 are generated. We are interested in the empirical level under H0 and the empirical
power under H1 as well as in the closeness between the simulated distribution of the
test statistic and the corresponding theoretical distribution. We use the design points
selection rule proposed in [15]. We take q = 7, 10, and 14 for n = 200, 500, and 1000,
respectively.

Let us first examine the “linear” case. One can find in Table 5.1 the results
obtained for x∗ = 70 and x∗ = 170. The closeness between the simulated distribution
of the test statistic and the theoretical distribution is given by the Kolmogorow–
Smirnoff (K.S.) statistic and is underlined if the test is rejected at the 5% level (the
critical value is equal to 0.096). Only the data Xn obtained after time n > tlearn
are used for the test. The time tlearn corresponds to the end of the learning period
needed to stabilize both Xn and f̂n.

The empirical levels are close to the 5% theoretical level, and the simulated dis-
tribution of Tq(n) is close to the χ2(q) distribution even for moderate sample sizes.

Let us now examine the “nonlinear” case. Two problems are considered: the
empirical power and the convergence in distribution under the alternative hypothesis.

In order to examine the last point, it is useful to check empirical power validity
by measuring the closeness between the simulated distribution of

∑q
i=1 Z2

f (xi) (since

function f is known in the simulation case), and the χ2(q) distribution, according to

the following convergence result:
∑q

i=1 Z2
f (xi)

L−→
n→∞ χ2(q), where

Zf (x) =

√
n1−α(1 + α)

‖K‖22 Γ̂n

√
p̂n(x− x∗)

(
f̂n(x)− f(x)

)
.(5.1)
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Table 5.2
Test results under H1. tlearn = 200. Percentage of correct decisions.

Working point n 200 500 1000

x∗ = 104 Reject (%) 19.5% 55% 92%
K.S 0.052 0.049 0.034

x∗ = 107 Reject (%) 63% 95% 100%
K.S 0.095 0.087 0.076

x∗ = 110 Reject (%) 100% 100% 100%
K.S 0.42 0.316 0.163

x∗ = 113 Reject (%) 100% 100% 100%
K.S 0.037 0.095 0.101

x∗ = 118 Reject (%) 100% 100% 100%
K.S 0.141 0.1621 0.305

x∗ = 122 Reject (%) 100% 100% 100%
K.S 0.107 0.063 0.104

Table 5.3
Test results under H1. tlearn = 500. Percentage of correct decisions.

Working point n 200 500 1000

x∗ = 110 Reject (%) 99.5% 99% 99%
K.S 0.082 0.033 0.090

x∗ = 118 Reject (%) 100% 100% 100%
K.S 0.034 0.033 0.092

The closeness between the two distributions is quantified by the classical K.S. statistic
underlined in Table 5.2 if rejected at the 5% level.

For x∗ = 104 and n = 500, these two densities (both centered at 10), and the
density distribution of the test statistic T10(500) are shown in Figure 5.12, illustrating
both reasonable convergence and the power of the test in this special case.

For various working points (see Figure 5.11), one can find in Table 5.2 the percent-
ages of correct decisions obtained using a short learning period defined by tlearn = 200.
The convergence results are quite satisfactory for x∗ = 104, 107, 113, and 122 (see
the K.S. statistic which is less than or near to the critical value) but remain unstable
due to this too short learning period. For x∗ = 104 and x∗ = 107, the percentage of
correct decisions is small for short sample sizes since the nonlinearity of function f is
hard to detect. Nevertheless, this percentage increases with n and is close to 100%
when n = 1000. So the test behaves well.

For the other working points x∗ = 110 and 118, the learning period is too short in
order to consider that the stationarity of the closed-loop model is sufficiently accurate.
In Table 5.3, for a larger learning period of length tlearn = 500, the K.S. statistics
become correct and the percentages of rejections are about 100%.

Appendix A. We give in this first appendix two useful results and their proofs.
In what follows, the notation cte denotes any positive constant and F = (Fn)n≥1

with Fn = σ (X0, U0, ξ1, . . . , ξn).
Lemma A.1. Assume that assumptions [A1]–[A3] hold. Let ϕ : R

d → R be a
positive, Lipschitz, bounded function satisfying

∫
ϕ(t) dt <∞,

∫ ‖t‖ϕ(t) dt <∞, and
let γ and λ be two positive real numbers such that γ ∈ ]0, 1/d[ and λ ≥ γd.

Let us denote Ln(x) =
∑n

i=1 iλ ϕ (iγ(Xi − x)), λ′ = λ−γd+1, and ϕ =
∫
ϕ(t) dt.

(1) Then, for any x ∈ R
d, λ′ n−λ′

Ln(x)
a.s.−→

n→∞ ϕp(x− x∗).
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(2) In addition, if ϕ(x) = O(‖x−δ‖) with δ > mγ d
γ m+1 , then

sup
x∈Rd

∣∣∣λ′ n−λ′
Ln(x)− ϕ p(x− x∗)

∣∣∣ a.s.−→
n→∞ 0.

Proof. Let us rewrite

Ln(x)− nλ′ ϕ

λ′ p(x− x∗) = ML
n (x) + (Lc

n(x)− Jn(x)) +Rn(x),(A.1)

where

ML
n (x) = Ln(x)− Lc

n(x),(A.2)

Lc
n(x) =

n∑
i=1

iλ E [ϕ (iγ(Xi − x)) /Fi−1](A.3)

=

n∑
i=1

∫
iλ−γd ϕ(t) p

(
i−γt− πi−1 + x−X∗

i

)
dt,

Jn(x) = ϕ

n∑
i=1

iλ−γd p (x− πi−1 −X∗
i ) ,(A.4)

Rn(x) = Jn(x)− nλ′ ϕ

λ′ p(x− x∗).(A.5)

Since λ′ n−λ′ ∑n
i=1 iλ−γd −→

n→∞ 1, ϕ < ∞,
∫ ‖t‖ϕ(t) dt < ∞, and ‖Dp‖∞ < ∞,

where Dp denotes the gradient of p,

|Rn(x)| ≤ ϕ ‖Dp‖∞
n−1∑
i=0

iλ−γd (‖πi‖+ ‖X∗
i − x∗‖)(A.6)

∣∣∣Lc
n(x)− Jn(x)

∣∣∣ ≤ ‖Dp‖∞
(∫
‖t‖ϕ(t) dt

) n∑
i=1

iλ−γ−γd.(A.7)

Therefore, since X∗
n −→

n→∞ x∗,
∑n−1

k=0 ‖πk‖2 a.s.
= o(n), and γ > 0, we derive that

sup
x∈Rd

∣∣∣λ′n−λ′
Lc
n(x)− ϕ p(x− x∗)

∣∣∣ a.s.−→
n→∞ 0.(A.8)

Now, let us study ML
n (x). For any x ∈ R

d and any n ≥ 1, ML
n (x) is a square

integrable martingale adapted to F for which we have, if we set ML
0 (x) = 0 and

∆i(x) = ML
i (x)−ML

i−1(x),

〈ML(x)〉n =

n∑
i=1

E
[
∆i(x)

2/Fi−1

]
(A.9)

≤ ‖p‖∞
(∫

ϕ2(t) dt

) n∑
i=1

i2λ−γd = O
(
n1+2λ−γd

)
.

Then, from a strong law of large numbers for the martingales (for example, Duflo [5,
Theorem 1.3.17, p. 21]), we obtain that for any x ∈ R

d,

n−λ′
ML

n (x)
a.s.−→

n→∞ 0.(A.10)

Combining (A.8) and (A.10) gives part 1 of Lemma A.1.
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To prove part 2, let us first establish the uniform almost sure convergence over
dilating sets of ML

n (x). From (A.9), we have

〈M(0)〉n ≤ cte n1+2λ−γd,(A.11)

and since ϕ is supposed to be bounded,

|∆n(0)| ≤ cte nλ.(A.12)

In addition, since ϕ is supposed to be Lipschitz, we have for any x, y ∈ R
d and for

any η ∈ ]0, 1[,

|∆n(x)−∆n(y)| ≤ cte nλ(1−η/2) |∆n(x)−∆n(y)|η/2(A.13)

≤ cte ‖x− y‖η/2 nλ+γη/2,

〈ML(x)−ML(y)〉n ≤
n∑

i=1

i2λ E

[
(ϕ (iγ(Xi − x))− ϕ (iγ(Xi − y)))

2
/Fi−1

]
≤ ‖p‖∞

n∑
i=1

i2λ−γd

∫
(ϕ(t)− ϕ(t+ iγ(x− y)))

(2−η)+η
dt(A.14)

≤ cte ‖x− y‖η n1+2λ−γd+γη.

Then, with (A.11)–(A.14), the assumptions of Theorem6.4.34 of Duflo [5] are fulfilled,
and we derive that for any A <∞, ν > 0, and t > λ− γd

2 + 1
2 ,

sup
‖ x ‖≤Anν

∣∣ML
n (x)

∣∣ = o(nt), a.s.,(A.15)

and, in particular, since γ ∈ ]0, 1/d[, we can choose t = λ′. Then, combining (A.8)
and (A.15), we obtain that for any A <∞ and ν > 0

sup
‖ x ‖≤Anν

∣∣∣λ′ n−λ′
Ln(x)− ϕ p(x− x∗)

∣∣∣ a.s.−→
n→∞ 0.(A.16)

Besides, since ϕ(t) = O(‖t‖−δ
), then Ln(x)

a.s.
= O(

∑n
i=1 i

λ−γδ ‖Xi − x‖−δ
).

Since supk≤n ‖Xk‖ = o
(
n1/m

)
a.s., there is an integer n∗ such that for n ≥ n∗, we

have ‖Xn‖ < n1/m. Hence, for x such that ‖x‖ > 2n1/m, we have ‖Xn − x‖ > n1/m

and

sup
‖x‖>2n1/m

n−λ′
Ln(x) = O(nγd−γδ−δ/m) a.s.(A.17)

In addition, since p > 0 and m > 2, there is τ > 0 such that p(x) = o(‖x‖−τ
) and

sup
‖x‖>2n1/m

p(x− x∗) = o(n−τ/m),(A.18)

and therefore, since τ > 0 and δ > mγd
γm+1 , we derive from (A.17) and (A.18) that

sup
‖x‖>2n1/m

∣∣∣λ′ n−λ′
Ln(x)− ϕ p(x− x∗)

∣∣∣ a.s.−→
n→∞ 0,(A.19)
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and we close the proof of Lemma A.1 combining (A.19) and (A.16) with A = 2 and
ν = 1/m.

Corollary A.2. If we set Ln(x) =
∑n

i=1 iλ ϕ (iγ(Xi −X∗
i − x)) , then we ob-

tain the results of Lemma A.1 with p(x) instead of p(x− x∗).
Now we give a result of a strong law of large numbers for the process (Xn)n≥1.
Lemma A.3. Assume that [A1]–[A3] hold and that m > 4. Let g : R

d → R be a
function such that

|g(x)− g(y)| ≤ cte ‖x− y‖ (1 + ‖x‖+ ‖y‖) .(A.20)

Then, 1
n

∑n
k=1 g(Xk)

a.s.−→
n→∞ E (g(ξ1 + x∗)).

Proof. Let us rewrite
∑n

k=1 g(Xk) = Mn +
∑n

k=1 E [g(Xk) /Fk−1], where

Mn =

n∑
k=1

(g(Xk)− E [g(Xk) /Fk−1]) .

Since

E [g(Xk) /Fk−1]− E (g(ξ1 + x∗)) =
∫

(g (u+ πk−1 +X∗
k)− g(u+ x∗)) p(u) du,

|g (u+ πk−1 +X∗
k)− g(u+ x∗)|

≤ cte ‖πk−1 + (X∗
k − x∗)‖ (1 + ‖u‖+ ‖πk−1‖+ ‖X∗

k − x∗‖) ,
and

∫ ‖u‖ p(u) du <∞, we derive that∣∣∣∣∣ 1n
n∑

k=1

E [g(Xk) /Fk−1]− E (g(ξ1 + x∗))

∣∣∣∣∣ = O

(
1

n

n∑
k=1

(
‖πk−1‖2 + ‖X∗

k − x∗‖2
))

.

Therefore, since X∗
n −→

n→∞ x∗ and
∑n

k=1 ‖πk−1‖2 = o(n), a.s., then

1

n

n∑
k=1

E [g(Xk) /Fk−1]
a.s.−→

n→∞ E (g(ξ1 + x∗)) .(A.21)

In addition, since supn E [‖Xn‖m] < ∞ with m > 4, for any n ≥ 1, Mn is a square
integrable martingale adapted to F for which we have, if we set M0 = 0,

〈M〉n =

n∑
k=1

E

[
(Mk −Mk−1)

2
/Fk−1

]
≤

n∑
k=1

E
[
g2(Xk)/Fk−1

]
.(A.22)

= O

(
n∑

k=1

E

[(
1 + ‖Xk‖4

)
/Fk−1

])
.

Besides, since ‖Xk‖4 = O(1 + ‖πk−1‖4 + ‖ξk‖4) and E(‖ξ1‖4) <∞, we obtain that

〈M〉n = O

(
n∑

k=1

(1 + ‖πk−1‖4)
)

= o(n1+2/m) a.s.(A.23)

Finally, since m > 2, we deduce from a strong law of large numbers for martingales
that n−1 Mn

a.s.−→
n→∞ 0. Lemma A.3 is established by combining this last result with

(A.21).
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Appendix B. This appendix is concerned with the proof of Theorem 3.2. With-
out any restriction, we focus our attention on F̂n, since the proofs of the results
concerning F̂n and f̂n are the same. Indeed, in both cases, as mentioned in Remark
3.3, f̂n is used for the control law to ensure that the key property

∑n−1
k=0 ‖πk‖2 = o(n)

holds.
For x ∈ R

d, we can write

n(1−βd)/2
(
F̂n(x)− f(x)

)
=

n

Hn−1(x)

(
n−(1+βd)/2(Rn−1(x) +Mn(x))

)
,(B.1)

where

Hn−1(x) =

n−1∑
i=0

iβdG
(
iβ(Xi − x)

)
,(B.2)

Rn−1(x) =

n−1∑
i=0

iβdG
(
iβ(Xi − x)

)
(f(Xi)− f(x)) ,(B.3)

Mn(x) =

n−1∑
i=0

iβdG
(
iβ(Xi − x)

)
ξi+1.(B.4)

Let us study the convergence of the three terms n−1Hn−1(x), n−(1+βd)/2Rn−1(x),
and n−(1+βd)/2Mn(x), respectively.

Applying Lemma A.1 with ϕ = G, λ = βd, and γ = β gives for β ∈ ]0, 1/d[
1

n
Hn−1(x)

a.s.−→
n→∞ p(x− x∗).(B.5)

For x ∈ R
d, Mn(x) is a square integrable martingale adapted to F for which we

have

〈M(x)〉n =

n∑
i=1

E

[
(Mi(x)−Mi−1(x)) (Mi(x)−Mi−1(x))

T
/Fi−1

]
(B.6)

=

(
n−1∑
i=0

i2βd G2
(
iβ(Xi − x)

))
Γ.

Since G is Lipschitz and bounded, G2 is also Lipschitz and bounded. Then, by Lemma
A.1 used with ϕ = G2, λ = 2βd, and γ = β,

n−(1+βd)〈M(x)〉n a.s.−→
n→∞

‖G‖22
1 + βd

p(x− x∗) Γ.(B.7)

Now to apply the central limit theorem for the martingales to n−(1+βd)/2Mn(x) (see,
for example, Duflo [5, Theorem 2.1.9, p. 46]), Lindeberg’s condition remains to be

proved. Let us denote τi = iβdG(iβ (Xi − x))ξi+1 and Φ(c) = E[‖ξ1‖2 1{‖ ξ1 ‖≥ c}].
For ε > 0, we have

ρn(ε) = n−(1+βd)
n−1∑
i=0

E

[
‖τi‖2 1{‖τi‖≥n(1+βd)/2ε}/Fi

]
(B.8)

≤ n−(1+βd) Φ

(
n(1−βd)/2ε

‖G‖∞

) n−1∑
i=0

i2βdG2
(
iβ(Xi − x)

)
.
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Besides, for i ≥ 1,

E
[
i2βdG2

(
iβ(Xi − x)

)
/Fi−1

] ≤ iβd ‖p‖∞ ‖G‖22 ,(B.9)

and thus,

E (ρn(ε)) ≤ cte

(
n−(1+βd)

n−1∑
i=0

iβd

)
Φ

(
n(1−βd)/2ε

‖G‖∞

)
.(B.10)

Since n−(1+βd)
∑n−1

i=0 iβd has a finite limit and since limc→∞Φ(c) = 0 (since ξ has a
finite moment of order m > 2), we derive that for β ∈ ]0, 1/d[,

∀ε > 0, ρn(ε)
P−→

n→∞ 0,(B.11)

and Lindeberg’s condition is fulfilled. Therefore, for x ∈ R
d and β ∈ ]0, 1/d[,

n−(1+βd)/2Mn(x)
L−→

n→∞ N
(
0,
‖G‖22

(1 + βd)
p(x− x∗) Γ

)
.(B.12)

Now, let us show that for x ∈ R
d and β > 1/(d+ 4),

n−(1+βd)/2 Rn−1(x)
a.s.−→

n→∞ 0.(B.13)

First, let us rewrite Rn(x) under the form

Rn(x) = (Rn(x)−Rc
n(x)) + (Rc

n(x)−Qn(x)) +Qn(x),(B.14)

where

Rc
n(x) =

n∑
i=1

iβdE
[
G
(
iβ(Xi − x)

)
(f(Xi)− f(x)) /Fi−1

]
=

n∑
i=1

∫
G(t)

(
f(i−βt+ x)− f(x)

)
p
(
i−βt+ x− f(Xi−1)− Ui−1

)
dt,

Qn(x) =

n∑
i=1

p (x− f(Xi−1)− Ui−1)

∫
G(t)

(
f(i−βt+ x)− f(x)

)
dt.

Since f is Lipschitz, ‖Dp‖∞ <∞, and
∫ ‖t‖2 G(t) dt <∞, we easily show that

sup
x∈Rd

‖Rc
n(x)−Qn(x)‖ = O

(
n1−2β

)
a.s.(B.15)

Let us denote f� the Cth component of f . Since f is supposed to be C2−class, for
1 ≤ C ≤ d, we have the expansion

f�(i
−βt+ x)− f�(x) =

d∑
j=1

i−β tj
∂f�
∂xj

(x) +
1

2

d∑
j=1

d∑
k=1

i−2β tj tk
∂2f�

∂xj∂xk
(z)

with z ∈ [x, x+ i−βt
]
. Thus, since

∫
tjG(t) dt = 0 for any j = 1, . . . , d, we derive

that ∥∥∥∥∫ G(t)
(
f(i−βt+ x)− f(x)

)
dt

∥∥∥∥ = O
(
i−2β

)
,(B.16)
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and since p is bounded, then we have

sup
x∈Rd

‖Qn(x)‖ = O
(
n1−2β

)
a.s.(B.17)

For x ∈ R
d, MR

n (x) = Rn(x)−Rc
n(x) is a square integrable martingale adapted to F

for which we have

n∑
i=1

E

[∥∥MR
i (x)−MR

i−1(x)
∥∥2

/Fi−1

]
= O

(
n∑

i=1

iβd−2β

)
a.s.,(B.18)

since f is Lipschitz, G is bounded, ‖p‖∞ < ∞, and
∫ ‖t‖2 G(t) dt < ∞. Therefore,

using a result of a strong law of large numbers for the martingales, we obtain that for
δ > 0,

MR
n (x) = o(n(1+βd)/2−β (log n)

(1+δ)/2
) a.s.(B.19)

Then, using results (B.15), (B.17), and (B.19), we prove (B.13) as soon as β >
1/(d + 4). Finally, combining (B.5), (B.12), and (B.13), we obtain that for x ∈ R

d,
β < 1/d, and β > 1/(d+ 4),

n(1−βd)/2(F̂n(x)− f(x))
L−→

n→∞ N
(
0,

‖G‖22
(1 + βd) p(x− x∗)

Γ

)
.(B.20)

Now following Duflo [5], let us study the joint asymptotic normality. Taking the
previous results into account, it suffices to prove that for q distinct points of R

d,
denoted x1, . . . , xq, the vector n−(1+βd)/2 (Mn(x1), . . . ,Mn(xq)) converges in distri-
bution to a centered Gaussian vector with independent components. We easily verify
this by remarking that for x �= y,

n−(1+βd)
n−1∑
i=1

i2βd G
(
iβ(Xi − x)

)
G
(
iβ(Xi − y)

) a.s.−→
n→∞ 0.

This completes the proof of Theorem 3.2.
Remark B.1. From (B.6) it follows easily that

E [‖〈M(x)〉n‖] = O
(
n1+βd

)
.(B.21)

Then, from a strong law of large numbers, we derive that n−1Mn(x)
a.s.−→

n→∞ 0 for all

β ∈ ]0, 1/d[, and combining this result with (B.5), (B.15), (B.17), and (B.19) gives

F̂n(x)
a.s.−→

n→∞ f(x).(B.22)

This result is useful to prove part 2 of Theorem 4.2 when F̂n(x) is used in the con-

struction of the test statistic Tq(n) instead of f̂n(x).

REFERENCES

[1] I. A. Ahmad, Residuals density estimation in nonparametric regression, Statist. Probab. Lett.,
14 (1992), pp. 133–139.



ADAPTIVE TRACKING USING KERNEL ESTIMATORS 727

[2] B. Bercu, Central limit theorem and law of iterated logarithm for least squares algorithms in
adaptive tracking, SIAM J. Control Optim., 36 (1998), pp. 910–928.

[3] H. F. Chen and L. Guo, Identification and Stochastic Adaptive Control, Birkhäuser Boston,
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Abstract. In this paper, infinite dimensional systems described by convolutional equations
and, in particular, by delay-differential equations are considered. Different controllability notions
for this class of linear time-invariant systems are discussed and compared. A characterization of
spectral controllability for a system whose trajectories satisfy a homogeneous system of independent
convolutional equations is given. This result extends an analogous result which was known to hold
for difference or differential equations. Finally, for a particular class of systems, including systems
in the state space form, it is shown that a well-known theorem, which states the equivalence of
spectral controllability and the existence of an image representation, holds true. An example is
presented showing that this result is false for generic delay-differential systems as soon as there are
two noncommensurate delays.
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1. Introduction. In solving control and optimization problems, the analysis of
system controllability is always an important preliminary step. Differently from what
happens for linear finite dimensional systems, for linear infinite dimensional systems
controllability can be defined in various ways, and, moreover, its characterization is
often a difficult task. For the class of infinite dimensional systems described by linear
differential equations with delays, something more can be said, in particular, when the
delays are commensurate, i.e., when they are multiples of a single delay. In [7] various
definitions of controllability are proposed and compared for this class of systems.

The notion of controllability that has been analyzed in more detail in literature
is the so-called spectral controllability, because it plays an important role in the spec-
trum assignment problem. For systems with commensurate delays, this controllability
notion has been interpreted in terms of trajectories steering in [9, 23]. The use of the
behavioral approach and, in particular, the notion of behavioral controllability which
arises in this framework has been essential for obtaining these results.

For this reason, in this paper we will follow this approach in the analysis of
controllability of delay systems and we will try to extend the results in [9, 23] to
systems with noncommensurate delays and, more in general, to systems described by
convolutional equations.

Now we briefly recall the notion of a dynamical system in the behavioral approach
and the definition of controllability. According to this approach a dynamical system
is defined as a triple

Σ = (T,W,B),
where T denotes the time set, W denotes the system alphabet, and B, which is a
subset of the set WT of all the trajectories, represents the set of trajectories which
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are allowed by the dynamical constraints imposed by the system. This is called the
behavior of the system.

In this paper we will consider only systems with time set T = R and with time
invariant behavior B, i.e., such that for any w ∈ B we have στw ∈ B for every τ ∈ R.
(στ is the forward shift operator which will be defined in section 2.1.) These systems
will be called continuous time-invariant systems.

Differently from what happens in the classical systems theory, controllability is
defined as an intrinsic property of the system rather than a property of a state space
representation of the system.
Definition 1.1. A continuous time-invariant system Σ = (R,W,B) is control-

lable if for every w1, w2 ∈ B there exists a trajectory w̄ ∈ B and a T > 0 such that

w̄(t) =

{
w1(t) if t ≤ 0,

w2(t− T ) if t ≥ T.
(1)

Loosely speaking, given two trajectories of a controllable behavior, there exists a
trajectory in the behavior that shares the “past” with the first one and the “future”
with the second one.

In the first papers devoted to the behavioral approach [22, 27], a rather com-
plete theory for systems described by linear differential equations has been developed.
Moreover, a complete characterization of controllability has been proposed. More
specifically, the class of continuous systems that has been analyzed in [22] has time
set T = R, system alphabet W = R

q, and behavior

B = kerR
(
d
dt

) �
= {w ∈ C∞(R,Rq) such that R

(
d
dt

)
w = 0},

where R
(
d
dt

) ∈ R
[
d
dt

]p×q
is a polynomial differential operator acting from C∞(R,Rq)

to C∞(R,Rp). The polynomial matrix provides a so-called kernel representation of
the system behavior B. It may happen that the behavior B also admits an image

representation. This means that there exists a polynomial matrixM
(
d
dt

) ∈ R
[
d
dt

]q×d

such that

B = imM
(
d
dt

) �
= {w = M

(
d
dt

)
v ∈ C∞(R,Rq) with v ∈ C∞(R,Rd)}.

One of the main results shown in [22] is that the existence of an image representation
is equivalent to the controllability of the system. More precisely, we have the following
theorem [22, Thm. 5.2.5, 6.6.1].

Theorem 1.2. Given the matrix R
(
d
dt

) ∈ R
[
d
dt

]p×q
and the behavior B =

kerR
(
d
dt

)
, the following conditions are equivalent.

1. R(λ) has constant rank for all λ ∈ C.
2. B is controllable.
3. B admits an image representation: B = imM

(
d
dt

)
, whereM

(
d
dt

)∈R
[
d
dt

]q×d
.

Condition 1 corresponds to a generalized Popov–Belevitch–Hautus (PBH) test
condition, which is also called spectral controllability.

In the discrete case [27, Thm. V.2, V.3], a similar result holds true. Actually, all
the conditions in the previous theorem are shown [26, Prop. 4.3] to be equivalent to
the fact that

B = Bcs,
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where Bcs means the subset of B constituted of trajectories which have compact
support and where · means closure with respect to the pointwise convergence topology
in the space of all sequences. It can be shown that a similar equivalence holds true also
in the continuous time case if we take on C∞(R,Rq) the standard Fréchet topology
of the uniform convergence of derivatives of any order on compacts.

Consider now the situation in which we take behaviors that are kernel of poly-
nomial matrices in the derivative and in one delay operator. More precisely, consider
continuous time systems whose behaviors satisfy the relation

B = {w ∈ C∞(R,Rq) : R
(
d
dt , σ

)
w = 0} = kerR

(
d
dt , σ

)
,

where σ is the unitary shift operator (σf)(t) = f(t − 1), and where R
(
d
dt , σ

) ∈
R
[
d
dt , σ

]p×q
is a polynomial matrix in two variables.

These systems are called differential systems with one delay or with commensurate
delays. They have been analyzed in [9, 23], in which the following result has been
shown.
Theorem 1.3. Given the matrix R

(
d
dt , σ

)∈R
[
d
dt , σ

]p×q
and the behavior B =

kerR
(
d
dt , σ

)
, the following conditions are equivalent.

1. R(λ, e−λ) has constant rank for all λ ∈ C.
2. B is controllable.
3. B admits an image representation B = imM

(
d
dt , σ

)
, where M

(
d
dt , σ

) ∈
R
[
d
dt , σ

]q×d
.

The above result is similar to Theorem 1.2. Condition 1 is the generalization
of spectral controllability for delay-differential systems. It is possible to prove that
condition B = Bcs is equivalent to controllability even in this case. This is a direct
consequence of the results we present in this contribution (see Remark 4.8).

In this paper we will present some results on controllability for linear continuous
time systems with several noncommensurate delays. We will show to what extent the
results presented in [22, 26, 27] and extended in the one-delay case in [9, 23] continue
to hold true also in the multidelay case.

More specifically, in this paper we will prove that Theorem 1.3 can be extended
to the multidelay case as well as to more generic convolutional operators only par-
tially. We will present a theorem showing what extension is possible in general and
a counterexample showing that a complete extension does not hold. Finally, we will
specify an interesting subclass of systems for which a complete extension is possible.

Our interest in studying differential systems with several noncommensurate delays
is not only of theoretical nature. It is quite clear that a family of noncommensurate
delays can be approximated arbitrarily well by a family of delays which are multiples
of a single delay. Therefore, one could argue that any differential system with sev-
eral noncommensurate delays can be approximated by a differential system with only
one delay. This is correct in principle. However, we must pay attention to a delicate
point: the analysis of systems with noncommensurate delays is important just because
sometimes the approximating differential system with one delay may have different
structural properties with respect to the original system to be approximated. Ex-
ample 3.4 describes a differential system with two delays: the system is spectrally
controllable if and only if the delays are noncommensurate. However, it admits an
image representation only if the ratio of the delays is not a Liouville irrational number
(see Proposition 2.6).

Furthermore, observe that even if an approximation would make sense, the bet-
ter the approximation is, the higher the degrees of the delay-differential operators
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describing the approximating system have to be, thus giving rise to computational
complexity problems.

2. Notation and preliminaries. In this section we introduce the notation
which will be used in this paper. We recall the most important properties of the
function spaces and operator algebras which will be considered in the following sec-
tions.

2.1. Function spaces and functionals. We will consider only behaviors that
are subsets of smooth functions. More precisely, if we denote by E the set of infinitely
differentiable functions C∞(R,R) equipped with the standard Fréchet topology (uni-
form convergence of derivatives of any order on compacts), then behaviors considered
in this paper are always subspaces of Eq for some positive q ∈ N.

The subspace of smooth functions having compact support (test functions) is
denoted by D, and the set of holomorphic functions on C is denoted by O.

These spaces have topological duals, i.e., the sets of continuous linear function-
als. It is well known that the topological dual D′ of D coincides with the space of
Schwartz distributions, while the topological dual E ′ of E consists in that subset of
D′ constituted by compact support distributions [24, Thm. 24.2].

The value of α ∈ E ′ at w ∈ E is denoted by 〈α,w〉 ∈ R. The shift operator στ ,
with delay τ ∈ R, is defined for every w ∈ E as (στw)(t)

�
= w(t − τ). This operator

can be used to show how every distribution α ∈ E ′ acts on E by mapping w ∈ E into
the convolution (α � w)(t)

�
= 〈α, σtw〉. It can be shown that convolutions are still in

E and that in this way E ′ is isomorphic to the set of continuous linear operators on E
that commute with στ for every τ ∈ R (see [25, Thm. 2.16]).

2.2. Paley–Wiener functions. It is possible to define the Laplace transforms
of distributions in E ′ [24, Exercise 25.20]. The Laplace transform maps a distribution
with compact support α ∈ E ′ into α̂(s) �

= 〈α, e−st〉, where α acts on e−st, regarded as
a function of t with parameter s ∈ C. It can be seen that α̂(s) is always a holomorphic
function [24, Prop. 29.1].

If a(s) ∈ O is the Laplace transform of α ∈ E ′ and w ∈ E is a smooth function,
convolutions will be denoted also as

a(s)w
�
= α � w ∈ E .

It can be seen that, given α, β ∈ E ′, there is a unique distribution denoted by α�β ∈ E ′,
called the convolution of α and β, such that α � (β �w) = (α � β) �w for every w ∈ E ;
moreover, the Laplace transform of a convolution is the product of the transforms

α̂ � β(s) = α̂(s)β̂(s). Actually this is a classical and fundamental result. The Paley–
Wiener theorem [2, p. 27–28] states that the convolutional algebra of distributions
with compact support is isomorphic, via Laplace transform, to the multiplicative
algebra of Paley–Wiener functions so defined:

A �
= {a(s) ∈ O such that ∃A,B,C > 0, |a(s)|≤A(1 + |s|)BeC|Re s| ∀s ∈ C}.(2)

In this context, every matrix M(s) = [mij(s)] ∈ Ap×q represents two distinct
operators. On one hand, it acts as a convolutional operator on (column) vectors with
entries in E , i.e.,

M(s) : Eq → Ep, w �→ v = M(s)w, i.e., vi =

q∑
j=1

mij(s)wj .
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On the other hand, it can be seen as a linear transformation on (row) vectors with
entries in A. To distinguish the different meanings of the same matrix, we use in this
case the following notation:

◦M(s) : Ap → Aq, a(s) �→ b(s) = a(s)M(s), i.e., bj(s) =

p∑
i=1

ai(s)mij(s).

Therefore, the kernel and image of a matrixM(s) ∈ Ap×q depend on the operator
it represents. When it operates “on the right,” usually on E , we have

kerE M(s)
�
= {w ∈ Eq such that M(s)w = 0},

imE M(s)
�
= {M(s)w ∈ Ep with w ∈ Eq}.

Conversely, if M(s) represents the linear transformation acting “on the left” on vec-
tors, whose entries are usually in A, we get

kerA ◦M(s)
�
= {a(s) ∈ Ap such that a(s)M(s) = 0},

imA ◦M(s)
�
= {a(s)M(s) ∈ Aq with a(s) ∈ Ap} = ApM(s).

We remark that, with this convention, ◦M(s) is the adjoint of M(s), and, if we
define orthogonals of subsets E ⊆ Eq or A ⊆ Aq as

E⊥ �
= {a(s) ∈ Aq : a(s)w = 0 ∀w ∈ E} , A⊥ �

= {w ∈ Eq : a(s)w = 0 ∀a(s) ∈ A} ,

then we can write in a simple way a fundamental result about duality between adjoint
operators. (For the proof see, e.g., [24, p. 388], which states the proposition in terms
of “polars” [24, p. 196], which in our context coincide with orthogonals.)
Proposition 2.1. For every M(s) ∈ Ap×q,

kerE M(s) = imA ◦M(s)⊥, kerE M(s)⊥ = imA ◦M(s),

kerA ◦M(s) = imE M(s)⊥, kerA ◦M(s)⊥ = imE M(s).

Another useful property of adjoint operators is the following proposition (see [16,
Prop. 21.9]).
Proposition 2.2. For every M(s) ∈ Ap×q, imE M(s) is closed if and only if

imA ◦M(s) is closed.

2.3. Operator subalgebras of A. The notation we have introduced so far
permits us to treat differential or delay-differential polynomial operators in a unified
manner. Indeed, the action on smooth functions of both the derivative operator d

dt
and of the shift operator στ corresponds to a convolution with the distributions in E ′
having Laplace transforms s and e−sτ , respectively.

This fact explains why polynomials in d
dt and σ are also called exponential poly-

nomials, being actually isomorphic, through Laplace transform, to elements in the
ring R [s, e−s] which is in turn isomorphic to the ring of polynomials in two variables
R[z0, z1].

Consider now equations involving more delays: if the delays belong to the set
T = {tj , j = 1, . . . ,M}, the ring of polynomials in σtj is still isomorphic to the
ring of polynomials in e−stj , but not to the ring of polynomials in M indeterminates.
However, consider the Z-module generated by t1, . . . , tM . Being free, it has a basis
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τ1, . . . , τm composed by positive elements that are also Q-independent. Thus they
are called noncommensurate. Observe that in this case polynomials in the delays στi ,
polynomials in e−sτi , and polynomials in m variables are isomorphic [15, Thm. 1],
i.e.,

R[e−sτ1 , . . . , e−sτm ] ∼= R[z1, . . . , zm].(3)

However, in order to represent the operators σt1 , . . . , σtM as a linear combination
of powers of στ1 , . . . , στm , we have to consider polynomials also with negative powers
in στi , called Laurent polynomials. It can be seen that

Rm
�
= R[e−sτ1 , . . . , e−sτm , esτ1 , . . . , esτm ] ∼= R[e−st1 , . . . , e−stM , est1 , . . . , estM ],

while a similar result does not hold if we consider the ring of standard polynomials.
Observe that, by virtue of (3), we obtain that

Rm
∼= R[z1, . . . , zm, z

−1
1 , . . . , z−1

m ] ∼= R[στ1 , . . . , στm , σ
−1
τ1 , . . . , σ

−1
τm ].

Delay–differential polynomial operators with time delays belonging to T are thus
expressible as polynomials in d

dt and in στi , i.e., they are elements of the ring Rm[s].
We note that the use of operators like σ−1

τi , which are well defined, only introduces
finite anticipative (noncausal) operators. Anyway, their use is the standard practice
within behavioral theory of discrete time (i.e., difference) behaviors.

A generalization of the ring of delay-differential polynomial operators was first
introduced in [9] in case of commensurate delays. We give here its definition in the
general case of m noncommensurate delays.
Proposition 2.3. The set of holomorphic fractions of exponential polynomials

with m delays

Hm
�
=

{
n(s)

d(s)
such that n(s), d(s) ∈ Rm[s]

}
∩ O(4)

satisfies the following properties.
1. Hm coincides with the set of Laurent polynomials in e−sτi , with coefficients

in R(s), that are holomorphic. This means that every element in Hm can be written
as the quotient of a Laurent exponential polynomial in Rm[s] and a polynomial in
R[s].

2. Whenever n(s), d(s) ∈ Hm, and
n(s)
d(s) ∈ O, then n(s)

d(s) ∈ Hm.

3. If n(s) ∈ A, d(s) ∈ Hm, and
n(s)
d(s) ∈ O, then n(s)

d(s) ∈ A.
4. Hm is a subalgebra of A: every a(s) ∈ Hm is an operator of E unto itself.
5. Every nonzero a(s) ∈ Hm is a surjective operator: imE a(s) = E.
6. If n(s), d(s) ∈ Hm, and

n(s)
d(s) ∈ Hm, then kerE d(s) ⊆ kerE n(s).

Proof. Property 1 was proved in [1] for more generic polynomials in C
n; see [11,

App. A] for an alternative proof. Properties 5 [6] and 6 [18, pp. 282, 318] are classical
results in functional analysis; property 2 trivially follows from the definition of Hm,
while properties 3 and 4 can be deduced using the fifth property and [2, Thm. 2.7,
2.8].

The way in which elements in Hm (as well as more generic fractions with de-
nominator in Hm, which were introduced in Proposition 2.3-3) operate on E is the
following: any a(s) ∈ Hm is the holomorphic fraction of two exponential polynomials
n(s) and d(s) in Rm[s]. Given v ∈ E , we can find a function x ∈ E such that d(s)x = v
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by surjectivity of d(s), which is ensured by Proposition 2.3-5. Then let w = a(s)v ∈ E ,
which is always well defined by Proposition 2.3-4, be given by w = n(s)x. Indeed,
since n(s) = a(s)d(s) and convolution is an associative operation, we obtain that
a(s)v = a(s)d(s)x = n(s)x = w.

Observe that x is not uniquely determined. However, the generic solution x̄ =
x+ k, with k ∈ kerE d(s), gives w = n(s)x̄ since n(s)k = 0 by Proposition 2.3-6.

Example 2.4. Let a(s) = 1−e−s
s . Actually, a(s) is a holomorphic function, since

the unique zero of its denominator d(s) = s is common to its numerator n(s) = 1−e−s,
and thus it is canceled. Therefore a(s) ∈ Hm by definition (4).

The function a(s) acts as follows: for every v ∈ E , a(s)v = w if and only if there
is an x ∈ E such that d(s)x = v and n(s)x = w. The first equation is equivalent

to d(s)x = sx = d
dtx = v, i.e., x(t) =

∫ t
0
v(τ) dτ + C, with C an arbitrary constant.

Finally, w = n(s)x = (1− e−s)x = (1− σ)x, i.e.,

w =
1− e−s

s
v ⇔ w(t) =

∫ t

t−1

v(τ) dτ.

2.4. Bézout equations. Bézout equations constitute a fundamental tool in al-
gebraic systems theory. A finite set of elements r1, . . . , rl in a ringR satisfies a Bézout
equation if there are xi ∈ R such that

∑l
1 xiri = 1 or, equivalently, if the ideal gen-

erated by r1, . . . , rl coincides with R. The ring of polynomials in one variable, which
is the operator ring employed within the theory of linear differential (or difference)
systems, is a Bézout domain, i.e., every finitely generated ideal is principal. In this
case polynomials without common zeros always satisfy a Bézout equation and thus
constitute a set of generators of the whole ring.

The ring H1 is a Bézout domain, as it was shown in [9, Thm. 3.2]. This property,
along with the fact that every matrix admits the Smith form [9, Thm. 3.5-5], permits
to extend many theorems on differential systems to systems with one delay. Also O
is a Bézout domain [12, Thm. 9], while this is not the case for the rings Hm and A,
as we will show in the proposition which follows. An analogous example can be found
in [19]. For Hm, a different counterexample is proposed in [11, Ex. 5.13], and Gröbner
basis theory is there employed to achieve the claimed result.

We need the following preliminary result.
Lemma 2.5. Given an element a(s) ∈ A, the following three facts are equivalent.
(i) a(s) is invertible in A.
(ii) a(s) has no zeros.
(iii) a(s) = kesτ for some τ, k ∈ R, k �= 0.
Proof. It is clear that exponentials have no zeros. Moreover, a function in A with

no zeros, being of exponential type by definition (2), has the form eh(s) with h(s)
a polynomial of degree at most one by Hadamard’s theorem (see [17, p. 24]), and
therefore it has inverse e−h(s), which is still in A.

We have to show that every invertible element in A is an exponential like kesτ .
Since A ∼= E ′, this corresponds to prove that the invertible distributions are kδτ , where
δτ is the Dirac measure at τ (〈δτ , f〉 = f(τ)), whose Laplace transform is indeed e−sτ .

Let α ∈ E ′ be an invertible distribution. Then there is a β ∈ E ′ such that δ = α�β.
If we denote by [α] the smallest closed interval that contains the support of α, by the
Titchmarsh–Lions theorem on supports [18, p. 277], {0} = [δ] = [α � β] = [α] + [β].
This implies that the supports of α and β have to be {τ} and {−τ} for some τ ∈ R.
Hence α must be a linear combination of δτ and its derivatives [24, Thm. 24.6], i.e., its

Laplace transform is α̂(s) = a(s)e−sτ , a(s) ∈ R[s]. In the same way, β̂(s) = b(s)esτ ,
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b(s) ∈ R[s], and hence 1 = α̂(s)β̂(s) = a(s)b(s). The proof is complete since the only
invertible polynomials are constant.
Proposition 2.6. The rings Hm with m > 1 and A are not Bézout domains.
Proof. We choose the following two functions in H2 ⊆ A:

r1(s) =
1− e−s

s
and r2(s) = 1− e−sτ .(5)

We want to show that, for particular values of τ ∈ R, the ideal in A generated by
r1(s) and r2(s) is not principal. This would imply also that the ideal in H2 generated
by r1(s) and r2(s) cannot be principal.

Let τ �∈ Q. So the functions r1(s) and r2(s) have no common zeros. Observe
preliminarly that, if the ideal in A generated by r1(s) and r2(s) was principal, then
the single generator of this ideal should be an element in A with no zeros and so
invertible by Lemma 2.5. This would imply that r1(s) and r2(s) should satisfy a
Bézout equation. We show now that this is not possible.

Let τ be a Liouville number, i.e., for all C ∈ N there are infinitely many n
d ∈ Q

such that ∣∣∣τ − n

d

∣∣∣ ≤ d−1−C .(6)

Suppose, moreover, that ri(s) satisfy a Bézout equation in A, i.e., that there exist
a1(s), a2(s) ∈ A such that

a1(s)r1(s) + a2(s)r2(s) = 1.(7)

Note that r2(s) = −2ie− sτ
2 sin

(
isτ
2

)
. So if we evaluate (7) in s = 2dπi, with d ∈

N\{0}, since r1(2dπi) = 0, we get a2(2dπi)2ie
−τdπi sin τdπ = 1. Using basic trigonom-

etry and relation (6), we have | sin τdπ| = | sin(τdπ − nπ)| ≤ |τdπ − nπ| ≤ πd−C .
Therefore,

1 = |a2(2dπi)| |2ie−τdπi| | sin τdπ| ≤ |a2(2dπi)|2πd−C .

But a2(s) ∈ A and therefore, by definition (2), simplified since Re s = 0, there exist
A,B > 0 such that |a2(2dπi)| ≤ A(1 + 2dπ)B . Thus, employing the above equation,
we obtain

1 ≤ |a2(2dπi)|2πd−C ≤ A2π(1 + 2dπ)Bd−C .

If we choose C > B and let d→∞, we get a contradiction.
Nevertheless, even if functions in A that do not have common zeros do not gen-

erate the whole ring, the ideal they generate is always dense in A, as the following
theorem states.
Theorem 2.7. Let ai(s) ∈ A, i = 1, . . . , l be Paley–Wiener functions without

common zeros. Then the closure of the ideal they generate over A coincides with A.
Proof. This theorem is a direct consequence of an important result due to

Schwartz, called the spectral analysis theorem [2, Thm. 2.11]: it states that if ai(s)
is the Laplace transform of αi ∈ E ′, then the unique solution w ∈ E of αi � w = 0
for every i = 1, . . . , l is w = 0. Therefore, if R(s) ∈ An×1 is the column contain-
ing ai(s), by the spectral analysis theorem kerE R(s) = {0}. By Proposition 2.1,
imA ◦R(s) = {0}⊥ = A, which is exactly what is claimed.
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2.5. Generalized inverses of matrices. Bézout equations are important for
our purposes due to their connection with particular properties of matrices. Actually,
it is known that a full row rank matrix is left invertible if and only if its maximal
minors satisfy a Bézout equation. This result may be extended to matrices which are
not full rank.

To this aim we introduce a terminology which will be used throughout this paper.
Given a matrix R of rank r, r × r minors of R will be called rank minors of R.
Definition 2.8. Given a domain S and a matrix R ∈ Sp×q, we say that G ∈

Sq×p is the 1-inverse of R if RGR = R. It is a 1, 2-inverse if it is a 1-inverse and
GRG = G.

Since a matrix admits a 1-inverse if and only if it admits a 1, 2-inverse (it is easy
to check that if G is a 1-inverse, then GRG is a 1, 2-inverse), we will consider only
1, 2-inverses and call them simply generalized inverses.

The following theorem [4, Thm. 8] generalizes the aforementioned equivalence of
invertibility and the existence of a Bézout equation to matrices which are not full
rank.
Theorem 2.9. Every matrix with entries in a domain has a generalized inverse if

and only if its rank minors satisfy a Bézout equation. The knowledge of the coefficients
of the Bézout equation permits us to construct the generalized inverse.

Remark 2.10. A matrix R(s) with entries in O admits a generalized inverse in O
if and only if

rankC R(λ) = r for every λ ∈ C.

Indeed, this happens if and only if its rank minors have no common zeros. Since O is
a Bézout domain, this is equivalent to satisfy a Bézout equation with coefficients in
O.

We report now two other facts on matrices that admit a generalized inverse.
Lemma 2.11. Let S be a subring of O. If R(s) ∈ Sp×q admits a generalized

inverse G(s) ∈ Sq×p, then

kerS ◦R(s) = imS ◦(I −R(s)G(s)), imS ◦R(s) = kerS ◦(I −G(s)R(s)).(8)

If, moreover, the elements of S are operators on E,

imE R(s) = kerE(I −R(s)G(s)), kerE R(s) = imE(I −G(s)R(s)).(9)

Proof. We prove only (9). The proof of (8) follows similarly. Since R(s) =
R(s)G(s)R(s), we have (I −R(s)G(s))R(s) = 0 and R(s)(I −G(s)R(s)) = 0, and so
imE R(s) ⊆ kerE(I −R(s)G(s)) and imE(I −G(s)R(s)) ⊆ kerE R(s).

Conversely, if w ∈ kerE(I − R(s)G(s)), then 0 = (I − R(s)G(s))w = w −
R(s)G(s)w, and so w = R(s)G(s)w ∈ imE R(s). Thus kerE(I−R(s)G(s)) ⊆ imE R(s).
Even more trivially, we obtain that w ∈ kerE R(s) implies w = (I −G(s)R(s))w and
therefore w ∈ imE(I −G(s)R(s)).

The following theorem plays a fundamental role in many propositions that we will
prove in the following sections.
Theorem 2.12. Let S be a subring of O. Suppose that R(s) ∈ Sp×q has rank

r and admits a generalized inverse over O. Then for some d ∈ N there is a matrix
M(s) ∈ Sq×d, with rank q − r, such that

kerO R(s)◦ = imO M(s)◦ and imO ◦R(s) = kerO ◦M(s).(10)
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Furthermore, M(s) also admits a generalized inverse over O.
Since the proof is quite involved (it needs a rather cumbersome notation), it is

postponed in Appendix A. Observe that M(s) can be constructed employing only
the rank minors of R(s).

3. Controllability of convolutional systems. In this section we aim to in-
troduce a set of conditions related to the concept of controllability for the class of
dynamical systems described by homogeneous convolutional equations. In the rest of
the paper we will show the relations which occur between them.
Definition 3.1. Assume that R(s) ∈ Ap×q is a matrix of Paley–Wiener func-

tions and consider the behavior B = kerE R(s). We will be concerned with the following
properties of B.
SC B is spectrally controllable: rankC R(λ) = r for every λ ∈ C or, equivalently,

the rank minors of R(s) have no common zeros (see Remark 2.10). This is a
direct generalization of the PBH controllability test for differential systems.

BC B is controllable in the behavioral sense of Definition 1.1.
IR B admits an image representation: B = imE M(s) for some matrix of opera-

tors M(s) ∈ Aq×d.
DCS The subset of B consisting of the trajectories having compact support,i.e.,

Bcs
�
= B ∩ Dq = kerD R(s) is dense in B: B = Bcs.

DIR There is a dense image representation of B: B = imE M(s) for some matrix
of operators M(s) ∈ Aq×d.

GI There exists a generalized inverse of R(s): there is a matrix G(s) ∈ Aq×p

such that R(s)G(s)R(s) = R(s).
Note that SC and GI can be reformulated within the module theoretic framework

proposed by Fliess and Mounier [8, 20]. Actually, spectral controllability and existence
of a generalized inverse are “algebraic,” while the other are more “analytic” conditions.

The relation between spectral controllability of B = kerE R(s), existence of a
generalized inverse of R(s) and null controllability, i.e., the possibility to steer to zero
every trajectory of B, was investigated in [21] within a different framework.

Remark 3.2. Definition 3.1 is stated for general behaviors which are kernels of
convolutional operators. Matrices over the ring A are more difficult to handle than
matrices over the delay-differential operator ring Rm[s] or its “fraction” ring Hm.
However, this general framework is necessary to obtain some important results, even
if the starting point is a matrix R(s), which has delay-differential entries.

Indeed, theorems establishing the existence of an image representation in A can
be used as a preliminary step for obtaining an image representation in Rm[s] or Hm.
This happens when B is the kernel of a matrix R(s) with entries in Hm, as stated in
the following proposition.
Proposition 3.3. Let R(s) ∈ Hp×q

m have rank r. Suppose that B = kerE R(s)
admits a (dense) image representation. Then it admits a (dense) image representation
in Rm[s], i.e., there exists a full column rank matrix M(s) ∈ Rm[s]

q×(q−r) such that
B is the (closure of the) image of M(s).

Proof. Let us suppose that B = imE N(s), where N(s) ∈ Aq×d. As we shall show
in Theorem 3.5, this assumption implies that B is spectrally controllable and therefore,
by Theorem 2.12, we can construct L(s) ∈ Hq×e

m such that kerO R(s)◦ = imO L(s)◦.
Since R(s)N(s) = 0, the columns of N(s) belong to the image over O of L(s), i.e.,
there exists an X(s) ∈ Oe×d such that N(s) = L(s)X(s).

Furthermore, if we denote by Km the field of fractions of Hm, by standard linear
algebra arguments there exists a basis of kerKm R(s)◦, which means that there exists
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a full column rank matrix M̄(s) ∈ Kq×(q−r)
m such that kerKm R(s)◦ = imKm M̄(s)◦.

Since also R(s)L(s) = 0, L(s) = M̄(s)Ȳ (s), where Ȳ (s) ∈ K(q−r)×e
m , and, multiplying

both members by an appropriate element l(s) ∈ Hm, we get the relation

l(s)L(s) = M(s)Y (s),

where both M(s) and Y (s) have entries in Rm[s].
SinceKm is necessarily a Bézout domain, by Theorem 2.9 we can find a generalized

inverse Ḡ(s) ∈ Ke×q
m of L(s) such that L(s)Ḡ(s)L(s) = L(s) or, multiplying by a

suitable g(s) ∈ Hm, a matrix G(s) ∈ He×q
m such that

L(s)G(s)L(s) = g(s)L(s).

So, putting together the equations, we found

l(s)g(s)N(s) = l(s)g(s)L(s)X(s) = l(s)L(s)G(s)L(s)X(s) = M(s)Y (s)G(s)N(s).

Since l(s)g(s) ∈ Hm is a surjective operator by Proposition 2.3-5, we obtain that

imE N(s) = imE l(s)g(s)N(s) = imE M(s)Y (s)G(s)N(s)

⊆ imE M(s) ⊆ kerE R(s) = imE N(s).

So, if imE N(s) is closed, it is equal to imE M(s). In any case, the closures of these
sets are equal.

3.1. The general case. The true and false implications described in the follow-
ing scheme hold without any further assumption.

�� ��

�� ��DCS ⇔ DIR

��

�� ��

�� ��BC��
�� ��

�� ��IR��

�� ��

�� ��SC

�������������������������������

�����������������������������

��

�� ��

�� ��GI

��

As our first step, we prove that SC �⇒ IR, which shows that the properties we
listed above are not equivalent in general. In particular, note that the following
example shows that Theorem 1.3 cannot be generalized to Hm and to A.

In fact, we will present a matrix R(s) with entries in Hm such that B = kerE R(s)
is spectrally controllable, i.e., rankC R(λ) does not depend on λ ∈ C, but B does not
admit an image representation, i.e., there is no matrix M(s) with entries in A such
that B = imE M(s).

Example 3.4. Let B = kerE R(s) be the kernel representation of the behavior B,
where the entries of R(s) were defined in Proposition 2.6.

R(s)
�
= [r2(s) − r1(s)] =

[
1−e−sτ − 1− e−s

s

]
.(11)

As we have already shown in Proposition 2.6, if τ is a Liouville number, B is
spectrally controllable, but r1(s) and r2(s) do not satisfy any Bézout equation. As-
sume by contradiction that there exists N(s) = [nij(s)] ∈ A2×d such that kerE R(s) =
imE N(s). Since R(s)N(s) = 0, it must be

r1(s)n2j(s) = r2(s)n1j(s) for every j = 1, . . . , d.(12)
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The above equation shows that, if s0 is a zero of ri(s) with multiplicity µ, then it is
also a zero of nij(s) with multiplicity greater than or equal to µ. Actually, this is a
consequence of the SC condition: we know that if r1(s0) = 0 for some s0 ∈ C, then
r2(s0) �= 0 and so n1j(s0) = 0. Therefore,

yj(s)
�
=

n1j(s)

r1(s)
=

n2j(s)

r2(s)
∈ O.

By Proposition 2.3-3, yj(s) ∈ A and, if we let M(s)
�
= [r1(s) r2(s)]

� and Y (s)
�
=

[yj(s)] ∈ Ad, then R(s)M(s) = 0 and N(s) = M(s)Y (s). This implies that

kerE R(s) = imE N(s) = imE M(s)Y (s) ⊆ imE M(s) ⊆ kerE R(s).

This equation shows that imE M(s) is closed, being equal to kerE R(s), and therefore,
by Proposition 2.2, imA ◦M(s) is closed also. But this is the ideal generated by r1(s)
and r2(s) and hence, by Theorem 2.7, imA ◦M(s) = A, i.e., there are two elements
ai(s) ∈ A such that a1(s)r1(s) + a2(s)r2(s) = 1, which is in contradiction with what
was obtained in Proposition 2.6.

We present now the main theorem of this section in which we prove the implica-
tions shown in the previous scheme.
Theorem 3.5. Given any behavior in kernel representation B = kerE R(s) with

R(s) ∈ Ap×q, the following chain of implications always holds: GI ⇒ IR ⇒ BC ⇒
DCS ⇔ DIR ⇒ SC.

Proof. We will prove each implication separately.
GI ⇒ IR. It is a direct consequence of Lemma 2.11.
IR ⇒ BC. If B = imE M(s), then every w ∈ B is the image of some smooth

function v ∈ Ed, i.e., w = M(s)v. SinceM(s) is the Laplace transform of a distribution
with compact support, w(t) does not depend on v(τ) if τ �∈ [t+a, t+b] for some a ≤ b,
both depending only on M(s).

Therefore, if we choose a T > b − a, we have that t + T + a > t + b. Thus, if
wi = M(s)vi for i = 1, 2 and we define v(τ)

�
= v1(τ) for τ < b, v(τ)

�
= v2(τ − T ) for

τ > T+a and completing v(τ) smoothly in the interval τ ∈ [b, T−a], then w = M(s)v
is such that w ∈ B, w(t) = w1(t) as t ≤ 0 and w(t) = w2(t− T ) as t > T .

BC ⇒ DCS. First, we prove that if B is controllable, it is possible to steer every
trajectory to zero also in the past, i.e. for every w ∈ B there exists a w̃ ∈ B and a
T > 0 such that

w̃(t) = 0 ∀t < −T and w̃(t) = w(t) ∀t > 0.

Actually, given w1 = 0 and w2 = w, by Definition 1.1 there is a τ > 0 and a w̄ ∈ B
such that w̄(t) = 0 for t ≤ 0 and w̄(t) = στw(t) for t ≥ τ . If we take T

�
= τ , then

w̃
�
= σ−τ w̄ is the desired function.
Next, given any w ∈ B, consider an increasing sequence of compact intervals

[ti, τi] = Ki ⊂ Ki+1 such that ∪i Ki = R.

For every i we can find a trajectory ui ∈ B that is equal to w(t) for t ≥ ti and zero in
the “past”; we can also find a trajectory vi ∈ B that is equal to ui(t) for t ≤ τi and
zero in the “future.” Clearly,

vi ∈ Bcs and vi(t) = w(t) for every t ∈ Ki.
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The sequence vi converges to w in the topology of E and therefore w is a limit point
of Bcs. Therefore B ⊆ Bcs.

The converse inclusion is easier to establish: since B is closed and Bcs ⊆ B,
Bcs ⊆ B also.

DCS ⇒ SC. It is well known that matrices of holomorphic functions admit the
Smith form [13]. A direct consequence of this fact (see, e.g., [25, Ch. 4.1.1]) is the
following: since R(s) admits a Smith form, then there exist two matrices U1(s) ∈ Or×p

and U2(s) ∈ O(p−r)×p such that U(s)
�
=
[
U1(s)
U2(s)

] ∈ Op×p is a square and invertible

matrix in O. Thus
imC

◦U1(s0)⊕ imC
◦U2(s0) = C

p for every s0 ∈ C,(13)

and, moreover,

kerO ◦R(s) = imO ◦U2(s) = Op−rU2(s).(14)

Note that the dimension of kerC ◦R(s0) is greater than or equal to the dimen-
sion of kerO ◦R(s). In particular, this inequality holds in a strict sense if and only
if rankC R(s0) < rankO R(s), i.e., if the behavior B is not spectrally controllable.
Therefore, considering (13) and (14), we can derive the following equivalence:

SC ⇔ kerC ◦R(s0) ∩ imC
◦U1(s0) = {0} for every s0 ∈ C.(15)

We want to prove that DCS implies the second condition in (15): let us take
s0 ∈ C and

c ∈ kerC ◦R(s0) ∩ imC
◦U1(s0)(16)

and construct the operator (well defined by Proposition 2.3-3 because cR(s0) = 0)

a(s)
�
=

1

s− s0
cR(s) ∈ Aq.

We aim to show that B ⊆ kerE a(s).
Indeed, take a w ∈ B. The way in which a(s) operates implies that if v = a(s)w,

then (s − s0)v = cR(s)w = 0. This means that d
dtv = s0v, i.e., v(t) = v(0)es0t.

Consequently, the image a(B) of B through a(s) consists only in exponentials.
If we take w ∈ Bcs ⊆ B and v = a(s)w, then v(τ) = 0 for |τ | sufficiently large,

since it is the convolution between a distribution and a function both with compact
support. Since v is an exponential, it must be the zero function. Employing the
hypothesis that B = Bcs, by (18) we can argue that

a(B) = a(Bcs) ⊆ a(Bcs) = {0} = {0} ⇒ B = kerE R(s) ⊆ kerE a(s).

This result implies, by a theorem of Malgrange [18, p. 282], that there exists
an x(s) ∈ Op such that a(s) = x(s)R(s). By definition of a(s), we also have that
(s− s0)a(s) = cR(s) and hence (c− (s− s0)x(s))R(s) = 0. This implies, by (14) that
there exists an y(s) ∈ Op−r such that c− (s− s0)x(s) = y(s)U2(s).

We deduce that c = y(s0)U2(s0) and so c ∈ imC
◦U2(s0). But, as assumed in (16),

we also have c ∈ imC
◦U1(s0), and hence, by (13), we can argue that c = 0. By (15)

this implies that the system is spectrally controllable.
DCS ⇒ DIR. Condition DCS implies SC and therefore, by theorem 2.12, there

exists a matrix M(s) ∈ Aq×d with rank q − r such that R(s)M(s) = 0. We shall
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show that B = imE M(s) or, equivalently, by Proposition 2.1, that imA ◦R(s) = B⊥ =
kerA ◦M(s). Since the inclusion B⊥ ⊆ kerA ◦M(s) is straightforward, we need to prove
only the other one.

First observe that, using hypothesis DCS and [24, Cor. 1, 2, p. 363], we obtain
that B⊥ = (Bcs)

⊥ = (B⊥cs⊥)⊥ = B⊥cs. Thus, our aim is to prove that kerA ◦M(s) ⊆ B⊥cs.
Let x(s) ∈ kerA ◦M(s). Denoting by F the fraction field of A, we have that

the subspaces imF ◦R(s) ⊆ kerF ◦M(s) have the same dimension r and thus coincide.
Since x(s) ∈ kerF ◦M(s), there exists a ȳ(s) ∈ Fp such that x(s) = ȳ(s)R(s). Since
ȳ(s) is a quotient of elements in A, there must be an a(s) ∈ A such that y(s) =
a(s)ȳ(s) ∈ Ap, and so a(s)x(s) = y(s)R(s).

As an immediate consequence, for every w ∈ Bcs we have

a(s)x(s)w = y(s)R(s)w = 0.(17)

But w has compact support, and hence it admits that the Laplace transform ŵ(s) and
the convolutional equation (17) can be rewritten as product of Laplace transforms:

a(s)x(s)ŵ(s) = 0.

Since A is a domain, the last equation holds if and only if x(s)ŵ(s) = 0, and this
implies that x(s) ∈ B⊥cs.

DIR ⇒ DCS. The only difficult thing to prove is that B ⊆ Bcs. One of the
equivalent definitions of continuity is the following [5, Thm. III.8.3]. A function
f : V →W is continuous if and only if for every subset U ⊆ V ,

imU f ⊆ imU f.(18)

Since D is dense in E, then imE M(s) = imD M(s) ⊆ imD M(s).
We note now that imD M(s) ⊆ kerD R(s). Therefore, taking the closure of the

equation written above, we get

B = imE M(s) ⊆ imD M(s) ⊆ kerD R(s) = Bcs.

3.2. The full row rank case: Regular behaviors. In this section we will
show that, under a rather mild assumption, conditions SC, DCS, and DIR are equiv-
alent and, adding another stronger hypothesis, even the equivalence IR ⇔ GI holds
true. The situation is presented in the following picture. The numbers over the dashed
lines refer to the theorems that prove the equivalences of the conditions in the boxed
regions and that also contain the assumptions under which such equivalences hold.

�� ��

�� ��DCS ⇔ DIR

��

�� ��

�� ��BC��
�� ��

�� ��IR��

3.10
���
�
�

�� ��

�� ��SC

3.6

���
�
�

�������������������������������

�����������������������������

��

�� ��

�� ��GI

��

Before going into the detailed analysis of these facts, it is useful to say something
more about the density conditions DCS and DIR.
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Kernels of continuous operators are always closed, if we do not consider patho-
logical topological spaces, while images need not be closed. Actually, even the image
imE a(s) of an element a(s) ∈ A may be not closed (see [2, Thm. 2.7, 2.8]). Observe
that this cannot occur if a(s) ∈ Hm, since in this case a(s) is surjective by Propo-
sition 2.3-5. However, matrices with entries in Hm may have an image which is not
closed. This can be seen taking the matrix M(s) ∈ H2×1

2 which has been defined in
Example 3.4.

As suggested in [22, p. 208], we could define directly the image representation of
a behavior as the closure of the image of a convolutional operator. This would make
sense, especially from a practical point of view, because it is difficult to understand
the concrete relevance of the system trajectories which belong to the closure of the
image but not to the image itself. However, employing this definition and therefore
identifying conditions IR and DIR, the existence of an image representation would
have in general no relation at all with behavioral controllability, as far as we know.

The hypothesis we are assuming in this section is that B = kerE R(s), where we
suppose that the matrix R(s) ∈ Ap×q has full row rank, i.e., that the convolutional
equations that constitute the homogeneous system whose set of solutions is B, are
linearly independent. In this case the behavior is called regular. This is, in general, a
weak assumption, and if R(s) is inH1, it is known [9] that there always exists a full row
rank matrix whose kernel is B or, in other words, the behavior of a delay-differential
system with commensurate delays is always regular. However, it is unknown whether
this property continues to hold for delay-differential systems with noncommensurate
delays.
Theorem 3.6. Let R(s) ∈ Ap×q be full row rank and B = kerE R(s). If B

is spectrally controllable, then there exists a matrix M(s) ∈ Aq×d such that B =
imE M(s).

Proof. By Theorem 2.12 we know that there is a matrix M(s) ∈ Aq×d such that

imO ◦R(s) = kerO ◦M(s).(19)

Since this implies that R(s)M(s) = 0, we have that also

imA ◦R(s) ⊆ kerA ◦M(s).(20)

We want to prove that imA ◦R(s) ⊇ kerA ◦M(s).
Let x(s) ∈ kerA ◦M(s). By (19) there is a y(s) ∈ Op such that

x(s) = y(s)R(s).(21)

Let us suppose, without loss of generality, that R(s) = [R1(s) R2(s)], where R1(s) is
a square full rank submatrix of R(s). Let adjR1(s) be the adjoint matrix of R1(s)
and let x(s) be partitioned in the same way as R(s) so that x1(s) = y(s)R1(s). We
obtain

x1(s) adjR1(s) = y(s)R1(s) adjR1(s) = y(s) detR1(s).(22)

We need now the following important result [18, p. 308]. If we define

H(d)
�
=

{
a(s)∈A such that a(s)

n(s)

d(s)
∈A, whenever n(s)

d(s)
∈O and n(s)∈A

}
,(23)
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then for any nonzero Paley–Wiener function d(s) ∈ A we have that

H(d) = A.(24)

In other words, in general, if n(s) and d(s) are Paley–Wiener functions and h(s)
�
=

n(s)/d(s) is holomorphic, then h(s) does not necessarily belong to A. However, even
if h(s) /∈ A, the functions a(s) ∈ H(d), as, for instance, d(s) itself, are such that
a(s)h(s) ∈ A. Equation (24) tells us that the set H(d) of functions a(s) that map, by
multiplication, every holomorphic fraction with denominator d(s) into A, is not only
nontrivial, but also dense in A.

If we let d(s)
�
= detR1(s) and n(s)

�
= x1(s) adjR1(s) ∈ Ap, then (22) becomes

n(s) = y(s)d(s)(25)

and so n(s)/d(s) ∈ Op. Thus, by definition (23) of H(d), we have that

a(s) ∈ H(d) ⇒ a(s)
n(s)

d(s)
∈ Ap.(26)

Although H(d) was defined only for scalar equations, we remark that H(d) depends
only on d(s), and hence (26) is true componentwise.

Since H(d) is dense in A, by (24) there must be a sequence an(s) ∈ H(d) con-
verging to 1 ∈ A. From (25) and (26) we obtain that

an(s)
n(s)

d(s)
= an(s)y(s) ∈ Ap.

If we multiply by an(s) both members of (21), we obtain

an(s)x(s) = an(s)y(s)R(s) ∈ ApR(s).

Therefore, an(s)x(s) is a sequence in ApR(s) and its limit lies in the closure of this
set. Since an(s) converges to 1, an(s)x(s)→ x(s) ∈ ApR(s). In other words,

kerA ◦M(s) ⊆ imA ◦R(s).

Considering also (20), if we take the orthogonals that invert the inclusions [24,
p. 195], we obtain

imA ◦R(s)
⊥ ⊆ kerA ◦M(s)⊥ ⊆ imA ◦R(s)⊥.

By Proposition 2.1, imA ◦R(s)
⊥
= kerE R(s)⊥⊥ = imA ◦R(s)⊥⊥⊥, and the last term

is equal [24, Cor. 1, p. 363] to imA ◦R(s)⊥ = kerE R(s). Therefore,

B = kerE R(s) = kerA ◦M(s)⊥ = imE M(s).

3.2.1. Single input behaviors. In this section we concentrate our attention
on the relation between conditions IR and GI, i.e., between the existence of an image
representation and the existence of a generalized inverse of the matrix providing the
kernel representation. We have already shown that GI ⇒ IR and that there exists an
image representation in Hm whenever R(s) ∈ Hp×q

m .
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In this section we will show that also the converse is true under a rank condition
that can be better understood if we introduce the concept of input/output represen-
tation of a behavior.
Definition 3.7. An input/output representation of a behavior B ⊆ Eq is a

partition of its variables w ∈ B into input variables u ∈ Em, m = q − r, and output
variables y ∈ Er, such that the input is the following.

Free. For every u ∈ Em there is a y ∈ Er such that the trajectory w consisting of
y and u is in B.

Maximal. Once u has been fixed, y does not contain other free variables.
Note that we are disregarding properness issues for the sake of simplicity. For

more details, see [22, ch. 3.3].
In general, a behavior B = kerE R(s) with R(s) ∈ Ap×q may not admit an in-

put/output representation. However, delay-differential systems always have such a
representation.
Theorem 3.8. Let B = kerE R(s) with R(s) ∈ Hp×q

m with rank r. Then B admits
an input/output representation with r outputs and q − r inputs.

Proof. After a suitable permutation of its columns, we can partition R(s) as

R(s) = [P (s) −Q(s)],

and w ∈ B consistently in the following way: w� = [y� u�]. So P (s) ∈ Hp×r
m is a full

column rank matrix. The description of B becomes

w ∈ B ⇔ R(s)w = 0 ⇔ P (s)y = Q(s)u.(27)

We prove that this is an input/output representation. Indeed, there is a matrix
C(s) ∈ Hr×p

m such that

C(s)P (s) = r(s)I,(28)

where r(s) ∈ Hm is nonzero. Moreover, by hypothesis every column of Q(s) is not
independent from the columns of P (s). This means that there is a scalar a(s) ∈
Hm and a matrix F (s) ∈ Hr×(q−r)

m such that a(s)Q(s) = P (s)F (s). This relation
implies that, since Hm is a domain, kerHm

◦P (s) ⊆ kerHm
◦Q(s). Therefore, if we

multiply (28) by P (s) on the left, we get

P (s)C(s)P (s)− P (s)r(s) = (P (s)C(s)− r(s)I)P (s) = 0,

and so even (P (s)C(s)− r(s)I)Q(s) = 0. Thus

P (s)C(s)Q(s) = Q(s)r(s).(29)

Now, to see that (27) is an input/output representation, we have to show first
of all that the input u is free. Fix any u ∈ Eq−r. Since r(s) is surjective on E
by Proposition 2.3-5, there exists v ∈ Eq−r such that r(s)v = u, and so, if we let
y

�
= C(s)Q(s)v and use identity (29), we obtain that

P (s)y = P (s)C(s)Q(s)v = r(s)Q(s)v = Q(s)u.

Finally, fixing u = 0, P (s)y = 0 implies that C(s)P (s)y = r(s)y = 0, and
hence y is not free since every component is a solution of the same delay-differential
equation.
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Remark 3.9. Theorem 3.8 holds more generally for a behavior B = kerE R(s) with
R(s) ∈ Ap×q, under the additional assumption that at least one of its rank minors
belongs to Hm.

The following theorem shows in which case the existence of an image representa-
tion of kerE R(s) implies the existence of a generalized inverse of R(s) over A.
Theorem 3.10. Let R(s) ∈ Hp×q

m and suppose that B = kerE R(s) is a regular
behavior with a single input. Then, if B admits an image representation, R(s) admits
a generalized inverse.

Proof. By Theorem 2.12 and (38), there is a column M(s) ∈ Hq×1
m that is con-

structed with the q rank minors of R(s), such that

kerO R(s)◦ = imO M(s)◦.

If we show that 1 ∈ imA ◦M(s), we have proved that the rank minors of R(s) satisfy
a Bézout equation over A and, by Theorem 2.9, R(s) admits a generalized inverse.

Since the behavior admits an image representation, say B = imE N(s) withN(s) ∈
Aq×d, then R(s)N(s) = 0. Thus each row of N(s) is in kerO R(s)◦, and so we have
that

∃Y (s) ∈ O1×d : M(s)Y (s) = N(s) ⇒ mi(s)yj(s) = nij(s).

By Proposition 2.3-3 nij(s)/mi(s) = yj(s) ∈ O is a Paley–Wiener function and
so Y (s) ∈ A1×d. Now, since M(s)Y (s) = N(s), where every matrix is an operator,
imE N(s) ⊆ imE M(s). Therefore,

kerE R(s) = imE N(s) ⊆ imE M(s) ⊆ kerE R(s),

so imE M(s) is closed and, by Propositions 2.1 and 2.2, imA ◦M(s) is also closed.
We know that the rank minors of R(s) that are the elements of M(s) have no

common zeros, and thus by Theorem 2.7 imA ◦M(s) = A.
4. Controllability of multidelay differential systems. In this section we

will show that the equivalence between all the conditions introduced in Definition 3.1
does hold if we restrict our attention to a particular class of delay-differential systems
that contains delay systems in state space form.

The following scheme describes the relations already established and two other
results that give sufficient conditions for spectral controllability to imply the existence
of a generalized inverse, yielding in this way the equivalence of all the conditions listed
in Definition 3.1.

�� ��

�� ��DCS ⇔ DIR

��

�� ��

�� ��BC��
�� ��

�� ��IR��

�� ��

�� ��SC

�������������������������������

�����������������������������

��

4.9, 4.7 ����������������
�� ��

�� ��GI

��

In order to illustrate the assumptions that the class of systems which we will
consider must satisfy, we need preliminary definitions and results that concern expo-
nential polynomials in Rm[s] and elements in Hm.

We remind the reader that Rm is isomorphic to the ring of Laurent polynomials
in m variables and that Rm[s] is isomorphic to the ring of polynomials in m + 1
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variables to which we refer for factorization properties. We extend now the definition
of monic polynomials to Hm following [10, Def. 2.2].
Definition 4.1. An element r(s) ∈ Rm[s] is monic if the corresponding polyno-

mial in m+ 1 variables is monic with respect to s, i.e., the highest degree power of s
is contained in one single monomial of the form ksnesτ , k, τ ∈ R, k �= 0. An element
h(s) ∈ Hm is monic if it can be written as h(s) = n(s)/d(s) with n(s) ∈ Rm[s] monic
and d(s) ∈ R[s].

The following proposition concerns the solvability of Bézout equations over A for
delay-differential elements.
Proposition 4.2. Suppose that the elements r1(s), . . . , rl(s) ∈ Hm have no

common zeros and let I �
= (r1(s), . . . , rl(s))A be the ideal over A that they generate.

Then the following conditions are equivalent.
1. I = A.
2. There exists p(s) ∈ R[s] such that p(s) ∈ I.
3. There exists h(s) ∈ Hm monic such that h(s) ∈ I.

In order to prove this proposition we need several technical results.
This first lemma shows that the ideal generated over Hm by elements in the same

ring that have no common zeros contains an exponential polynomial with a particular
property.
Lemma 4.3. If the elements ri(s) ∈ Hm, i = 1 . . . , l, do not have common zeros,

then there exist xi ∈ Rm[s], d(s) ∈ R[s], and n(s) ∈ Rm such that

l∑
i=1

xi(s)ri(s) = d(s)n(s).

Proof. By Proposition 2.3-1, ri(s) = ni(s)/di(s), with ni(s) ∈ Rm[s] and di(s) ∈
R[s]. Let g(s) be the common factor of ni(s) (viewed as polynomials), and sup-
pose that g(s0) = 0. Then for every i, ni(s0) = ri(s0)di(s0) = 0. Observe that
r1(s), . . . , rl(s) have no common zeros and thus there is at least a j such that dj(s0) =
0. This shows that every zero of g(s) is a zero of d1(s) · · · dl(s) ∈ R[s], and therefore
g(s) has only a finite number of zeros.

Since by Lemma 2.5 the only elements without zeros in Rm[s] are exponentials,
there is a d(s) ∈ R[s] and a τ ∈ R such that g(s) = esτd(s), and we can factor
ni(s) = n̄i(s)d(s) with n̄i(s) ∈ Rm[s] without common (polynomial) factors.

It is known [28, Thm. 2, part 2] that there always exists a linear combination
of factor coprime polynomials that is independent of one variable, i.e., there are
exponential polynomials x̄i(s) ∈ Rm[s] such that

l∑
i=1

x̄i(s)n̄i(s) = n(s) ∈ Rm.

So, if we put xi(s) = x̄i(s)di(s), we get

l∑
i=1

xi(s)ri(s)=

l∑
i=1

x̄i(s)di(s)ri(s)=

l∑
i=1

x̄i(s)ni(s)=d(s)

l∑
i=1

x̄i(s)n̄i(s)=d(s)n(s).

We will be concerned with properties of holomorphic functions regarding the
placement of their zeros. The following notation will be very useful.
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Definition 4.4. For any holomorphic function a(s) ∈ O, we let Z(a) be the set
of zeros of a(s).

We remark that Z(a) has no limit points in C. This is a fundamental property
of holomorphic functions. Moreover, we note that the definition of Z(a) does not
take multiplicities into account; they are, in this particular context, an unnecessary
complication.

In the next lemma we give an estimate of the position of zeros of two classes of
exponential polynomials.
Lemma 4.5.
1. If a(s) ∈ Rm, there exists C > 0 such that |Re s| ≤ C for every s ∈ Z(a).
2. If a(s) ∈ Rm[s] is monic, there exist two constants A,B > 0 such that

| Im s| ≤ AeB|Re s| for every s ∈ Z(a).
Proof. We prove that if a(s) ∈ Rm, then there exists a constant C ≥ 0 such that if

a(s0) = 0, then Re s0 ≤ C, the opposite being analogous. We can suppose that a(s) =
1 +

∑
aie

−bis with bi > 0; otherwise we could collect a suitable exponential factor
kebs. Now, assume that a(s0) is zero and Re s0 ≥ 0. Then 1 = |∑ aie

−bis0 |. If we let
A =

∑ |ai| and B = min{bi}, then we obtain 1 = |∑ aie
−bis0 | ≤ ∑ |ai| e−bi Re s0 ≤

Ae−BRe s0 , which implies that Re s0 ≤ 1
B logA.

Regarding the second inequality, it is not restrictive to suppose that a(s) = sn +∑n−1
i=0 ai(s)s

i with ai(s) ∈ Rm. Consider first only complex numbers s0 ∈ C such
that |s0| ≥ 1. Then, whenever s0 is a zero of a(s), we obtain

sn0 = −
n−1∑
i=0

ai(s0)s
i
0 ⇒ s0 = −

n−1∑
i=0

ai(s0)s
i−n+1
0 ,

and, employing elementary inequalities, we obtain

| Im s0| ≤ |s0| ≤
n−1∑
i=0

|ai(s0)| |si−n+1
0 | ≤

n−1∑
i=0

|ai(s0)|.

Note that every polynomial ai(s) ∈ Rm can be written as ai(s) =
∑νi

j=1 aije
bijs, and

so

|ai(s0)| ≤
νi∑
j=1

|aij | |ebijs0 | ≤ νimax
j
{|aij |}emaxj{|bij |}|Re s0|.

Therefore, for some Ā > 0, B > 0, we have | Im s0| ≤ ĀeB|Re s0| for |s0| ≥ 1. Taking
A = max{1, Ā}, we get the claimed result.

The following proposition extends to Hm an estimate from above that is known
for exponential polynomials in Rm[s].
Proposition 4.6. For every h(s) ∈ Hm there exist real constants K,M,N,E > 0

such that

|h(s)| ≥ K dist(s,Z(h))Me−E|Re s|

(1 + |s|)N .(30)

Proof. Write h(s) as n(s)/d(s), where, by Proposition 2.3-1, n(s) ∈ Rm[s] and
d(s) ∈ R[s]. Notice that if d(s) has degree ν, there is a D > 0 such that |d(s)| ≤
D(1+ |s|)ν . Indeed, if d(s) =∑ν

0 dis
i, let D

�
= max{|di|/

(
ν
i

)} and in this way we have
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|d(s)| ≤ ∑ |di| |s|i ≤ D
∑(

ν
i

)|s|i = D(1 + |s|)ν . As stated in [3, Prop. 1], since n(s)

is an exponential polynomial, there are real constants K̃, Ñ ,M,E > 0 such that

|n(s)| ≥ K̃ dist(s,Z(n))Me−E|Re s|

(1 + |s|)Ñ .

Therefore, we obtain

|h(s)| = |n(s)||d(s)| ≥
K̃ dist(s,Z(n))Me−E|Re s|

D(1 + |s|)Ñ+ν
.(31)

Now let Ze �
= Z(n) \ Z(h) be that subset of zeros of d(s) that eliminate, by division,

some of the zeros of n(s). We employ now Lemma B.1 by letting V = Z(h) and
W = Ze, which is finite and thus compact. We obtain that fixing any positive L < 1,
there is an R > 0 such that

dist(s,Z(n)) ≥ Ldist(s,Z(h)) as |s| > R.

Therefore, if we let N
�
= Ñ + ν, from (31) we get

|h(s)| ≥ K̃LM

D
f(s) for every s such that |s| > R,(32)

where f(s)
�
= dist(s,Z(h))Me−E|Re s|(1 + |s|)−N .

Note that, since L < 1, this relation still holds inside the closed disk, i.e., for
|s| ≤ R, wherever we have dist(s,Z(n)) = dist(s,Z(h)), that corresponds to the
condition dist(s,Z(h)) ≤ dist(s,Ze).

Now we have only to consider the compact subset U of the closed disk constituted
by s ∈ C such that |s| ≤ R and dist(s,Z(h)) ≥ dist(s,Ze). The function h(s) has
no zeros in U, and therefore there exists a constant H > 0 such that |h(s)| ≥ H
for all s ∈ U. Moreover, f(s) has maximum F on the compact U. So, if we let

K
�
= min{HF , K̃LM

D }, then
|h(s)| ≥ H ≥ KF ≥ Kf(s) ∀s ∈ U,

and, by (32), on the remaining points of C we have

|h(s)| ≥ K̃LM

D
f(s) ≥ Kf(s) for every s ∈ C \ U,

thus completing the proof of the Proposition.
We are now in a position to prove Proposition 4.2.
Proof. The first condition implies obviously the last two. We have to prove the

converse.
(2 ⇒ 1) Let R(s) = [ri(s)] ∈ H1×l

m be the row vector containing the given poly-
nomials. By hypothesis we know that there is a column vector A(s) ∈ Al×1 such that
we have

p(s)
�
= R(s)A(s) =

∑
i

ri(s)ai(s) ∈ R[s].

If s0 is a zero of p(s), then R(s0)A(s0) = 0. Since ri(s) have no common zeros,
R(s0) �= 0 and hence A(s0) ∈ kerC R(s0)◦. By Theorem 2.12 there is a matrix M(s) ∈



CONTROLLABILITY OF CONVOLUTIONAL SYSTEMS 749

Ht×d
m with constant rankC M(λ) for every λ ∈ C, such that kerO R(s)◦ = imO M(s)◦.

Therefore, kerC R(s0)◦ = imC M(s0)◦, and so there exists a column c ∈ C
d×1 such

that A(s0) = M(s0)c. Since R(s)M(s)c = 0, we can write

p(s) = R(s)(A(s)−M(s)c) ⇒ p̃(s)
�
=

p(s)

s−s0 = R(s)
A(s)−M(s)c

s− s0
= R(s)Ã(s),

where p̃(s) is a polynomial with lower degree than p(s) and Ã(s) is a vector with
entries in A by Proposition 2.3-3. Iterating this procedure, we get a Bézout equation
for ri(s) with coefficients in A.

(3 ⇒ 2) The element h(s) ∈ I may be written as a quotient in Rm[s] whose
numerator a(s) ∈ Rm[s] is monic and belongs to I. By Lemma 4.5-2, we have that
| Im s| ≤ AeB|Re s| for every s ∈ Z(a). Moreover, by Lemma 4.3, ri(s) generate an
exponential polynomial b(s) = d(s)n(s) such that d(s) ∈ R[s] and n(s) ∈ Rm. Since
d(s) has a finite number of zeros and the real part of the zeros of n(s) is bounded by
Lemma 4.5-1, there is a constant C > 0 such that |Re s| ≤ C for every s ∈ Z(b).

So, if we consider the closed disk C centered at the origin with radius R such that
R2 > A2e2BC + C2, it contains (strictly) the region containing the common zeros of
a(s) and b(s). We can build two polynomials p(s) and q(s) having those zeros of a(s)
and b(s), respectively, that lie in C. In this way we can define the elements in Hm

ha(s)
�
=

a(s)

p(s)
∈ Hm and hb(s)

�
=

b(s)

q(s)
∈ Hm

that have no zeros inside C and thus, in particular, have no common zeros. Moreover,
by construction there exists a constant D > 0 such that dist(Z(ha),Z(hb)) ≥ 2D.
Therefore, we can define the sets

Ca
�
= {s ∈ C such that dist(s,Z(ha)) ≤ dist(s,Z(hb))},

Cb
�
= {s ∈ C such that dist(s,Z(ha)) ≥ dist(s,Z(hb))},

and so dist(s,Z(ha)) ≥ D for every s ∈ Cb and dist(s,Z(hb)) ≥ D for every s ∈ Ca.
As stated in Proposition 4.6, there are suitable positive constants such that

|ha(s)| ≥ Ka dist(s,Z(ha))Mae−Ea|Re s|

(1 + |s|)Na ≥ KaD
Mae−Ea|Re s|

(1 + |s|)Na ∀s ∈ Cb,

|hb(s)| ≥ Kb dist(s,Z(hb))Mbe−Eb|Re s|

(1 + |s|)Nb ≥ KbD
Mbe−Eb|Re s|

(1 + |s|)Nb ∀s ∈ Ca.

So, since C = Ca ∪ Cb, if we let K
�
= min{KaD

Ma ,KbD
Mb}, E �

= max{Ea, Eb}, and
N

�
= max{Na, Nb}, we obtain

|ha(s)|+ |hb(s)| ≥ Ke−E|Re s|

(1 + |s|)N ∀s ∈ C.

We know [14] that this condition ensures the existence of two Paley–Wiener functions
xa(s), xb(s) ∈ A such that ha(s)xa(s) + hb(s)xb(s) = 1, i.e.,

a(s)q(s)xa(s) + b(s)p(s)xb(s) = p(s)q(s),

and therefore the ideal I contains the polynomial p(s)q(s).
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An immediate consequence of the previous proposition is the following result for
delay-differential systems.
Theorem 4.7. Let B = kerE R(s) with R(s) ∈ Hp×q

m . If the ideal generated by the
rank minors of R(s) over A contains a monic element a(s) ∈ Hm, then the conditions
in Definition 3.1 are all equivalent.

Proof. We have only to prove that, under this hypothesis, SC ⇒ GI, or, equiva-
lently, by Theorem 2.9, that the rank minors satisfy a Bézout equation in A. This is
true by Proposition 4.2.

Remark 4.8. Note that for systems with only one delay, spectral controllability
always implies that the ideal generated by the rank minors contains a polynomial only
in s, and therefore the hypothesis of Theorem 4.7 always holds. We have in this way
that all the conditions of Definition 3.1 are always equivalent for systems with one
delay, as already proved in [9, 23].

Remark 4.9. The previous theorem does not hold in general for a behavior
B = kerE R(s) with R(s) ∈ Ap×q, unless its rank minors belong to Hm. However,
note that the proof (2 ⇒ 1) of Proposition 4.2 still holds if ri(s) ∈ A, and therefore
we have the following result.

Let B = kerE R(s) with R(s) ∈ Ap×q. If the ideal generated by the rank minors of
R(s) over A contains a polynomial p(s) ∈ R[s], then the conditions in Definition 3.1
are all equivalent.

Theorem 4.7 constitutes a powerful tool even though the check of the fact that
there exists a monic element in the ideal over A generated by the rank minors is
difficult to perform in practice. On the other hand, if R(s) ∈ Hp×q

m , by Gröbner bases
techniques it can be checked whether there exists a monic polynomial in the ideal
over Hm generated by the rank minors, and this is actually still a sufficient condition
for the equivalence of the conditions of Definition 3.1. Indeed, by Proposition 2.3-1
we can write the rank minors of R(s) as ri(s) = pi(s)/ρ(s), where pi(s) ∈ Rm[s] and
ρ(s) ∈ R[s]. It is not difficult to prove that there exists a monic h(s) ∈ Hm in the
ideal over Hm generated by the rank minors if and only if there exists a monic p(s)
in the ideal over Rm[s] generated by the Laurent exponential polynomials pi(s).

The nicest situation in which the previous theorem can be applied is in relation
with the class of systems in state space form

ẋ = A(στ1 , . . . , στm)x+B(στ1 , . . . , στm)u.(33)

Actually, the first rank minor of the matrix

R(s) = [sI−A(e−sτ1 , . . . , esτm) B(e−sτ1 , . . . , esτm)],

which provides a kernel representation of the system (33), is monic.

5. Conclusions. In this paper we have shown some remarkable properties re-
lated to controllability of systems described by delay-differential or convolutional equa-
tions. We have shown, however, that the equivalence between spectral controllability,
behavior controllability, and the existence of an image representation does not hold
in this general setup, essentially due to the fact that images may not be closed in
general.

There are two ways to overcome this difficulty. One is to weaken the notion
of image representation. The second is to find subclasses of systems for which the
equivalence holds. We showed that for the class of systems in state space form such
equivalence holds.
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Several problems remain unsolved. We conclude this paper by giving a brief list
of open problems, which will be the object of our future investigation.

1. It would be interesting to understand if the equivalence of conditions SC,
DCS, and DIR can be extended to nonregular behaviors, i.e., systems admitting a
kernel representation B = kerE R(s) in which the matrix R(s) is not full row rank.

2. Another open problem is connected with the possibility of extending The-
orem 3.10, showing that IR and GI are equivalent for regular systems with a single
input to a more general situation. As pointed out by H. Glüsing-Lüerßen in a personal
communication, it is not possible to extend such a result to nonregular systems, as
proved by the following example:

B = kerE

[
r1(s) 0
r2(s) 0

]
= imE

[
0
1

]
,

where r1(s), r2(s) are defined in (5) within the proof of Proposition 2.6. The matrix
providing the kernel representation of B has no generalized inverse over A.

3. An interesting direction of future research concerns a very detailed inves-
tigation of the class of systems for which all the conditions of Definition 3.1 are
equivalent. We conjecture that the lack of such equivalence is the typical property of
systems whose spectral controllability is not robust with respect to variations of the
delays.

Appendix A. Proof of Theorem 2.12. The proof needs a rather involved
notation that two simple examples will help to explain.

Let R(s) = [a b c d] ∈ A1×4. (We omit the dependence of the elements on s.) By
Remark 2.10, the hypotheses of Theorem 2.12 are satisfied with r = p = 1, q = 4 as
soon as R(λ) �= 0 for all λ ∈ C.

We show how we can construct a matrix M(s) ∈ A4×6 of rank q − r = q − p = 3
such that R(s)M(s) = 0. Consider the matrix

R̃(s) =

[
w x y z
a b c d

]
,

where the vector [w x y z] belongs to the image of ◦R(s); i.e., it is a scalar multiple
of R(s). In this case R̃(s) has still rank p = 1 and therefore its minors of order p+ 1
are zero. Note that the minors of R̃(s) are linear functions of w, x, y, or z. We will
show that we can write them as particular row-column products.

We have 6 =
(
4
2

)
=
(

q
p+1

)
different (ordered) sets of 2 = p+ 1 columns of R(s),

ρ1 = {1, 4} , ρ2 = {2, 4} , ρ3 = {3, 4} , ρ4 = {1, 3} , ρ5 = {2, 3} , ρ6 = {1, 2} ,
that correspond to every minor of order p + 1 of R̃(s). The minor given by ρ1 is
wd− za = 0, which can be written (up to multiplication by −1) as

[
w x y z

] 
−d
0
0
a

 ,
i.e., the first element in the column is −d, the minor of R(s) corresponding to the
set of columns {4} = ρ1 \ {1}. (We consider it with the opposite sign if the row we
are considering, 1, occupies an odd position in ρ.) The second and third elements are
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zero (2, 3 �∈ ρ1), the fourth element is a, and the minor of column {1} = ρ1 \ {4} of
R(s).

From every ρi we can construct such a row and obtain the matrix

M(s) =


−d 0 0 −c 0 −b
0 −d 0 0 −c a
0 0 −d a b 0
a b c 0 0 0

 ,
which satisfies the equation R(s)M(s) = 0.

Note that −d3 is a minor of order 3 = q − p of M(s). The third power of every
other minor of R(s) is a minor of order 3 of M(s). Some of the rank minors of R(s)
are not zero, so M(s) has at least rank 3. It cannot have rank 4 because otherwise
the equation R(s)M(s) = 0 would imply that R(s) = 0.

Without being so detailed, we show what happens with a full rank matrix having
dimensions p = 2 and q = 4:

R(s) =

[
a b c d
α β γ δ

]
.

Matrix R̃(s) is now

R̃(s) =

w x y z
a b c d
α β γ δ

 ,
where [w x y z] is any linear combination of the rows of R(s). Its minors of order
p+ 1 = 3 correspond to columns in the d =

(
q

p+1

)
=
(
4
3

)
= 4 sets

ρ1 = {1, 3, 4} , ρ2 = {2, 3, 4} , ρ3 = {1, 2, 4} , ρ4 = {1, 2, 3}

and permit us to construct M(s) in the following way:

M(s) =


dγ − cδ 0 dβ − bδ cβ − bγ

0 dγ − cδ aδ − dα aγ − cα
aδ − dα bδ − dβ 0 bα− aβ
cα− aγ cβ − bγ bα− aβ 0

 .
M(s) has obviously rank 2 = q − p, since among its minors of order 2 there are

the squares of the minors of order p = 2 of R(s).
Proof of Theorem 2.12. Since this proof is quite long, we divide it into steps.

First step. We prove the existence of M(s) such that R(s)M(s) = 0. If r = q,
then R(s) is left invertible over O. There exists G(s) ∈ Oq×p such that G(s)R(s) = I.
This implies that R(s)◦ is injective and ◦R(s) surjective over O. Therefore, M(s) =
0 ∈ Sq×1 satisfies the given conditions.

Let us suppose that r < q. If r(s) is any element in OpR(s) and R̄(s) ∈ Or×q is
one of the

(
p
r

)
submatrices of R(s) with r rows, we can build the matrix

R̃(s) =

[
r(s)
R̄(s)

]
.(34)
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R̃(s) has rank at most r, so every minor of order r+1 is zero and is a linear combination
of r + 1 elements of r(s), the coefficients being r + 1 minors of order r of R̄(s) and
thus rank minors of R(s).

More precisely, let ρ ⊆ N be a subset of r+1 elements of the set {1, 2, . . . , q}. We
suppose that ρ is ordered and write ρ(i) to indicate the ith element of ρ. Furthermore,
we denote by

ρ̄(i)
�
= ρ \ {i}(35)

the ordered set with r elements which has the elements of ρ except of i, and we let

nρ(i)
�
=

{
0 if i �∈ ρ,
(−1)k if ρ(k) = i.

(36)

That is to say if i ∈ ρ, then nρ(i) is equal to 1 when i occupies an even “position” in
ρ.

We know by basic combinatorics that there are exactly d̄ =
(

q
r+1

)
different sets

ρj , so we can construct a matrix M̄(s) ∈ Sq×d̄ with elements m̄ij(s) defined as

m̄ij(s)
�
= nρj (i)R̄(s)ρ̄j(i),(37)

where R̄(s)ρ is the determinant of the matrix formed by those columns of R̄(s) which
are indexed by elements in the set ρ.

We see that if r(s) in (34) has elements ri(s) and M̄j(s) is the jth column of
M̄(s), then, remembering that by definition (36) nρj (i) = 0 when i �∈ ρj , we have

0 = R̃(s)ρj =
∑
i∈ρj

ri(s)nρj (i)R̄(s)ρ̄j(i) =

q∑
i=1

ri(s)nρj (i)R̄(s)ρ̄j(i) = r(s)M̄j(s).

Since r(s) may be any row in OpR(s) and thus any row of R(s), this proves that
R(s)M̄(s) = 0. Then, if we let

d
�
= d̄

(
p

r

)
=

(
q

r + 1

)(
p

r

)
(38)

and M(s) ∈ Sq×d be the block column matrix containing the
(
p
r

)
matrices M̄(s)

obtained by varying the set of rows defining R̄(s), we still have

R(s)M(s) = 0.(39)

Second step. M(s) has rank q − r and admits a generalized inverse over O. Let
R̄(s) ∈ Or×q be a submatrix of R(s) with r rows, as in the previous step, and
consider M̄(s) defined by (37). Let ρ

�
= {q − r + 1, q − r + 2, . . . , q − 1, q} be the set

that indicates the last r columns of R̄(s), and assume that the sets ρj , j = 1, . . . , d̄
are such that

ρj = {j} ∪ ρ ∀j ∈ {1, 2, . . . , q − r} .

By definition (35) ρ̄j(j) = ρ, and thus by (37)

|m̄jj(s)| = |R̄(s)ρ| ∀j ∈ {1, 2, . . . , q − r} .
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Again the definition (37) of m̄ij(s) and (36) imply that

∀i, j ∈ {1, 2, . . . , q − r} , i �= j ⇒ nρj (i) = 0, and therefore m̄ij(s) = 0,

so the submatrix containing the first q − r rows and columns of M̄(s) has nonzero
entries only on the main diagonal and these are equal, up to the sign, to the minor
R̄(s)ρ of R(s).

It is obvious, by the symmetric structure of the problem, that the set of minors
of order q− r of M(s) contains every (q−r)th power of the rank minors of R(s). This
shows that M(s) has rank m ≥ q − r.

If we denote byM the field of fractions of O, then the dimension of kerMR(s)◦

is q − r and the dimension of imMM(s)◦ is m. Therefore, since R(s)M(s) = 0, the
first vector space includes the second; hence m ≤ q − r and therefore m = q − r.

Since the maximal minors of R(s) have no common zeros and their mth power is
contained in the set of rank minors of M(s), even these minors cannot have common
zeros. Therefore, by Theorem 2.9, M(s) also has a generalized inverse.

Third step. We prove that imO ◦R(s) = kerO ◦M(s) and kerO R(s)◦ = imO M(s)◦.
Equation (39) implies that imO ◦R(s) ⊆ kerO ◦M(s). In order to prove the converse
inclusion, let us consider again kernels and images over the field of fractions of O. In
this case imM ◦R(s) is a subspace of kerM ◦M(s). However, imM ◦R(s) has dimension
r and kerM ◦M(s) has dimension q−m = r, and therefore they coincide. So, for every
x(s) ∈ kerO ◦M(s) there is an ȳ(s) ∈ Mp such that x(s) = ȳ(s)R(s). Multiplying by
a suitable d(s) ∈ O, we obtain d(s)x(s) = y(s)R(s) with y(s) ∈ Op. By Lemma 2.11,
d(s)x(s) ∈ imO ◦R(s) = kerO ◦(I − G(s)R(s)). Since O is a domain, also x(s) ∈
kerO ◦(I −G(s)R(s)) = imO ◦R(s), and this proves that kerO ◦M(s) ⊆ imO ◦R(s).

The equation kerO R(s)◦ = imO M(s)◦ follows analogously, since kerMR(s)◦ and
imMM(s)◦ are the same vector space with dimension q − r.

Appendix B. A technical lemma.
Lemma B.1. Let ∅ �= V,W ⊂ C with W compact, and let 0 < L < 1. Then there

exists an R > 0 such that for every s ∈ C such that |s| > R,

dist(s,V ∪W) ≥ Ldist(s,V).(40)

Proof. Since the function dist(w,V) of w is continuous [5, Thm. IX.4.3], it has a
maximum over the compact W that we denote by D ≥ 0. We want to show that the
following inequality holds true:

dist(s,V) ≤ dist(s,V ∪W) +D ∀s ∈ C.(41)

Define the set

U
�
= {s ∈ C such that dist(s,V) > dist(s,W)} .(42)

Observe that dist(s,V ∪W) = min {dist(s,V),dist(s,W)}. Thus, inequality (41) is
trivial if s /∈ U, because in this case dist(s,V ∪W) = dist(s,V). So, assume that
dist(s,V ∪W) = dist(s,W). By definition of distance, the relation

dist(s,V) = inf
v∈V
|s− v| ≤ |s− w|+ inf

v∈V
|w − v| = |s− w|+ dist(w,V) ≤ |s− w|+D

holds for every w ∈ W. Therefore, it is true for |s−w| = dist(s,W), so proving (41).
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Fix now 0 < L < 1. Note that, if s /∈ U, condition (40) is always satisfied.
Therefore, if U is bounded, the claim is proved choosing an R > 0 such that |s| > R
implies that s /∈ U.

Suppose, conversely, that U is not bounded and that s belongs to U. As |s| → ∞,
even dist(s,W) → ∞, being that W is compact, and so does dist(s,V), by defini-
tion (42). Therefore, there is an R > 0 such that dist(s,V) ≥ D/(1 − L) for every s
such that |s| > R. This is equivalent to

1− D

dist(s,V)
≥ L.

Thus, using this inequality and formula (41), we obtain that

dist(s,V ∪W) ≥ dist(s,V)−D = dist(s,V)

(
1− D

dist(s,V)

)
≥ Ldist(s,V),

which proves condition (40) for every s such that |s| > R.
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Abstract. Positive real rational functions play a central role in both deterministic and stochastic
linear systems theory, as well as in circuit synthesis, spectral analysis, and speech processing. For
this reason, results about positive real transfer functions and their realizations typically have many
applications and manifestations.

In this paper, we study certain manifolds and submanifolds of positive real transfer functions,
describing a fundamental geometric duality between filtering and Nevanlinna–Pick interpolation.
Not surprisingly, then, this duality, while interesting in its own right, has several corollaries which
provide solutions and insight into some very interesting and intensely researched problems. One of
these is the problem of parameterizing all rational solutions of bounded degree of the Nevanlinna–Pick
interpolation problem, which plays a central role in robust control, and for which the duality theorem
yields a complete solution. In this paper, we shall describe the duality theorem, which we motivate
in terms of both the interpolation problem and a fast algorithm for Kalman filtering, viewed as a
nonlinear dynamical system on the space of positive real transfer functions.

We also outline a new proof of the recent solution to the rational Nevanlinna–Pick interpolation
problem, using an algebraic topological generalization of Hadamard’s global inverse function theorem.

Key words. Nevanlinna–Pick interpolation, filtering, positive real functions, foliations, degree
constraint
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1. Introduction. Modulo a conformal equivalence, the classical Nevanlinna–
Pick problem amounts to determining a function which is positive real, i.e., is analytic
and has nonnegative real part in D

c := {z ∈ C | |z| > 1}, and which satisfies the
interpolation condition

f(zk) = wk for k = 0, 1, . . . , n,(1.1)

where z0, z1, . . . , zn ∈ D
c and w0, w1, . . . , wn ∈ C. This problem has a solution if

and only if the associated Pick matrix P is positive semidefinite. It is unique if P
is singular, and there are infinitely many solutions if P > 0 (see [35, 33]). We are
interested in a particular subset of these solutions, namely those which are rational
of degree at most n, and we shall refer to the problem of determining these as the
Nevanlinna–Pick problem with degree constraints [12].

For simplicity, in this paper we shall consider the special case that the inter-
polation points are all distinct and fixed and with z0 = ∞. Then the Pick matrix
becomes

P =

[
wk + w̄�

1− z−1
k z̄−1

�

]n
k,�=0

.
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Moreover, we assume that the sets z0, z1, . . . , zn and w0, w1, . . . , wn are self-conjugate
so that only real interpolants f need to be considered. We also normalize the problem
by setting

w0 = 1

so that f(∞) = 1. Finally, we assume that the interpolant is strictly positive real in
the sense that

f(eiθ) + f(e−iθ) > 0 for all θ ∈ [−π, π].
Any such function can, in a unique fashion, be written as

f(z) + f(z−1) = v(z)v(z−1),(1.2)

where v is a minimum-phase spectral factor having all zeros in the open unit disc.
These zeros will be called the spectral zeros of f . As we have remarked above, there are
several conformal equivalents of this problem, including Nevanlinna–Pick interpolation
for bounded-real, or Schur, functions. Indeed, even for positive real functions there
are two conventions, one dealing with interpolation problems inside the unit disc and
one outside the disc, as considered here. Our convention is motivated by the desire
to have spectral factors which are stable and minimum-phase and therefore may be
realized, in control engineering terms, by a stable discrete-time linear system.

We shall show that the space of all strictly positive real, rational functions of at
most degree n, Pn, admits two foliations: an interpolation foliation with one leaf for
each choice of interpolation values w1, w2, . . . , wn satisfying the Pick condition, and
a filtering foliation with one leaf for each choice of spectral zeros. These foliations
are complementary, each pair of leaves with one from each foliation intersecting in
one point under nonzero angle. This result is analogous to that obtained in [6] for
the case that z0 = z1 = · · · = zn = ∞, the rational covariance extension problem.
We note that the corresponding decompositions for the space of functions which are
positive real, rather than strictly positive real, are not necessarily disjoint, nor are the
equivalence classes necessarily smooth manifolds. For these reasons, we shall work
with strictly positive real functions.

More generally, in section 6 we also prove that Pn is diffeomorphic to W+
n × Sn,

where W+
n is the space of all w1, w2, . . . , wn satisfying the Pick condition, and Sn is the

space of (real) Schur polynomials of degree n, i.e., real monic polynomials of degree
n with all zeros in the open unit disc. Since, in addition, it can be shown that both
W+
n and Sn are diffeomorphic to R

n, this implies that Pn is Euclidean of dimension
2n.

2. Preliminaries. Let H2 be the Hardy space of all real functions which are
analytic in the exterior of the unit disc, D

c := {z ∈ C | |z| < 1}, and have square-
integrable radial limits

lim
r→+1

1

2π

∫ π

−π
|f(reiθ)|2dθ <∞

on the boundary. Denoting by L2 the space of all real functions which are square-
integrable on the unit circle, we may identify H2 with the subspace of L2 consisting of
those functions with vanishing positively indexed Fourier coefficients. More precisely,
for f ∈ H2,

f(z) = f0 + f1z
−1 + f2z

−2 + · · · .
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Similarly, let H̄2 be the conjugate Hardy space of L2-functions which are analytic in
the open unit disc and thus have vanishing negatively indexed Fourier coefficients so
that

f(z) = f0 + f1z + f2z
2 + · · ·

for f ∈ H̄2. Hence, if f
∗(z) := f(z−1), f ∈ H2 if and only if f∗ ∈ H̄2.

The space L2 is a Hilbert space with inner product

〈f, g〉 = 1

2π

∫ π

−π
f(eiθ)g∗(eiθ)dθ.

Next, given the interpolation points z1, z2, . . . , zn, define the Blaschke product

B(z) :=

n∏
k=1

1− z−1
k z

z − z̄−1
k

.

As is well known, the subspace BH2 is invariant under the shift z−1. In order to set
notation, we remark that BH2 is the kernel of the evaluation operator E : H2 → C

n

defined

E(f) =

f(z1)...
f(zn)

 ,
and, if z0 =∞, z−1BH2 is the kernel of

Ê(f) =


f(z0)
f(z1)

...
f(zn)

 .
In this paper, the coinvariant subspaces H(B) := H2 �BH2,

K := H(z−1B) = H2 � z−1BH2, and L := z−1H(B)(2.1)

will play an important part. They are all finite-dimensional. In fact, given the poly-
nomial

τ(z) =
n∏
k=1

(z − z̄−1
k ),(2.2)

K consists of all rational functions

r(z) =
π(z)

τ(z)

for which the polynomial π is of degree at most n, and hence K is (n+1)-dimensional.
The spaces H(B) and L are n-dimensional subspaces of K. In particular, L consists
of those rational functions r ∈ K for which r(∞) = 0. We shall also need the subset
R of functions in r ∈ K with the property that r − 1 ∈ L and r is minimum-phase
in the sense that the numerator polynomial π has all its zeros in the open unit disc.
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In fact, to say that r ∈ R is to say that π ∈ Sn, the n-dimensional space of (monic)
Schur polynomials defined in section 1.

Finally, we shall need the subspace

Q := K + K∗,(2.3)

in terms of which we have the orthogonal decomposition

L2 = zB∗H̄2 ⊕ Q⊕ z−1BH2(2.4)

and the subspace D ⊂ Q defined as

D := {Q = q + q∗ | q ∈ K}.(2.5)

An important convex (n + 1)-dimensional subset D+
n of D consists of those D ∈ D

which are positive real, i.e., satisfy the condition that D(eiθ) > 0 for all θ ∈ [−π, π].
Also define the n-dimensional subset Z+

n of D+
n of all D ∈ D+

n which are normalized
so that D(1) = 1. It is immediately seen that Z+

n is also convex.
The following lemma is a trivial modification of the unit circle version of Orlando’s

formula [15] (also see [5, Lemma 5.5]).
Lemma 2.1. Let a ∈ R, and define S(a) : K → D to be the linear mapping

defined by

S(a)v = av∗ + a∗v.

Then kerS(a) = 0.

3. The interpolation foliation. Any rational function f of degree at most n
has a representation

f(z) =
b(z)

a(z)
, a, b ∈ K.(3.1)

If, in addition, f is strictly positive real, the zeros of the rational functions a and
b in (3.1) must be located in the open unit disc. Therefore, if we also assume that
f(∞) = 1, it is no restriction to choose a, b ∈ R. Consequently, we define Pn to be
the space of all pairs (a, b) with a, b ∈ R such that f is strictly positive real. The
following result was established in [6]. We note that R is diffeomorphic to Euclidean
space R

n because Sn � R
n [4].

Proposition 3.1. The space Pn is a smooth, connected, real manifold of dimen-
sion 2n.

Next, denote by W+
n the space of all w ∈ C

n with components w1, w2, . . . , wn ∈ C

satisfying the Pick condition P > 0 and forming a self-conjugate set.
Proposition 3.2. W+

n is a smooth, connected, real manifold of dimension n.
Proof. It is clear that W+

n is a smooth manifold having real dimension n.
From the form of the Pick matrix, one can also see that W+

n is convex and hence
connected.

Let η : Pn → W+
n be the restriction of the evaluation operator E to Pn. Then,

for each w ∈W+
n ,

Pn(w) = η−1(w)(3.2)

is the space of all f ∈ Pn satisfying the interpolation condition (1.1) corresponding
to w.
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Theorem 3.3. The connected components of the sets {Pn(w) | w ∈ W+} form
the leaves of an n-dimensional foliation of Pn.

Remark 3.4. Below, we shall prove that the submanifold Pn(w) is actually con-
nected. This fact is a nontrivial consequence of the transversality lemma we shall
prove in section 5.

To prove this theorem, we need to show that η is a submersion [26], i.e., that the
Jacobian Jac(η)|(a,b) is everywhere surjective. To this end, for any u, v ∈ L, first form
the directional derivative of f in the direction (u, v), i.e.,

D(u,v)f = lim
ε→0

1

ε

[
b+ εv

a+ εu
− b

a

]
=

av − bu

a2
.

Then, the directional derivative of η in the direction (u, v) is

D(u,v)η =


D(u,v)f(z1)
D(u,v)f(z2)

...
D(u,v)f(zn)

 ,
which is zero if and only if

av − bu = rB, where r ∈ L.

Consequently,

ker Jac(η)|(a,b) = {(u, v) ∈ L× L | av − bu ∈ BL}.

Lemma 3.5. The tangent space of Pn(w) at (a, b) has dimension n and is given
by

T(a,b)Pn(w) = {(u, v) ∈ L× L | av − bu ∈ BL}.

Proof. The tangent vectors of Pn(w), as defined by (3.2), are precisely the vectors
in the nullspace of the Jacobian of η at (a, b). For simplicity of notation, denote
this space by V . To prove that dimV = n, let M(a,b) : V → BL be the mapping
M(a,b)(u, v) = av− bu. Let n0 be the number of common zeros of a and b. Then there
are three proper rational functions, each taking the value 1 at infinity, namely θ of
degree n0 and ã and b̃ of degree n−n0, such that a = θã and b = θb̃ and ã and b̃ have
no nontrivial common factors. Now, if (u, v) ∈ kerM(a,b), we have av − bu = 0, and
hence

v

u
=

b

a
=

b̃

ã
,

so there must be a rational function ϑ of degree n0 vanishing at infinity such that
u = ϑã and v = ϑb̃. Consequently, since ϑ is completely arbitrary,

dimkerM(a,b) = n0.

Moreover, for (u, v) ∈ V ,

av − bu = θ(ãv − b̃u) = Br for some r ∈ L.
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Therefore, since dimL = n and θ is fixed of degree n0,

dimM(a,b)(V ) = n− n0.

Therefore, by complementarity between rank and nullity,

dimV = dimM(a,b)(V ) + dimkerM(a,b) = n,

as claimed.
Proof of Theorem 3.3. Since the Jacobian Jac(η) is a linear map from the 2n-

dimensional tangent space of Pn to the n-dimensional tangent space of W+, com-
plementarity of rank and nullity for ker Jac(η) and the fact that dimker Jac(η) = n
(Lemma 3.5) imply that the range of Jac(η) has dimension n. Hence η is a submersion,
proving the statement of the theorem [26, p. 2].

4. The filtering foliation. The following lemma is a trivial reformulation of
results presented in [28, 29] concerning a fast filtering algorithm for Kalman filtering
[27] (see also [5]).

Lemma 4.1. Given any (a, b) ∈ Pn, consider the dynamical system

at+1(z) =
1

2(1 + γt)
[(1 + z)at(z) + (1− z)bt(z)], a0(z) = a(z),

bt+1(z) =
1

2(1− γt)
[(1− z)at(z) + (1 + z)bt(z)], b0(z) = b(z),(4.1)

where

γt =

(
z
bt(z)− at(z)

2

)
|z=∞.(4.2)

Then, for t = 0, 1, 2, . . . ,

(at, bt) ∈ Pn(4.3)

and

rtS(at)bt = S(a)b, where rt =

t−1∏
k=0

(1− γ2
k).(4.4)

Moreover, as t→∞, γt → 0, rt → r∞, and

(at, bt)→ (σ, σ), where σ ∈ R.(4.5)

The parameters (4.2) are the Schur parameters (reflection coefficients) corre-
sponding to the function f , and, consequently, |γt| < 1, t = 0, 1, 2, . . . , whenever
f is strictly positive real. The connection to the Schur algorithm and Kalman fil-
tering is explained in the appendix, where, for convenience, an independent proof of
Lemma 4.1 is given. For initial conditions (a, b) �∈ Pn, the fast filtering algorithm
exhibits much more complicated (and interesting) dynamical behavior, which is in-
vestigated in detail in [5]. Here, however, we are only interested in its behavior on
the set Pn.

In view of (3.1), we have

f(z) + f(z−1) =
S(a)b

aa∗
,(4.6)
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and hence Lemma 4.1 implies that

f(z) + f(z−1) = r∞
σ(z)σ(z−1)

a(z)a(z−1)
,(4.7)

showing that the spectral factor in (1.2) is

v(z) =
√
r∞

σ(z)

a(z)
.

We note that Pn is invariant under the dynamical system (4.1); i.e., whenever
the initial condition (a, b) ∈ Pn, the iterates (at, bt) ∈ Pn. Moreover, the dynamical
system (4.1) converges to the limit point (σ, σ) along the invariant manifold (4.4) [5].
Hence, the equilibrium set is

Pn(ŵ), where ŵ :=


1
1
...
1

.(4.8)

Furthermore, (4.8) defines the center manifold for the dynamical system (4.1) evolving
on Pn, and no equilibrium in the center fold has a nontrivial unstable manifold. The
invariant set (4.4) may also be written as

ρtS(at)bt = S(σ)σ, where ρt = Π∞
k=t(1− γ2

k)
−1.

Then, for each σ ∈ R,

Ws(σ) = {(a, b) ∈ Pn | ρS(a)b = S(σ)σ for some ρ ∈ R+}(4.9)

is the stable manifold in Pn through (σ, σ). In view of (4.6), S(a)b is positive on the
unit circle for all (a, b) ∈ Pn, and hence we can eliminate the variable ρ in ρS(a)b =
S(σ)σ by dividing by [S(a)b](1). Therefore, we define the mapping h : Pn → Z+

n as

h(a, b) =
S(a)b

[S(a)b](1)
,(4.10)

where Z+
n is the n-dimensional convex space defined in section 2. Then, the manifold

(4.9) may also be written as

Ws(σ) = h−1(κ(σ)),(4.11)

where

κ(σ) :=
S(σ)σ

[S(σ)σ](1)
∈ Z+

n .

Theorem 4.2. The connected components of the sets {Ws(σ) | σ ∈ R} form the
leaves of an n-dimensional foliation of Pn.

Remark 4.3. The stable manifolds Ws(σ) are in fact connected. In this paper we
shall sketch a proof of this fact based on the transversality lemma.
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For the proof we need to show that the Jacobian Jac(h)|(a,b) has full rank. To this
end, we compute the directional derivative of h in the direction (u, v) for arbitrary
u, v ∈ L as

D(u,v)h = lim
ε→0

h(a+ εu, b+ εv)− h(a, b)

ε
=

S(a)q + S(b)p

[S(a)b](1)
,(4.12)

where

p = u− µb, q = v − µa, µ =
1

2

[
S(a)v + S(b)u

S(a)b

]
(1).(4.13)

In this computation, we have also used the fact that S(a)b = S(b)a.

Lemma 4.4. The tangent space of Ws(σ) at (a, b) has dimension n and is given
by

T(a,b)W
s(σ) = {(u, v) ∈ L× L | S(a)q + S(b)p = 0},

where p, q ∈ K depend on (u, v) as in (4.13).

Proof. The tangent space T(a,b)W(σ) is precisely the kernel of the Jacobian
Jac(h)|(a,b) of h−1(κ(σ)), i.e., the space of (u, v) for which the directional deriva-
tive (4.12) is zero. This yields the expression of the lemma. Since the n algebraic
equations contained in

h(a, b) = κ(σ)

are obtained by eliminating the variable ρ from the n+1 algebraic equations contained
in

ρS(a)b = S(σ)σ,

T(a,b)W(σ) has the same dimension as ker Jac(F )|(ρ,a,b), where F : R+ ×Pn → D+ is
defined as

F (ρ, a, b) = ρS(a)b.

Now, the directional derivative of F in the direction (λ, u, v) ∈ R×L×L is given by

D(λ,u,v)F (ρ, a, b) = S(a)[ρv + λb] + S(b)u,

so T(a,b)W(σ) has the same dimension as

W := {(r, u) ∈ K× L | S(a)r + S(b)u = 0}.

Then, exactly the same proof as in [5, Lemma 5.11] shows that dimW = n.

We note in passing that Lemma 5.11 in [5] also shows that if we extend W(σ) out-
side the positive region Pn we encounter singularities where the rank of the Jacobian
is deficient precisely at the points where a and b have common reciprocal zeros.

Proof of Theorem 4.2. Given Lemma 4.4 and hence that ker Jac(h) = n, the rest
of the proof is completely analogous to that of Theorem 3.3.
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5. The transversality lemma and the geometry of positive real func-
tions. The following result is modeled after the corresponding result in [6, Lemma
4.5].

Theorem 5.1 (transversality lemma). Let K and L be the spaces defined in
(2.1). Then there are no nonzero p and q in K such that

aq − bp ∈ BL(5.1)

and

S(a)q + S(b)p = 0.(5.2)

Proof. We want to prove that if p ∈ K and q ∈ K satisfy (5.1) and (5.2), then
p = q = 0. To this end, first note that (5.2) may be written as

h(z) + h(z−1) = 0,(5.3)

where

h(z) := a(z−1)q(z) + b(z)p(z−1),

and that h ∈ Q, where Q is defined by (2.3). Moreover, in view of (5.1),

g(z) :=
q(z)

b(z)
− p(z)

a(z)
= B(z)

r(z)

a(z)b(z)
, where r ∈ L.

Since a(∞) = b(∞) = 1 and r(∞) = 0, the rational function r
ab has a Laurent

expansion

r(z)

a(z)b(z)
= c1z

−1 + c2z
−2 + c3z

−3 + · · ·

about infinity which holds on and outside the unit circle, and hence g ∈ z−1BH2.
Therefore, g∗ ∈ zB∗H̄2, and, consequently, by (2.4), both g and g∗ are orthogonal to
Q and hence to h. In particular,

〈h, g − g∗〉 = 0.(5.4)

Now, a simple calculation shows that

g − g∗ =
h

ba∗
− h∗

ab∗
=

S(a)b

aa∗bb∗
h,

where (5.3) has been used to obtain the second equality, and therefore (5.4) yields〈
h,

S(a)b

aa∗bb∗
h

〉
= 0.

However, since (a, b) ∈ Pn is positive real, S(a)b is positive on the unit circle, and so
is aa∗bb∗. Hence h must be zero, implying that g = g∗, i.e., g is constant and thus
contained in Q. But g is orthogonal to Q, so g must be zero also. Then

q(z) =
b(z)

a(z)
p(z),
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which, substituted into (5.2), yields[
b

a
+

b∗

a∗

]
[ap∗ + a∗p] = 0.

Since (a, b) ∈ Pn, the first factor is positive on the unit circle, and so

a(eiθ)p(e−iθ) + a(e−iθ)p(eiθ) = 0

for all θ, and therefore, by the identity theorem,

S(a)p = 0.

However, by Lemma 2.1, S(a) has full rank, so p, and hence q, are zero.
The transversality lemma has the following important consequence.
Lemma 5.2. Suppose that the point (a, b) ∈ Pn lies on the submanifolds Pn(w)

and Ws(σ). Then

T(a,b)Pn(w) ∩ T(a,b)W
s(σ) = 0.

Proof. Taking (u, v) ∈ T(a,b)Pn(w) ∩ T(a,b)W(σ), we see from Lemma 4.4 that
(5.2) holds with p and q defined by (4.13). Moreover, since

aq − bp = av − µab− bu+ µab = av − bu

for this choice of p and q, (5.1) also holds by Lemma 3.5. Hence, by Theorem 5.1,
we must have p = q = 0. But then evaluating at ∞, we obtain from (4.13) that
µ = p(∞) = q(∞), which a fortiori must be zero, hence implying that (u, v) =
0.

It remains to show that the submanifolds Ws(σ) and Pn(w) are connected and
thus constitute the leaves of the filtering foliation and the interpolation foliation,
respectively.

Corollary 5.3. The stable manifolds {Ws(σ) | σ ∈ R} are diffeomorphic to W+
n

and thus connected. In particular, the stable manifolds of the fast filtering algorithm
(4.1) decompose the space Pn into the leaves of a foliation.

Proof. Consider again the mapping

η : Pn →W+
n

with η−1(w) = Pn. The restriction ησ of η to Ws(σ) is a map of n-manifolds

ησ : Ws(σ)→W+
n .

We claim that

det Jac(ησ)|(a,b) �= 0

for all (a, b) ∈Ws(σ). To prove this, we need to show that the directional derivative

D(u,v)ησ = Jac(ησ)

[
u
v

]
is zero for any (u, v) ∈ T(a,b)W

s(σ) only if (u, v) = 0. However,

ker Jac(ησ) ⊂ ker Jac(η) = T(a,b)Pn(w)
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(Lemma 3.5), and hence this follows from Lemma 5.2. To proceed, we also need
to show that ησ is proper, i.e., that the inverse image η−1

σ (K) is compact for each
compact set in the range space.

Lemma 5.4. The mapping ησ is proper.
Proof. Suppose wk → w in W+

n with wk = ησ(ak, bk). Since Pn and hence Ws(σ)
are relatively compact, the sequence (ak, bk) has a cluster point (a, b) in Ws(σ) ⊂ Pn,
where a and b have all their zeros in the closed unit disc. We need to show that
(a, b) ∈ Ws(σ). Now, suppose instead that (a, b) ∈ ∂Ws(σ), the boundary of Ws(σ).
Then (a, b) ∈ ∂Pn. In fact, if (a, b) ∈ Pn, then, by Theorem 4.2, (a, b) ∈ Ws(σ̂) for
some σ̂ ∈ R such that σ̂ �= σ. But then

S(a)b

[S(a)b](1)
= κ(σ̂) �= κ(σ),

which is impossible by continuity. Now, the boundary ∂Pn consists of those (a, b) for
which either S(a)b has a zero on the unit circle or S(a)b is identically zero. Since the
zeros of S(ak)bk are fixed and therefore independent of k and lie inside the unit disc,
S(a)b cannot have zeros on the unit circle without being identically zero. Therefore,
the function f = b/a has the property f + f∗ = 0, and hence f must have all poles
and zeros on the unit circle. Then, it is well known [23] and easy to check that f
takes the form

f(z) =

m∏
k=1

z − µk
z + µk

, |µk| = 1, m ≤ n,

and, consequently,

F (z) =
f(z)− 1

f(z) + 1

is a Blaschke product of degree m. Thus, modulo a trivial conformal equivalence,
Corollary 2.3 in [16, p. 9] states that the rank of the corresponding Pick matrix equals
m. Therefore, since m < n + 1, the Pick matrix is singular, and the corresponding
value vector w must lie in the boundary of W+

n , contrary to assumption. Consequently,
(a, b) �∈ ∂Ws(σ), and thus (a, b) ∈Ws(σ) as claimed.

Since ησ is proper and has a nowhere vanishing Jacobian, η−1
σ (w) is a finite set

with cardinality δ, which is independent of w [30]. Therefore, ησ : Ws(σ) → W+
n

is a δ-fold covering W+
n [30]. Consider the point ŵ ∈ W+

n defined by (4.8). For
(a, b) ∈ Ws(σ), to say that ησ(a, b) = ŵ is to say that a = b. Since (a, a) is an
equilibrium for the fast filtering algorithm of Lemma 4.1 and lies on the stable manifold
of the equilibrium (σ, σ), we must have (a, a) = (σ, σ), or (a, b) = (σ, σ). Therefore,
δ = 1 and the map ησ : Ws(σ)→W+

n is a diffeomorphism.
Corollary 5.5. The submanifolds {Pn(w) | w ∈W+} are connected. In partic-

ular, Nevanlinna–Pick interpolation defines a foliation of the space Pn.
Proof. Suppose (a(1), b(1)) and (a(2), b(2)) lie in Pn(w). Since Pn is connected,

there is a continuous path γ : [0, 1] → Pn with γ(0) = (a(1), b(1)) and γ(1) =
(a(2), b(2)). Composing γ with η, we obtain a closed curve

γ̃ = η ◦ γ : [0, 1]→W+

with initial (and final) point w, i.e., w = η(a(i), b(i)), i = 1, 2. Since W+
n is convex,

it is simply connected and therefore γ̃ can be contracted to the “constant curve” w
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through a homotopy H̃ [22]; i.e.,

H̃ : [0, 1]× [0, 1]→W+

jointly continuous and satisfying

H̃(r, 0) = γ̃(r),

H̃(r, 1) = w,

H̃(0, t) = w,

H̃(1, t) = w.

We now construct a lifting of the homotopy H̃ to a homotopy H, with values in Pn,
covering H̃; i.e., η ◦H = H̃. Returning first to the curve γ, each point γ(r) lies in a
unique stable manifold, which we denote by Ws(σ(r)). Since ησ is a diffeomorphism
for each σ, for each r fixed we can lift the curve H̃r, defined as H̃r(t) = H̃(r, t) for
t ∈ [0, 1], to a curve in Ws(σ(r)) covering H̃r by defining Hr(t) = η−1

σ(r)(H̃r(t)). Note

thatHr is a curve lying in Pn with initial point γ(r). Now defineH : [0, 1]×[0, 1]→ Pn
via

H(r, t) = Hr(t) = η−1
σ(r)(H̃(r, t)).

We claim that H is jointly continuous. To see this, suppose (rk, tk) → (r, t) and
set

(ak, bk) = H(rk, tk), (a, b) = H(r, t).

We next note that wk := H̃(rk, tk) → H̃(r, t) =: w̃, γ(rk) → σ(r), and consequently
that σ(rk) → σ(r), as k → ∞. To prove that H is jointly continuous, it suffices to
prove that every neighborhood of (a, b) contains the points (ak, bk) for all k sufficiently
large. Now, (a, b) ∈ Pn(w̃), and, using the implicit function theorem, we can choose
neighborhoods N(a, b) which are rectangular in the sense that a neighborhood of (a, b)
in Pn(w̃) serves as the vertical axis, while the horizontal axes consist of unique “slices”
consisting of n-manifolds to which the restriction of η will be a diffeomorphism.

That is, the horizontal slices will be open subsets of Ws(σ). Since σ(rk)→ σ(r),
and since the foliation defined by the stable manifolds of the fast filtering algorithm is
itself defined by a submersion, such a neighborhood N(a, b) will intersect Ws(σ(rk))
for all k sufficiently large. Now, (ak, bk) is the endpoint of the unique curve Hrk(t)
for t ∈ [0, tk] in Ws(σ(rk)) covering H̃rk . Similarly, for any t̄ satisfying 0 ≤ t̄ < tk,
(ak, bk) is the endpoint of the unique curve in Ws(σ(rk)) covering H̃rk on [t̄, tk]. Since
η(N(a, b)) is open, there exists a t̄, 0 ≤ t̄ ≤ tk, for all k sufficiently large so that

H̃rk [t̄, tk] ⊂ η(N(a, b)).

In particular, since ησ(rk) is a (global) diffeomorphism, there exist unique lifts γk of

these curves in Pn which lie in Ws(σ(rk)) ∩N(a, b) and cover H̃rk on [t̄, tk] and have
initial points η−1

σ(rk)
(H̃(rk, t̄)). Since such liftings are unique, it follows that γk and

Hrk coincide on the subinterval [t̄, tk], and therefore

Hrk(t) ⊂ N(a, b) for t ∈ [t̄, tk].

Consequently,

(ak, bk) = Hrk(tk) ∈ N(a, b)
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for all k sufficiently large.
We have established that H is jointly continuous. The mapping H also satisfies

H(r, 0) = γ(r),

H(r, 1) ⊂ Pn(w) for 0 ≤ r ≤ 1,

H(0, t) = γ(0) = (a(1), b(1)),

H(1, t) = γ(1) = (a(2), b(2)).

In particular, H(·, 1) is a continuous path in Pn(w) joining (a(1), b(1)) and (a(2), b(2)).
Since these points are arbitrary in Pn(w), this manifold is path connected and hence
connected.

Remark 5.6. The foliation by stable manifolds does, of course, define an integrable
connection on the distribution tangent to the interpolation foliation, and it is tempting
to believe that we can deduce a path-lifting result from the existence of this connection.
At this point in the proofs we do not, however, know whether η : Pn →W+

n is a fiber
bundle or even a fibration. Moreover, η is definitely not proper, so one could at
best expect a path lifting on a sufficiently small subinterval. For this reason, we
directly established the homotopy lifting property for curves. We remark that it
is possible to go further, showing that η : Pn → W+

n is a fibration. In this case,
one could then deduce path connectedness of the fiber from the fact that W+

n is
simply connected, using the long exact homotopy sequence of the fibration. Since we
only needed the sequence for curves and connected components, we instead used a
constructive approach to defining the boundary operator in the sequence.

6. Main results. Another consequence of the transversality lemma is that the
leaves of the interpolation foliation intersect the leaves of the filtering foliation trans-
versely; i.e., the two foliations are complementary. Actually, a much deeper relation-
ship exists between these foliations, having several interesting corollaries.

Theorem 6.1. The filtering foliation and the interpolation foliation are com-
plementary. Moreover, each leaf Pn(w) intersects each leaf Ws(σ) of the filtering
foliation in one, and only one, point in Pn.

The first assertion follows immediately from Lemma 5.2 after it has been estab-
lished that Pn(w) and Ws(σ) are connected and so are the leaves of respective foliation
(Corollary 5.5 and Corollary 5.3). Consequently, there are two complementary folia-
tions of Pn, namely,

F1 : Pn =
⋃

w∈W+

Pn(w),(6.1)

indexed by the interpolation values w ∈W+, and

F2 : Pn =
⋃
σ∈R

W(σ),(6.2)

indexed by the equilibrium points (4.8) of the dynamical system (4.1), or, equivalently,
by the spectral zeros in the form of a point in Sn. This suggests that, given a set of
admissible interpolation values and a set of stable spectral zeros, there is a unique
solution of the Nevanlinna–Pick problem represented by the intersection between the
corresponding leaves of the foliations F1 and F2. This is precisely the second assertion
of the theorem and is a consequence of Proposition 6.3 to be proven below.
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To this end, first note that the fact that the filtering foliation and the interpolation
foliation are complementary says that this uniqueness does occur to first order, in the
following sense.

Lemma 6.2. Let hw : Pn(w) → Z+
n be the restriction of h, defined by (4.10),

to Pn(w). Then, for each (a, b) ∈ Pn(w), the Jacobian matrix Jac(hw) of hw is
nonsingular.

Proof. To prove this, we need to show that the directional derivative

D(u,v)h = Jac(hw)

[
u
v

]
is zero for any (u, v) ∈ T(a,b)Pn(w) only if (u, v) = 0. But this follows from Lemma 5.2
precisely as in the proof of Corollary 5.3.

It is interesting to note that the duality between interpolation and filtering is
reflected in a symmetry between the restricted mappings

ησ : Ws(σ)→W+
n

and

hw : Pn(w)→ Z+
n .

Recall that ησ is the restriction of η : Pn → W+
n to Ws(σ) = h−1(κ(σ)), and hw is

the restriction of h : Pn → Z+
n to Pn(w) = η−1(w). Moreover, we have the following

result.
Proposition 6.3. The mappings ησ and hw are diffeomorphisms. In particular,

each choice of σ and w determines and is determined by precisely one element (a, b) ∈
Pn.

Proof. We have already shown in the proof of Corollary 5.3 that ησ is a diffeo-
morphism. Concerning hw, we first establish properness.

Lemma 6.4. The mapping hw is proper.
Proof. To show this, consider a sequence (κk) in Z+

n with κk = hw(ak, bk) which
converges to κ ∈ Z+

n as k →∞, and prove that any cluster point (a, b) of (ak, bk) lies
in Pn(w). Since Pn is relatively compact, (a, b) ∈ Pn(w) ∈ Pn. Now, suppose (a, b) is
not in Pn(w) but in the boundary ∂Pn(w). Then (a, b) ∈ ∂Pn because if (a, b) ∈ Pn,
then, by Theorem 3.3, (a, b) ∈ Pn(ŵ) for some ŵ �= w, which contradicts continuity
of η(a, b). But if (a, b) ∈ ∂Pn, then S(a)b either has a zero on the unit circle or is
identically zero, while a, b ∈ R of course remain nonzero. Therefore, if there is no
zero at z = 1, κk → ∂Z+

n and if [S(a)b](1) = 0, then κk → ∞, contradicting the
assumption that κ ∈ Z+

n in both cases.
Since hw is a proper map with nonvanishing Jacobian (Lemma 6.2), hw : Pn(w)→

Z+
n is a δ-fold covering. Since Pn(w) is connected and Z+

n is convex, and hence
simply connected, the number, δ, of sheets must be one [30]. Therefore, hw is a
diffeomorphism.

This concludes the proof of Theorem 6.1.
These geometric implications of the transversality lemma allow us to give an

alternative geometric proof and amplification of the following result in [20], where,
however, spectral zeros on the unit circle are also allowed, and in [12], using convex
analysis to the minima of a functional defined using generalized entropy gains.

Corollary 6.5 (spectral zero assignability theorem for Nevanlinna–Pick inter-
polation). Suppose w determines a positive definite Pick matrix. The positive real
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interpolants (a, b) in Pn(w) can be uniquely determined by a choice of stable spectral
zeros.

This corollary shows that the spectral zeros are design parameters which can be
used, for example, in designing robust bounded real closed loop systems. This result
also holds in the case that all the interpolation points z0 = z1 = · · · = zn = ∞,
a situation of great interest in signal processing, spectral analysis, and stochastic
systems [6, 7, 8, 9, 10, 11] (see also [17, 18], where the first proofs of existence were
presented). In this case, the design parameter is intuitively very appealing, since it
represents a choice of zeros for shaping filters which can shape white noise into a
process matching a finite window of covariance data.

The following theorem, finally, is also a consequence of the transversality lemma.
Here � denotes “diffeomorphic,” and Sn is the space of Schur polynomials of degree
n introduced in section 1.

Theorem 6.6. The space Pn is Euclidean of dimension 2n. More specifically,

Pn �W+
n × Z+

n �W+
n × Sn,

where W+
n , Z+

n , and Sn are all diffeomorphic to R
n.

For the proof we need the following “folk theorem,” for which we have been unable
to find a direct reference.

Lemma 6.7. An open, convex set D ∈ R
n is diffeomorphic to R

n.
It is well known and easy to see that an open convex set D ∈ R

n is homeomorphic
to R

n [3, p. 2]. Except for n = 4, this implies that D is also diffeomorphic to R
n, so

the problem is only for n = 4 [31, p. 5]. However, convexity gives us much more, and
it is simpler to give a direct proof. The following is an outline of a proof provided by
O. Viro.1

Convexity allows us to construct a C∞-function ϕ : R
n → [0, 1], such that ϕ(0) =

1, ϕ(x) > 0 in D, and ϕ(x) = 0 outside D, which is monotonely nondecreasing along
any ray {λy | ‖y‖ = 1, λ ≥ 0}. (We place the origin inside D.) In fact, for each
supporting hyperplane Hk to D, one can construct a function ϕk which is zero in the
half-space not containing D and which is monotonely nonincreasing along the normal
direction from the origin, with the value one on a parallel hyperplane Ĥk and in the
whole half-space beyond it. If D is a polytope, there are finitely many supporting
hyperplanes Hk, and we may take ϕ(x) =

∏
k ϕk(x). In general, we choose the

hyperplanes Hk on a dense set of the boundary and let the distances dk between each
pair Ĥk and Hk be a sequence which tends to zero. Then, only a finite number of
ϕk are different from one at any point in D, and hence the construction still works.
The function ψ : D → R

n, with ψ(0) = 1 and ψ(x) = x/ϕ(x) otherwise, is then a
diffeomorphism. In fact, the monotonicity implies that the Jacobian does not vanish
in D.

Proof of Theorem 6.6. Since W+
n and Z+

n are open and convex sets, they are
diffeomorphic to R

n by Lemma 6.7. In the case of Z+
n , this can also be seen from

the facts that Z+
n � Sn [6, p. 1849] and Sn � R

n [4]. Then, the rest follows from
Proposition 6.3.

Appendix. Fast Kalman filtering and the Schur algorithm.
Modulo a trivial reformulation, Lemma 4.1 is proven in [27, 28, 29] in the context

of Kalman filtering, using the Szegö polynomials orthogonal on the unit circle and the
Levinson recursion. Obviously, the recursion (4.1) is related to the Schur algorithm

1Similar ideas of a proof have also been suggested to us by H. Shapiro and M. Benedicks.
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[1], as was established in, for example, [13]. In this appendix, we give a simple proof
in this context.

Given any (a, b) ∈ Pn and the corresponding strictly positive real function f =
b/a, define

ϕ(z) :=
f(z)− 1

f(z) + 1
=

b(z)− a(z)

b(z) + a(z)
=:

P (z)

Q(z)
,

which is a Schur function in the sense that it maps the exterior of the unit disc, D
c,

into the open unit disc D. The Schur algorithm

ϕt+1(z) = z
ϕt(z)− ϕt(∞)

1− ϕt(∞)ϕt(z)
, ϕ0(z) = ϕ(z),(A.1)

defines a sequence ϕt(z), t = 0, 1, 2, . . . , of Schur functions, and the Schur parameters

γt = ϕt+1(∞), t = 0, 1, 2, . . . ,(A.2)

are less than one in modulus [1].
Proposition A.1. For t = 0, 1, 2, . . . ,

ϕt+1(z) =
zPt(z)

Qt(z)
,(A.3)

where Pt and Qt are polynomials satisfying the recursions{
Qt+1(z) = Qt(z)− γtzPt(z), Q0(z) = Q(z),

Pt+1(z) = zPt(z)− γtQt(z), P0(z) = P (z).
(A.4)

Here Qt is of degree n having leading coefficient

rt =

t−1∏
k=0

(1− γ2
k).(A.5)

Proof. Clearly,

ϕ1(z) = zϕ0(z) =
zP (z)

Q(z)
,

so (A.3) holds for t = 0. Now let t ≥ 1, and suppose that

ϕt(z) =
zPt−1(z)

Qt−1(z)
.

Then, the Schur algorithm (A.1) together with (A.2) yields

ϕt+1(z) = z
zPt−1(z)− γt−1Qt−1(z)

Qt−1(z)− γt−1zPt−1(z)
=

zPt(z)

Qt(z)
,

and hence (A.3) holds for t = 1, 2, . . . by induction. Moreover, (A.3) and (A.4) yield

Qt+1(z)

Qt(z)
= 1− γtϕt+1(z),
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which, evaluated at z = ∞, becomes 1 − γ2
t by (A.2). But |γt| < 1, and hence

degQt+1 = n whenever degQt = n. Since degQ0 = n, it thus follows by induction
that degQt = n for t = 0, 1, 2, . . . . More precisely, rt, given by (A.5), is the leading
coefficient of Qt(z).

The recursion (A.4) is precisely the fast algorithm for Kalman filtering [27] in the
formulation of [28]. In fact, suppose {y0, y1, y2, . . . } is a stationary stochastic process
with spectral density

Φ(z) =
1

2
[f(z) + f(z−1)],

where f = b/a has a minimal realization

f(z) = 1 + 2h(zI − F )−1g.

Then the linear least squares estimate ŷt of yt given y0, y1, . . . , yt−1 is generated by
the Kalman filter {

x̂t+1 = Fx̂t + kt(yt − ŷt),

ŷt = hx̂t,

where kt is determined from Qt(z) in the following way: If (F, g, h) is chosen so that
h = (1, 0, . . . , 0), F has characteristic polynomial χF (z) = zn + α1z

n−1 + · · · + αn,
and

Qt(z) = rt[z
n + q1(t)z

n−1 + · · ·+ qn(t)],

then the gain kt is given by

kt = q(t)− α.

Moreover, Qt/rt is the characteristic polynomial of the feedback matrix

F − kth,(A.6)

which hence is stable.
In the same way as in [28], a direct calculation using (A.4) yields

Qt+1(z)Qt+1(z
−1)− Pt+1(z)Pt+1(z

−1)

= (1− γ2
t )[Qt(z)Qt(z

−1)− Pt(z)Pt(z
−1)](A.7)

for t = 0, 1, 2, . . . .
Now set

at(z) :=
Qt(z)− Pt(z)

2rtτ(z)
, bt(z) :=

Qt(z) + Pt(z)

2rtτ(z)
.(A.8)

We first note that a0 = a and b0 = b. Moreover, since |z−1| < 1 in D
c, z−1ϕt+1(z) is

a Schur function, and, consequently,

ft(z) :=
bt(z)

at(z)
=

1 + z−1ϕt+1(z)

1− z−1ϕt+1(z)
(A.9)

is strictly positive real for t = 0, 1, 2, . . . so that (at, bt) ∈ Pn. This verifies (4.3).
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From (A.4) we readily obtain the recursion (4.1), Moreover, in view of (A.9),

ϕt+1(z) = z
bt(z)− at(z)

bt(z) + at(z)
,

and hence (4.2) follows from (A.2). We also note that (4.4) is equivalent to (A.7). It
now only remains to verify (4.5). To this end, we recall that, for rational positive real
functions, the Schur parameters form an ?2 sequence [18, p. 447], and hence γt → 0 as
t→∞. Consequently, rt tends to some limit r∞ as t→∞, and it follows from (A.4)
that Qt(z) tends to a constant polynomial Q∞, which is the characteristic polynomial
of the steady-state feedback matrix (A.6) defined by the steady-state Kalman gain.
Hence r−1

∞ Q∞ ∈ Sn. It also follows that Pt(z) tends to zero. Therefore, by (A.8), at
and bt tend to σ as t→∞, where

σ(z) =
Q∞(z)

r∞τ(z)
.

Clearly, σ ∈ R, as claimed.
This proves the claims made in Lemma 4.1. In [5], a much more refined analysis

of the global phase portrait of the fast filtering algorithm is given, with the explicit
derivation of the global stable manifolds which we employ in section 6. This analysis
has many other consequences. For example, it can be shown [6] that for a rational
strictly positive real function the sequence of Schur parameters decays to zero geo-
metrically, generalizing previous results in the literature on conditional and absolute
summability of the corresponding series of Schur parameters [21, 2, 18].

Acknowledgments. We would like to thank Professors H. Shapiro, M. Benedicks,
and O. Viro for technical advice.
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Abstract. We consider the wave equation damped by a nonlinear boundary velocity feedback
q(ut).

First we consider the case where q has a linear growth at infinity. We prove that the usual decay
rate estimates proved by Nakao [Differential Integral Equations, 8 (1995), pp. 681–688], Haraux and
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when q has a polynomial behavior at zero and by the second author [ESAIM Control Optim. Calc.
Var., 4 (1999), pp. 419–444] in the general case are in fact optimal in one space dimension. More
generally, we prove that the energy decays exactly like the solution of an explicit and simple ordinary
differential equation.

Next we study the problem when q is bounded at infinity. We prove that strong solutions decay
exponentially to zero, and we exhibit a sequence of weak solutions for which the associated energy
decays to zero at infinity as slowly as the iterated logarithms go to infinity at infinity.

Key words. damped wave equation, asymptotic behavior, boundary feedback, optimal energy
estimates
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1. Introduction. We consider the wave equation in one space dimension, damped
by a boundary velocity feedback q(ut), where q : R −→ R is a nonlinear function:

utt − uxx = 0, x ∈ (0, 1), t ≥ 0,
u(0, t) = 0, t ≥ 0,
ux(1, t) = −q(ut(1, t)), t ≥ 0,
(u(x, 0), ut(x, 0)) = (u0(x), v0(x)), x ∈ (0, 1),

(1.1)

where (u0(x), v0(x)) is given in V × L2(0, 1) (with V = {v ∈ H1(0, 1) | v(0) = 0}).
We refer to [22] for the physical motivations of this model.

We define the energy of u by

∀t ≥ 0, Eu(t) =
1

2

∫ 1

0

(u2
x(x, t) + u2

t (x, t)) dx.

First we study the problem of asymptotic decay of Eu(t) as t → +∞. When
q : R −→ R is a continuous nondecreasing function, has a polynomial behavior at
zero, and a linear growth at infinity, it means that when there exist four positive
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constants C1, C2, C3, and C4 such that{ ∀|s| ≤ 1, C1|s|p ≤ |q(s)| ≤ C2|s|1/p with p > 1,
∀|s| ≥ 1, C3|s| ≤ |q(s)| ≤ C4|s|,(1.2)

then Eu(t) satisfies the estimate

∀t ≥ 0, Eu(t) ≤ C(Eu(0))

(1 + t)2/(p−1)
,(1.3)

where C(Eu(0)) > 0 is a constant which depends on Eu(0). (See [23, 10, 5] for (1.1)
and see also [17, 6, 9, 4, 2, 11, 19, 12, 20] for the similar problem of the wave equation
damped by a distributed nonlinear feedback (2.2). More generally, these authors
studied the case of higher space dimensions.)

More recently, the previous results were completed in [15] with explicit estimates
under weaker assumptions than (1.2) on the function q (in particular, when q is weaker
than any polynomial in zero; see also Lasiecka and Tataru [13] and Liu and Zuazua
[14]). For example, we proved that, if q(s) = sgn (s) e−1/|s| in a neighborhood of zero
(with linear growth at infinity), then Eu(t) satisfies the estimate

∀t ≥ 2, Eu(t) ≤ C

(ln t)2
.(1.4)

The purpose of this article is to establish the optimality of these estimates in case
of (1.1), i.e., in the case of a boundary feedback in one space dimension. Note that we
use here the term of “optimality of estimates” in the sense of “two-sides estimates.”
(For example, in (1.3), we wonder if 2/(p− 1) is the best choice of the exponent. In
some cases, our method will also lead to the best choice of the factor C(Eu(0)) but
it is not the main object of this paper.) First, we treat the polynomial case with
a method announced in [21]: for particular solutions (we choose particular initial
conditions which simplify the problem), this method produces an explicit equivalent
of the energy and proves the optimality of (1.3). We exhibit some solutions u of (1.1)
that satisfy

Eu(t) ∼
t→+∞

Cp
t2/(p−1)

(see Theorem 2.1). Then we extend the preceding result in the case of general feed-
backs. In general, we prove that the solutions decay exactly like the solutions of a
very simple ordinary differential equation. Moreover, under some additional assump-
tions, we give lower bounds of the energy, which prove, in particular, the optimality
of estimates like (1.3) and (1.4) (see Theorem 3.1, and Propositions 3.1, 3.2, and 3.3).
Our method also gives similar results of optimality for other examples: we can treat
the one-dimensional wave equation with boundary feedbacks at both extremities and
also the wave equation with a boundary feedback in dimension 3.

Next we turn to another optimality problem: in a previous paper [16], we studied
the decay rate of strong solutions of the wave equation damped with an internal

nonlinear weak feedback (that means q(s)s −→ 0 when |s| −→ +∞) in space dimension
2. We proved that, if q′(0) = 0, strong solutions decay exponentially to zero, but with
a decay rate depending on the norm of the initial conditions in H2(Ω) × H1

0 (Ω).
Haraux and Conrad asked us if the decay rate really depends on that quantity, and
what can be said about weak solutions.
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Here we study this question in the case of the one-dimensional wave equation
with boundary damping (1.1): with a carefully chosen function q, which satisfies

q′(0) = 0 and q(s) −→ ±1 when s −→ ±∞,

we prove that strong solutions decay exponentially but not uniformly to zero: more
precisely, we prove that given (u0, v0) in W 1,∞(0, 1)×L∞(0, 1) (and u0(0) = 0), there
exists some (explicit) constant C0 = C0(‖(u0, v0)‖W 1,∞×L∞) such that

∀t ≥ 0, Eu(t) ≤ C0 3−t;

and on the other hand we construct a sequence (um)m≥1 of solutions of (1.1), corre-
sponding to initial conditions (um

0, vm
0) in W 1,∞(0, 1)× L∞(0, 1) that satisfy

Eum(0) = 1 and ‖(um0, vm
0)‖W 1,∞×L∞ = 2m,

and

∀t ≥ m, Eum(t) =
9m

9m2
3−t;

hence the exponential decrease of the energy to zero cannot be uniform.
Concerning weak solutions, we consider, motivated by a recent work of Cannarsa,

Komornik, and Loreti [3], the sequence of iterated logarithms{
ln1(t) = ln(t),
lnp+1(t) = ln(lnp(t));

given p ≥ 1, we exhibit a weak solution up of (1.1) such that the energy of up decays
very slowly to zero. Indeed, for t large enough, we have (see Theorem 4.1)

Eup(t) ≥
1

lnp(t)
.

The paper is organized as follows: in section 2, we treat the polynomial case; in
section 3, we extend the previous result in the case of general feedbacks; in section
4, we study the case of a special weak dissipation; the last section is devoted to the
proofs of the results.

2. Polynomial feedbacks.

2.1. Optimality of the energy estimates for (1.1). We assume that q :
R −→ R is a continuous nondecreasing function given by

∀s ∈ [−s0, s0], q(s) = s |s|p−1, with p > 1,(2.1)

in a neighborhood [−s0, s0] of zero, and that q has a linear growth at infinity. For
all initial data (u0(x), v0(x)) ∈ V × L2(0, 1), there exists a unique solution u of (1.1)
with the regularity u ∈ C(R+, V ) ∩ C1(R+, L

2(0, 1)). This solution u verifies the
estimate (1.3).

There are very few results of optimality. Although this has not been proved until
now, it was reasonable to think that the estimates (1.3) were optimal (at least for
some particular solutions). Haraux [8] obtained partial results on the problem of the
wave equation damped by a distributed feedback:

utt − uxx = −q(ut), x ∈ (0, 1), t ≥ 0,
u(0, t) = u(1, t) = 0, t ≥ 0,
(u(x, 0), ut(x, 0)) = (u0(x), v0(x)), x ∈ (0, 1),

(2.2)
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where (u0(x), v0(x)) is given in H1
0 (0, 1)×L2(0, 1), where H1

0 (0, 1) := {u ∈ H1(0, 1) |
u(0) = 0 = u(1)}. For smooth solutions, he proved that

lim sup
t→+∞

Eu(t)(1 + t)3/(p−1) > 0.

However, the problem of optimality is unsolved, since we would like to obtain (at least
for some solutions)

lim sup
t→+∞

Eu(t)(1 + t)2/(p−1) > 0.(2.3)

Haraux [8] noted also that, when we change the Dirichlet conditions in (2.2) by the
homogeneous Neumann conditions ux(0, t) = ux(1, t) = 0 and when q(s) = s|s|p−1,
then the nontrivial spatially homogeneous solutions decay precisely like t−1/(p−1) as
t→ +∞. (See also Haraux [7, p. 46] for another result of optimality for an ordinary
differential equation.)

Concerning (1.1), no result of optimality was known before (even in the case of
dimension 1). Note that Aassila [1] obtained estimates like (1.3) and proved their
optimality for a nonlinear wave equation (with a nonlinear term in u′ and a nonlinear
term in ∇u), but his proof cannot be extended to (1.1) or (2.2).

We prove that (1.3) is optimal for particular initial conditions.
Theorem 2.1. Assume (2.1). For (u0(x), v0(x)) = (2A0x, 0), with A0 ∈ R,

A0 = 0, the solution u of (1.1) satisfies

Eu(t) ∼
t→+∞

Cp
t2/(p−1)

, with Cp =
1

2 (p− 1)2/(p−1)
.(2.4)

Remarks. 1. Theorem 2.1 is still true if we replace (2.1) by

q(0) = 0 and ∀s ∈ [−s0, s0], s = 0, q(s) = sgn (s) |s|1/p, with p > 1.(2.5)

(For all s = 0, we denote sgn (s) the sign of s.) Note that the two inverse functions
defined by (2.1) and (2.5) lead exactly to the same equivalent for the energy.

2. In fact, (2.3) is true for more general initial conditions (see Proposition 3.2
and the following remarks).

3. The proof of (2.4) does not yield any information on the time T1 for which we
can say that if t ≥ T1, Eu(t) is close to Cpt

−2/(p−1). From a practical point of view,
this could also be interesting. In Propositions 3.1 and 3.2, we will give explicit lower
bounds for the energy, which gives us explicit constants c0 > 0 and T0 > 0 such that

∀t ≥ T0, Eu(t) ≥ c0
t2/(p−1)

.

2.2. Other examples. We can also study the damped wave equation with feed-
backs at both extremities: let q1, q2 : R −→ R be two continuous nondecreasing
functions and consider the following system:

utt − uxx = 0, x ∈ (0, 1), t ≥ 0,
ux(0, t) = q1(ut(0, t)), t ≥ 0,
ux(1, t) = −q2(ut(1, t)), t ≥ 0,
(u(x, 0), ut(x, 0)) = (u0(x), v0(x)), x ∈ (0, 1),

(2.6)

where (u0(x), v0(x)) is given in H1(0, 1)× L2(0, 1).
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We define the energy of the solution u by

∀t ≥ 0, Eu(t) =
1

2

∫ 1

0

(u2
x(x, t) + u2

t (x, t)) dx.

Assume that

∀s ∈ [−s0, s0], q1(s) = s |s|p1−1, with p1 > 1,(2.7)

and

∀s ∈ [−s0, s0], q2(s) = s |s|p2−1, with p2 > 1.(2.8)

Then we have the following.
Proposition 2.1. Assume (2.7) and (2.8). For (u0(x), v0(x)) = (2A0x, 0), with

A0 ∈ R, A0 = 0, the solution u of (2.6) satisfies the following:
(i) if p1 = p2 = p,

Eu(t) ∼
t→+∞

C ′
p

t2/(p−1)
, with C ′

p =
2

(2p (p− 1))2/(p−1)
;(2.9)

(ii) if p1 = p2 = p,

Eu(t) ∼
t→+∞

Cp0
t2/(p0−1)

, with Cp0 =
1

2 (p0 − 1)2/(p0−1)
,(2.10)

where p0 = min(p1, p2).
Remark. The result of Proposition 2.1 holds true if we replace the assumptions

(2.7) and (2.8) by the assumptions (2.11) and (2.8), or by (2.7) and (2.12), or by
(2.11) and (2.12) with

q1(0) = 0 and ∀s ∈ [−s0, s0], s = 0, q1(s) = sgn (s) |s|1/p1 ,(2.11)

and

q2(0) = 0 and ∀s ∈ [−s0, s0], s = 0, q2(s) = sgn (s) |s|1/p2(2.12)

(always with p1 > 1 and p2 > 1).

2.3. Example in dimension 3. With the same method, we also obtain similar
results for the wave equation with boundary feedback in dimension 3, which show
that the previous results of optimality are not specific to dimension 1.

In space dimension 3, set B1 = B(0, 1) and B2 = B(0, 2) and let Ω be the open
subset B2 \B1 of R

3 with boundary Γ = ∂B1 ∪ ∂B2. Then we consider the following
system: 

utt −∆u = 0, x ∈ Ω, t ≥ 0,
u = 0, x ∈ ∂B1, t ≥ 0,
∂νu+ 1

2u = −q(ut), x ∈ ∂B2, t ≥ 0,
(u(x, 0), ut(x, 0)) = (u0(x), v0(x)), x ∈ Ω,

(2.13)

where (u0(x), v0(x)) is given in Ṽ × L2(Ω) (with Ṽ = {v ∈ H1(Ω) | v|Γ1
= 0}).

Under (1.2), the energy Eu of the solution satisfies the estimate (1.3) (see, e.g.,
Zuazua [23]). Here we prove that (1.3) is optimal.
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Proposition 2.2. Assume that q is odd and satisfies (2.1). Then there exist
(u0, v0) ∈ Ṽ × L2(Ω) and C̃p > 0 such that

Eu(t) ∼
t→+∞

C̃p
t2/(p−1)

.(2.14)

(Note that we construct radial solutions satisfying (2.14).)

3. General feedbacks.

3.1. Known estimates. When the feedback q has no polynomial behavior in
zero, like (1.2), and has a linear growth at infinity, Lasiecka and Tataru [13] prove
that the energy decays as fast as the solution of some associated differential equation.
In [14], Liu and Zuazua give another proof of this result, which provides a simpler
dissipative ordinary differential equation describing the decay rate.

In subsection 3.2, we will prove that the solutions of (1.1) decay exactly like the
solution of an ordinary differential equation (which is very simple in this case).

On the other hand, in [15], we obtained explicit estimates of the decay rate of the
energy. Let us recall these estimates: assume that q : R −→ R is a strictly continuous
increasing function (with linear growth at infinity) such that

|g(s)| ≤ |q(s)| ≤ |g−1(s)|
in a neighborhood of zero, where g : R −→ R is a strictly increasing and odd function
of class C1 (and where g−1 denotes the inverse function of g). Set H(s) = g(s)/s
and assume that H(0) = 0 and that H is increasing on [0, η] for some η > 0. Then,
for (1.1), Eu(t) satisfies the estimate

∀t ≥ 1, Eu(t) ≤ C(Eu(0))

[
g−1

(
1

t

)]2
.(3.1)

For example, if g is defined on some [0, η] by

g(s) = e−1/yp(3.2)

for some p > 0, then

∀t ≥ 2, Eu(t) ≤ C

(ln t)2/p
.(3.3)

And if

g(s) = e−e
1/y

,(3.4)

then

∀t ≥ 3, Eu(t) ≤ C

(ln(ln t))2
.(3.5)

(Note that (3.1) does not directly give the optimal estimate (1.3) when g has
a polynomial behavior in zero, but still allows us to get it after some additional
computations.) In subsection 3.3, we prove that (3.3) and (3.5) are optimal. And more
generally, in subsection 3.4, we prove that (3.1) is optimal for a class of nonpolynomial
feedbacks (including (3.2) and (3.4)).
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3.2. Behavior of the energy in the general case.
Theorem 3.1. Let g : R→ R be a strictly increasing and odd function of class C1

such that g(0) = 0 and g′(0) = 0. Assume q : R → R is a continuous nondecreasing
function such that

q = g or q = g−1

in a neighborhood of zero.
For all (u0(x), v0(x)) = (2A0x, 0) with A0 ∈ R, A0 = 0, the solution u of (1.1)

satisfies

∃n0 ∈ N, ∀n ≥ n0, Eu(2n) =
1

2
V (2tn)

2,(3.6)

where (tn)n≥n0 is a real positive increasing sequence such that tn ∼ n as n → +∞,
and where V : R+ → R+ is the solution of the ordinary differential equation

V ′(s) = −g(V (s)), s ≥ 0,(3.7)

with V (0) = 2
√
Eu(2n0)/2.

Remarks. 1. Note that q = g and q = g−1 lead exactly to the same estimate.
2. By solving the differential equation (3.7), we find that the estimates (1.3), (3.3),

and (3.5) are optimal. However, this needs some computations, which is why we give
two explicit lower bound of the energy in the following.

3.3. Some explicit lower bounds of the energy. It is interesting to study if
the result of Theorem 2.1 can be extended to more general initial conditions (which
means if (2.3) holds true for more general initial conditions) and to have an explicit
lower bound of the energy when q has no polynomial growth in zero. In the follow-
ing, we provide two formulae that allow us to prove the optimality of the estimates
of (1.3), (3.3), and (3.5) even when we consider more general initial conditions than
the special ones used in Theorem 2.1.

Proposition 3.1. Let g : R → R be a strictly increasing, odd, and convex
function of class C1 such that g(0) = 0 and g′(0) = 0. Assume q : R → R is a
continuous nondecreasing function such that

|q(s)| ≤ |g(s)| or |q(s)| ≥ |g−1(s)|
∀s in a neighborhood of 0. Moreover we denote h = 1

2g
−1 and we assume that

s �→ s(h′(s)− 1) is increasing in a neighborhood of zero.(3.8)

Then ∀(u0(x), v0(x)) = (2A0x, 0) with A0 ∈ R, A0 = 0, the solution u of (1.1) satisfies

∃n0, n1 ∈ N, ∀n ≥ n0, Eu(2n) ≥ 1

2

[
(g′)−1

(
1

2(n+ n1)

)]2
.(3.9)

Remark. It is easy to check that (3.8) is satisfied when

g(s) = sp or g(s) = e−1/sp or g(s) = e−e
1/s

on [0, η] for some η > 0; then (3.9) gives the optimality of the corresponding esti-
mates (1.3), (3.3), and (3.5) if q has a linear growth at infinity.
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Since it may be not easy to compute (g′)−1, we give a simpler lower bound of the
energy.

Proposition 3.2. Let g : R → R be a strictly increasing and convex function
of class C1 such that g(0) = 0 and g′(0) = 0. Assume q : R → R is a continuous
nondecreasing function such that

|q(s)| ≤ |g(s)| or |q(s)| ≥ |g−1(s)|

∀s in a neighborhood of 0. Moreover we denote h = 1
2g

−1 and we assume that there
exist β > 0 and k ≥ 1 such that

∀n ≥ 1, h′
(

β

nk

)
≥ n+ 1.(3.10)

For all (u0(x), v0(x)) = (2A0x, 0) with A0 ∈ R, A0 = 0, the solution u of (1.1)
satisfies

∃γ > 0, ∃n0 ∈ N, ∀n ≥ n0, Eu(2n) ≥ 1

2

[
g−1

( γ

nk

) ]2
.(3.11)

As an application of Proposition 3.2, we can easily check the optimality of (1.3)
and also of (3.3), and (3.5): it is sufficient to choose k = p

p−1 when g(s) = sp and
k = 2 in the two other examples.

Remark. With the same proof, we can also obtain similar results for more general
initial conditions (u0, v0) ∈ (W 1,∞(0, 1)∩V )×L∞(0, 1) provided that ‖(u0, v0)‖W 1,∞×L∞

is small enough.

3.4. Optimality of estimate (3.1) for a class of nonpolynomial feed-
backs. At last, we prove that the estimate (3.1) is optimal for a class of nonpolyno-
mial feedbacks (including (3.2) and (3.4)): we have the following.

Proposition 3.3. Let g : R → R be a strictly increasing and convex function
of class C1 such that g(0) = 0 and g′(0) = 0. Assume q : R → R is a continuous
nondecreasing function such that

|q(s)| ≤ |g(s)| or |q(s)| ≥ |g−1(s)|

∀s in a neighborhood of 0. Moreover, we assume that there exist α > 0 and M > 0
such that

2α
g(2s)g′(αs)

g(αs)2
≤M.(3.12)

For all (u0(x), v0(x)) = (2A0x, 0) with A0 ∈ R, A0 = 0, the solution u of (1.1)
satisfies

∃C > 0, ∃n0 ∈ N, ∀n ≥ n0, Eu(2n) ≥ 2

α2

[
g−1

(
1

Mn+ C

)]2
.(3.13)

3.5. Remark concerning (2.2). Even in the polynomial case, we have no re-
sult of optimality of energy estimates for (2.2). However, if we change the Dirichlet
conditions by the homogeneous Neumann conditions ux(0, t) = ux(1, t) = 0, then we
can prove similar results of optimality as for (1.1).
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We consider the nontrivial homogeneous solutions of{
utt − uxx = −q(ut), x ∈ (0, 1), t ≥ 0,
ux(0, t) = ux(1, t) = 0, t ≥ 0.

(3.14)

We set v = ut. Then v(t) is solution of the ordinary differential equation

v′(t) = −q(v(t)), t ≥ 0,(3.15)

which is the same as (3.7) when q = g. In particular, under the hypotheses of Theorem
3.1 and Propositions 3.1 and 3.2, we can easily obtain similar lower bounds of the
energy. (Note that when q = g−1, the asymptotic behavior is different: in this case v
converges to 0 in finite time.)

4. Decay rate estimates when the feedback is weak at infinity. In a
previous paper (see [16]), we studied the behavior of the energy of the solutions of
the following problem:

utt −∆u = −q(ut), x ∈ Ω, t ≥ 0,
u(y, t) = 0, y ∈ ∂Ω, t ≥ 0,
(u(x, 0), ut(x, 0)) = (u0(x), v0(x)), x ∈ Ω,

(4.1)

where Ω is a bounded domain of class C2 of R
2 and q is a nondecreasing function that

satisfies

q(s)

s
−→ 0 when |s| −→ +∞

(in this case, the feedback is called weak). When q′(0) = 0, we proved that the energy
of strong solutions decays exponentially to zero, but with a decay rate depending on
the norm of the initial conditions in H2(Ω)×H1

0 (Ω): given (u0, v0) ∈ H2(Ω)×H1
0 (Ω),

there exists ω = ω(‖(u0, v0)‖H2(Ω)×H1
0 (Ω)) > 0 such that

∀t ≥ 0, E(t) ≤ E(0)e1−ωt.

This result improved previous results of Komornik [11] and of Nakao [18] (who also
treated more general cases). Haraux and Conrad asked us if the decay rate really
depends on the quantity ‖(u0, v0)‖H2(Ω)×H1

0 (Ω). We are able to give some answers in

the case of (1.1): consider the special function q defined by{ ∀|s| ≤ 2, q(s) = s
2 ,∀|s| ≥ 2, q(s) = sgn (s)1.

(4.2)

We also consider the sequence of iterated logarithms{ ∀t > 1, ln1(t) = ln(t),
∀t > Tp+1, lnp+1(t) = ln(lnp(t)),

(4.3)

where (Tp)p is defined by {
T1 = 1,
Tp+1 = eTp .

The functions lnp are well defined on [Tp,+∞[ and go slowly to infinity at infinity.
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We have the following.
Theorem 4.1. 1. Let q be the function defined by (4.2). If (u0, v0) ∈W 1,∞(0, 1)×

L∞(0, 1), then the energy of the strong solution of (1.1) decays exponentially to zero,
but not uniformly with respect to (u0, v0).

2. Given p ≥ 1, there exist (u0, v0) ∈ V ×L2(0, 1), T ′
p > Tp, such that the energy

of the associated solution u of (1.1) satisfies

∀t ≥ T ′
p, Eu(t) ≥ 1

lnp(t)
.(4.4)

Remarks. 1. This result allows us to measure the gap between the decrease of
the energy of strong solutions and the one of weak solutions. Therefore, when the
feedback is weak at infinity, the behavior of q at infinity has a great importance on
the decrease of the energy.

2. We conjecture that the following stronger result is also true: given f : R+ −→
R+ a decreasing function that goes to zero at infinity, there exist (u0, v0) ∈ H1

0 (0, 1)×
L2(0, 1) and ε > 0 such that the energy of the associated solution u of (1.1) satisfies

∀t ≥ 0, Eu(t) ≥ εf(t).

3. More precisely about the nonuniform exponential decay of the energy of strong
solutions, we prove that given (u0, v0) in W 1,∞(0, 1)×L∞(0, 1) (and u0(0) = 0), there
exists some (explicit) constant C0 = C0(‖(u0, v0)‖W 1,∞×L∞) such that

∀t ≥ 0, Eu(t) ≤ C0 3−t;

and on the other hand we construct a sequence (um)m≥1 of solutions of (1.1), corre-
sponding to initial conditions (um

0, vm
0) in W 1,∞(0, 1)× L∞(0, 1) that satisfy

Eum(0) = 1 and ‖(um0, vm
0)‖W 1,∞×L∞ = 2m,

and

∀t ≥ m, Eum(t) =
9m

9m2
3−t;

hence the exponential decrease of the energy to zero cannot be uniform.
4. The proof of (4.4) is based on the construction of explicit special initial condi-

tions.

5. Proofs.

5.1. Polynomial feedbacks. In order to prove Theorem 2.1 and Proposition
2.1, we first prove the following.

Lemma 5.1. We denote by F : R −→ R the continuous strictly increasing func-
tion defined by F = Id+q where q satisfies (2.1) or (2.5). Then we have the following:

(i) if q satisfies (2.1),

F−1(r) = r − r|r|p−1 + o (|r|p) as r → 0,

(ii) if q satisfies (2.5),

F−1(r) = r|r|p−1 + o (|r|p) as r → 0.
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Remark. Note that in both cases, this implies that

(r + F−1(−2r))2 = r2
(
1− 2p|r|p−1 + o (|r|p−1)

)2

= r2
(
1− 2p+1|r|p−1 + o (|r|p−1)

)
, as r → 0.

We will see in the proof that the behavior of the solution is closely related to the
behavior at 0 of the function r −→ (r + F−1(−2r))2. In particular, since their
behavior at 0 is the same in both cases, we will obtain exactly the same equivalent of
the energy in both cases.

Proof of Lemma 5.1.
(i) Assume (2.1). Set r = F (s) = s + s|s|p−1 ∀s ∈ R. Note that r → 0 as s → 0

and

r

F−1(r)
=

F (s)

s
= 1 + |s|p−1 →

s→0
1.

Thus F−1(r) = r + o(|r|) as r → 0. And since

r = s+ sgn (s) |s|p = F−1(r) + sgn (r) |F−1(r)|p,
we obtain

F−1(r) = r − sgn (r) |r|p + o(|r|p), as r → 0.

(ii) Assume (2.5). Set r = F (s) = s+ sgn (s) |s|1/p ∀s ∈ R. Then

F−1(r)

sgn (r) |r|p =
s

sgn (s) |F (s)|p =

 |s|1/p∣∣∣s+ sgn (s) |s|1/p
∣∣∣
p

→
s→0

1.

Thus

F−1(r) = sgn (r) |r|p + o(|r|p), as r → 0.

Proof of Theorem 2.1. Let A0 ∈ R be such that A0 = 0. First we introduce the
real sequence (An)n∈N defined by

∀n ∈ N, An+1 +An = −q(An+1 −An).(5.1)

This sequence is well defined since (5.1) can also be written like

∀n ∈ N, An+1 = An + F−1(−2An),(5.2)

where F : R −→ R is the continuous strictly increasing function defined by F = Id+q.
Assume for a moment the following.
Lemma 5.2.

A2
n ∼

n→+∞
C ′
p

n2/(p−1)
, with C ′

p =

(
1

2p (p− 1)

)2/(p−1)

.

Then we define an absolutely continuous function f : (−1,+∞) −→ R such that

∀n ∈ N, ∀s ∈ (2n− 1, 2n+ 1), f ′(s) = An.
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Note that (5.1) implies

f ′(t+ 1) + f ′(t− 1) = −q(f ′(t+ 1)− f ′(t− 1))(5.3)

almost everywhere (a.e.) t ≥ 0.

Then, u defined by

u(x, t) = f(t+ x)− f(t− x), (x, t) ∈ (0, 1)× (0,∞),

is the solution of problem (1.1). (Relation (5.3) gives ux(1, t) = −q(ut(1, t)).) And
the energy of u is given by

∀t ≥ 0, Eu(t) =
1

2

∫ 1

0

(u2
x(x, t) + u2

t (x, t)) dx =

∫ 1

−1

f ′(t+ s)2 ds.

In particular, Lemma 5.2 gives

Eu(2n) =

∫ 2n+1

2n−1

f ′(s)2 ds = 2A2
n ∼

n→+∞
2C ′

p

n2/(p−1)
.

And since t �→ Eu(t) is nonincreasing, we deduce

Eu(t) ∼
t→+∞

Cp
t2/(p−1)

with Cp =
1

2(p− 1)2/(p−1)
.

Proof of Lemma 5.2. First, let us prove that An →
n→+∞0. From (5.1), we have,

∀n ∈ N,

A2
n+1 −A2

n = −(An+1 −An) q(An+1 −An) ≤ 0.(5.4)

The sequence (A2
n)n∈N is nonincreasing and convergent. Thus A2

n+1 − A2
n →
n→+∞0.

Relation (5.4) implies (An+1 − An) q(An+1 − An) →
n→+∞0 and consequently An+1 −

An →
n→+∞0. From (5.1), we also deduce An+1 +An →

n→+∞0, and finally, An →
n→+∞0.

Then (5.2) and Lemma 5.1 give

An+1 = −An + 2pAn|An|p−1 + o (|An|p), n→ +∞,

when q is given by (2.1). (Note that in this case, for some n0 ∈ N large enough, the
sign of the sequence (An)n≥n0

is alternating.) On the other hand Lemma 5.1 gives

An+1 = An − 2pAn|An|p−1 + o (|An|p), n→ +∞,

when q is given by (2.5). (In this case, for some n′
0 ∈ N large enough, the sign of the

sequence (An)n≥n′
0
is constant.)

In both cases, we obtain

A2
n+1 = A2

n

(
1− 2p|An|p−1 + o (|An|p−1)

)2

(5.5)

= A2
n

(
1− 2p+1|An|p−1 + o (|An|p−1)

)
.
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Note that (5.5) implies in particular that |An+1| ∼
n→+∞|An|. We deduce

1

(An+1)2 (p−1)/2
− 1

(An)2 (p−1)/2
=

1−
(
1− 2p+1|An|p−1 + o (|An|p−1)

)(p−1)/2

|An+1|p−1

=
p−1
2 2p+1 |An|p−1 + o (|An|p−1)

|An+1|p−1
→

n→+∞2p (p− 1).

Finally, Cesàro’s theorem gives

1

(An)2 (p−1)/2
∼

n→+∞

n−1∑
k=0

(
1

(Ak+1)2 (p−1)/2
− 1

(Ak)2 (p−1)/2

)
∼

n→+∞ 2p(p− 1)n,

which proves Lemma 5.2.
Idea of the proof of Proposition 2.1. Let A0 ∈ R be such that A0 = 0. We

introduce the two real sequences (An)n≥0 and (Bn)n≥−1 defined by B−1 = A0 and

∀n ≥ 0, An −Bn = q1(An +Bn),(5.6)

∀n ≥ −1, An+2 −Bn = −q2(An+2 +Bn).(5.7)

We denote by F1 and F2 : R → R the two continuous strictly increasing functions
defined by F1 = Id + q1 and F2 = Id + q2. Then (5.6) and (5.7) become

∀n ≥ 0, Bn = −An + F−1
1 (2An),(5.8)

∀n ≥ −1, An+2 = −Bn + F−1
2 (2Bn).(5.9)

We define f : (0,+∞) −→ R and g : (−1,+∞) −→ R two absolutely continuous
functions such that

∀n ≥ 0, ∀s ∈ (n, n+ 1), f ′(s) = An,

and

∀n ≥ −1, ∀s ∈ (n, n+ 1), g′(s) = Bn.

Note that (5.6) and (5.7) imply

f ′(t)− g′(t) = q1(f
′(t) + g′(t)) a.e. t ≥ 0,(5.10)

and

f ′(t+ 1)− g′(t− 1) = −q2(f ′(t+ 1) + g′(t− 1)) a.e. t ≥ 0.(5.11)

Then, u defined by

u(x, t) = f(t+ x) + g(t− x), (x, t) ∈ (0, 1)× (0,∞),

is the solution of problem (2.6). (Relation (5.10) gives ux(0, t) = q1(ut(0, t)) and (5.11)
gives ux(1, t) = −q2(ut(1, t)).) The energy of u is given by

∀t ≥ 0, Eu(t) =
1

2

∫ 1

0

f ′(t+ x)2 + g′(t− x)2 dx =

∫ t+1

t

f ′(s)2 ds+
∫ t

t−1

g′(s)2 ds.
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In particular,

∀n ∈ N, Eu(n) = A2
n +B2

n−1.

First applying the same reasoning as in Lemma 5.2, we easily see that

∀n ≥ −1, A2
n+2 ≤ B2

n ≤ A2
n ≤ B2

n−2

and that the sequences (An)n and (Bn)n go to zero as n→ +∞.
Next assume (2.7) or (2.11). We use (5.6) and Lemma 5.1 to get that

B2
n = A2

n

(
1− 2p1+1|An|p1−1 + o (|An|p1−1)

)
.(5.12)

Similarly, under (2.8) or (2.12), (5.7) and Lemma 5.1 give that

A2
n+2 = B2

n

(
1− 2p2+1|Bn|p2−1 + o (|Bn|p2−1)

)
.(5.13)

Note that |An| ∼
n→+∞|Bn| and |An+2| ∼

n→+∞|An|. We distinguish the cases p1 = p2 and

p1 < p2. The strategy we used in Lemma 5.2 allows one to prove (2.9) and (2.10).
Idea of the proof of Proposition 2.2. We will use the spherical coordinates r ∈

[1, 2], φ ∈ [0, 2π], θ ∈ [0, π] and we will construct radial solutions satisfying (2.14).
Let A0 ∈ R be such that A0 = 0 and define q̃ by q̃(s) = 2q(s/2) ∀s ∈ R. We introduce
the real sequence (An)n∈N defined by (5.1) in the proof of Theorem 2.1 with q̃ instead
of q. Thus Lemma 5.2 is still true with a constant C̃ ′

p instead of C ′
p.

We define an absolutely continuous function Φ : (−2,+∞)→ R such that

∀n ∈ N, ∀s ∈ (2n− 2, 2n), Φ′(s) = An.

Then, u defined by

u(r, t) =
1

r
(−Φ(t+ r − 2) + Φ(t− r))

is the solution of problem (2.13) since

∂νu(2, t) +
1

2
u(2, t) = ur(2, t) +

1

2
u(2, t) = −q(ut(2, t)).

It is not difficult to verify that the energy of this radial solution defined as usual by
the formula

Eu(t) =
1

2

∫
Ω

ut
2 + |∇u|2 dx+

1

2

∫
∂B2

1

2
u2 dσ

satisfies

∀t ≥ 0, Eu(t) =
1

2

∫ 2

1

∫ 2π

0

∫ π

0

(
u2
t +

(
1

r

d

dr
(ru)

)2
)

r2 sin θ dθ dφ dr

= 2π

∫ 2

1

(
Φ′(t+ r − 2)2 +Φ′(t− r)2

)
dr.

Consequently,

∀n ∈ N, Eu(2n) = 4πA2
n

and Proposition 2.2 follows from Lemma 5.2.
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5.2. Behavior of the energy in the general case.
Proof of Theorem 3.1. Let A0 ∈ R be such that A0 = 0. As for Theorem 2.1,

Eu(2n) = 2A2
n ∀n ∈ N, where (An)n∈N is the real sequence defined by (5.1). Denote

un := |An|. We know that the sequence (un)n∈N is nonincreasing and that un →
n→+∞0.

First we will prove that in both cases q = g or q = g−1, there exists some n0 ∈ N

such that the corresponding sequences (un)n≥n0 will satisfy exactly the same relation:

∀n ≥ n0, un+1 − un = −g(un+1 + un).(5.14)

We denote by [−s0, s0] a neighborhood of 0 where q is given by q = g or by
q = g−1. Since g′(0) = 0, we can assume that 0 ≤ g′(s) < 1/2 ∀s ∈ [−s0, s0]. Then
we introduce n0 ∈ N such that, ∀n ≥ n0, An ∈ [− s02 , s02 ]. Note that this implies in
particular |g(An)| < |An| ∀n ≥ n0.

Assume q = g. Then the sequence (An)n∈N satisfies

∀n ≥ n0, An+1 +An = −g(An+1 −An).(5.15)

Fix n ≥ n0 and assume, for example, An > 0. We introduce the strictly increasing
function φ : s ∈ [− s02 , s02 ] �→ s+ g(s−An). Then

φ(0) = g(−An) > −An = φ(An+1).

Therefore An+1 < 0. So the sign of the sequence (An)n≥n0
is alternating and (5.15)

becomes, since g is odd,

∀n ≥ n0, |An+1| − |An| = −g(|An+1|+ |An|),

which proves (5.14).
Assume now q = g−1. Then the sequence (An)n∈N satisfies

∀n ≥ n0, An+1 +An = −g−1(An+1 −An),

or

∀n ≥ n0, An+1 −An = −g(An+1 +An).(5.16)

Fix n ≥ n0 and assume, for example, An > 0. We introduce the strictly increasing
function ψ : s ∈ [− s02 , s02 ] �→ s+ g(s+An). Then

ψ(0) = g(An) < An = ψ(An+1).

Therefore An+1 > 0. So the sign of the sequence (An)n≥n0 is constant and (5.16)
becomes

∀n ≥ n0, |An+1| − |An| = −g(|An+1|+ |An|),

which proves (5.14).
Finally, in both cases (q = g and q = g−1), since Eu(2n) = 2A2

n = 2u2
n, the

problem reduces to studying the positive nonincreasing sequence (un)n≥n0 defined
by (5.14).
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Let us introduce two other sequences (vn)n≥n0
and (wn)n≥n0

defined by vn0
=

wn0 = un0 and by

∀n ≥ n0, vn+1 = vn − g(2vn) = G(vn),(5.17)

and

∀n ≥ n0, wn = wn+1 + g(2wn+1) = H(wn+1) or wn+1 = H−1(wn),(5.18)

where G : [0, s02 ] → R and H : [0, s02 ] → R are the two strictly increasing functions
defined by G(s) = s−g(2s) and H(s) = s+g(2s) ∀s ∈ [0, s02 ]. We verify that (vn)n≥n0

and (wn)n≥n0 are positive nonincreasing sequences such that vn → 0 and wn → 0 as
n→ +∞. And, with these notations, we prove that

∀n ≥ n0, 0 ≤ vn ≤ un ≤ wn.(5.19)

Indeed, vn0 = wn0 = un0 . Assume for some p > n0, vp ≤ up ≤ wp. Then

up+1 = up − g(up+1 + up) ≥ up − g(2up) = G(up) ≥ G(vp) = vp+1,

and

up = up+1 + g(up+1 + up) ≥ up+1 + g(2up+1) = H(up+1).

Thus

up+1 ≤ H−1(up) ≤ H−1(wp) = wp+1.

Let U be the solution of the ordinary differential equation

U ′(s) = −g(2U(s)), s ≥ 0,(5.20)

such that U(0) = un0 > 0. The function s �→ U(s) is strictly positive and decreasing
and U(s)→ 0 as s→ +∞.

We denote by (sn)n≥n0 , (tn)n≥n0 , and (rn)n≥n0 the increasing sequences de-
fined by sn = U−1(vn), tn = U−1(un), and rn = U−1(wn) ∀n ≥ n0. Since U−1

is decreasing, we have sn ≥ tn ≥ rn. Note also, since vn, un, wn →
n→+∞0, that

U(sn), U ′(sn), U(tn), U ′(tn), U(rn), U ′(rn) →
n→+∞0.

First we prove that sn ∼
n→+∞n: the relation (5.17) becomes

U(sn+1) = U(sn) + U ′(sn).

Thus

sn+1 = U−1(U(sn) + U ′(sn))

= U−1(U(sn)) + U ′(sn)(U−1)′(U(sn)) +
1

2
U ′(sn)2(U−1)′′(U(s′n))

= sn + 1 +
1

2
U ′(sn)2

(−U ′′(s′n)
U ′(s′n)3

)
= sn + 1 +

1

2
U ′(sn)2

2g′(2U(s′n))
U ′(s′n)2

= sn + 1 + g′(2U(s′n))
g(2U(sn))

2

g(2U(s′n))2
,
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with sn ≤ s′n ≤ sn+1. Since U and g are, respectively, decreasing and increasing, we
have

1 ≤ g(2U(sn))

g(2U(s′n))
≤ g(2U(sn))

g(2U(sn+1))
=

g(2vn)

g(2vn+1)
.

Moreover,

g(2vn+1) = g(2vn) + 2(vn+1 − vn)g
′(2αn) = g(2vn)− 2g(2vn)g

′(2αn),

with vn+1 ≤ αn ≤ vn. Thus, since g
′(0) = 0, g(2vn+1)/g(2vn)→ 1 as n→ +∞. Thus

g′(2U(s′n))
g(2U(sn))

2

g(2U(s′n))2
−→

n→+∞0.

And we conclude that

sn+1 = sn + 1 + o(1).

Therefore sn ∼
n→+∞n.

In the same way we prove that rn ∼
n→+∞n. Since sn ≥ tn ≥ rn, we have tn ∼

n→+∞n.

We still introduce V : R+ → R+ defined by V (s) = 2U(s/2) ∀s ≥ 0. Then Eu(2n) =
2U(tn)

2 = 1
2V (2tn)

2, where tn ∼
n→+∞n.

5.3. Some explicit lower bounds of the energy.
Proof of Proposition 3.1. Let A0 ∈ R be such that A0 = 0. We use the notations

of the proof of Theorem 3.1. Then Eu(2n) = 2A2
n ∀n ∈ N, where (An)n∈N is the

real sequence defined by (5.1). As for Theorem 3.1, we can prove that, in both cases
|q| ≤ |g| or |q| ≥ |g−1| in a neighborhood of zero, there exists some n0 ∈ N such that
the sequence (un)n≥n0

= (|An|)n≥n0
satisfies

∀n ≥ n0, un+1 − un ≥ −g(un+1 + un) ≥ −g(2un).(5.21)

We introduce h = 1
2g

−1. Set n1 ∈ N, and let (λn)n≥n0
be the real decreasing

sequence (convergent to 0) defined by h′(λn) = n+ n1. Note that ∀n ≥ n0,

h(λn) =
1

2
(g′)−1

(
1

2(n+ n1)

)
.

Choose n1 ∈ N such that h(λn0) ≤ un0 . We prove by induction that

∀n ≥ n0, un ≥ h(λn).

Assume un ≥ h(λn). Then

un+1 ≥ un − g(2un) = G(un) ≥ G(h(λn)) ≥ h(λn)− λn.

On the other hand,

h(λn)− h(λn+1) = (λn − λn+1)h
′(µn) ≥ (λn − λn+1)h

′(λn)

(where λn+1 ≤ µn ≤ λn). Since

λn(h
′(λn)− 1) ≥ λn+1(h

′(λn+1)− 1) = λn+1h
′(λn),
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we see that

(λn − λn+1)h
′(λn) ≥ λn,

and so un+1 ≥ h(λn+1).
Proof of Proposition 3.2. We still use the notations of the proof of Proposition 3.1

and we study the sequence (un)n≥n0
= (|An|)n≥n0 that satisfies (5.21). Let 0 < γ ≤ β

be such that un0 ≥ h( γ
nk0

). We prove by induction that

un ≥ h
( γ

nk

)
.

Assume that un ≥ h( γ
nk

). Then

un+1 ≥ un − g(2un) = G(un) ≥ G
(
h
( γ

nk

))
≥ h

( γ

nk

)
− γ

nk
.

On the other hand,

h
( γ

nk

)
− h

(
γ

(n+ 1)k

)
≥
(

γ

nk
− γ

(n+ 1)k

)
h′
( γ

nk

)
≥ γ(n+ 1)

(
1

nk
− 1

(n+ 1)k

)
≥ γ

nk
.

Thus

un+1 ≥ h

(
γ

(n+ 1)k

)
.

Lower bound for the energy of a more general class of initial conditions. The
reasoning is exactly the same: set (u0, v0) ∈ W 1,∞(0, 1) × L∞(0, 1) such that
‖(u0, v0)‖W 1,∞×L∞ is small enough. The solution of (1.1) can be written as

u(x, t) = f(t+ x)− f(t− x),

and the boundary condition implies that the sequence (An(s) = f ′(s + 2n))n∈N for
s ∈ (−1, 1) satisfies

An+1(s) +An(s) + q(An+1(s)−An(s)) = 0.(5.22)

Note that (u0, v0) ∈W 1,∞(0, 1)×L∞(0, 1) if and only if A0 ∈ L∞(0, 1), and (u0, v0) ∈
V × L2(0, 1) if and only if A0 ∈ L2(0, 1). Similarly

Eu(2n) =

∫ 2n+1

2n−1

f ′(s)2 ds =
∫ 1

−1

An(s)
2 ds.

Then the reasoning applied to prove Proposition 3.2 shows that under the assump-
tion (3.10) we can find γ(s) ∈ [0, β] such that

|An(s)| = un(s) ≥ h

(
γ(s)

nk

)
.

Since (u0, v0) is not equal to zero, the function γ is bounded from below by some
positive constant γ0 on some subinterval J of (−1, 1). Then

Eu(2n) ≥ |J |h
( γ0

nk

)2

,

where |J | denotes the length of J .
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5.4. Optimality of estimate (3.1) for a class of nonpolynomial feed-
backs.

Proof of Proposition 3.3. We still use the notations of the proof of Proposition 3.1
and we study the sequence (un)n≥n0 = (|An|)n≥n0 that satisfies (5.21). There exists
rn ∈ [un+1, un] such that

g(αun+1) = g(αun) + α(un+1 − un)g
′(αrn)

≥ g(αun)− αg(2un)g
′(αrn) ≥ g(αun)− αg(2un)g

′(αun).

Note that (3.12) gives that g(αun)− αg(2un)g
′(αun) > 0. We deduce that

1

g(αun+1)
− 1

g(αun)
≤ 1

g(αun)

 1

1− αg(2un)g′(αun)
g(αun)

− 1


≤ 1

g(αun)

(
1 + 2α

g(2un)g
′(αun)

g(αun)
− 1

)
≤ 2α

g(2un)g
′(αun)

g(αun)2
≤M.

Thus

1

g(αun)
≤Mn+ C,

where C > 0 is a constant, which proves the result.

5.5. Remark concerning (2.2). Let v be the solution of (3.15). Note that

v(n+ 1)− v(n) = v′(αn) = −q(v(αn)),

with αn ∈ [n, n+ 1]. Since q is increasing and v nonincreasing, we have

−q(v(n)) ≤ v(n+ 1)− v(n) ≤ −q(v(n+ 1)).

Thus, under the hypotheses of Theorem 3.1 and Propositions 3.1 and 3.2 and with
similar proofs, we can obtain similar lower bounds of the energy.

5.6. Decay rate when the feedback is weak at infinity. Consider now the
special function q defined by{ ∀|s| ≤ 2, q(s) = s

2 ,∀|s| ≥ 2, q(s) = sgn (s)1.

We solve (5.22) to deduce that{
if |An(s)| ≥ 3

2 , then |An+1(s)| = |An(s)| − 1,

if |An(s)| ≤ 3
2 , then |An+1(s)| = k|An(s)| with k := 1

3 .

Set s ∈ (0, 1) and let p(s) be the smallest nonnegative integer such that

|A0(s)| ≤ p(s) +
3

2
.
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We deduce easily that{
if q ≤ p(s), then |Aq(s)| = |A0(s)| − q,
if q ≥ p(s), then |Aq(s)| = kq−p(s)|Ap(s)(s)|.(5.23)

Exponential decay of strong solutions: set (u0, v0) ∈W 1,∞(0, 1)× L∞(0, 1), then
A0 ∈ L∞(−1, 1), and so the energy of the solution u decays exponentially to zero.
Indeed, there exists p0 such that

‖A0‖∞ ≤ p0 +
3

2
;

then |Ap0(s)| ≤ 3
2 and

∀n ≥ p0, Eu(2n) =

∫ 1

−1

An(s)
2 ds ≤ 9

2
k2(n−p0).

The strong solutions do not decay uniformly exponentially to zero: consider the
sequence of initial conditions A

(m)
0 (s) = m if s ∈ (− 1

2m2 ,
1

2m2 ),

A
(m)
0 (s) = 0 if s ∈ (−1, 1) \ (− 1

2m2 ,
1

2m2 ).

All these initial conditions satisfy E(m)(0) = 1. We easily deduce from (5.23) that

∀r ∈ N, E(m)(2m+ 2r) =
1

9m2

1

9r
.

Thus we cannot expect that there exist C > 0 and ω > 0 that do not depend on m
such that all strong solutions satisfy

∀t ≥ 0, E(t) ≤ CE(0)e−ωt.

Indeed, that would mean

∀m ∈ N,
1

9m2
= E(m)(2m) ≤ Ce−2ωm.

The study of the decrease of the energy of weak solutions: first we prove that weak
solutions do not decay uniformly polynomially to zero. Fix ε ∈ (0, 1) and consider
the following initial conditions:{ ∀s ∈ (0, 1), A0(s) =

1
s(1−ε)/2 ,∀s ∈ (−1, 0), A0(s) = 0.

Then we deduce from (5.23) that

if A0(s) ≥ n+
1

2
, then An(s) = A0(s)− n.

Set a := 1−ε
2 . Thus

Eu(2n) =

∫ 1

0

An(s)
2 ds ≥

∫ (n+1)−1/a

0

An(s)
2 ds =

∫ (n+1)−1/a

0

(
1

sa
− n

)2

ds.
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Easy computations lead to∫ (n+1)−1/a

0

(
1

sa
− n

)2

ds ∼
n→+∞

2a2

(1− 2a)(1− a)

1

n(1−2a)/a
.

Since 1−2a
a = 2ε

1−ε can be chosen as close to zero as we want, the energy of weak
solutions does not decay uniformly polynomially to zero.

We need only to refine this study to prove (4.4): fix p ≥ 2 and consider

∀s ∈ (0, T−1
p ), A0(s) =

(
1

s ln1(s−1) ln2(s−1) · · · lnp−1(s−1)(lnp(s−1))2

)1/2

,

and A0(s) = 0 in (−1, 0) ∪ (T−1
p , 1). We verify that A0 ∈ L2(0, 1): we use several

times the change of variables z = ln s to get∫ 1

−1

A0(s)
2 ds =

∫ T−1
p

0

ds

s ln1(s−1) ln2(s−1) · · · lnp−1(s−1)(lnp(s−1))2

=

∫ +∞

lnTp

dz

z ln1(z) ln2(z) · · · lnp−2(z)(lnp−1(z))2

= · · · =
∫ +∞

lnp(Tp)

dz

z2
=

1

lnp(Tp)
.

Next we use the same strategy: set α > 0 and define for n large enough

sn =
α

n2 ln1(n) ln2(n) · · · lnp−1(n)(lnp(n))2
.

We easily see that

A0(sn)
2 ∼

n→+∞
n2

2α
.

Therefore, if we choose, for example, α := 1
4 , for n large enough we have

A0(sn) ≥ n+
1

2
.

Therefore

Eu(2n) =

∫ 1

−1

An(s)
2 ds ≥

∫ sn

0

An(s)
2 ds =

∫ sn

0

(A0(s)− n)2 ds

≥ 1

2

∫ sn

0

A0(s)
2 ds− n2sn

≥ 1

2

1

lnp(s
−1
n )
− n2sn ∼

n→+∞
1

2

1

lnp(s
−1
n )

.

Thus, we obtain that for n large enough,

Eu(2n) ≥ 1

8

1

lnp(n)
≥ 1

lnp−1(n)
.
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Abstract. The problem of minimizing the cost functional of an optimal control system through
the use of constrained variational calculus is a generalization of the geodetic problem in Riemannian
geometry. In the framework of a geometric formulation of optimal control, we define a metric
structure associated to the optimal control system on the enlarged space of state and time variables,
such that the minimal length curves of the metric are the optimal solutions of the system. A twofold
generalization of metric structure is applied, considering Finslerian-type metrics as well as allowed
and forbidden directions (like in sub-Riemannian geometry). Free (null Hamiltonian) or fixed final
parameter problems are identified with constant energy leaves, and the restriction of the metric to
these leaves gives way to a family of metric structures on the usual state manifold.

Key words. optimal control for ordinary differential equations, Finsler metrics
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1. Introduction. A positive definite symmetric tensor g on a manifold M is
named a Riemannian metric structure (M, g). It allows us to measure lengths of
curves by first calculating the norm of the velocity vector associated to a parametrized
curve, and then integrating it along the curve

�(γ) =

∫ t1

t0

√
g(γc, γc)dt,

where γc(t) is the lifting of the curve γ: [t0, t1] → M to TM , the tangent bundle. In
local coordinates, if γ(t) = (xi(t)), and g is given by gij(x)dxidxj , the norm of the

velocity vector is |γc(t)| =
√

gij(x(t))dx
i

dt
dxj

dt .

Length has the property of being invariant under reparametrization of the curve,
because the norm is a homogeneous positive function on the velocities. Curves of
minimal length joining two points are said to be geodesics, and, through classical
variational calculus, a set of necessary conditions is obtained for these curves, the
geodetic equations or Euler–Lagrange equations for the Lagrangian L =

√
g(v, v).

But (M, g) has much more structural content: associated connection, scalar product
of vectors, and the whole exhaustively studied machinery of Riemannian geometry.

If we are just interested in measuring the length of curves, we only need a ho-
mogeneous positive function F in TM (not necessarily the square root of a quadratic
function) to be integrated along the curves, giving an invariant under reparametriza-
tion length. This defines a Finslerian metric structure on (M, F ), which was, in fact,
the original theme of work in the early study by Riemann (see [5] and references
therein), and many properties of Riemannian geometry can be generalized to this
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case. In this paper, the extra conditions of convexity, ∂2F
∂v∂v > 0, and central symme-

try F (−v) = F (v) (see, for example, [6]), will not be imposed, so that our Finslerian
structure will be more general than usual.

Another simple generalization of the Riemannian metric structure is given by
constraining the set of allowed directions for the curves to be measured, i.e., by
considering a cone of directions D ⊂ TM or, equivalently, a subset of the positive
projective space SM ≡ TM/∆, where ∆ is the Liouville or dilation vector field. Only
curves whose lifting to TM lies in D can be measured, and we have a Riemannian
metric g defined on D. This is the case of sub-Riemannian geometry [2, 9], where
a linear distribution E (usually completely nonintegrable) is considered as the set of
allowed directions on M . (M, E, g) is a sub-Riemannian structure, and the length
of curves γ whose lifting lies in E is given by the usual integral functional. The
unexpected existence of abnormal geodesics has been clarified by using the optimal
control machinery, identifying those abnormal curves with the solutions of the problem
with p0 = 0. Optimal control, as a generalization of classical variational calculus, is
therefore an appropriate framework for the study of metric structures.

The joining of both ideas, that of Finslerian functions and that of a constrained
directional set, would give way to sub-Finslerian metric structures (M, D, F ), where D
is a cone of allowed directions and F is a homogeneous positive function on D. Of
course, in this generalization process we have lost properties, but the basic one of
measuring lengths of curves is preserved. The visualization of the indicatrix (set
of vectors with norm 1) helps to understand the differences between metrics; the
indicatrix is a hyperellipsoid centered at the origin for Riemannian metrics, a general
convex hypersurface around the origin for Finslerian metrics, and a very general set
(neither convex nor intersecting all directional rays) for a more general sub-Finslerian
metric. Our aim in this paper is to point out that optimal control systems can be
understood as metric structures of this generalized sub-Finslerian type, and to show
how typical properties of optimal control, as bang-bang phenomena or allowed but
never optimal directions, can be illustrated through the indicatrix of the associated
metric structure.

A typical system where allowed velocities are constrained is a control system of
ordinary differential equations. A control system is defined through a set of differential

equations (usually in normal form) dxi

dt = f i(x, u), where the ua variables are named
controls. In geometric terms [11], it corresponds to a bundle map X: U → TM over
the identity in the state manifold M from the control bundle (U, η, M) to the tangent
bundle (TM, τ, M), where the image of the map X is the set of allowed velocities. If
we want to minimize a cost functional C(γ) =

∫
f0(x(t), u(t))dt for allowed curves of

the control system joining two points, we face an optimal control problem [8, 12]. In
other words, we are given a way to measure the cost for allowed curves. It is like a
generalized metric structure as presented before, but we do not have the invariance
under reparametrization property because the cost functional is not obtained from a
Finslerian function.

Using the machinery of optimal control (the Pontryagin maximum principle [12]),
we can associate to the optimal control problem a sub-Finslerian structure, i.e., a cone
of directions D and a Finslerian function F , such that the cost value of a curve solution
of the control system is just the length of the curve (or of any reparametrization of
the curve). Therefore, the geodetic curves of the metric system are the curves making
minimal the cost, the solutions of the optimal control problem. This metric structure
is defined in an enlarged space of states and time (parameter of evolution) N = M×R
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for the general case; for free or fixed final parameter problems, we obtain through
restriction and projection a family of metric structures on M , parametrized by the
energy, in classical mechanical language.

The paper is organized as follows. Section 2 is devoted to present a geometric
description of optimal control systems based on the geometry of control systems as
presented in [1, 11], and a geometric version of Pontryagin maximum principle, which
gives way to a Dirac type constraint algorithm [7]. In section 3 the metric structure
associated to a time optimal problem (the simplest case) is defined on M (the state
space), and academic examples are presented where some graphic representation of
the indicatrix helps to understand the basic ideas. Section 4 considers the general
optimal control problem, defining a metric structure on the manifold N = M × R

of states and time; the generalization is based on a simple reparametrization of the
system which transforms it into a time optimal problem. As an illustrative example,
the Finslerian metric associated to a mechanical Lagrangian system is presented. The
restriction of the metric to certain energy leaves, associated to free or fixed final
parameter problems, is developed in section 5. In the former example of Lagrangian
mechanics, this restriction gives way to the well-known Jacobi metrics. A final section
with conclusions and possible applications is also included.

2. Geometry of optimal control. A (continuous) control system of (autono-
mous) ordinary differential equations is a family of differential equations in normal

form dxi

dt = f i(x, u), where xi are named state variables, t is the parameter of evo-
lution (usually the time), and ua are the controls. From the geometric point of view
[11], it can be understood as a fibered mapping X: U → TM from a control fiber
bundle (U, η, M) over the state manifold M to the tangent bundle (TM, τ, M). Using
local coordinates (xi)ni=1 in M , adapted coordinates (xi, ua)ka=1 in U , and natural
coordinates (xi, vi) in TM , the coordinate expression for X is X(x, u) = f i(x, u) ∂

∂xi ,
or vi = f i(x, u), the family of control equations. Allowed curves of the control system
are curves ρ: I ⊂ R→ U such that (η ◦ ρ)c = X ◦ ρ, where γc is the natural lifting to
TM of a curve γ in M . In local coordinates, ρ(t) = (xi(t), ua(t)) is a solution integral

curve of the control system if dxi

dt = f i(x(t), u(t)), i.e., if (η ◦ ρ)c = (xi(t), dx
i

dt ) equals
X ◦ ρ = (xi(t), f i(x(t), u(t))). Note that the evolution on the state manifold M is to-
tally characterized by the image set S = Im(X) ⊂ TM , while the map XS : U → S can
be understood as a parametrization (perhaps redundant) of S. A particular problem
of the control system can always be solved in two steps; the first solves the problem
in the basic control system i: S → TM , obtained from the natural injection of S
into TM , and the second determines a particular inverse of X over the solution. In
the usual control system language, we are just selecting the essential controls (all of
them whenever XS is a diffeomorphism [14]). Therefore, we sometimes will under-
stand (xi, ua) as a nonnatural system of coordinates in the allowed velocities space
S ⊂ TM , and we will identify the control set Ux = η−1(x) for a fixed x ∈M with the
set of allowed velocities Sx = S ∩ τ−1(x) on x.

In optimal control theory [8, 12], a cost functional C(ρ) =
∫

f0(x(t), u(t))dt is
given, and the problem is to obtain allowed curves of the control system satisfying
some boundary conditions (e.g., x(0) = x0, x(T ) = x1) and minimizing the cost func-
tional. It is therefore a classical variational problem with nonintegrable constraints
defined by the control equations. Pontryagin’s maximum principle [12] gives a set of
necessary conditions for a curve (x(t), u(t)) to be optimal; introducing a Hamiltonian
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function

H(x, p0, p, u) = p0f0(x, u) + pif
i(x, u),(2.1)

where the variables (p0, pi) are momenta coordinates, the optimal curves (x(t), u∗(t))
must satisfy the control system equations

dxi

dt
=

∂H

∂pi
= f i(x(t), u∗(t)),(2.2)

and there must exist a solution curve for the adjoint differential equations

dpi
dt

= −∂H

∂xi
= −p0

∂f0

∂xi

∣∣∣
(x(t),u∗(t))

− pj
∂f j

∂xi

∣∣∣
(x(t),u∗(t))

(2.3)

with the optimal control u∗ satisfying the algebraic condition of maximality

H(x, p, u∗) ≥ H(x, p, u) ∀u ∈ Ux = η−1(x).(2.4)

Here p0 is a nonpositive constant, the case p0 = 0 is named abnormal, and for p0 < 0
it can be fixed to −1 by homogeneity of the adjoint equations and the Hamiltonian.
Moreover, the Hamiltonian vanishes when the final parameter T is not fixed.

This set of Hamiltonian differential equations and the algebraic condition of max-
imality are the cornerstone of optimal control theory. The so-called transversality
conditions on the momenta must be added to the boundary conditions when the ini-
tial and final endpoints are not fixed but are restricted to belong to some subsets
of the state space. When the set of controls U is a manifold with boundary, the
algebraic condition of maximality can be achieved in an interior point (and a weaker
algebraic equation could be used, ∂H

∂ua = 0 for stationary points) or in the bound-
ary. Sometimes the values u∗a can be determined explicitly as u∗a(x, p), which can
be understood as a dynamical feedback, and we reduce the problem to a set of 2n
differential equations with boundary conditions, but this is not the case in many
complex situations. It is interesting to observe that the former Hamiltonian is of a
mixed type, with explicit dependence on velocity (through the control variables) as
well as momenta coordinates. This is similar to the approach used in [13] to study
the relationship between Lagrangian and Hamiltonian formulations of classical me-
chanics: given a Lagrangian function L(x, v) on the tangent bundle, a Hamiltonian
function H(x, v, p) = 〈p, v〉 − L(x, v) (where 〈p, v〉 is the natural pairing between
covectors and vectors) is defined on the Whitney sum of tangent and cotangent bun-
dles WM = TM ×M T ∗M . The Hamiltonian equations (obtained through a natural
presymplectic form on W )

dx

dt
=

∂H

∂p
= v,

dp

dt
= −∂H

∂x
=

∂L

∂x

and algebraic condition

∂H

∂v
= 0 = p− ∂L

∂v

are equivalent to the Euler–Lagrange equations for the Lagrangian L. Only for regular
Lagrangians, when the velocities v(x, p) can be determined uniquely through the alge-
braic condition p− ∂L

∂v = 0, the usual Hamiltonian H0(x, p) = 〈p, v(x, p)〉−L(x, v(x, p))
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living on T ∗M gives way to an equivalent system of differential equations, but this is
not the case for singular Lagrangians.

Therefore, a geometric transcription of Pontryagin’s maximum principle is natu-
rally developed in the framework of the Whitney sum W = U×M T ∗M (or the subset
S×M T ∗M of WM for basic systems) for the normal case p0 = −1, the one presented
here for simplicity. The Hamiltonian function H(x, p, u) = 〈p, X(x, u)〉 − f0(x, u) is
defined on W , and the pull-back of the canonical symplectic form ω = dxi ∧ dpi on
T ∗M to W , Ω = pr∗2(ω), with pr2: W → T ∗M the natural projection, determines a
presymplectic Hamiltonian structure (W, Ω, H). The algebraic condition of maximal-
ity defines a subset W1 ⊂ W by taking on every fiber of pr2 the point (or points)
where H is maximal

W1 = {(x, p, u∗) ∈W |H(x, p, u∗) ≥ H(x, p, u) ∀(x, p, u) ∈ pr−1
2 (x, p), (x, p) ∈ T ∗M}.

The optimal vector field Γ solution of the optimal control system is determined by

i(Z)(i(Γ)Ω− dH)
∣∣∣
W1

≥ 0

for every arbitrary allowed vector Z in TW1
W , i.e., an arbitrary vector in an interior

point (in this case the condition is simply (i(Γ)Ω− dH)|W1 = 0) or a vector tangent
to the boundary or pointing to the interior of W for a point in the boundary of W .
The optimal curves are integral curves of Γ. In local coordinates, the points (x, p, u∗)
of W1 are just those satisfying the algebraic condition of maximality (2.4); given
Γ = ai ∂

∂xi + bi
∂
∂pi

+ ca ∂
∂ua , we get

i(Γ)Ω− dH =

(
−bi − ∂H

∂xi

)
dxi +

(
ai − ∂H

∂pi

)
dpi − ∂H

∂ua
dua.

Therefore, i(Z)(i(Γ)Ω− dH)|W1 ≥ 0 gives way to

ai =
∂H

∂pi
, bi = −∂H

∂xi
,

and to the condition of local maximum in the fiber for H, which is certainly fulfilled
in the global maximum point of W1. A similar geometric description can be obtained
to include the abnormal case p0 = 0 and to formulate nonautonomous systems, by
taking into account the cost and/or the time variables in an enlarged state manifold
M × R or M × R

2, with extra coordinates x0 (the cost variable) and xn+1 ≡ t, and
extra control equations

dx0

dt
= f0(x, u),

dxn+1

dt
= 1.

We present in the next section the simpler case of autonomous time optimal problems,
where f0(x, u) = 1, and those extra variables are not necessary to define the associated
metric.

Notice that the solution Γ is not necessarily unique (the ca components can be
underdetermined) and it should be tangent to W1. This compatibility condition is
solved by applying a constraint algorithm similar to the one developed in [7] for
presymplectic Hamiltonian systems, defining a chain of constraint submanifolds. In
many cases the algorithm is trivial and W1 is the final constraint submanifold, but
sometimes the compatibility condition can be nontrivial, as it is in the case of sub-
Riemannian geometry for the abnormal solutions.
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3. Time optimal problems and the associated metric. For a time optimal
problem we try to minimize the final time T (we take t = 0 as initial value), so that
f0(x, u) = 1, and the Hamiltonian (for the normal case) becomes

H(x, p, u) = pif
i(x, u)− 1 = 〈p, X(x, u)〉 − 1.(3.1)

The final parameter is obviously free (it is the unknown cost), and therefore the
optimal curves take values on the subset H = 0 of W . In order to define a sub-
Finslerian metric structure on M we need a set of allowed directions, a cone bundle
D ⊂ TM , and a Finslerian (homogeneous) function defined on D. The construction is
made pointwise, i.e., fixing an x ∈M and defining Dx = D∩τ−1(x) and Fx: Dx → R.

Once fixed x, the algebraic condition of maximality (2.4) determines a subset U∗
x

of Ux = η−1(x) of possible optimal controls

U∗
x = {(x, uo) ∈ Ux| ∃(x, p) ∈ T ∗

xM such that H(x, p, uo) ≥ H(x, p, u) ∀u ∈ Ux},

from which the actual optimal control u∗(x, p) is determined for every p. Note that
U∗ = ∪x∈MU∗

x is just the projection of W1 to U . The image subset S∗
x = X(U∗

x) ⊂ Sx
is made of some of the longest allowed velocity vectors, because, for a given momentum
covector pidxi, the Hamiltonian is maximal for the vector f i(x, u) ∂

∂xi with the greatest
projection, max〈p, f(x, u)〉, i.e., the longest in some particular ray direction. (Note
that for the actual solutions of the adjoint equations the projection is always positive
by the nullity of the Hamiltonian, 〈p, f(x, u)〉 = 1, and therefore the shortest vector
in a given direction is never optimal.) So we have

S∗
x ⊂ Sox = {(x, v) ∈ TxM |v ∈ Sx and λv /∈ Sx ∀λ > 1}.(3.2)

Now, the invariance under reparametrization needed to define a metric can be
obtained by considering the cone Dx of rays generated by elements of Sox (the curves
can be followed at arbitrary positive speed)

Dx = {(x, v)| ∃(x, vo) ∈ Sox such that v = λvo, λ > 0}.(3.3)

The norm of the velocity is now defined to obtain a length equal to the original cost;
we associate to every (x, v) ∈ Dx the norm λ, which is the factor between it and the
element of Sox in the same ray

Fx: Dx → R
+, Fx(v) = λ, where v = λvo, with vo ∈ Sox.(3.4)

An optimal curve ρ(t) = (x(t), u∗(t)), with cost
∫ T
0

dt = T , will have, once arbi-

trarily reparametrized by t(τ) ( dtdτ > 0), the length∫ τf

τi

F (x(τ), v(τ))dτ =

∫ τf

τi

λ(τ)dτ =

∫ τf

τi

dt

dτ
dτ =

∫ T

0

dt = T,

because

v(τ) =
dx

dτ
=

dx

dt

dt

dτ
= vo

dt

dτ

so that F (x(τ), v(τ)) = λ(τ) = dt
dτ . Note that Sox ⊂ Dx is the indicatrix of the defined

metric, the set of unit norm velocities.
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Fig. 1. Allowed velocities, optimal velocities, and the cone of directions.

For example, let us consider in R
2 the control system

dx

dt
= 2 + u1 cos(u2),

dy

dt
= u1 sin(u2), 0 ≤ u1 ≤ 1, u2 ∈ S1,

for which, in a particular point (x0, y0) ∈ R
2, the subset S(x0,y0) is the unit disk

centered at (2, 0). In a time optimal problem for this control system, the subset of
possible optimal allowed velocities S∗

(x0,y0)
(≡ So(x0,y0)

in this case) is determined by

u1 = 1 and −2π
3 ≤ u2 ≤ 2π

3 , the boundary of the disk made of the longest vectors.
(See Figure 1.)

D(x0,y0) is determined by the conditions | vyvx | ≤ 1√
3

and vx > 0. The Finslerian

function, the factor between elements of D(x0,y0) and the element of So(x0,y0)
on the

same ray, is explicitly given by

F(x0,y0)(vx, vy) =
v2
x + v2

y

2vx +
√

v2
x − 3v2

y

,

a not very simple homogeneous function defined on D(x0,y0).
Next we present another illustrative example of a time optimal problem, where the

bang-bang phenomenon is clearly illustrated through the indicatrix of the associated
metric. Given the system of control equations

dx

dt
= u1| cos u2| cos u2,

dy

dt
= u1| cos u2| sin u2,

with 0 ≤ u1 ≤ 2, 0 ≤ u2 < 2π, the problem is to find the curve solution of the system
joining two fixed endpoints with minimum parameter increasing ((x, y)(0) = (x1, y1),
(x, y)(T ) = (x2, y2), T minimum). It is a typical optimal control problem, defined in
this case through the map X: R× R

2 → TR
2 given by

X(x, y, u1, u2) = u1| cos u2| cos u2
∂

∂x
+ u1| cos u2| sin u2

∂

∂y
,
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Fig. 2. The set S in a generic T(x,y)R
2.

where R is the direct product [0, 2]× S1. The image set Im(X) = S is given at every
point of the plane by the union of two unit disks centered at (1, 0) and (−1, 0), respec-
tively (see Figure 2). The family of functions (x, y, u1, u2) is a system of coordinates
for S ⊂ TR

2 which are related to the natural coordinates (x, y, vx, vy) by

vx = u1| cos u2| cos u2, vy = u1| cos u2| sin u2,

with inverse transformation

u1 =
v2
x + v2

y

|vx| , u2 = arctan

(
vy
vx

)
.

Being a minimum time problem, the Hamiltonian of the optimal control system,
defined on R× T ∗

R
2, is given by

H = (px cos u2 + py sin u2)u1| cos u2| − 1.

In a first step, maximality is obtained on every direction of S for u1 = 2, i.e., So is the
boundary of the disks (see Figure 3), where coordinates (x, y, u2) can be used. The
cone of allowed ray directions is D = {v ∈ TR

2; vx �= 0}, and every vector (vx, vy)
in D is positive proportional to a vector (vxo, vyo) in So (see Figure 3) by a factor λ
which determines the metric function F :

F (x, y, vx, vy) =
v2
x + v2

y

2|vx| .

F is homogeneous positive of degree 1, and note that F = 1 reproduces the set So,
the indicatrix. In a usual metric notation, we have defined, associated to the opti-

mal control system, the Finslerian metric ds = (dx)2+(dy)2

2|dx| on the allowed directions

〈dx, v〉 �= 0.
Now, by concavity it is clear in Figure 4 that for u2 ∈ (π/4, 3π/4) ∪ (5π/4, 7π/4)

the corresponding direction is never a maximum of the Hamiltonian (the movable
normal line to the momentum vector never first contacts the indicatrix in this interval),
and we have as optimal set S∗ of allowed directions those of slope (vy/vx)2 ≤ 1 on So.
Geodetic curves of the metric are segments of straight lines. (This fact can be easily
determined by obtaining the Euler–Lagrange equations for the singular Lagrangian

L =
v2x+v

2
y

2|vx| , which are equivalent to the condition vy/vx constant.)

Therefore, although we can measure lengths of curves with slope (vy/vx)2 > 1,
those curves will never be geodesics and, if the initial and final points are, for example,
(0, 0) and (2, 1), the straight segment between them is not the geodesic. The geodesic
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Fig. 3. The set S0, i.e., the indicatrix. The length of a vector is the factor between it and the
parallel vector on the indicatrix.
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Fig. 4. A given momentum vector and its corresponding optimal velocity. Dashed directions
on the indicatrix can never be optimal and do not belong to S∗.

(not unique) is a succession of segments with slopes 1 and −1, as, for example, (0, 0)→
( 3
2 , 3

2 )→ (2, 1), and it contains at least one point of discontinuity on the derivative, a
bang-bang on the control u2 between π/4 and 3π/4. The bang-bang phenomenon is
here understood by the concavity-convexity properties of the indicatrix, i.e., by the
fact that S∗ is a proper subset of So.

4. The general case: The metric on state-time space. As it was pointed
out in section 2, Pontryagin’s maximum principle for the abnormal case as well as
for nonautonomous systems can be formulated in the same framework by considering

extra variables. Given a nonautonomous control system dxi

dt = f i(x, t, u), a cost
function f0(x, t, u), and some boundary conditions (for example, x(t0) = x0, x(t1) =
x1, t0, and t1 fixed), let us consider the enlarged state space Q = M × R

2 with
coordinates (x0, xi|i=1,···,n, xn+1) and the enlarged (but autonomous) control system

dx0

dτ
= f0(x, xn+1, u),

dxi

dτ
= f i(x, xn+1, u),

dxn+1

dτ
= 1,

with boundary conditions

x0(τ0) = 0, xi(τ0) = xi0, xi(τ1) = xi1, xn+1(τ0) = t0 ≡ τ0, xn+1(τ1) = t1,

with τ1 not fixed (although it is determined by the last control equation). It is clear
that there is a correspondence between allowed curves for both systems, and optimal
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curves of the first system are curves of the second system with minimal final value
x0(τ1). The Hamiltonian function in U ×Q T ∗Q is defined, as before, as

H(x0, x, xn+1, p0, p, pn+1, u) = p0f0(x, xn+1, u) + pif
i(x, xn+1, u) + pn+1,

and the same machinery works. It is immediate that p0 is constant because there is no
dependence of x0 on H, and we can consider the abnormal case p0 = 0 on the same foot
as the normal one. The final parameter is free, so that H = 0 is an extra condition;
in the case of autonomous systems, pn+1 is also constant by the adjoint equations,
and we recover the constant autonomous Hamiltonian (for free t1 the transversality
condition pn+1 = 0 reproduces the vanishing autonomous Hamiltonian).

From another point of view, we can think of the optimal control system as a
Pfaffian problem [6, 14] characterized by the family of the form

F = {dxi − f i(x, xn+1, u)dxn+1, dx0 − f0(x, xn+1, u)dxn+1},
where allowed curves are now γ(ε) = (x0(ε), x(ε), xn+1(ε)), such that γ∗(F) = 0.
Tangent vectors to the allowed curves are therefore λ

(
f0 ∂

∂x0 + f i ∂
∂xi + ∂

∂xn+1

)
with

λ > 0 arbitrary, i.e., arbitrary positive reparametrizations of the allowed curves for
the enlarged control system.

Taking λ = 1/f0 and discarding those directions for which f0 = 0, we obtain an
equivalent control system, (f i/f0) ∂

∂xi +(1/f0) ∂
∂xn+1 + ∂

∂x0 . It is just a reparametriza-
tion of the allowed curves by the cost variable x0, and for this new control system, the
Hamiltonian is Hc = pig

i + pn+1gn+1 + p0, with gn+1 = 1/f0 and gi = f i/f0, defined
again in U×QT ∗Q. This new optimal control system is the translation of the original
optimal control system to a x0-time optimal problem. Therefore, the construction of
the metric can be made similarly to the one presented in section 3 for time optimal
problems. In particular, we restrict ourselves to the normal case p0 = −1, so that the
explicit coordinate x0 is not needed, and our state space will be N = M × R. The
control system is Y : U → TN

dxi

ds
= gi(x, xn+1, u),

dxn+1

ds
= gn+1(x, xn+1, u),(4.1)

where s is the new parameter (the arc-length parameter in metric notation) and the
Hamiltonian is defined on W = U × T ∗N

H(x, xn+1, u, p, pn+1) = pig
i(x, xn+1, u) + pn+1gn+1(x, xn+1, u)− 1 = 〈p, Y 〉 − 1.

Note that this construction is valid for an original autonomous system, where there
is not dependence of the g on xn+1, and pn+1 is a constant.

Once we fix a point (x0, xn+1
0 ) in N , we find a set of possible optimal controls

U∗
(x0,x

n+1
0 )

, such that its image Y (U∗) = S∗ is made of some of the longest vectors in

the set S of allowed velocities:

So = {(x, xn+1, v, vn+1) ∈ S | λ(v, vn+1) /∈ S ∀λ > 1}.(4.2)

The metric is defined on the cone of directions

D = {(v, vn+1)|(v, vn+1) = λ(vo, vn+1
o ) with λ > 0 and (vo, vn+1

o ) ∈ So},
and the Finslerian function is F (v, vn+1) = λ. For the actual solution, the curves
are constrained to satisfy the condition H = 0; the algebraic condition of maximality
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determines the same velocities for (pi, pn+1) that for µ(pi, pn+1), µ > 0 (it is just
the maximal projection max〈(pi, pn+1), (vi, vn+1)〉 into the momentum ray). But the
actual momentum vector of the ray is determined by

〈(pi, pn+1)∗, (vi, vn+1)〉 = 1, (vi, vn+1) ∈ S∗.(4.3)

Let us develop as an example the classical Lagrangian mechanics, where the con-
trol space is the whole tangent space S = TM and f0 = L = 1

2gij(x)uiuj − V (x).

We have the control equations dxi

dt = ui, and the cost function is the Lagrangian
L. The associated optimal control system lives on N = M × R of local coordinates
(xi, xn+1 ≡ t). For the transformed minimal s-time problem, we have the Hamiltonian

H = pi
ui

L
+ pn+1

1

L
− 1

living in WN = TN ×N T ∗N .
There is a unique vector on every allowed direction (vio, vn+1

o ) = (ui/L, 1/L), and
the points of S∗

x satisfy, eliminating the parameters ui, the equation

1

2
gijv

i
ov
j
o − V (x)(vn+1

o )2 − vn+1
o = 0,

which is an ellipsoid V (x) < 0 (e.g., the Kepler problem), paraboloid V (x) = 0 (free
particle), or hyperboloid V (x) > 0 (harmonic oscillator; we must take the future
branch of the hyperboloid for time increasing curves), always containing the origin.

The metric function F is obtained by looking for the factor between (vi, vn+1)
(vn+1 > 0) and the parallel element of S∗,

F (vi, vn+1) = vn+1L = vn+1

[
1

2
gij

(
vi

vn+1

)(
vj

vn+1

)
− V (x)

]
,

which is clearly homogeneous. It is simply the Lagrangian under an arbitrary change
of parameter, ∫

L(x, ẋ)dt =

∫
L

dt

dτ
dτ =

∫
Fdτ,

with dt
dτ = vn+1 and dxi

dτ = vi, i.e., ẋ = dxi

dt = vi

vn+1 . The consequence of this
example is that the trajectories of a Lagrangian mechanical system can be seen as the
geodesics of a Finslerian metric on space-time. We analyze in the next section the
possibility of restricting the metric to constant energy leaves (by means of seeing it
as an isoperimetric problem), and projecting the restricted metric to the state space;
we obtain in this way a family of metric structures parametrized by the energy.

5. Restrictions of the metric. Let us note that the vanishing of the Hamil-
tonian on W = U ×N T ∗N determines −pn+1 = pif

i − f0, similar to the usual
energy function in Lagrangian mechanics. For autonomous systems ∂H

∂xn+1 = 0 gives
pn+1 = −E constant, usually nonvanishing for fixed final time problems, and E = 0
for free final time problems by transversality. We now restrict our attention to au-
tonomous systems, and we try to find the restriction of the metric to a constant energy
leaf. As we have pointed out before, the algebraic condition of optimality (2.4) for s-
time optimal problems determines not only the elements (vio, vn+1

o ) on So, the longest
allowed velocity vectors, by

max H(x, p, u) ≡ max 〈(pi, pn+1), (vi, vn+1)〉 ∀u ∈ Ux,



OPTIMAL CONTROL AND SUB-FINSLERIAN METRICS 809

once fixed x ∈ M and a ray µ(pi, pn+1) (µ > 0), but also the particular momentum
element (pi, pn+1)∗ of the ray fulfilling the condition 〈(pi, pn+1)∗, (vio, vn+1

o )〉 = 1. Let
us denote by P o ⊂ T ∗N this set of momentum vectors; it is made of one element on
every ray of T ∗N with positive projection over So. We can find the elements of P o

following the next steps.
1. Take a ray µ(pi, pn+1) (µ > 0) such that there are elements (vi, vn+1) ∈ S

for which 〈(pi, pn+1), (vi, vn+1)〉 is positive.
2. Find the optimal velocity, the element (vio, vn+1

o ) ∈ So, with maximal pro-
jection over the ray µ(pi, pn+1).

3. Find the element (pi, pn+1)∗ on the ray such that 〈(pi, pn+1)∗, (vio, vn+1
o )〉 = 1.

There is generically a one-to-one correspondence between elements of So and ele-
ments of P o, except in bang-bang situations, where a momentum vector is associated
to two (or more) possible velocities. For the restriction to energy E leaves on So, we
can begin by considering the subset PE of P o, made by the elements with pn+1 = −E,
PE = {(pi, pn+1) ∈ P o | pn+1 = −E}. Its corresponding elements on So define the
subset SE of allowed optimal velocities with energy E. They are obtained by taking
every element pE ∈ PE and looking for the gE ∈ So with maximal projection; the
condition 〈pE , gE〉 = 1 is automatic by definition.

The restriction of the metric structure (N, D, F ) to the energy leaves is obtained
by defining a subset DE ⊂ D of the cone of allowed directions, and a Finslerian
function FE on DE . DE is the cone generated by the velocities in SE

DE = {v = λgE | ∀gE ∈ SE ∀λ > 0},

while FE : DE → R is, as usual, FE(v) = λ, the restriction of F to DE .
This metric can be projected to the state space M by simply projecting SE to a

subset of velocities TE ⊂ TM through the natural projection pr1: N = M ×R→M ,
TE = pr1∗(SE), and considering the cone of directions CE generated by TE , CE =
pr1∗(DE). Again, the Finslerian function (which will be denoted with the same letter
FE) is given by FE(v) = λ for v ∈ CE and v = λvE , vE ∈ TE .

As we said, the constancy of pn+1 = −E is associated to fixed final parameter T .
Therefore, we can think of the problem of restriction as an isoperimetric problem
of minimizing the s-length among the curves with fixed t-length. Using a Lagrange

multiplier α for the constraint
∫ T
0

dt = T , the complete restricted metric will be
GE = FE + αFt, where FE has already been defined and Ft is the t-metric, i.e.,
the metric whose associated length is the time increase of the curve measured. The
Finslerian function Ft is simply given by Ft(v, vn+1) = vn+1 so that∫ τf

τi

Ft(x(τ), v(τ))dτ =

∫ τf

τi

vn+1dτ =

∫ τf

τi

dt

dτ
dτ = T.

A careful view to the Hamiltonian form Hdt = pidxi − (ds− pn+1dt) shows that the
value of the Lagrange multiplier is α = −pn+1 = E, so that our restricted metric
on DE is given by the Finslerian function GE = FE + EFt, and similarly for its
projection to M . (We must project the function Ft = vn+1 to CE similarly to the
defined projection of FE .)

We have built a family of metric structures (M, CE , GE) on the state space,
parametrized by the energy. Geodetic curves of these metrics are reparametrizations of
the optimal solution curves of the optimal control system for different final parameters;
i.e., fixed x0 and x1 on M , the family of optimal curves with boundary conditions
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x(0) = x0, x(T ) = x1, parametrized by T , is identified with the family of geodesics
for the metrics GE with those fixed endpoints, parametrized by E.

Continuing with the example of a Lagrangian mechanical system, let us consider
a Lagrangian with kinetic term derived from a Riemannian metric 1

2gijv
ivj , and

negative potential function V (x) < 0 (so that we have negative as well as positive
energies), as, for example, the Kepler problem. Remember that the indicatrix in
space-time is in this case an ellipsoid on the future semispace containing the origin. If
we restrict our curves to the zero level energy (free final parameter), then covectors are
(pi, 0)∗ ∈ PE=0, optimality is obtained on the equator of the ellipsoid vn+1

o = −1
2V (x) ,

and projection to the space manifold generates the metric

FE=0(v) =
√
−2V (x)gijvivj .

For another energy level E, optimality associated to the covector (pi,−E)∗ ∈ PE

determines a closed set on the ellipsoid, south (E > 0) or north (E < 0) of the
equator, determined by the equation of the ellipsoid, the condition (pi,−E)·(vi, vn+1)
maximal and vanishing of the Hamiltonian, giving gijpipj = giju

iuj = 2(E − V ),
i.e., vn+1

o = 1/(E − 2V ), intersection of the ellipsoid with a horizontal hyperplane.
Projection to the spatial directions determines a particular metric FE ,

FE(v) =
E − 2V√
2(E − V )

√
gijvivj .

Now, the t-metric Ft(v) = vn+1 is projected to M giving

Ft(v) = vn+1 = FEvn+1
o =

√
gijvivj√

2(E − V )
.

Finally, the complete metric in the state space, obtained from FE and Ft with La-
grange multiplier the energy, is

GE = FE + EFt =
√

2(E − V (x))
√

gij(x)vivj ,

and its geodesic curves are the trajectories of energy E for the Lagrangian system,
i.e., the geodesics of the classical Jacobi metrics.

6. Conclusions and outlook. We have seen the relationship between a nat-
ural generalization of metric structure, using Finslerian functions and constrained
directions, and time optimal problems in control systems. This relationship is clearly
stated through the indicatrix of the metric (a simple way to define metric structures
is to consider the set of unit norm velocities [4]), which is identified with the set
of longest (optimal) velocities for the control system. The bang-bang phenomenon
is, for example, associated to holes on the indicatrix. A reparametrization for gen-
eral optimal control problems, using the control parameter as arc-length, allows us
to extend the relationship to this general case where the metric is now defined on
state-time space. The trajectories of a Lagrangian mechanical system are understood
in this way as the geodesics of a Finslerian metric in space-time. A process of restric-
tion to constant energy leaves determines a family of metric structures on state space
parametrized by the energy, whose geodesics are the solutions of the optimal control
problem for different final times. In the example of classical mechanics, this family
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is nothing but the Jacobi metrics associated to the Lagrangian, whose geodesics are
the classical trajectories of a given energy. In some other analyzed examples [3, 10],
the metric point of view for the optimal control problems has also been useful, at
least qualitatively. The generalization of some concepts in Riemannian geometry to a
Finslerian metric structure has been a field of research during recent years [6, 14, 4].
The link with optimal control problems allows us to think of giving one more step and
try to generalize the study to metrics with restricted allowed directions. For example,
the abnormal solutions of minimal length in sub-Riemannian geometry are naturally
included on the set of geodesics [1, 2, 9] as the solutions with p0 = 0 when the problem
is seen from the optimal control point of view.
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Abstract. In this paper, by means of Carleman estimates and the usual energy estimate,
we obtain directly two observability inequalities for the linear wave equation with time-variant
nonsmooth lower order terms. We do not need any unique continuation property of the linear
equation a priori, since this is actually one of the by-products of our analysis. Furthermore, the con-
stant in the observability inequality is estimated by an explicit function of the norm of the involved
coefficients in the equation. Also, we apply our observability estimates to exact controllability for
wave equations.
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1. Introduction. Let us consider the following wave equation:
wtt −∆w = q1(t, x)w + q2(t, x)wt + 〈 q3(t, x),∇w 〉
w = 0

w(0) = w0, wt(0) = w1

in Q,

on Σ,

in Ω.

(1.1)

In (1.1), Q
�
= (0, T )× Ω, Σ

�
= (0, T )× Γ, T > 0, Ω ⊂ R

n is a bounded domain with a

C2 boundary Γ
�
= ∂Ω, qi(·) (i = 1, 2, 3) are given functions allowed to be time-variant

and nonsmooth. We are concerned about the following two observability problems.
Problem 1. Given an open subset Γ0 of Γ and a T > 0, find (if possible) a constant

C > 0 such that

|w0|2H1
0 (Ω) + |w1|2L2(Ω) ≤ C

∣∣∣∂w
∂ν

∣∣∣2
L2(Σ0)

(1.2)

for all weak solutions w ∈ C([0, T ];H1
0 (Ω))∩C1([0, T ];L2(Ω)) of (1.1). Here, ν is the

unit outward normal vector of Ω on Γ, Σ0
�
= (0, T )× Γ0.

Problem 2. Given an open subset Γ0 of Γ and a T > 0, find (if possible) a constant
C > 0 such that

|w0|2L2(Ω) + |w1|2H−1(Ω) ≤ C
∣∣∣∂w
∂ν

∣∣∣2
H−1(Σ0)

(1.3)

for all weak solutions w ∈ C([0, T ];L2(Ω))∩C1([0, T ];H−1(Ω)) (in the sense of trans-
position) of (1.1) with q2 = 0 and q3 = 0.
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Note that the constant C in (1.2) and/or (1.3) depends on the lower order term
coefficients qi(·) (i = 1, 2, 3) in (1.1). The explicit estimate of C via the norm of
coefficients is a part of the problem and it is the main novelty of this paper. We
remark that explicit observability estimates are crucial for some problems (see, for
example, [19] and [32] and so on).

It is well known that the above observability estimates are closely related to the
exact controllability of the following wave equation:

ytt −∆y = p1(t, x)y + p2(t, x)yt + 〈 p3(t, x),∇y 〉
y = uχΣ0

(t, x)

y(0) = y0, yt(0) = y1

in Q,

on Σ,

in Ω,

(1.4)

where χΣ0 stands for the characteristic function of set Σ0. The exact controllability
problem may be formulated as follows: For any (y0, y1), (z0, z1) ∈ L2(Ω) ×H−1(Ω),
find a control u ∈ L2(Σ0) such that the weak solution of (1.4) satisfies

y(T ) = z0, yt(T ) = z1.(1.5)

If pi(t, x) ≡ pi(x) (i = 1, 2, 3), system (1.4) is a linear time-invariant system, and the
study of exact controllability for this case seems to be complete, especially for the
case pi(·) ≡ 0 (i = 1, 2, 3) (see [2, 3, 7, 16, 17, 30]). Two classical references in the
theory of controllability are Russell’s work [21] and Lions’s monograph [17]. Other
interesting related works can be found in [8, 11, 12, 15, 18, 22, 23, 26, 31, 32, 33] and
the references cited therein.

By duality arguments [7, 16, 17, 30], we know that the exact controllability of a
linear system can be reduced to the observability estimate of its dual system. On the
other hand, by Zuazua’s method in [31, 32], we know that the exact controllability
of the semilinear system can be reduced to such a sort of estimate, provided also we
know how the observability constant depends on the coefficients in the “linearized”
systems. Thus, one of the main problems in the theory of exact controllability is how
to construct the observability estimate for the linear system.

In the literature, one can find two important methods to derive observability
estimates. The first one combines multiplier techniques and compactness-uniqueness
arguments (see [2, 4, 7, 16, 17, 26, 30] and the rich references cited therein). The
second one replaces the multipliers techniques by Carleman-type inequalities (see, [3,
11, 12, 22, 23]1). We remark that, to the best of our knowledge, both of these methods
do not give any estimate on the observability constant C in (1.2) or (1.3) because of
the contradiction argument that is needed to absorb lower order terms. Furthermore,
we note that, except for some special cases, both of these methods depend one way
or another on some sort of uniqueness (i.e., unique continuation property (UCP for
short) of the involved linear system. By this, for example, for system (1.1) we mean
that if whenever w ∈ H1(Q) satisfies (1.1) and ∂w/∂ν

∣∣
Σ0

= 0, w is then identically

zero in Q). There are many related UCP results in the literature (see [5, 20, 24, 25]
and the rich references cited therein). However, to our knowledge, these results may
not be applied directly to the exact controllability of system (1.4). For example,
Ruiz’s UCP theorem [20] applies only to the case Γ0 ≡ Γ. On the other hand, the
results in [24, 25] are of a local nature, compared with the global UCP property defined

1In [3], Fursikov and Imanuvilov derived the observability estimate for the parabolic equations
without using the compact-uniqueness argument. However, they have used such a sort of argument
when they constructed the observability estimate for the hyperbolic equations.
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above; furthermore, the results in [24, 25] need at least partial analyticity. It would be
natural to expect that the local UCP can be iterated or “patched” together to produce
global ones. However, this remains to be done. On the other hand, it was showed
in [1] that local UCP may fail for the wave equations with time-variant nonanalytic
coefficients.

In this paper, we will use a different method combining Carleman and energy
estimates to derive the desired observability estimates (1.2) and (1.3) directly. Our
method was stimulated by the work of [6] and [14], which has the following advantages:
(1) We can give explicit estimates on the constants C in (1.2) and (1.3); (2) We do
not need a priori any UCP for (1.1). Indeed, in our approach, UCP is a by-product
consequence of the observability inequality.

In what follows, we will denote the norms in Ls(Q) and in W 1,s(Q) (s ∈ [1,∞])
simply by | · |s and | · |1,s, respectively. Furthermore, we will use C to denote a generic
positive constant which may change from line to line.

The rest of this paper is organized as follows. In section 2, we collect some
preliminaries. The main results are stated and proved in section 3. In section 4,
we apply our observability estimates to exact controllability problem related to wave
equations.

2. Preliminaries. We need the following preliminaries, which are essentially
known although most of which are not explicitly listed in the literature (but follow
directly from the known references).

First, let us consider
wtt −∆w = F

w = g

w(0) = w0, wt(0) = w1

in Q,

on Σ,

in Ω.

(2.1)

The following result is well known (see [9, Theorem 2.1 and Remark 2.2]).
Lemma 2.1. Let T > 0 be given. Suppose that

F ∈ L1(0, T ;L2(Ω)),

g ∈ H1(Σ),

w0 ∈ H1(Ω), w1 ∈ L2(Ω),

(2.2)

satisfying the compatibility condition g
∣∣
t=0

= w0

∣∣
Γ
. Then the unique weak solution w

of (2.1) satisfies 
w ∈ C([0, T ];H1(Ω)) ∩ C1([0, T ];L2(Ω)),

∂w

∂ν
∈ L2(Σ).

(2.3)

Furthermore, there is a constant C = C(T,Ω) > 0 such that

|w|C([0,T ];H1(Ω))∩C1([0,T ];L2(Ω)) +
∣∣∣∂w
∂ν

∣∣∣
L2(Σ)

≤ C
(
|F |L1(0,T ;L2(Ω)) + |g|H1(Σ) + |w0|H1(Ω) + |w1|L2(Ω)

)
.(2.4)

Combining the results in [9] and [17], one can get the following lemma.
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Lemma 2.2. Let T > 0 be given. Suppose that
F ∈ L1(0, T ;H−1(Ω)),

g ∈ L2(Σ),

w0 ∈ L2(Ω), w1 ∈ H−1(Ω).

(2.5)

Then the unique weak solution w of (2.1) satisfies
w ∈ C([0, T ];L2(Ω)) ∩ C1([0, T ];H−1(Ω)),

∂w

∂ν
∈ H−1(Σ).

(2.6)

Furthermore, there is a constant C = C(T,Ω) > 0 such that

|w|C([0,T ];L2(Ω))∩C1([0,T ];H−1(Ω)) +
∣∣∣∂w
∂ν

∣∣∣
H−1(Σ)

(2.7)

≤ C
(
|F |L1(0,T ;H−1(Ω)) + |w0|L2(Ω)

+|w1|H−1(Ω) + |g|L2(Σ)

)
.

We refer to Appendix A at the end of this paper for the proof of Lemma 2.2.
Next, let us consider

wtt −∆w = p1(t, x)w + p2(t, x)wt + 〈 p3(t, x),∇w 〉+g1
w = g2

w(0) = w0, wt(0) = w1

in Q,

on Σ,

in Ω.

(2.8)

Using the usual energy estimate and noting the time reversibility of (2.8), pro-
ceeding as in [32], one can obtain the following result.

Lemma 2.3. We have the following two conclusions:
(1) Let T > 0, p1 ∈ L1(0, T ;Ln(Ω)), p2 ∈ L∞(Q), p3 ∈ L∞(Q; Rn), g1 ∈

L1(0, T ;L2(Ω)), g2 = 0, w0 ∈ H1
0 (Ω), and w1 ∈ L2(Ω). Then (2.8) admits a unique

weak solution w(·) ∈ C([0, T ];H1
0 (Ω)) ∩ C1([0, T ];L2(Ω)), which satisfies

E(t) ≤ C(E(s) + |g1|2L1(0,T ;L2(Ω)))e
C(|p1|1/2

L1(0,T ;Ln(Ω))
+|p2|∞+|p3|∞) ∀ t, s ∈ [0, T ](2.9)

for some constant C = C(T,Ω) > 0, where

E(t)
�
= |wt(t, ·)|2L2(Ω) + |w(t, ·)|2H1

0 (Ω).(2.10)

(2) Let T > 0, p1 ∈ L1(0, T ;Ln(Ω)), p2 ∈ W 1,∞(Q), p3 ∈ W 1,∞(Q; Rn), g1 = 0,
g2 = 0, w0 ∈ L2(Ω), and w1 ∈ H−1(Ω). Then (2.8) admits a unique weak solution
w(·) ∈ C([0, T ];L2(Ω)) ∩ C1([0, T ];H−1(Ω)), which satisfies

E(t) ≤ CE(s)eC(|p1|L1(0,T ;Ln(Ω))+|p2|1,∞+|p3|1,∞) ∀ t, s ∈ [0, T ](2.11)

for some constant C = C(T,Ω) > 0, where

E(t)
�
= |wt(t, ·)|2H−1(Ω) + |w(t, ·)|2L2(Ω).(2.12)
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Further, suppose p2 = 0 and p3 = 0. Then there is a constant C = C(T,Ω) > 0 such
that

E(t) ≤ CE(s)e
C|p1|1/2

L1(0,T ;Ln(Ω)) ∀ t, s ∈ [0, T ].(2.13)

We also need the following result, which is a simple consequence of Lemmas 2.1
and 2.3.

Lemma 2.4. Let T > 0, p1 ∈ L1(0, T ;Ln(Ω)), p2 ∈ L∞(Q), p3 ∈ L∞(Q; Rn),
g1 ∈ L1(0, T ;L2(Ω)), g2 = 0, w0 ∈ H1

0 (Ω), and w1 ∈ L2(Ω). Then the unique weak
solution w ∈ C([0, T ];H1

0 (Ω)) ∩ C1([0, T ];L2(Ω)) of (2.8) satisfies

∂w

∂ν
∈ L2(Σ).(2.14)

Furthermore, there is a constant C = C(T,Ω, p1, p2, p3) > 0 such that

|w|C([0,T ];H1
0 (Ω))∩C1([0,T ];L2(Ω)) +

∣∣∣∂w
∂ν

∣∣∣
L2(Σ)

≤ C
(
|g1|L1(0,T ;L2(Ω)) + |w0|H1

0 (Ω) + |w1|L2(Ω)

)
.(2.15)

Further, we need the following result, which is a simple consequence of Lemma
2.2.

Theorem 2.5. Let T > 0, p1 ∈ L1(0, T ;Ln(Ω)), p2 ∈W 1,∞(Q), p3 ∈W 1,∞(Q; Rn),
g1 = 0, g2 ∈ L2(Σ), w0 ∈ L2(Ω), and w1 ∈ H−1(Ω). Then system (2.8) admits a
unique weak solution w ∈ C([0, T ];L2(Ω)) ∩ C1([0, T ];H−1(Ω)). Furthermore, there
is a constant C = C(T,Ω, p1, p2, p3) > 0 such that

|w|C(0,T ;L2(Ω))∩C1([0,T ];H−1(Ω)) +
∣∣∣∂w
∂ν

∣∣∣
H−1(Σ)

≤ C(|w0|L2(Ω) + |w1|H−1(Ω) + |g2|L2(Σ)).(2.16)

Remark 2.6. Take p2 ≡ 0 and pi(t, x) ≡ pi(x) (i = 1, 3) in Theorem 2.5, and thus
we obtain the main result in [10].

Proof of Theorem 2.5. Let us use the transposition method [17]. First of all, we
note that without loss of generality, we may assume p2 ≡ 0. In fact, one can always
reduce the general problems to such a special case by means of the following simple
transformation:

w̄(t, x)
�
= w(t, x)e

− 1
2

∫ t
0
p2(s,x)ds, (t, x) ∈ Q.(2.17)

We define a linear functional L(f) on the space L1(0, T ;L2(Ω)) by

L(f)
�
= 〈w1, θ(0) 〉H−1(Ω),H1

0 (Ω) −
∫

Ω

w0(x)θt(0, x)dx−
∫

Σ

g2
∂θ

∂ν
dΣ

∀ f ∈ L1(0, T ;L2(Ω)),(2.18)

where θ ∈ C([0, T ];H1
0 (Ω)) ∩ C1([0, T ];L2(Ω)) solves
θtt −∆θ − p1θ +∇ · (p3θ) = f

θ = 0

θ(T ) = θt(T ) = 0

in Q,

on Σ,

in Ω.

(2.19)
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We assert that the functional L(f) is bounded. In fact, by (2.18) and Lemma 2.4,
and noting the time reversibility of (2.19), one gets

|L(f)| ≤ |〈w1, θ(0) 〉H−1(Ω),H1
0 (Ω)|+

∣∣∣∣∫
Ω

w0θt(0)dx

∣∣∣∣+

∣∣∣∣∫
Σ

g2
∂θ

∂ν
dΣ

∣∣∣∣
≤ C(|w0|L2(Ω) + |w1|H−1(Ω) + |g2|L2(Σ))

×
(
|θ|C([0,T ];H1

0 (Ω))∩C1([0,T ];L2(Ω)) +
∣∣∣∂θ
∂ν

∣∣∣
L2(Σ)

)
≤ C(|w0|L2(Ω) + |w1|H−1(Ω) + |g2|L2(Σ))|f |L1(0,T ;L2(Ω)).

(2.20)

It is known that any linear bounded functional on the space L1(0, T ;L2(Ω)) can be
written as

L(f) =

∫
Q

wfdxdt,(2.21)

where w is some function from the space L∞(0, T ;L2(Ω)). Thus, system (2.8) admits
a weak solution w ∈ L∞(0, T ;L2(Ω)), which satisfies

|w|L∞(0,T ;L2(Ω)) ≤ C(|w0|L2(Ω) + |w1|H−1(Ω) + |g2|L2(Σ)).(2.22)

Now, denote F
�
= p1w+〈 p3,∇w 〉 ≡ (p1−∇·p3)w+∇·(p3w) (recall that without loss

of generality, we have assumed p2 ≡ 0). Then, by w ∈ L∞(0, T ;L2(Ω)), we see that
F ∈ L1(0, T ;H−1(Ω)). Thus, the desired result follows from Lemma 2.2 and (2.22)
immediately.

In what follows, we use the notation

fi = fi(x)
�
=

∂f(x)

∂xi
, i = 1, 2, . . . , n;

∑
i

�
=

n∑
i=1

(on the other hand, xi is always the ith coordinate of the point x).

Finally, we need the following known pointwise estimate, which is a special case
of [14, Lemma 1, p. 124] and [19, Lemma 5.1].

Lemma 2.7. Let λ > 0 and α1, α2 ∈ (0, 1) be constant. Let x0 ∈ R
n, T > 0, and


ψ(t, s, x) = [|x− x0|2 − α1(t− T/2)2 − α2(s− T/2)2]/2,

# = λψ,

β
�
= min(n + α1 − 1, n + α2 − 1), Ψ = βλ.

(2.23)

Let z = z(t, s, x) ∈ C2(R2+n). Denote

v
�
= θz with θ = e�.(2.24)
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Then

θ2|ztt + zss −∆z|2

≥
−2#t

v2
t − v2

s +
∑
j

v2
j

− 4#svtvs + 4
∑
j

(#jvtvj) + 2Ψvtv − 2#t(A + Ψ)v2


t

+

−2#s

v2
s − v2

t +
∑
j

v2
j

− 4#tvtvs + 4
∑
j

(#jvsvj) + 2Ψvsv − 2#s(A + Ψ)v2


s

− 2
∑
j

[
2
∑
i

(#ivivj)− #j
∑
i

v2
i − 2#tvtvj − 2#svsvj

+ Ψvjv + #j(v
2
t + v2

s)− (A + Ψ)#jv
2

]
j

+ 2(n− α1 + α2 − β)λv2
t + 2(n + α1 − α2 − β)λv2

s

+ 2(2− n− α1 − α2 + β)λ
∑
j

v2
j + Bv2,

(2.25)
where

A = λ2
[
α2

1(t− T/2)2 + α2
2(s− T/2)2 − |x− x0|2

]
+ (n + α1 + α2 − β)λ(2.26)

and

B =2λ3
[
(2 + n− β + α1 + α2)|x− x0|2

+ α2
1(β − n− 3α1 − α2)(t− T/2)2 + α2

2(β − n− 3α2 − α1)(s− T/2)2
]

−
[
2(β − n)(n− β + α1 + α2)− 2(α1 + α2)(n + α1 + α2) + β2 − 2nβ

]
λ2.

(2.27)

3. Statement and proof of the main results.

3.1. Statement of the main results. We need the following assumption:
(H) Let Γ0 be given by

Γ0 =
{
x ∈ Γ

∣∣ (x− x0) · ν(x) > 0
}
,

where x0 ∈ R
n \Ω is a fixed point, ν(x) denotes the unit outward normal vector of Ω

at x ∈ Γ.
The main results in this paper can be stated as follows.
Theorem 3.1. Let (H) hold, T > 2 maxx∈Ω |x − x0|, q1 ∈ Ln+1(Q), q2 ∈

L∞(Q), and q3 ∈ L∞(Q; Rn). Then for any weak solution w ∈ C([0, T ];H1
0 (Ω)) ∩

C1([0, T ];L2(Ω)) of (1.1), it holds that

|w0|2H1
0 (Ω) + |w1|2L2(Ω) ≤ C(r)

∣∣∣∂w
∂ν

∣∣∣2
L2(Σ0)

∀ (w0, w1) ∈ H1
0 (Ω)× L2(Ω)(3.1)

for some constant C(r) > 0 with r
�
= |q1|n+1+|q2|∞+|q3|∞. Furthermore, the constant

C(r) in (3.1) may be bounded as

C(r) = C exp(Cr2)(3.2)
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for some constant C = C(T,Ω) > 0.
Theorem 3.2. Let (H) hold, T > 2 maxx∈Ω |x − x0|, q1 ∈ L∞(Q), q2 = 0, and

q3 = 0. Then for any weak solution w ∈ C([0, T ];L2(Ω))∩C1([0, T ];H−1(Ω)) of (1.1),
it holds that

|w0|2L2(Ω) + |w1|2H−1(Ω) ≤ C(h)
∣∣∣∂w
∂ν

∣∣∣2
H−1(Σ0)

∀ (w0, w1) ∈ L2(Ω)×H−1(Ω)(3.3)

for some constant C(h) > 0 with h
�
= |q1|∞. Furthermore, the constant C(h) in (3.3)

may be bounded as

C(h) = C exp(Ch2)(3.4)

for some constant C = C(T,Ω) > 0.
The proof of Theorems 3.1 and 3.2 will be given in the next two subsections. Now

several remarks are in order.
Remark 3.3. In (H), we assume a technical condition x0 �∈ Ω. This is a key

condition in our approach (to guarantee a controlled “right” sign of the lower-order
term Bv2 in (3.19) and (3.48)). In the case x0 ∈ Ω, proceeding as in [19], one can prove
the same results as in Theorems 3.1–3.2 provided Σ0 in (3.1) and (3.3) is replaced

by (0, T ) × (Oδ(Γ0) ∩ Γ
)
, where δ > 0 is any given constant and Oδ(Γ0)

�
= {y ∈

R
n
∣∣ |y − x| < δ for some x ∈ Γ0}.
Remark 3.4. From the proofs of Theorems 3.1–3.2 in the next two subsections, we

see that the above results remain valid if (1.1) is replaced by the following inequality:

(1.1)′


|wtt −∆w| ≤ |q1(t, x)w + q2(t, x)wt + 〈 q3(t, x),∇w 〉 |
w = 0

w(0) = w0, wt(0) = w1

in Q,

on Σ,

in Ω.

Thus, by taking q2 ≡ 0, q1 ∈ L∞(Q), and w ∈ H2(Q) in Theorem 3.1, we can obtain
the main result in [6]. Furthermore, we see that the scalar function w can be replaced
by a vector-valued function, i.e., (1.1) can be replaced by a system with coupled lower
order terms.

Remark 3.5. The originality of our method consists in the fact that we can
give explicit estimates (3.2) and (3.4) of the constant C(r) in (3.1) and C(h) in (3.3),
respectively, via the norm of the coefficients of (1.1). To the best of our knowledge,
such sorts of estimates for dimensions n ≥ 2 are not available in the literature. For
the case n = 1, Zuazua [32] obtained a similar estimate, and such an estimate played
a crucial role in the proof of his main result on exact controllability for the subcritical
semilinear wave equations in one space dimension. However, we would like to point
out that estimate (3.2) (resp., (3.4)) is not sharp. In fact, one may expect an estimate

of the order of eCr
1/2

(resp., eCh
1/2

), as indicated by [32] for the case n = 1.
Remark 3.6. Take q1 ∈ L∞(Q) in Theorem 3.1 (and noting Remark 3.4), we may

obtain some of the main results of Lasiecka and Triggiani in [11]. On the other hand,
Tataru [22, 23] has obtained observability results for a large class of partial differential
equations without explicit estimates on the observability constant like that of (3.2) or
(3.4) in our Theorems 3.1 and 3.2.

Remark 3.7. Our method is rather general, and it can be applied to internal
observability estimate [19, 28], and/or other boundary conditions [13], and/or other
equations [29].
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3.2. Proof of Theorem 3.1.
Proof of Theorem 3.1. We divide the proof into several steps.
Step 1. The main idea of our proof is to use the pointwise estimate (2.25) in

Lemma 2.7 (this idea is borrowed from [6]). For this purpose, we need to choose a
suitable pseudoconvex function ψ, that is, to choose x0, α1, and α2.

In order to choose x0, α1, and α2, we proceed as in [6]. Put

R0
�
= min

x∈Ω
|x− x0|, R1

�
= max

x∈Ω
|x− x0|,(3.5)

where x0 is given in (H). Then R0 > 0 and T > 2R1. Thus we can choose a constant
α ∈ (0, 1) (close to 1) such that

R2
1 < αT 2/4.(3.6)

Having chosen x0 and α as above, we next introduce the desired pseudoconvex function
ψ by setting

ψ = ψ(t, x)
�
= [|x− x0|2 − α(t− T/2)2]/2.(3.7)

Step 2. We need the following notations. First, denote

Λj
�
= {(t, x) ∈ Q ∣∣ 2ψ(t, x) > R2

0/(j + 2)},(3.8)

where j = 0, 1, 2. Next, denoteTi
�
= T/2− εiT, T ′

i
�
= T/2 + εiT,

Qi
�
= (Ti, T

′
i )× Ω,

(3.9)

where i = 0, 1; 0 < ε0 < ε1 < 1/2 will be given below.
In order to determine εi (i = 0, 1), we need an idea in [11] (see also [13]). First

of all, by (3.5)–(3.7), one sees that

ψ(0, x) = ψ(T, x) = (R2
1 − αT 2/4)/2 < 0 ∀x ∈ Ω.(3.10)

Thus, one can find an ε1 ∈ (0, 1/2) (close to 1/2) such that (recall (3.8)–(3.9) for Λ2,
Q1, T1, and T ′

1)

Λ2 ⊂ Q1(3.11)

and for any (t, x) ∈ ((0, T1) ∪ (T ′
1, T ))× Ω it holds that

ψ(t, x) < 0.(3.12)

Next, noting that since {T/2} × Ω ⊂ Λ0, one can find a small ε0 ∈ (0, ε1) such that
(recall (3.8) and (3.9) for Λ0 and Q0, respectively)

Q0 ⊂ Λ0.(3.13)

Now, we note that (recall (2.27) for B)

B = BχΛ2(t, x) + BχQ\Λ2
(t, x).(3.14)
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By (3.7), we see that (recall (2.23) for α1, α2, and β)

α1 = α, α2 = 0, β = n− 1,(3.15)

where α is given in (3.6). Thus, by (2.27), (3.8), and (3.15), one sees easily that there
exists a constant λ1 > 1 such that for any λ > λ1, it holds that

BχΛ2
(t, x) ≥ c0λ

3χΛ2(t, x)(3.16)

and ∣∣BχQ\Λ2
(t, x)

∣∣ ≤ Cλ3(3.17)

for some constants c0 > 0 and C > 0, which depend only on T and Ω.
Step 3. Let us use Lemma 2.7. For any given τ ∈ (0, T1) and τ ′ ∈ (T ′

1, T ) (recall
(3.9) for T1 and T ′

1), denote

Qτ
′
τ

�
= (τ, τ ′)× Ω.(3.18)

Let us observe (2.25), where z = z(t, s, x) is replaced by w = w(t, x), and ψ is given
by (3.7). Integrating (2.25) on Qτ

′
τ , using integration by parts, and taking (1.1) into

account, we arrive at (noting that by (2.24), v = θw)

2(1− α)λ

∫
Qτ′τ

(
v2
t +

∑
i

v2
i

)
dxdt +

∫
Qτ′τ

Bv2dxdt

≤
∫
Q

θ2|q1w + q2wt + 〈 q3,∇w 〉 |2dxdt +

∫
Σ0

∣∣∣∂v
∂ν

∣∣∣2dΣ0

+ Cλ3

[∫
Ω

(
|v(τ, x)|2 + |vt(τ, x)|2 +

∑
i

|vi(τ, x)|2

+ |v(τ ′, x)|2 + |vt(τ ′, x)|2 +
∑
i

|vi(τ ′, x)|2
)
dx

]
∀ λ > 1.

(3.19)

However, by v = θw and θ = e�, by (2.23), (3.7), and (3.12), we get∫
Ω

(
|v(τ, x)|2 + |vt(τ, x)|2 +

∑
i

|vi(τ, x)|2

+ |v(τ ′, x)|2 + |vt(τ ′, x)|2 +
∑
i

|vi(τ ′, x)|2
)
dx

≤ Cλ2

[∫
Ω

(
|w(τ, x)|2 + |wt(τ, x)|2 +

∑
i

|wi(τ, x)|2

+ |w(τ ′, x)|2 + |wt(τ ′, x)|2 +
∑
i

|wi(τ ′, x)|2
)
dx

]
.

(3.20)

Further, by (3.7)–(3.8), (2.23)–(2.24), (3.14), and (3.16)–(3.18), we get∫
Qτ′τ

Bv2dxdt =

∫
Qτ′τ ∩Λ2

Bv2dxdt +

∫
Qτ′τ \Λ2

Bv2dxdt

≥ c0λ
3

∫
Qτ′τ ∩Λ2

v2dxdt− Cλ3eR
2
0λ/4

∫
Q

w2dxdt ∀ λ > λ1.

(3.21)
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Note that by (3.8), (3.11), and (3.18), we have Qτ
′
τ ⊃ Λ1. Thus, by (3.21), for any

λ > λ1, we have

2(1− α)λ

∫
Qτ′τ

(
v2
t +

∑
i

v2
i

)
dxdt +

∫
Qτ′τ

Bv2dxdt

≥ c1

[
λ

∫
Λ1

(
v2
t +

∑
i

v2
i

)
dxdt + λ3

∫
Λ1

v2dxdt

]
(3.22)

− Cλ3eR
2
0λ/4

∫
Q

w2dxdt,

where c1 > 0 and C > 0 are two constants which depend only on T and Ω.
Now, combining (3.19)–(3.20) and (3.22), we conclude that for any λ > λ1, it

holds that ∫
Λ1

(
v2
t +

∑
i

v2
i

)
dxdt + λ2

∫
Λ1

θ2v2dxdt

≤ Cλ−1

{∫
Q

θ2|q1w + q2wt + 〈 q3,∇w 〉 |2dxdt +

∫
Σ0

∣∣∣∂v
∂ν

∣∣∣2dΣ0

+λ5

[∫
Ω

(
|w(τ, x)|2 + |wt(τ, x)|2 +

∑
i

|wi(τ, x)|2

(3.23)

+|w(τ ′, x)|2 + |wt(τ ′, x)|2 +
∑
i

|wi(τ ′, x)|2
)
dx

]

+λ3eR
2
0λ/4

∫
Q

w2dxdt

}
.

Integrating (3.23) with respect to τ and τ ′ from T2, T1 and T ′
1, T ′

2, respectively, we
get ∫

Λ1

(
v2
t +

∑
i

v2
i

)
dxdt + λ2

∫
Λ1

v2dxdt

≤ Cλ−1

{∫
Q

θ2|q1w + q2wt + 〈 q3,∇w 〉 |2dxdt +

∫
Σ0

∣∣∣∂v
∂ν

∣∣∣2dΣ0

+ λ5

∫
Q

(
w2 + w2

t +
∑
i

w2
i

)
dxdt + λ3eR

2
0λ/4

∫
Q

w2dxdt

}
.

(3.24)

Consequently, by (2.22)–(2.23) and (3.7), recalling that w = θ−1v with θ = e�, and
using (3.24) and (1.1), we see that for any λ > λ1, it holds that∫

Λ1

θ2

(
w2
t +

∑
i

w2
i

)
dxdt + λ2

∫
Λ1

θ2w2dxdt

≤ Cλ−1

{∫
Q

θ2|q1w + q2wt + 〈 q3,∇w 〉 |2dxdt +

∫
Σ0

θ2
∣∣∣∂w
∂ν
|2dΣ0

+ λ5

∫
Q

(
w2 + w2

t +
∑
i

w2
i

)
dxdt + λ3eR

2
0λ/4

∫
Q

w2dxdt

}
.

(3.25)
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Step 4. Let us estimate “
∫
Q
θ2|q1w + q2wt + 〈 q3,∇w 〉 |2dxdt.” By the Hölder

inequality, the Sobolev embedding theorem, and the Poincaré inequality, we get (re-

calling r
�
= |q1|n+1 + |q2|∞ + |q3|∞)∫

Q

θ2|q1w + q2wt + 〈 q3,∇w 〉 |2dxdt

=

{∫
Λ1

+

∫
Q\Λ1

}
θ2|q1w + q2wt + 〈 q3,∇w 〉 |2dxdt

≤ C

{∫
Λ1

θ2q21w
2dxdt +

∫
Λ1

θ2(q22 + |q3|2)(w2
t + |∇w|2)dxdt

+ eR
2
0λ/3

∫
Q

(q21w
2 + q22w

2
t + |q3|2|∇w|2)dxdt

}
≤ C

{
|q1|2n+1|θw|2L2(n+1)/(n−1)(Λ1)

+

∫
Λ1

θ2(q22 + |q3|2)(w2
t + |∇w|2)dxdt

+ eR
2
0λ/3

∫
Q

(q21w
2 + q22w

2
t + |q3|2|∇w|2)dxdt

}
≤ Cr2

[
|θw|2H1(Λ1)

+

∫
Λ1

θ2(w2
t + |∇w|2)dxdt + eR

2
0λ/3

∫
Q

(w2
t + |∇w|2)dxdt

]
≤ Cr2

[∫
Λ1

θ2(w2
t + |∇w|2)dxdt + (1 + λ2)

∫
Λ1

θ2w2dxdt + eR
2
0λ/3

∫
Q

(w2
t + |∇w|2)dxdt

]
.

(3.26)
Thus, combining (3.25) and (3.26), we see that for any λ > λ1, it holds that∫

Λ1

θ2(w2
t + |∇w|2)dxdt + λ2

∫
Λ1

θ2w2dxdt

≤ C1λ
−1

{
r2
[∫

Λ1

θ2(w2
t + |∇w|2)dxdt

+ λ2

∫
Λ1

θ2w2dxdt + eR
2
0λ/3

∫
Q

(w2
t + |∇w|2)dxdt

]

+

∫
Σ0

θ2

∣∣∣∣∂w∂ν
∣∣∣∣2 dΣ0 + λ5

∫
Q

(
w2 + w2

t +
∑
i

w2
i

)
dxdt + λ3eR

2
0λ/4

∫
Q

w2dxdt

}
,

(3.27)
where C1 > 0 is a constant. Now, taking

λ2
�
= max(λ1, 2 + C1r

2),(3.28)

by (3.27)–(3.28), we see that for any λ > λ2 it holds that∫
Λ1

θ2(w2
t + |∇w|2)dxdt ≤ Cλ−1

{∫
Σ0

θ2
∣∣∣∂w
∂ν

∣∣∣2dΣ0 + r2eR
2
0λ/3

∫
Q

(w2
t + |∇w|2)dxdt

+ λ5

∫
Q

(
w2 + w2

t +
∑
i

w2
i

)
dxdt + λ3eR

2
0λ/4

∫
Q

w2dxdt

}
.

(3.29)
Note that by (3.8) and (3.13), we have
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Λ1

θ2(w2
t + |∇w|2)dxdt ≥

∫
Λ0

θ2(w2
t + |∇w|2)dxdt(3.30)

≥ eR
2
0λ/2

∫
Q0

(w2
t + |∇w|2)dxdt.

Thus, by (3.29)–(3.30), we see that for any λ > λ2, it holds that∫
Q0

(|wt|2 + |∇w|2)dxdt

≤ Cλ−1

{
eCλ

∫
Σ0

∣∣∣∂w
∂ν

∣∣∣2dΣ0 + r2e−R
2
0λ/6

∫
Q

(|wt|2 + |∇w|2)dxdt

+ λ5e−R
2
0λ/2

∫
Q

(
w2 + w2

t +
∑
i

w2
i

)
dxdt + λ3e−R

2
0λ/4

∫
Q

w2dxdt

}
.

(3.31)
Step 5. Let us complete the proof of Theorem 3.1. By (3.31), (2.10), and (3.28),

using Poincaré inequality, we conclude that there is a constant λ3 > 0, which depends
only on T and Ω, such that (recall (3.9) for T0 and T ′

0)∫ T ′
0

T0

E(t)dt ≤ C

{
eCλ

∫
Σ0

∣∣∣∂w
∂ν

∣∣∣2dΣ0 + e−R
2
0λ/8

∫ T

0

E(t)dt

}
∀ λ > λ2 + λ3.

(3.32)
On the other hand, by (2.9) in Lemma 2.3 and (3.32), we arrive at

E(0) ≤ C2

{
eC2λ

∫
Σ0

∣∣∣∂w
∂ν

∣∣∣2dΣ0 + e−R
2
0λ/8+C2rE(0)

}
∀ λ > λ2 + λ3,(3.33)

where C2 = C2(T,Ω) is a positive constant. However, it is easy to find a constant
λ4 = λ4(R0, C2) > 0 such that

C2e
−R2

0λ4/8+C2r ≤ 1/2.(3.34)

Thus, by (3.33)–(3.34), one gets

E(0) ≤ CeCλ
∫

Σ0

∣∣∣∂w
∂ν

∣∣∣2dΣ0 ∀ λ > max(λ2 + λ3, λ4),(3.35)

which is exactly the desired inequality (3.1). On the other hand, the explicit estimate
(3.2) follows from (3.28) and (3.34)–(3.35) immediately.

3.3. Proof of Theorem 3.2.
Proof of Theorem 3.2. The main idea of our proof is similar to that of Theorem

3.1. Also, the proof is divided into several steps.
Step 1. Let us introduce some notations. First, denote R0 and R1 as in (3.5)

and choose α as in (3.6). Then we introduce the desired pseudoconvex function ψ by
setting

ψ = ψ(t, s, x)
�
= [|x− x0|2 − α(t− T/2)2 − α(s− T/2)2]/2,(3.36)

where x0 is given in (H).
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Next, denoteQ
�
= (0, T )× (0, T )× Ω, S �

= (0, T )× (0, T )× Γ, S0
�
= (0, T )× (0, T )× Γ0,

Ti
�
= T/2− εiT, T ′

i
�
= T/2 + εiT, Qi �

= (Ti, T
′
i )× (Ti, T

′
i )× Ω

(3.37)

and

Ξj
�
=
{

(t, s, x) ∈ Q ∣∣ 2ψ(t, s, x) ≥ R2
0/(j + 2)

}
,(3.38)

where i = 0, 1, 2; j = 0, 1, 2 and 0 < ε0 < ε1 < ε2 < 1/2 will be given below.
In order to determine εi (i = 0, 1, 2), we proceed as in (3.10)–(3.13). First of all,

by (3.5)–(3.6) and (3.36), one gets

ψ(0, s, x) = ψ(T, s, x) = (R2
1 − αT 2/4)/2 < 0 ∀ (s, x) ∈ Q.(3.39)

Thus, one can find an ε1 ∈ (0, 1/2) (close to 1/2) such that (recall (3.37)–(3.38) for
Ξ2, Q1, T1 and T ′

1)

Ξ2 ⊂ Q1(3.40)

and for any (t, s, x) ∈ ((0, T1)∪ (T ′
1, T ))×Q and any (s, t, x) ∈ ((0, T1)∪ (T ′

1, T ))×Q
it holds that

ψ(t, s, x) < 0.(3.41)

Next, noting that since {T/2} × {T/2} × Ω ⊂ Ξ0, one can find a small ε0 ∈ (0, ε1)
such that (recall (3.38) and (3.37) for Ξ0 and Q0, respectively)

Q0 ⊂ Ξ0.(3.42)

Finally, we fix any constant ε2 ∈ (ε1, 1/2).
Now, let us observe B defined by (2.27), where x0, α1, α2, and β are given in

(3.36) and (2.23). Similar to (3.16)–(3.17), by (2.27) and (3.38), one can find a
constant λ1 > 1 such that for any λ > λ1, it holds that

BχΞ2
(t, s, x) ≥ c0λ

3χΞ2
(t, s, x)(3.43)

and ∣∣BχQ\Ξ2
(t, s, x)

∣∣ ≤ Cλ3(3.44)

for some constants c0 > 0 and C > 0, which depend only on T and Ω.
Finally, put

z(t, s, x)
�
=

∫ t

s

w(ξ, x)dξ ∀ (t, s, x) ∈ Q,(3.45)

where w is the weak solution of (1.1). One sees that z satisfies (recall q2 = 0 and
q3 = 0)  ztt + zss −∆z =

∫ t

s

q1(ξ, x)zt(ξ, s, x)dξ in Q,
z = 0 on S.

(3.46)
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Step 2. Let us use Lemma 2.7. We proceed as in [19]. For any given τ ∈ (T2, T1)
and τ ′ ∈ (T ′

1, T
′
2) (recall (3.37) for Ti and T ′

i ), denote

Qτ ′
τ

�
= (τ, τ ′)× (τ, τ ′)× Ω.(3.47)

Let us observe (2.25), where z = z(t, s, x) is given by (3.45) and ψ is given by (3.36).
Integrating (2.25) on Qτ ′

τ , using integration by parts, and taking (3.46) into account,
we arrive at (noting that by (2.24), v = θz)

2(1− α)λ

∫
Qτ′τ

(
v2
t + v2

s +
∑
i

v2
i

)
dxdtds +

∫
Qτ′τ

Bv2dxdtds

≤
∫
Q
θ2

∣∣∣∣∫ t

s

q1(ξ, x)zt(ξ, s, x)dξ

∣∣∣∣2 dxdtds +

∫
S0

∣∣∣∂v
∂ν

∣∣∣2dS0

+ Cλ3

[∫ T ′
2

T2

∫
Ω

(
|v(τ, s, x)|2 + |vt(τ, s, x)|2 + |vs(τ, s, x)|2 +

∑
i

|vi(τ, s, x)|2

+ |v(τ ′, s, x)|2 + |vt(τ ′, s, x)|2 + |vs(τ ′, s, x)|2 +
∑
i

|vi(τ ′, s, x)|2
)
dxds

+

∫ T ′
2

T2

∫
Ω

(
|v(t, τ, x)|2 + |vt(t, τ, x)|2 + |vs(t, τ, x)|2 +

∑
i

|vi(t, τ, x)|2

+ |v(t, τ ′, x)|2 + |vt(t, τ ′, x)|2 + |vs(t, τ ′, x)|2 +
∑
i

|vi(t, τ ′, x)|2
)
dxdt

]
∀ λ > 1.

(3.48)

However, recalling v = θz with θ = e�, by (2.23), (3.36), and (3.41), we get∫ T ′
2

T2

∫
Ω

(
|v(τ, s, x)|2 + |vt(τ, s, x)|2 + |vs(τ, s, x)|2 +

∑
i

|vi(τ, s, x)|2

+ |v(τ ′, s, x)|2 + |vt(τ ′, s, x)|2 + |vs(τ ′, s, x)|2 +
∑
i

|vi(τ ′, s, x)|2
)
dxds

+

∫ T ′
2

T2

∫
Ω

(
|v(t, τ, x)|2 + |vt(t, τ, x)|2 + |vs(t, τ, x)|2 +

∑
i

|vi(t, τ, x)|2

+ |v(t, τ ′, x)|2 + |vt(t, τ ′, x)|2 + |vs(t, τ ′, x)|2 +
∑
i

|vi(t, τ ′, x)|2
)
dxdt

≤ Cλ2

[∫ T ′
2

T2

∫
Ω

(
|z(τ, s, x)|2 + |zt(τ, s, x)|2 + |zs(τ, s, x)|2 +

∑
i

|zi(τ, s, x)|2

+ |z(τ ′, s, x)|2 + |zt(τ ′, s, x)|2 + |zs(τ ′, s, x)|2 +
∑
i

|zi(τ ′, s, x)|2
)
dxds

+

∫ T ′
2

T2

∫
Ω

(
|z(t, τ, x)|2 + |zt(t, τ, x)|2 + |zs(t, τ, x)|2 +

∑
i

|zi(t, τ, x)|2

+ |z(t, τ ′, x)|2 + |zt(t, τ ′, x)|2 + |zs(t, τ ′, x)|2 +
∑
i

|zi(t, τ ′, x)|2
)
dxdt

]
.

(3.49)
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Further, similar to (3.21), by (3.38), (2.23)–(2.24), (3.36), and (3.43)–(3.44), we get∫
Qτ′τ

Bv2dxdtds =

∫
Qτ′τ ∩Ξ2

Bv2dxdtds +

∫
Qτ′τ \Ξ2

Bv2dxdtds

≥ c0λ
3

∫
Qτ′τ ∩Ξ2

v2dxdtds− Cλ3eR
2
0λ/4

∫
Q
z2dxdtds ∀ λ > λ1.

(3.50)

Note that by (3.38), (3.40), and (3.47) we have Qτ ′
τ ⊃ Ξ1. Thus, by (3.50), for any

λ > λ1, we have

2(1− α)λ

∫
Qτ′τ

(
v2
t + v2

s +
∑
i

v2
i

)
dxdtds +

∫
Qτ′τ

Bv2dxdtds

≥ c1

[
λ

∫
Ξ1

(
v2
t + v2

s +
∑
i

v2
i

)
dxdtds + λ3

∫
Ξ1

v2dxdtds

]
− Cλ3eR

2
0λ/4

∫
Q
z2dxdtds,

(3.51)
where c1 > 0 and C > 0 are two constants that depend only on T and Ω.

Now, combining (3.48)–(3.49) and (3.51), we conclude that for any λ > λ1, it
holds that∫

Ξ1

(
v2
t + v2

s +
∑
i

v2
i

)
dxdtds + λ2

∫
Ξ1

θ2v2dxdtds

≤ Cλ−1

{∫
Q
θ2

∣∣∣∣∫ t

s

q1(ξ, x)zt(ξ, s, x)dξ

∣∣∣∣2 dxdtds +

∫
S0

∣∣∣∂v
∂ν

∣∣∣2dS0

+ λ5

[∫ T ′
2

T2

∫
Ω

(
|z(τ, s, x)|2 + |zt(τ, s, x)|2 + |zs(τ, s, x)|2 +

∑
i

|zi(τ, s, x)|2

+ |z(τ ′, s, x)|2 + |zt(τ ′, s, x)|2 + |zs(τ ′, s, x)|2 +
∑
i

|zi(τ ′, s, x)|2
)
dxds

+

∫ T ′
2

T2

∫
Ω

(
|z(t, τ, x)|2 + |zt(t, τ, x)|2 + |zs(t, τ, x)|2 +

∑
i

|zi(t, τ, x)|2

+ |z(t, τ ′, x)|2 + |zt(t, τ ′, x)|2 + |zs(t, τ ′, x)|2 +
∑
i

|zi(t, τ ′, x)|2
)
dxdt

]

+ λ3eR
2
0λ/4

∫
Q
z2dxdtds

}
.

(3.52)

Integrating (3.52) with respect to τ and τ ′ from T2 to T1 and from T ′
1 to T ′

2, respec-
tively, we get∫

Ξ1

(
v2
t + v2

s +
∑
i

v2
i

)
dxdtds + λ2

∫
Ξ1

θ2v2dxdtds

≤ Cλ−1

{∫
Q
θ2

∣∣∣∣∫ t

s

q1(ξ, x)zt(ξ, s, x)dξ

∣∣∣∣2 dxdtds +

∫
S0

∣∣∣∂v
∂ν

∣∣∣2dS0

+ λ5

∫
Q2

(
z2 + z2

t + z2
s +

∑
i

z2
i

)
dxdtds + λ3eR

2
0λ/4

∫
Q
z2dxdtds

}
.

(3.53)
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Consequently, by (2.23)–(2.24) and (3.36), recalling that z = θ−1v with θ = e�, and
using (3.53), we see that for any λ > λ1, it holds that∫

Ξ1

θ2

(
z2
t + z2

s +
∑
i

z2
i

)
dxdtds + λ2

∫
Ξ1

θ2z2dxdtds

≤ Cλ−1

{∫
Q
θ2

∣∣∣∣∫ t

s

q1(ξ, x)zt(ξ, s, x)dξ

∣∣∣∣2 dxdtds + eCλ
∫
S0

∣∣∣∂z
∂ν

∣∣∣2dS0

+ λ5

∫
Q2

(
z2 + z2

t + z2
s +

∑
i

z2
i

)
dxdtds + λ3eR

2
0λ/4

∫
Q
z2dxdtds

}
.

(3.54)

Step 3. Let us now estimate “
∫
Q2

θ2 | ∫ t
s
q1(ξ, x)zt(ξ, s, x)dξ|2dxdtds” and

“
∫
Q2

∑
i z

2
i dxdtds.” First, similar to [28], we get (recalling h

�
= |q1|∞)∫

Q
θ2

∣∣∣∣∫ t

s

q1(ξ, x)zt(ξ, s, x)dξ

∣∣∣∣2 dxdtds ≤ Ch2

∫
Q
θ2(z2

t + z2
s)dxdtds

= Ch2

(∫
Ξ1

+

∫
Q\Ξ1

)
θ2(z2

t + z2
s)dxdtds

≤ Ch2

[∫
Ξ1

θ2(z2
t + z2

s)dxdtds

+ eR
2
0λ/3

∫
Q

(z2
t + z2

s)dxdtds

]
.

(3.55)

Next, denote

η = η(t, s)
�
= t(T − t)s(T − s).(3.56)

Multiplying the first equation of (3.46) by ηz, integrating it on Q, using integration
by parts, by (3.56) and noting that

η(t, s) ≥ (T2 − T )2(T − T2)2 ∀ t , s ∈ (T2, T
′
2),

we get (recalling h
�
= |q1|∞)∫

Q2

∑
i

z2
i dxdtds ≤ C

[∫
Q

(z2
t + z2

s + z2)dxdtds + h

∫
Q

(z2
t + z2

s + z2)dxdtds

]
.(3.57)

Now, combining (3.54)–(3.55) and (3.57), we conclude that for any λ > λ1, it
holds that∫

Ξ1

θ2

(
z2
t + z2

s +
∑
i

z2
i

)
dxdtds + λ2

∫
Ξ1

θ2z2dxdtds

≤ C1λ
−1

{
eC1λ

∫
S0

∣∣∣∂z
∂ν

∣∣∣2dS0

+ h2

[∫
Ξ1

θ2(z2
t + z2

s)dxdtds + eR
2
0λ/3

∫
Q

(z2
t + z2

s)dxdtds

]
+ λ5

[∫
Q

(z2
t + z2

s + z2)dxdtds + h

∫
Q

(z2
t + z2

s + z2)dxdtds

]
+ λ3eR

2
0λ/4

∫
Q
z2dxdtds

}
,

(3.58)
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where C1 = C1(T,Ω) > 0 is a constant.
Let us take

λ2
�
= max(λ1, 2 + C1h

2).(3.59)

Then by (3.58)–(3.59), we see that for any λ > λ2 it holds that∫
Ξ1θ

2(z2
t + z2

s)dxdtds

≤ Cλ−1

{
eCλ

∫
S0

∣∣∣∂z
∂ν

∣∣∣2dS0 + λ5eR
2
0λ/3

∫
Q

(z2
t + z2

s + z2)dxdtds

}
.(3.60)

Note that by (3.38) and (3.42), we have∫
Ξ1

θ2(z2
t + z2

s)dxdt ≥
∫

Ξ0

θ2(z2
t + z2

s)dxdt ≥ eR
2
0λ/2

∫
Q0

(z2
t + z2

s)dxdt.(3.61)

Thus, by (3.60)–(3.61), we conclude that for any λ > λ2 it holds that∫
Q0

(z2
t +z2

s)dxdt ≤ C

{
eCλ

∫
S0

∣∣∣∂z
∂ν

∣∣∣2dS0 + λ5e−R
2
0λ/6

∫
Q

(z2
t + z2

s + z2)dxdtds

}
.

(3.62)
Step 4. Let us complete the proof of Theorem 3.2. By (3.62) and (3.45), we get

(recalling (3.37) for T0 and T ′
0)∫ T ′

0

T0

∫
Ω

w2dxdt ≤ C

{
eCλ

∣∣∣∂w
∂ν

∣∣∣2
H−1(Σ0)

+ λ5e−R
2
0λ/6

∫ T

0

E(t)dt

}
∀ λ > λ2,

(3.63)
where E(t) is defined by (2.12).

Fix S0 ∈ (T0, T/2) and S′
0 ∈ (T/2, T ′

0); then it is easy to check that∫ S′
0

S0

E(t)dt ≤ C(1 + h)

∫ T ′
0

T0

∫
Ω

w2dxdt.(3.64)

Thus, by (3.63)–(3.64) and (3.59), one can find a constant λ3 = λ3(R0) > 0 such that∫ S′
0

S0

E(t)dt ≤ C

{
eCλ

∣∣∣∂w
∂ν

∣∣∣2
H−1(Σ0)

+ e−R
2
0λ/8

∫ T

0

E(t)dt

}
∀ λ > λ2 + λ3.

(3.65)
Finally, by (2.13) (in Lemma 2.3) and (3.65), one gets

E(0) ≤ C2

{
eC2λ

∣∣∣∂w
∂ν

∣∣∣2
H−1(Σ0)

+ e−R
2
0λ/8+C2

√
hE(0)

}
∀ λ > λ2 + λ3,(3.66)

where C2 = C2(T,Ω) is a positive constant. However, it is easy to find a constant
λ4 = λ4(R0, C2) such that

C2e
−R2

0λ4/8+C2

√
h ≤ 1/2.(3.67)

Thus, by (3.66)–(3.67), we see that for any λ > max(λ2 + λ3, λ4) it holds that

E(0) ≤ CeCλ
∣∣∣∂w
∂ν

∣∣∣2
H−1(Σ0)

.(3.68)

Equation (3.68) is exactly the desired result. Thus, the proof of Theorem 3.2 is
completed.
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4. Exact controllability of the linear and semilinear wave equations. In
this section, we apply our observability estimates (3.1) and (3.3) to exact controllabil-
ity for wave equations. First of all, let us consider the exact controllability of system
(1.4). We have the following result.

Theorem 4.1. Let (H) hold, T > 2 maxx∈Ω |x − x0|. Let p1 ∈ Ln+1(Q), p2 ∈
C1(Q), and p3 ∈ C1(Q; Rn). Then for any given (y0, y1), (z0, z1) ∈ L2(Ω)×H−1(Ω),
there is a control u ∈ L2(Σ0) such that the weak solution y of (1.4) satisfies (1.5).
Furthermore, concerning the control u, we have the following estimate:

|u|L2(Σ0) ≤ C(r1)(|y0|L2(Ω) + |y1|H−1(Ω) + |z0|L2(Ω) + |z1|H−1(Ω)),(4.1)

where C(r1) is given by (3.2) with r replaced by r1
�
= |p1|n+1 + |p2|1,∞ + |p3|1,∞.

Proof. Let us use Lions’s Hilbert uniqueness method (see [7, 16, 17, 30]). First,
we solve 

vtt −∆v = p1v + p2vt + 〈 p3,∇v 〉
v = 0

v(T ) = z0, vt(T ) = z1

in Q,

on Σ,

in Ω.

(4.2)

Next, for any (ϕ0, ϕ1) ∈ X �
= H1

0 (Ω)× L2(Ω), we solve
ϕtt −∆ϕ = [p1 − (p2)t −∇ · p3]ϕ− p2ϕt − 〈 p3,∇ϕ 〉
ϕ = 0

ϕ(0) = ϕ0, ϕt(0) = ϕ1

in Q,

on Σ,

in Ω

(4.3)

and 
ηtt −∆η = p1η + p2ηt + 〈 p3,∇η 〉
η =

(
∂ϕ/∂ν

)
χΣ0(t, x)

η(T ) = 0, ηt(T ) = 0

in Q,

on Σ,

in Ω.

(4.4)

Then, we define a linear and continuous operator Λ : X → X ′(≡ H−1(Ω) × L2(Ω))
by

Λ(ϕ0, ϕ1) =
(
p2(0)η(0)− ηt(0), η(0)

)
,(4.5)

where η ∈ C([0, T ];L2(Ω)) ∩ C1([0, T ];H−1(Ω)) is the weak solution of (4.4). It is
sufficient to prove the existence of some (ϕ0, ϕ1) ∈ X such that

Λ(ϕ0, ϕ1) =
(
p2(0)(y0 − v(0))− y1 + vt(0), y0 − v(0)

)
,(4.6)

where v ∈ C([0, T ];L2(Ω))∩C1([0, T ];H−1(Ω)) is the weak solution of (4.2). In order
to solve (4.6), we observe that (by (4.3)–(4.4))

〈Λ(ϕ0, ϕ1), (ϕ0, ϕ1) 〉X′,X =

∫
Σ0

∣∣∣∂ϕ
∂ν

∣∣∣2dΣ0.(4.7)

However, by Theorem 3.1 and (4.7), we have

|(ϕ0, ϕ1)|2X ≤ C(r1)〈Λ(ϕ0, ϕ1), (ϕ0, ϕ1) 〉X′,X ∀ (ϕ0, ϕ1) ∈ X ,(4.8)
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where C(r1) is given by (3.2) with r replaced by r1
�
= |p1|n+1 + |q2|1,∞ + |q3|1,∞.

Therefore Λ : X → X ′ is an isomorphism. Thus (4.6) admits a unique solution
(ϕ0, ϕ1) ∈ X and

u = ∂ϕ/∂ν(4.9)

is the desired control such that the weak solution of (1.4) satisfies (1.5).
Now, let us prove (4.1). Concerning (4.2), by Lemma 2.3, we obtain that

|(vt(0), v(0))|X′ ≤ CeCr1 |(z1, z0)|X′ .(4.10)

Consequently, by (4.6)–(4.9) and (4.10), we get

|u|L2(Σ0) ≤ C(r1)
∣∣(p2(0)(y0 − v(0))− y1 + vt(0), y0 − v(0)

)∣∣
X′

≤ C(r1)(|(y1, y0)|X′ + |(z1, z0)|X′),(4.11)

which proves (4.1).
Next, let us consider the exact controllability of the following semilinear wave

equation: 
ytt −∆y = f(y)

y = uχΣ0
(t, x)

y(0) = y0, yt(0) = y1

in Q,

on Σ,

in Ω.

(4.12)

We have the following result.
Theorem 4.2. Let Γ0 satisfy (H). Let f(·) : R

1 → R
1 be of class C1(R) with

f ′(·) ∈ L∞(R) and T > 2 maxx∈Ω |x − x0|. Then, for any s ∈ (0, 1), the semilinear
wave equation (4.12) is exactly controllable in Hs

0(Ω)×Hs−1(Ω) at time T with control
u in Hs(0, T ;L2(Γ0)).

Proof. By [31, Remark 2.3] and by our Theorem 3.2 (which implies a UCP for
the wave equations), we obtain Theorem 4.2 immediately.

Appendix A. Proof of Lemma 2.2. This appendix is devoted to giving a
proof of Lemma 2.2. For this purpose, we need the following known result (see [17,
p. 46]).

Lemma A.1. Let T > 0 and F = 0. Suppose that

(g, w0, w1) ∈ L2(Σ)× L2(Ω)×H−1(Ω).(A.1)

Then the unique weak solution w of (2.1) satisfies

w ∈ C([0, T ];L2(Ω)) ∩ C1([0, T ];H−1(Ω)).(A.2)

Furthermore, there is a constant C = C(T,Ω) > 0 such that

|w|C([0,T ];L2(Ω))∩C1([0,T ];H−1(Ω)) ≤C
(|g|L2(Σ) + |w0|L2(Ω) + |w1|H−1(Ω)

)
∀ (g, w0, w1) ∈ L2(Σ)× L2(Ω)×H−1(Ω).

(A.3)

Now, let us prove Lemma 2.2. We divide the proof into two steps.
Step 1. We decompose the solution w of (2.1) as

w = ξ + η,(A.4)
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with ξ and η, respectively, solutions of
ξtt −∆ξ = 0

ξ = g

ξ(0) = w0, ξt(0) = w1

in Q,

on Σ,

in Ω

(A.5)

and 
ηtt −∆η = F

η = 0

η(0) = 0, ηt(0) = 0

in Q,

on Σ,

in Ω.

(A.6)

First of all, by Lemma A.1, we see that ξ ∈ C([0, T ];L2(Ω)) ∩ C1([0, T ];H−1(Ω));
furthermore, there is a constant C = C(T,Ω) > 0 such that

|ξ|C([0,T ];L2(Ω))∩C1([0,T ];H−1(Ω)) ≤ C
(|g|L2(Σ) + |w0|L2(Ω) + |w1|H−1(Ω)

)
.(A.7)

Next, denote {
A �

= −∆,

D(A) = H2(Ω) ∩H1
0 (Ω).

(A.8)

Put

Z
�
= A−1/2η.(A.9)

Then, by (A.6) and (A.9), we see that
Ztt −∆Z = A−1/2F

Z = 0

Z(0) = 0, Zt(0) = 0

in Q,

on Σ,

in Ω.

(A.10)

However, by (2.5), we have A−1/2F ∈ L1(0, T ;L2(Ω)). Thus, by (A.9)–(A.10) and
Lemma 2.1, we see that η ∈ C([0, T ];L2(Ω))∩C1([0, T ];H−1(Ω)); furthermore, there
is a constant C = C(T,Ω) > 0 such that

|η|C([0,T ];L2(Ω))∩C1([0,T ];H−1(Ω)) ≤ C|F |L1(0,T ;H−1(Ω)).(A.11)

Combining (A.4), (A.7), and (A.11), we see that w ∈ C([0, T ];L2(Ω))∩C1([0, T ];H−1(Ω));
furthermore, there is a constant C = C(T,Ω) > 0 such that

|w|C([0,T ];L2(Ω))∩C1([0,T ];H−1(Ω))

≤ C
(|F |L1(0,T ;H−1(Ω)) + |g|L2(Σ) + |w0|L2(Ω) + |w1|H−1(Ω)

)
.(A.12)

Step 2. It remains to prove ∂w/∂ν ∈ H−1(Σ) and∣∣∣∂w
∂ν

∣∣∣
H−1(Σ)

≤ C
(
|F |L1(0,T ;H−1(Ω)) + |g|L2(Σ) + |w0|L2(Ω) + |w1|H−1(Ω)

)
.(A.13)

This is essentially known (see [9, Theorem 2.3]), but we give the proof for the readers’
convenience. Let W be the solution of

Wtt −∆W = 0

W = h

W (T ) = 0, Wt(T ) = 0

in Q,

on Σ,

in Ω,

(A.14)
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where h is given such that

h ∈ H1(Σ), h(0) = h(T ) = 0 on Γ.(A.15)

Then, by Lemma 2.1, we obtain

|W |C([0,T ];H1(Ω))∩C1([0,T ];L2(Ω)) +
∣∣∣∂W
∂ν

∣∣∣
L2(Σ)

≤ C|h|H1(Σ)(A.16)

for some constant C = C(T,Ω) > 0. Assuming all data are smooth (we then extend
by continuity), multiplying the first equation of (A.14) by w, integrating it on Q, and
using integration by parts, by (A.14) and (2.1), we get∫

Σ

∂w

∂ν
hdΣ = −(F,W )Q +

∫
Σ

g
∂W

∂ν
dΣ− (w1,W (0))Ω + (w0,Wt(0))Ω.(A.17)

Now, by (A.16)–(A.17), we see that there is a constant C = C(T,Ω) > 0 such that∣∣∣∣∫
Σ

∂w

∂ν
hdΣ

∣∣∣∣ ≤ C|h|H1(Σ)

(|F |L1(0,T ;H−1(Ω)) + |g|L2(Σ) + |w0|L2(Ω) + |w1|H−1(Ω)

)
,

(A.18)
which implies (A.13) immediately.
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Inst. H. Poincaré Anal. Non Linéaire, 10 (1993), pp. 109–129.

[33] E. Zuazua, Some problems and results on the controllability of partial differential equations,
European Congress of Mathematics, Vol. II, Progr. Math. 169, Birkhäuser-Verlag, Basel,
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OPTIMAL CONTROL OF A CLASS OF LINEAR HYBRID SYSTEMS
WITH SATURATION∗
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Abstract. We consider a class of first order linear hybrid systems with saturation. A system
that belongs to this class can operate in several modes or phases; in each phase each state variable
of the system exhibits a linear growth until a specified upper or lower saturation level is reached,
and after that the state variable stays at that saturation level until the end of the phase. A typical
example of such a system is a traffic signal controlled intersection. We develop methods to determine
optimal switching time sequences for first order linear hybrid systems with saturation that minimize
criteria such as average queue length, worst case queue length, average waiting time, and so on.
First we show how the extended linear complementarity problem (ELCP), which is a mathematical
programming problem, can be used to describe the set of system trajectories of a first order linear
hybrid system with saturation. Optimization over the solution set of the ELCP then yields an optimal
switching time sequence. Although this method yields globally optimal switching time sequences,
it is not feasible in practice due to its computational complexity. Therefore, we also present some
methods to compute suboptimal switching time sequences. Furthermore, we show that if there is no
upper saturation, then for some objective functions the globally optimal switching time sequence can
be computed very efficiently. We also discuss some approximations that lead to suboptimal switching
time sequences that can be computed very efficiently. Finally, we use these results to design optimal
switching time sequences for traffic signal controlled intersections.

Key words. hybrid systems, control, nonlinear optimization, extended linear complementarity
problem

AMS subject classifications. 93C10, 49N99, 90C33, 90B22

PII. S0363012999354648

1. Introduction. Hybrid systems arise from the interaction between continuous
variable systems1 and discrete event systems.2 In general we could say that a hybrid
system can be in one of several modes whereby in each mode the behavior of the
system can be described by a system of difference or differential equations, and that
the system switches from one mode to another due to the occurrence of an event.
There are many frameworks to model, analyze, and control hybrid systems (see, e.g.,
[1, 11, 12, 17] and the references cited therein). An important trade-off in this context
is that of modeling power versus decision power: the more accurate the model is the
less we can analytically say about its properties. Furthermore, many analysis and
control problems lead to computationally hard problems for even the most elementary
hybrid systems [2]. Therefore, we focus on a specific class of hybrid systems that can
be analyzed using a mathematical programming problem that is called the extended
linear complementarity problem (ECLP). More specifically, we study the design of
optimal switching time sequences for a class of first order linear hybrid systems subject
to saturation.
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This work is an extension of the work reported in [8] in which we developed some
algorithms to design optimal traffic signal switching schemes for single intersections.
In [8] we considered only fixed amber durations and we could efficiently compute
only suboptimal switching schemes for approximations of the real objective functions.
Now we allow variable durations for the amber phases, and we show that if there is no
upper saturation, then for certain objective functions the optimal switching scheme
can be computed very efficiently without making any approximations. Furthermore,
in this paper we also consider a more general class of systems than the traffic signal
controlled intersections of [8].

The work reported here is closely related to optimal traffic signal control (see,
e.g., [10, 14, 15, 16]). The main difference between the model presented in this paper
applied to traffic signal optimization and the models used by most other researchers
is that in our approach the length of the green-amber-red cycles may vary from cycle
to cycle, i.e., we optimize over a fixed number of switch-overs instead of over a fixed
number of time steps. This allows us to optimize not only the split but also the
cycle time with continuous optimization variables (usually the optimization of split
and cycle time is performed using boolean variables at each time step, each variable
corresponding to the decision of switching or not the traffic signals as in UTOPIA,
OPAC, SCOOT, or SCATS). Our method adds an extra degree of freedom, which will
in general lead to a more optimal switching scheme.

This paper is organized as follows. In section 2 we discuss model predictive
control, which is the framework in which our approach can be embedded. Next we
give the definition and a brief description of the ELCP. In section 3 we introduce a
class of first order linear hybrid systems with saturation. We show that computing
the optimal switching time instants in general leads to a nonconvex optimization
problem or to an optimization problem over the solution set of an extended linear
complementarity problem. In section 4 we show that if there is no upper saturation,
then for some objective functions the feasible set of the optimal switching problem
can be replaced by a convex set without changing the optimum. In that case the
optimal switching time sequence can be computed very efficiently. Furthermore, by
making some approximations the problem becomes a linear programming problem.
These results will be illustrated in section 5 in which we compute optimal traffic signal
switching time sequences for traffic signal controlled intersections.

2. Preliminaries.

2.1. Notation. Let a and b be vectors with n components. The ith component
of a is denoted by ai or (a)i. We use a � b to indicate that ai � bi for all i. The
maximum operator on vectors is defined as follows:

(
max(a, b)

)
i
= max(ai, bi) for all

i. The minimum operator on vectors is defined analogously. The zero vector with n
components is denoted by 0n, or by 0 if the dimension is clear from the context. The
n by n identity matrix is denoted by In, or by I if the dimension is clear from the
context. The set of the real numbers is denoted by R.

2.2. Model predictive control. Model predictive control (MPC) [3, 4, 9] is a
very popular controller design method in the process industry. An important advan-
tage of MPC is that it allows the inclusion of constraints on the inputs and outputs,
and that it can handle changes in the system parameters by using a moving horizon
approach, in which the model and the control strategy are continuously updated. We
will use the MPC framework to design optimal switching schemes for a class of hybrid
systems. In general the resulting optimization problem is nonlinear and nonconvex.
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However, if the control objective and the constraints depend monotonically on the
outputs of the system, the MPC problem can be recast as problem with a convex
feasible set. As a consequence, the problem can be solved very efficiently so that
on-line computation is feasible.

In each step of the conventional MPC algorithm for discrete-time systems an
optimal input sequence is computed that minimizes a given cost criterion over a
given prediction horizon Np. Furthermore, for the optimization the control input u
is taken to be constant from a certain point on: u(k + j) = u(k + Nc − 1) for j =
Nc, Nc+1, . . . , Np−1, where Nc is the control horizon and where k is the first sampling
index of the period under consideration. MPC uses a receding horizon principle: after
computation of the optimal control sequence u(k), u(k + 1), . . . , u(k +Nc − 1), only
the first control input sample u(k) will be implemented; subsequently the horizon is
shifted one sample, the estimates of the state and the parameters of the system are
updated using information coming from new measurements, and the optimization is
restarted. Note that the continuous updating of the model and of the estimates of the
states also introduces a kind of feedback in the control system. In general feedback is
necessary to obtain good performance and tracking in most control applications (see,
e.g., [13] for applications of feedback control in traffic).

The parameters Np and Nc are the basic tuning parameters of the MPC algo-
rithm:

(i) In general the prediction horizon Np is selected such that the time interval
[k, k +Np − 1] contains the crucial dynamics of the process.

(ii) An important effect of a small control horizon Nc is the smoothing of the
control signal (because of the emphasis on the average behavior rather than on ag-
gressive noise reduction). The control horizon forces the control signal to a constant
value. This also has a stabilizing effect since the output signal is forced to its steady-
state value. Another important consequence of decreasing Nc is the reduction of the
number of optimization variables, which results in a decrease of the computational
effort.

2.3. The ELCP. The ELCP is a mathematical programming problem which is
defined as follows [7]:

Given A ∈ R
p×n, B ∈ R

q×n, c ∈ R
p, d ∈ R

q and m subsets φ1, φ2,
. . . , φm of {1, 2, . . . , p}, find x ∈ R

n such that

m∑
j=1

∏
i∈φj

(Ax− c)i = 0(1)

subject to Ax � c and Bx = d, or show that no such x exists.
The ELCP can be considered as a system of linear equations and inequalities (Ax � c,
Bx = d), where there are m groups of linear inequalities (one group for each index set
φj) such that in each group at least one inequality should hold with equality. In [7]
we have developed an algorithm to compute the complete solution set of an ELCP. In
general this solution set consists of the union of a subset of faces of the polyhedron P
defined by the system Ax � c, Bx = d (i.e., the solution set contains all the points of
P that satisfy condition (1)). Our ELCP algorithm yields a compact representation
of the solution set of an ELCP by vertices, extreme rays, and a basis of the linear
subspace corresponding to the largest affine subspace of the solution set. In [7] we
have also shown that the general ELCP is NP-hard.

In the next section we shall show that the ELCP can be used to determine optimal
switching time instants for a special class of hybrid systems.
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3. Optimal switching time sequences for a class of linear hybrid systems
with saturation.

3.1. First order linear hybrid systems with saturation. Consider a system
the evolution of which is characterized by consecutive phases. In each phase each state
variable of the system exhibits a linear growth or decrease until a certain upper or
lower saturation level is reached; then the state variable stays constant until the end
of the phase. A system, the behavior of which satisfies this description, will be called
a first order linear hybrid system with saturation.

A typical example of a first order linear hybrid system with saturation is a traffic
signal controlled intersection, provided that we use a continuous approximation for the
queue lengths (see section 5 and [8]). The state variables of this system correspond to
the queue lengths in the different lanes. For a traffic signal controlled intersection the
lower bound for the queue length is equal to 0. The upper bound could correspond to
the maximal available storage space due to the distance to the preceding junction or
due to the layout of the intersection. We assume that if this upper bound is reached
then newly arriving cars take another route to get to their destination. Another
example of a first order linear hybrid system with saturation is a system consisting
of several fluid containers that are connected by tubes with valves and that have two
outlets—one at the bottom (with a tube that leads to another fluid container) and
one at the top (so that the fluid level in the containers can never exceed a given
level)—provided that we assume that the increase or decrease of the fluid levels is
linear if the system is not saturated.

Now we derive the equations that describe the evolution of the state variables
in a first order linear hybrid system with saturation. Analogous to a traffic signal
controlled intersection, we will use the phrase “queue lengths” to refer to the state
variables of the system. Note, however, that our definition of a first order linear
hybrid system with saturation is not limited to queuing systems only.

Let M be the number of “queues.” The length of queue i at time t is denoted
by qi(t). Let αi,k, b

ls
i,k, and b

us
i,k be, respectively, the queue length growth rate for

queue i in phase k, the lower saturation bound for the queue length qi in phase k,
and the upper saturation bound for the queue length qi in phase k. The evolution
of the system begins at time t0. Let t1, t2, t3, . . . be the switching time instants, i.e.,
the time instants at which the system switches from one phase to another. Note that
in general the sequence t0, t1, t2, . . . is not an equidistant sequence. The length of

the kth phase is equal to δk
def
= tk+1 − tk. Note that δk > 0 for all k. We assume

that 0 � blsi,k+1 � qi(tk+1) � bus
i,k+1 for all i, k such that the queue lengths are always

nonnegative and such that there are no sudden jumps in the queue lengths due to a
change in the saturation level at one of the switching time instants. For queue i we
have

dqi(t)

dt
=

{
αi,k if blsi,k < qi(t) < b

us
i,k,

0 otherwise
(2)

for t ∈ (tk, tk+1). This implies that the evolution of the queue lengths at the switching
time instants is given by

qi(tk+1) = max
(
min(qi(tk) + αi,kδk, b

us
i,k), b

ls
i,k

)
(3)
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for k = 0, 1, 2, . . . . If we define qi,k = qi(tk) and

qk =


q1,k
q2,k
...

qM,k

 , αk =


α1,k

α2,k

...
αM,k

 , blsk =


bls1,k
bls2,k
...

blsM,k

 , bus
k =


bus
1,k

bus
2,k
...

bus
M,k

 ,
we obtain the vector equation

qk+1 = max
(
min(qk + αkδk, b

us
k ), blsk

)
.(4)

If we introduce dummy vectors zk, then (3) can be rewritten as

zk+1 = min(qk + αkδk, b
us
k ),(5)

qk+1 = max(zk+1, b
ls
k ).(6)

3.2. Optimal switching time sequences for linear hybrid systems with
saturation. Now we consider the problem of computing an optimal (finite) sequence
of switching time instants for a system described by a system of equations of the form
(4) using an MPC approach.

We may assume without loss of generality that t0 will be the first switching time
instant in each step of the MPC algorithm. Note that this implies that switching
time instant t1 of the current MPC step will correspond to switching time instant
t0 of the next MPC step. The queue length vector q0 = q(t0) at time t = t0 can
be measured3 or estimated. Now we want to determine the optimal switching time
sequence t0, t1, . . . , tNp

for a given performance criterion J . For the class of systems
we consider it makes more sense to replace the condition that the control input is
constant after the control horizon by the condition

δk = δk−Kc for k = Nc, Nc + 1, . . . , Np − 1,(7)

where Kc is the number of switching phases in one larger cycle of the system (e.g.,
in traffic signal control for an intersection of two streets Kc could be equal to 4
corresponding to the combinations red-green, red-amber, green-red, amber-red for
the traffic signals on the crossing roads (see also section 5)). Possible performance
criteria are

1. (weighted) average queue length over all queues:

J1 =

M∑
i=1

wi
1

tNp − t0

∫ tNp

t0

qi(t) dt,(8)

2. (weighted) average queue length over the worst queue:

J2 = max
i

(
wi

1

tNp − t0

∫ tNp

t0

qi(t) dt

)
,(9)

3. (weighted) worst case queue length:

J3 = max
i, t

(
wi qi(t)

)
,(10)

3Note that if we compute the switching time sequence fast enough (i.e., if the computation time
is less than δ0 = t1 − t0), we can wait to compute the optimal sequence until after t0.
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4. (weighted) average “waiting time” over all queues:4

J4 =

M∑
i=1

wi

∫ tNp

t0

qi(t) dt

Np−1∑
k=0

αa
i,kδk

,(11)

5. (weighted) average “waiting time” over the worst queue:

J5 = max
i

wi
∫ tNp

t0

qi(t) dt

Np−1∑
k=0

αa
i,kδk

 ,(12)

where wi > 0 for all i and αa
i,k is the arrival rate of “customers” for queue i in phase

k.
We can impose extra conditions such as minimum or maximum queue lengths

(which could be useful in order to prevent saturation at the lower or upper level for
some queues), minimum and maximum durations for the switching time intervals, and
so on.

This leads to the following optimization problem that should be solved in each
MPC step:

minimize
δ0,δ1,...,δNc−1

J(13)

subject to

δk = δk−Kc
for k = Nc, Nc + 1, . . . , Np − 1,(14)

δmin,k � δk � δmax,k for k = 0, 1, . . . , Nc − 1,(15)

qmin,k � qk+1 � qmax,k fork = 0, 1, . . . , Np − 1,(16)

zk+1 = min(qk + αkδk, b
us
k ) for k = 0, 1, . . . , Np − 1,(17)

qk+1 = max(zk+1, b
ls
k ) for k = 0, 1, . . . , Np − 1(18)

with q0 = q(t0), and where δmin,k and δmax,k are, respectively, the minimum and the
maximum values of δk, and (qmin,k)i and (qmax,k)i are, respectively, the minimum and
the maximum queue lengths for queue i at time instant tk+1.

Remark 3.1. We can also use a first order linear hybrid system with saturation
as an approximate model if we have a hybrid system with saturation in which the
queue length growth or decrease rates are slowly time-varying since in MPC we use
a moving horizon approach in which the model of the system and the estimate of
the initial condition can be updated at the beginning of each control cycle. This also
introduces a feedback into the control system.

4The average waiting time is equal to the total waiting time divided by the number of arrivals.
If the initial and final queue lengths are 0, then the average waiting time for queue i is given by the
fraction in the expression on the right-hand side of (11). So J4 is in fact an approximation of the
(weighted) average waiting time.
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3.3. The ELCP and optimal switching time sequences. Now we show that
the system (14)–(18) can be reformulated as an ELCP.

Consider (17) for an arbitrary index k. This equation can be rewritten as follows:

zk+1 � qk + αkδk,

zk+1 � bus
k ,

(zk+1)i = (qk + αkδk)i or (zk+1)i = (bus
k )i for i = 1, 2, . . . ,M,

or equivalently

qk + αkδk − zk+1 � 0,(19)

bus
k − zk+1 � 0,(20)

(qk + αkδk − zk+1)i (b
us
k − zk+1)i = 0 for i = 1, 2, . . . ,M.(21)

Since a sum of nonnegative numbers is equal to 0 if and only if all the numbers are
equal to 0, (21) is equivalent to

M∑
i=1

(qk + αkδk − zk+1)i (b
us
k − zk+1)i = (qk + αkδk − zk+1)

T (bus
k − zk+1) = 0.

Hence, (17) can be rewritten as

qk + αkδk − zk+1 � 0,(22)

bus
k − zk+1 � 0,(23)

(qk + αkδk − zk+1)
T (bus

k − zk+1) = 0.(24)

We can repeat this reasoning for (18) and for each index k. So if we define

xq =


q1
q2
...
qNp

 , xz =


z1
z2
...
zNp

 , xδ =


δ0
δ1
...

δNc−1

 ,
and if we replace all δk’s with index k � Nc using (14), we finally get a problem of
the form

minimize
xδ

J(25)

subject to

Axq +Bxz + Cxδ + d � 0,(26)

Exq + Fxz + g � 0,(27)

Hxq +Kxδ + l � 0,(28)

(Axq +Bxz + Cxδ + d)
T (Exq + Fxz + g) = 0(29)

for appropriately defined matrices A, B, C, E, F , H, K and vectors d, g, l. Equations
(26), (27), and (29) correspond to (22), (23), and (24), respectively, and the system
of linear inequalities (28) contains the conditions (15) and (16). It is easy to verify
that the system (26)–(29) is (a special case of) an ELCP.
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The time evolution of the queue lengths in a first order linear hybrid system with
saturation is given by piecewise-affine functions. The link between piecewise-affine
functions and (ordinary) linear complementarity problems has also been explored by
several other authors (see, e.g., [5] and the references therein).

Remark 3.2. If we introduce additional linear equality or inequality constraints
on the components of xδ such as, e.g., a maximum or total duration for the Np phases
(δ0 + δ1 + · · ·+ δNp

� Tmax or δ0 + δ1 + · · ·+ δNp = Ttot), maximum or total durations
for two or more consecutive phases (e.g., δ2k+δ2k+1 � Tmax,k or δ2k+δ2k+1 = Ttot,k),
we still obtain an ELCP. The additional linear inequality constraints lead to extra
inequalities in (28), and the additional linear equality constraints lead to an extra
equation of the form Pxδ + q = 0, which also fits in the ELCP framework.

The ELCP (26)–(29) describes all feasible system trajectories for the first order
linear hybrid system with saturation. In order to determine the optimal switching
time sequence we could minimize the objective function J over the solution set of the
ELCP as follows. If we assume that xq and xδ are bounded,5 then the solution set
of the ELCP consists of a union of faces of the (finite and bounded) polytope defined
by (26)–(28). Each face of the polyhedron can be represented by its vertices, and the
points of the face can be written as convex combinations of these vertices. For each
face we could determine for which convex combination of the vertices the objective
function J reaches a global minimum over the face and afterwards select the overall
minimum.

However, the general ELCP is an NP-hard problem [7]. Furthermore, the al-
gorithm of [7] to compute the solution set of a general ELCP requires exponential
execution times. This implies that the ELCP approach sketched above is not feasible
if the number of variables is large. Since the number of variables in the ELCP is equal
to 2MNp +Nc, this implies that the ELCP should not be used if M , Np, or Nc are
large.

If the ELCP is not tractable, either we could select lower values for Nc and Np

(which would result in less optimal solutions) or we could use multistart local opti-
mization to determine the optimal switching scheme. For given Np, Nc, Kc, q0, αi,k’s,
blsi,k’s, and b

us
i,k’s, the evolution of the system to be optimized is uniquely determined

by the sequence δ0, δ1, . . . , δNc−1 since the remaining δk’s, the queue lengths qi(t), and
the components of xq and xz are given by (7), (2), (5), and (6), respectively. There-
fore, we can consider (13)–(18) as a constrained optimization problem in xδ, where
the constraints (16)–(18) are nonlinear constraints. Alternatively, these constraints
can be taken into account by adding an extra penalty term to the objective function
J if qi,k < (qmin,k)i or qi,k > (qmax,k)i. If we use the penalty function6 approach,
the only remaining constraints on xδ are the simple upper and lower bound con-
straints (15). However, the major disadvantage of the multistart local minimization
approaches discussed above is that in general the minimization routine will return
only a local minimum and that several starting points are necessary to obtain a good
approximation to the global optimum. Note that the final solution xopt,curr

δ of the

current MPC step can be used to obtain a good initial solution xinit,next
δ for the next

MPC stepping by setting δ init,next
k = δopt,curr

k−1 for k = 1, 2, . . . , Nc.
Recall that in each MPC step the problem (13)–(18) has to be solved. In order

to be able to do this on-line, it is important to have efficient algorithms to solve the

5A sufficient condition for this is that δmin,k and δmax,k are defined and finite for all k.
6Note that in this case a barrier function approach is not advantageous since the optimal solution

will often lie on the boundary of the feasible region.
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problem. Therefore, we shall now discuss some other approaches to compute solutions
very efficiently if there is no saturation at the upper level.

4. Optimal and suboptimal switching time sequences for systems with
saturation at a lower level only.

4.1. Optimal switching time sequences. In this section we consider systems
with saturation at the lower level only. So bus

i,k is equal to∞ for all i, k, or equivalently

(qmax,k)i � bus
i,k for all i, k. We also assume that qmin,k � blsk for all k, i.e., we do not

impose extra lower bound conditions on the queue lengths. The optimal switching
problem (13)–(18) then reduces to

minimize
xδ

J(30)

subject to

δk = δk−Kc for k = Nc, Nc + 1, . . . , Np − 1,(31)

δmin,k � δk � δmax,k for k = 0, 1, . . . , Nc − 1,(32)

qk+1 � qmax,k for k = 0, 1, . . . , Np − 1,(33)

qk+1 = max(qk + αkδk, b
ls
k ) for k = 0, 1, . . . , Np − 1.(34)

We call this problem P. We define the “relaxed” problem P̃ corresponding to P as

minimize
xq,xδ

J(35)

subject to

δk = δk−Kc for k = Nc, Nc + 1, . . . , Np − 1,(36)

δmin,k � δk � δmax,k for k = 0, 1, . . . , Nc − 1,(37)

qk+1 � qmax,k for k = 0, 1, . . . , Np − 1,(38)

qk+1 � qk + αkδk for k = 0, 1, . . . , Np − 1,(39)

qk+1 � blsk for k = 0, 1, . . . , Np − 1.(40)

Thus compared to the original problem we have replaced (34) by relaxed equations
of the form (22)–(23) without taking (24) into account. As a consequence, xq and

xδ are not directly coupled anymore. The set of feasible solutions of P̃ is a convex
set, whereas the set of feasible solutions of P is in general not convex since (34) is a
nonconvex constraint. Therefore, the relaxed problem P̃ will in general be easier to
solve than the problem P.

The objective function J is a monotonically nondecreasing function of xq if for
every xδ and for every x̃q, x̂q with x̃q � x̂q, we have J(x̃q, xδ) � J(x̂q, xδ). The
following proposition shows that for monotonically nondecreasing objective functions
any optimal solution of the relaxed problem P̃ can be transformed into an optimal
solution of the problem P.

Proposition 4.1. Let the objective function J be a monotonically nondecreasing
function of xq and let (x∗q , x

∗
δ) be an optimal solution of P̃. If we construct x�q such

that

q�1 = max(q0 + α0δ
∗
0 , b

ls
0 ),(41)
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q�k+1 = max(q�k + αkδ
∗
k, b

ls
k ) for k = 1, 2, . . . , Np − 1,(42)

then (x�q, x
∗
δ) is an optimal solution of the problem P.

Proof. Let (x∗q , x
∗
δ) be an optimal solution of P̃ and let x�q be defined by (41)–

(42). Clearly, (x�q, x
∗
δ) is a feasible solution of P̃. Define q∗0 = q�0 = q0. Since x∗q

satisfies (39)–(40), we have max(q∗k + αkδ
∗
k, b

ls
k ) � q∗k+1 for all k. Since q∗0 = q�0, this

implies that q�1 � q∗1 and, by induction, also that q�k � q∗k for k = 2, 3, . . . , Np. As
a consequence, we have x�q � x∗q and thus also J(x�q, x

∗
δ) � J(x∗q , x

∗
δ) since J is a

monotonically nondecreasing function of xq. Since (x�q, x
∗
δ) is a feasible solution of

P̃ and since (x∗q , x
∗
δ) is an optimal solution of P̃, this implies that (x�q, x

∗
δ) is also an

optimal solution of P̃.
The set of feasible solutions of P is a subset of the set of feasible solutions of P̃.

Hence, the minimal value of J over the set of feasible solutions of P̃ will be less than
or equal to the minimal value of J over the set of feasible solutions of P. Since (x�q, x∗δ)
is a feasible solution of P and an optimal solution of P̃, this implies that (x�q, x

∗
δ) is

an optimal solution of P.
Recall that the objective functions J1, J2, J3, J4, and J5 do not explicitly depend

on xq, since xq can be computed from xδ (and eliminated from the expressions for the
objective functions before considering the relaxation of P). So we have Jl(x̃q, xδ) =
Jl(x̂q, xδ) for any x̃q, x̂q and for l ∈ {1, 2, 3, 4, 5}. This implies that J1, J2, J3, J4,
and J5 are monotonically nondecreasing functions of xq. So we can use Proposition
4.1 to transform the optimal switching problem for the objective functions J1 up to
J5 into an optimization problem with a convex feasible set. The resulting (global)
solution of the relaxed problem can then be transformed into an optimal switching
scheme using (41)–(42). Note, however, that although the feasible set of the relaxed
problem is convex, the objective functions J1 up to J5 are not convex, so that the
overall problem is still nonconvex (and thus in general not easily solvable). Therefore,
we now introduce two subsequent approximations of the objective functions J1 and J4

that will lead to a linear programming problem, which can be solved very efficiently.
The resulting solution can then be used as an initial starting point for the optimization
of the relaxed problem.

4.2. A linear programming approximation. The objective function J is a
monotonically increasing function of xq if for every xδ and for every x̃q, x̂q with x̃q � x̂q
and x̃q �= x̂q, we have J(x̃q, xδ) < J(x̂q, xδ). The optimal solution of P̃ will in general
not be a feasible solution of P unless J is a monotonically increasing function of xq.

Proposition 4.2. If J is a monotonically increasing function of xq, then any

optimal solution of the relaxed problem P̃ is also an optimal solution of the problem
P.

Proof. Let (x∗q , x
∗
δ) be an optimal solution of P̃ and construct (x�q, x

∗
δ) as in the

proof of Proposition 4.1. So x�q � x∗q and (x�q, x
∗
δ) is also a feasible solution of P̃.

Now we show by contradiction that (x∗q , x
∗
δ) is also a feasible solution of P, i.e.,

that it satisfies (34). Suppose that (x∗q , x
∗
δ) does not satisfy (34). So x�q �= x∗q . Since

x�q � x∗q , this implies that J(x�q, x
∗
δ) < J(x∗q , x

∗
δ), which would mean that (x∗q , x

∗
δ) is

not an optimal solution of P̃. Since this is a contradiction, our initial assumption that
(x∗q , x

∗
δ) does not satisfy (34) was wrong. Hence, (x∗q , x

∗
δ) also is a feasible solution of

the problem P. Since the set of feasible solutions of P is a subset of the set of feasible
solutions of P̃, this implies that (x∗q , x

∗
δ) is also an optimal solution of P.



CONTROL OF LINEAR HYBRID SYSTEMS WITH SATURATION 845

Note that the objective functions J1, J2, J3, J4, and J5 are not monotonically
increasing functions of xq. Now we introduce some approximations to the objective
functions J1 and J4 that are strictly monotonically increasing functions of xq and
for which Proposition 4.2 can be used.7 This will lead to suboptimal switching time
sequences that can be computed very efficiently. We will consider only the approxi-
mations for J1, but for J4 a similar reasoning can be made.

For a given q0 and t0, we define the function q̃i(·, xq, xδ) as the piecewise-affine
function with breakpoints (tk, qi,k) for k = 0, 1, . . . , Np. The approximate objective

function J̃1 is also defined by (8) but with qi replaced by q̃i. The value of the objective
functions J1 and J̃1 depends on the surface under the functions qi and q̃i, respectively.

8

If we are computing optimal traffic switching sequences, then the surface under the
function q̃i will be a reasonable approximation of the surface under the function qi and
then the optimal value of J̃1 will be a reasonably good approximation of the optimal
value of J1 (see also [6, 8]). Note that the values of J1 and J̃1 coincide if there is
no saturation in the period under consideration. Since q̃i is a piecewise-affine with
breakpoints (tk, qi,k) for k = 0, 1, . . . , Np, we have [6]

J̃1(xq, xδ) =

M∑
i=1

(
wi

2(δ0 + δ1 + · · ·+ δNp−1)

Np−1∑
k=0

δk(qi,k + qi,k+1)

)
,(43)

where δNc
, . . . , δNp−c can be replaced using (7). Since δk > 0 for all k, J̃1 is a

monotonically increasing function of xq, which implies that Proposition 4.2 can be
applied.

Now we discuss a further approximation of J̃1 that will lead to a linear program-
ming problem, which can be solved very efficiently. Sometimes we already have a good
idea about the relative lengths of the different phases (in a traffic signal situation we
know, e.g., that the green phases will be much longer than the amber phases). If we
assume that δk = ρk δ̄ for all k and for some yet unknown δ̄, then (43) leads to

J̃1(xq, xδ) =

M∑
i=1

wi
2ρtot

ρ0qi,0 +

Np−1∑
k=1

(ρk + ρk−1)qi,k + ρN−1qi,Np

 def
= Ĵ1(xq),

with ρtot = ρ0+ρ1+ · · ·+ρNp−1. Note that Ĵ1 is an affine function of xq. Since wi > 0

for all i and ρk > 0 for all k, Ĵ1 is a monotonically increasing function of xq. Hence,

by Proposition 4.2 any optimal solution of P̃ with objective function Ĵ1 will also be an
optimal solution of P (with objective function Ĵ1). So the optimal switching problem
then reduces to a linear programming problem, which can be solved efficiently using
a simplex or an interior point method.

Remark 4.3. The values of the ρk’s are usually determined on the basis of an
educated guess. Alternatively, if we have already performed an MPC step, then we
can use the shifted values of the δk’s of the previous MPC step to obtain an initial
guess for the current ρk’s. Furthermore, we could also use an iterative procedure
in which we first select values for the ρk’s, compute the optimal solution, use the
resulting δk’s to determine new values for the ρk’s, after which we can again compute
the optimal solution, and so on.

7This derivation is an extension of our work in [8] where we have considered a special subclass
of first order linear hybrid systems with saturation at the lower level only. Although we did not yet
use Proposition 4.1 there, we did use a proposition that is similar to Proposition 4.2.

8Recall that qi(t) � 0 for all i, t since we have assumed that blsi,k � 0 for all i, k.
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Fig. 1. A traffic signal controlled intersection of two two-way streets.

Table 1
The traffic signal switching scheme.

Period T1, T3 T2, T4

t0–t1 red green

t1–t2 red amber

t2–t3 green red

t3–t4 amber red

t4–t5 red green

t5–t6 red amber

...
...

...

Also note that the assumption on the relative lengths (δk = ρk δ̄ for all k) is only
used to simplify the objective function; it will not be included explicitly in the linear
programming problem. So the variables in this problem are still xq and xδ, but the
objective depends only on xq. As a consequence, the optimal δk’s will in general not
satisfy the assumption on the relative lengths (see, e.g., the example of section 5.2).

5. Application: Optimal traffic signal control.

5.1. Optimal traffic signal control. In order to illustrate the effectiveness
of Proposition 4.1 we shall use the different approaches presented in this paper to
design an optimal switching time sequence for a traffic signal controlled intersection
and compare the results.

Consider an intersection of two two-way streets (see Figure 1) with lanes Li and
a traffic signal Ti on each corner of the intersection (i = 1, 2, 3, 4). The switching
time sequence for the intersection is given in Table 1. Since queue lengths can never
become negative and since all the cars can leave a queue provided that we make the
length of the green phase large enough, we have blsk = 0 for all k. We assume that
there is no saturation at the upper level, either due to the fact that there is enough
buffer space before the traffic signal in each lane or due to the fact that we impose
additional maximal queue length conditions such that qmax,k � bus

k .
In order to obtain a model that is amenable to mathematical analysis, we shall

make two extra assumptions (see also [8]):
(i) the queue lengths are continuous variables,
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Fig. 2. The four main phases of a more complex traffic signal switching scheme. The arrows
indicate possible directions for the cars that receive a green signal.

(ii) the average arrival and departure rates of the cars are constant or slowly
time-varying.
These assumptions deserve a few remarks:

(i) Recall that the main purpose is to compute optimal traffic signal switching
time sequences. Designing optimal switching time sequences is useful only if the
arrival and departure rates of vehicles at the intersection are high since then the
queue lengths will in general also be large and then approximating the queue lengths
by continuous variables will introduce only small errors.

(ii) If we keep in mind that one of the main purposes of the model that we shall
derive is the design of optimal traffic signal switching time sequences, then assuming
that the average arrival and departure rates are constant is not a serious restriction
provided that we use an MPC approach in which we can regularly update the estimates
of the arrival and departure rates and of the state of the system.

Let αa
i be the average arrival rate of cars in lane Li, and let αd,green

i and αd,amber
i

be the departure rates of cars in lane Li when the traffic signal Ti is green, respectively,
amber. If we define

αi,k =


αa
i if Ti is red in (tk, tk+1),

αa
i − αd,green

i if Ti is green in (tk, tk+1),

αa
i − αd,amber

i if Ti is amber in (tk, tk+1)

for all i, k, then the relation between the switching time instants and the queue lengths
is described by a system of equations of the form

dqi(t)

dt
=

{
αi,k if blsi,k < qi(t),

0 otherwise.

Thus the system can be considered as a first order linear hybrid system with lower
saturation only. Hence, we can use the techniques presented in sections 3.2 and 4 to
compute optimal and suboptimal traffic signal switching schemes.

In the simple traffic signal set-up discussed above we did not make a distinction
between cars that turn left, right, or that go straight ahead. However, the approach
presented in this paper can also be applied to more complex set-ups or more complex
traffic signal switching schemes for single intersections such as, e.g., the one depicted
in Figure 2 which consists of four main phases with amber phases in between, where
in the first main phase cars on the north-south axis can go straight ahead or turn
right, in the next main phase they can turn left, and in the next two main phases the
same process is repeated for the traffic on the east-west axis.

5.2. Worked example. The following traffic signal control example illustrates
that using Proposition 4.1 leads to efficient computation of optimal switching time
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sequences and that the approximations introduced in section 4.2 lead to reasonably
good suboptimal solutions. Since we are mainly interested in the computation times,
we will consider only one step of the MPC algorithm. All times will be expressed in
seconds and all rates in vehicles per second. The numerical results will be given up
to two decimal places.

Consider the intersection of Figure 1 with the switching scheme of Table 1 and
with the following data: Np = 14, Nc = 8, αa

1 = 0.23, αa
2 = 0.12, αa

3 = 0.19, αa
4 = 0.11,

αd,green
1 = 0.50, αd,green

2 = αd,green
4 = 0.35, αd,green

3 = 0.45, αd,amber
1 = αd,amber

3 = 0.03,

αd,amber
2 = αd,amber

4 = 0.02, q0 = [ 17 12 14 8 ]T , and qmax,k = [ 20 15 20 15 ]T for
all k. Since a green-amber-red cycle consists of four consecutive phases (see Table 1)
we set Kc = 4.

We want to compute a traffic signal switching sequence t0, t1, . . . , tNc−1 that
minimizes J1 with w = [ 2 1 2 1 ]T . The minimum and maximum length of the green
phases are, respectively, 9 and 90. Note that for the simple setup of this example
and for the objective function J1 it does not make sense to consider a varying amber
duration since during the amber phases the average queue length always increases,
which implies that the optimal duration of the amber phases in this case will always
be equal to the given lower bound for the amber phase. Therefore, we fix the length of
the amber phase by setting the minimal and the maximal length of the amber phases
equal to 3.

We have computed an optimal switching interval vector x∗δ,elcp using the ELCP
method, a suboptimal switching vector x∗δ,nlcon using constrained optimization with

nonlinear constraints,9 and a suboptimal solution x∗δ,penalty using constrained opti-

mization10 with a quadratic penalty function for queue lengths that exceed qmax,k.
Based on Propositions 4.1 and 4.2 we have computed a solution x∗δ,relaxed that min-

imizes J1 for the relaxed problem P̃ and a solution x∗δ,approx that minimizes the ap-

proximate objective function J̃1 for the relaxed problem P̃. Finally, we computed a
switching interval vector x∗δ,lp that minimizes Ĵ1 for the relaxed problem P̃ with the
affine objective function obtained by assuming that for the east-west axis the length
of the green phases is 1.5 times the length of the red phases and 10 times the length
of the amber phases. (Note that this is just a rough guess.)

We have used the sequential quadratic programming function e04ucc of the NAG
C Library for the nonlinear optimizations. To solve the linear programming problem
we have used the function e04mfc of the NAG C library, which uses an active set
method.

In Table 2 we have listed the value of the objective functions J1, J̃1, and Ĵ1 for the
various switching interval vectors and the CPU time needed to compute the switching
interval vectors on a Pentium II 300 MHz PC running Linux and with 64 MB RAM.
The CPU time values listed in the table are average values over 10 experiments.11

All the routines used in the computations either have been implemented in C or were

9We give the best solution over 20 runs with random initial points. Only 14 runs resulted in a
feasible solution. For these 14 runs the mean of the objective values of the local minima returned by
the minimization routine was 48.50 with a standard deviation of 3.38.
10We give the best solution over 10 runs with random initial points. For the 9 runs that resulted

in a feasible solution, the mean of the objective values was 46.45 with a standard deviation of 0.08.
11For x∗δ,nlcon we have listed the CPU time needed for 20 runs with random initial points and

for x∗δ,penalty we have listed the CPU time needed for 10 runs with random initial points (see also

footnotes 9 and 10). Note, however, that even for a single run the average CPU time needed for
these solutions is much higher that the CPU time needed for the x∗δ,relaxed solutions.
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Table 2
The values of the objective functions J1, J̃1, and Ĵ1, and the CPU time needed to compute the

(sub-)optimal switching vectors of the example of section 5.2.

x∗δ J1(x∗δ) J̃1(x∗δ) Ĵ1(x∗δ) CPU time

x∗δ,elcp 46.41 49.05 53.66 64 619.07

x∗δ,nlcon 46.41 49.05 53.66 216.71

x∗δ,penalty 46.41 49.05 53.66 29.71

x∗δ,relaxed 46.41 49.05 53.66 0.36

x∗δ,approx 46.41 49.05 53.66 3.56

x∗δ,lp 46.63 49.12 53.62 0.16

compiled to object code. As a consequence, all the CPU times can be considered as
a measure for the number of floating point operations that were needed to compute
the various (sub-)optimal switching interval vectors.

Note that the optimal values of J1 and J̃1 differ by about 5%, so that in this case
the optimal value of J̃1 is indeed a reasonably good approximation of the optimal value
of J1. While computing x∗δ,relaxed we have only Nc optimization variables (i.e., the δk’s,
since the qk’s do not appear in the objective function and since they can be eliminated
from the constraints). However, for x∗δ,approx we haveNc+MNp optimization variables
(i.e., the δk’s and the components of the qk’s since in this case the qk’s appear in the
objective function and thus cannot be eliminated). This is one of the reasons why the
computation of x∗δ,relaxed requires less CPU time than the computation of x∗δ,approx.
Additional numerical experiments and simulations can be found in [6].

In this example the ELCP solution is only given as a reference since the CPU time
needed to compute the optimal switching interval vector using the ELCP algorithm
of [7] increases exponentially asM , Np, or Nc increase (see also [6]). This implies that
the ELCP approach should never be used in practice, but one of the other approaches
should be used instead.

If we look at Table 2, then we see that the x∗δ,relaxed solution—which is based
on Proposition 4.1—is clearly the most interesting. If we take the trade-off between
optimality and efficiency into account, the x∗δ,relaxed solution outperforms the solutions
obtained using the other approaches (see also [6]).

If we use an MPC approach, then the computation time required for the x∗δ,relaxed

solution is less than the minimum lower bound for the phase lengths, which implies
that we can first measure the queue lengths at t0 and start the computation at time
t0. In that way we can use the exact initial state q0. Note that using the exact initial
state q0 (or a good estimate) also introduces a kind of feedback in the control loop.

6. Conclusions and future research. We have considered the determination
of optimal switching time sequences for a class of first order linear hybrid systems
subject to saturation. First we have introduced the ELCP and indicated how it can
be used to describe the set of feasible system trajectories for a first order linear hy-
brid system with saturation. Optimization over the solution set of the ELCP then
yields the optimal switching time sequence. Since the ELCP is NP-hard, we have
also discussed several other techniques to compute optimal and suboptimal switching
time sequences for first order linear hybrid systems subject to saturation at the lower
level only. We have shown that if the objective function is a monotonically nonde-
creasing function of the queue lengths, then the optimal switching problem can be
transformed into an optimization problem with a convex feasible set and then the
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optimal switching time sequence can be computed more efficiently. By making some
approximations, the optimal switching problem can even be transformed into a linear
programming problem. We have illustrated these approaches by computing (sub-)
optimal switching time sequences for a traffic signal controlled intersection. Since
the time required for the computations using the most efficient approach is less than
the minimum time between two consecutive switchings, our method can be used in a
model predictive control framework in which the model of the system and the optimal
switching sequence are re-estimated or recomputed after each switching.

In this paper we have derived methods to optimize quantitative performance
measures such as average or worst case waiting times and queue lengths for a linear
hybrid system with saturation. If we are more interested in qualitative properties
such as, e.g., safety, we could use the techniques presented in [18].

An important topic for future research is the extension of the results obtained
in this paper to networks of dependent queues, i.e., a situation where the outputs
of some queues will be connected to the inputs of some other queues. If we use an
MPC strategy in combination with a decentralized control solution, we can still apply
the approach given in this paper: if we know or measure all routing rates12 and all
traveling times from one queue to another, we can use measurements from one queue
to predict the arrival rates at the other queues. Other topics for further research
include development of other efficient algorithms and/or approximations to compute
optimal switching time sequences for first order linear hybrid systems with saturation,
investigation of the use of the ELCP to model and to control other classes of hybrid
systems, and extension of the results presented in this paper to more general classes
of hybrid systems.
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[13] P. Kachroo and K. Özbay, Solution to the user equilibrium dynamic traffic routing problem
using feedback linearization, Transportation Research Part B, 32 (1998), pp. 343–360.

[14] A. May, Traffic Flow Fundamentals, Prentice-Hall, Englewood Cliffs, NJ, 1990.
[15] E. Park, J. Lim, I. Suh, and Z. Bien, Hierarchical optimal control of urban traffic networks,

Internat. J. Control, 40 (1984), pp. 813–829.
[16] M. Singh and H. Tamura, Modelling and hierarchical optimization for oversaturated urban

road traffic networks, Internat. J. Control, 20 (1974), pp. 913–934.
[17] F. Vaandrager and J. van Schuppen, eds., Hybrid Systems: Computation and Control,

Lecture Notes in Comput. Sci. 1569, Springer, New York, 1999.
[18] H. Wong-Toi, The synthesis of controllers for linear hybrid automata, in Proceedings of the

36th IEEE Conference on Decision and Control, San Diego, CA, 1997, pp. 4607–4612.



A BAYES FORMULA FOR GAUSSIAN NOISE PROCESSES AND ITS
APPLICATIONS∗

PRANAB K. MANDAL† AND V. MANDREKAR‡

SIAM J. CONTROL OPTIM. c© 2000 Society for Industrial and Applied Mathematics
Vol. 39, No. 3, pp. 852–871

Abstract. An elementary approach is used to derive a Bayes-type formula, extending the
Kallianpur–Striebel formula for the nonlinear filters associated with the Gaussian noise processes.
In the particular cases of certain Gaussian processes, recent results of Kunita and of Le Breton on
fractional Brownian motion are derived. We also use the classical approximation of the Brownian
motion by the Ornstein–Uhlenbeck dispersion process to solve the “instrumentability” problem of
Balakrishnan. We give precise conditions for the convergence of the filter based on the Ornstein–
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1. Introduction. The general filtering problem can be described as follows. The
signal or system process (Xt, 0 ≤ t ≤ T ) is unobservable. Information about (Xt) is
obtained by observing another process Y which is a function of X corrupted by noise,
i.e.,

Yt = βt +Nt, 0 ≤ t ≤ T,(1.1)

where βt is measurable with respect to FX
t , the σ-field generated by the signal

{Xu, 0 ≤ u ≤ t} (augmented by the inclusion of zero probability sets), and (Nt)
is some noise process. The observation σ-field FY

t = σ{Yu, 0 ≤ u ≤ t} contains all
the available information about Xt. The primary aim of filtering theory is to get an
estimate of Xt based on the information FY

t . This is given by the conditional distri-
bution νt of Xt given FY

t , or equivalently, the conditional expectation E(f(Xt)|FY
t )

for a rich enough class of functions f . Since this estimate minimizes the squared error
loss, ν is called the optimal filter.

In the classical case one considers the observation model

dYt = h(t,Xt) dt+ dWt,(1.2)

where W is the Wiener process independent of X and h satisfies the conditions for
the Girsanov theorem (for details, see [10]). Kallianpur and Striebel [12] derived a
Bayes-type formula for the conditional distribution νt of the form νt =

σt
〈σt,1〉 , where

σt is the so-called unnormalized conditional distribution. In the case when the signal
process Xt is a Markov process, satisfying the SDE

dXt = A(t,Xt) dt+B(t,Xt) dW̃t,
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where W̃ is another Wiener process independent of W , Zakai [20] showed that σt is
the unique solution of a measure valued stochastic differential equation. It is also
known that the filter Vt satisfies a stochastic differential equation widely known as
the Kushner or FKK equation (see, e.g., [14] and [8]).

That the noise process (Nt) is a Wiener process plays an important part in de-
riving all of the above equations and formulas. However, in the real physical system,
the noise process (Nt) may not be exactly a Wiener process. In this case no effective
way of computing the filter is known. In a recent paper Kunita [13] considered the
filtering problem with the observation process

Yt =

∫ t

0

h(Xs) ds+Nt,

where Nt is a particular Gaussian process connected to Wt by a kernel. He derived a
Bayes-type formula extending the one by Kallianpur and Striebel. We generalize this
result to any Gaussian noise process Nt with β in the model (1.1) belonging almost
surely (a.s.) to the reproducing kernel Hilbert space (RKHS) of the covariance of
(Nt). It should be noted that this result with a modified Kallianpur–Striebel proof
was first obtained by one of the authors [19]. However, the proof presented here is
entirely new and is based on an extension of a one-dimensional result which makes
(Yt), under a change of measure, Gaussian with the same distribution as that of (Nt)
and independent of (Xt). As an immediate consequence we get the result of Kunita
and Kallianpur and Striebel with a simple proof.

In case (Xt) is a diffusion process, one can attempt to obtain a Zakai-type equation
whose solution gives a recursive form of the filter. Unfortunately, in the full generality
of the problem, it does not seem easy to even formulate such an equation. However, we
have indicated how to obtain such an equation for the Ornstein–Uhlenbeck dispersion
process. We have partial results in this direction for the case of Kunita and that of
the fractional Brownian motion (fBm). The solution of these equations requires new
methods. We shall present this work elsewhere once it becomes complete.

Recently, stochastic models appropriate for long-range dependent phenomena
have been given a great deal of interest and numerous theoretical resets and suc-
cessful applications have been already reported (see, e.g., Beran [4] and references
therein). In this view we consider the filtering problem with the fBm noise process.
We obtain a general form of the filter in this case. In particular, if Xt = η for all t,
then we obtain all the results in [6] under his assumptions.

We also discuss the issue raised by Balakrishnan [2] regarding “instrumenting”
the filtering problem. An approach to this problem using finitely additive measures
was given by Kallianpur and Karandikar in their well-known monograph [11]. They
work on the Cameron–Martin space with a finitely additive measure and approximate
the filter through an extension. Our method is to follow the classical approach of
physics; namely, to approximate the Wiener noise process by the Ornstein–Uhlenbeck
dispersion process (see, e.g., Nelson [16]). Using our Bayes formula we show that
the usual filtering theory with the Wiener process can be obtained as a limit. The
latter uses the ideas of Kunita [13] on stability. We give here the precise conditions
for the validity of stability. It should be observed that the theory with the Ornstein–
Uhlenbeck dispersion process can be instrumented. We approximate the dispersion
process by neglecting a term of order σ−1 for σ large (cf. (6.15)) and for this process we
obtain a Zakai equation which can be approximated by an ordinary partial differential
equation.
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The article is organized as follows. In section 2, we give a brief overview of RKHS
and its connection with stochastic processes. The extension of the Kallianpur–Striebel
formula is obtained in section 3. We discuss Kunita’s result in section 4. Section 5
deals with the filtering problem with the fBm as the noise process. Finally, in section
6, the filtering problem corresponding to the Ornstein–Uhlenbeck dispersion noise
process is considered along with its limit.

2. Reproducing kernel Hilbert space and stochastic processes. A Hilbert
space H consisting of real-valued functions on some set T is said to be an RKHS if
there exists a function K on T×T with the following two properties: for every t in
T and g in H,

(i) K(·, t) ∈ H,
(ii) (g(·),K(·, t)) = g(t) (the reproducing property).

K is called the reproducing kernel of H. The following basic properties can be found
in Aronszajn [1].

(1o) If a reproducing kernel exists, then it is unique.
(2o) If K is the reproducing kernel of H, then {K(·, t), t ∈ T} spans H.
(3o) If K is the reproducing kernel of H, then it is nonnegative definite in the

sense that for all t1, . . . , tn in T and a1, . . . , an ∈ R

n∑
i,j=1

K(ti, tj)aiaj ≥ 0.

The converse of (3o), stated in Theorem 2.1 below, is fundamental toward under-
standing the RKHS representation of Gaussian processes. A proof of the theorem can
be found in Aronszajn [1].

Theorem 2.1 (E. H. Moore). A symmetric nonnegative definite function K on
T ×T generates a unique Hilbert space, which we denote by H(K) or sometimes by
H(K,T), of which K is the reproducing kernel.

Now suppose K(s, t), s, t ∈ T, is a nonnegative definite function. Then, by The-
orem 2.1, there is an RKHS, H(K,T), with K as its reproducing kernel. If we restrict
K to T′ × T′ where T′ ⊂ T, then K is still a nonnegative definite function. Hence
K restricted to T′ × T′ will also correspond to an RKHS H(K,T′) of functions de-
fined on T′. The following result from Aronszajn [1, p. 351] explains the relationship
between these two.

Theorem 2.2. Suppose KT, defined on T ×T, is the reproducing kernel of the
Hilbert space H(KT) with the norm ‖ · ‖. Let T′ ⊂ T, and KT′ be the restriction of
KT on T′ ×T′. Then H(KT′) consists of all f in H(KT) restricted to T

′. Further,
for such a restriction f ′ ∈ H(KT′) the norm ‖f ′‖H(KT′ ) is the minimum of ‖f‖H(KT)

for all f ∈ H(KT) whose restriction to T
′ is f ′.

If K(s, t) is the covariance function for some zero mean process Zt, t ∈ T, then,
by Theorem 2.1, there exists a unique RKHS, H(K,T), for which K is the repro-
ducing kernel. It is also easy to see (e.g., see Theorem 3D in [18]) that there exists
a congruence (linear, one-to-one, inner product preserving map) between H(K) and

spL
2{Zt, t ∈ T} which takes K(·, t) to Zt. Let us denote by 〈Z, h〉 ∈ spL

2{Zt, t ∈ T}
the image of h ∈ H(K,T) under the congruence.

We conclude the section with an important special case.
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2.1. A useful example. Suppose the stochastic process Zt is a Gaussian process
given by

Zt =

∫ t

0

F (t, u)dWu, 0 ≤ t ≤ T,

where
∫ t

0
F 2(t, u)du <∞ for all 0 ≤ t ≤ T . Then the covariance function

K(s, t) ≡ E(ZsZt) =

∫ t∧s

0

F (t, u)F (s, u)du(2.1)

and the corresponding RKHS is given by

H(K) =

{
g : g(t) =

∫ t

0

F (t, u)g∗(u)du, 0 ≤ t ≤ T

}
(2.2)

for some (necessarily unique) g∗ ∈ spL
2{F (t, ·)1[0,t](·), 0 ≤ t ≤ T} with the inner

product

(g1, g2)H(K) =

∫ T

0

g∗1(u)g
∗
2(u)du,

where

g1(s) =

∫ s

0

F (s, u)g∗1(u)du and g2(s) =

∫ s

0

F (s, u)g∗2(u)du.

For 0 ≤ t ≤ T , by taking K(·, t)∗ to be F (t, ·)1[0,t](·), we see, from (2.1) and
(2.2), that K(·, t) ∈ H(K). To check the reproducing property suppose h(t) =∫ t

0
F (t, u)h∗(u) du ∈ H(K). Then

(h,K(·, t))H(K) =

∫ T

0

h∗(u)K(·, t)∗ du =

∫ t

0

h∗(u)F (t, u) du = h(t).

Also, in this case, it is very easy to check (cf. [17], Theorem 4D) that the congruence

between H(K) and spL
2{Zt, t ∈ T} is given by

〈Z, g〉 =

∫ T

0

g∗(u)dWu.(2.3)

3. Extension of the Kallianpur–Striebel formula. Suppose Xt, 0 ≤ t ≤ T ,
is a real-valued signal process and the observation process is given by

Yt = β(t,X) +Nt, 0 ≤ t ≤ T,(3.1)

where β : [0, T ]×R
[0,T ] → R is a nonanticipative function and the noise process (Nt) is

independent of the signal process (Xt). We are interested in finding the best estimate
of f(Xt) based on FY

t , which is given by the conditional expectation E(f(Xt)|FY
t ).

First we consider the one-dimensional analogue of the problem which captures the
main idea of obtaining a Bayes-type formula for E(f(Xt)|FY

t ).
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Let (Ω,F , P ) be a probability space. Suppose Z is a standard normal random
variable independent of X and Y = X + Z. Consider the problem of computing
E(X|Y ). Suppose P � Q and G ⊂ F is a sub-σ-field. Then

EP (X|G) =
EQ

(
X dP

dQ

∣∣∣G)
EQ

(
dP
dQ

∣∣∣G) .

If we define

dQ = exp

{
−XY +

1

2
X2

}
dP,

then Q is a probability measure. Also, considering the joint characteristic function,
under Q, of X and Y it is easy to see that under Q, Y is a standard normal random
variable independent of X, and X has the same probability distribution as under P .

We now give the analogue of the above-mentioned result for the general Gaussian
processes. Suppose Nt is a Gaussian process with zero mean, i.e., mt ≡ E(Nt) = 0
and with the covariance function R(s, t) ≡ E(NsNt). Suppose that R is continuous
on [0, T ]× [0, T ]. Let {ξt, 0 ≤ t ≤ T} be another process with values in a space S and
independent of {Nt, 0 ≤ t ≤ T}. Suppose

Yt = f(t, ξ) +Nt, 0 ≤ t ≤ T,(3.2)

where f is a measurable nonanticipative functional on [0, T ]× S [0,T ].

Let H(R; t) denote the RKHS corresponding to R|[0,t]×[0,t], with norm ‖ · ‖t and
H(R) = H(R;T ). Also, let 〈N, ·〉t denote the congruence between H(R; t) and

spL
2{Ns, 0 ≤ s ≤ t} so that for g, h ∈ H(R; t), the random variables 〈N, g〉t and

〈N,h〉t are normal random variables with mean zero and covariance E(〈N, g〉t 〈N,h〉t)
= (g, h)H(R;t). Then we have the following.

Theorem 3.1. Suppose f(·) ≡ f(·, ξ) in (3.2) is in H(R) a.s. Define for each t,
(0 ≤ t ≤ T ),

dQt = e−〈N,f〉t− 1
2‖f‖2

t dP.(3.3)

Then Qt is a probability measure, and under Qt, we have that

(i) (Ys)0≤s≤t is a Gaussian process with zero mean and covariance function R,
and is independent of (ξs)0≤s≤T ;

(ii) (ξs)0≤s≤T has the same distribution as under P .

Remark. It should be noted that, in case (Nt) is the Brownian motion, one can
interpret (i) of the theorem as the analogue of the Girsanov theorem except that the
functions f are from a smaller class than those considered by Girsanov. The property
that Qt is a probability measure is automatically satisfied in this case due to the
independence of the processes (ξt) and (Nt). For this one uses the Cameron–Martin
result for each fixed value of (ξt).

Proof of Theorem 3.1. Fix 0 ≤ t ≤ T . First note that since f(·) ∈ H(R)
a.s., by Theorem 2.2, f |[0,t] ∈ H(R; t) a.s. That Qt is a probability measure follows
from the fact that N and ξ are independent and for g ∈ H(R; t), 〈N, g〉t is a zero
mean normal random variable with variance ‖g‖2t . Now suppose 0 ≤ s1, . . . , sm ≤ t,
0 ≤ t1, . . . , tn ≤ T , g1, . . . , gn : S → R are measurable, and α1, . . . , αn, γ1, . . . , γm are
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real numbers. Consider the joint characteristic function

EQt

[
ei(α1g1(ξt1 )+···+αngn(ξtn ))+i(γ1Ys1+···+γmYsm )

]
= EP

[
e
i
∑n

k=1
αkgk(ξtk )+i

∑m

j=1
γjYsj e−〈N,f〉t− 1

2‖f‖2
t

]
= EP

[
e
i
∑n

k=1
αkgk(ξtk )− 1

2‖f‖2
t+i
∑m

j=1
γjf(sj)e

i
∑m

j=1
γjNsj−〈N,f〉t

]
= EP

[
e
i
∑n

k=1
αkgk(ξtk )− 1

2‖f‖2
t+i
∑m

j=1
γjf(sj)EP

(
e
i
∑m

j=1
γjNsj−〈N,f〉t

∣∣∣Fξ
T

)]
= EP

[
e
i
∑n

k=1
αkgk(ξtk )− 1

2‖f‖2
t+i
∑m

j=1
γjf(sj)

× e
−
∑m

j,l=1
γjγlR(sj ,sl)− 1

2 2i
∑m

j=1
γjf(sj)+

1
2‖f‖2

t

]
= EP

[
ei
∑n

k=1
αkgk(ξtk )

]
e
−
∑m

j,l=1
γjγlR(sj ,sl).

Hence the assertions (i) and (ii) follow.
Let us now consider the observation process (Yt) given by (3.1). Suppose that

the noise process (Nt) is Gaussian with continuous covariance function R. It is easy
to see, from (3.3) with S = R, ξ = X, and f(·, ξ) = β(·, X), that

dP

dQt
= exp

{
〈Y, β(·, X)〉t − 1

2
‖β(·, X)‖2t

}
a.s. [Qt].

This is because if βn(·) =
∑kn

j=1 anjR(·, tnj ) ∈ H(R; t), n = 1, 2, . . ., are such that
βn → β ≡ β(·, X) in H(R; t), then

〈Y, β〉t = lim
n→∞〈Y, β

n〉t (Qt-a.s. and hence P -a.s.)

= lim
n→∞

kn∑
j=1

anjYtn
j

= lim
n→∞

kn∑
j=1

anjNtn
j
+ lim

n→∞

kn∑
j=1

anjβtn
j

= lim
n→∞〈N, βn〉t + lim

n→∞(β, βn)H(R;t) = 〈N, β〉t + ‖β‖2t P -a.s.(3.4)

Then for any FX
T -measurable integrable function g(T,X), we have

EP (g(T,X)|FY
t ) =

EQt

(
g(T,X) dP

dQt

∣∣∣FY
t

)
EQt

(
dP
dQt

∣∣∣FY
t

)
=

EQt

(
g(T,X)e〈Y,β(·,X)〉t− 1

2‖β(·,X)‖2
t

∣∣∣FY
t

)
EQt

(
e〈Y,β(·,X)〉t− 1

2‖β(·,X)‖2
t

∣∣∣FY
t

) .(3.5)

From Theorem 3.1, {Ys, 0 ≤ s ≤ t}, under Qt, is independent of {Xs, 0 ≤ s ≤ T} and
the distribution of X, under Qt, is the same as that under P . Hence the conditional
expectations of the form EQt(φ(X,Y )|FY

t ) can be evaluated as

EQt(φ(X,Y )|FY
t )(ω) =

∫
Ω

φ(X(ω′), Y (ω))Qt(dω
′) =

∫
φ(x, Y (ω))dPX(x),
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where PX is the probability distribution of X. Hence, from (3.5), we have the follow-
ing.

Theorem 3.2. Suppose that the observation process Yt is as in (3.1) and that
(Nt) is Gaussian with continuous covariance kernel R. Let

β(·, X(ω)) ∈ H(R) for almost all ω.(3.6)

Then for any FX
T -measurable and integrable function g(T,X),

E
(
g(T,X)

∣∣FY
t

)
=

∫
g(T, x)e〈Y,β(·,x)〉t− 1

2‖β(·,x)‖2
t dPX(x)∫

e〈Y,β(·,x)〉t− 1
2‖β(·,x)‖2

t dPX(x)

.(3.7)

We next consider an important special case from which it can be easily shown
that the formula (3.7) extends the Kallianpur–Striebel formula, as well as the one by
Kunita.

3.1. An important special case. Suppose the noise Nt is of the form

Nt =

∫ t

0

F (t, u)dWu,(3.8)

where F (t, s) is continuous on {0 ≤ s ≤ t ≤ T}. It is easy to check that the covariance

function of (Nt), R(t, s) =
∫ t∧s
0

F (t, u)F (s, u)du is continuous on [0, T ]× [0, T ]. Then
from the example considered in section 2.1 we have

H(R; t) =

{
φ : φ(s) =

∫ s

0

F (s, u)φ∗(u)du, φ∗ ∈ spL
2{F (s, ·)1[0,s](·), 0 ≤ s ≤ t}

}
(3.9)

with the inner product

(φ1, φ2)H(R;t) =

∫ t

0

φ∗
1(u)φ

∗
2(u)du,

where

φ1(s) =

∫ s

0

F (s, u)φ∗
1(u)du and φ2(s) =

∫ s

0

F (s, u)φ∗
2(u)du.

Suppose the observation process is given by

Yt =

∫ t

0

F (t, u)h̃(u,Xu)du+Nt,(3.10)

such that

h̃(·, X(·)) ∈ spL
2{F (s, ·)1[0,s](·), 0 ≤ s ≤ t}.

Then, by (2.3) and by an argument similar to the one used in (3.4), we have for

φ(·) = ∫ (·)
0

F (·, u)φ∗(u)du ∈ H(R),

〈Y, φ〉t =

∫ t

0

φ∗(u)h̃(u,Xu)du+

∫ t

0

φ∗(u)dWu =

∫ t

0

φ∗(u)dŶu,
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where

Ŷs =

∫ s

0

h̃(u,Xu)du+Ws, 0 ≤ s ≤ T.

Hence the Bayes formula (3.7) becomes

E
(
g(T,X)

∣∣FY
t

)
=

∫
g(T, x)e

∫ t
0
h̃(u,xu)dŶu− 1

2

∫ t
0
|h̃(u,xu)|2du

dPX(x)∫
e

∫ t
0
h̃(u,xu)dŶu− 1

2

∫ t
0
|h̃(u,xu)|2du

dPX(x)

.(3.11)

Remark. It is now easy to see that the Bayes formula (3.7) is indeed an extension
of the Kallianpur–Striebel formula. Take F (t, u) ≡ 1 in the model (3.8) and h̃ in the

model (3.10) to be h ∈ L2[0, T ] ≡ spL
2{1[0,t](·), 0 ≤ t ≤ T}, so that Nt = Wt and the

observation process satisfies the usual model

Yt =

∫ t

0

h(u,Xu)du+Wt.

Note that, in this case, Ŷt = Yt. Therefore the Bayes formula (3.7) reduces to the
Kallianpur–Striebel formula

E
(
g(T,X)

∣∣FY
t

)
=

∫
g(T, x)e

∫ t
0
h(u,xu)dYu− 1

2

∫ t
0
|h(u,xu)|2du

dPX(x)∫
e

∫ t
0
h(u,xu)dYu− 1

2

∫ t
0
|h(u,xu)|2du

dPX(x)

.

Our result also generalizes a similar result by Kunita. We show that in the next
section.

4. Kunita’s result. In this section we shall derive Kunita’s result ([13], Theo-
rem 2.1), when d = 1, as a corollary of our result. Suppose the signal process (Xt)
is a continuous process taking values in a complete metric space S. Suppose the
observation process is given by

Yt =

∫ t

0

h(Xs) ds+Nt, 0 ≤ t ≤ T,(4.1)

where h is a continuous map from S into R and the noise process (Nt) is given by

Nt = mt +

∫ t

0

ψ(t, s) dWs, 0 ≤ t ≤ T,(4.2)

with ψ(t, s) and mt satisfying the following three conditions.
Condition 1. ψ(t, s) is continuously differentiable in (t, s) ∈ [0, T ]× [0, T ].
Let Cr

0 be the set of all r-times continuously differentiable functions from [0, T ]
to R which vanish at zero. Define Ψ : C0 ≡ C0

0 → C0 such that

(Ψφ)t =

∫ t

0

ψ(t, s)φ′(s) ds(4.3)

for φ ∈ C1
0. For general φ ∈ C0, it is extended by integration by parts as

(Ψφ)t = ψ(t, t)φ(t)−
∫ t

0

φ(s)
∂ψ

∂s
(t, s) ds.(4.4)
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Let R(Ψ) = {Ψφ : φ ∈ C0}. Note that for f, g ∈ C0 and 0 ≤ u ≤ t ≤ T ,

(Ψf)u − (Ψg)u = ψ(u, u) (f(u)− g(u))−
∫ u

0

(f(s)− g(s))
∂ψ

∂s
(u, s) ds.

Hence Ψ is causal in the sense that

(Ψf)u = (Ψg)u holds for u ≤ t if f(s) = g(s) holds for s ≤ t.(4.5)

Condition 2. The transformation Ψ has a causal inverse transformation K :
R(Ψ) → C0 such that KΨφ = φ holds for all φ ∈ C0. Further, Kg is differentiable
whenever g ∈ C1

0 ∩R(Ψ) and the derivative is in L2[0, T ].
Condition 3. mt is continuously differentiable in t and it belongs to R(Ψ).
Set

ṁt =
dmt

dt
,(4.6)

(Lf)t =
d

dt
(Kg)t, where gt =

∫ t

0

fs ds.(4.7)

Since R(s, t) = E(NsNt) =
∫ t∧s
0

ψ(t, u)ψ(s, u) du is as in the special case considered
in section 2.1, from (3.9) we have

H(R) =

{
g : g(t) =

∫ t

0

g∗(u)ψ(t, u) du, g∗ ∈ spL
2{ψ(t, ·)1[0,t](·) : 0 ≤ t ≤ T}

}
.

(4.8)
With the help of Lemma 4.1 we can further simplify the form of H(R).

Lemma 4.1. If ψ satisfies Condition 1 and Condition 2, then

spL
2{ψ(t, ·)1[0,t](·) : 0 ≤ t ≤ T} = L2[0, T ].

Proof. It suffices to show that if f ∈ L2[0, T ] is such that f ⊥ ψ(t, ·)1[0,t](·) for
all t ∈ [0, T ], then f = 0. So suppose f ∈ L2[0, T ].∫ t

0

ψ(t, s)f(s) ds = 0 for all t

⇒ Ψg = 0, where g(t) =

∫ t

0

f(s) ds

⇒ g = KΨg = 0 ⇒
∫ t

0

f(s) ds = 0 for all t ⇒ f = 0.

Hence the lemma is proved.
Therefore, from Lemma 4.1 and from (4.8), we have

H(R) =

{
g : g(t) =

∫ t

0

g∗(u)ψ(t, u) du for some g∗ ∈ L2[0, T ]

}
.(4.9)

The following proposition describes a relationship between the spacesR(Ψ) andH(R).
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Proposition 4.2. Let R(Ψ) and H(R) be as above. Then

C1
0 ∩R(Ψ) ⊆ H(R) ⊆ R(Ψ).

Furthermore, for g ∈ H(R), (Kg)t =
∫ t

0
g∗(u) du and if f ∈ C1

0 ∩ R(Ψ), then f∗ =
L(f ′), where L is given by (4.7).

Proof. Let g ∈ H(R). From (4.9),

g(t) =

∫ t

0

ψ(t, s)g∗(s) ds.(4.10)

Considering φ =
∫ (·)
0

g∗(u) du, we have φ ∈ C0 and from (4.4),

(Ψφ)t = ψ(t, t)φ(t)−
∫ t

0

∂ψ

∂s
(t, s)φ(s) ds

= ψ(t, t)

∫ t

0

g∗(u) du−
∫ t

0

{
∂ψ

∂s
(t, s)

∫ s

0

g∗(u) du
}

ds

=

∫ t

0

ψ(t, s)g∗(s) ds (using integration by parts)

= g(t) (by (4.10)).

Hence H(R) ⊂ R(Ψ) and for g ∈ H(R), (Kg)t =
∫ t

0
g∗(u) du.

On the other hand, for f ∈ C1
0∩R(Ψ), letting φ ∈ C0 to be such that Ψφ = f , by

Condition 2, we have that φ = KΨφ = Kf is differentiable with φ′ = L(f ′) ∈ L2[0, T ].
Now

f(t) = Ψφ(t) = ψ(t, t)φ(t)−
∫ t

0

φ(s)
∂ψ

∂s
(t, s) ds

=

∫ t

0

ψ(t, s)φ′(s) ds using integration by parts.(4.11)

Hence the proposition follows from (4.9).
We are now ready to derive the result of Kunita ([13], Theorem 2.1) as a corollary

of our result, Theorem 3.2.
Theorem 4.3 (Kunita). Suppose the noise process (Nt), given by (4.2), satisfies

Conditions 1−3, and the observation process (Yt) is given by (4.1). Let PX denote the

probability distribution of X on C[0, T ]. Assume further that (
∫ t

0
h(Xs) ds) belongs to

R(Ψ) a.s. Then for any measurable function g on S, the signal state space, such that
E(|g(Xt)|) <∞

E(g(Xt)|FY
t ) =

∫
αt(x, Y )g(x(t)) dPX(x)∫

αt(x, Y ) dPX(x)
,

where

αt(x, Y ) = exp

{∫ t

0

L(h(x) + ṁ)s dŶs − 1

2

∫ t

0

|L(h(x) + ṁ)s|2 ds

}
and

Ŷt =

∫ t

0

Lh(x)s ds+

∫ t

0

(Lṁ)s ds+Wt.
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Remark. To check that αt(x, Y ) in the theorem is in fact FY
t -measurable it has

been shown in Kunita [13] that Ŷt = (KY )t and then the causality of K is used. In
the proof given below we show that αt(x, Y ) = 〈Y, β(·, x)〉t which proves that it is
indeed FY

t -measurable.

Proof of Theorem 4.3. Let Ω0 with P (Ω0) = 1 be such that
∫ t

0
h(Xs(ω)) ds ∈

R(Ψ) for all ω ∈ Ω0. Fix ω ∈ Ω0. Since h(Xs(ω)) is continuous in s ∈ [0, T ],∫ (·)
0

h(Xs(ω)) ds ∈ C1
0 ∩ R(Ψ). So, by Proposition 4.2,

∫ (·)
0

h(Xs(ω)) ds belongs to

H(R). Hence (
∫ t

0
h(Xs) ds) belongs to H(R) a.s. with (

∫ (·)
0

h(Xs) ds)
∗(t) = (Lh(x))t.

Similarly, since by Condition 3, m ∈ C1
0 ∩R(Ψ), we have m ∈ H(R) with m∗ = Lṁ.

Rewriting the observation model (4.1), we have

Yt =

∫ t

0

h(Xs)ds+mt +

∫ t

0

ψ(t, s)dWs

=

∫ t

0

L(h(x) + ṁ)sψ(t, s)ds+

∫ t

0

ψ(t, s)dWs.

The theorem then follows from the special case considered in section 3.1 with F (t, s) =
ψ(t, s) and h̃ = L(h(x) + ṁ) ∈ L2[0, T ].

5. Fractional Brownian motion noise process. Suppose the observation
process is given by

Yt =

∫ t

0

h(Xu)du+BH(t), 0 ≤ t ≤ T,(5.1)

where BH(t) is an fBm with Hurst parameter H ∈ ( 1
2 , 1) and is independent of the

signal process (Xt). Here R(s, t) = E[BH(t)BH(s)] = 1/2{|t|2H + |s|2H − |t− s|2H}.
Assume that h(u) ≡ h(Xu) is continuous a.s. To apply Theorem 3.2 we shall need the
following lemma about the representation of functions in H(R). It can be obtained
from Theorem 4.4 of Barton and Poor [3], where a characterization of the functions in
H(R) is given. However, it takes some effort to relate it to our notation and concepts
used in Theorem 3.2. We therefore give a self-contained short proof below.

Lemma 5.1. Let (BH(t), 0 ≤ t ≤ T ) be an fBm with H ∈ ( 1
2 , 1) and the covariance

function R(s, t). For any continuous function c(·) on [0, τ ] (τ > 0), suppose gτc (·)
satisfies the equation (see Carleman [7])∫ τ

0

gτc (u)H(2H − 1)|v − u|2H−2du = c(v), 0 ≤ v ≤ τ.(5.2)

Suppose a(·) is continuous on [0, T ]. Then
∫ (·)
0

a(u)du ∈ H(R) with〈∫ (·)

0

a(u)du,BH

〉
t

=

∫ t

0

gta(u)dBH(u) and

∥∥∥∥∥
∫ (·)

0

a(u)du

∥∥∥∥∥
2

t

=

∫ t

0

gta(u)a(u)du.

Proof. Recall that there exists a congruence between the RKHS, H(R), and

spL
2{BH(s) : s ∈ [0, T ]} under which R(·, t) �→ BH(t). Clearly,

∫ T

0
gTa (u)dBH(u) ∈

spL
2{BH(s) : 0 ≤ s ≤ T}. Hence there exists g̃ ∈ H(R) such that the image of g̃,
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under the congruence, is
∫ T

0
gTa (u)dBH(u). Then for 0 ≤ s ≤ T , by (5.2),

g̃(s) = (R(·, s), g̃)H(R) = E

(
BH(s)

∫ T

0

gTa (u)dBH(u)

)

=

∫ s

0

∫ T

0

gTa (u)H(2H − 1)|v − u|2H−2dudv =

∫ s

0

a(v)dv.

This proves that
∫ (·)
0

a(u)du ∈ H(R) and following the notation of section 2 we

have 〈∫ (·)
0

a(u)du,BH〉 =
∫ T

0
gTa (u)dBH(u). Exactly in the same way it follows that

〈∫ (·)
0

a(u)du,BH〉t =
∫ t

0
gta(u)dBH(u). Finally,∥∥∥∥∥

∫ (·)

0

a(u)du

∥∥∥∥∥
2

t

= E

(∫ t

0

gta(u)dBH(u)

∫ t

0

gta(u)dBH(u)

)

=

∫ t

0

∫ t

0

gta(u)g
t
a(v)H(2H − 1)|u− v|2H−2dvdu

=

∫ t

0

gta(u)a(u)du from (5.2).

Clearly, R is continuous on [0, T ] × [0, T ]. Then from Theorem 3.1, under a
suitable change of measure (Yt) becomes an fBm. Therefore, from the Bayes formula

(3.7) with β(t,X) =
∫ t

0
h(u)du and Nt = BH(t), and from Lemma 5.1, we have

E
[
f(Xt)

∣∣FY
t

]
=

∫
f(xt) exp

{∫ t

0

gth(u)dY (u)− 1

2

∫ t

0

gth(u)h(u)du

}
dPX(x)∫

exp

{∫ t

0

gth(u)dY (u)− 1

2

∫ t

0

gth(u)h(u)du

}
dPX(x)

.(5.3)

When the signal process is actually a random variable η (independent of the noise pro-
cess BH(t)) such that h(u) = ηa(u), where a is a continuous (deterministic) function,
then using the fact that for a constant k, gtka = kgta, from (5.3) we have

E
[
f(η)

∣∣FY
t

]
=

∫
f(x) exp

{
x

∫ t

0

gta(u)dY (u)− 1

2
x2

∫ t

0

gta(u)a(u)du

}
dPη(x)∫

exp

{
x

∫ t

0

gta(u)dY (u)− 1

2
x2

∫ t

0

gta(u)a(u)du

}
dPη(x)

.(5.4)

If we further assume that η is a Gaussian random variable with mean η0 and variance
γ0, then η being independent of (BH(t)), we have (η, Y ) jointly Gaussian. Hence the
conditional distribution of η given FY

t is also Gaussian with mean E(η|FY
t ) = η̂t, say,

and variance E ((η − η̂t)
2 |FY

t ) = γ̂t, say. Then

E
(
eαη

∣∣FY
t

)
= exp

{
αη̂ +

1

2
α2γ̂t

}
.

Now from (5.4), taking f(x) = eαx, we have

E
[
eαη

∣∣FY
t

]
(5.5)

=

∫
eαx exp

{
x

∫ t

0

gta(u)dY (u)− 1

2
x2

∫ t

0

gta(u)a(u)du

}
φ(x; η0, γ0)dx∫

exp

{
x

∫ t

0

gta(u)dY (u)− 1

2
x2

∫ t

0

gta(u)a(u)du

}
φ(x; η0, γ0)dx

,
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where φ(x; η0, γ0) is the density of a Gaussian random variable with mean η0 and
variance γ0.

Let us consider the numerator of the right-hand side of (5.5):∫
e
x
(
α+
∫ t

0
gta(u)dY (u)

)
− 1

2x
2
∫ t

0
gta(u)a(u)du 1√

2πγ0
e−

1
2γ0

(x−η0)
2

dx

=
1√
2πγ0

∫
e
− 1

2

[
x2
(
γ−1
0 +

∫ t
0
gta(u)a(u)du

)
−2x
(
α+γ−1

0 +η0

∫ t
0
gta(u)dY (u)

)
+γ−1

0 η2
0

]
dx

=
1√
2πγ0

∫
e−

1
2γt

[x2−2x(α+mt)γt+(α+mt)
2γ2
t ]e−

1
2γ

−1
0 η2

0+ 1
2γt(α+mt)

2

dx,

where γ−1
t = γ−1

0 +

∫ t

0

gta(u)a(u)du and mt = γ−1
0 η0 +

∫ t

0

gta(u)dY (u)(5.6)

=

√
γ−1
0 γt e−

1
2γ

−1
0 η2

0+ 1
2γt(α+mt)

2

.(5.7)

Putting α = 0 in (5.7) we get the denominator of the right-hand side of (5.5):

Denominator =

√
γ−1
0 γt e−

1
2γ

−1
0 η2

0+ 1
2γtm

2
t .

Therefore, from (5.5), we have

E
[
eαη

∣∣FY
t

]
= e

1
2 [γt(α+mt)

2−γtm
2
t ] = e

1
2γtα(α+2mt).

Collecting the coefficients of α and α2 and using (5.6), we get

η̂t = γtmt = γt

(
γ−1
0 η0 +

∫ t

0

gta(u)dY (u)

)
,

γ̂t = γt =

(
γ−1
0 +

∫ t

0

gta(u)a(u)du

)−1

.

Note that these equations for the filter are exactly the same as those obtained by
Le Breton [6].

Remark. Recently, Le Breton [5] considered the parametric estimation problem
in a simple deterministic regression model setup with the fBm noise process. Our
general Bayes formula can be used to study the parametric estimation problem in a
more general setup with the fBm noise process, as done in Liptser and Shiryayev [15]
in parameter estimation of the drift coefficient for diffusion-type processes with the
Wiener noise. We leave that for a future note.

6. Ornstein–Uhlenbeck noise process. Although the use of the Wiener pro-
cess as noise produces elegant, powerful mathematical techniques to calculate the
optimal filter, one of the main criticisms against it (as expressed by Balakrishnan
[2]) is from the practical point of view. Since the sample paths of a Wiener process
are of unbounded variation with probability one, the actual data samples have zero
probability of occurring and hence the results obtained cannot be instrumented. On
the other hand, it has been argued by Nelson [16] that the Ornstein–Uhlenbeck (dis-
persion) process is natural to consider as an approximation to the Wiener process
and the Ornstein–Uhlenbeck processes are realizable. In this section we consider the



A BAYES FORMULA FOR GAUSSIAN NOISE PROCESSES 865

filtering problem corresponding to the Ornstein–Uhlenbeck noise process and show
that it leads to the conventional theory with the Wiener noise process.

Suppose v(t) is an Ornstein–Uhlenbeck velocity process satisfying the stochastic
differential equation

dv(t) = −βv(t)dt+ σdW (t) (β > 0, σ > 0)(6.1)

with the initial value v(0) = 0. Consider the Ornstein–Uhlenbeck (dispersion) process
given by

ξ(t) =

∫ t

0

v(s)ds.(6.2)

It is easy to see that if β and σ tend to infinity in such a way that σ2/β2 → 1,
then ξ(t) converges in distribution to the standard Wiener process. See, for example,
Theorem 9.5 of Nelson [16].

Now suppose the noise process (Nt) is given by an Ornstein–Uhlenbeck process
so that, from (6.2) and (6.1), we have

Nt =

∫ t

0

σ

∫ s

0

exp{−β(s− r)}dWrds =

∫ t

0

σ

β

(
1− e−β(t−s)

)
dWs.

Also, suppose that the signal process X is independent of W and the observation
process is given by

Y β,σ
t =

∫ t

0

h(Xu)du+Nt,(6.3)

where h(u) ≡ h(Xu) is differentiable in [0, T ] and h′(u) ∈ L2[0, T ].
Then, the covariance R(t, s) of (Nt) is given by

R(s, t) = E(NsNt) =

∫ t∧s

0

F (t, u)F (s, u)du,

where

F (t, u) =
σ

β

(
1− e−β(t−u)

)
, 0 ≤ u ≤ t ≤ T.(6.4)

Also, it is easy to see that

spL
2{F (t, ·)1[0,t](·), 0 ≤ t ≤ T} = L2[0, T ].

This is because if f ∈ L2[0, T ] such that f ⊥ F (t, ·)1[0,t](·) for all 0 ≤ t ≤ T , then∫ t

0

f(u)F (t, u)du = 0 for all t

⇒
∫ t

0

f(u)
σ

β

(
1− e−β(t−u)

)
du = 0 for all t

⇒
∫ t

0

f(u)du− e−βt

∫ t

0

eβuf(u)du = 0 for all t

⇒ f(t) + βe−βt

∫ t

0

eβuf(u)du− e−βteβtf(t) = 0 almost everywhere (a.e.) [t]

⇒
∫ t

0

eβuf(u)du = 0 a.e. [t]

⇒ f(t) = 0 a.e. [t].
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Hence from (3.9) we have

H(R) =

{
g : g(s) =

∫ s

0

F (s, u)g∗(u)du for some g∗ ∈ L2[0, T ]

}
.

It is also easy to check (assuming, without loss of generality, h(X0) = 0) that∫ t

0

h(Xu)du =

∫ t

0

F (t, u)

[
β

σ
h(Xu) +

1

σ
h′(u)

]
du.

Hence the noise process and the observation process are as in the special case con-
sidered in section 3.1, that is, Nt is of the form (3.8) with F (t, s) given by (6.4) and

Y β,σ
t is of the form (3.10) with

h̃(u,Xu) =
β

σ
h(Xu) +

1

σ
h′(u).

In this case, therefore, from (3.11), we have

νβ,σt (f)(Y β,σ) := E(f(Xt)|FY β,σ

t ) =

∫
f(xt)α

β,σ
t (x, Y β,σ)PX(dx)∫

αβ,σ
t (x, Y β,σ)PX(dx)

,

where

αβ,σ
t (x, Y β,σ)

(6.5)

= exp

{∫ t

0

[
β

σ
h(xu) +

1

σ
h′(u)

]
dỸ β,σ

u − 1

2

∫ t

0

[
β

σ
h(xu) +

1

σ
h′(u)

]2
du

}

and

Ỹ β,σ
t =

∫ t

0

[
β

σ
h(xu) +

1

σ
h′(u)

]
du+Wt.(6.6)

Now suppose that νt is the classical filter based on the observation process

Yt =

∫ t

0

h(Xs)ds+Wt.

Recall from the Kallianpur–Striebel formula that

νt(f)(Y ) := E(f(Xt)|FY
t ) =

∫
f(xt)αt(x, Y )PX(dx)∫

αt(x, Y )PX(dx)
,

where

αt(x, Y ) = exp

{∫ t

0

h(xu)dYu − 1

2

∫ t

0

h2(xu)du

}
.(6.7)

The following result shows that the conventional filter can be approximated by
suitable filters corresponding to the Ornstein–Uhlenbeck noise process.

Theorem 6.1. Suppose h satisfies the following condition

E

[
exp

{
7

∫ T

0

h2(Xu)du+

∫ T

0

(h′(u))2 du

}]
<∞.(6.8)
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Then for bounded function f , as β, σ →∞, with σ2/β2 → 1,

νβ,σt (f)(Y β,σ) −→ νt(f)(Y ) a.s.(6.9)

through an appropriate subsequence.
Proof. Denote by at(β, σ) and at the expressions in the curly brackets in (6.5)

and (6.7), respectively. Then as β →∞, σ →∞ such that σ2/β2 → 1, we have

at(β, σ) =

∫ t

0

[
β

σ
h(xu) +

1

σ
h′(u)

]
dWu +

1

2

∫ t

0

[
β

σ
h(xu) +

1

σ
h′(u)

]2
du

=
β

σ

∫ t

0

h(xu)dWu +
1

σ

∫ t

0

h′(u)dWu +
1

2

∫ t

0

[
β

σ
h(xu) +

1

σ
h′(u)

]2
du

−→
∫ t

0

h(xu)dWu +
1

2

∫ t

0

|h(xu)|2du = at a.e. x [PX ] and a.e. [P ].(6.10)

Hence it is enough to show that∫
αβ,σ
t (x, Y β,σ)PX(dx) −→

∫
αt(x, Y )PX(dx) in L1,(6.11)

for L1-convergence will imply a.s. convergence through a subsequence and then the
theorem will follow from Scheffe’s theorem.

It is easy to check that for any numbers a and b,

|ea − eb| ≤ |a− b| ·max
(
e|a|, e|b|

)
.

Then

E

(∣∣∣∣∫ αβ,σ
t (x, Y β,σ)PX(dx)−

∫
αt(x, Y )PX(dx)

∣∣∣∣)
≤ E

(∫
| exp{at(β, σ)} − exp{at}|PX(dx)

)
≤ E

(∫
|at(β, σ)− at| ·max

(
e|at(β,σ)|, e|at|

)
PX(dx)

)
≤
{∫

E
(|at(β, σ)− at|2

)
PX(dx) ·

∫
E
(
e2|at(β,σ)| + e2|at|

)
PX(dx)

}1/2

≤
(∫

I1PX(dx)

)1/2(∫
I2PX(dx)

)1/2

, say.(6.12)

Then

I1 = E
(|at(β, σ)} − at|2

)
= E

(∣∣∣∣∫ t

0

{(
β

σ
− 1

)
h(xu) +

1

σ
h′(u)

}
dWu

+
1

2

∫ t

0

{(
β

σ
h(xu) +

1

σ
h′(u)

)2

− h2(xu)

}
du

∣∣∣∣∣
2)

≤ 2E

(∣∣∣∣∫ t

0

{(
β

σ
− 1

)
h(xu) +

1

σ
h′(u)

}
dWu

∣∣∣∣2
)
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+ 2 · 1
4

∣∣∣∣∫ t

0

(
2β2

σ2
− 1

)
h2(xu)du+

∫ t

0

2

σ2
(h′(u))2 du

∣∣∣∣2
≤ 2

∫ t

0

{(
β

σ
− 1

)
h(xu) +

1

σ
h′(u)

}2

du

+
1

2
· 2
{(

2β2

σ2
− 1

)2(∫ t

0

h2(xu)du

)2

+
4

σ4

(∫ t

0

(h′(u))2 du

)2
}

≤ 4

(
β

σ
− 1

)2 ∫ t

0

h2(xu)du+
4

σ2

∫ t

0

(h′(u))2 du

+

(
2β2

σ2
− 1

)2(∫ t

0

h2(xu)du

)2

+
4

σ4

(∫ t

0

(h′(u))2 du

)2

.

Hence, from (6.8), it follows that∫
I1PX(dx) −→ 0 as β, σ →∞, with

σ2

β2
→ 1.(6.13)

Now, using the fact that for a normal random variable Z with zero mean and variance
σ2, E(e|Z|) ≤ 2eσ

2/2, we have

I2 = E
(
e2|at(β,σ)| + e2|at|

)
= E

(
exp

{∣∣∣∣∣2
∫ t

0

[
β

σ
h(xu) +

1

σ
h′(u)

]
dWu +

∫ t

0

[
β

σ
h(xu) +

1

σ
h′(u)

]2
du

∣∣∣∣∣
})

+ E

(
exp

{∣∣∣∣2∫ t

0

h(xu)dWu +

∫ t

0

|h(xu)|2du
∣∣∣∣})

≤ 2 exp

{
3

∫ t

0

[
β

σ
h(xu) +

1

σ
h′(u)

]2
du

}
+ 2 exp

{
3

∫ t

0

|h(xu)|2du
}

≤ 2 exp

{
6β2

σ2

∫ t

0

h2(xu)du+
6

σ2

∫ t

0

(h′(u))2 du

}
+ 2 exp

{
3

∫ t

0

h2(xu)du

}
.

Therefore, from (6.8), we have for large σ and β,
∫
I2PX(dx) is bounded and conse-

quently, (6.11) follows from (6.12) and (6.13).
Remark. Note that the condition (6.8) in Theorem 6.1 will hold if one assumes

that the functions h(·) and h′(·) are bounded.
Next we address the issue of implementation of the results obtained by consider-

ing the Ornstein–Uhlenbeck dispersion process as the observation noise process. We
would like to obtain a Zakai-type evolution equation for the so-called unnormalized
conditional density of Xt given the observations up to time “t.” So let us assume that
the signal process Xt is a Markov process.

First, we shall prove the following properties of Ỹt ≡ Ỹ β,σ
t and its relationship

with Yt ≡ Y β,σ
t .

Lemma 6.2. Suppose Ỹt is given by (6.6). Suppose Q is defined by

dP = exp

{∫ T

0

[
β

σ
h(Xu) +

1

σ
h′(u)

]
dỸu − 1

2

∫ T

0

[
β

σ
h(Xu) +

1

σ
h′(u)

]2
du

}
dQ.
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Then
(i) under Q, Ỹt is a Wiener process,

(ii) spL
2(Q){Ys, 0 ≤ s ≤ t} = spL

2(Q){Ỹs, 0 ≤ s ≤ t},
(iii) FY

t = F Ỹ
t .

Proof. Clearly (iii) follows from (ii) as, under Q, (Yt) and (Ỹt) are Gaussian. (i)
follows from Lemma 11.3.1 of [10] since (Xt) is independent of (Wt). For (ii) note
that

Yt =

∫ t

0

h(Xu)du+

∫ t

0

F (t, u)dWu

=

∫ t

0

F (t, u)

[
β

σ
h(Xu) +

1

σ
h′(u)

]
du+

∫ t

0

F (t, u)dWu

=

∫ t

0

F (t, u)dỸu.(6.14)

Hence

spL
2(Q){Ys, 0 ≤ s ≤ t} ⊂ spL

2(Q){Ỹs, 0 ≤ s ≤ t}.
To show the reverse inclusion suppose ξ ∈ spL

2(Q){Ỹs, 0 ≤ s ≤ t} and EQ(ξYs) = 0

for all 0 ≤ s ≤ t. Since Ỹt, under Q, is a Wiener process we can express ξ as an Ito
integral, say, ξ =

∫ t

0
φ(u)dỸu. Then

EQ(ξYs) = 0 for all 0 ≤ s ≤ t

⇒ EQ

(∫ t

0

φ(u)dỸu

∫ s

0

F (s, u)dỸu

)
= 0 for all 0 ≤ s ≤ t

⇒
∫ s

0

φ(u)F (s, u)du = 0 for all 0 ≤ s ≤ t

⇒
∫ s

0

φ(u)
σ

β

(
1− e−β(s−u)

)
du = 0 for all 0 ≤ s ≤ t

⇒
∫ s

0

φ(u)du− e−βs

∫ s

0

φ(u)eβudu = 0 for all 0 ≤ s ≤ t

⇒ (by differentiating) βe−βs

∫ s

0

φ(u)eβudu = 0 a.e. s ∈ [0, t]

⇒ φ(u) = 0 a.e. u ∈ [0, t].

Hence

spL
2(Q){Ỹs, 0 ≤ s ≤ t} ⊂ spL

2(Q){Ys, 0 ≤ s ≤ t}.
This completes the proof of part (ii).

Because of property (iii) of Lemma 6.2, the filter based on {Ys, 0 ≤ s ≤ t} will
coincide with the filter based on {Ỹs, 0 ≤ s ≤ t}, where

Ỹt =

∫ t

0

[
β

σ
h(Xu) +

1

σ
h′(u)

]
du+Wt.

We shall, however, consider the observation process to be given by

Ŷt =

∫ t

0

β

σ
h(Xu)du+Wt,(6.15)
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which, for large σ, will approximate Ỹt. We can then use the classical theory with the
Wiener noise process to obtain the following result.

Suppose At with domain D is the generator of the Markov signal process (Xt).

Denote by Φ(u, t) the unnormalized conditional density of Xt given F Ŷ
t . Then

Φ(u, t) = Φ(u, 0) +

∫ t

0

A∗
sΦ(u, s)ds+

∫ t

0

[
β

σ
h(Xs)

]
Φ(u, s)dŶs,(6.16)

where A∗
s is the formal adjoint of As.

Now note that from (6.14) and the form (6.4) of F we have

Yt =
σ

β

∫ t

0

[
1− e−β(t−u)

]
dỸu =

σ

β

[
Ỹt − e−βt

∫ t

0

eβudỸu

]
=

σ

β

[
Ỹt − e−βt

{
eβtỸt −

∫ t

0

βeβuỸudu

}]
= σe−βt

∫ t

0

eβuỸudu.

Hence,

yt :=
d

dt
Yt = σe−βt(−β)

∫ t

0

eβuỸudu+ σe−βteβtỸt = σỸt − βYt,

that is,

Ŷt = Ỹt − 1

σ

∫ t

0

h′(u)du =
1

σ

{
yt −

∫ t

0

h′(u)du
}
+

β

σ
Yt.

Therefore ignoring the first term in the expression for Ŷt above, which is of the order
of σ−1, we see that the solution of the Zakai equation (6.16), for large σ, can be
approximated by the solution of the following ordinary partial differential equation

d

dt
Φ(u, t) = A∗

tΦ(u, t) +

(
β

σ

)2

h(Xt) Φ(u, t) yt.
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Abstract. In this paper, a perturbation expansion technique is introduced to decompose the
tracking error of a general adaptive tracking algorithm in a linear regression model. This method
results in a tracking error bound and tight approximate expressions for the moments of the tracking
error. These expressions allow the evaluation, both qualitatively and quantitatively, of the impact
of several factors on the tracking error performance.
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1. Introduction. An important issue in system identification, signal process-
ing, and automatic control is that of tracking the parameter variations of a linear
dynamical system with observable stochastic inputs and noise-corrupted outputs:

yt = φ
T
t θt + vt, t ≥ 0,(1)

where {yt}t≥0 and {vt}t≥0 are, respectively, the scalar observation and noise, and
{φt}t≥0 and {θt}t≥0 are the d-dimensional stochastic regressors and the unknown
time-varying parameter. This model encompasses many different applications, in-
cluding channel equalization, time delay estimation, and echo cancellation (see [34]
for other signal processing and automatic control applications; see also [18]). To track
the variations of the parameter, it is customary to use a recursive algorithm for up-
dating an estimate θ̂t of the parameter (see, for example, [21], [22], [23], [34], [13],
[18], and the references therein). These algorithms may take many different forms
depending on what one is willing to assume on the observation noise, the parameter
variations, and the amount of computation that is acceptable; e.g., standard stochas-
tic approximation with fixed step-size, recursive least-squares with forgetting factor,
or adaptations of Kalman–Bucy filters. In this work, we focus on the fixed step-size
stochastic approximation algorithm,

θ̂t+1 = θ̂t + µPt(µ)φt(yt − φTt θ̂t),(2)

where µ is referred to as the adaptation step-size and {Pt(µ)}t≥0 is a sequence of
random matrices (possibly depending on the step-size µ) which can be chosen in a
number of different ways.

Least mean square (LMS) algorithm. By far the most popular algorithm
in that class is the least mean square algorithm (LMS), introduced in a landmark
paper by [36]. In that case, Pt(µ) = I. Such an algorithm is referred to as a gradient
algorithm, because the increment of the algorithm is opposite to the (stochastic)
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gradient of the mean-square error, et(θ) = E(yt−φTt θ)2. A useful variant of the LMS
is the normalized LMS, in which the gradient is normalized by its norm,

Pt =
1

1 + ε‖φt‖2 , ε > 0.

Recursive least square (RLS) algorithm. This algorithm is derived by mini-
mizing

∑t
i=0(1−µ)t−i(yi−θTφi)2 (“old” measurements are exponentially discounted,

with a “forgetting factor” (1− µ), where µ controls the effective memory of the algo-
rithm). The minimization of the least-squares criterion can be performed recursively
using (2) with

Pt(µ)
−1 = (1− µ)P−1

t−1(µ) + µφtφ
T
t , t ≥ 1,(3)

Pt(µ) = (1− µ)−1

(
Pt−1(µ)− µ Pt−1(µ)φtφ

T
t Pt−1(µ)

(1− µ) + µφTt Pt−1(µ)φt

)
,(4)

where P0 > 0.
Kalman filter. In this case,

Pt(µ) = [Kt(µ)− µQ]R−1,(5)

Kt(µ) = [Kt−1(µ)
−1 + µR−1φtφ

T
t ]

−1 + µQ,(6)

where P0 ≥ 0, R > 0, and Q > 0 are deterministic and can be arbitrarily chosen. It is
well known (see, e.g., Caines [5, Chapter 5]) that if φt is σ(yi, i ≤ t) measurable and
(vt, wt) � (vt, θt − θt−1) is a Gaussian white noise process, then θt is the minimum

variance estimate for θt, θ̂t = E(θt|Ft−1) and Pt(µ) = E(θtθ
T
t |Ft−1), provided that

E∆t∆
T
t = µQ and R = Ev2t , θ̂0 = Eθ0 and P0 = E((θ̂0 − θ0)(θ̂0 − θ0)T )− P0.

There is a vast literature on the analysis of algorithms of type (2). In most
contributions, the main goal is to obtain bounds on the tracking errors. Preliminary
results in that direction have been obtained by [3], [8]; see [9] for a review of these
early contributions.

As pointed out in [19], it is also of interest to have not only tracking bounds but
“approximate” and “tractable” expressions for the moment of the tracking error, and
in particular, for the covariance of the tracking error. Such expressions enable the
evaluation of the impact, both qualitatively and quantitatively, of different factors on
the tracking performance (e.g., the dependence structure of the regressor sequence,
the observation noise, and the lag noise). The dependence on this quantity does not
appear clearly in the expressions of the bounds.

The main purpose of this paper is to present a method enabling us to obtain “ap-
proximate” expansions of the tracking error covariance (as well as higher-order mo-
ments) of “arbitrary” accuracy. The proposed method, based on a technique initially
proposed by [29], [30] (see also [31], [32]) to analyze the LMS algorithm, consists in
approximating the process defined in (2) by a family of nested processes, with simpler
structure than the original error process. This decomposition enables us to compute
approximations for the moments of the tracking errors and other related quantities
which are valid up to any arbitrary order. These approximations are obtained as
solutions of linear equations with coefficients that can be readily deduced from the
moments of the regression sequence, the regression noise, and the lag noise.

The paper is organized as follows. In section 2, the perturbation expansion
method is presented. In section 3, the main results of this contribution are stated.
An illustration of these results is presented in section 5.
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2. Perturbation expansion: The method. To analyze any adaptive algo-
rithm, it is usually convenient to convert it to a so-called error form; indeed from (1)
and (2), we can write

θ̃t+1 = (I − µPt(µ)φtφTt )θ̃t + µPt(µ)φtvt − wt+1,(7)

where θ̃t � θ̂t − θt is the weight-error vector and wt+1 � θt+1 − θt is the lag noise.
This is a time-varying nonhomogeneous difference equation. Since this equation is
linear, θ̃t+1 can further be decomposed as

θ̃t =
uθ̃t + µ

v θ̃t +
w θ̃t,(8)

uθ̃t+1 = (I − µPt(µ)φtφTt )uθ̃t, uθ̃0 = θ̃0 = −θ0,(9)
v θ̃t+1 = (I − µPt(µ)φtφTt )v θ̃t + Pt(µ)φtvt, v θ̃0 = 0,(10)
wθ̃t+1 = (I − µPt(µ)φtφTt )wθ̃t − wt+1,

wθ̃0 = 0.(11)

{uθ̃t} is a transient term, reflecting the way the successive estimates of the regression
coefficients forget the initial conditions. {v θ̃t} accounts for the errors introduced by
the measurement noise, {vt}; similarly, {wθ̃t+1} accounts for the errors associated with
lag noise {wt}. According to these definitions, v θ̃t and wθ̃t obey an inhomogeneous
stochastic recurrence equation

δt+1 = (I − µFt(µ))δt + ξt(µ) =
t∑

s=0

Φ(t, s;µ)ξs, δ0 = 0,(12)

where {Ft(µ)}t≥0 is a (d × d) matrix valued random process, {ξt(µ)}t≥0 is a (d × 1)
vector-valued random process, and Φ(t, s;µ) is defined as

Φ(t, s;µ) =


(I − µFt(µ))(I − µFt−1(µ)) · · · (I − µFs+1(µ)), t > s,
I, t = s,
0 otherwise.

Equations (10) and (11) may be rewritten as (12) with Ft(µ) = Pt(µ)φtφ
T
t and

ξt(µ) = Pt(µ)φtvt measurement noise, ξt = −wt+1 lag noise.(13)

In what follows, we will for ease of notation omit the dependence in the step-size µ
when this dependence can be readily inferred from the context.

In this section, we concentrate on the general recurrence equation (12). We apply
the results to the lag-error term θ̃t in the next section. Equations of the form (12)
have received considerable attention in the literature.

The approach developed in this contribution relies upon a perturbation tech-
nique (see [24]). Applied to the recurrence equation (12), the whole procedure goes
as follows. The basic idea consists in replacing the random matrix Ft(µ) by an ap-
propriately chosen deterministic matrix F̄t(µ), and then decomposing the recurrence
equations (12) into two separate recursions:

J
(0)
t+1 = (I − µF̄t(µ))J (0)

t + ξt, J
(0)
0 = 0,(14)

H
(0)
t+1 = (I − µFt(µ))H(0)

t + µZtJ
(0)
t , H

(0)
0 = 0,(15)

δt = J
(0)
t +H

(0)
t ,(16)
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where Zt = F̄t(µ) − Ft(µ). In the original construction by [30], the deterministic
matrix F̄t(µ) was chosen to be the expectation of Ft(µ). This choice is adequate
for the LMS algorithm, but not for more general tracking algorithms (RLS/Kalman
algorithms). Explicit constructions of “appropriate” deterministic sequences {F̄t(µ)}
for such cases will be given later.

According to (14), J
(0)
t satisfies a deterministic inhomogeneous first-order linear

difference equation

J
(0)
t+1 =

t∑
s=0

ψ(t, s)ξs,(17)

where, as above,

ψ(t, s) =


(I − µF̄t)(I − µF̄t−1) · · · (I − µF̄s+1), t > s,
I, t = s,
0 otherwise.

Under appropriate assumptions on the matrix valued sequences {Ft}t≥0 and on the
excitation {ξt}, it will be shown that, for some p > 0, there exists a constant C <∞
and µ0 > 0 such that ∀ 0 < µ ≤ µ0,

sup
t≥0
‖J (0)

t ‖p ≤ C/
√
µ and sup

t≥0
‖H(0)

t ‖p ≤ C,(18)

where C <∞ is a constant depending on {Ft} and {ξt} (see below). Thus, J (0)
t may be

considered as the leading term in the expansion, whileH
(0)
t may be seen as a correction

term. The same procedure can be iterated to obtain higher-order approximations. For
that purpose, it suffices to iterate the decomposition up to the desired order n > 1.
Using this technique, the weight-error vector δt may be decomposed as

δt = J
(0)
t + J

(1)
t + · · ·+ J (n)

t +H
(n)
t ,(19)

where the processes J
(r)
t , 0 ≤ r ≤ n, and H(n)

t are respectively defined as

J
(0)
t+1 = (I − µF̄t)J (0)

t + ξt, J
(0)
0 = 0,(20)

J
(r)
t+1 = (I − µF̄t)J (r)

t + µZtJ
(r−1)
t , J

(r)
t = 0, 0 ≤ t < r,(21)

H
(n)
t+1 = (I − µFt)H(n)

t + µZtJ
(n)
t , H

(n)
t = 0, 0 ≤ t < n.(22)

The processes J
(r)
t depend linearly on ξt and polynomially in the error Zt = F̄t − Ft.

It is thus feasible (examples are given below) to compute the joint moments of these

processes and to obtain expressions for the moments of δ̃
(n)
t = J

(0)
t + · · ·+ J (n)

t . The

residual term H
(n)
t is, under appropriate conditions, uniformly bounded, i.e., there

exists some constant C <∞ and µ0 > 0, such that, ∀ 0 < µ ≤ µ0, we have

sup
t≥0
‖H(n)

t ‖p ≤ Cµn/2.(23)

Upper bounds for the constant C (depending upon the regression sequence, the ob-

servation noise, and the lag noise) are given below. δ̃
(n)
t is thus the leading term of
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the expansion, whereas H
(n)
t is a remainder, which is uniformly bounded in Lp. By

computing the moments of δ̃
(n)
t , one can obtain an approximation of the moments of

the tracking error δt, the error between the exact and the approximate expressions
being uniformly bounded by µn/2.

Remark.
• First-order expansion has been used by many contributors to obtain an ap-
proximate expression of the tracking error covariance matrix; see, e.g., [9],
[10], [20], [11], [12], [13], [14], [15] for applications of this method.
• Solo in [29], [30] (see also [34], [33]) was the first to propose a construction
allowing the computation of higher-order approximations for the covariance
matrix of the tracking error of the LMS algorithm (extensions of this con-
struction to general tracking algorithms are presented in [34]). [30] and [34]
used this construction to obtain explicitly a second-order expansion of the
covariance of the tracking error of the LMS algorithm. The construction
by [29], [30] is essentially equivalent to the perturbation expansion outlined
above.

3. Main results.

3.1. Preliminaries. Before stating the main assumptions and results, it is nec-
essary to state some definitions. All the processes are assumed to be defined on

the same probability space (Ω,A, P ). Let X
∆
= {Xt}t∈Z be a vector-valued random

process. The σ-field generated by the random variables Xt, a ≤ t ≤ b, is denoted
Mb

a(X).

Boundedness in Lp. For p > 0, and B ⊂ A, denote Lp(Ω,B, P ) as the
space of B-measurable random variables such that ‖X‖p < ∞; for brevity, we set
Lp(Ω,A, P ) = Lp. A random matrix sequence {Xt}t≥0 is called Lp-bounded if
supt≥0 ‖Xt‖p <∞.

Exponential stability. After [12], define, for p ≥ 1, µ∗ > 0, and 0 < β < 1/µ∗,
S(p, β, µ∗) as the set of random matrix-valued processes {Ak(µ)}k∈N satisfying

S(p, β, µ∗) =
A(µ) = {Ak(µ)}k∈N :

∥∥∥∥∥∥
k∏

j=i+1

(I − µAj(µ))

∥∥∥∥∥∥
p

≤ Kβ,µ∗(A) (1− βµ)k−i ∀ µ ∈ (0, µ∗], ∀ k ≥ i ≥ 0

 ,
where the constant Kβ,µ∗(A) does not depend on µ. S(p, β, µ∗) is referred to as the Lp

exponentially stable family. Likewise, define the averaged exponentially stable family
as the set of deterministic matrix-valued processes {Ak(µ)}k∈N:

S(β, µ∗) =
Ā(µ) = {Āk(µ)}k∈N :

∣∣∣∣∣∣
k∏

j=i+1

(I − µĀj(µ))

∣∣∣∣∣∣
≤ Kβ,µ∗(Ā) (1− βµ)k−i ∀ µ ∈ (0, µ∗], ∀ k ≥ i ≥ 0

 .
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Weak dependence. After [7], we define weak-dependence as follows. Let q ≥ 1
and let X = {Xn}n≥0 be an (l × 1) matrix-valued process. Let δ = (δ(r))r∈N be a
sequence of positive numbers decreasing to zero at infinity. The process X = {Xn}n≥0

is said to be (δ, q)-weak dependent if there exist finite constants C = {C1, . . . , Cq}
such that for any 1 ≤ m < s ≤ q, any mtuple t1, . . . , tm, and any (s − m)tuple
tm+1, . . . , ts, with t1 ≤ · · · ≤ tm < tm + r ≤ tm+1 ≤ . . . ts, it holds

sup
1≤i1,··· ,is≤l

∣∣∣cov (X̃t1,i1 · · · X̃tm,im , X̃tm+1,im+1
· · · X̃ts,is

)∣∣∣ ≤ Csδ(r),

where X̃n,i denotes the ith component of Xn − E(Xn).

Rosenthal’s class. Rosenthal’s class is defined as the class of vector-valued
stochastic processes ε � {εk}k≥0 verifying Rosenthal’s inequality (see, e.g., [27, The-
orem 2.9]). More specifically,

(24) N (p) =

ε :
∥∥∥∥∥

t∑
k=s

Dkεk

∥∥∥∥∥
p

≤ ρp(ε)
(

t∑
k=s

|Dk|2
)1/2

∀ 0 ≤ s ≤ t and

∀ D = {Dk}k∈N (q × l) deterministic matrices

 .
Exponential stability. Lp exponential stability forms the basis of the stability

analysis of linear state space systems (see, e.g., [10], [12], [13], [14], [34, sec. C6], [33]).
It is a natural extension of the notion of exponential stability for deterministic linear
systems. To our knowledge, the notion of Lp exponential stability was introduced by
[8]; these authors provide restrictive conditions (m-independence and moment condi-
tions) for a family of random matrices to be in S(p, β, µ0). As evidenced by many
authors since then, Lp exponential stability is the crux of the analysis of stochas-
tic difference equations of the form (12) and many practical methods and criteria to
establish this property have been obtained. Without entering into too much detail,
Lp exponential stability requires some strengthening of the classical “persistence of
excitation” condition, which is the classical condition to study the stability of non-
stationary deterministic linear systems. The type of strengthening precisely needed
depends upon the algorithm under consideration, but generally involves moments and
mixing conditions. Early contributions in this direction include the work of [10] on
the Kalman algorithm and [1], [2], and [11] on the RLS algorithm. Some general con-
ditions to check Lp exponential stability are presented in [12] (with applications to the
LMS, the RLS, and the Kalman algorithm); some improvements of these results can
be found in a series of papers coauthored by [13], [14], [15]. Necessary and sufficient
conditions for the LMS algorithm are presented in [15]. Alternate conditions implying
exponential stability have been obtained in the case where the matrix valued process
{Ft}t≥0 is Markovian symmetric [28].

Weak-dependence. Weak-dependence states a kind of “decorrelation” between
the past and the future of the process. Weak-dependence is essential in the devel-
opments that follow and appear at several places. The notion of weak-dependence,
introduced by [7], is a way to weaken more classical “strong mixing” assumptions.
As shown in [7], weak-dependent processes encompass a large class of models and in
particular strongly mixing processes, weak shift processes, or models with a Marko-
vian representation. The following lemma shows that strong-mixing processes also
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are weak-mixing and give the relation between the strong-mixing coefficient αX(τ)
and the sequence δ(τ) appearing in the definition of weak-dependent processes. We
have the following lemma.

Lemma 1. Assume that X = {Xt}t≥0 is an (l × 1) strongly mixing process and
that

sup
t≥0

sup
1≤i≤l

‖Xt,i‖q′ <∞

for some q′ > q. Then X = {Xt}t≥0 is (δ, q)-weak dependent, with, for s ∈ {1, . . . , q},
δ(r) = α(r)(q

′−q)/q′ , r ≥ 1,

Cs = 12

(
sup
t≥0

sup
1≤i≤l

‖Xt,i‖s+q′−q

)s

.

This proof is directly adapted from [7] (see also [6], [35] for similar results and
arguments).

Rosenthal’s inequality. Rosenthal’s class gathers all the processes that verify a
Rosenthal’s type inequality. By direct applications of the Rosenthal’s inequality [27],
N (p) includes sequences ε = {εk}k≥0 of independent random variables with zero-mean
and uniformly bounded pth order moment. By application of Burkholder’s inequality
for martingales, martingales with Lp stable increments also belong to this class. Of
course, the class of processes belonging to this class is much larger than that, including
many processes satisfying moment and mixing conditions. Some typical examples of
processes belonging to N (p) are given in the proposition below.

Proposition 2. {εt} belongs to N (p) if
(i) {εt}t≥0 is an Lp-bounded martingale increment: supt≥0 ‖εt‖p < ∞. In this

case, ρp(ε) in (24) may be chosen to be

ρp(ε) = Bp sup
s≥0
‖εs‖p,(25)

where Bp is a universal constant that depends only on p and l (the dimension
of the {εs}).

(ii) {εt}t≥0 is zero-mean and (δ, q) weak-dependent with q = 2[(p + 1)/2] and∑∞
r=1(r+1)(q/2−1)δ(r) <∞ (the constant ρp(ε) can be found from the proof).

As mentioned above, (i) is a consequence of Burkholder’s inequality for martin-
gales (see [16]). (ii) can be adapted from the results of [7]. A proof is in Appendix A
(see also [17, Proposition 10, Corollary 11], where a Rosenthal’s inequality is proved
for α-mixing processes).

To conclude this section, it is worthwhile to note that N (p) is invariant under
stable linear time-varying transformation. This means that, if {εk} ∈ N (p), then the
process {ε′k} defined as

ε′k =

∞∑
j=−∞

A(k, j)εk−j

∞∑
j=−∞

sup
k
|A(k, j)| <∞,

where A(k, j) are deterministic matrices, also belongs to N (p). Moreover, the con-
stants are upper bounded by

ρp(ε
′) ≤ ρp(ε)

 ∞∑
j=−∞

sup
k
|A(k, j)|

 .(26)
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Thus, random processes generated from martingale differences or (δ, q) weak-dependent
processes via an infinite order time-varying linear filter can all be included in N (p).

3.2. Assumptions on {Fk}k≥0. According to the structure of the recursion
involved in the definition of the LMS, RLS, and Kalman algorithms, it is assumed
in what follows that the sequence of matrices {Fk(µ)}k≥0 may be decomposed as a
product

Fk(µ) = Pk(µ)Gk,(27)

where {Pk(µ)}k≥0 is a sequence of random matrices that can be approximated (in a
sense given below) by a sequence of deterministic matrices {P̄k(µ)}k≥0 and {Gk}k≥0

is a sequence of random matrices (that do not depend on the step-size µ) and that
verify some moment and weak-dependence conditions. For the three different tracking
algorithms considered in this paper, we setGk = φkφ

T
k , while Pk(µ) is a random weight

whose specific form depends upon the tracking algorithm. The sequence of matrices
F̄k(µ) needed to construct the approximations is defined as F̄k(µ) = P̄k(µ)E(Gk).
The conditions that are typically required for the sequence Fk(µ) and F̄k(µ) are that,
for some r, q ∈ N, µ0 > 0, and 0 < β < 1/µ0,

(F1) (r, β, µ0). {Fk(µ)}k≥0 is in S(r, β, µ0), i.e., {Fk(µ)} is Lr-exponentially stable,
(F2) (β, µ0). {F̄k(µ)}k≥0 is in S(β, µ0), i.e., {F̄k(µ)}k≥0 is averaged exponentially

stable,
(F3) (q, µ0). supt∈N

supµ∈(0,µ0] ‖Pt(µ)‖q <∞, supt∈N
supµ∈(0,µ0] |P̄t(µ)| <∞,

(F4) (q, µ0). supt∈N
supµ∈(0,µ0] µ

−1/2‖Pt(µ)− P̄t(µ)‖q <∞.
As mentioned above, assumptions (F1)–(F2) are classical in the study of random
linear systems, and hold under “generalized persistence of excitation” conditions (see
the discussion above on exponential stability). The same conditions typically imply
(F3) (see, e.g., [20], [11], and [12]; see also [1], [2] for related results on the forgetting
factor RLS alogorithm).

The last condition (F4), meaning that the random matrices Pt(µ) differ only by
a (small) amount (controlled by the step-size µ) from a deterministic matrix P̄t(µ),
is perhaps less classical, though it has often been used to study the forgetting factor
RLS algorithm [1], [2] (see also [11], for the Kalman filter). For the LMS algorithm,
Pk(µ) = I and we set P̄k(µ) = I and this assumption is trivially fulfilled. For the
RLS algorithm and the Kalman algorithm, the situation is slightly more complicated.
For completeness, we treat the matter in some detail for the RLS algorithm and only
outline the necessary ingredients of the construction for the Kalman algorithm.

RLS algorithm. For the RLS algorithm, the deterministic sequence of matrices
{P̄k(µ)}k≥0 is recursively defined as

P̄−1
k+1(µ) = (1− µ)P̄−1

k (µ) + µE(φk+1φ
T
k+1), P̄0(µ) = R0,(28)

where R0 is the initial condition for P0(µ), i.e., the same initial condition is used for
P0(µ) and P̄0(µ). Note that

P−1
k (µ) = µkP0 + µ

k∑
j=0

(1− µ)k−jφjφ
T
j ,(29)

P̄−1
k (µ) = µkP0 + µ

k∑
j=0

(1− µ)k−jE(φjφ
T
j )(30)
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so that P−1
k (µ)− P̄−1

k (µ) = µ
∑k

j=0(1− µ)k−j(φjφ
T
j − E(φjφTj )). Provided that the

sequence {φkφTk − E(φkφTk )}k≥0 belongs to Rosenthal’s class N (b) (b > 1), it holds
that

‖P−1
k (µ)− P̄−1

k (µ)‖b ≤ ρb(φφT )µ
 k∑

j=0

(1− µ)2(k−j)

1/2

≤ Cb(φφ
T )
√
µ(31)

for 0 < µ < 1. Since, by applying the Holder inequality

‖Pk(µ)− P̄k(µ)‖p ≤ ‖Pk(µ)‖a‖P−1
k (µ)− P̄−1

k (µ)‖b |P̄k(µ)|
for any a > 0, b > 0 such that a−1 + b−1 = p−1, (31) shows that assumption (F4)
holds as soon as (F3) (a, µ0)) is satisfied.

Kalman algorithm. For the Kalman algorithm, the deterministic sequence of
matrices P̄k(µ) is defined as

P̄k(µ) = [K̄k(µ)− µQ]R−1,(32)

K̄k(µ) = [K̄k−1(µ)
−1 + µR−1E(φkφ

T
k )]

−1 + µQ,(33)

where, by convention, we set P̄0(µ) = P0(µ) = P0. Assumption (F4) may be verified
along the same lines as above (see, e.g., [13]).

3.3. Assumptions on the excitation sequence ξ = {ξk}k≥0. In addition to
the above stated assumptions on the matrix process F = {Fk}k≥0, we need to impose
some conditions on the excitation sequence ξ = {ξk}k≥0. To cover the analysis of
stochastic tracking algorithms, it is convenient to assume that the excitation ξt(µ)
may be decomposed as

ξt(µ) =Mt(µ)εt,(34)

where the process M = {Mt(µ)}t≥0 is a (d× l) matrix-valued process, ε = {εt}t≥0 is
an (l× 1) vector-valued process, and both processes verify the following assumptions.

(EXC1) {Mt(µ)}t∈Z isMt
0(φ)-adapted andMt

0(ε) andMt
0(φ) are independent.

(EXC2) (r, µ0), (r > 0, µ0 > 0) supµ∈(0,µ0] supt≥0 ‖Mt(µ)‖r <∞.
(EXC3) (p, µ0) (p > 0, µ0 > 0) ε = {εt}t∈N belongs to Rosenthal’s class N (p).

Recall that, in the application to stochastic tracking algorithms,Mt(µ) is equal either
to Pt(µ)φt (for the measurement noise) or to the identity Mt = I (for the lag noise).
For general tracking algorithms, the sequence Pt(µ) is computed recursively from
the sequence of regressors, so that Pt(µ) is adapted to the sequence of σ-subfields
σ(φs, 0 ≤ s ≤ t). The noise εt is either equal to the measurement noise vt or to
the lag noise wt. Assumption (EXC1) thus covers the case where the measurement
noise and the lag noise are independent of the regressor sequence. It excludes some
applications of interest, where the regressors φt depend on the past of θt (occurring
in tracking in ARX models).

For the LMS algorithm, Mt(µ) = φt (for the measurement) noise, and the bound-
edness of Mt(µ) (assumption (EXC2)) follows from the stability of the regressor se-
quence. For the RLS and Kalman algorithms,Mt(µ) = Pt(µ)φt, and the boundedness
of Mt(µ) follows from the boundedness of Pt(µ) and the stability of the regressor se-
quence. This assumption is a consequence of the generalized persistence of excitation
condition, as mentioned above.
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The third condition states that {vt} and {wt} belong to Rosenthal’s class provided
that {vt} and {wt} are either martingale increments or zero-mean weakly dependent
sequences, with uniformly bounded moments. This assumption covers many cases
of practical interest. When specialized to the study of the “tracking” component
(ξt = wt), it means that θt follows a generalized random walk, with nonstationary
and dependent increment. The Lp moment of the parameter to track ‖θt‖p is assumed
to grow like

√
t. The result can be adapted to the case where θt is zero-mean Lp stable

(but the results are in that case slightly different). Tracking of deterministic trends
is not covered.1

Because of the independence of the noise {εk} and of the regression sequence
{φk}, the following is easily shown.

Proposition 3. Let q > p and µ0 > 0. Assume (EXC1), (EXC2(pq/(q −
p), µ0), and (EXC3(p)). Let {Gk(µ)}k≥0 be an Mt

0(φ) adapted sequence, such that
‖Gk(µ)‖q <∞. Then,∥∥∥∥∥

t∑
k=s

Gk(µ)Mk(µ)εk

∥∥∥∥∥
p

≤ ρp(ε) sup
k≥0
‖Mk‖pq/(q−p)

(
t∑

k=s

‖Gk(µ)‖2q
)1/2

.(35)

3.4. The main results. We may now formulate the central results of our con-

tribution. The first result gives condition upon which J
(r)
s is uniformly bounded in

Lp and provides an expression for that bound.
Theorem 4. Let n ∈ N and let q ≥ p ≥ 2. Assume (EXC1), (EXC2(pq/(q −

p), µ0)), and (EXC3(p)). For a, b, β > 0, a−1 + b−1 = 1, and some µ0 > 0, assume in
addition (F2(β, µ0)), (F4(aqn, µ0)) and

(i) {Gt}t≥0 is (δ, (q+2)n) weakly dependent, and
∑

(r+1)((q+2)n/2)−1δ(r) <∞,
(ii) supt≥0 ‖Gt‖bqn <∞.

Then, there exists a constant K < ∞ (depending on δ(k), k ≥ 0, and on the nu-
merical constants p, q, n, a, b, µ0, β but not otherwise on {φt}, {εt} or on the step-size
parameter µ), such that ∀0 < µ ≤ µ0, ∀ 0 ≤ r ≤ n,

sup
s≥1
‖J (r)

s ‖p ≤ K ρp(ε) sup
k≥0
‖Mk‖pq/(q−p) µ

(r−1)/2.(36)

(The precise value of the constant K may be found from the proof.)
The proof is given in Appendix B. To complete our program, we need to bound the

remainder term H
(n)
s . We will prove that, under appropriate conditions, the moments

of H
(n)
s are bounded by the moments of J

(n+1)
s . Since Theorem 4 states conditions

upon which ‖J (n+1)
s ‖p ≤ Kµn/2, this will in turn allow us to specify technical condi-

tions upon which the remainder H
(n)
s is bounded in Lp, i.e., sups≥0 ‖H(n)

s ‖ ≤ Kµn/2.
Theorem 5. Let p ≥ 2 and let a, b, c > 0 such that 1/a + 1/b + 1/c = 1/p. Let

n ∈ N. Assume (F1(a, β, µ0)) and
(i) sups≥0 ‖Zs‖b <∞ and

(ii) sups≥0 ‖J (n+1)
s ‖c <∞.

Then, there exists a constant K ′ < ∞ (depending on the numerical constants a, b,
c, β, µ0, n but not on the process {εt} or on the step-size parameter µ), such that

1It should be stressed, however, that the perturbation expansion technique can be adapted to
the study of such tracking problems. This particular setting is not studied in detail due to space
limitations.
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∀ 0 < µ ≤ µ0,

sup
s≥0
‖H(n)

s ‖p ≤ K ′ sup
s≥0
‖J (n+1)

s ‖c.(37)

(The precise value of K ′ may be found from the proof.)

The proof of Theorem 5 is based on the decomposition H
(n)
s = J

(n+1)
s +H

(n+1)
s .

It thus amounts to showing that H
(n+1)
s is bounded in Lp. Since

H
(n+1)
t = µ

t∑
s=0

Φ(t, s)ZtJ
(n+1)
t ,

the proof stems directly from the exponential stability of Φ(t, s), the uniform bound-
edness of moments of {Zs} (which can be also translated in terms of boundedness of
moments of Pt(µ) and of the driving terms Gt). Details are given in Appendix B.

4. Performance of adaptive tracking algorithms. A number of useful error
bounds or expressions can be derived from the results above. We use the notations of
section 1. According to (8), the tracking error may be expanded as θ̃t =

u θ̃t+µ
v θ̃t+

w

θ̃t, where
uθ̃t,

v θ̃t, and
wθ̃t are respectively defined in (9), (10), and (11). The terms

v θ̃t and
wθ̃t may further be decomposed as

v θ̃t =

rv∑
k=0

vJ
(k)
t + vH

(rv)
t ,(38)

wθ̃t =

rw∑
k=0

wJ
(k)
t + wH

(rw)
t ,(39)

where rv and rw are two integers (not necessarily equal) such that 0 ≤ rv ≤ n−1 and
0 ≤ rw ≤ n− 1. To apply Theorems 4 and 5, we need only to check that the assump-
tions are fulfilled for the measurement noise term and the lag-noise term. Because the
particular form of the random matrix sequence Ft(µ) = Pt(µ)φtφ

T
t and of the excita-

tion term ξt(µ) = Pt(µ)φtvt (measurement noise) or ξt = −wt (lag noise) have been
tailored for studying general tracking algorithms, the assumptions of these theorems
easily translate (see the discussion above) into general conditions on the regression
sequence, on the measurement and lag noise (in terms of existence and boundedness
of moments, mixing coefficients, etc.), and to some “algorithm-dependent” condi-
tions, mainly involving more or less stringent conditions on the regression sequence,
in terms of moment and mixing conditions. By direct adaptations of the assumptions
of Theorems 4 and 5, it may be shown that

sup
t
‖vJ (k)

t ‖p ≤ Kρp(v) sup
k≥0
‖Pk(µ)φk‖pq/(q−p)µ

(k−1)/2, k ∈ {0, . . . , rv},(40)

sup
t
‖vH(rv)

t ‖p ≤ Kρp(v) sup
k≥0
‖Pk(µ)φk‖pq/(q−p)µ

rv/2,(41)

sup
t
‖wJ (k)

t ‖p ≤ Kρp(w)µ(k−1)/2, k ∈ {0, . . . , rw},(42)

sup
t
‖wH(rw)

t ‖ ≤ Kρp(w)µrw/2.(43)

Setting rv = rw = 0, one obtains the expansion of the tracking error bounds presented
in [20], [11], [12] and later extended to more general algorithms by [13], [14], [15].
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Higher-order expansions can be used to obtain refined approximation of the tracking
error moments (see the discussion below).

Of particular interest is the covariance of the tracking error. If one assumes
that the measurement noise and the lag noise are independent, the covariance of the
tracking error may be expressed as

Γ(t) � E(θ̃tθ̃Tt ) =u Γ(t) + µ2 vΓ(t) +w Γ(t),

where uΓ(t) = E(uθ̃(t)uθ̃(t)T ), vΓ(t) = E(v θ̃vt θ̃
T
t ), and

wΓ(t) = E(wθ̃wt θ̃
T
t ). Equation

(38) then implies that, e.g., vΓ(t) may be expanded as

vΓ(t) =

rv∑
k+l=0

E(vJ
(k)
t

v
J

(l) T
t ) +O(µ(rv−1)/2)

yielding to a valid approximation to order (rv − 1)/2 (a similar result holds for the
lag noise). Two illustrative examples are worked out in the next section.

Remark. The evaluation of the covariance E(vJ
(k)
t

v
J

(l) T
t ) involves the computa-

tion of moments of the form

(44) E(ψ(t, s1)Zs1ψ(s1 − 1, s2)Zs2 · · ·
ψ(sk − 1, s)Ps(µ)φsv

2
sφ

T
s Ps(µ)

TψT (s, s′l − 1)Zs′
l
· · ·Zs′1ψ

T (t, s′1)),

where Zs = F̄t−Ft = −Pt(µ)φtφTt + P̄t(µ)E(φtφ
T
t ). The evaluation of such moments

is straightforward for the LMS algorithm (see below for a worked-out example). The
direct evaluation of this moment is not possible when dealing with the RLS algorithm
or the Kalman algorithm. When one is willing to obtain an approximation of the
moment of the tracking error valid up to order n, it suffices to determine an order n
approximation of the moment of the form (44). The way to derive such approximations
can be obtained for the RLS algorithm, as shown below (a similar derivation can be
done for the Kalman algorithm). The basic ingredients to derive such an expansion
are (i) Pt(µ) differs by

√
µ for P̄t(µ) and (ii) the joint moments on P−1

t (µ) can easily

be evaluated, because P−1
t (µ) depends linearly on {φsφTs }1≤s≤t. We focus on the

RLS algorithm; similar results can be derived for the Kalman algorithm. Note that,
for any integer n, we may write

Pt(µ) = (P̄−1
t (µ)− (P̄−1

t (µ)− P−1
t (µ)))−1 = (I − P̄t(µ)(P̄−1

t (µ)− P−1
t (µ)))−1P̄t(µ),

(45)

=

n∑
k=0

[P̄t(µ)(P̄
−1
t (µ)− P−1

t (µ))]kP̄t(µ) + [(P̄−1
t (µ)− P−1

t (µ))P̄t(µ)]
n+1 Pt(µ).

(46)

Equation (31) shows that, when {φsφTs }s∈N belongs to Rosenthal’s class N ((n+1)p),
it holds that

sup
t∈N

sup
(0<µ<1)

µ−1/2‖P−1
t (µ)− P̄−1

t (µ)‖(n+1)p <∞.

In addition, under (F3(q, µ0)), supt∈N
supµ∈(0,µ0] ‖Pt(µ)‖q <∞ and supt∈N

supµ∈(0,µ0]

|P̄t(µ)| < ∞. Hence, for r, p, q > 0 and n ∈ N, r−1 = p−1 + q−1, it holds that there
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exists some constant K <∞ such that, ∀ µ ∈ (0, µ0],

sup
t∈N

∥∥∥∥∥Pt(µ)−
n∑

k=0

[P̄t(µ)(P̄
−1
t (µ)− P−1

t (µ))]kP̄t(µ)

∥∥∥∥∥
r

≤ Kµ(n+1)/2

and the constant K can be chosen as

K = sup
t∈N

sup
µ∈(0,µ0]

‖Pt(µ)‖q|P̄t(µ)|n+1 sup
t∈N

sup
µ∈(0,µ0]

µ−1/2‖P−1
t (µ)− P̄−1

t (µ)‖(n+1)p <∞.

5. Some worked-out examples. In this section, approximate expressions for
the tracking error covariance matrix for the LMS and the RLS algorithm are derived.
To illustrate our findings, it is shown in this section that first-order approximation of
the tracking error covariance may fail, in certain situations, to capture the behavior
of the algorithm. It is argued that a second-order expansion leads to significantly bet-
ter approximation, in many situations of practical interest; moreover, second-order
approximation reveals the impact of certain factors which do not influence the first-
order approximation, in particular the dependence between the successive regression
vectors. To illustrate these effects without obscuring the presentation with cumber-
some notations and details, a very simple situation is considered. Theoretical results
are validated by means of a small-scale Monte Carlo experiment. More details will be
given in a forthcoming paper.
(M1) The regressor {φt}t≥0 is a strict-sense stationary vector autoregressive process

φt+1 = κφt + ut+1,

where κ (−1 < κ < 1) is a scalar, {ut}t∈Z is a sequence of independent and
identically distributed Gaussian random vectors with zero-mean and covari-
ance matrix σ2

uI.
(M2) The measurement noise process {vt}t≥0 and the lag-noise process {wt}t≥0 are

two sequences of zero-mean independently and identically distributed (i.i.d)
random variables (vectors), with bounded moments of order r, where r > 2.
We denote E(v20) = σ

2
v and E(w0w

T
0 ) = γ

2I.
(M3) M∞

0 (v),M∞
0 (φ), andM(θ) are independent.

Because our main concern in this section is the asymptotic regime, we set θ̃0 = 0. To
apply the results in section 4, that one may apply Theorems 4 and 5 under (M1–3),
we set b = c = 2r, a = 2r/(r − 2), and d = r + δ, where δ > 0 but is otherwise
arbitrary. Note that a−1 + b−1 + c−1 = p−1 with p = 2.

It follows from [25] that, under (M1), {φt} is geometrically completely regular (see

also [4]), so that Ft
∆
= φtφ

T
t is strongly mixing with exponentially decaying strong-

mixing coefficient and thus, by Lemma 1 (see Appendix A), weak-dependent with
exponentially decaying weak-dependent coefficient. It follows from [28, Theorem 1]
that Ft is exponentially stable, i.e., for any p ≥ 1 there exists µ0 > 0 and 0 < β < 1/µ0

such that {Ft} ∈ S(β, µ0) ∩ S(p, β, µ0). Since {vt} and {wt} are i.i.d, {vt} and {wt}
belong to N (r), with constants ρr(v) and ρr(w) defined as

ρr(v) = Brσvµr(v), ρr(w) = Brγµr(w),

where µr(v) and µr(w) are the standardized rth order moments of v and w, respec-
tively, and Br is a universal constant (see [27]). Under (M3), the processes {v θ̃t}t≥0

and {wθ̃t} are independent. Thus,

Γ = lim
t→∞E(θ̃tθ̃

T
t ) =

vΓµ2 + wΓ,
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where vΓ = limt→∞E(v θ̃vt θ̃
T
t ) and wΓ = limt→∞E(wθ̃wt θ̃

T
t ). We wish to obtain

approximate expressions for vΓ and wΓ, denoted vΓ̄ and wΓ̄, such that, ∀ µ ∈ (0, µ0],

|vΓ−v Γ̄| ≤ Kµ1/2 and |wΓ−w Γ̄| ≤ Kγ2µ1/2,

where K < ∞ is some constant. To that purpose, we expand v θ̃t and wθ̃t to the
second-order:

v θ̃t =
vJ

(0)
t + vJ

(1)
t + vJ

(2)
t + vH

(2)
t ,

wθ̃t =
wJ

(0)
t + wJ

(1)
t + wJ

(2)
t + wH

(2)
t .

Under the stated assumptions, it follows from Theorems 4 and 5, that there exists
some constant C <∞, such that ∀ µ ∈ (0, µ0], we have

sup
t≥0

∣∣∣E(vJ (1)
t (vJ

(2)
t + vH

(2)
t )T

∣∣∣ ≤ C ‖φ0‖r(r+δ)/δ ρ
2
r(v)µ

1/2 sup
t≥0

∣∣∣E(vJ (0)
t

vH
(2)
t )
∣∣∣

≤ Cρr(v)‖φ0‖r(r+δ)/δµ
1/2 sup

t≥0

∣∣∣E(wJ (1)
t (wJ

(2)
t +w H

(2)
t )T

∣∣∣
≤ Cγ2µ2

r(w)µ
1/2 sup

t≥0

∣∣∣E(wJ (0)
t

wH
(2)
t )
∣∣∣ ≤ Cγ2µ2

r(w)µ
1/2.

It remains to evaluate limt→∞E(vJ
(0)
t

vJ
(i)
t ), limt→∞E(wJ

(0)
t

wJ
(i)
t ), i = 0, 1, 2, and

E(vJ
(1)
t

vJ
(1)
t ) and E(wJ

(1)
t

wJ
(1)
t ). Denote α = σ2

u/(1− κ2). Tedious but straightfor-
ward calculations show that

lim
t→∞E(

vJ
(0)
t

vJ
(0)
t

T
) =

σ2
v

µ(2− µα)I,

lim
t→∞E(

vJ
(0)
t

vJ
(1)
t

T
) = −κ

2σ2
v(d+ 1)α

2(1− κ2)
I +O(µ),

lim
t→∞E(

vJ
(0)
t

vJ
(2)
t

T
) =

κ2σ2
vα(d+ 1)α

4(1− κ2)
I +O(µ),

lim
t→∞E(

vJ
(1)
t

vJ
(1)
t

T
) =

(1 + κ2)σ2
vα(d+ 1)

4(1− κ2)
I +O(µ),

yielding the following expression for vΓ̄:

vΓ̄ =
σ2
v

2µ
I + ασ2

v

d+ 2

4
I +O(µ).(47)

It is worthwhile to note that the first-order correction does not depend upon the
autoregressive coefficient κ, i.e., the dependence among the successive regressors does
not influence the covariance vΓ̄ up to the second order in the step-size µ. It may
be shown that this result holds under much weaker assumptions on the regression
sequence {φt} (see [26] for a more general discussion), as long as {vt} is a martingale
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increment and is independent from {φt}. Similarly, it can be shown that

lim
t→∞E(

wJ
(0)
t

wJ
(0)
t

T
) =

γ2

µα(2− µα)I,

lim
t→∞E(

wJ
(0)
t

wJ
(1)
t

T
) = 0,

lim
t→∞E(

wJ
(0)
t

wJ
(2)
t

T
) =

γ2κ2(d+ 1)

4(1− κ2)
I +O(γ2µ),

lim
t→∞E(

wJ
(1)
t

wJ
(1)
t

T
) =

γ2(1 + κ2)(d+ 1)

4(1− κ2)
I +O(γ2µ),

yielding the following approximate expression for wΓ:

wΓ̄ =
γ2

2µα
I +

γ2

4

(
1 + (d+ 1)

1 + 2κ2

1− κ2

)
I +O(γ2µ).(48)

It is interesting to note that the first-order correction depends upon the autoregres-
sive coefficient κ: when κ is close to 1, the correction term becomes large. This
behavior is illustrated in Figures 1 and 2, where the asymptotic tracking error vari-
ance limt→∞ ‖θ̃t‖2 is displayed as a function of the step-size µ. In both cases, we set
γ = 0.05, d = 10, σ2

v = 3 and, for every value of κ, σ2
u = 1 − κ2 (so that α = 1).

Two values of κ are considered: κ = 0 (Figure 1) and κ = 0.9 (Figure 2). On the
figures, the value of the asymptotic tracking error variance obtained by Monte Carlo
simulations (solid line) are compared with the approximate expressions obtained by
(i) retaining only the first term in (47) and (48) (dashed line) or (ii) including the two
terms in (47) and (48) (dashed-dotted line). As seen in these figures, the autoregres-
sive coefficient strongly affects the asymptotic tracking error variance, as predicted
by the second-order approximation (whereas the first-order approximation does not
predict any effect with respect to the variation of the autoregressive parameter). It
is, however, interesting to note that the optimal value for the step-size (the value
which minimizes the asymptotic tracking error variance) obtained by minimizing the
second-order approximation does not vary with κ and is reasonably close to the one
obtained by minimizing the first-order approximation.

The study of the tracking behavior of the RLS algorithm is more involved than
for the LMS algorithm. To illustrate our results, we only sketch how the results
presented in this paper can be obtained, and we postpone a complete discussion on
the potential advantages of the RLS algorithm with respect to the LMS algorithm in
a forthcoming paper. For simplicity, we study only the contribution of the lag noise to
the total weight-error covariance matrix. The contribution of the measurement noise
can be studied along the same lines. The low order terms in the decomposition of the
contribution of the lag noise to the weight error may be expressed as

wJ
(0)
n+1 = γ

n∑
k=0

(1− µ)n−kwk+1, P̄0 = P̄s = E(φ0φ
T
0 )

−1 = α−1I, ∀ s > 0,

wJ
(1)
n+1 = µγ

n∑
s=1

(1− µ)n−sZs

s−1∑
k=0

(1− µ)s−k wk+1

= µγ

n−1∑
k=0

(1− µ)n−k

(
n∑

s=k+1

Zs

)
wk+1,
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Fig. 1. κ = 0. Solid line: Monte Carlo simulation. Dashed line: first-order approximation.
Dashed-dotted line: second-order approximation.
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Fig. 2. κ = 0.9. Solid line: Monte Carlo simulation. Dashed line: first-order approximation.
Dashed-dotted line: second-order approximation.

where the error term is given by

Zs = P̄sE{φsφTs } − Ps φsφTs .

It is easily seen that

lim
t→∞E(

wJ
(0)
t

wJ
(0)
t

T
) = γ2/µ(2− µ)I.
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Since {φs} is independent of {ws}, we may write

E[wJ
(0)
n+1

wJ
(1)
n+1

T
] = µγ2

n−1∑
k=0

(1− µ)2(n−k)
n∑

s=k+1

E[Zs].

Note that this cross-term was equal to zero for the LMS algorithm but does not vanish
for the RLS algorithm, because E(Zs) �= 0. Before going further, we need to compute
E{Zs}. We proceed as outlined in section 4. We have

E[Zs] = E[(P̄s − Ps)φsφTs ]
= E[P̄s(P

−1
s − P̄−1

s )P̄sφsφ
T
s ]− E[P̄s(P−1

s − P̄−1
s )2P̄sφsφ

T
s ] +O(µ

3/2).

Using tedious but straightforward calculations it may be shown that

E{(P−1
s − P̄−1

s )φsφ
T
s } =

µ(d+ 1)

1− κ2(1− µ) (1− (κ(1− µ))s),

E[(P−1
s − P̄−1

s )2φsφ
T
s ] = µ

2[A1(s) + 2A2(s)],

A1(s) =
(d2 + d+ 2)

1− κ2(1− µ)2 [1− (κ(1− µ))2s] + d

µ
(1− (1− µ)2s),

A2(s) =
(d2 + 3d+ 4)

µ

[
(1− (κ2(1− µ))s)
1− κ2(1− µ) − (1− (κ(1− µ))2s)

1− κ2(1− µ)2
]

+
d+ 1

1− κ2(1− µ)
[
1− (1− µ)s

µ
− 1− (κ(1− µ))2s

1− κ2(1− µ)2
]
.

Thus,

lim
n
µ3γ2

n−1∑
k=0

(1− µ)2(n−k)
n∑

s=k+1

A1(s) = µγ
2 d2 + d+ 2

4(1− κ2(1− µ)2)I +O(γ
2),

lim
n
µ3γ2

n−1∑
k=0

(1− µ)2(n−k)
n∑

s=k+1

A2(s) =
γ2

2
(d2 + 3d+ 4)[

1

1− κ2(1− µ) −
1

1− κ2(1− µ)2
]

+
γ2

2

d+ 1

(1− κ2(1− µ))
[
1− µ

1− κ2(1− µ)2
]

+O(µ+ γ2),

yielding the following expression for the asymptotic weight-error covariance matrix
Γ̄w:

Γ̄w =
γ2

2µ
I +

γ2(d+ 1)

(1− κ2(1− µ))I − γ
2(d2 + 3d+ 4)

[
1

1− κ2(1− µ) −
1

1− κ2(1− µ)2
]
I

− γ2(d+ 1)

1− κ2(1− µ)
[
1/2− µ

1− κ2(1− µ)2
]
I +O(µ+ γ2).

As before, this correction term depends upon the autoregressive coefficient: when κ is
close to 1 (e.g., when the regressors are strongly positively correlated), the corrections
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terms can become very large. Also, it is interesting to note that the magnitude of the
correction term is proportional to the square of the size of the regressors. This also
shows that the correction can become very significant when d is large.

Appendix A. Proof of Proposition 2. In this section, we will show some
useful extensions of Rosenthal’s inequality for weakly dependent processes.

Proposition 6. Let G = {Gt}t≥0 be a (d× d) zero-mean matrix-valued process.
Let q be an even integer and j ∈ N. Assume that G is (δ, qj)-weak dependent. Assume
in addition that

∞∑
r=0

(r + 1)qj/2−1δ(r) <∞.(49)

Then, there exists a finite constant D̄q,j(G), such that∥∥∥∥∥∥
∑

s≤i1<···<ij≤t

Gi1 · · ·Gij

∥∥∥∥∥∥
q

≤ D̄q,j(G) (t− s)j/2(50)

∀ 0 ≤ s ≤ t.
Proof of Proposition 6. The proof is a direct application of the following result.
Lemma 7. Let q ≥ 2 and let X = {Xt}t≥0 be an (l × 1) zero-mean vector-valued

(δ, q)-weak dependent process. Assume in addition that
∑∞

0 (r + 1)q/2−1δ(r) < ∞.
Then, there exist finite constants γ = {γ2, . . . , γq} such that, ∀ 1 ≤ s ≤ q and
∀ n ≥ 1,

sup
(i1,··· ,is)

 ∑
1≤t1,··· ,ts≤n

|E(Xt1,i1 · · ·Xts,is)|
 ≤ γs s! n

s/2.(51)

Remark. The constants γ2, . . . , γq can be evaluated recursively as follows. Let
σs =

∑∞
r=0(r + 1)s/2−1δ(r) for 1 < s ≤ q. Set γ1 = 0, γ2 = C2σ2 and evaluate, for

2 < s ≤ q,

γs =

s−1∑
m=1

γmγs−m + (s− 1)Csσs.(52)

Proof of Lemma 7. The proof is adapted from [7]. Define, for 1 < s ≤ q,
I(n, s) = {(t1, t2, . . . , ts) : 1 ≤ t1 ≤ · · · ≤ ts ≤ n},(53)

A(n, s) = sup
(i1,... ,is)

∑
I(n,s)

|E(Xt1,i1 . . . Xts,is)|.(54)

Note that

sup
(i1,... ,is)

∑
1≤t1,... ,ts≤n

|E(Xt1,i1 . . . Xts,is)| ≤ s!A(n, s).

Define for 1 ≤ m ≤ s− 1 and 0 ≤ r ≤ n− 1 the sets

I(n, s,m, r) = {(t1, . . . , ts) ∈ I(n, s) : tm+1 − tm = r = max(ti+1 − ti)},

I(n, s,m) =

n−1⋃
r=0

I(n, s,m, r).
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It is easily seen that

I(n, s) =

s−1⋃
m=1

I(n, s,m) =

s−1⋃
m=1

n−1⋃
r=0

I(n, s,m, r)

and the cardinal of set I(n, s,m, r) is bounded by n(r + 1)s−2. Let 1 ≤ m ≤ s − 1.
Note that

E(Xt1,i1 . . . Xts,is) = E(Xt1,i1 . . . Xtm,im)

× E(Xtm+1,im+1
. . . Xts,is) + cov(Xt1,i1 . . . Xtm,im , Xtm+1,im+1

. . . Xts,is).

This implies, under the weak-dependence condition, that

sup
(i1,... ,is)

∑
I(n,s,m)

|E(Xt1,i1 . . . Xts,is)| ≤ A(n,m)A(n, s−m) + Cs

n−1∑
r=0

δ(r)n(r + 1)s−2.

For 0 ≤ r ≤ n− 1, n(r + 1)s−2 ≤ ns/2(r + 1)s/2−1. Thus

A(n, s) ≤
s−1∑
m=1

A(n,m)A(n, s−m) + (s− 1)Csn
s/2

n−1∑
r=0

(r + 1)s/2−1δ(r).(55)

The proof and the expression of the constant are obtained by a straightforward in-
duction.

Corollary 8. Let p ≥ 1 and n ∈ N. Let G = {Gt}t≥0 be a (d×d) matrix-valued
process. Assume that {Gt}t≥0 is (δ, (p+ 2)n)-weak dependent and that∑

(r + 1)(p+2)n/2−1δ(r) <∞.

Then, there exists a finite constant Dp,n(G), such that ∀ j ∈ {1, . . . , n} and ∀ 0 ≤
s ≤ t <∞, we have∥∥∥∥∥∥

∑
s≤i1<···<ij≤t

(Gi1 − E(Gi1)) . . . (Gij − E(Gij ))

∥∥∥∥∥∥
pn/j

≤ Dp,n(G)(t− s)j/2.(56)

Proof of Corollary 8. For j ∈ {1, . . . , n}, denote q(n, j) the smallest even integer
verifying pn/j ≤ q(n, j). It is easily seen that pn/j ≤ q(n, j) ≤ pn/j+2, which implies
that maxj∈{1,... ,n} jq(n, j) ≤ (p + 2)n. Under the stated assumption, Proposition 6
implies that, ∀ 0 ≤ s ≤ t,∥∥∥∥∥∥

∑
s≤i1<···<ij≤t

Gi1 . . . Gij

∥∥∥∥∥∥
pn/j

≤
∥∥∥∥∥∥

∑
s≤i1<···<ij≤t

Gi1 . . . Gij

∥∥∥∥∥∥
q(n,j)

,

≤ D̄q(n,j),j(G)(t− s)j/2

which concludes the proof.
In what follows, we will have to work with sums of products of the form∑

s≤i1<i2<···<ij≤t

(Pi1Gi1 − P̄i1E(Gi1)) . . . (PijGij − P̄ijE(Gij )),
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where {Pi}i∈N is a matrix-valued random process (indexed by µ), and {P̄i}i∈N is a
set of deterministic matrices such that supi∈N

‖Pi − P̄i‖c = O(
√
µ) as µ → 0+. It is

easily seen that E(PiGi) �= P̄iE(Gi) and that {PiGi}i≥0 is not weak-dependent and
the proposition above cannot be directly applied. An extension (based on the fact
that {Pi} is well “approximated” by a set of deterministic matrices) is given below.

Proposition 9. Let p ≥ 1 and n ∈ N. Let G = {Gt}t≥0 be a (d × d) matrix-
valued process. Assume that {Gt}t≥0 is (δ, (p+ 2)n)-weak dependent and∑

(r + 1)(p+2)n/2−1δ(r) <∞.

Assume in addition that (i) there exist µ0 > 0 and a constant Cp,n(µ0, P ) < ∞
such that supt≥0 ‖Pt − P̄t‖αpn < Cp,n(µ0, P )

√
µ and (ii) supt≥0 ‖Gt‖βpn <∞, where

α, β > 0 and α−1 + β−1 = 1. Then, there exists a finite constant Dp,n(G) such that
∀ j ∈ {1, . . . , n} and ∀ 0 ≤ s ≤ t <∞, we have

(57)

∥∥∥∥∥∥
∑

s≤i1<···<ij≤t

(Pi1Gi1 − P̄i1E(Gi1)) · · · (PijGij − P̄ijE(Gij ))

∥∥∥∥∥∥
pn/j

≤ Dp,n(G)(t− s)j/2
j∑

l=0

µl/2(t− s)l/2.

Proof of Proposition 9. Denote Ḡi = E(Gi), and, for t ≥ s,

D1(t, s) =

t∑
u=s

(PuGu − P̄uḠu), D̃1(t, s) =

t∑
u=s

P̄u(Gu − Ḡu),(58)

Dk(t, s) =

t∑
u=s

Dk−1(t, u+ 1)(PuGu − P̄uḠu),(59)

D̃k(t, s) =

t∑
u=s

D̃k−1(t, u+ 1)P̄u(Gu − Ḡu).

By convention, we set Dk(t, s) = D̃k(t, s) = 0 for s < t+ k and D0(t, s) = D̃0(t, s) =
0 ∀ t, s. Since sup0≤µ≤µ0

supu≥0 |P̄u| < ∞, and {Gu − Ḡu}u≥0 is (δ, p(n + 2))-weak

dependent, then {P̄u(Gu − Ḡu)}u≥0 also is (δ, p(n+ 2))-weak dependent, so that, by
application of Proposition 2, there exists a constant Dp,n(P̄G) (independent from µ),
such that, for j ∈ {1, . . . , n} and all 0 ≤ s ≤ t <∞, it holds that

‖D̃j(t, s)‖pn/j ≤ Dp,n(P̄G)(t− s)j/2.(60)

The proof is by induction. We have∑
s≤u≤t

(PuGu − P̄uḠu) =
∑

s≤u≤t

(Pu − P̄u)Gu +
∑

s≤u≤t

P̄u(Gu − Ḡu).

Thus,∥∥∥∥∥
t∑

u=s

(PuGu − P̄uḠu)

∥∥∥∥∥
pn

≤ (t− s) sup
u≥0
‖Pu − P̄u‖αqn sup

u≥0
‖Gu‖βqn +Dp,n(P̄G)(t− s)1/2



892 RAFIK AGUECH, ERIC MOULINES, AND PIERRE PRIOURET

showing that there exists a constant C1 <∞ such that ‖D1(t, s)‖pn ≤ C1(t−s)1/2(1+√
µ(t − s)1/2) ∀ 0 ≤ s ≤ t and µ ∈ (0, µ0]. Let j ∈ {1, . . . , n − 1}. Assume that for

i ∈ {1, . . . , j − 1}, there exists Ci < ∞ such that, ∀ 0 ≤ s ≤ t and µ ∈ (0, µ0], we

have ‖Di(t, s)‖pn/i ≤ Ci(t− s)i/2
∑i

l=0 µ
l/2(t− s)l/2. It holds that

Dj(t, s) = D̃j(t, s) +

j∑
r=1

t∑
ir=s

Dr−1(ir, s)(Pir − P̄ir )GirD̃j−r(t, ij−1 + 1),

‖Dj(t, s)‖pn/j ≤ ‖D̃j(t, s)‖pn/j

+

j∑
r=1

t∑
ir=s

‖Dr−1(ir, s)‖pn/(r−1)‖D̃j−r(t, ir + 1)‖pn/(j−r)‖Pir

− P̄ir‖αpn‖Gir‖βpn,

≤ Dp,n(P̄G)

(
(t− s)1/2 +

j∑
r=1

Cr(t− s)j/2
r∑

l=0

µl/2(t− s)l/2
)
,

which concludes the proof.

Proof of Proposition 2. It is assumed (without any loss of generality) that
{Dk}k≥0 and {εk}k≥0 are scalar-valued. (i) Assume first that {εk}k≥0 is an Lp stable
martingale increment. According to Burkholder’s inequality, there exists a universal
constant Bp <∞ (independent of the sequence of scalar weights {Dk}k≥0 and on the
process {εk}k≥0) such that

E

∣∣∣∣∣
t∑

k=s

Dkεk

∣∣∣∣∣
p

≤ Bp

∥∥∥∥∥
t∑

k=s

D2
kε

2
k

∥∥∥∥∥
p/2

p/2

≤ Bp sup
k
‖εk‖pp

(
t∑

k=s

D2
k

)p/2

,

which concludes the proof for martingale increments. (ii) Assume that q is an even
integer. For n ≥ 0, we have

E

∣∣∣∣∣
n∑

k=1

Dkεk

∣∣∣∣∣
q

=
∑

1≤i1,... ,iq≤n

E(Di1 . . . Dipεi1 . . . εip),

≤
∑

1≤i1,... ,iq≤n

|Di1 . . . Diq ||E(εi1 . . . εiq )|,

≤ q! Aq(n),

where Aq(n) �
∑

1≤i1≤···≤iq≤n |Di1 . . . Diq||E(εi1 . . . εiq )|. We will conclude the proof

by showing that Aq(n) ≤ C
∑n

i=1(|Di|2)q/2, uniformly in n, where C < ∞ is a
constant which is related to the weak-dependence constants of the process ε (see the
definition above), i.e., C1, . . . , Cq and {δ(k)}k≥0. The proof is by induction. Let
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1 ≤ s ≤ q. We have

As(n) =

s−1∑
m=1

n−1∑
r=0

∑
I(n,s,m,r)

|Di1 . . . Dis | |E(εi1 . . . εim)| |E(εim+1
. . . εis)|(61)

+ Vs(n)(62)

≤
s−1∑
m=1

Am(n)As−m(n) + Vs(n),(63)

Vs(n) =

s−1∑
m=1

n−1∑
r=0

Vs(n, r,m),(64)

Vs(n, r,m) =
∑

I(n,s,m,r)

|Di1 . . . Dis ||cov(εi1 . . . εim , εim+1
. . . εis)|.(65)

Denote br = max1≤t≤n

∑t+r
i=t+1 |Di|. We have

Vs(n, r,m) ≤ Cs

n−r∑
im=1

|Dim ||Dim+r|δ(r)
im∑

im−1=max(im−r,0)

|Dim−1 | . . .
i2∑

i1=max(i2−r,0)

|Di1 |

×
min(im+1+r,n)∑
im+2=im+1

|Dim+2 | . . .
min(is−1+r,n∑

is=is−1

|Dis |,

≤ Csb
s−2
r δ(r)

n∑
i=1

|Di|2.

Note that the bound for Vs(n, r,m) does not depend on m. Hence,

Vs(n) ≤ s Cs

n−1∑
r=0

δ(r)bq−2
r

n∑
i=1

|Di|2.(66)

We have

br ≤
√
r max

1≤t≤n

(
t+r∑
i=1

|Di|2
)1/2

≤
(

n∑
i=1

|Di|2
)1/2√

r.

Plugging this latter relation into (66) yields

Vs(n) ≤
(

n∑
i=1

|Di|2
)s/2 n−1∑

r=0

(r + 1)s/2−1δ(r).

The proof is now concluded by an easy induction.

Appendix B. Proof of Theorems 4 and 5.
Proof of Theorem 4. Before going further, we need some additional notation.

Define S0(t, s) = ψ(t, s) for t ≥ s and S0(t, s) = 0 for s > t (the dependence in the
step-size µ is implicit). For k ≥ 1, define Sk(t, s) recursively as

Sk(t, s) =

t∑
u=s

ψ(t, u)ZuSk−1(u− 1, s) =

t∑
u=s

Sk−1(t, u)Zuψ(u− 1, s).(67)
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Denote, respectively,

D1(t, s) =

t∑
u=s

Zu, t ≥ s, D1(t, s) = 0, s > t,(68)

Dk(t, s) =

t∑
u=s

Dk−1(t, u+ 1)Zu.(69)

Note that, by construction, for k ≥ 0,

Sk(t, s) = 0, s > t− k, and Dk(t, s) = 0, s > t− k + 1.

From (20), (21), and (67), it is easily seen that J
(r)
t+1 may be decomposed as

J
(r)
t+1 = µr

t∑
s=0

Sr(t, s)ξs.(70)

Let r be an integer and c, µ0, β some real numbers such that c > 0, µ0 > 0, and
0 < β < 1/µ0. Consider W (µ) � {W (u, v;µ)}(u,v)∈N×N a family of processes on
N×N indexed by µ ∈ R

+. We say that W (µ) belongs to the set L(β, µ0, c, r) if there
exist a finite constant C(W ) and a finite integer q(W ) , such that, ∀ 0 ≤ u ≤ v and
0 < µ ≤ µ0

‖W (u, v;µ)‖c ≤ C(W )(1− βµ)v−u(v − u)r/2
q(W )∑
k=0

µk/2(v − u)k/2.(71)

It is easily seen that the subspaces L(β, µ0, c, r) are nested in the sense that for c′ ≥ c
and r′ ≥ r, we have L(β, µ0, c, r) ⊂ L(β, µ0, c

′, r′). Similarly, we say that W (µ)
belongs to theM(µ0, c, r) if there exist a finite constant CM(W ) and a finite integer
q(W ), such that, ∀ 0 ≤ u ≤ v and 0 < µ ≤ µ0,

‖W (u, v;µ)‖c ≤ CM(W )(v − u)r/2
q(W )∑
j=0

µj/2(v − u)j/2.(72)

Lemma 10. Assume that Sr
∆
= {Sr(t, s)} ∈ L(β, µ0, q, r) and ξ

∆
= {ξk} ∈ N (p).

Then, there exists a constant C(Sr) <∞ (depending upon β, µ0, p, q, r, and {Fk} but
not on {ξk} or on the step-size µ) such that

sup
t≥0
‖J (r)

t ‖p ≤ C(Sr) ρp(ξ)µ(r−1)/2 ∀ µ ∈ (0, µ0].

Proof of Lemma 10. Since {ξt} ∈ N (p), there exists a constant ρp,q(ξ) such that

‖J (r)
t+1‖p ≤ ρp,q(ξ)µr

(
t∑

s=0

‖Sr(t, s)‖2q
)1/2

.

Under the stated assumptions, Sr(t, s) ∈ L(β, µ0, q, r): there exist a constant C(Sr) <
∞ and q(Sr) ∈ N such that, ∀ t ≥ s ≥ 0,

‖Sr(t, s)‖q ≤ C(Sr) (1− βµ)t−s(t− s)r/2
q(Sr)∑
k=0

µk/2(t− s)k/2 ∀ µ ∈ (0, µ0].
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This latter relation implies that

t∑
s=0

‖Sr(t, s)‖2q ≤ q(Sr) C2(Sr)

q(Sr)∑
k=0

µk
t∑

u=0

(1− βµ)2uuk+r ∀ µ ∈ (0, µ0].

For all α ≥ 0, there exists a constant Dα <∞, such that, ∀ 0 < µ ≤ 1/β,

∞∑
u=0

(1− βµ)2uuα ≤ Dα/(βµ)
1+α

which concludes the proof.
The previous lemma will allow us to conclude the proof of Theorem 4 if we are

able to prove that

{Sr(t, s)} ∈ L(β, µ0, q, r), for r ∈ {1, . . . , n}.
In fact, we will prove a slightly stronger property: Sr(t, s) ∈ L(β, µ0, qn/r, r), for
r ∈ {1, . . . , n}. This part is more intricate and requires some preparatory lemmas.

Lemma 11. Let j ∈ {1, . . . , r − 1}. Denote ∆j(v, u) = Dj(v, u) −Dj(v, u + 1).
We have, for t ≥ s and for j ∈ {1, . . . , r − 1},

t∑
u=s

ψ(t, u)∆j(t, u)Sr−j(u− 1, s)−
t∑

u=s

ψ(t, u)∆j+1(t, u)Sr−j−1(u− 1, s)

= µ

t∑
u=s

ψ(t, u)F̄u−1Dj(t, u)Sr−j(u−2, s)−µ
t∑

u=s

ψ(t, u)Dj(t, u)F̄u−1Sr−j(u−2, s).

In addition,
t∑

u=s

ψ(t, u)∆r(t, u)ψ(u− 1, s)− ψ(t, s+ 1)Dr(t, s+ 1)

= µ

t∑
u=s

ψ(t, u)F̄u−1Dr(t, u)ψ(u− 2, s)− µ
t∑

u=s

ψ(t, u)Dr(t, u)F̄u−1ψ(u− 2, s).

Proof of Lemma 11. The proof basically amounts to applying the Abel transform
recursively. Hence, it involves only simple algebraic manipulations. First note that

t∑
u=s

ψ(t, u)∆j(t, u)Sr−j(u− 1, s) =

t∑
u=s

(ψ(t, u)− ψ(t, u− 1))Dj(t, u)Sr−j(u− 2, s)

+

t∑
u=s

ψ(t, u)Dj(t, u) (Sr−j(u− 1, s)− Sr−j(u− 2, s)) .

For t ≥ s we have

ψ(t, s)− ψ(t, s− 1) = µψ(t, s)F̄s−1,

ψ(t, s)− ψ(t− 1, s) =

{ −µF̄tψ(t− 1, s), t > s,
I, t = s,

Sk(t, s)− Sk(t− 1, s) = ZtSk−1(t− 1, s)− µF̄tSk(t− 1, s).
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The proof of this lemma is concluded by noting that

Dj(t, u)Zu−1 = Dj+1(t, u− 1)−Dj+1(t, u).

Lemma 12. Let r∈N and j∈{1, . . . , r−1} and let V (µ)�{V (u, v;µ)}(u,v)∈N×Nset

and W (µ) � {W (u, v;µ)}(u,v)∈N×N be such that V (µ) ∈ M(µ0, cr/j, j) and W ∈
L(β, µ0, cr/(r − j), r − j), for some c, µ0 > 0, 0 < β < 1/µ0. Then, the process
U(µ) � {U(t, s;µ)}(u,v)∈N×N defined by

U(t, s;µ) = µ

t−1∑
u=s

ψ(t, u)V (t, u;µ)W (u, s;µ)

belongs to the set L(β, µ0, c, r).
Proof of Lemma 12. The proof is elementary. Let t ≥ s ≥ 0. Since {Ft} ∈

S(β, µ0), |ψ(t, s)| ≤ Kβ,µ0(F )(1− βµ)t−s ∀ µ ∈ (0, µ0] and 0 ≤ s ≤ t. This implies

‖U(t, s;µ)‖c ≤ Kβ,µ0(F )µ

t∑
u=s

(1− βµ)t−u‖V (t, u;µ)‖cr/j‖W (u, s;µ)‖cr/(r−j)

≤ Kβ,µ0
(F )µ sup

s≤u≤t

(‖V (t, u;µ)‖cr/j) sup
s≤u≤t

(‖W (u, s;µ)‖cr/(r−j)/(1− βµ)u−s
)

(t− s)(1− βµ)t−s.

Under the stated assumptions, there exist constants C(V ) < ∞, q(V ) ∈ N, C(W ) <
∞, and q(W ) ∈ N such that, ∀ 0 ≤ s ≤ t and ∀ 0 < µ ≤ µ0,

sup
s≤u≤t

‖V (t, u;µ)‖cr/j ≤ C(V )(t− s)j/2
q(V )∑
l=0

µl/2(t− s)l/2,

sup
s≤u≤t

(‖W (u, s;µ)‖cr/(r−j)/(1− βµ)u−s
) ≤ C(W )(t− s)(r−j)/2

q(W )∑
k=0

µk/2(t− s)k/2
 ,

so that

‖U(t, s;µ)‖c ≤ C(U)(1− βµ)t−s(t− s)r/2
q(W )+q(V )+2∑

l=0

µl/2(t− s)l/2

for some finite constant C(U).
By combining the two preceding lemmas, we obtain the following useful criterion.
Lemma 13. Let c > 0 and r ∈ N. Assume in addition that {Dj(t, s)} ∈

M(cr/j, j) for 1 ≤ j ≤ r and {Sj(t, s)} ∈ L(β, µ0, cr/j, j) for 1 ≤ j < r. Then,
{Sr(t, s)} ∈ L(β, µ0, c, r).

Proof of Lemma 13. By iterated application of Lemma 11, we have for t ≥ s ≥ 0

Sr(t, s) =

t∑
u=s

ψ(t, u)∆r(t, u)ψ(u− 1, s) +

r−1∑
j=1

Gj(t, s),(73)

where for 1 ≤ j ≤ r − 1, the processes Gj(t, s) are defined as

Gj(t, s) = µ

t∑
u=s

ψ(t, u)F̄u−1Dj(t, u)Sr−j(u− 2, s)

− µ
t∑

u=s

ψ(t, u)Dj(t, u)F̄u−1Sr−j(u− 2, s).
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Under the stated assumptions, Lemma 12 shows that Gj(t, s) ∈ L(β, µ0, c, r) for
1 ≤ j ≤ r− 1. The first term on the RHS of (73) may be decomposed (Lemma 11) as

t∑
u=s

ψ(t, u)∆r(t, u)ψ(u− 1, s) = ψ(t, s+ 1)Dr(t, s+ 1)

+ µ

(
t∑

u=s

ψ(t, u)F̄u−1Dr(t, u)ψ(u− 2, s)−
t∑

u=s

ψ(t, u)Dr(t, u)F̄u−1ψ(u− 2, s)

)
.

Since Dr(t, s) ∈ M(µ0, c, r), ‖Dr(t, s)‖c ≤ C(Dr)(t − s)r/2
∑q(Dr)

l=0 µl/2(t − s)l/2 for
some C(Dr) <∞, q(Dr) ∈ N, ∀ t ≥ s ≥ 0 and all 0 < µ ≤ µ0. Thus,∥∥∥∥∥

t∑
u=s

ψ(t, u)∆r(t, u)ψ(u− 1, s)

∥∥∥∥∥
c

≤ Kβ,µ0(F )C(Dr)(1−βµ)t−s(t−s)r/2
q(Dr)∑

l=0

µl/2(t− s)l/2
(1 + µ sup

s≥0
|F̄s|(t− s)

)
∀ t ≥ s ≥ 0 and all 0 < µ ≤ µ0, which concludes the proof.

Under assumption (ii) of Theorem 4, an application of Proposition 2 shows that
{Dr(t, s)} ∈ M(qn/r, r), r ∈ {1, . . . , n}; Lemma 13 leads us to a condition upon
which Sr(t, s) belongs to L(β, µ0, qn/r, r), r ∈ {1, . . . , n}.

Lemma 14. Under the assumptions of Theorem 4, it holds that

for r ∈ {1, . . . , n}, {Sr(t, s)} ∈ L(β, µ0, qn/r, r).

Proof of Lemma 14. The proof is by induction on r. By application of Propo-
sition 2, we have D1(t, s) ∈ M(qn, 1). This implies by Lemma 13 that S1(t, s) ∈
L(β, µ0, qn, 1). Assume now that the property is verified up to order r−1 with 1 < r ≤
n. Set c = qn/r. By application of Proposition 2, we have Dj(t, s) ∈ M(qn/j, j) =
M(cr/j, j). The induction hypothesis implies that Sj(t, s) ∈ L(β, µ0, qn/j, j) =
L(β, µ0, cr/j, j) for 1 ≤ j < r. We have Sr(t, s) ∈ L(β, µ0, c, r) = L(β, µ0, qn/r, r) by
Lemma 13, which concludes the proof.

The proof of Theorem 4 is concluded by applying Lemma 10 and Lemma 14.
Proof of Theorem 5. Solving recursively the difference equation (22), we may

express H
(n+1)
t+1 as a linear combination of J

(n+1)
s , with random matrix-valued weights

Φ(t, s)

H
(n+1)
t+1 = µ

t∑
s=0

Φ(t, s)ZsJ
(n+1)
s .(74)

Since {Ft} ∈ S(a, β, µ0) we have, ∀ 0 < µ ≤ µ0 and all 0 ≤ s ≤ t, ‖Φ(t, s)‖a ≤
K ′

a,β,µ0
(F )(1− βµ)t−s, which implies

‖H(n+1)
t+1 ‖p ≤ K ′

a,β,µ0
(F )β−1 sup

s≥0
‖Zs‖b sup

s≥0
‖J (n+1)

s ‖c.

By construction, H
(n)
s may be decomposed as H

(n)
s = J

(n+1)
s +H

(n+1)
s ; the Minkowski

inequality implies

‖H(n)
s ‖p ≤ ‖J (n+1)

s ‖p + ‖H(n+1
s ‖p ≤

(
1 +K ′

a,β,µ0
(F )β−1 sup

s≥0
‖Zs‖b

)
sup
s≥0
‖J (n+1)

s ‖c,

which concludes the proof.
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NONLINEAR FILTERING SYSTEMS∗
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Abstract. In his talk at the International Congress of Mathematicians in 1982, Brockett pro-
posed to classify all finite-dimensional estimation algebras arising in nonlinear filters. Recently, Chen,
Yau, and Leung [SIAM J. Control Optim., 35 (1997), pp. 1132–1141] claimed that they had classified
all finite-dimensional estimation algebras of maximal rank when the dimension of the state-space is
less than or equal to four. In this paper, we introduce a series of completely new computations about
the estimation algebra, and we find two sets of new equations about the Ω-matrix. As a consequence,
we can prove, without any dimension assumption on the state-space, that the Ω-matrix is a constant
matrix, and thus we succeed in classifying all finite-dimensional estimation algebras of maximal rank
with the state-space dimension being arbitrary.

Key words. finite-dimensional filter, estimation algebra of maximal rank, nonlinear drift,
arbitrary state-space dimension

AMS subject classifications. 17B30, 35J15, 60G35, 93E11

PII. S036301299833464X

1. Introduction. Brockett and Clark [3], Brockett [2], and Mitter [14] initially
began to use estimation algebras to construct finite-dimensional nonlinear filters.
The study of estimation algebras then became important. Ocone [15] observed the
following property of finite-dimensional estimation algebras: a function in a finite-
dimensional estimation algebra must be a polynomial of degree less than or equal to
two. This observation turns out to be a fundamental tool in later studies of finite-
dimensional estimation algebras.

In his talk at the International Congress of Mathematicians in 1982, Brockett [1]
proposed to classify all finite-dimensional estimation algebras. Since then, a number
of progresses have been made on Brockett’s classification problem. Tam, Wong, and
Yau [17] classified all finite-dimensional exact estimation algebras of maximal rank
with arbitrary state-space dimension. Chiou and Yau [8] introduced the concept
of maximal rank estimation algebras and classified all finite-dimensional estimation
algebras of maximal rank with the state-space dimension less than or equal to two.
Later, Chen, Yau, and Leung [4, 7] improved Chiou and Yau’s result in that the
dimension of the state-space is assumed to be less than or equal to three and four,
respectively. But their proofs strongly depend on the dimension assumptions that
n ≤ 3 and that n ≤ 4, and they are difficult to be generalized to the case of arbitrary
dimension n.

In this paper, we classify all finite-dimensional estimation algebras of maximal
rank with arbitrary state-space dimension. Our result is stated as follows.
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Uj Vj Wj

‖ ‖ ‖
Dj

L0−→ [L0, Dj ]
L0−→ [L0, Uj ]

L0−→ [L0, Vj ]�Dl

�Dj

�Dj

[Uj , Dl] [Vj , Dj ] [Wj , Dj ]�Dl

�Dj

[[Vj , Dj ], Dl] [[Wj , Dj ], Dj ]�Dj

[[[Wj , Dj ], Dj ], Dj ]

Fig. 1.1. The computation chart.

Theorem 1.1. Let E be a finite-dimensional estimation algebra of (2.1) of max-
imal rank, and let E0 be the real vector space of dimension 2n+2 with basis given by
1, x1, . . . , xn, D1, . . . , Dn and L0. Then,

1. the drift term f must be a linear vector field ( i.e., each component is a poly-
nomial of degree less than or equal to one ) plus a gradient vector field;

2. E = E0;
3. η is a polynomial of degree less than or equal to two.
Theorem 1.1 improves both results of Tam, Wong, and Yau [17] and Chen, Yau,

and Leung [7] in that it neither assumes that the finite-dimensional estimation algebra
under consideration is exact nor assumes that the state-space dimension ≤ 4.

The difficulty of proving Theorem 1.1 is to prove that ωij is constant for k+ 1 ≤
i ≤ n and k+1 ≤ j ≤ n (where k denotes the quadratic rank of the finite-dimensional
estimation algebra under consideration), which is stated as Lemma 3.5. This difficulty
can be known from Chen and Yau [5, 6], Yau [22], and Yau’s recent work coauthored
with Guoqing Hu.

In this paper, in order to overcome the above difficulty, we first establish Lemma
3.4, which plays a key role in the proof of Lemma 3.5. After Lemma 3.5 has been
proved, the rest of the proof of Theorem 1.1 is straightforward.

In order to establish Lemma 3.4, we develop a series of computations about the
estimation algebra E , which is inspired by Ocone’s series of computations in his paper
[15]. Figure 1.1 is our computation chart and is helpful for the reader to trace our
proof.

As shown in Fig. 1.1, we construct the two elements [[Vj , Dj ], Dl] and [[[Wj , Dj ],
Dj ], Dj ] in E . These two elements can be computed by using the last six formulas
(10)–(15) of Lemma 2.2, and they turn out to have the same form:

“a polynomial of degree two” + “an element of E0.”
In this way, we obtain two polynomials in E of degree two, and then by analyzing the
coefficients of x2

j (j > k) in these two polynomials and by applying Theorem 2.3, we
establish two sets of new equations about the ωij , which are formulated as Lemmas
3.2 and 3.3, respectively. Lemmas 3.2 and 3.3 together immediately imply the elegant
equation

A4
j (j, j) = 0, j = k + 1, . . . , n,(1.1)
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which leads to Lemma 3.4.
In the proof of Lemma 3.4, it is important to think of proving (1.1), while in our

arguments, the term A4
j (j, j) appears automatically when we compute the coefficients

of x2
j (j > k) in [[[Wj , Dj ], Dj ], Dj ].
There are many other striking works which are related to this paper. Among these

are Cohen De Lara [9, 10], Davis and Marcus [11], Dong, Tam, Wong, and Yau [12],
Duncan [13], Marcus [16], Wong [19, 20, 21], and Yau [22]. The recent perspective
paper [13] by Professor Tyrone E. Duncan provides a good account of the past and
the present of the filtering theory.

The rest of this paper is organized as follows. Section 2 contains some basic
concepts and previous results from Ocone [15], Chiou and Yau [8], Yau [22], and
Chen and Yau [5]. Section 3 contains the proof of Theorem 1.1.

2. Preliminaries. Consider the signal observation model:{
dx(t) =f(x(t))dt+ g(x(t))dv(t), x(0) = x0,

dy(t) =h(x(t))dt+ dw(t), y(0) = 0,
(2.1)

in which x, v, y, and w are, respectively, R
n-, R

n-, R
m-, and R

m-valued processes
and v and w are independent, standard Brownian processes. Suppose that the vector
functions f and h are C∞ smooth and that g(x) is an orthogonal matrix for each
x ∈ R

n. We shall refer to x(t) as the state of the system at time t and y(t) as the
observation at time t. ρ(t, x), the conditional probability density of the state, x(t),
given the observation {y(s) : 0 ≤ s ≤ t} is determined by the Duncan–Mortensen–
Zakai equation, which in the unnormalized form is given by

dρ(t, x) = L0ρ(t, x)dt+

m∑
i=1

Liρ(t, x)dyi(t), ρ(0, x) = ρ0(x),(2.2)

where

L0 =
1

2

n∑
i=1

∂2

∂x2
i

−
n∑
i=1

fi
∂

∂xi
−

n∑
i=1

∂fi
∂xi
− 1

2

m∑
i=1

h2
i(2.3)

and for i = 1, . . . ,m, Li is the zero-degree differential operator of multiplication by
hi. (If a is a vector, we use the notation ai to denote the ith component of a.) ρ0 is
the probability density of the initial point x0.

Define

Di =
∂

∂xi
− fi(2.4)

and

η =

n∑
i=1

∂fi
∂xi

+

n∑
i=1

f2
i +

m∑
i=1

h2
i .(2.5)

Then

L0 =
1

2

(
n∑
i=1

D2
i − η

)
.(2.6)
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Throughout this paper, we denote by Pi the totality of all the polynomials of
degree less than or equal to i. Whenever necessary, we use Pi(x1, . . . , xr) to specify
the dependent variables of Pi. The default dependent variables are x1, . . . , xn.

Definition 2.1. The estimation algebra E of the filtering system (2.1) is defined
to be the Lie algebra generated by {L0, L1, . . . , Lm}.

Ocone [15] observed the following basic property for an estimation algebra E to
be finite-dimensional.

Theorem 2.1. Let E be a finite-dimensional estimation algebra. If ϕ is a function
in E, then ϕ is a polynomial of degree less than or equal to two, i.e., ϕ ∈ P2.

Definition 2.2. An estimation algebra E is said to be of maximal rank if for
every 1 ≤ i ≤ n there exists a constant ci such that xi + ci ∈ E.

Let E0 be the real vector space spanned by 1, x1, . . . , xn, D1, . . . , Dn and L0. The
following lemma is valid for an estimation algebra of maximal rank with arbitrary
dimension, and it can be found in Chen, Yau, and Leung [7].

Lemma 2.1. Let E be an estimation algebra of maximal rank associated with the
filtering system (2.1). Then E ⊃ E0.

If E is an estimation algebra of maximal rank, we have by Lemma 2.1 that

E � [Dj , Di] =
∂fj
∂xi
− ∂fi

∂xj
=: ωij , 1 ≤ i, j ≤ n.

If, further, E is finite-dimensional, then ωij ∈ P2 for 1 ≤ i, j ≤ n by Theorem 2.1.
Note that fi as a tensor field is the differential 1-form

∑n
i=1 fi dxi and ωij as a

tensor field is the differential 2-form
∑

1≤i<j≤n ωij dxi ∧ dxj . The exterior derivative
of the former is just the latter, i.e., they have the following relation:

d

(
n∑
i=1

fi dxi

)
=

∑
1≤i<j≤n

ωij dxi ∧ dxj .

On one hand, since d2 = 0, we deduce that ωij ’s satisfy the cyclic relation

∂ωij
∂xl

+
∂ωli
∂xj

+
∂ωjl
∂xi

= 0, 1 ≤ i, j, l ≤ n.(2.7)

On the other hand, the Poincaré lemma means that every d-closed differential form
in R

n is d-exact. Then, ωij ≡ 0 for 1 ≤ i, j ≤ n means that fi is d-closed and thus is
d-exact, i.e., fi is a gradient vector field.

Theorem 2.2 summarizes some results of Yau [22].

Theorem 2.2. Let ωij =
∂fj
∂xi
− ∂fi

∂xj
be constant functions. Then Theorem 1.1

holds.
The proof of Theorem 1.1 is then reduced to showing that ωij , 1 ≤ i, j ≤ n are all

constants. In the following, we recall the existing results about the constant structure
of the Ω-matrix.

Denote by H2 the space of quadratic forms in n variables, i.e., the real vector
space spanned by xixj , with 1 ≤ i ≤ j ≤ n. Let X = (x1, . . . , xn)

′.
Definition 2.3. For any quadratic form p ∈ H2, there exists a symmetric n×n

matrix A such that p(x) = X ′AX. The rank of the quadratic form p denoted by r(p)
is defined to be the rank of the matrix A.

Definition 2.4. A fundamental quadratic form of the estimation algebra E is
an element p0 ∈ E ∩ H2 with the biggest positive rank, i.e., r(p0)≥ r(p) for any
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p ∈ E ∩ H2. The quadratic rank of the estimation algebra E is defined to be the rank
of a fundamental quadratic form of E.

Let p0 be a fundamental quadratic form of E and k := r(p0). After an orthogonal
transformation on x, p0 can be written as

p0 =

k∑
i=1

cix
2
i , ci �= 0.

From p0, we can construct a sequence of quadratic forms in E ∩ H2 as follows:

q0 :=p0,

qj :=[[L0, qj−1], q0] =

k∑
i=1

4jcj+1
i x2

i , j = 1, 2, . . . .

In view of the invertibility of the Vandermonde matrix, we can assume that

p0 =

k∑
i=1

x2
i .(2.8)

Chen and Yau [5, 6] (see also a recent work by Yau and Hu) introduced the above
concepts and proved Theorems 2.3 and 2.4.

Theorem 2.3. Let E be a finite-dimensional estimation algebra of maximal rank.
Let k be the quadratic rank of E, and let p0 (defined by (2.8)) be a fundamental
quadratic form of E. Then p ∈ E ∩ P2 implies that the coefficients of xixj in p are
equal to zero for i = k + 1, . . . , n and j = 1, . . . , n.

Theorem 2.4. Let E be a finite-dimensional estimation algebra of maximal rank.
Let k be the quadratic rank of E. Then

(1) the observation terms hi ∈ P1 for 1 ≤ i ≤ m;
(2) ωij are constants for 1 ≤ i ≤ k or 1 ≤ j ≤ k; and ωij ∈ P1(xk+1, . . . , xn) for

k + 1 ≤ i, j ≤ n.
For the sake of convenience, we also provide the following lemma without proof,

which can be checked out directly.
Lemma 2.2. Assume that g and h are C∞ functions defined on R

n. Then, we
have the following.

(1) [XY,Z] = X[Y,Z] + [X,Z]Y, where X, Y , and Z are differential operators.
(2) [gDi, h] = g ∂h

∂xi
.

(3) [gDi, hDj ] = ghωji + g ∂h
∂xi

Dj − h ∂g
∂xj

Di.

(4) [gD2
i , h] = 2g ∂h

∂xi
Di + g ∂

2h
∂x2
i

.

(5) [D2
i , hDj ] = 2 ∂h∂xiDiDj + 2hωjiDi +

∂2h
∂x2
i

Dj + h
∂ωji
∂xi

.

(6) [D2
i , D

2
j ] = 4ωjiDjDi + 2

∂ωji
∂xj

Di + 2
∂ωji
∂xi

Dj +
∂2ωji
∂xi∂xj

+ 2ω2
ji.

(7) [D2
r , hDiDj ] = 2 ∂h

∂xr
DrDiDj+2hωjrDiDr+2hωirDrDj+

∂2h
∂x2
r
DiDj+2h

∂ωjr
∂xi

Dr

+ h
∂ωjr
∂xr

Di + h∂ωir∂xr
Dj + h

∂2ωjr
∂xi∂xr

.

(8) [gDiDj , hDr] = g ∂h
∂xj

DiDr + g ∂h
∂xi

DjDr + ghωrjDi + ghωriDj + g ∂2h
∂xi∂xj

Dr

+ gh
∂ωrj
∂xi
− h ∂g

∂xr
DiDj .

(9) [DiDj , h] =
∂h
∂xi

Dj +
∂h
∂xj

Di +
∂2h

∂xi∂xj
.
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(10) [[g,Dj ], Dl] =
∂2g

∂xl∂xj
.

(11) [[[g,Di], Dj ], Dl] = − ∂3g
∂xl∂xj∂xi

.

(12) [[gDi, Dj ], Dl] =
∂2g

∂xl∂xj
Di − ∂(gωji)

∂xl
− ∂g

∂xj
ωli.

(13) [[[gDi, Dj ], Dj ], Dj ] = − ∂3g
∂x3
j

Di + 3 ∂
2g
∂x2
j

ωji + 3 ∂g
∂xj

∂ωji
∂xj

+ g
∂2ωji
∂x2
j

.

(14) [[DiDr, Dj ], Dl] = −∂ωjr∂xl
Di − ∂ωji

∂xl
Dr + ωjiωlr + ωjrωli − ∂2ωjr

∂xl∂xi
.

(15) Assume that g ∈ P1 and ωij ∈ P1. Then, we have

[[[gDiDr, Dj ], Dj ], Dj ] =3
∂g

∂xj

(
∂ωjr
∂xj

Di +
∂ωji
∂xj

Dr

)
− 3

(
∂g

∂xj
ωjrωji +

∂(gωjrωji)

∂xj

)
.

3. Proof of Theorem 1.1. By Theorem 2.4, we have ωij ∈ P1 ∀ i, j = 1, . . . , n.
In the following, denote by Ar(i, j) the coefficient of xr in ωij , and denote by Ar the
matrix whose (i, j)-component is Ar(i, j). That is,

Ar(i, j) =
∂ωij
∂xr

, Ar := (Ar(i, j))1≤i,j≤n.(3.1)

Note that Ar is a constant skew-symmetric matrix.
For convenience of notation, we also write

C(j, l) :=

n∑
r=1

ωjrωlr − 1

2

∂2η

∂xl∂xj
(∈ P2; see (3.7) below).(3.2)

Lemma 3.1. For i = k + 1, . . . , n, we have

n∑
r=1

Ai(j, r)Ai(r, j) =

n∑
r=1

Aj(i, r)Aj(r, i)

=
1

2

n∑
r=1

[Ai(i, r)Aj(r, j) +Aj(i, r)Ai(r, j)], j = k + 1, . . . , n

(3.3)

and

n∑
r=1

Ai(i, r)Ai(r, j) =

n∑
r=1

Ai(i, r)Aj(r, i), j = 1, . . . , n.(3.4)

Lemma 3.1 has been derived by Chen, Yau, and Leung [7, pp. 1137–1138], and
the following proof refines some of their arguments.

Proof of Lemma 3.1. Introduce Uj and compute [[L0, Dj ], Dl]. By (2), (3), and
(5) of Lemma 2.2, we have

Uj : = [L0, Dj ] =
1

2

n∑
r=1

[D2
r , Dj ]− 1

2
[η,Dj ]

=

n∑
r=1

(
ωjrDr +

1

2

∂ωjr
∂xr

)
+

1

2

∂η

∂xj
∈ E

(3.5)
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and

[Uj , Dl] =

n∑
r=1

[ωjrDr, Dl]− 1

2

[
Dl,

∂η

∂xj

]

=

n∑
r=1

(
ωjrωlr − ∂ωjr

∂xl
Dr

)
− 1

2

∂2η

∂xl∂xj

= C(j, l)−
n∑
r=1

Al(j, r)Dr ∈ E .

(3.6)

Since the last sum of (3.6) is an element of E by Lemma 2.1 and by the fact that Ar
is a constant matrix, we deduce (noting Theorem 2.1) that

C(j, l) ∈ E ∩ P2, 1 ≤ l, j ≤ n.(3.7)

Then by (3.2), we conclude that η ∈ P4 and that ∀i > k or ∀q > k,

Ciq(j, l) :=
∂2(C(j, l))

∂xi∂xq
= 0 (by Theorem 2.3),(3.8)

which implies (by (3.2)) that

1

2

∂4η

∂xi∂xq∂xl∂xj
=

n∑
r=1

(Ai(j, r)Aq(l, r) +Aq(j, r)Ai(l, r)).(3.9)

Note that (i, q, l, j) is permutable in the left-hand side of (3.9), and this property
immediately gives (3.3) and (3.4), using the fact that Ar is skew-symmetric.

In the following, please keep in mind the following three facts: (1) ωij ∈ P1, (2)
η ∈ P4, and (3) Ar is skew-symmetric.

Next we analyze the two elements [[Vj , Dj ], Dl] and [[[Wj , Dj ], Dj ], Dj ] in E . As a
consequence, we establish two sets of new equations among ωij . They are formulated
as Lemmas 3.2 and 3.3, respectively, below.

Lemma 3.2. For j = k + 1, . . . , n and l = 1, . . . , n, we have

n∑
i,r=1

Aj(j, r)Ar(j, i)Aj(i, l) = 0.(3.10)

Proof of Lemma 3.2. Recall that Uj is given by (3.5), and note that it can be
rewritten as

Uj =

n∑
i=1

(
ωjiDi +

1

2

∂ωji
∂xi

)
+

1

2

∂η

∂xj
∈ E .
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Introduce Vj and compute [[Vj , Dj ], Dl].

Vj :=[L0, Uj ]

=
1

2

n∑
i,r=1

[D2
r , ωjiDi] +

1

4

n∑
r=1

[
D2
r ,

∂η

∂xj

]
+

1

2

n∑
i=1

[ωjiDi, η]

=

n∑
i,r=1

∂ωji
∂xr

DrDi +

n∑
i,r=1

ωjiωirDr +
1

2

n∑
i,r=1

ωji
∂ωir
∂xr

by (5) of Lemma 2.2

+
1

4

n∑
r=1

(
2

∂2η

∂xr∂xj
Dr +

∂3η

∂x2
r∂xj

)
+

1

2

n∑
i=1

ωji
∂η

∂xi
by (4) and (2)

=
n∑

i,r=1

∂ωji
∂xr

DrDi −
n∑
r=1

C(j, r)Dr + p4 + p1 ∈ E by (3.2),

(3.11)

where the notation p4 and p1 are defined, respectively, as

p4 :=
1

2

n∑
i=1

ωji
∂η

∂xi
∈ P4,

p1 :=
1

2

n∑
i,r=1

ωji
∂ωir
∂xr

+
1

4

n∑
r=1

∂3η

∂x2
r∂xj

∈ P1.

We use (10), (12), and (14) of Lemma 2.2 to compute [[Vj , Dj ], Dl] as follows. Since
[[p1, Dj ], Dl] = 0, we have

[[Vj , Dj ], Dl]

=

n∑
i,r=1

∂ωji
∂xr

[[DrDi, Dj ], Dl]−
n∑
r=1

[[C(j, r)Dr, Dj ], Dl] + [[p4, Dj ], Dl]

=

n∑
i,r=1

∂ωji
∂xr

(
−∂ωjr

∂xl
Di − ∂ωji

∂xl
Dr + ωjiωlr + ωjrωli

)
by (14)

−
n∑
r=1

(
∂2C(j, r)

∂xj∂xl
Dr − ∂(ωjrC(j, r))

∂xl
− ∂C(j, r)

∂xj
ωlr

)
by (12)

+
1

2

n∑
i=1

(
∂ωji
∂xj

∂2η

∂xl∂xi
+

∂ωji
∂xl

∂2η

∂xj∂xi
+ ωji

∂3η

∂xj∂xi∂xl

)
by (10).

(3.12)

So, [[Vj , Dj ], Dl] is a first-order differential operator in E with the coefficients
of D1, . . . , Dn being constants. In view of Lemma 2.1 and Theorem 2.1, we derive
from (3.12) that

n∑
i,r=1

∂ωji
∂xr

(ωjiωlr + ωjrωli) +

n∑
i=1

(
∂(ωjiC(j, i))

∂xl
+

∂C(j, i)

∂xj
ωli

)

+
1

2

n∑
i=1

(
∂ωji
∂xj

∂2η

∂xl∂xi
+

∂ωji
∂xl

∂2η

∂xj∂xi
+ ωji

∂3η

∂xj∂xi∂xl

)
∈ E ∩ P2.

(3.13)
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In view of the notation (3.1) and (3.2), we have

n∑
i,r=1

(
Ar(j, i)ωjrωli +Ar(j, i)ωjiωlr −Aj(j, i)ωlrωri

− ∂(ωjiωjrωri)

∂xl

)
+

n∑
i=1

(
∂(C(j, i))

∂xj
ωli −Aj(j, i)C(l, i)

)
∈ E ∩ P2.

(3.14)

For l = 1, . . . , n, the coefficient of x2
j (j ≥ k + 1) in (3.14) is

n∑
i,r=1

(Ar(j, i)Aj(j, r)Aj(l, i) +Ar(j, i)Aj(j, i)Aj(l, r)

−Aj(j, i)Aj(l, r)Aj(r, i)−Al(j, i)Aj(j, r)Aj(r, i)

−Aj(j, i)Al(j, r)Aj(r, i)−Aj(j, i)Aj(j, r)Al(r, i))

+

n∑
i=1

(
Cjj(j, i)Aj(l, i)− 1

2
Aj(j, i)Cjj(l, i)

)

=

n∑
i,r=1

[−Aj(j, r)Ar(j, i)Aj(i, l) +Aj(j, i)Aj(i, r)Aj(r, l)

−Aj(j, i)Aj(i, r)Aj(r, l) +Aj(j, r)Aj(r, i)Al(i, j)

−Aj(j, i)Aj(i, r)Al(r, j)−Aj(j, i)Al(i, r)Aj(r, j)](
since

n∑
i,r=1

Ar(j, i)Aj(j, i) =

n∑
i,r=1

Aj(r, i)Aj(j, i) by (3.4),

and since Cjj(j, i) = 0 = Cjj(l, i) by (3.8)

)

=−
n∑

i,r=1

Aj(j, r)Ar(j, i)Aj(i, l) +A3
j (j, l)−A3

j (j, l)

+ (A2
jAl)(j, j)− (A2

jAl)(j, j)− (AjAlAj)(j, j)

=−
n∑

i,r=1

Aj(j, r)Ar(j, i)Aj(i, l)− (AjAlAj)(j, j)

=−
n∑

i,r=1

Aj(j, r)Ar(j, i)Aj(i, l)

(since AjAlAj is skew-symmetric).

(3.15)

This coefficient should be zero as j ≥ k + 1 by Theorem 2.3. So,

n∑
i,r=1

Aj(j, r)Ar(j, i)Aj(i, l) = 0,

j = k + 1, . . . , n, l = 1, . . . , n.

(3.16)
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Lemma 3.3. We have

A4
j (j, j) =

1

4

n∑
i,l,r=1

Aj(j, r)Ar(j, i)Aj(i, l)Aj(l, j), j = k + 1, . . . , n.(3.17)

Proof of Lemma 3.3. Introduce Wj and compute [[[Wj , Dj ], Dj ], Dj ]. Recall that
ωji ∈ P1, so that all of the terms

∂ωji
∂xl

, i, j, l = 1, . . . , n,

are constants. Also recall that Vj is given by (3.11) and note that it can be rewritten
as

Vj =

n∑
i,l=1

∂ωji
∂xl

DlDi −
n∑
i=1

C(j, i)Di + p4 + p1 ∈ E .

Therefore, we have

Wj :=[L0, Vj ]

=
1

2

n∑
i,l,r=1

∂ωji
∂xl

[D2
r , DlDi] +

1

2

n∑
i,l=1

∂ωji
∂xl

[DlDi, η]

− 1

2

n∑
i,r=1

[D2
r , C(j, i)Di]− 1

2

n∑
i=1

[C(j, i)Di, η] +
1

2

n∑
r=1

[D2
r , p4 + p1]

=
1

2

n∑
i,l,r=1

∂ωji
∂xl

(
2ωirDlDr + 2ωlrDrDi + 2

∂ωir
∂xl

Dr +
∂ωir
∂xr

Dl +
∂ωlr
∂xr

Di

)
by (7)

+
1

2

n∑
i,l=1

∂ωji
∂xl

(
∂η

∂xi
Dl +

∂η

∂xl
Di +

∂2η

∂xl∂xi

)
by (9)

−
n∑

i,r=1

∂(C(j, i))

∂xr
DrDi −

n∑
i,r=1

C(j, i)ωirDr − 1

2

n∑
i,r=1

∂2(C(j, i))

∂x2
r

Di

− 1

2

n∑
i,r=1

C(j, i)
∂ωir
∂xr

− 1

2

n∑
i=1

C(j, i)
∂η

∂xi
by (5) and (2)

+
1

2

n∑
r=1

(
2
∂(p4 + p1)

∂xr
Dr +

∂2p4

∂x2
r

)
by (4).

Then Wj can be written in the following form:

Wj =

n∑
l,r=1

Bj
lrDlDr +

n∑
r=1

(bjr + b
j

r)Dr + p5 + p2 ∈ E ,(3.18)
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where

Bj
lr :=

n∑
i=1

(
∂ωji
∂xl

ωir +
∂ωjr
∂xi

ωil

)
− ∂(C(j, r))

∂xl
∈ P1,

bjr :=

n∑
i=1

(
∂ωji
∂xr

∂η

∂xi
+

1

2
ωji

∂2η

∂xr∂xi
− C(j, i)ωir +

1

2

∂ωjr
∂xi

∂η

∂xi

)
∈ P3,

b
j

r :=

n∑
i,l=1

(
∂ωji
∂xl

∂ωir
∂xl

+
1

2

∂ωji
∂xr

∂ωil
∂xl

+
1

2

∂ωjr
∂xl

∂ωli
∂xi

)

− 1

2

n∑
l=1

∂2(C(j, r))

∂x2
l

+
∂p1

∂xr
≡ a constant,

p5 :=− 1

2

n∑
i=1

C(j, i)
∂η

∂xi
∈ P5,

p2 :=
1

2

n∑
r=1

∂2p4

∂x2
r

+
1

2

n∑
i,r=1

∂ωji
∂xr

∂2η

∂xr∂xi
− 1

2

n∑
i,r=1

C(j, i)
∂ωir
∂xr

∈ P2.

(3.19)

Next we use the formulas (11), (13), and (15) in Lemma 2.2 to compute
[[[Wj , Dj ], Dj ], Dj ] as follows. Noting that

[[[Dr, Dj ], Dj ], Dj ] =
∂2ωjr
∂x2

j

= 0,

[[[p2, Dj ], Dj ], Dj ] = −∂3p2

∂x3
j

= 0,

we have

[[[Wj , Dj ], Dj ], Dj ]

=

n∑
l,r=1

[[[Bj
lrDlDr, Dj ], Dj ], Dj ] +

n∑
r=1

[[[bjrDr, Dj ], Dj ], Dj ]

+

n∑
r=1

b
j

r[[[Dr, Dj ], Dj ], Dj ] + [[[p5, Dj ], Dj ], Dj ]

=

n∑
l,r=1

3
∂Bj

lr

∂xj

(
∂ωjr
∂xj

Dl +
∂ωjl
∂xj

Dr

)

− 3
n∑

l,r=1

(
∂Bj

lr

∂xj
ωjrωjl +

∂(Bj
lrωjrωjl)

∂xj

)
since Bj

lr ∈ P1 and then by (15)

−
n∑
r=1

∂3bjr
∂x3

j

Dr +

n∑
r=1

(
3
∂2bjr
∂x2

j

ωjr + 3
∂bjr
∂xj

∂ωjr
∂xj

)
by (13)

− ∂3p5

∂x3
j

∈ E by (11).

(3.20)
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So, [[[Wj , Dj ], Dj ], Dj ] is a first-order differential operator in E . Note that the
first and third sums in (3.20) are linear combinations of D1, . . . , Dn and are elements
of E since bjlr ∈ P3. Hence,

− 3
n∑

l,r=1

(
∂Bj

lr

∂xj
ωjrωjl +

∂(Bj
lrωjrωjl)

∂xj

)

+

n∑
r=1

(
3
∂2bjr
∂x2

j

ωjr + 3
∂bjr
∂xj

∂ωjr
∂xj

)
− ∂3p5

∂x3
j

∈ E ∩ P2.

(3.21)

Let j > k. The coefficients of x2
j in (3.21) should be zero by Theorem 2.3; that is,

−12
n∑

l,r=1

∂Bj
lr

∂xj
Aj(j, r)Aj(j, l) +

9

2

n∑
r=1

∂3bjr
∂x3

j

Aj(j, r)− 1

2

∂5p5

∂x5
j

= 0.(3.22)

In view of (3.19), we easily check that for j > k

∂Bj
lr

∂xj
=

n∑
i=1

(Al(j, i)Aj(i, r) +Ai(j, r)Aj(i, l))− Cjl(j, r)

=
n∑
i=1

(Al(j, i)Aj(i, r) +Ai(j, r)Aj(i, l)) by (3.8),

∂3bjr
∂x3

j

=

n∑
i=1

(
Ar(j, i)

∂4η

∂x3
j∂xi

+
3

2
Aj(j, i)

∂4η

∂x2
j∂xr∂xi

+
1

2
Ai(j, r)

∂4η

∂x3
j∂xi

− 3Cjj(j, i)Aj(i, r)

)

=

n∑
i,l=1

(−4Ar(j, i)Aj(j, l)Aj(l, i)− 6Aj(j, i)Aj(r, l)Aj(l, i)

− 2Ai(j, r)Aj(j, l)Aj(l, i)) by (3.8),

∂5p5

∂x5
j

=−
n∑
i=1

1

2
× 10Cjj(j, i)

∂4η

∂x3
j∂xi

= 0 by (3.8).

(3.23)

Note that the following two terms

∂4η

∂x2
j∂xr∂xi

,
∂4η

∂x3
j∂xi

,

which have appeared in (3.23), can be computed in the following way. We use (3.9)
with i, q, l, j being replaced, respectively, by j, j, r, i, so as to get the equation

∂4η

∂x2
j∂xr∂xi

= −4
n∑
l=1

Aj(r, l)Aj(l, i).

Then, letting r be equal to j in the above equation, we have

∂4η

∂x3
j∂xi

= −4
n∑
l=1

Aj(j, l)Aj(l, i).
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Substituting (3.23) into (3.22), the left-hand side of (3.22) is equal to

− 12

n∑
i,l,r=1

(Al(j, i)Aj(i, r) +Ai(j, r)Aj(i, l))Aj(j, r)Aj(j, l)

+
9

2

n∑
i,l,r=1

(−4Ar(j, i)Aj(j, l)Aj(l, i)− 6Aj(j, i)Aj(r, l)Aj(l, i)

− 2Ai(j, r)Aj(j, l)Aj(l, i))Aj(j, r)

=12

n∑
i,l,r=1

(Aj(j, l)Al(j, i)Aj(i, r)Aj(r, j)−Aj(j, l)Aj(l, i)Ai(j, r)Aj(r, j))

+

n∑
i,l,r=1

(−18Aj(j, r)Ar(j, i)Aj(i, l)Aj(l, j) + 27Aj(j, r)Aj(r, l)Aj(l, i)Aj(i, j)

+ 9Aj(j, l)Aj(l, i)Ai(j, r)Aj(r, j))

=

n∑
i,l,r=1

(12Aj(j, l)Al(j, i)Aj(i, r)Aj(r, j)− 3Aj(j, l)Aj(l, i)Ai(j, r)Aj(r, j))

+

n∑
i,l,r=1

(−18Aj(j, r)Ar(j, i)Aj(i, l)Aj(l, j) + 27Aj(j, r)Aj(r, l)Aj(l, i)Aj(i, j))

=12

n∑
i,l,r=1

Aj(j, l)Al(j, i)Aj(i, r)Aj(r, j)− 3A4
j (j, j)

(
since

n∑
r=1

Ai(j, r)Aj(r, j) =

n∑
r=1

Aj(j, r)Aj(r, i) by (3.4)

)

− 18

n∑
i,l,r=1

Aj(j, r)Ar(j, i)Aj(i, l)Aj(l, j) + 27A4
j (j, j)

=24A4
j (j, j)− 6

n∑
i,l,r=1

Aj(j, r)Ar(j, i)Aj(i, l)Aj(l, j),

(3.24)

with the last equality holding since

n∑
i,l,r=1

Aj(j, l)Al(j, i)Aj(i, r)Aj(r, j) =

n∑
i,l,r=1

Aj(j, r)Ar(j, i)Aj(i, l)Aj(l, j).

This completes the proof.
Lemmas 3.2 and 3.3 serve to prove Lemma 3.4, which is a new crucial result and

will play a key role in the proof of Lemma 3.5.
Lemma 3.4. Let E be a finite-dimensional estimation algebra of maximal rank.

Then we have

Aj(j, r) = 0, j = k + 1, . . . , n, r = 1, . . . , n.(3.25)
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Proof of Lemma 3.4. We have obtained two sets of elegant equations (3.10) and
(3.17). Combining them, we get

A4
j (j, j) =

1

4

n∑
l=1

Aj(l, j)

 n∑
r,i=1

Aj(j, r)Ar(j, i)Aj(i, l)

 = 0,

j = k + 1, . . . , n.

(3.26)

Since A2
j is symmetric, we have

0 =A4
j (j, j) = (A2

jA
2
j )(j, j) =

n∑
i=1

A2
j (j, i)A

2
j (i, j)

=
n∑
i=1

[A2
j (j, i)]

2, j = k + 1, . . . , n

(3.27)

and, therefore,

A2
j (j, i) = 0, j = k + 1, . . . , n, i = 1, 2, . . . , n.(3.28)

In particular,

A2
j (j, j) = 0, j = k + 1, . . . , n.(3.29)

While by the skew-symmetry of Aj ,

A2
j (j, j) =

n∑
r=1

Aj(j, r)Aj(r, j) = −
n∑
r=1

[Aj(j, r)]
2.(3.30)

We have

n∑
r=1

[Aj(j, r)]
2 = 0,(3.31)

which immediately implies (3.25).
Remark 3.1. In the original version of this paper, to prove Lemma 3.4, we

considered the second-order differential operator Wj and then used Theorem 3.3 of
Chen and Yau [6, p. 1122] to conclude that (for j > k)

0 =
∂Bj

jj

∂xj
=

n∑
i=1

∂ωji
∂xj

∂ωij
∂xj

= −
n∑
i=1

[Aj(j, i)]
2,(3.32)

which immediately implies Lemma 3.4. Unfortunately, the proof of Theorem 3.3 of
Chen and Yau [6] is incorrect. In the second version, we do not use it any more. In-
stead, we consider the two elements [[Vj , Dj ], Dl] and [[[Wj , Dj ], Dj ], Dj ] (which turn
out to be first-order differential operators) in E, and through analyzing the coefficients
of x2

j in these two elements, we obtain Lemmas 3.2 and 3.3, which together imply
(3.32) and thus Lemma 3.4 as well.

After Lemma 3.4 has been obtained, it is easy to deduce from (3.3) of Lemma 3.1
the following lemma.
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Lemma 3.5. Let the estimation algebra E be both of finite dimension and of
maximal rank. Then, ωij , k + 1 ≤ i, j ≤ n, are constants.

Proof of Lemma 3.5. Thanks to Lemma 3.4, (3.3) of Lemma 3.1 gives

n∑
r=1

[Ai(j, r)]
2 =

n∑
r=1

[Aj(i, r)]
2 =

1

2

n∑
r=1

Aj(i, r)Ai(j, r),

i, j = k + 1, . . . , n.

(3.33)

Therefore, for i, j = k + 1, . . . , n,

n∑
r=1

[Ai(j, r)]
2 +

n∑
r=1

[Aj(i, r)]
2 +

n∑
r=1

[Aj(i, r)−Ai(j, r)]
2

=2

n∑
r=1

[Ai(j, r)]
2 + 2

n∑
r=1

[Aj(i, r)]
2 − 2

n∑
r=1

Aj(i, r)Ai(j, r) = 0,

(3.34)

which immediately implies

Ai(j, r) = 0 ∀ i, j = k + 1, . . . , n, r = 1, . . . , n.(3.35)

Noting the cyclic relation (2.7), we get

Ar(i, j) = −Aj(r, i)−Ai(j, r) = Aj(i, r)−Ai(j, r) ∀ i, j = k+1, . . . , n, r = 1, . . . , n,

which, together with (3.35), gives

Ar(i, j) = 0 ∀ i, j = k + 1, . . . , n, r = 1, . . . , n.(3.36)

Recall that ωij ∈ P1 for i, j = 1, . . . , n, so that (3.36) implies that ωi,j , k + 1 ≤
i, j ≤ n are constants.

Remark 3.2. Here we realize a new scheme to prove Lemma 3.5. First show
Aj(j, r) = 0 (Lemma 3.4) and then show Ai(j, r) = 0 for i �= j and i �= r. This is
different from Chen, Yau, and Leung [7, pp. 1137–1138], who first used the dimension
assumption n ≤ 4 and Lemma 3.1 to show Ai(j, r) = 0 for i �= j and i �= r, and then
to show Aj(j, r) = 0.

Remark 3.3. Lemma 3.5 can also be derived from the inequality (3.16) of Chen,
Yau, and Leung [7, p. 1138] by applying our new result, Lemma 3.4. However, Chen,
Yau, and Leung [7] did not obtain Lemma 3.4 for arbitrary dimension n, and nothing
shows that they had realized the importance of proving Lemma 3.4. A crucial point
of this paper is that we have realized (since the original version of this paper) the key
role of Lemma 3.4 and that we succeed in establishing Lemma 3.4.

Proof of Theorem 1.1. From Lemma 3.5 and Theorem 2.4, we conclude that all
ωij , 1 ≤ i, j ≤ n, are constants. Then Theorem 2.2 concludes our proof.
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ASYMPTOTIC OPTIMALITY OF APPROXIMATE FILTERS IN
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Abstract. Approximate filters are proposed for semilinear and nonlinear stochastic systems
with colored noises. Basically these filters are defined as those which are optimal when the noises
are white. Their long time behavior is investigated and their asymptotic optimality is shown in two
cases under some reasonable assumptions.

Key words. nonlinear filtering, colored noises, approximate filters, asymptotic optimality

AMS subject classifications. 93E11, 60G35

PII. S0363012998333906

1. Introduction. Let (Ω,F , (Ft),P) be a filtered probability space. Let X =
(Xt, t ≥ 0) and Y = (Yt, t ≥ 0) be processes, taking values in R

d and R
p, respectively,

uniquely defined by the system of stochastic differential equations{
dXt = b(Xt)dt+ dξt, t ≥ 0, X0,

dYt = h(Xt)dt+ dηt, t ≥ 0, Y0 = 0.
(1)

Here X0 stands for some F0-measurable random initial condition for X, with a given
distribution ν0, and ξ = (ξt, t ≥ 0) and η = (ηt, t ≥ 0) are (Ft)-adapted noise
processes. Supposing that only Y is observed but one wishes to know X, the classical
problem of filtering the signal X at time t from the observation of Y up to time t
occurs. The solution to this problem is the conditional distribution Πt of Xt given
Yt = σ({Ys , 0 ≤ s ≤ t}), which we shall call the exact filter.

If in model (1) the functions b and h are linear and the processes ξ and η are
(Ft)-Brownian motions, then it is known from Ocone and Pardoux [9] that, under
stabilizability and detectability assumptions, for any distribution of ν0 such that
E[|X0|2] < +∞, the exact filter is, asymptotically in time, approached by a Kalman
filter. In the same paper, Ocone and Pardoux proved also that in the case of a signal
with limiting ergodic behavior observed in additive white noise through a nonlin-
ear channel, the solution to the filtering equations initialized with an incorrect prior
distribution approaches the exact filter as time goes to infinity.

In the present paper we consider the filtering model (1) when the processes ξ and
η are possibly nonindependent and non-Gaussian colored noises. We assume that{

dξt = bζ(ζt)dt+ dVt, t ≥ 0, ξ0 = 0,

dηt = hζ(ζt)dt+ dWt, t ≥ 0, η0 = 0.
(2)

Here V = (Vt, t ≥ 0) and W = (Wt, t ≥ 0) are independent (Ft)-Brownian motions
in R

d and R
p, respectively. We assume that E[V1V

′
1 ] = ΣV for some given symmetric
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2000; published electronically October 11, 2000.
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nonnegative definite matrix ΣV , and E[W1W
′
1] = Ip, where Ip denotes the p × p

identity matrix. Moreover, ζ = (ζt, t ≥ 0) is an (Ft)-adapted perturbation process
taking values in R

k. We suppose also that the pair (ζ,X0) is independent of (V,W ).
Of course, in model (1)–(2), the exact filter Πt for X is nothing but the marginal
distribution of the exact filter for the pair (ζ,X). The determination of Πt, which
is in general an infinite dimensional problem, requires the complete knowledge of
the joint probabilistic structure of ζ,X, and Y and leads to computations in a space
dimension which is larger than that of the system of interest. Hence it is interesting to
elaborate approximate filters which ignore a part of the actual structure of the system,
and then are more easily computable, but may have a long time behavior close to that
of the exact filter. Here this question is addressed under the assumptions that

bζ(0) = 0, hζ(0) = 0,(A0)

and the perturbation process ζ converges to zero in some appropriate sense which will
be made precise later. We propose approximate filters which are basically the optimal
filters when the noises are independent white noises, i.e., ζ ≡ 0 since then, from (A0),
ξ ≡ V and η ≡W .

Actually, it is convenient to work on the canonical probability space of the process
(ζ,X, Y ). We suppose that the paths of ζ belong to the set Ω0 = L2

loc(R
+ ; R

k) of
locally square integrable functions from R

+ into R
k. Let us denote by Ω1 = C(R+ ; R

d)
(resp., Ω2 = C0(R+ ; R

p)) the set of continuous functions from R
+ into R

d (resp., R
p

with value zero at t = 0). Define Ω = Ω0 × Ω1 × Ω2, F as its Borel field, (Ft)
as the canonical Borel filtration on Ω, and (ζt, Xt, Yt)(z, x, y) = (zt, xt, yt) for any
(z, x, y) ∈ Ω. Let P be the distribution on Ω corresponding to the filtering model
defined by (1)–(2). Similarly, let P

0 be the distribution on Ω corresponding to the
filtering model defined by (1)–(2) when the noises are white, i.e., ζ ≡ 0 since we
assume that (A0) is fulfilled. Of course, P

0 is nothing but the product probability
δ0⊗P , where δ0 is the Dirac measure on Ω0 concentrated at 0 and P is the distribution
on Ω1 × Ω2 corresponding to the filtering model (1) when ξ and η are independent
Brownian motions and the distribution of X0 is ν0. In what follows the symbols E[. ]
and E

0[. ] will stand for an expectation or a conditional expectation computed with
respect to P and P

0, respectively. So for the exact filter Πt of Xt, we write

Πt(ϕ) := E[ϕ(Xt) | Yt]
for any ϕ in the set Mb(R

d) of all bounded measurable functions from R
d into R.

Similarly, when Xt is P-integrable, for the conditional expectation we write X̂t :=
E[Xt | Yt].

The basic approximate filter is taken as the conditional distribution Π0
t ofXt given

Yt with respect to P
0, and we write also Π0

t (ϕ) := E
0[ϕ(Xt) | Yt] for any function ϕ as

above and, when it is well defined, X̂0
t := E

0[Xt | Yt]. We shall also consider approxi-
mate filters defined similarly to Π0 but with some more convenient prior distribution
ν in place of the true one ν0. This will be made precise later.

The paper is organized as follows. In section 2, we consider what we call the
semilinear case, where the functions b and h are linear but functions bζ and hζ may
be nonlinear. We derive a representation of the exact filter which extends a formula
obtained by Makowski [8] and Beněs and Karatzas [1] (see also Haussmann and Par-
doux [4]) for a linear system with white noises and non-Gaussian initial conditions.
Here Kalman filters can be taken as approximate filters and their asymptotic anal-
ysis is led under some stabilizability and detectability assumptions. In section 3, a
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nonlinear case where the signal has a limiting ergodic behavior is investigated. Here
the approximate filter appears as the optimal filter corresponding to an incorrect prior
distribution, and the asymptotic study uses the results of Ocone and Pardoux [9] on
the asymptotic stability of optimal filters with respect to their initial condition.

2. The semilinear case. In this section, we are interested in the case of a
semilinear system where the signal and observation dynamics are linear with respect
to the state but the action of the pertubation process ζ can be nonlinear. Precisely,
here we assume that in model (1)–(2) the condition (A0) is fulfilled and, moreover,
the following conditions hold:

b(x) = Bx, h(x) = Hx, x ∈ R
d, and bζ and hζ are Lipschitzian functions;(A1)

(B,Σ
1
2

V ) is a stabilizable pair, and (B,H) is a detectable pair;(A2)

for all t ≥ 0 E

[∫ t

0

|ζs|2ds
]
< +∞, and lim

t → +∞ E[|ζt|2] = 0.(A3)

Then the process (X,Y ) taken under P is the solution to the filtering model{
dXt = BXtdt+ bζ(ζt)dt+ dVt, t ≥ 0, X0,

dYt = HXtdt+ hζ(ζt)dt+ dWt, t ≥ 0, Y0 = 0.
(3)

Obviously under the probability P
0, which corresponds to ζ ≡ 0, the system may be

reduced to the linear system{
dXt = BXt dt+ dVt, t ≥ 0, X0,

dYt = HXt dt+ dWt, t ≥ 0, Y0 = 0.
(4)

In what follows, the notation N (µ,Λ) will be used for the Gaussian law on some space
R
l with mean µ ∈ R

l and covariance matrix Λ. For any vector x ∈ R
d and any d× d

matrix R ≥ 0, let X̂x,R
t and QR

t be the solutions to the Kalman filtering equations
corresponding to model (4) initialized with (x,R), i.e.,

dX̂x,R
t = BX̂x,R

t dt+QR
t H

′
[dYt −HX̂x,R

t dt], t ≥ 0, X̂x,R
0 = x,(5)

Q̇R
t = BQR

t +QR
t B

′
+ΣV −QR

t H
′
HQR

t , t ≥ 0, QR
0 = R.(6)

The Gaussian distribution Πx,Rt = N (X̂x,R
t , QR

t ) will be referred to as a Kalman filter
initialized with (x,R). Of course, if ν0 = N (m0, Q

0), the basic approximate filter Π0
t

in model (3) is the Kalman filter initialized with (m0, Q0). Actually, whatever is the

prior distribution ν0, all Kalman filters Πx,Rt = N (X̂x,R
t , QR

t ), x ∈ R
d, R ≥ 0, are

candidates as approximate filters. The key point for the asymptotic study of these
filters relies on a representation of the exact filter Πt which we derive now.

2.1. Representation of the exact filter. For any z = (zt, t ≥ 0) ∈ Ω0 and
x0 ∈ R

d, let us set

ζ∗t (z, x0) = eBtx0 +

∫ t

0

eB(t−s)bζ(zs)ds, t ≥ 0,(7)
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〈K〉∗t (z, x0) :=

∫ t

0

|Hζ∗s (z, x0) + hζ(zs)|2ds.(8)

Omitting the dependencies on (z, x0) as will be done often from now on, we introduce
also the Kalman-type equations for processes X̂∗

t ∈ R
d, K̂∗

t ∈ R and functions Q∗
t ∈

R
d×d, St ∈ R

d, and Tt ∈ R.

dX̂∗
t = BX̂∗

t dt+Q∗
tH

′
[dYt −HX̂∗

t dt], t ≥ 0, X̂∗
0 = 0,(9)

dK̂∗
t = [Hζ∗t + hζ(zt) +HSt]

′
[dYt −HX̂∗

t dt], t ≥ 0, K̂∗
0 = 0,(10)

Q̇∗
t = BQ∗

t +Q∗
tB

′
+ΣV −Q∗

tH
′
HQ∗

t , t ≥ 0, Q∗
0 = O,(11)

Ṡt = (B −Q∗
tH

′
H)St −Q∗

tH
′
[Hζ∗t + hζ(zt)], t ≥ 0, S0 = 0,(12)

Ṫt = −2[Hζ∗t + hζ(zt)]
′
HSt − S

′
tH

′
HSt, t ≥ 0, T0 = 0.(13)

Finally, we define

Ct :=

(
Q∗
t St

S
′
t Tt

)
.(14)

The following statement extends to the semilinear model (3) a formula obtained
by Makowski [8] and Beněs and Karatzas [1] (see also Haussmann and Pardoux [4])
for a linear system with white noises and non-Gaussian initial conditions.

Proposition 2.1. Let Πt be the exact filter in model (3) (taken under P). Then
for any ϕ ∈M+(Rd) the following holds:

Πt(ϕ) =

∫
Ω0×Rd

e[− 1
2 〈K〉∗t+ 1

2Tt+K̂
∗
t ](z,x0)Jt(z, x0)dP(ζ,X0)(z, x0)∫

Ω0×Rd

e[− 1
2 〈K〉∗t+ 1

2Tt+K̂
∗
t ](z,x0)dP(ζ,X0)(z, x0)

,(15)

with

Jt(z, x0) =

∫
Rd+1

ϕ(ζ∗t (z, x0) + u)n̄z,x0

t (du, dv),(16)

where for all z = (zt, t ≥ 0) ∈ Ω0, x0 ∈ R
d, and t ≥ 0 the symbol n̄z,x0

t stands for the
Gaussian distribution on R

d+1 with mean ([X̂∗
t + St(z, x0)]

′, K̂∗
t (z, x0) + Tt(z, x0))

′

and covariance Ct(z, x0). Here the quantities depending on (z, x0) are defined by
(7)–(14).

Proof. From (3) we may decompose the signal X as

Xt = ζ∗t +X∗
t , t ≥ 0,(17)

where

ζ∗t = ζ∗t (ζ,X0); X∗
t =

∫ t

0

eB(t−s)dVs, t ≥ 0.

Then by means of an appropriate change of probability (see Le Breton and Roubaud
[7] for details), applying the Girsanov theorem and the classical Bayes formula, one
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can show that

Πt(ϕ) =

∫
Ω0×Rd

e−
1
2 〈K〉∗t (z,x0)I

(1)
t (z, x0)dP(ζ,X0)(z, x0)∫

Ω0×Rd

e−
1
2 〈K〉∗t (z,x0)I

(2)
t (z, x0)dP(ζ,X0)(z, x0)

,

with

I
(1)
t (z, x0) =

∫
Rd+1

ϕ(ζ∗t (z, x0) + u)evnz,x0

t (du, dv),

I
(2)
t (z, x0) =

∫
Rd+1

evnz,x0

t (du, dv).

Here nz,x0

t is the conditional distribution of Zt(z, x0) = (X∗
t
′,K∗

t (z, x0))
′ given Yt in

the model
dX∗

t = BX∗
t dt+ dVt, t ≥ 0, X∗

0 = 0,

dK∗
t (z, x0) = [Hζ∗t (z, x0) + hζ(zt)]

′dW ∗
t , t ≥ 0, K∗

0 (z, x0) = 0,

dYt = HX∗
t dt+ dW ∗

t , t ≥ 0, Y = 0,

where W ∗ is some Brownian motion independent of V .
Actually, nz,x0

t is nothing but the Gaussian distribution N (Ẑt(z, x0), Ct(z, x0)),

where Ẑt(z, x0) = (X̂∗
t

′
, K̂∗

t (z, x0))
′ and Ct(z, x0) are given by (9)–(14). Hence in

order to get (15)–(16) it remains to show that the probability distribution n̄z,x0

t defined
by

n̄t
z,x0(du, dv) := e[− 1

2Tt−K̂∗
t ](z,x0)evnz,x0

t (du, dv)

is nothing but the Gaussian distribution onR
d+1 with mean ([X̂∗

t +St(z, x0)]
′, K̂∗

t (z, x0)
+ Tt(z, x0))

′ and covariance Ct(z, x0). A direct calculation of the characteristic func-
tional of n̄z,x0

t gives the result.
Remark 2.2. Notice that substituting P

0 for P in Proposition 2.1, i.e., taking
ζ ≡ 0 and then also ζ∗t (z, x0) ≡ eBtx0, gives a representation of the approximate filter
Π0
t . Of course, the corresponding formula reduces to the one already known for the

optimal filter in a linear system with non-Gaussian initial condition.
Remark 2.3. Comparing (9) and (11) to (5)–(6), it is clear that X̂∗

t = X̂0,O
t and

Q∗
t = Q̂O

t , where X̂
0,O
t and QO

t are the solutions of (5) and (6) corresponding to initial
conditions 0 and O, respectively. In other words, the marginal distribution of nz,x0

t

on R
d is nothing but the approximate Kalman filter Π0,O

t for Xt, defined by (5)–(6),
initialized with (0, O).

2.2. Asymptotic optimality of the approximate filter. Now we can show
that an approximate Kalman filter Πx,Rt = N (X̂x,R

t , QR
t ), defined by (5)–(6) and ini-

tialized with arbitrary x ∈ R
d and R ≥ 0, is asymptotically optimal when E[|X0|2] <

+∞. The following extends to the case of colored noises in the signal and in the ob-
servation, the statement obtained for white noises by Ocone and Pardoux [9, Theorem
2.6].

Proposition 2.4. Assume that in model (3), the conditions (A0), (A1), (A2),
and (A3) are fulfilled. Suppose also that E[|X0|2] < +∞. Then for any x ∈ R

d and
any d× d matrix R ≥ 0,

lim
t → ∞ E[|X̂t − X̂x,R

t |2] = 0,(18)
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and for all uniformly continuous ϕ ∈Mb(R
d),

lim
t → ∞ E[|Πt(ϕ)−Πx,Rt (ϕ)|2] = 0.(19)

Proof. The proof parallels that of [9, Theorem 2.6], and we refer to Le Breton
and Roubaud [7] for details. Concerning the limiting property (19), let us point out
the fact that the key point is to show that

lim
t → ∞ E[|Πt(ϕ)−N (X̂∗

t , Q
∗
t )(ϕ)|2] = 0(20)

for any uniformly continuous function ϕ ∈Mb(R
d). Observe that

Πt(ϕ)−N (X̂∗
t , Q

∗
t )(ϕ) = E[ϕ(Xt) | Yt]− E[ϕ(X̂∗

t + Ut)],

where for each t ≥ 0, Ut is a Gaussian vector with mean zero and covariance matrix
Q∗
t . From (15)–(16) we have

(21) Πt(ϕ)−N (X̂∗
t , Q

∗
t )(ϕ)

=

∫
Ω0×Rd

e(−
1
2 〈K〉∗t+ 1

2Tt+K̂
∗
t )(z,x0)∆t(z, x0)dP(ζ,X0)(z, x0)∫

Ω0×Rd

e(−
1
2 〈K〉∗t+ 1

2Tt+K̂
∗
t )(z,x0)dP(ζ,X0)(z, x0)

,

where

∆t(z, x0) = E[ϕ(X̂∗
t + (St + ζ∗t )(z, x0) + Ut)]− E[ϕ(X̂∗

t + Ut)].

Let ε > 0. Choose η > 0 such that for all y and y′ ∈ R
d, if |y − y′| ≤ η, then

|ϕ(y)− ϕ(y′)|2 <
ε

4
.

Decompose the integral in the numerator of (21) into the sum of the integral over the
region {|(ζ∗t +St)(z, x0)| < η} and the integral over the region {|(ζ∗t +St)(z, x0)| ≥ η}.
We obtain

|Πt(ϕ)−N (X̂∗
t , Q

∗
t )(ϕ)| ≤ sup

|y−y′|<η
|ϕ(y)− ϕ(y′)|+ 2||ϕ||∞E[1l{|(ζ∗t+St)|≥η} | Yt],

and therefore,

E[|Πt(ϕ)−N (X̂∗
t , Q

∗
t )(ϕ)|2] ≤

ε

2
+
8||ϕ||2∞

η2
E[|ζ∗t + St|2].

Since actually limt → ∞ E[|ζ∗t + St|2] = 0, there is a T > 0 such that for all t > T ,

E[|Πt(ϕ)−N (X̂∗
t , Q

∗
t )(ϕ)|2] ≤ ε.

Thus (20) is obtained, which achieves the proof.
Remark 2.5. One consequence of Proposition 2.4 is that in the considered case

of a nonlinear action of the pertubation process ζ on the basically linear dynamics of
the signal-observation process, the approximate filter is “asymptotically insensitive to
perturbations of its initial condition.”

Remark 2.6. Actually, it is possible to allow some correlation between the signal
X and the observation noise in model (3). The statement of Proposition 2.4 can be
easily extended to the case where in the state equation for X a term of the form
DdYt, D ∈ R

d×p, is added.
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3. The nonlinear case. In this section we consider the case where in model
(1)–(2) all functions b, bζ , h, and hζ may be nonlinear but the system has a limiting
ergodic behavior. Here, additionally to (A0), we assume that the following conditions
hold.

(A∗
1) b, bζ , and hζ are Lipschitzian; h is continuous; hζ and h are bounded.

(A∗
2) There exist two constants r > 0 and α > 0 such that for x ∈ R

d,

x′b(x) ≤ −α|x| if |x| > r.

We suppose also that the process ζ is generated by the ordinary differential equation

ζ̇t = a(ζt), t ≥ 0, ζ0,

where a is a Lipschitzian function from R
k into R

k. Concerning the deterministic flow
φ = (φt, t ≥ 0) associated with that equation and the initial condition ζ0, we assume
that

(A∗
3) φ(0) ≡ 0 and φ is contracting with some exponential rate λ > 0, i.e.,

|φt(z1)− φt(z2)| ≤ e−λt|z1 − z2|, t ≥ 0, z1, z2 ∈ R
k.

The random variable ζ0 is F0-measurable and E[exp c0|ζ0|2] < +∞ for c0 = K2
ζ /λ,

where Kζ is the maximum of the Lipschitz constants for bζ and hζ . Finally here we
assume that the Brownian motion V is nondegenerate, i.e., the matrix ΣV is positive.

The concerned process (ζ,X, Y ) taken under P on Ω (where actually Ω0 may be
reduced to C(R+;Rk)) is the (Ft)-Markov diffusion process solution of the system

dζt = a(ζt)dt, t ≥ 0, ζ0,

dXt = b(Xt)dt+ bζ(ζt)dt+ dVt, t ≥ 0, X0,

dYt = h(Xt)dt+ hζ(ζt)dt+ dWt, t ≥ 0, Y0 = 0.

(22)

The determination of the exact filter Πt is, in general, an infinite dimensional problem.
Actually, the evolution in time of Πt can be described by the so-called Zakai equation
(cf. [11] or, e.g., [2], [10]), where, of course, the spatial dimension is k + d and the
initial condition is P(ζ0,X0), which will be denoted by π0.

Under the probability P
0, which here corresponds to ζ0 = 0, the system may be

reduced to {
dXt = b(Xt)dt+ dVt, t ≥ 0, X0,

dYt = h(Xt)dt+ dWt, t ≥ 0, Y0 = 0.
(23)

Then the evolution in time of the approximate filter Π0
t is described by a Zakai equa-

tion for which numerical computations are easier since the spatial dimension is d only
and the initial condition is the distribution ν0 of X0.

Here the asymptotic study of the approximate filter will use results of Ocone and
Pardoux [9] on the asymptotic stability of optimal filters with respect to perturba-
tions to their initial condition for systems with ergodic limiting behavior. So now we
summarize the material we need from [9], restricting ourselves to a specific situation
which is appropriate to our purpose.
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3.1. Stability of filters with respect to their initial condition. Consider
a filtering model specified by a signal-observation pair (Z, Y ) such that the following
hold.

• The signal Z = (Zt, t ≥ 0) is a continuous, R
n-valued homogeneous Markov

process with some initial distribution π on R
n.

• The R
p-valued observation process Y is defined by

Yt =

∫ t

0

H(Zs) ds + Wt, t ≥ 0,

where W is a R
p-valued standard Brownian motion independent of Z and H is a

bounded continuous function from R
n into R

p.
Let us work as before on the canonical stochastic basis, which here can be taken as

Ω = C(R+;Rn) × C0(R+;Rp). We denote by P
π the distribution on Ω corresponding

to the above model specified by the initial condition π. We denote also by E
π[. ]

an expectation computed with respect to P
π so that the optimal filter Ππt for Zt

corresponding to the prior distribution π is defined by

Ππt (ψ) = E
π[ψ(Zt)|Yt], ψ ∈Mb(R

n).

Given two different initial conditions π0 (the true prior distribution, say) and π̄0 (an
incorrect prior distribution), Ocone and Pardoux [9] studied the long time behavior
of the difference Ππ0

t (ψ) − Ππ̄0
t (ψ) under the probability P

π0 . They introduce some
conditions which in the present case may be stated as follows. Let Cb(Rn) be the set
of those functions in Mb(R

n) which are continuous, and let (St, t ≥ 0) denote the
transition semigroup of the process Z.

Assume the following.
(H1) (St, t ≥ 0) is a strongly continuous semigroup satisfying the Feller property,

i.e., St(Cb(Rn)) ⊂ Cb(Rn) for all t ≥ 0, and admitting a unique invariant measure µ
such that for all ψ ∈ Cb(Rn)

lim sup
t → +∞

∫
Rn

|Stψ(z)− µ(ψ)|µ(dz) = 0.

Then, denoting by πSt the distribution of the random variable Zt under P
π, it is said

that (St, t ≥ 0) forgets π for µ if

πSt → µ weakly as t → +∞.(H2(π))

In what follows, Rπ denotes the marginal distribution of P
π on Ω2 = C0(R+;Rp), i.e.,

the distribution of the observation process Y corresponding to the initial distribution
π for the signal Z. Then, applying [9, Theorem 3.2] to the just described situation,
we get the following lemma.

Lemma 3.1. Assume that
(i) (St, t ≥ 0) satisfies (H1),
(ii) (H2(π0)) and (H2(π̄0)) are both satisfied, and
(iii) Rπ0 is absolutely continuous with respect to Rπ̄0 .

Then, for every continuous ψ ∈Mb(R
n),

lim
t → +∞ E

π0 [|Ππ0
t (ψ)−Ππ̄0

t (ψ)|2] = 0.
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3.2. Asymptotic optimality of the approximate filter. Now we show that
the version above of the result of Ocone and Pardoux is appropriate to address our
problem concerning the asymptotic optimality of the approximate filter in model (22).
Of course, we may look at this model as a signal-observation model of the type which
has just been discussed in section 3.1. The process Z = (ζ ′, X ′)′ is the R

k+d-valued
Markovian signal with initial condition π0 = P(ζ0,X0). The exact (resp., approximate)

filter Πt (resp., Π
0
t ) is the optimal filter Π

π0
t (resp., Ππ̄0

t ) corresponding to the true
(resp., incorrect) prior distribution π0 (resp., π̄0 = δ0⊗ν0, where ν0 is the distribution
of X0, i.e., the second marginal of π0).

Now we can prove the asymptotic optimality of the approximate filter Π0
t in the

following sense.
Proposition 3.2. Assume that in model (22), the conditions (A0), (A

∗
1), (A

∗
2),

and (A∗
3) are fulfilled. Then for every continuous ϕ ∈Mb(R

d),

lim
t → +∞ E[|Πt(ϕ)−Π0

t (ϕ)|2] = 0.(24)

Proof. The proof consists of showing that the conditions of Lemma 3.1 are all
satisfied.

Condition (i). At first let us notice that, from Hasminski [3], condition (A∗
2) is

a sufficient condition for the ergodicity of a Markov diffusion process X0 associated
with the first stochastic differential equation in (23). Under this condition the corre-
sponding semigroup (S0

t , t ≥ 0) admits a unique invariant measure µ0 and (S0
t , t ≥ 0)

forgets any probability measure ν on R
d for µ0, i.e.,

νS0
t → µ0 weakly as t → +∞,(25)

where νS0
t denotes the law of X0

t when the distribution of X0
0 is ν.

Now let (St, t ≥ 0) be the transition semigroup of the diffusion process Z =
(ζ

′
, X

′
)
′
generated by (22). Under our assumptions, it is well known that (St)t≥0 is

a strongly continuous semigroup satisfying the Feller property. Moreover, from the
discussion above about the consequences of (A∗

2) for the first equation in (23), it is
straightforward to show that the measure µ = δ0⊗µ0, where µ0 is the unique invariant
measure of (S0

t , t ≥ 0), is an invariant measure of (St, t ≥ 0). The uniqueness of µ0

implies the uniqueness of µ, and from (25), (H1) can be obtained easily.
Condition (ii). Since the law π0St of Zt under P

0 = P
π̄0 coincides with the law

δ0 ⊗ (ν0S
0
t ) on Ω0 × Ω1, the condition (H2(π̄0)) is directly obtained from (25). It

remains to verify that (H2(π0)) is fulfilled. Since (St, t ≥ 0) admits a unique invariant
measure, it suffices to show that the family of laws {PZt , t ≥ 0}, where PZt = π0St,
is uniformly tight, i.e., for any ε > 0, there is a compact set K ⊂ R

n such that

P([Zt ∈ K]) ≥ 1− ε for all t ≥ 0.

But from (A∗
3), ζ converges to 0 in probability under P = P

π0 . Then, denoting PXt

the distribution of Xt under P, it suffices to prove that the family {PXt , t ≥ 0} is
uniformly tight. Let us introduce the new probability P̃ which is locally absolutely
continuous with respect to P with the local Radon–Nikodým derivative Lt, where

Lt := exp

{
−Kt − 1

2
〈K〉t

}
,

Kt :=

∫ t

0

bζ(ζs)
′
dVs +

∫ t

0

hζ(ζs)
′
dWs, t ≥ 0,

〈K〉t :=

∫ t

0

|bζ(ζs)|2 ds+
∫ t

0

|hζ(ζs)|2 ds, t ≥ 0.
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Then also P is locally absolutely continuous with respect to P̃ with the local Radon–
Nikodým derivative L−1

t . Then, for any r > 0, we have

P([|Xt| > r]) = Ẽ[1l{|Xt|>r}L
−1
t ].

But under P̃, the process X satisfies the stochastic differential equation

dXt = b(Xt) dt+ dṼt, t ≥ 0, X0,

where Ṽ is a Brownian motion and X0 has still distribution ν0 and is independent
of Ṽ . Therefore, under P̃ the distribution of the random variable Xt coincides with
ν0S

0
t . Hence by the Cauchy–Schwarz inequality, for any r > 0 we get

P([|Xt| > r]) ≤ [P̃([|Xt| > r])]
1
2 [Ẽ(L−2

t )]
1
2 ,

or, equivalently,

P([|Xt| > r]) ≤ [ν0S
0
t ({x ∈ R

d : |x| > r})] 1
2
[
E(L−1

t )
] 1

2 .(26)

But, taking into account the independence of ζ and (V,W ) under P, conditioning on
ζ, it is easy to check that

E(L−1
t ) = E(exp〈K〉t).

Then, making use of assumptions (A0), (A
∗
1), and (A∗

3), it is readily seen that there
exists some positive constant C such that

E(L−1
t ) ≤ C < +∞.(27)

Moreover, assumption (A∗
2) implies that the family of distributions {ν0S

0
t , t ≥ 0} is

uniformly tight. Therefore, for given ε > 0 and C > 0, there exists an r > 0 such that

ν0S
0
t ({x ∈ R

d : |x| > r}) ≤ ε2

C
for all t ≥ 0.

Hence, due to (26) and (27), for this r it follows that

P([|Xt| > r]) ≤ ε for all t ≥ 0.

This means that the family of laws {PXt , t ≥ 0} is uniformly tight and we can conclude
that (H2(π0)) is fulfilled.

Condition (iii). Recall that Rπ0 and Rπ̄0 are the marginal distributions on Ω2 of

P = P
π0 and P

0 = P
π̄0 , respectively. The probability P̃, already used above, has the

same marginal distribution on Ω1 ×Ω2 as the probability P
0, and hence its marginal

distribution on Ω2 is nothing but Rπ̄0 . Therefore, to prove that Rπ0 is absolutely
continuous with respect to Rπ̄0 , it is sufficient to show that, in fact, P is absolutely
continuous with respect to P̃ on (Ω,F). Thanks to [5, Proposition III.3.5], to conclude
it is enough to show that the local density process L−1

t of P with respect to P̃ is a

square-integrable martingale with respect to P̃, i.e.,

sup
t

Ẽ(L−2
t ) < +∞,
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or, equivalently,

sup
t

E(L−1
t ) < +∞.

Actually, this is true because of the bound (27) obtained above, and so condition (iii)
is fulfilled.

Remark 3.3. It is interesting to emphasize that the constant c0 appearing in the
condition (A∗

3), which ensures the existence of an exponential moment for ζ0, depends
on the convergence rate λ of the flow φ and on the Lipschitz constants of bζ and hζ in
(A∗

1). In particular, not surprisingly, it appears that the larger λ is, the smaller the
constant c0 is.

Remark 3.4. With slight modifications in the proof of Proposition 3.2, one can
show that the same asymptotic result holds for any initial law of the form π̄0 = δ0⊗ν
in place of π̄0 = δ0 ⊗ ν0, provided that the incorrect prior distribution ν for X0

dominates the true one ν0, i.e., ν0 << ν. So for two different initial conditions of
this form the asymptotic behavior of the approximate filter is unchanged. In the
particular case of the filtering model (23), this reduces to the fact that, under the
assumptions “ b Lipschitzian,” “h continuous bounded,” and (A∗

2), a filter initialized
with an erroneous prior distribution ν such that ν0 << ν has the same asymptotic
behavior as the optimal filter (initialized with ν0). Actually, that property in model
(23) is a direct consequence of [9, Theorem 3.2, Remark 3.3].

Acknowledgments. We are very grateful to Marina Kleptsyna for valuable dis-
cussions concerning ergodic properties of diffusion processes and also to the reviewers
and the editors for their comments, which helped to improve the presentation of this
paper.
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1. Introduction. Kunita’s pioneering paper [9] showed the way for analyzing
asymptotic behavior of the nonlinear filter. Kunita showed for the case of compact
state space valued Markov signal process that the nonlinear filter itself is a Markov
process. This proof was based on the fact that the filter is the unique solution to
the Kushner–Stratonovich equation (or the Fujisaki–Kallianpur–Kunita equation).
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expectations and deduce that the filter is Markov. Using recent results in Bhatt,
Kallianpur, and Karandikar [2], we deduce that under fairly general conditions on h,
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the pair process (signal, filter) is a Feller–Markov process. Once this is done, we can
obtain results of Kunita [10], Stettner [12], and Ocone and Pardoux [11] on ergodicity
and asymptotic stability of the filter in our framework, where the state space is a

∗Received by the editors June 1, 1999; accepted for publication (in revised form) June 26, 2000;
published electronically October 20, 2000.

http://www.siam.org/journals/sicon/39-3/35770.html
†Indian Statistical Institute, Statistical Math Unit, 7 S.J.S. Sansanwal Marg, New Delhi, 110016,

India. The research of these authors was supported by the Department of Science and Technology,
Government of India.

‡Department of Statistics, University of North Carolina, Chapel Hill, NC 27599 (budhiraj@
email.unc.edu). The research of this author was supported in part by the NSF grant DMI 9812857
and the University of Notre Dame Faculty Research Program.

928



MARKOV PROPERTY AND ERGODICITY OF THE NONLINEAR FILTER 929

complete separable metric space and the function h is allowed to be unbounded and
minimal conditions are imposed on it.

Let us begin with listing some common notation used in this article. For a com-
plete separable metric space S, let C(S) be the class of continuous functions on S,
Cb(S) be the class of bounded continuous functions on S, B(S) be the Borel σ-field
on S, P(S) be the space of probability measures on (S,B(S)) endowed with the weak
convergence topology, M+(S) be the class of positive finite measures on (S,B(S))
with the weak convergence topology, D([0,∞), S) be the class of functions, which
are right continuous and have left limits (r.c.l.l.), from [0,∞) into S with Skorokhod
topology, and C([0,∞), S) be the class of continuous functions from [0,∞) into S
with topology of uniform convergence on compact subsets of [0,∞).
2. Preliminaries. Consider the nonlinear filtering model

Yt =

∫ t

0

h(Xu)du+Wt,(2.1)

where (Xt) is the signal process, taking values in a complete separable metric space
E; h : E → R

d is a continuous mapping; and (Wt) is an R
d-valued standard Wiener

process, assumed to be independent of (Xt). (Yt) is the observation process. (Xt),
(Wt) are defined on a probability space (Ω,F , P ).

The object of interest in filtering theory is the conditional distribution πt of Xt

given the observations up until time t, i.e., given σ(Yu;u ≤ t).
We are going to assume that the signal process (Xt) is a Markov process with

transition probability function p(s, x, t, B): for 0 ≤ s < t, x ∈ E, B ∈ B(E),
P (Xt ∈ B|σ(Xu : u ≤ s)) = p(s,Xs, t, B) almost surely (a.s.).(2.2)

The initial distribution of (Xt) will be denoted by γ, i.e.,

γ = P ◦ (X0)
−1.(2.3)

Let ξt(·) be the coordinate process on D=̇D([0,∞), E), i.e., ξt(θ)=̇θ(t) for θ ∈ D.
We assume that for all (s, x) ∈ [0,∞)× E there exists a probability measure Ps,x on
D such that for 0 ≤ s < t <∞ and U ∈ B(E),

Ps,x(ξt ∈ U |σ(ξu : u ≤ s)) = p(s, ξs, t, U) a.s. Ps,x(2.4)

and

Ps,x(ξu = x, 0 ≤ u ≤ s) = 1.(2.5)

Further, we assume that the mapping

(s, x) −→ Ps,x is continuous.(2.6)

As usual, for ν ∈ P(E) and B ∈ B(D), let

Ps,ν(B)=̇

∫
Ps,x(B)ν(dx), B ∈ B(D).

Note that

P ◦ (X)−1 = P0,γ .(2.7)
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The Markov property implies that (Tt) defined below is a semigroup:

(Ttf)(s, x)=̇

∫
f(s+ t, y)p(s, x, s+ t, dy), (s, x) ∈ [0,∞)× E(2.8)

for f ∈ Cb([0,∞)×E), 0 ≤ t <∞. The assumption (2.6) implies that (Tt) is a Feller
semigroup, i.e.,

Tt (Cb([0,∞)× E)) ⊂ Cb([0,∞)× E).(2.9)

It is well known (and easy to verify) that (2.9) implies that (Xt) is continuous in
probability. As a consequence, the filter (πt) admits a continuous version (see [3]).

In order to study the Markov properties of (πt), we first present the following
preliminary result.

3. Pathwise integration formula. We cite the following result from [8]. As
we shall see in the next section, this formulation of a stochastic integral is very useful
when dealing with a family of measures on a measurable space.

The result is Theorem 3 in [8]. The mapping I is explicitly constructed in that
paper.

Theorem 3.1. There exists a measurable mapping I : D([0,∞),R)×
D([0,∞),R) → D([0,∞),R) with the property that if (Ut) is a semimartingale (as-
sumed to have r.c.l.l. paths) on a probability space (Ω′,F ′, P ′) with respect to a filtra-
tion (F ′

t) and if (Vt) is an r.c.l.l. (F ′
t)-adapted process, then

Zt(w
′) := I(V.(w′), U.(w′))(t), w′ ∈ Ω′,

is a version of the stochastic integral
∫ t
0
V−dU , i.e.,

Zt =

∫ t

0

Vs−dUs for all t a.s. P ′.

4. Markov properties of the filter. In this section we will study the Markov
properties of the filter. The first main result is Theorem 4.5 in which we show that
{πt, σ{Yu : u ≤ t}} is a Markov process on (Ω,F , P ). The second central result of
this section is Theorem 4.8 in which we show that if πt is a suboptimal filter defined
via an incorrect initialization of the filtering process (to be made precise later in
the section), then {(πt, Xt),Ft} is a Markov process on (Ω,F , P ) with state space
P(E) × E, where Ft=̇σ{(Xs, Ys) : s ≤ t}. In particular, this result implies that
{(πt, Xt),Ft} is a Markov process on (Ω,F , P ).

Let βt(·) be the coordinate process on C=̇C([0,∞),Rd), i.e., βt(η)=̇η(t) for η ∈ C.
Let Q be the standard Wiener measure on (C,B(C)). Let

(Ω̂, F̂)=̇(D,B(D))⊗ (C,B(C)),
and for 0 ≤ s <∞, ν ∈ P (E),

Rs,ν=̇Ps,ν ⊗Q.
Let

Zt(θ, η)=̇

d∑
j=1

I(hj(ξ(θ)), βj(η))(t),(4.1)

where h(x) ≡ (h1(x), . . . , hd(x)) and βt(η) ≡ (β1
t (η), . . . , β

d
t (η)) for x ∈ E and η ∈ C.
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Since (βt), considered as a process on (Ω̂, F̂), is a Wiener process under Rs,ν , it
follows from Theorem 3.1 that

Zt − Zs =

d∑
j=1

∫ t

s

hj(ξu)dβ
j
u a.s. Rs,ν(4.2)

for every 0 ≤ s < t <∞ and ν ∈ P(E). The main thing to note is that we have been
able to construct a common version of the stochastic integral appearing in (4.2) for
the family of probability measures {Rs,ν}.

For 0 ≤ s < t <∞, let

qst(θ, η)=̇ exp

Zt(θ, η)− Zs(θ, η)− 1

2

d∑
j=1

∫ t

s

(hj(ξu(θ))
2du

 .(4.3)

It is well known (and easy to verify) that {qst : t ≥ s} is a {Rs,ν} martingale for every
ν ∈ P(E).

Let us note that for 0 ≤ s < t,

q0t(θ, η) = q0s(θ, η)qst(θ, η) for all (θ, η) ∈ Ω̂.(4.4)

For 0 ≤ s < t < ∞, η ∈ C, and ν ∈ M+(E), let Γst(ν, ·)(η) ∈ M+(E) and
Λst(ν, ·)(η) ∈ P(E) be defined as follows. For B ∈ B(E)

Γst(ν,B)(η)=̇

∫
E

∫
D
1B(ξt(θ))qst(θ, η)dPs,x(θ)dν(x)(4.5)

and

Λst(ν,B)(η)=̇Γst(ν,B)(η)/Γst(ν,E)(η).(4.6)

The measure Γst(ν, ·)(η) will also be denoted by Γst(ν)(η) and likewise, Λst(ν, ·)(η)
will be denoted by Λst(ν)(η). Since ERs,ν [qst] = 1, it follows that

EQ[Γst(ν,E)] = ν(E).(4.7)

Note that for ν ∈M+(E), if ν̂ is defined by

ν̂(B)=̇
ν(B)

ν(E)
,

then

Γst(ν,B)(η) = ν(E)Γst(ν̂, B)(η)(4.8)

and

Λst(ν,B)(η) = Λst(ν̂, B)(η).(4.9)

As a consequence of the Kallianpur–Striebel formula (see [1], [2], [6], [7]) it follows
that

πt(ω)(B)=̇Λ0t(γ,B)(Y.(ω))(4.10)
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is a version of the filter EP [1B(Xt)|σ(Yu : u ≤ t)]. Furthermore, a.s. P , πt has contin-
uous paths (see [3]). Here is a technical result needed later.

Theorem 4.1. Fix 0 ≤ s < t, ν ∈ P(E). Let F∗ be the completion of F̂ under
R0,ν . Let N be the class of R0,ν null sets in F∗. Considering ξ, β as processes defined
on (Ω̂,F∗, R0,ν), let us define the following sub-σ fields of F∗:

Gt
s = σ(σ(ξu : s ≤ u ≤ t) ∪N ),(4.11)

E0 = σ(σ(βu : u ≥ 0) ∪N ),
E1 = σ(Gs

0 ∪ E0),

E2 = σ(G∞
s ∪ E0).

Let g be a E2-measurable, R0,ν-integrable random variable. Then

ER0,ν [g|E1] = g1 a.s.,

where

g1(θ, η) =

∫
D
g(θ1, η)dPs,ξs(θ)(θ1).(4.12)

Remark 4.1. In (4.11) above, when t =∞, the right-hand side is to be interpreted
as σ(σ(ξu : s ≤ u <∞) ∪N ).

Proof. When g is G∞
s -measurable bounded random variable, the result follows

from the Markov property of the family {Ps,x} and independence of β and ξ under
R0,ν . When g is of the form

g =
k∑

j=1

gjfj ,(4.13)

where gj are G∞
s -measurable bounded functions and fj are E0-measurable bounded

functions, the result follows from the preceding observation. Since the class of
functions as in (4.13) forms an algebra that generates the σ field E2, the result
follows.

The next result connects {Γst} with each other and is a key step in the proof of
the Markov property.

Theorem 4.2. Fix 0 ≤ s < t <∞, ν ∈ P(E). Then
Γ0t(ν,B)(η) = Γst(Γ0s(ν)(η), B)(η) for all B ∈ B(E), η − a.s. [Q](4.14)

and

Λ0t(ν,B)(η) = Λst(Λ0s(ν)(η), B)(η) for all B ∈ B(E), η − a.s. [Q].(4.15)

Proof. Fix A ∈ B(C), B ∈ B(E). Let

G(A,B)=̇

∫
C
Γ0t(ν,B)(η)1A(η)dQ(η).

Using Fubini’s theorem, the definition of Γst, and the relation (4.4), it follows that

G(A,B) =

∫
E

∫
Ω̂

1A(η)q0s(θ, η)g(θ, η)dR0,x(θ, η)dν(x),(4.16)
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where

g(θ, η) = 1B(ξt(θ))qst(θ, η).

Let E1, E2 be as in Theorem 4.1. Note that 1A(η)q0s(θ, η) is E1-measurable and g is
E2-measurable. It follows from Theorem 4.1 that

ER0,x [g|E1](θ, η) = f(ξs(θ), η) a.s. (θ, η) [R0,x],(4.17)

where

f(x, η) =̇

∫
D
g(θ1, η)dPs,x(θ1)

=

∫
D
1B(ξt(θ1))qst(θ1, η)dPs,x(θ1).

Before proceeding, let us note that for ν ∈ P (E)∫
E

f(y, η)dν(y) = Γst(ν,B)(η).(4.18)

Using (4.16), (4.17), and the fact that 1A(η)q0s(θ, η) is E1-measurable, it follows that

G(A,B) =

∫
E

∫
Ω̂

1A(η)q0s(θ, η)f(ξs(θ), η)dR0,x(θ, η)dν(x).

Now applying the definition of Γ0s, we have that

G(A,B) =

∫
C
1A(η)

[∫
E

f(y, η)Γ0s(ν, dy)(η)

]
dQ(η)

and as a consequence on using (4.18) we have that

G(A,B) =

∫
C
1A(η)Γst(Γ0s(ν)(η), B)(η)dQ(η).(4.19)

Since (4.19) holds for all A ∈ B(C) and the σ field B(E) is countably generated,
the relation (4.14) follows. The identity (4.15) is a consequence of (4.14) and (4.8)–
(4.9).

We are now in a position to prove that {Γ0t : t ≥ 0}, {Λ0t : t ≥ 0} are Markov
processes on (C,B(C), Q) with state spacesM+(E) and P(E), respectively. Let F̃ be
the Q-completion of B(C) and Ñ be the class of Q null sets in F̃ . For 0 ≤ s ≤ t ≤ ∞,
let At

s be the sub-σ fields of F̃ defined by

At
s = σ(σ(βu − βs : s ≤ u ≤ t) ∪ Ñ ).(4.20)

Here and in what follows, we will consider β and ξ as processes on Ω̂. It is easy to
see that

Γ0t(ν),Λ0t(ν) are At
0-measurable(4.21)

and for s < t

Γst(ν),Λst(ν) are A∞
s -measurable.(4.22)

These observations lead us to the following theorem.
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Theorem 4.3. Let ν ∈ P(E). Then (Γ0t(ν),At
0) and (Λ0t(ν),At

0) are Markov
processes on (C, F̃ , Q). Furthermore, for fixed 0 ≤ s < t < ∞ and real valued Borel
measurable functions ψ and ϕ on M+(E) and P(E), respectively, which satisfy

EQ[|ψ(Γut(λ))|] <∞
and

EQ[|ϕ(Λut(λ))|] <∞
for all 0 ≤ u ≤ t and λ ∈M+(E) we have that

EQ[ψ(Γ0t(ν))|As
0] = ψ1(Γ0s(ν)),(4.23)

EQ[ϕ(Λ0t(ν))|As
0] = ϕ1(Λ0s(ν)),(4.24)

where

ψ1(λ)=̇EQ[ψ(Γst(λ))], λ ∈M+(E),(4.25)

and

ϕ1(ν)=̇EQ[ϕ(Λst(ν))], ν ∈ P(E).(4.26)

Proof. We will prove only the result for the case where ϕ and ψ are bounded.
The general case follows by the usual approximation arguments (using the observation
(4.7)).

We have observed that

ψ(Γ0t(ν)) = ψ(Γst(Γ0s(ν)));

Γ0s(ν) is As
0-measurable and Γst(λ) is A∞

s -measurable (for all λ ∈M+(E)). Also, As
0

and A∞
s are independent under Q. This implies (4.23) with ψ1 defined by (4.25).

For ϕ ∈ Cb(P(E)) define ψ ∈ Cb(M+(E)) by

ψ(λ)=̇ϕ

(
1

λ(E)
λ

)
.

Then, for ν ∈ P(E)
ϕ(Λ0t(ν)) = ψ(Γ0t(ν)).

As a result

EQ[ϕ(Λ0t(ν))|As
0] = ψ1(Γ0s(ν)),(4.27)

where for λ ∈M+(E)

ψ1(λ) = EQ[ψ(Γst(λ))]

= EQ[ϕ(Λst(λ))].

Given λ ∈M+(E), define λ̂ ∈ P(E) by

λ̂(B)=̇
1

λ(E)
λ(B), B ∈ B(E).
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Then from (4.9) and the definition of φ1 (see (4.26)), we have that

φ1(λ̂) = EQ[ϕ(Λst(λ̂))]

= EQ[ϕ(Λst(λ))]

= ψ1(λ).

As a consequence,

ψ1(Γ0s(ν)) = φ1(Λ0s(ν)).

This in view of (4.27) proves (4.24).
As noted earlier, on (Ω̂, F̂ , Rs,ν), ν ∈ P(E),

(qst)t≥s is a martingale with respect to σ(ξu, βu : u ≤ t)

and hence that

ρst =

{
Γst(ν,E), t ≥ s,
1, t ≤ s,

(4.28)

is a martingale on (C,B(C), Q) with respect to (At
0). Let Qs,ν ∈ P (C) be defined by

dQs,ν

dQ
= ρst on At

0.(4.29)

From Girsanov’s theorem, it follows that Q0,γ is the law of the observation process
Y , i.e., PoY −1 = Q0,γ (see [6]).

We are going to prove that {Γ0t(ν)}, {Λ0t(ν)} are Markov processes on (C,B(C), Q0,ν)
as well.

Theorem 4.4. Let ν ∈ P(E). Then (Γ0t(ν),At
0) and (Λ0t(ν),At

0) are Markov
processes on (C, F̃ , Q0,ν). Furthermore, for f ∈ Cb(M+(E)), g ∈ Cb(P(E)),

EQ0,ν [f(Γ0t(ν))|As
0] = f1(Γ0s(ν))(4.30)

and

EQ0,ν [g(Λ0t(ν))|As
0] = g1(Λ0s(ν)),(4.31)

where f1, g1 are defined as follows. For λ ∈M+(E), ν ∈ P(E)
f1(λ)=̇EQs,λ̂

[f(Γst(λ))],(4.32)

where λ̂(A)=̇ 1
λ(E)λ(A) and

g1(ν)=̇EQs,ν [g(Λst(ν))].(4.33)

Proof. We will first prove (4.30). Fix 0 ≤ s < t < ∞, ν ∈ P(E), and A ∈ As
0.

Then ∫
A

f(Γ0t(ν))dQ0,ν =

∫
A

f(Γ0t(ν))Γ0t(ν,E)dQ

=

∫
A

ψ(Γ0t(ν))dQ

=

∫
A

ψ1(Γ0s(ν))dQ,
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where ψ(λ)=̇f(λ)λ(E) and ψ1 is given by (4.25). Thus defining f1(λ) =
ψ1(λ)
λ(E) , it

follows that ∫
A

f(Γ0t(ν))dQ0,ν =

∫
A

f1(Γ0s(ν))Γ0s(ν,E)dQ

=

∫
A

f1(Γ0s(ν))dQ0,ν

and hence (4.30) holds. Further note that

f1(λ) =
1

λ(E)
ψ1(λ)

=
1

λ(E)

∫
C
f(Γst(λ))Γst(λ,E)dQ

=

∫
C
f(Γst(λ))Γst(λ̂, E)dQ

= EQs,λ̂
[f(Γst(λ))].

Thus, f1 is given by (4.32).
Now we prove (4.31). Let g ∈ Cb(P (E)) be as in the statement of the theorem.

Let f ∈ Cb(M+(E)) be defined as

f(λ)=̇g

(
1

λ(E)
λ

)
so that f(Γ0t(ν)) = g(Λ0t(ν)). Thus,

EQ0,ν [g(Λ0t(ν))|As
0] = f1(Γ0s(ν)),

where f1 is given by (4.32). Note that

f1(λ) = EQs,λ̂
[f(Γst(λ))]

= EQs,λ̂

[
g

(
1

Γst(λ,E)
Γst(λ)

)]
= EQs,λ̂

[g(Λst(λ))]

= EQs,λ̂
[g(Λst(λ̂))]

= g1(λ̂),

where g1 is defined by (4.33). Thus we have in particular that

EQ0,ν [g(Λ0t(ν))|As
0] = f1(Γ0s(ν)) = g1(Λ0s(ν)).

An immediate consequence of the above result is that for bounded measurable
function G on P(E),

(TstG)(ν)=̇EQs,ν [G(Λst(ν))]

defines a two parameter semigroup, i.e., for 0 ≤ s < t < u

Tst ◦ Ttu = Tsu.
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Moreover, as noted earlier, πt(ω) = Λ0t(γ)(Y·(ω)) is a version of the filter
EP [Xt ∈ .|Yu : u ≤ t], while Q0,γ is the law of the observation process Y . Thus
we have the following result.

Theorem 4.5. {πt} is a P(E)-valued Markov process on (Ω,F , P ) with associ-
ated two parameter semigroup {Tst}.

Further, if the signal process (Xt) is a time homogeneous Markov process, then
so is {πt} with

Tst = T0u, u = t− s.
Proof. The first part follows easily from the preceding theorem. For the second

part, let us note that the law of {(ξs+u, βs+u − βs) : u ≥ 0} under Rs,γ is R0,γ . As
a consequence, the law of Γst(γ) under Rs,γ is same as the law of Γ0,(t−s)(γ) under
R0,γ .

This yields the required result.
Let ν ∈ P(E). Define the process

πt(ω)=̇Λ0t(ν)(Y·(ω)).(4.34)

Then (πt) considered as a process on (Ω,F , P ) represents a suboptimal filtering pro-
cess which has been initiated at the incorrect initial law ν rather than the actual initial
law γ. In the final part of this section we study the Markov properties of the process
(πt, Xt). The importance of Markov property and ergodicity of the pair process in
the study of asymptotic robustness questions in nonlinear filtering has been pointed
out in [4], [5]. Define the stochastic process (Ψν

t ) on (Ω̂, F̂) with values in P(E)× E
as follows:

Ψν
t (θ, η)=̇(Λ0t(ν)(η), ξt(θ)).

Let Gt
s be as in Theorem 4.1, where N is the class of all R0,γ null sets. Gt

s are sub-σ
fields of the completion F∗ of F under the measure Rs,γ . We now define the following
sub-σ fields of F∗: for 0 ≤ s ≤ t ≤ ∞

Ht
s=̇σ(σ{βu − βs : s ≤ u ≤ t} ∪ N ),(4.35)

Kt
s=̇σ(Gt

s ∪Ht
s).(4.36)

(See Remark 4.1 above for the case t = ∞.) The following theorem is essentially a
consequence of Theorem 4.3.

Theorem 4.6. Let γ, ν ∈ P(E). Then (Ψν
t ,Kt

0) is a Markov process on (Ω̂, F̂ , R0,γ).
Furthermore, for 0 ≤ s < t <∞ and a bounded measurable function f on P(E)× E
we have

ER0,γ [f(Λ0t(ν), ξt)q0t|Ks
0] = f1(Λ0s(ν), ξs)q0s a.s.,(4.37)

where f1 : P(E)× E → R is defined as follows: for (λ, x) ∈ P(E)× E
f1(λ, x)=̇ERs,x [f(Λst(λ), ξt)qst].(4.38)

Proof. The Markov property of (Ψν
t ,Kt

0) is a direct consequence of Theorem 4.3
on noting that under R0,γ the σ fields Gs

0 ,Hs
0 are independent and (Λ0t(ν),Ht

0, R0,γ)
and (ξt,Gt

0, R0,γ) are Markov processes. We now consider the second part of the
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theorem. Since q0t = q0sqst and qst is K∞
s -measurable, it suffices to prove that for a

K∞
s -measurable random variable Z with ER0,γ [ |Z| ] <∞

ER0,γ [f(Λ0t(ν), ξt)Z|Ks
0] = f2(Λ0s(ν), ξs) a.s.,(4.39)

where f2 : P(E)× E → R is defined as follows: for (λ, x) ∈ P(E)× E

f2(λ, x)=̇ERs,x [f(Λst(λ), ξt)Z].(4.40)

Using the usual approximation arguments, the proof of (4.39)–(4.40) can be re-
duced to the case when f(λ, x) = g(λ)h(x) for bounded measurable functions g, h
and Z = UV , with U being bounded G∞

s -measurable and V being bounded H∞
s -

measurable.
Note that H∞

0 = σ(∪tHt
0) and G∞

0 = σ(∪tGt
0) are independent under R0,γ . Also,

g(Λ0t(ν))V is H∞
0 -measurable, H∞

s ⊆ H∞
0 , h(ξt)U is G∞

0 -measurable and G∞
s ⊆ G∞

0 .
Further, Ks

0 = σ(Gs
0 ∪Hs

0). These observations imply that

ER0,γ [g(Λ0t(ν))V h(ξt)U |Ks
0] = ER0,γ

[g(Λ0t(ν))V |Hs
0]ER0,γ [h(ξt)U |Gs

0 ].(4.41)

In turn, using Λ0t(ν) = Λst(Λ0s(ν)) and the independence of Hs
0 and H∞

s , it follows
that

ER0,γ [g(Λ0t(ν))V |Hs
0] = g2(Λ0s(ν))(4.42)

with

g2(λ) = ERs,x [g(Λst(λ))V ]

=

∫
C
g(Λst(λ))V dQ,(4.43)

where the second display above follows on recalling that Rs,x = Ps,x ⊗Q. Using the
Markov property of (ξt) it follows that

ER0,γ
[h(ξt)U |Gs

0 ] = h2(ξs)(4.44)

with

h2(x) = ERs,x [h(ξt)U ].(4.45)

The equations (4.41)–(4.45) imply that (4.39) holds with f2(λ, x) = g2(λ)h2(x).
Using independence of g(Λst(λ))V and h(ξt)U , it follows that (4.40) also holds. As
noted at the beginning of the proof, this in turn implies the second part of the theorem,
namely (4.37)–(4.38).

Now for fixed ν ∈ P(E) and s ≥ 0 define R̂s,ν on (Ω̂, F̂) as follows:

dR̂s,ν

dRs,ν
(θ, η)=̇ qst(θ, η) on Kt

0, t ≥ s.(4.46)

Recall the definition (4.29) of Qs,ν and that Rs,ν=̇Ps,ν ⊗Q. It now follows from
(4.5) that

R̂s,ν(D ×B) = Qs,ν(B), B ∈ B(C).(4.47)
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The following result is the key step in the proof of the Markov property of
((Xt, πt),Ft) on (Ω,F , P ).

Theorem 4.7. Let ν ∈ P(E). Then (Ψν
t ,Kt

0) is a Markov process on (Ω̂, F̂ , R̂0,γ).
Proof. Fix 0 ≤ s < t < ∞. Let f : P(E) × E → R be a bounded measurable

function and let A ∈ Ks
0. Then using (4.37) it follows that∫

A

f(Λ0t(ν), ξt)dR̂0,γ =

∫
A

f(Λ0t(ν), ξt) q0t dR0,γ

=

∫
A

f1(Λ0s(ν), ξs) q0s dR0,γ .(4.48)

Hence

ER̂0,γ
[f(Λ0t(ν), ξt)|Ks

0] = f1(Λ0s(ν), ξs),(4.49)

where f1 is given by (4.38).
Remark 4.2. The relation defining f1 can be recast as

f1(λ, x)=̇ER̂s,x
[f(Λst(λ), ξt)].(4.50)

Now we come to the Markov property of the filter and signal.
Theorem 4.8. Fix ν ∈ P(E). Let πt be as in (4.34). Then ((πt, Xt),Ft) is a

P(E)×E-valued Markov process on (Ω,F , P ) with associated two parameter semigroup
{Ss,t}0≤s<t<∞ defined as follows. For a real bounded measurable map f on P(E)×E,

(Sstf)(λ, x)=̇ER̂s,x
[f(Λst(λ), ξt)]

for (λ, x) ∈ P(E)×E. Furthermore, if (Xt) is time homogeneous, then so is (πt, Xt),
i.e., Sst = S0,t−s.

Proof. The Markov property follows on applying Theorem 4.7 and observing that
the law of {(Xt, πt, Yt) : t ≥ 0} under P is the same as the law of {(ξt,Λ0t(ν), βt) :
t ≥ 0} under R̂0,γ . The identities (4.49)–(4.50) imply the assertion made about the
semigroup Sst.
5. Time homogeneous signal: Feller properties of the filter. We will now

examine the case of time homogeneous signal. In this case, we write

Pν = P0,ν , Rν = R0,ν , Qν = Q0,ν , R̂ν = R̂0ν ,

Γt = Γ0t,Λt = Λ0t, Tt = T0t,St = S0t.

We will now show that under a suitable condition, {Tt} and {St} are Feller semigroups.
The key step in the proof of the Feller property is a result on robustness of the filter
from [2]. It is shown there that under a suitable condition on h, νn converging to ν
implies that

Qνn ◦ (Λ(νn))−1 → Qν ◦ (Λ(ν))−1.

This would immediately give the Feller property of Tt. The following is essentially
proved in [2]. We include here an outline of the proof as the exact result stated below
is not given in [2]. This would enable us to conclude that St is a Feller semigroup.
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Theorem 5.1. Let h be a continuous map from E to R
d. Let {νn} ⊂ P(E) be a

sequence converging to ν weakly. Then the following hold.
(a) For all t ≥ 0, Λt(νn)→ Λt(ν) in Q probability.
(b) For all t > 0, Γt(νn, E) → Γt(ν,E) in L

1(Q).
Proof. For (a) note that continuity of h and continuity of the mapping x !→ Px

imply that

lim
N→∞

[
sup
x∈K

Px

(∫ T

0

‖h(ξt)‖21{‖h(ξt)‖≥N}dt > ε

)]
= 0(5.1)

for all ε > 0, T <∞ and for all compact subsets K ⊂ E. The result now follows from
Theorem 3.2 in [2].

Since νn → ν weakly as n→∞, in view of our assumption on {Px} we have that
Pνn → Pν weakly as n → ∞. Now let {X̃n

t } and {X̃t} be processes with values in
D defined on some probability space (Ω,F , P ) such that L(X̃n

· ) = Pνn , L(X̃·) = Pν ,
and X̃n

· → X̃· a.s. P . Define

(Ω0,F0, R0)=̇(Ω× C,F ⊗ B(C), P ⊗Q)

and the processes Zn
· , Z· on this space as

Zn
t (ω, η)=̇q0t(X̃

n(ω), η),

Zt(ω, η)=̇q0t(X̃(ω), η).

Then note that

Γt(νn, B)(η) =

∫
Ω

1B(X̃
n(ω))Zn

t (ω, η)dP

and

Γt(ν,B)(η) =

∫
Ω

1B(X̃(ω))Zt(ω, η)dP .

It is shown in [2] that Zn
t → Zt in L

1(R0) and this implies part (b).
As a consequence of the above theorem we have the following results.
Theorem 5.2. Let h be continuous map from E to R

d. Then (Tt) is a Feller
semigroup.

Proof. Let {νn} be a sequence in P(E). Suppose that νn converges weakly to ν.
Let G be a bounded and continuous real function on P(E). We need to show that

(TtG)(νn)→ (TtG)(ν).

This follows from Theorem 5.1 upon observing that

(TtG)(νn) = EQνn
(G(Λt(νn)))

= EQ(G(Λt(νn))Γt(νn, E))(5.2)

and similarly,

(TtG)(ν) = EQ(G(Λt(ν))Γt(ν,E)).(5.3)
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In the following theorem we prove the Feller property of (πt, Xt).
Theorem 5.3. Let h be continuous map from E to R

d. Then {St} is a Feller
semigroup.

Proof. Let F be a real bounded and continuous function on P(E) × E. Let
{(νn, xn)} be a sequence in P(E) × E such that (νn, xn) → (ν, x). We need to show
that

(StF )(νn, xn)→ (StF )(ν, x).
Now observe that

(StF )(νn, xn) = ER̂xn
(F (Λt(νn), ξt))

= ERxn
(F (Λt(νn), ξt)q0t)

= ER0(F (Λt(νn), X̃
n
t )Z

n
t ),(5.4)

where X̃n
· , Z

n, R0 are as in the proof of Theorem 5.1 with νn replaced by δxn . Now the
result follows once more by an application of Theorem 5.1 and recalling that X̃n

· → X̃·
a.s. as n→∞.

In the final result of this section we study the connection between the invariant
measures for the semigroups Tt and St. For a real measurable function ϕ on a Polish
space S and a measure ν on (S,B(S)) we will write ∫

S
ϕ(x)dν(x) as ν(ϕ) when the

former makes sense.
Proposition 5.4. Let M be an (St) invariant probability measure. Define the

probability measures µ on (E,B(E)) and M on (P(E),B(P(E))) as follows.
µ(B)=̇M(P(E)×B), B ∈ B(E),

and

M(C)=̇M(C × E), C ∈ B(P(E)).
Then µ is a (Tt) invariant measure. Furthermore, if for all real bounded measurable
functions f on E and F on P(E)∫

P(E)×E

F (ν)f(x)M(dν, dx) =

∫
P(E)

ν(f)F (ν)M(dν),(5.5)

then M is a (Tt) invariant measure.
Proof. Let f be a bounded measurable function on E. Define f̃ : P(E)×E → R

as f̃(ν, x)=̇f(x). Then∫
E

(Ttf)(x)µ(dx) =

∫
P(E)×E

(Ttf)(x)M(dν, dx)

=

∫
P(E)×E

ER̂x
(f̃(Λ0t(ν), ξt))M(dν, dx)

=

∫
P(E)×E

(Stf̃)(ν, x)M(dν, dx)

=

∫
P(E)×E

f̃(ν, x)M(dν, dx)

=

∫
E

f(x)µ(dx).

This proves that µ is (Tt) invariant.
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Next let G be a real bounded measurable function on P(E) and suppose that
(5.5) holds. Then for all real bounded measurable functions Φ on P(E)× E,∫

P(E)×E

Φ(ν, x)M(dν, dx) =

∫
P(E)

(∫
E

Φ(ν, x)ν(dx)

)
M(dν).(5.6)

Define G̃ : P(E)× E → R as G̃(ν, x)=̇G(ν). Then, recalling (4.47)∫
P(E)

(TtG)(ν)M(dν) =
∫
P(E)

EQν (G(Λt(ν)))M(dν)

=

∫
P(E)

ER̂ν
(G(Λt(ν)))M(dν)

=

∫
P(E)

(∫
E

ER̂x
(G(Λt(ν, ·)))ν(dx)

)
M(dν)

=

∫
P(E)

(∫
E

(StG̃)(ν, x)ν(dx)
)
M(dν)

=

∫
P(E)×E

(StG̃)(ν, x)M(dν, dx)

=

∫
P(E)×E

G̃(ν, x)M(dν, dx)

=

∫
P(E)

G(ν)M(dν).

This proves that M is (Tt) invariant.
6. Ergodic properties of the filter. In this section we will use the notation of

section 5. We will also assume throughout the rest of the paper that h is a continuous
function. Thus, {Tt} and {St} are Feller semigroups. We will obtain conditions for
uniqueness of invariant measures corresponding to these semigroups. These questions
have been studied in great detail for compact [9] and locally compact [12, 10, 11]
state spaces. The proofs of the results in the above papers rely on the uniqueness of
the solution to the Fujisaki–Kallianpur–Kunita or Kushner–Stratonovich equations;
in fact even the proof of the Feller–Markov property of the filtering process crucially
uses the uniqueness of the solution to the above-mentioned equation. Nevertheless,
using the methods and results of sections 4 and 5 many statements and theorems in
the above papers carry over to our general setup with almost identical proofs. We
will now present the main ergodicity results for the filtering model considered in this
paper. In order to avoid tedious repetition, we will provide proofs only when they
differ from the proofs of the analogous statements in [9, 12, 10, 11].

Let Cc(E) be the class of all convex functions in Cb(E). Following Stettner [12],
denote for ν ∈ P(E) and A ∈ B(P(E))

mν
t (A)=̇(TtIA)(ν) = EQν (IA(Λt(ν, ·)))

and

Mν
t (A)=̇

∫
E

(TtIA)(δx)ν(dx),

where IA is the indicator function of the set A. We will now give alternative repre-
sentations for mν

t and M
ν
t as the laws of certain filtering processes.
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We begin with the following setup. Let µ be a (Tt) invariant measure. DR ≡
D((−∞,∞);E) will denote the space of r.c.l.l. functions from (−∞,∞) into E with
Skorokhod topology and CR ≡ C((−∞,∞);Rd) will denote the space of continuous
functions from (−∞,∞) into R

d with topology of uniform convergence on compact
subsets of (−∞,∞). Let the coordinate processes on DR and CR be denoted once more

by (ξt(·)) and (βt(·)), respectively. Let P (1)
µ be the unique measure on (DR,B(DR))

which satisfies for E1, . . . , En ∈ B(R) and −∞ < t1 < t2 · · · < tn <∞
P (1)
µ (ξt1 ∈ E1, . . . , ξtn ∈ En)

=

∫
E1×···×En

µ(dx1)p(t1, x1, t2, dx2) · · · p(tn−1, xn−1, tn, dxn).

Now let Q(1) be a probability measure on (CR,B(CR)) such that for −∞ < t0 <
t1 · · · < tn <∞,(

1√
t1 − t0 (βt1 − βt0), . . . ,

1√
tn − tn−1

(βtn − βtn−1)

)
are independent N(0, Id×d).

Now let Ω1=̇DR×CR. Let R
(1)
µ = P

(1)
µ ⊗Q(1). In this section, we will consider the

coordinate processes (ξt), (βt) to be defined on the product space (Ω
1,B(Ω1), R

(1)
µ ).

Define the observation process

αt − αs=̇
∫ t

s

h(ξu)du+ βt − βs

and the observation σ fields

Zt
s=̇σ(αv − αu; s ≤ u ≤ v ≤ t),

where −∞ ≤ s < t ≤ ∞. Further, for s, t such that −∞ ≤ s < t ≤ ∞, let Gt
s,Ht

s be
defined, respectively, by (4.11) and (4.35). The cases s = −∞ and t =∞ are treated
as in Remark 4.1. Here, these are sub-σ fields of B(Ω1). Further, let G−∞

−∞ be defined
by

G−∞
−∞ = ∩−∞<t<∞Gt

−∞.

Now define for −∞ < s < t <∞,

π
(0)
s,t =̇Λt−s(µ)(α

s),

where αs : Ω1 → C([0,∞);Rd) is defined as αsu(ω)=̇αs+u(ω)− αs(ω). Also define

π
(1)
s,t =̇Λt−s(δξs)(α

s).

Observe that for the bounded and continuous function f on E

π
(0)
s,t (f) = E

R
(1)
µ
[f(ξt)|Zt

s]

and

π
(1)
s,t (f) = E

R
(1)
µ
[f(ξt)|Zt

s ∨ σ(ξs)]
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(for two σ fields L1 and L2, L1∨L2=̇σ(L1∪L2)). Also note that for the real bounded
measurable function F on P(E)

E
R

(1)
µ
[F (π

(1)
s,t )] = E

R
(1)
µ
[F (Λt−s(δξs)(α

s))]

=

∫
E

EQxF (Λt−s(δx))µ(dx)

=

∫
E

(Tt−sF )(δx)µ(dx)(6.1)

=Mµ
t−s(F ).(6.2)

In a similar manner it is seen that

E
R

(1)
µ
[F (π

(0)
s,t )] = m

µ
t−s(F ).(6.3)

A straightforward application of martingale convergence theorem shows that as s →
−∞, a.s. the measure π(0)

s,t converges weakly to the measure π
(0)
t defined as follows:

for a bounded and continuous function f on E

π
(0)
t (f)=̇E

R
(1)
µ
[f(ξt)|Zt

−∞].

Furthermore we have that (cf. Lemma 3.3 of Kunita [9])

π
(1)
s,t (f) = E

R
(1)
µ
[f(ξt)|Zt

−∞ ∨ Gs
−∞]

and thus by the reverse martingale convergence theorem we have that as s → −∞,
π

(1)
s,t converges weakly to the measure π

(1)
t defined as

π
(1)
t (f)=̇E

R
(1)
µ
[f(ξt)|Zt

−∞ ∨ G−∞
−∞ ].

Thus in view of (6.2) and (6.3) we have that Mµ
s and m

µ
s converge weakly as s→∞

to the law of π
(0)
t , π

(1)
t , respectively, which also shows that the laws of π

(0)
t π

(1)
t are

independent of t. Denote these laws as mµ andMµ, respectively. Also note that since
mµ and Mµ are the limits of mµ

t and M
µ
t as t → ∞ and (Tt) is a Feller semigroup,

both mµ and Mµ have to be (Tt) invariant. We now recall the following definition
from [9].

Definition 6.1. A measure ν ∈ P(E) is the barycenter of the measure Φ ∈
P(P(E)) if and only if for every ϕ ∈ Cb(E),

ν(ϕ) =

∫
P(E)

ν′(ϕ)Φ(dν′).

From Theorem 3.1 of Kunita [9] we have that both mµ and Mµ have barycenters
µ and if Φ is another Tt invariant measure with barycenter µ, then for all F ∈ Cc(E),

mµ(F ) ≤ Φ(F ) ≤Mµ(F ).(6.4)

Next recalling that mµ and Mµ are the laws of π
(0)
t and π

(1)
t , respectively, we

have that mµ equals Mµ if G−∞
−∞ is trivial. From (6.4) we observe that the equality

of mµ and Mµ implies that Tt admits a unique invariant measure with barycenter µ.
We thus have the following result.
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Theorem 6.2. Suppose that there is a unique (Tt) invariant measure µ. Then
there is a unique Tt invariant measure if for all f ∈ Cb(E)

lim sup
t→∞

∫
E

|Ttf(x)− µ(f)|µ(dx) = 0.(6.5)

Proof. As pointed out in [9], (6.5) is equivalent to the condition that G−∞
−∞ is

trivial. This proves the uniqueness of (Tt) invariant measure.
We remark that our proof of the theorem above is different from the proof in [9].

The proof in [9] requires showing that (π
(0)
t ) and (π

(1)
t ) are Markov with semigroup

Tt which is shown in [9] by appealing to the uniqueness of the solution to Kushner–
Stratonovich equation. Although we don’t need the Markov properties for our proof
above, using the Feller property of Tt nevertheless, they are seen to hold as argued
below.

Proposition 6.3. Let µ be a (Tt) invariant measure. For i = 0, 1, (π
(i)
t ) is a

stationary Markov process on (Ω1,B(Ω1), R
(1)
µ ) with semigroup Tt.

Proof. Let g ∈ Cb(P(E)) and fix −∞ < u < t <∞. Then from an application of

martingale convergence theorem and the observation that a.s., π
(0)
s,t converges weakly

to the measure π
(0)
t as s→ −∞ we have that

E

(
g(π

(0)
t )|Zu

−∞
)
= lim

s→−∞ E

(
g(π

(0)
s,t )|Zu

s

)
= lim

s→−∞ E (g(Λt−s(µ)(α
s))|σ(αsv; 0 ≤ v ≤ u− s))

= lim
s→−∞ g1(Λu−s(µ)(α

s))

= lim
s→−∞ g1(π

(0)
s,u)

= g1(π
(0)
u ),(6.6)

where all the limits in (6.6) are taken in probability and g1 is the real valued function
on P(E) defined in (4.33) with s there replaced by u, i.e.,

g1(ν)=̇EQν [g(Λt−u(ν))].(6.7)

Note that g1 is independent of s and the last step in the above display follows on
observing that the Feller property of Tt implies that g1 is continuous. This proves the
Markov property of (π

(0)
t ) and that the semigroup for this Markov process is (Tt). As

is already seen, the law of (π
(0)
t ) does not depend on t and thus this Markov process

is stationary. Finally consider the process (π
(1)
t ). Let g be as before. Then

E
R

(1)
µ
[g(π

(1)
t )|Zu

−∞ ∨ G−∞
−∞ ]

= lim
s→−∞ E

R
(1)
µ
[g(π

(1)
s,t )|Zu

−∞ ∨ Gs
−∞]

= lim
s→−∞ E

R
(1)
µ
[g(π

(1)
s,t )|Zu

s ∨ Gs
−∞]

= lim
s→−∞ E

R
(1)
µ
[g(Λt−s(δξs)(α

s))|σ(αsv : 0 ≤ v ≤ u− s) ∨ Gs
−∞]

= lim
s→−∞ g1(Λu−s(δξs)(α

s))

= lim
s→−∞ g1(π

(1)
s,u)

= g1(π
(1)
u ),(6.8)
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where g1 is as in (6.7). Hence, (π
(1)
t ) is a Markov process with semigroup (Tt). The

stationarity of this process follows as before.
We now turn our attention to the semigroup (St). Let µ, as before, be a (Tt) invari-

ant probability measure. Define the probability measures mµ
t and M

µ

t on (P(E)×E)
as follows. For A ∈ B(P(E))⊗ B(E),

mµ
t (A) =

∫
E

(StIA)(µ, x)µ(dx)

and

M
µ

t (A) =

∫
E

(StIA)(δx, x)µ(dx).

Observe that for real measurable bounded function F on P(E) × E and −∞ < s <
t <∞,

E
R

(1)
µ
[F (π

(1)
s,t , ξt)] = E

R
(1)
µ
[F (Λt−s(δξs)(α

s), ξt)]

=

∫
E

ER̂x
F (Λt−s(δx), ξt−s)µ(dx)

=

∫
E

(St−sF )(δx, x)µ(dx)

=M
µ

t−s(F ).

In a similar way it is seen that

E
R

(1)
µ
[F (π

(0)
s,t , ξt)] = m

µ
t−s(F ).

Now the almost sure convergence, as s→ −∞, of (π(0)
s,t , ξt) and (π

(1)
s,t , ξt) to (π

(0)
t , ξt)

and (π
(1)
t , ξt), respectively, implies that m

µ
u and M

µ

u converge weakly to the law of

(π
(0)
t , ξt) and (π

(1)
t , ξt), respectively, and also that these laws don’t depend on t. De-

note the law of (π
(0)
t , ξt) by m

µ and the law of (π
(1)
t , ξt) by M

µ
. Once more the Feller

property of the semigroup (St) implies that since mµ
t and M

µ

t converge weakly to m
µ

and M
µ
, respectively, these latter measures are (St) invariant. Next note that for

C ∈ B(P(E))
mµ(C × E) = mµ(C)

and

M
µ
(C × E) =Mµ(C).

Further note that for real bounded measurable functions f and F on E and P(E),
respectively,∫

P(E)×E

F (ν)f(x)mµ(dν, dx) = E
R

(1)
µ
[(F (π

(0)
t )f(ξt))]

= E
R

(1)
µ
[F (π

(0)
t )E

R
(1)
µ
(f(ξt)|Zt

−∞)]

=

∫
E

F (ν)ν(f)mµ(dν).
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Similarly, ∫
P(E)×E

F (ν)f(x)M
µ
(dν, dx) =

∫
E

F (ν)ν(f)Mµ(dν).

Thus mµ,M
µ
are (St) invariant measures for which (5.5) holds. Also, in the class of

(St) invariant probability measures for which (5.5) holds, mµ is the minimal and M
µ

is the maximal in the sense of Kunita (cf. Theorem 2.2 in [10]). Finally note that

if G−∞
−∞ is trivial, (π

(0)
t , ξt) = (π

(1)
t , ξt) a.s. and thus m

µ = M
µ
. Hence the following

theorem holds.
Theorem 6.4. Suppose that there is a unique (Tt) invariant measure µ and

suppose that (6.5) holds for all f ∈ Cb(E). Then there is a unique (St) invariant
measure for which (5.5) holds.

7. Asymptotic stability. In this section, we will study the asymptotic behavior
of the filter when it is initialized at an incorrect initial condition. The results extend
the results of Ocone and Pardoux [11] to the case of unbounded h and we also do
away with the assumption in [11] that the state space is locally compact.

We will once more use the notations of section 5 and assume continuity of h. In
particular, recall that the signal process X is an E-valued time homogeneous Markov
process with a Feller semigroup Tt and initial distribution (law of X0) γ. Further,
we assume that Tt admits a unique invariant probability measure µ and that (6.5)
holds. We have noted in the previous section that in this case the semigroup Tt is
Feller and also admits a unique invariant probability measure. Here is the first result
on asymptotic stability

Theorem 7.1. Suppose that γ satisfies

γTt → µ.(7.1)

Let

πt(B)(ω) = Λt(γ,B)(Y.(ω))(7.2)

be the filter. Then the law of πt on (Ω,F , P ) converges to M—the invariant measure
for the semigroup Tt.

Proof. This result can be proved exactly following the steps in the proof of
Theorem 3 in Stettner [12]. Note that we have already proved the Feller property of
Tt and hence it follows that if νn converges to ν, then mνn

t converges in law to mν
t .

This is a crucial step in the proof of Theorem 3 in [12]. The tightness of {mγ
t : t ≥ 0}

follows from (7.1) exactly as in Stettner. Also, we have already proved that there
exists a unique Tt invariant probability measure M .

The previous result gives the asymptotics of the filter πt when the signal process
is a purely nondeterministic ergodic Markov process.

Ocone and Pardoux [11] consider the behavior of the filter when the initial dis-
tribution of the signal is wrongly taken to be ν instead of γ. So whereas the correct
filter is given by (7.2), the incorrectly initialized filter is given as

π̄t(B)(ω) = Λt(ν,B)(Y.(ω).(7.3)

In [11] it was shown that under appropriate conditions

EP [(〈πt, ϕ〉 − 〈π̄t, ϕ〉)2]→ 0(7.4)
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as t tends to ∞. The paper [11] assumes that h is bounded and that E is locally
compact. We will now show that (7.4) holds in our framework.

We need the following auxiliary result for this purpose.
Theorem 7.2. Let γn, νn ∈ P(E) be such that

γn → µ, νn → µ.

Let T > 0 be fixed. Then for a bounded continuous function ϕ on E,

EQγn [|〈ΛT (γ
n), ϕ〉 − 〈ΛT (ν

n), ϕ〉|]→ 0.

Proof. In view of (4.28)–(4.29)

(7.5)

EQγn [|〈ΛT (γ
n), ϕ〉 − 〈ΛT (ν

n), ϕ〉|] = EQ[|〈ΛT (γ
n), ϕ〉 − 〈ΛT (ν

n), ϕ〉|ΓT (γn, E)].

By Theorem 5.1

|〈ΛT (γ
n), ϕ〉 − 〈ΛT (ν

n), ϕ〉| → 0 in Q probability

and

ΓT (γ
n, E) is Q uniformly integrable.

The required result follows from these observations.
This is the analog of the result in [11] for our setup.
Theorem 7.3. Let ν ∈ P(E) be given. Suppose that ν, γ satisfy

γTt → µ νTt → µ.(7.6)

Further, suppose that

Qγ is absolutely continuous with respect to Qν .(7.7)

Then the filter πt (defined by (7.2)) and the erroneous filter π̄t wrongly computed with
initial measure ν (defined by (7.3)) satisfy

EP [(〈πt, ϕ〉 − 〈π̄t, ϕ〉)2]→ 0.(7.8)

Proof. As in [11], let the finite memory approximations πt−τ,t, π̄t−τ,t of πt, π̄t,
respectively, be defined by

πt−τ,t = Λτ (γTt−τ ),

π̄t−τ,t = Λτ (νTt−τ ).

Then given ε > 0, there exists τε such that for τ > τε we have for ϕ ∈ C(E)

EP [(〈πt, ϕ〉 − 〈πt−τ,t, ϕ〉)2]→ 0(7.9)

and

EP [(〈π̄t, ϕ〉 − 〈π̄t−τ,t, ϕ〉)2]→ 0(7.10)
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as t tends to infinity. These statements are proven in [11, Lemma 3.4]. The proof given
there does not use boundedness of h or the underlying assumption in that paper that
E is locally compact and hence carries over the present setup. Since ϕ is bounded,
say, by K, we have

EP [(〈πt−τ,t, ϕ〉 − 〈π̄t−τ,t, ϕ〉)2] ≤ 2KEP [|〈πt−τ,t, ϕ〉 − 〈π̄t−τ,t, ϕ〉|]

and hence to complete the proof it remains to show that

lim
t→∞ EP [|〈πt−τ,t, ϕ〉 − 〈π̄t−τ,t, ϕ〉|] = 0.(7.11)

This in turn follows from Theorem 7.2 and the assumption (7.6) upon observing that
πt−τ,t = Λτ (γTt−τ ) and π̄t−τ,t = Λτ (νTt−τ ).

Acknowledgment. The authors would like to thank Professor T. G. Kurtz who
pointed out that (5.1) is a consequence of the Feller property of (Tt). Equation (5.1)
had been included as an assumption in an earlier version.
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Abstract. We are interested in the identification of an unknown time varying additive com-
ponent of a controlled nonlinear autoregressive model, a problem of interest in the modeling and
control of uncertain systems, such as those met in biotechnological processes. A kernel-based non-
parametric estimator is proposed whose almost sure convergence is studied by means of a Lyapunov
stabilizability assumption and laws of large numbers for martingales. We then adapt the general
result to several classes of deterministic or random functional model uncertainties.

Key words. autoregressive process, stabilization, nonparametric estimation, convolution kernels
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1. Introduction. Let (Ω,A,P) be a probability space endowed with a filtration
F = (Fn)n≥0. We consider controlled autoregressive processes of the form

Xn+1 = fn(Xn) + Fn(Xn, Un) + εn+1(1.1)

with
• (Xn) a sequence of random variables taking values in R

s,
• (Un) a sequence of control variables taking values in R

m,
• (Fn(., .)) a sequence of known measurable functions,
• (fn(.)) a sequence of unknown deterministic or random functions of C(Rs,Rs),
the space of continuous functions endowed with the topology of uniform con-
vergence on compacts,
• (εn) an unobservable white noise.

This setting can be extended to a more general type of model, frequently used
in process control, especially in biotechnology, where fn(x) = Hn(x) gn(x), Hn is a
known matricial mapping from R

s to R
s×l, l ≤ s, and gn an unknown mapping from

R
s to R

l.
The model (1.1), thus adapted, represents, for example, the real time evolution

of biomasses (microorganisms) and substrates concentrations in bioreactions (see [1]).
Such reactions are very common in depollution or in the agro-food industry. In that
case, gn(x) characterizes the microbial growth rate, which is a time varying quantity,
influenced by many factors (biomasses and substrates concentrations, temperature,
pH,. . . ). For a given bioreaction the analytic form of gn(x) is generally not well
known, in spite of its importance for a good modeling of the reaction dynamic and
then its control.

The (Xn) process is assumed to be observed, and we are interested in estimating
the functional sequence (fn). A good estimation of this sequence is prerequisite to
any control of the process.
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To the best of our knowledge, the identification of a random functional sequence
(fn) as in (1.1) has not yet been studied. This stochastic point of view allows a
realistic treatment of the modeling of time varying dynamics. Until now only the
estimation of unknown deterministic functions has been considered.

Georgiev [4] considered the model

Xn+1 = f(Xn, Un) + εn+1,

where (Xn, Un) is a specific stationary Markov process and f(., .) is the unknown
functional component. He proved the weak consistency of a kernel estimator of f .

The use of kernel estimators for the adaptive control of nonlinear autoregressive
processes was pioneered by Hernandez-Lerma and Doukhan [6] who faced the problem
of the unavailability of any mixing property. Then, for the model

Xn+1 = f(Xn) + F (Xn, Un) + εn+1,

where f is an unknown mapping from R
s to R

s, Senoussi [9] showed the uniform
convergence on compact subsets of a kernel estimator of f through a notion of sta-
bilization of the process (Xn) and produced the related rates of convergence. For
the same model, Portier [7] investigated adaptive control, i.e., determination of (Un)
through an adaptive functional estimator of f and a control objective. He got encour-
aging results in simple cases.

The identification of a sequence of unknown deterministic functions (fn), rather
than a unique function f , has been studied by Rutkowski [8] in the regression frame-
work

Yn = fn(Zn) + εn.

Under some restrictive assumptions (among them the convergence of fn), he showed
the strong point consistency of a kernel estimator of f .

The classes of sequences (fn) we consider are more general.
In the context of model (1.1), we prove (section 2) the strong uniform consistency

of a kernel estimator of the deterministic or random sequence (fn). Results are then
adapted to several types of sequences (fn) of interest (section 2.4 and section 2.5).

2. Nonparametric approach of the identification problem. Convolution
kernels were first used for probability density function estimation (Rosenblatt (1956),
Parzen (1962), Wolverton and Wagner (1969) in [10]) and then for regression function
estimation (Nadaraya (1964), Watson (1964), Härdle (1990) in [5]). A recent synthesis
is in Bosq [2]. We consider the following estimator of fn(x) for all x ∈ R

s:

f̂n(x) =

∑n−1
i=0 h−s

i K(x−Xihi
)(Xi+1 − Fi(Xi, Ui))∑n−1

i=0 h−s
i K(x−Xihi

)
,(2.1)

where K(.) is an s-dimensional kernel, i.e., a bounded symmetric density with respect
to Lebesgue measure, and hi is a bandwidth parameter.

The kernel estimator (2.1) is said to be recursive since the bandwidth hi depends
on the current step i in the weighted sum and not on the number n of observations
taken into account in the estimation. This recursive property is useful in the adaptive
control framework, because f̂n(x) can easily be updated when a new observation is
available. Besides, it allows the use of martingale tools [2, 3, 7, 9], which is, to our
knowledge, the only way to provide asymptotic results with controlled processes.
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2.1. Definitions. We define a control policy, or strategy, as a sequence of de-
terministic mappings δ = (δk), k ≥ 0, from (Rs)k to the space of controls U , such that
Uk = δk(X1, . . . , Xk). For all x ∈ R

s we shall consider the set of admissible controls,
with respect to x, to be a subset A(x) of U , for which δk(x1, . . . , xk−1, x) ∈ A(x).
A policy (δk) will be said to be A-admissible, or admissible for short, if for all
k, Uk ∈ A(Xk).

Moreover, model (1.1) is said to be stabilized by the use of any admissible policy,
if we can choose a class D of strategies such that, for any ε > 0, there exists a compact
set C of R

s satisfying the following property: for any initial law of X0 and any strategy
δ ∈ D,

lim inf
n→∞

1

n+ 1

n∑
i=0

1lC(Xi) ≥ 1− ε almost surely (a.s.),

where 1lC stands for the indicator function of the set C.
2.2. Main result. We assume that the control sequence (Un) is adapted to the

filtration F, and that X0 is F0-measurable. In the case of random functions fn, the
sequence (fn) is also assumed to be F-adapted. Moreover, (εn) is supposed to be an
F-adapted white noise. Let us recall that a random sequence (ξn) is said to be an
F-adapted white noise if for all n ∈ N, ξn+1 is Fn+1-measurable and independent of
Fn.

The problem we are concerned with is to show the almost sure convergence of the
kernel estimator (2.1). We shall require four different sets of hypotheses.

Assumption 2.1. The noise ε = (εn) is a sequence of independent and identically
distributed (i.i.d. for short) random vectors with mean 0 and covariance matrix Γ.
Its distribution is absolutely continuous (with respect to the Lebesgue measure), with a
probability density function p supposed to be positive and C1-class, p and its gradient
are bounded.

Assumption 2.2. There exists a constant θ < 1 such that

lim sup
||x||→∞

supi∈N
supu∈A(x)(||fi(x) + Fi(x, u)||)

||x|| ≤ θ a.s.(2.2)

Assumption 2.3. (a) The sequence (fn) is a.s. equicontinuous on compacts.
(b) There exists a function f such that, for all x ∈ R

s,

lim
n→∞

∑n
i=0 i

αsK(iα(Xi − x))fi(x)∑n
i=0 i

αsK(iα(Xi − x))
= f(x) a.s.(2.3)

Assumptions 2.1 and 2.2 are quite standard for nonlinear autoregressive control
models; see, for instance, [2, 3, 5, 7, 9]. Let us note that Assumption 2.1 is satisfied
with a classical nondegenerate Gaussian white noise. Assumption 2.2, also known as
a stability criterion of Lyapunov, characterizes the stabilization ability of the model.
It can be softened in numerous cases (see [3]), but generally requires exponential
moments of the noise ε. Moreover, Assumption 2.3 obviously holds if the sequence
(fn) is a constant and continuous function f . Other cases that verify this hypothesis
are developed as corollaries in section 2.4. Finally, the following Assumption 2.4 is
made on the kernel K and the bandwidth (hi).

Assumption 2.4. The kernel K has a compact support and is Lipschitz contin-
uous. The bandwidth hi := i−α, i ∈ N, is used, with α ∈ (0, 1).
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We shall now state our main result, which is proved in section 2.3.
Theorem 2.5. Suppose that Assumptions 2.1 to 2.4 hold. Then
(a) for any 0 < α < 1/s, any admissible control policy and any initial probability

distribution ν of X0, we have for all x ∈ R
s

f̂n(x)−→f(x) a.s. as n→∞,(2.4)

(b) for 0 < α < 1/2s, if ε admits a finite moment of order strictly greater than

2, the almost sure convergence of f̂n to f is uniform on compacts.

2.3. Proof. The proof of Theorem 2.5 requires two preliminary results. For all
x ∈ R

s, α ∈ (0, 1/s) and n ∈ N, let us first denote by Dn(x) the denominator of (2.1),
i.e.,

Dn(x) :=

n∑
i=1

iαsK (iα(xi − x)) .

Moreover, let B(0, r) be the ball of radius r (r > 0) centered on 0. The empirical
measure of B(0, r) associated to the transitions of the process (Xi) is given by

Λn(B(0, r)) :=

n∑
i=0

1l(||Xi||≤r).(2.5)

Lemma 2.6. (a) Under Assumptions 2.1 and 2.2, there exists a finite constant r0
such that, for any initial distribution and any policy,

lim sup
n→∞

1

n

n−1∑
i=0

‖Xi‖2 ≤ r0 a.s.(2.6)

(b) It follows that for all r > r0,

lim inf
n→∞

1

n+ 1
Λn(B(0, r)) ≥ 1− r0/r

2 a.s.,(2.7)

that is to say, the process (Xn) is stabilized by the use of any admissible policy.
Proof of Lemma 2.6. (a) Let us define the new control variable for all k ∈ N,

Ũk := (Uk, k) ∈ Ũ = U × N and the new admissible set Ã(x) := A(x) × N. If δk is

A-admissible, then δ̃k(x1, . . . , xk−1, x) = (δk(x1, . . . , xk−1, x), k) is Ã-admissible and

model (1.1) can be rewritten as Xn+1 = g(Xn, Ũn) + εn+1 with

g(x, ũ) := g(x, u,m) = fm(x) + Fm(x, u).

Assumption 2.2 is equivalently stated as follows:

lim sup
‖x‖→∞

supũ∈Ã(x)(‖g(x, ũ)‖)
‖x‖ < 1 a.s.,

and thus, applying Proposition 7.3.19 in Duflo [3] on the stabilization of controlled
iterative models, there exists a finite constant r0 such that (2.6) holds.

(b) Inequality (2.7) can easily be deduced from (2.5) and (2.6), since ‖Xi‖2 ≥
r21l{‖Xi‖≥r}.
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Lemma 2.7. Suppose that Assumptions 2.1, 2.2, and 2.4 hold. For any a > 0,
there exist two constants m and M such that

(a) for α < 1/s and all x such that ‖x‖ ≤ a,

0 < m ≤ lim inf
n→∞ n−1Dn(x) ≤ lim sup

n→∞
n−1Dn(x) ≤M <∞,(2.8)

(b) for α < 1/2s, the previous inequalities hold uniformly on x, i.e.,

0 < m ≤ lim inf
n→∞ inf

‖x‖≤a
n−1Dn(x) ≤ lim sup

n→∞
sup

‖x‖≤a
n−1Dn(x) ≤M <∞.(2.9)

Proof of Lemma 2.7. Since fi−1, Xi−1 and Ui−1 are Fi−1-measurable, and εi is
independent of Fi−1, we have, from (1.1),

E(K(iα(Xi − x))/Fi−1)

=

∫
p(z − fi−1(Xi−1)− Fi−1(Xi−1, Ui−1))K(iα(z − x))dz

= i−αs
∫

K(z)p(i−αz + x− fi−1(Xi−1)− Fi−1(Xi−1, Ui−1))dz.

Let Dc
n be the compensator of Dn, i.e.,

Dc
n(x) :=

n∑
i=1

iαsE(K(iα(Xi − x))/Fi−1)

=
n∑
i=1

∫
K(z)p(i−αz + x− fi−1(Xi−1)− Fi−1(Xi−1, Ui−1))dz.(2.10)

Let rK be such that the compact support of K is included in the ball B(0, rK)—see
Assumption 2.4. We denote for a > 0 and r > 0

cr := sup (‖fi(x) + Fi(x, u)‖ : ‖x‖ ≤ r, u ∈ A(x), i ∈ N) ,

γr,a := inf(p(z) : ‖z‖ ≤ a+ rK + cr).

For r sufficiently large, Assumption 2.2 implies that cr < r and Assumption 2.1 yields
that γr,a > 0. It follows, with ‖p‖ := supx ‖p(x)‖, that for all i = 1, 2, . . . ,

‖p‖ ≥
∫

K(z)p(i−αz + x− fi−1(Xi−1)− Fi−1(Xi−1, Ui−1))dz

≥
∫

K(z)p(i−αz + x−fi−1(Xi−1)− Fi−1(Xi−1, Ui−1))

× 1l(‖x‖≤a,‖z‖≤rK ,‖Xi−1‖≤r)dz
≥ γr,a 1l(‖x‖≤a,‖Xi−1‖≤r),

which, according to (2.5) and (2.10), gives

‖p‖ ≥ n−1Dc
n(x) ≥ γr,aΛn(B(0, r))

for all x such that ‖x‖ ≤ a. Taking r >
√
2r0, we then deduce by Assumption 2.2

that

lim inf
n→∞ inf

‖x‖≤a
n−1Dc

n(x) ≥ γr,a/2 = m > 0(2.11)

and lim sup
n→∞

sup
‖x‖≤a

n−1Dc
n(x) ≤ ‖p‖ = M <∞.(2.12)
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(a) Now, let us decompose Dn(x) as Dn(x) = Mn(x) +Dc
n(x), where Mn(x) :=

Dn(x)−Dc
n(x). For all x, Mn(x) is a martingale whose hook, 〈M(x)〉n, defined by

〈M(x)〉n − 〈M(x)〉n−1 = E
(
(Mn(x)−Mn−1(x))

2/Fn−1

)
,(2.13)

satisfies

〈M(x)〉n ≤
n∑
i=1

iαs
∫

K(z)2p
(
i−αz + x− fi−1(Xi−1)− Fi−1(Ui−1, Xi−1)

)
dz

≤ cst nαs+1,

where cst stands for any finite constant. Thus (n−(αs+1)E〈M(x)〉n) is bounded. The
second law of large numbers for martingales (see [3]) then yields, for αs < 1,

n−1
(
Dn(x)−Dc

n(x)
)−→0 a.s.,

which, together with (2.11) and (2.12), implies (2.8).
(b) To get the uniform version, let us consider the martingale Hn(x, y) = Mn(x)−

Mn(y) and recall that, for a Lipschitz continuous kernel K with compact support, for
any ρ > 0, there exists a finite constant C such that

‖K(x)−K(y)‖ ≤ C‖x− y‖ρ for all (x, y) ∈ R
s × R

s.(2.14)

Straightforward calculations easily yield that

(〈H〉n − 〈H〉n−1)(x, y) ≤ n2αsE
(
(K(nα(Xn − x))−K(nα(Xn − y)))2/Fn−1

)
≤ C2n2α(s+ρ)‖x− y‖2ρ.

It follows then, from the definition (2.13), that

E((Mn(x)−Mn(y))
2) ≤ cst× n1+2α(s+ρ)‖x− y‖2ρ.

As ρ is arbitrary, the uniform law of large numbers given in the appendix applies to
Mn, i.e., if α < 1/2s,

lim
n→∞ sup

{‖x‖≤a}
n−1Mn(x) = 0 a.s.,

and then the inequalities (2.9) hold.

Proof of Theorem 2.5. Let us write f̂n(x)− f(x) as follows:

f̂n(x)− f(x) =
1

Dn−1(x)
(Sn(x) +Rn,1(x) +Rn,2(x)),(2.15)

where

Sn(x) =

n−1∑
i=1

iαsK
(
iα(Xi − x)

)
εi+1,(2.16)

Rn,1(x) =

n−1∑
i=1

iαsK
(
iα(Xi − x)

)(
fi(Xi)− fi(x)

)
,(2.17)

and Rn,2(x) =

n−1∑
i=1

iαsK
(
iα(Xi − x)

)(
fi(x)− f(x)

)
.(2.18)
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The proof consists in studying separately Sn, Rn,1, and Rn,2 and then combining the
different convergence results together with (2.8) and (2.9) in Lemma 2.7.

Study of Sn: Sn(x) is for all x, a vector martingale whose hook—see (2.13)—in
the sense of semipositive definite matrices, is

〈S(x)〉n =

n−1∑
i=1

i2αsK2
(
iα(Xi − x)

)
Γ,(2.19)

where Γ is the covariance matrix of ε. Now take the expectation of (2.19), and after
an easy change of variable, we get

(2.20)

E〈S(x)〉n = Γ

n−1∑
i=1

iαsE

(∫
K2(z)p

(
i−αz + x− fi(Xi−1)− Fi(Xi−1, Ui−1)

)
dz

)
.

(a) From (2.20), we have trace (E〈S(x)〉n) ≤ cst × nαs+1. The second law of
large numbers on martingales [3] then applies whenever αs < 1, and yields that

n−1Sn(x)
a.s.−→ 0.

(b) The proof of the uniform convergence of Sn is similar to the proof of Lemma
2.7(b), done with the martingale Mn(x) = Dn(x)−Dc

n(x). Let us define the martin-
gale Gn(x, y) := Sn(x)− Sn(y). From the Lipschitz property (2.14), we deduce

(〈G〉n+1 − 〈G〉n)(x, y) = n2αs(K(nα(Xn − x))−K(nα(Xn − y)))2 Γ

≤ C2n2α(s+ρ)‖x− y‖2ρΓ.
Thus

E‖Sn(x)− Sn(y)‖2 ≤ cst n1+2α(s+ρ)‖x− y‖2ρ.
As ρ > 0 is arbitrary, we conclude, using the uniform law of large numbers given in
the appendix, that, whenever 2αs < 1 for all a > 0,

lim
n→∞ sup

{‖x‖≤a}
n−1Sn(x) = 0 a.s.

Study of Rn,1: Since the compact support of K is included in B(0, rK), then
K(z) = 0 when ||z|| > b. Let η > 0 and a > 0. From Assumption 2.3(a), the sequence
(fn) is equicontinuous. Let us then denote by ω(η) the modulus of uniform continuity
of (fn), associated with η on the ball B(0, a+ rk), i.e., for any pair (x, y) in the ball
such that ||x− y|| < η, we have

sup
i∈N

||fi(x)− fi(y)|| ≤ ω(η).

Then, for the first rank n1 such that bn−α
1 < η, we have

n−1∑
i=n1

iαsK
(
iα(Xi − x)

)||fi(Xi)− fi(x)|| ≤ ω(η)

n−1∑
i=n1

iαsK(iα(Xi − x)),(2.21)

since, when ||iα(Xi − x)|| ≤ b for i ≥ n1, we have

||Xi − x|| ≤ bi−α ≤ bn−α
1 < η.
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From (2.17) and (2.21), it follows that

1

n− 1
‖Rn,1(x)‖ ≤ cst

n− 1
+

ω(η)

n− 1
Dn−1(x).(2.22)

(a) Let α < 1/s and x be such that ‖x‖ ≤ a. From (2.8) and (2.22), we deduce

lim sup
n→∞

1

n− 1
‖Rn,1(x)‖ ≤ω(η) M a.s.,

and then, lim supn→∞ ‖Rn,1(x)‖/n = 0 a.s., since limη→0 ω(η) = 0.
(b) Similarly, for α < 1/2s, (2.9) and (2.22) easily yield

lim sup
n→∞

sup
{‖x‖≤a}

1

n
‖Rn,1(x)‖ = 0 a.s.

Study of Rn,2: By Assumption 2.3(a), the almost sure equicontinuity on com-
pacts of the sequence (fn) induces the almost sure equicontinuity on compacts of
the weighted sums Rn,2(x)/Dn−1(x). Then the pointwise convergence of Rn,2/Dn−1,
given in Assumption 2.3(b), is strengthened to the uniform convergence on compacts,
that is, for αs < 1 and all a > 0,

lim
n→∞ sup

{‖x‖≤a}
Rn,2(x)/Dn−1(x) = 0 a.s.

Finally, from (2.15), combining the results obtained for each term Dn, Sn, Rn,1, and
Rn,2 completes the proof of Theorem 2.5.

2.4. Corollaries. The previous theorem can be adapted in several ways with
respect to the nature of the unknown functional sequence (fn). Recall also that only
the pointwise convergence in (2.3) is required if (fn) is a.s. equicontinuous.

2.4.1. The case of convergent sequences.
Corollary 2.8. Assumption 2.3 holds with any sequence of continuous deter-

ministic (resp., random) functions fn, converging (resp., converging a.s.) uniformly
on the compact subsets of R

s.
Proof. Let us note first that the uniform convergence of (fn) implies the equicon-

tinuity of the sequence. Thus, since Dn =
∑∞
i=0 i

αsK(iα(Xi − x)) = ∞ a.s., the
application of the Toeplitz lemma yields (2.3) and Assumption 2.3 holds.

Remark 2.9.
• The deterministic case fn = f includes the model of Senoussi [9].
• The regression model of Rutkowski [8] of independent sequences (Zn, Yn) is

reproduced by letting X1
n = Zn+1, X2

n = Yn, and fn(x) = E(Yn |Zn = x).

2.4.2. The case of martingale increments. Let (fn) be a random sequence in
C(Rs,Rs) and let us define the filtration G = (Gn)n≥1, where Gn := σ(X0, Xi, fi−1, 1 ≤
i ≤ n).

Corollary 2.10. Assumption 2.3 is satisfied if a.s. the sequence (fn) is equicon-
tinuous and if there exist two continuous and deterministic functions f and γ such
that for all x ∈ R

s and n ∈ N,

f(x) := E
(
fn(x)/Gn

)
and E

(
‖fn − f‖2(x)/Gn

)
≤ γ(x).(2.23)
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Proof. For all x, the process

R̃n(x) := Rn,2(x) =

n−1∑
i=1

iαsK(iα(Xi − x))(fi − f)(x)

is a G-martingale of hook

〈R̃〉n(x) =
n−1∑
i=1

i2αsK2(iα(Xi − x))E
(
(fi − f)t(fi − f)(x)/Gi

)
.

Following the proof of the asymptotic behavior of Sn(x) (cf. section 2.3), we obtain

traceE
(
〈R̃〉n(x)

)
≤ γ(x)

n−1∑
i=1

i2αsE
(
K2(iα(Xi − x))

)
≤ cst γ(x) nαs+1.

Since γ(.) is continuous, it is finite on each compact. Thus, the second law of large
numbers on martingales applies whenever αs < 1, i.e., for all a > 0 and ‖x‖ ≤ a,

we have n−1R̃n(x)→ 0, a.s. By Lemma 2.7(a), we deduce the almost sure pointwise

convergence of R̃n/Dn−1(x) to 0, that is to say, (2.3) holds.
Corollary 2.11. A sequence in an equicontinuous subset A ⊂ C(Rs,Rs) of

i.i.d. random functions fn satisfying E(‖fi(0)‖2) <∞ verifies Assumption 2.3.
Proof. If ω(.) denotes the modulus of continuity of (fn) on A, then for a > 0 and

‖x‖ ≤ a, it follows that

E
(
‖fi(x)‖2

)
≤ 2ω2(a) + 2E

(
‖fi(0)‖2

)
,

since ‖fi(x)‖ ≤ ‖fi(x)−fi(0)‖+‖fi(0)‖ ≤ ω(a)+‖fi(0)‖. Thus, the functions f(x) :=
E(fi(x)) and Γf (x) := E((fi − f)t(fi − f)(x)) exist. They are continuous because of
the almost sure equicontinuity of (fn) and the pointwise convergence (by ergodicity)
of n−1

∑
i fi(x) and n−1

∑
i(fi−f)t(fi−f)(x) to f(x) and Γf (x), respectively. Let us

define γ(x) := trace(Γf (x)). Then (2.23) is satisfied and Corollary 2.10 holds.

2.5. A special class of models. Let us consider models of the form fi(x) =
Hi(x)gi(x), i = 1, 2, . . ., where (Hi) is a sequence of known mappings from R

s into
Ms×l, the set of s × l real matrices with l ≤ s, and (gi) is a sequence of unknown
mappings from R

s into R
l. This type of model is frequently met in biotechnological

process control. The following lemma is needed for the definition of an appropriate
estimator of the sequence (gi).

Lemma 2.12. Let H(.) denote a mapping from R
s into Ms×l, the set of s × l

real matrices with l ≤ s.
(a) If H(.) has a constant rank l, it admits a left inverse in Ml×s, denoted by

H−(.), of constant rank l, such that for all x,H−(x)H(x) = IIl the identity matrix of
dimension l.

(b) Furthermore, if H(.) is a continuous mapping, so is H−(.).
Proof. As the rank of H is l, the square matrix tH.H is invertible for all x and

one can take H− = (tH.H)−1tH. Since it is a composition of matrix transposition,
product, and inversion, this mapping is continuous, irrespective of the norms con-
sidered.
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One can then define the following estimator of gn(x):

ĝn(x) =

∑n−1
i=1 h−s

i K(h−1
i (x−Xi))H

−
i (Xi)(Xi+1 − Fi(Xi, Ui))∑n−1

i=1 h−s
i K(h−1

i (x−Xi))
.(2.24)

Assumption 2.3 about the sequence (gi) can be strengthened by the following
finiteness assumption.

Assumption 2.13. For all r > 0, sup{||H−
i (x)|| ; i ≥ 0, ||x|| ≤ r} := w(r) <∞.

Corollary 2.14. Under Assumptions 2.1, 2.2, 2.3, 2.4, and 2.13, the estimator
ĝn converges a.s. to g and uniformly on the compact subsets.

Proof. It suffices to consider the martingale

S′
n(x) =

n∑
i=0

iαsK(iα(Xi − x))H−
i (Xi)εi+1.

As for Sn(.), one can apply the uniform law of large numbers, by noticing that

for all x : ||x|| ≤ r , K(iα(Xi − x))||H−
i (Xi)|| ≤ K(iα(Xi − x))w(r + rK),

where B(0, rK) is the ball containing the support of K.
Corollary 2.15. If Hi(x) = H(x) is continuous, Assumption 2.13 is satisfied.
Proof. H− is a continuous mapping according to Lemma 2.12(b). H− is then

bounded on every compact.
Remark 2.16. Corollaries 2.8, 2.10, and 2.11 can easily be adapted to the se-

quence (gi).
Remark 2.17. One could think of replacing H−

i (Xi) by H−
n (x) in the estimator

given by (2.24), which amounts to first computing f̂n(x) = ̂Hn(x)gn(x) and then
deducing an estimator of gn(x) by multiplying it by H−

n (x). But as it has been shown by
simulation, the behavior of this estimator is less satisfactory than that of the previous
one. This is not surprising since it does not make use of the knowledge of the (Hi).

3. Concluding remarks. We have used convolution kernels for the nonpara-
metric identification of an unknown component in an autoregressive nonlinear con-
trolled process. This procedure could certainly be improved by some appropriate
optimization of the bandwidth parameter and of course the type of kernel. Finally,
let us point out that this nonparametric approach can be the first step towards a
nonparametric adaptive process control.

Appendix. Let (Mn(.))n≥0 be a random sequence of continuous functions, such
that for all x, (Mn(x))n is a square-integrable martingale adapted to a filtration F.
The following theorem has been proved in Senoussi [9] and corresponds to Proposition
6.4.33 in Duflo [3].

Theorem. If there exist α > 0 and γ > 0 such that

(1) E
(‖Mn(0)‖2

)
= O(nα),

(2) given any A > 0, there exists η such that for all x, y with moduli less than A,

E
(
‖Mn(x)−Mn(y)‖2

)
≤ ηnα‖x− y‖s+γ ,

then for β > α/2 and any A <∞, sup‖x‖≤An
−β‖Mn(x)‖ → 0 a.s.
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UNIFORM CONVERGENCE AND MESH INDEPENDENCE OF
NEWTON’S METHOD FOR DISCRETIZED VARIATIONAL
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Abstract. In an abstract framework, we study local convergence properties of Newton’s method
for a sequence of generalized equations which models a discretized variational inequality. We identify
conditions under which the method is locally quadratically convergent, uniformly in the discretiza-
tion. Moreover, we show that the distance between the Newton sequence for the continuous problem
and the Newton sequence for the discretized problem is bounded by the norm of a residual. As
an application, we present mesh-independence results for an optimal control problem with control
constraints.

Key words. Newton’s method, variational inequality, optimal control, sequential quadratic
programming, discrete approximation, mesh independence

AMS subject classifications. 49M25, 65J15, 65K10

PII. S0363012998338570

1. Introduction. In this paper we study local convergence properties of Newton-
type methods applied to discretized variational problems. Our target problem is the
variational inequality representing the first-order optimality conditions in constrained
optimal control. In an abstract framework, the optimality conditions are modeled by
a “generalized equation,” a term coined by S. Robinson [12], where the normal cone
mapping is replaced by an arbitrary map with closed graph. In this setting, Newton’s
method solves at each step a linearized generalized equation. When the generalized
equation describes first-order optimality conditions, Newton’s method becomes the
well-known sequential quadratic programming (SQP) method.

We identify conditions under which Newton’s method is not only locally quadrat-
ically convergent, but the convergence is uniform with respect to the discretization.
Moreover, we derive an estimate for the number of steps required to achieve a given
accuracy. Under some additional assumptions, which are natural in the context of
the target problem, we prove that the distance between the Newton sequence for the
continuous problem and the Newton sequence for the discretized problem, measured
in the discrete metric, can be estimated by the norm of a residual. Normally, the
residual tends to zero when the approximation becomes finer, and the two Newton
sequences approach each other. In the context of the target optimal control problem,
the residual is proportional to the mesh spacing h, uniformly along the Newton se-
quence. In particular, this implies that the least number of steps needed to reach a
point at distance ε from the solution of the discrete problem does not depend on the
mesh spacing; that is, the method is mesh independent.
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The convergence of the SQP method applied to nonlinear optimal control prob-
lems has been studied in several papers recently. In [5, 6] we proved local convergence
of the method for a class of constrained optimal control problems. In parallel, Alt
and Malanowski obtained related results for state constrained problems [3]. Along the
same lines, Tröltzsch [13] studied the SQP method for a problem involving a parabolic
partial differential equation.

Kelley and Sachs [10] were the first to obtain a mesh-independence result in con-
strained optimal control; they studied the gradient projection method. More recently,
uniform convergence and mesh-independence results for an augmented Lagrangian
version of the SQP method, applied to a discretization of an abstract optimization
problem with equality constraints, were presented by Kunisch and Volkwein [11]. Alt
[2] studied the mesh independence of Newton’s method for generalized equations in
the framework of the analysis of operator equations in Allgower et al. [1]. An ab-
stract theory of mesh independence for infinite-dimensional optimization problems
with equality constraints, together with applications to optimal control of partial dif-
ferential equations and an extended survey of the field, can be found in the thesis of
Volkwein [14].

The local convergence analysis of numerical procedures is closely tied to the prob-
lem’s stability. The analysis is complicated for optimization problems with inequality
constraints or for related variational inequalities. In this context, the problem solution
typically depends on perturbation parameters in a nonsmooth way. In section 2 we
present an implicit function theorem which provides a basis for our further analysis.
In section 3 we obtain a result on uniform convergence of Newton’s method applied to
a sequence of generalized equations, while section 4 presents our mesh-independence
results. Although in part parallel, our approach is different from the one used by Alt
in [2], who adopted the framework of [1]. First, we study the uniform local conver-
gence of Newton’s method, which is not considered in [2]. In the mesh-independence
analysis, we avoid consistency conditions for the solutions of the continuous and the
discretized problems; instead, we consider the residual obtained when the Newton se-
quence of the continuous problem is substituted into the discrete necessary conditions.
This allows us to obtain mesh independence under conditions weaker than those in
[2] and, at the same time, to significantly simplify the analysis.

In section 5 we apply the abstract results to the constrained optimal control
problem studied in our previous paper [5]. We show that under the smoothness and
coercivity conditions given in [5] and assuming that the optimal control of the continu-
ous problem is a Lipschitz continuous function of time, the SQP method applied to the
discretized problem is Q-quadratically convergent, and the region of attraction and
the constant of the convergence are independent of discretization, for a sufficiently
small mesh size. Moreover, the l∞ distance between the Newton sequence for the
continuous problem at the mesh points and the Newton sequence for the discretized
problem is of order O(h). In particular, this estimate implies the mesh-independence
result in Alt [2].

2. Lipschitzian localization. Let X and Y be metric spaces. We denote both
metrics by ρ(·, ·); it will be clear from the context which metric we are using. Br(x)
denotes the closed ball with center x and radius r. In writing “f maps X into Y ”
we adopt the convention that the domain of f is a (possibly proper) subset of X.
Accordingly, a set-valued map F from X to the subsets of Y may have empty values.

Definition 2.1. Let Γ map Y to the subsets of X and let x∗ ∈ Γ(y∗). We say
that Γ has a Lipschitzian localization with constants a, b, and M around (y∗, x∗), if
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the map y �→ Γ(y) ∩Ba(x∗) is single valued (a function) and Lipschitz continuous in
Bb(y

∗) with a Lipschitz constant M .
Theorem 2.1. Let G map X into the subsets of Y and let y∗ ∈ G(x∗). Let

G−1 have a Lipschitzian localization with constants a, b, and M around (y∗, x∗). In
addition, suppose that the intersection of the graph of G with Ba(x

∗)×Bb(y∗) is closed
and Ba(x

∗) is complete. Let the real numbers λ, M̄ , ā, m, and δ satisfy the relations

λM < 1, M̄ =
M

1− λM
, m+ δ < b, and ā+ M̄δ < a.(1)

Suppose that the function g : Ba(x
∗) �→ Y is Lipschitz continuous with a constant λ

in the ball Ba(x
∗), that

sup
x∈Ba(x∗)

ρ(g(x), y∗) ≤ m,(2)

and that the set

∆ := {x ∈ Bā(x∗) : dist(g(x), G(x)) ≤ δ}(3)

is nonempty.
Then the set {x ∈ Ba(x∗) | g(x) ∈ G(x)} consists of exactly one point, x̂, and for

each x′ ∈ ∆ we have

ρ(x′, x̂) ≤ M̄dist(g(x′), G(x′)).(4)

Proof. Let us choose positive λ, M̄,m, ā, and δ such that the relations in (1) hold.
We first show that the set T := {x ∈ Ba(x∗) | g(x) ∈ G(x)} is nonempty. Let x′ ∈ ∆
and put x0 = x′. Take an arbitrary ε > 0 such that

m+ δ + ε ≤ b and ā+ M̄(δ + ε) ≤ a.

Choose an y′ ∈ G(x′) such that ρ(y′, g(x′)) ≤ dist(g(x′), G(x′)) + ε. Since

ρ(y′, y∗) ≤ ρ(y∗, g(x′)) + dist(g(x′), G(x′)) + ε ≤ m+ δ + ε ≤ b

and

ρ(g(x0), y
∗) ≤ m ≤ b,

from the Lipschitzian localization property, there exists x1 such that

g(x0) ∈ G(x1), ρ(x1, x0) ≤Mρ(y′, g(x0)) ≤M(dist(g(x′), G(x′)) + ε).(5)

We define inductively a sequence xk in the following way. Let x0, . . . , xk be already
defined for some k ≥ 1 in such a way that

ρ(xi, xi−1) ≤ (λM)i−1ρ(x1, x0), i = 1, . . . , k,(6)

and

g(xk−1) ∈ G(xk).(7)

Clearly, x0 and x1 satisfy these relations. Using the second inequality in (5), we
estimate

ρ(xi, x
∗) ≤ ρ(x0, x

∗) +
i∑

j=1

ρ(xj , xj−1) ≤ ρ(x′, x∗) +
∞∑
j=0

(λM)jρ(x1, x0)

≤ ā+
1

1− λM
M(dist(g(x′), G(x′)) + ε) ≤ ā+ M̄(δ + ε) ≤ a.
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Thus both xk−1 and xk are in Ba(x
∗) from which we obtain by (2)

ρ(g(xi), y
∗) ≤ m ≤ b

for i = k − 1 and for i = k. Due to the assumed Lipschitzian localization property of
G, there exists xk+1 such that (7), with k replaced by k + 1, is satisfied and

ρ(xk+1, xk) ≤Mρ(g(xk), g(xk−1)).

By (6) we obtain

ρ(xk+1, xk) ≤Mλρ(xk, xk−1) ≤ (λM)kρ(x1, x0),

and hence (6) with k replaced by k+1, is satisfied. The definition of the sequence xk
is complete.

From (6) and the condition λM < 1, {xk} is a Cauchy sequence. Since all
xk ∈ Ba(x∗), the sequence {xk} has a limit x′′ ∈ Ba(x∗). Passing to the limit in (7),
we obtain g(x′′) ∈ G(x′′). Hence x′′ ∈ T and the set T is nonempty. Note that x′′

may depend on the choice of ε. If we prove that the set T is a singleton, say x̂, the
point x′′ = x̂ would not depend on ε.

Suppose that there exist x′′ ∈ T and x̄′′ ∈ T with ρ(x′′, x̄′′) > 0. It follows that
ρ(g(x), y∗) ≤ m ≤ b for x = x′′ and x = x̄′′. From the definition of the Lipschitzian
localization, we obtain

ρ(x′′, x̄′′) ≤Mρ(g(x′′), g(x̄′′)) ≤Mλρ(x′′, x̄′′) < ρ(x′′, x̄′′),

which is a contradiction. Thus T consists of exactly one point, x̂, which does not
depend on ε. To prove (4) observe that for any choice of k > 1,

ρ(x′, x′′) ≤ ρ(x0, xk) + ρ(xk, x
′′) ≤

k−1∑
i=0

ρ(xi+1, xi) + ρ(xk, x
′′)

≤
k−1∑
i=0

(λM)iρ(x1, x0) + ρ(xk, x
′′).

Passing to the limit in the latter inequality and using (5), we obtain

ρ(x′, x′′) ≤ M̄(dist(g(x′), G(x′)) + ε).(8)

Since x′′ = x̂ does not depend on the choice of ε, one can take ε = 0 in (8) and the
proof is complete.

3. Newton’s method. Theorem 2.1 provides a basis for the analysis of the error
of approximation and the convergence of numerical procedures for solving variational
problems. In this and the following section we consider a sequence of so-called gener-
alized equations. Specifically, for each N = 1, 2, . . . , let XN be a closed and convex
subset of a Banach space, let Y N be a linear normed space, let fN : XN �→ Y N be

a function, and let FN : XN �→ 2Y
N

be a set-valued map with closed graph. We
denote by ‖ · ‖N the norms of both XN and Y N . We study the following sequence of
problems:

Find x ∈ XN such that 0 ∈ fN (x) + FN (x).(9)

We assume that there exist constants α, β, γ, and L, as well as points x∗N ∈ XN and
z∗N ∈ Y N , that satisfy the following conditions for each N :
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(A1) z∗N ∈ fN (x∗N ) + FN (x∗N ).
(A2) The function fN is Frechét differentiable in Bα(x

∗
N ) and the derivative ∇fN

is Lipschitz continuous in Bα(x
∗
N ) with a Lipschitz constant L.

(A3) The map

y �→
(
fN (x∗N ) +∇fN (x∗N )(· − x∗N ) + FN (·)

)−1

(y)

has a Lipschitzian localization with constants α, β, and γ around the point
(z∗N , x

∗
N ).

We study the Newton method for solving (9) for a fixed N which has the following
form: If xk is the current iterate, the next iterate xk+1 satisfies

0 ∈ fN (xk) +∇fN (xk)(xk+1 − xk) + FN (xk+1), k = 0, 1, . . . ,(10)

where x0 is a given starting point. If the range of the map F is just the origin, then
(9) is an equation and (10) becomes the standard Newton method. If F is the normal
cone mapping in a variational inequality describing first-order optimality conditions,
then (10) represents the first-order optimality condition for the auxiliary quadratic
program associated with the SQP method.

In the following theorem, by applying Theorem 2.1, we obtain the existence of a
locally unique solution of the problem (9) which is at a distance from the reference
point proportional to the norm of the residual z∗N . We also show that the method (10)
converges Q-quadratically and this convergence is uniform in N and in the choice of
the initial point from a ball around the reference point x∗N with radius independent
of N . Note that for obtaining this result we do not pass to a limit and consequently
we do not need to consider sequences of generalized equations.

Theorem 3.1. For every γ′ > γ there exist positive constants κ and σ such that
if ‖z∗N‖ ≤ σ, then the generalized equation (9) has a unique solution xN in Bκ(x

∗
N );

moreover, xN satisfies

‖xN − x∗N‖N ≤ γ′‖z∗N‖N .(11)

Furthermore, for every initial point x0 ∈ Bκ(x
∗
N ) there is a unique Newton sequence

{xk}, with xk ∈ Bκ(x
∗
N ), k = 1, 2, . . . , and this Newton sequence is Q-quadratically

convergent to xN , that is,

‖xk+1 − xN‖N ≤ Θ‖xk − xN‖2N , k = 0, 1, . . . ,(12)

where Θ is independent of k,N and x0 ∈ Bκ(x∗N ).
Proof. Define

κ = min

{
α, γβ,

γ′ − γ

Lγγ′
,

1

5Lγ′

}
, σ =

1

γ′
min

{
κ

4
,

√
κ

3Lγ′
,

1

6Lγ′

}
, Θ =

γ′L
2

.

We will prove the existence and uniqueness of xN by using Theorem 2.1 with

a = κ, b = κ/γ, M = γ, λ = κL, M̄ = γ′, ā = 0, m = κ2L/2 + σ, δ = σ

and

g(x) = −fN (x) + fN (x∗N ) +∇fN (x∗N )(x− x∗N ),

G(x) = fN (x∗N ) +∇fN (x∗N )(x− x∗N ) + FN (x).
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Observe that a ≤ α, b ≤ β and γb ≤ a. By (A3) the map G has a Lipschitzian
localization around (x∗N , z

∗
N ) with constants a, b, and γ. One can check that the

relations (1) are satisfied. Further, for x, x′, and x′′ ∈ Bκ(x∗N ), we have

‖g(x)− z∗N‖N ≤ ‖z∗N‖N + L‖x− x∗N‖2N/2 ≤ σ + Lκ2/2 = m,

‖g(x′)− g(x′′)‖N ≤ ‖ − fN (x′) + fN (x′′) +∇f(x∗N )(x′ − x′′)‖N
≤ Lκ‖x′ − x′′‖N = λ‖x′ − x′′‖N ,

dist(g(x∗N ), G(x∗N )) = dist(0, fN (x∗N ) + F (x∗N )) ≤ ‖z∗N‖N ≤ σ = δ.

Obviously, x∗N ∈ B0(x
∗
N ) and x∗N ∈ ∆, with ∆ defined in (3). The assumptions

of Theorem 2.1 are satisfied; hence there exists a unique xN in Bκ(x
∗
N ) for which

g(xN ) ∈ G(xN ). Hence xN is a unique solution of (9) in Bκ(x
∗
N ) and (11) holds. This

completes the first part of the proof.
Given xk ∈ Bκ(x∗N ), a point x is a Newton step from xk if and only if x satisfies

the inclusion

g(x) ∈ G(x),(13)

where G is the same as above, but now

g(x) = −fN (xk)−∇fN (xk)(x− xk) + fN (x∗N ) +∇fN (x∗N )(x− x∗N ).

The proof will be completed if we show that (13) has a unique solution xk+1 in
Bκ(x

∗
N ) and this solution satisfies (12). To this end we apply again Theorem 2.1 with

a, b,M, M̄ , and λ the same as in the first part of the proof and with

ā = σγ′, m = σ +
5Lκ2

2
, δ =

L

2
(γ′σ + κ)2.

With these identifications, it can be checked that the assumptions (1) and (2) hold,
and that g is Lipschitz continuous in Bκ(x

∗
N ) with a Lipschitz constant λ. Further,

by using the solution xN obtained in the first part of the proof, we have

dist(g(xN ), G(xN )) = dist(0, fN (xk) +∇fN (xk)(xN − xk) + FN (xN ))

≤ L

2
‖xN − xk‖2N + dist(0, f(xN ) + FN (xN )) =

L

2
‖xN − xk‖2N .(14)

The last expression has the estimate

L

2
‖xN − xk‖2N ≤

L

2

(
‖xN − x∗N‖N + ‖x∗N − xk‖N

)2

≤ L

2
(γ′σ + κ)2 = δ.

Thus xN ∈ ∆ �= ∅ and the assumptions of Theorem 2.1 are satisfied. Hence, there
exists a unique Newton step xk+1 in Bκ(x

∗
N ) and by Theorem 2.1 and (14) it satisfies

‖xk+1 − xN‖N ≤ γ′L
2
‖xk − xN‖2N = Θ‖xk − xN‖2N .
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4. Mesh independence. Consider the generalized equation (9) under the as-
sumptions (A1)–(A3). We present first a lemma in which, for simplicity, we suppress
the dependence of N .

Lemma 4.1. For every γ′ > γ, every µ > 0, and every sufficiently small ξ > 0,
there exists a positive η such that the map

(y, w) �→ P (y, w) := (f(w) +∇f(w)(· − w) + F (·))−1(y) ∩Bα(x∗)(15)

is a Lipschitz continuous function from Bη(z
∗) × Bξ(x

∗) into Bξ(x
∗) with Lipschitz

constants γ′ for y and µ for w.
Proof. Let γ′ > γ and µ > 0. We choose the positive constants ξ and η as a

solution of the following system of inequalities:

γLξ < 1, ξ ≤ γ − γ′

γγ′L
, 3η +

15

2
Lξ2 + Lξα ≤ β,

ξ + γ′(2η + 6Lξ2) ≤ α, 3Lξγ′ ≤ µ, γ′(η + 3Lξ2) ≤ ξ.

This system of inequalities is satisfied by first taking ξ sufficiently small and then
taking η sufficiently small. In particular, we have ξ ≤ α and η ≤ β.

Take (y′′, w′′) ∈ Bη(z
∗) × Bξ(x

∗). We apply Theorem 2.1 with a = α, b = β,
M = γ, ā = ξ, b̄ = η, M̄ = γ′, λ = Lξ, m = η + 3

2Lξ
2 + Lξα, δ = 2η + 6Lξ2,

g(x) = y′′ + f(x∗) +∇f(x∗)(x− x∗)− f(w′′)−∇f(w′′)(x− w′′),

and

G(x) = f(x∗) +∇f(x∗)(x− x∗) + F (x).

We have

‖g(x1)− g(x2)‖ = ‖(∇f(x∗)−∇f(w′′))(x1 − x2)‖
≤ L‖w′′ − x∗‖‖x1 − x2‖ ≤ Lξ‖x1 − x2‖

for all x1, x2 ∈ Bα(x∗). Hence the function g is Lipschitz continuous with a Lipschitz
constant λ. For x ∈ Bα(x∗) we have

‖g(x)− z∗‖ ≤ ‖y′′ − z∗‖+ ‖f(w′′)− f(x∗)−∇f(x∗)(w′′ − x∗)‖
+ ‖(∇f(x∗)−∇f(w′′))(x− w′′)‖
≤ η +

L

2
‖w′′ − x∗‖2 + L‖w′′ − x∗‖‖x− w′′‖

≤ η +
1

2
Lξ2 + Lξ(ξ + α) = m.

Note that a point x is in the set P (y′′, w′′) if and only if g(x) ∈ G(x). Since

dist(g(x∗), G(x∗)) ≤ ‖y′′ − z∗‖+ dist(z∗ − f(w′′)−∇f(w′′)(x∗ − w′′), F (x∗))

≤ η + dist(z∗, f(x∗) + F (x∗)) +
L

2
‖x∗ − w′′‖2 ≤ η +

L

2
ξ2 < δ,

the set ∆ defined in (3) is not empty. Hence, from Theorem 2.1 the set P (y′′, w′′) ∩
Bα(x

∗) consists of exactly one point. Let us call it x′′. Applying the same argument
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to an arbitrary point (y′, w′) ∈ Bη(z
∗)× Bξ(x

∗), we obtain that there is exactly one
point x′ ∈ P (y′, w′) ∩Bα(x∗). Furthermore,

dist(g(x′), G(x′)) ≤ ‖y′ − y′′‖+ ‖f(w′′)−∇f(w′′)(x′ − w′′)− f(w′)−∇f(w′)(x′ − w′)‖
≤ ‖y′ − y′′‖+ ‖f(w′′)− f(w′)−∇f(w′)(w′′ − w′)‖

+‖∇f(w′′)−∇f(w′)‖‖x′ − w′′‖
≤ ‖y′ − y′′‖+ L

2
‖w′ − w′′‖2 + 2Lξ‖w′ − w′′‖

≤ ‖y′ − y′′‖+ 3Lξ‖w′ − w′′‖.
Hence x′ ∈ ∆ and we obtain

ρ(x′, x′′) ≤ γ′(‖y′ − y′′‖+ 3Lξ‖w′ − w′′‖) ≤ γ′‖y′ − y′′‖+ µ‖w′ − w′′‖.
It remains to prove that P maps Bη(z

∗) × Bξ(x
∗) into Bξ(x

∗). From the last
inequality with x′ = x∗ and w′ = x∗, we have

ρ(x′′, x∗) ≤ γ′(‖y′′ − z∗‖+ 3Lξ‖w′′ − x∗‖) ≤ γ′(η + 3Lξ2) ≤ ξ.

Thus x′′ ∈ Bξ(x∗).
In the remaining part of this section, we fix γ′ > γ and 0 < µ < 1, and we choose

the constants κ and σ according to Theorem 3.1. For a positive ξ with ξ ≤ κ, let η
be the constant whose existence is claimed in Lemma 4.1. Note that η can be chosen
arbitrarily small; we take 0 < η ≤ σ. Also, we assume that ‖z∗N‖ ≤ η and consider
Newton sequences with initial points x0 ∈ Bξ(x

∗
N ). In such a way, the assumptions

of Theorem 3.1 hold and we have a unique Newton sequence which is convergent
quadratically to a solution.

Suppose that Newton’s method (10) is supplied with the following stopping test:
Given ε > 0, at the kth step the point xk is accepted as an approximate solution if

dist(0, fN (xk) + FN (xk)) < ε.(16)

Denote by kε the first step at which the stopping test (16) is satisfied.
Theorem 4.1. For any positive ε < η, if xkε is the approximate solution obtained

using the stopping test (16) at the step k = kε, then

‖xkε − xN‖N ≤ γ′ε
1− µ

(17)

and

kε ≤ 2 +
1

2
logµ

(
ε

2Lξ2

)
.(18)

Proof. Choose an ε such that 0 < ε < η. If the stopping test (16) is satisfied at
xkε , then there exists vkε with ‖ vkε ‖N≤ ε such that

vkε ∈ fN (xkε) + FN (xkε).

Let PN be defined as in (15) on the basis of fN and FN . Since

xkε = PN (vkε , x
kε) and xN ∈ PN (0, xN ),
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Lemma 4.1 implies that

‖xkε − xN‖N ≤ γ′ ‖ vkε ‖N +µ‖xkε − xN‖N .

The latter inequality yields (17). For all k < kε, we obtain

ε ≤ dist(0, fN (xk) + FN (xk)).

Since xk is a Newton iterate, we have

fN (xk)− fN (xk−1)−∇fN (xk−1)(xk − xk−1) ∈ fN (xk) + FN (xk).

Hence

dist(0, fN (xk) + FN (xk)) ≤ ‖ fN (xk)− fN (xk−1)−∇fN (xk−1)(xk − xk−1) ‖N
≤ L‖xk − xk−1‖2N/2.(19)

By the definition of the map PN , the Newton step x1 from x0 satisfies

x1 = PN (0, x0),

while the Newton step x2 from x1 is

x2 = PN (0, x1).

Since PN is Lipschitz continuous with a constant µ, we have

‖x2 − x1‖N ≤ µ‖x1 − x0‖N .

By induction, the (k + 1)st Newton step xk+1 satisfies

‖xk+1 − xk‖N ≤ µk‖x1 − x0‖N .(20)

Combining (19) and (20) and we obtain the estimate

ε ≤ 2Lξ2µ2(k−1),

which yields (18).
Our next result provides a basis for establishing the mesh independence of New-

ton’s method (10). Namely, we compare the Newton sequence xkN for the “discrete”
problem (9) and the Newton sequence for a “continuous” problem which is again de-
scribed by (9) but with index N = 0. Let us assume that the conditions (A1)–(A3)
hold for the generalized equation (9) with N = 0. According to Theorem 3.1, for each
starting point x0

0 close to a solution x0, there is a unique Newton sequence xk0 which
converges to x0 Q-quadratically. To relate the continuous problem to the discrete
one, we introduce a mapping πN from X0 to XN . Having in mind the application
to optimal control presented in the following section, X0 can be thought as a space
of continuous functions x(·) in [0, 1] and, for a given natural number N , t0 = 0 and
ti = i/N , XN will be the space of sequences {xi, i = 0, 1, . . . , N}. In this case the
operator πN is the interpolation map πN (x(·)) = (x(t0), . . . , x(tN )).

Theorem 4.2. Suppose that for every k and N there exists rkN ∈ Y N such that

rkN ∈ fN (πN (xk0)) +∇fN (πN (xk0))(πN (xk+1
0 )− πN (xk0)) + FN (πN (xk+1

0 ))
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and

ωN := sup
k
‖ rkN ‖N< η.(21)

In addition, let

‖πN (xk0)− x∗N‖N ≤ ξ

for all k and N . Then for all k = 1, 2, . . . and N

‖xk+1
N − πN (xk+1

0 )‖N ≤ γ′

1− µ
ωN + µk+1‖x0

N − πN (x0
0)‖N .(22)

Proof. By definition, we have

πN (xk+1
0 ) = PN (rkN , πN (xk0)) and xk+1

N = PN (0, xkN ).

Using Lemma 4.1 we have

‖xk+1
N −πN (xk+1

0 )‖N ≤ γ′ ‖ rkN ‖N +µ‖xkN −πN (xk0)‖N ≤ γ′ωN +µ‖xkN −πN (xk0)‖N .
By induction we obtain (22).

The above result means that, under our assumptions, the distance between the
Newton sequence for the continuous problem and the Newton sequence for the dis-
cretized problem, measured in the discrete metric, can be estimated by the sup-norm
ωN of the residual obtained when the Newton sequence for the continuous problem
is inserted into the discretized generalized equations. If the sup-norm of the residual
tends to zero when the approximation becomes finer, that is, when N →∞, then the
two Newton sequences approach each other. In the next section, we will present an
application of the abstract analysis to an optimal control problem for which the resid-
ual is proportional to the mesh spacing h, uniformly along the Newton sequence. For
this particular problem Theorem 4.2 implies that the distance between the Newton
sequences for the continuous problem and the Newton sequence for the discretized
problem is O(h).

For simplicity, let us assume that if the continuous Newton process starts from
the point x0

N , then the discrete Newton process starts from πN (x0
0). Also, suppose

that for any fixed w, v ∈ X0,

‖πN (w)− πN (v)‖N → ‖w − v‖0 as N →∞.(23)

In addition, let

ωN → 0 as N →∞,(24)

where ωN is defined in (21). Letting k tend to infinity and assuming that πN is a
continuous mapping for each N , Theorem 4.2 gives us the following estimate for the
distance between the solution xN of the discrete problem and the discrete represen-
tation πN (x0) of the solution x0 of the continuous problem:

‖xN − πN (x0)‖N ≤ γ′

1− µ
ωN .(25)

Choose a real number ε satisfying

0 < ε < 1/(5Θ),(26)



MESH INDEPENDENCE OF NEWTON’S METHOD 971

where Θ is as in Theorem 3.1. Theorem 4.2 yields the following result.
Theorem 4.3. Let (23) and (24) hold and let ε satisfy (26). Then for all N

sufficiently large,

|min
{
k ∈ N : ‖xk0 − x0‖0 < ε

}−min
{
k ∈ N : ‖xkN − xN‖N < ε

}| ≤ 1.(27)

Proof. Let m be such that

‖xm+1
0 − x0‖0 < ε ≤ ‖xm0 − x0‖0.(28)

Choose N so large that

γ′

1− µ
ωN < ε/2

and

‖πN (xm+1
0 )− πN (x0)‖N ≤ ε.

Using Theorem 3.1, Theorem 4.2, (25), and (29), we obtain

‖xm+2
N − xN‖N ≤ Θ‖xm+1

N − xN‖2N
≤ Θ

(‖xm+1
N − πN (xm+1

0 )‖N + ‖πN (xm+1
0 )− πN (x0)‖N + ‖πN (x0)− xN‖N

)2
≤ Θ(ε/2 + ε+ ε/2)2 = 4Θε2 < ε.

This means that if the continuous Newton sequence achieves accuracy ε (measured
by the distance to the exact solution) at the mth step, then the discrete Newton
sequences should achieve the same accuracy ε at the (m + 1)st step or earlier. Now
we show that the latter cannot happen earlier than at the (m− 1)st step. Choose N
so large that

‖xm−1
0 − x0‖20 ≤ ‖πN (xm−1

0 )− πN (x0)‖2N + ε2(29)

and suppose that

‖xm−1
N − xN‖N < ε.

From Theorem 3.1, (22), (25), (28), and (29), we get

ε ≤ ‖xm0 − x0‖0 ≤ Θ‖xm−1
0 − x0‖20 ≤ Θ‖πN (xm−1

0 )− πN (x0)‖2N + ε2

≤ Θ
(‖πN (xm−1

0 )− xm−1
N ‖N + ‖xm−1

N − xN‖N + ‖xN − πN (x0)‖N
)2

+ ε2

≤ Θ(ε/2 + ε+ ε/2)2 + ε2 = 5Θε2,

which contradicts the choice of ε in (26).

5. Application to optimal control. We consider the following optimal control
problem:

minimize G(y(1)) +

∫ 1

0

ϕ(y(t), u(t)) dt(30)

subject to ẏ(t) = g(y(t), u(t)) and u(t) ∈ U for almost every (a.e.) t ∈ [0, 1],

y(0) = y0, y ∈W 1,∞(Rn), and u ∈ L∞(Rm),
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where ϕ : R
n+m → R, g : R

n+m → R
n, G : R

n → R, U is a nonempty, closed
and convex set in R

m, and y0 is a fixed vector in R
n. L∞(Rm) denotes the space of

essentially bounded and measurable functions with values in R
m and W 1,∞(Rn) is

the space of Lipschitz continuous functions with values in R
n.

We are concerned with local analysis of the problem (30) around a fixed local min-
imizer (y∗, u∗) for which we assume certain regularity. Our first standing assumption
is the following:

Smoothness. The optimal control u∗ is Lipschitz continuous in [0, 1]. There
exists a positive number δ such that the first three derivatives of ϕ and g exist and are
continuous in the set {(y, u) ∈ R

n+m : |y − y∗(t)|+ |u− u∗(t)| ≤ δ for all t ∈ [0, 1]}.
Defining the Hamiltonian H by

H(y, u, ψ) = ϕ(y, u) + ψTg(y, u),

it is well known that the first-order necessary optimality conditions at the solution
(y∗, u∗) can be expressed in the following way: There exists ψ∗ ∈ W 1,∞(Rn) such
that (y∗, u∗, ψ∗) is a solution of the variational inequality

ẏ(t) = g(y(t), u(t)), y(0) = y0,(31)

ψ̇(t) = −∇yH(y(t), u(t), ψ(t)), ψ(1) = ∇G(y(1)),(32)

0 ∈ ∇uH(y(t), u(t), ψ(t)) +NU (u(t)) for a.e. t ∈ [0, 1],(33)

where NU (u) is the normal cone to the set U at the point u; that is, NU (u) is empty
if u �∈ U , while for u ∈ U ,

NU (u) = {p ∈ R
m : pT(q − u) ≤ 0 for all q ∈ U}.

Although the problem (30) is posed in L∞ and the optimality system (31)–(33) is
satisfied a.e. in [0, 1], the regularity we assume for the particular optimal solution
implies that at (y∗, u∗, ψ∗) the relations (31)–(33) hold everywhere in [0, 1].

Defining the matrices

A(t) = ∇yg(z∗(t)), B(t) = ∇ug(z∗(t)), V = ∇2G(y∗(1)),
Q(t) = ∇2

yyH(x∗(t)), R(t) = ∇2
uuH(x∗(t)), S(t) = ∇2

yuH(x∗(t)),

where z∗ = (y∗, u∗) and x∗ = (y∗, u∗, ψ∗), we employ the following coercivity condi-
tion.

Coercivity. There exists α > 0 such that

y(1)TV y(1)+

∫ 1

0

[y(t)TQ(t)y(t)+u(t)TR(t)u(t)+2y(t)TS(t)u(t)] dt ≥ α

∫ 1

0

|u(t)|2 dt
(34)
whenever y ∈ W 1,2(Rn), y(0) = 0, u ∈ L2(Rn), ẏ = Ay + Bu, u(t) ∈ U − U for a.e.
t ∈ [0, 1].

Let N be a natural number, let h = 1/N be the mesh spacing, let ti = ih, and
let y′i denote the forward difference operator defined by

y′i =
yi+1 − yi

h
.

We consider the following Euler discretization of the optimality system (31)–(33):

y′i = ∇ψH(yi, ui, ψi),(35)

ψ′
i−1 = −∇yH(yi, ui, ψi), ψN−1 = ∇G(yN ),(36)

0 ∈ ∇uH(yi, ui, ψi) +NU (ui), i = 0, 1, . . . , N − 1.(37)
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The system (35)–(37) is a discrete-time variational inequality depending on the step
size h. It represents the first-order necessary optimality condition for the following
discretization of the original problem (30):

minimize G(yN ) +

N−1∑
i=0

hϕ(yi, ui)

subject to y′i = g(yi, ui), ui ∈ U, i = 0, 1, . . . , N − 1.

(38)

In this section we examine the following version of the Newton method for solving
the variational system (35)–(37), which correspond to the SQP method for solving
the optimization problem (38). Let xk = (yk, uk, ψk) denote the kth iterate. Let the
superscript k and the subscript i attached to the derivatives of H and G denote their
values at xki . Then the new iterate xk+1 = (yk+1, uk+1, ψk+1) is a solution of the
following linear variational inequality for the variable x = (y, u, ψ):

y′i = ∇ψHk
i +∇2

ψxH
k
i (xi − xki ),(39)

ψ′
i−1 = −∇yHk

i −∇2
yxH

k
i (xi − xki ), ψN−1 = ∇Gk +∇2Gk(yN − ykN ),(40)

0 ∈ ∇uHk
i +∇2

uxH
k
i (xi − xki ) +NU (ui), i = 0, 1, . . . , N − 1.(41)

In [5, Appendix 2], it was proved that the coercivity condition (34) is stable under
the Euler discretization, then the variational system (39)–(41) is equivalent, for xk

near x∗ = (y∗, u∗, ψ∗), to the following linear-quadratic discrete-time optimal control
problem which is expressed in terms of the variables y, u, and z = (y, u):

minimize

(
∇Gk + 1

2
∇2Gk(yN − ykN )

)T

(yN − ykN )

+ h

N−1∑
i=0

(
∇zϕki +

1

2
∇2
zzH

k
i (zi − zki )

)T

(zi − zki )

subject to y′i = gki +∇zgki (zi − zki ), ui ∈ U, i = 0, 1, . . . , N − 1.

A natural stopping criterion for the problem at hand is the following: Given ε > 0,
a control ũk obtained at the kth iteration is considered an ε-optimal solution if

max
0≤i≤N−1

dist(∇uH(ỹki , ũ
k
i , ψ̃

k
i ), NU (ũ

k
i )) ≤ ε,(42)

where ỹki and ψ̃ki are the solutions of the state and the adjoint equations (35) and
(36) correspond to u = ũk.

We now apply the general approach developed in the previous section to the
discrete-time variational inequality (35)–(36). The discrete L∞

N norm is defined by

‖v‖∞N = max
0≤i≤N−1

|vi|.

The variable x is the triple (y, u, ψ) while XN is the space of all finite sequences
x0, x1, . . . , xN−1, with y0 given, equipped with the L∞

N norm. The space Y N is the
Cartesian product L∞

N ×L∞
N ×R

n×L∞
N corresponding to the four components of the

function fN defined by

fN (x)i =


y′i − g(yi, ui)

−ψ′
i−1 +∇yH(yi, ui, ψi)
ψN−1 −∇G(yN )
−∇uH(yi, ui, ψi)

 and FN (x)i =


0
0
0

NU (ui)

 .
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With the choice (x∗N )i = (y∗(ti), u∗(ti), ψ∗(ti)), the general condition (A1) is satisfied
by taking

(z∗N )i =


(y∗(ti+1)− y∗(ti))/h− g(y∗(ti), u∗(ti))

(ψ∗(ti−1)− ψ∗(ti))/h−∇xH(y∗(ti), u∗(ti), ψ∗(ti))
0
0

 .

The first component of z∗N is estimated in the following way:

sup
i

∣∣∣∣y∗(ti+1)− y∗(ti)
h

− g(y∗(ti), u∗(ti))
∣∣∣∣

≤ sup
i

1

h

∫ ti+1

ti

|g(y∗(ti), u∗(ti))− g(y∗(t), u∗(t))|dt.

Since g is smooth and both y∗ and u∗ are Lipschitz continuous, the above expression
is bounded by O(h). The same bound applies for the second component of z∗N , while
the third and fourth components are zero. Thus the norm of z∗N can be made arbi-
trarily small for all sufficiently large N . Condition (A2) follows from the smoothness
assumption. A proof of condition (A3) is contained in the proof of Theorem 6 in [5].
Applying Theorems 3.1 and 4.1 and using the result from [5, Appendix 2], that the
discretized coercivity condition is a second-order sufficient condition for the discrete
problem, we obtain the following theorem.

Theorem 5.1. If smoothness and coercivity hold, then there exist positive con-
stants K, c, σ, ε̄, and N̄ with the property that for every N > N̄ there is a unique
solution (yh, uh, ψh) of the variational system (35)–(37) and (yh, uh) is a local mini-
mizer for the discrete problem (38). For every starting point (y0, u0, ψ0) with

max
0≤i≤N

(|(y0)i − y∗(ti)|+ |(u0)i − u∗(ti)|+ |(ψ0)i − ψ∗(ti)|
) ≤ σ,

there is a unique SQP sequence (yk, uk, ψk) and it is Q-quadratically convergent, with
a constant K, to the solution (yh, uh, ψh). In particular, for the sequence of controls
we have

max
0≤i≤N−1

|(uk+1)i − (uh)i| ≤ K

(
max

0≤i≤N−1
|(uk)i − (uh)i|

)2

.

Moreover, if the stopping test (42) is applied with an ε ∈ [0, ε̄], then the resulting
ε-optimal control ukε satisfies

max
0≤i≤N−1

|ukεi − u∗(ti)| ≤ c(ε+ h).

Note that the termination step kε corresponding to the assumed accuracy of the
stopping test can be estimated by Theorem 4.1. Combining the error in the discrete
control with the discrete state equation (35) and the discrete adjoint equation (36),
yield corresponding estimates for discrete state and adjoint variables.

Remark. Following the approach developed in [5] one can obtain an analogue of
Theorem 5.1 by assuming that the optimal control u∗ is merely bounded and Riemann
integrable in [0, 1] and employing the so-called averaged modulus of smoothness to
obtain error estimates.. The stronger Lipschitz continuity condition for the optimal
control is, however, needed in our analysis of the mesh independence.
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The SQP method applied to the continuous-time optimal control problem (30)
has the following form: If x0 = (y0, u0, ψ0) is a starting point, the iterate xk+1 =
(yk+1, uk+1, ψk+1) satisfies

ẏ(t) = ∇ψHk(t) +∇2
ψxH

k(t)(x(t)− xk(t)), y(0) = y0,(43)

ψ̇(t) = −∇yHk(t)−∇2
yxH

k(t)(x(t)− xk(t)),(44)

ψ(1) = ∇Gk(1) +∇2Gk(y(1)− yk(1)),(45)

0 ∈ ∇uHk(t) +∇2
uxH

k(t)(x(t)− xk(t)) +NU (u(t))(46)

for a.e. t ∈ [0, 1], where the superscript k attached to the derivatives of H and G
denotes their values at xk. In particular, (43)–(46) is a variational inequality to
which we can apply the general theory from the previous sections. We attach the
index N = 0 to the continuous problem and for x = (y, u, ψ) we choose X0 =
C1

0 (R
n) × C(Rm) × C1(Rn), where C1

0 =
{
y ∈ C1 | y(0) = y0

}
, and Y 0 = C(Rn) ×

C(Rn)×R
n×C(Rm). Condition (A1) is clearly satisfied with x∗0 = x∗ := (y∗, u∗, ψ∗)

and z∗0 = 0. Condition (A2) follows from the smoothness assumption. Condition (A3)
follows from the coercivity assumption as proved in [9, Lemma 3] (see also [4, section
2.3.4], for an earlier version of this result in the convex case). Hence, we can apply
Theorem 3.1 obtaining that for any sufficiently small ball B around x∗ (in the norm
of X0), if the starting point x0 is chosen from B, then the SQP method produces a
unique sequence xk ∈ B which is Q-quadratically convergent to x∗ (in the norm of
X0). Moreover, from Theorem 4.1 we obtain an estimate for the number of steps
needed to achieve a given accuracy.

In order to derive a mesh-independence result from the general theory, we first
study the regularity of the SQP sequence for the continuous problem.

Lemma 5.1. There exist positive constants p and q such that for every x0 ∈
Bp(x

∗) with u0(·) Lipschitz continuous in [0, 1], for every k = 1, 2, . . . , and for every
t1, t2 ∈ [0, 1],

|uk(t1)− uk(t2)| ≤ q|t1 − t2|.

Proof. In [5, section 6], extending a previous result in [7], see also [6], Lemma 2, we
showed that the coercivity condition implies pointwise coercivity almost everywhere.
In the present circumstances, the latter condition is satisfied everywhere in [0, 1]; that
is, there exists a constant α > 0 such that for every v ∈ U − U and for all t ∈ [0, 1],

vTR(t)v ≥ αvTv.(47)

For a positive parameter p, consider the SQP sequence xk starting from x0 ∈ Bp(x∗)
such that the initial control u0 is a Lipschitz continuous function in [0, 1]. Throughout
the proof we will choose p sufficiently small and check the dependence of the constants
of p. By (46) the iterate xk satisfies

(∇uHk(t) +∇2
uuH(xk(t))(uk+1(t)− uk(t)) +∇2

uyH(xk(t))(yk+1(t)− yk(t))

+∇2
uψH(xk(t))(ψk+1(t)− ψk(t)))T(u− uk+1(t)) ≥ 0(48)

for every t ∈ [0, 1] and for every u ∈ U . Let t1, t2 ∈ [0, 1]. Note that xk are contained in
Bp(x

∗) for all k and therefore both y′k and ψ′k are bounded by a constant independent
of k; hence, yk and ψk are Lipschitz continuous functions in time with Lipschitz
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constants independent of k. We have from (48)

(∇uHk(t1) +∇2
uuH(xk(t1))(u

k+1(t1)− uk(t1)) +∇2
uyH(xk(t1))(y

k+1(t1)− yk(t1))

+∇2
uψH(xk(t1))(ψ

k+1(t1)− ψk(t1)))
T(uk+1(t2)− uk+1(t1)) ≥ 0

and the analogous inequality with t1 and t2 interchanged. Adding these two in-
equalities and adding and subtracting the expressions ∇2

uuH(xk(t1))u
k+1(t2) and

∇2
uuH(xk(t1))u

∗(t1)−∇2
uuH(xk(t2))u

∗(t2) we obtain

(θk(t1)− θk(t2)−∇2
uuH(xk(t1))u

∗(t1) +∇2
uuH(xk(t2))u

∗(t2)
+(∇2

uuH(xk(t1))−∇2
uuH(xk(t2)))u

k+1(t2)

+∇2
uyH(xk(t1))(y

k+1(t1)− yk(t1))

+∇2
uψH(xk(t1))(ψ

k+1(t1)− ψk(t1)))
T(uk+1(t2)− uk+1(t1))

≥ (∇2
uuH(xk(t1))(u

k+1(t1)− uk+1(t2)))
T(uk+1(t1)− uk+1(t2))

(49)

where the function θk is defined as

θk(t) = ∇uHk(t) +∇2
uuH(xk(t))(uk(t)− u∗(t)).

By (47), for a sufficiently small p the right-hand side of the inequality (49) satisfies

(∇2
uuH(xk(t1))(u

k+1(t1)− uk+1(t2)))
T(uk+1(t1)− uk+1(t2))

≥ α

2
|uk+1(t1)− uk+1(t2)|2.(50)

Combining (49) and (50) we obtain

α

2
|uk+1(t1)− uk+1(t2)| ≤ |θk(t1)− θk(t2)|

+|(∇2
uuH(xk(t1))−∇2

uuH(xk(t2)))(u
k+1(t2)− u∗(t2))|

+|∇2
uuH(xk(t1))(u

∗(t1)− u∗(t2))|
+|(∇2

uyH(xk(t1))−∇2
uyH(xk(t2)))(y

k+1(t1)− yk(t1))|
+|∇2

uyH(xk(t2))((y
k+1(t1)− yk+1(t2))− (yk(t1)− yk(t2)))|

+|(∇2
uψH(xk(t1))−∇2

uψH(xk(t2)))(ψ
k+1(t1)− ψk(t1))|

+|∇2
uψH(xk(t2))((ψ

k+1(t1)− ψk+1(t2))− (ψk(t1)− ψk(t2)))|.(51)

Let uk be Lipschitz continuous in time with a constant Lk. Then the function θk

is almost everywhere differentiable and its derivative is given by

θ̇(t) = ∇2
uyH

k(t)ẏk(t) +∇2
uψH

k(t)ψ̇k(t)−∇3
uuuH

k(t)u̇k(t)(uk(t)− u∗(t))

− ∇3
uuyH

k(t)ẏk(t)(uk(t)− u∗(t))−∇3
uuψH

k(t)ψ̇k(t)(uk(t)− u∗(t))−∇2
uuH

k(t)u̇∗(t).

From this expression we obtain that there exists a constant c1, independent of k and
t and bounded from above when p→ 0, such that

‖θ̇‖L∞ ≤ cp‖u̇k‖L∞ + c1 ≤ c1(pLk + 1).
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Estimating the expressions in the right-hand side of (51) we obtain that there exists a
constant c2, independent of k and t and bounded from above when p→ 0, such that

|uk+1(t1)− uk+1(t2)| ≤ c2(pLk + 1)|t1 − t2|.

Hence, uk+1 is Lipschitz continuous and, for some constants c of the same kind as
c1, c2, its Lipschitz constant Lk+1 satisfies

Lk+1 ≤ c(pLk + 1).

Since p can be chosen arbitrarily small, the sequence Li, i = 1, 2, . . . , is bounded, i.e.,
by a constant q. The proof is complete.

To apply the general mesh-independence result presented in Theorem 4.2 we need
to estimate the residual rkN obtained when the SQP sequence of the continuous prob-
lem is substituted into the relations determining the SQP sequence of the discretized
problem. Specifically, the residual is the remainder term associated with the Euler
scheme applied to (43)–(46); that is,

rkN =



1
h

∫ ti+1

ti
(∇ψHk(t) +∇2

ψxH
k(t)(xk+1(t)− xk(t))

− (∇ψHk
i +∇2

ψxH
k
i (x

k+1
i − xki )))dt

1
h

∫ ti+1

ti
(−∇xHk(t)−∇2

xxH
k(t)(xk+1(t)− xk(t))

− (−∇xHk
i −∇2

xxH
k
i (x

k+1
i − xki )))dt

ψk+1(1− h)− ψk+1(1)

0


,

where the subscript i denotes the value at ti. From the regularity of the Newton
sequence established in Lemma 5.1, the uniform norm of the residual is bounded by
ch, where c is independent of k. Note that the map πN (x) defined in section 4,
acting on a function x ∈ X0, gives the sequence x(ti), i = 0, 1, . . . N. Condition (23)
is satisfied because the space X0 is a subset of the space of continuous functions.
Summarizing, we obtain the following result.

Theorem 5.2. Suppose that smoothness and coercivity conditions hold. Then
there exists a neighborhood W, in the norm of X0, of the solution x∗ = (y∗, u∗, ψ∗)
such that for all sufficiently small step-sizes h, the following mesh-independence prop-
erty holds:

sup
k

max
0≤i≤N−1

|uk(ti)− (ukh)i| = O(h),(52)

where uk(·) is the control in the SQP sequence (yk(·), uk(·), ψk(·)) for the continuous
problem starting from a point x0 = (y0, u0, ψ0) ∈ W with u0(·) Lipschitz continuous
in [0, 1], and ukh is the control in the SQP sequence (ykh, u

k
h, ψ

k
h) for the discretized

problem starting from the point πN (x0).
Applying Theorem 4.3 to the optimal control problem considered we obtain the

mesh-independence property (27) which relates the number of steps for the contin-
uous and the discretized problem needed to achieve certain accuracy. The latter
property can be also easily deduced from the estimate (52) in Theorem 5.2, in a way
analogous to the proof of Theorem 4.3. Therefore the estimate (52) is a stronger
mesh-independence property than (27).
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Fig. 1. SQP iterates for the control with N = 10.
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Fig. 2. SQP iterates for the control with N = 50.

6. Numerical examples. The convergence estimate of Theorem 5.2 is illus-
trated using the following example:

minimize

∫ 1

0

(
1
2 (y(t)

4 + u(t)2 + u(t)y(t)) + 1
4 sin(10t)u(t) + u(t)−1

)
dt

subject to ẏ(t) = −u(t)/(2y(t)), y(0) =
√

1+3e
2(e−1) , u(t) ≤ 1.
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Fig. 3. SQP iterates for the control with N=250.

Table 1
L∞ error in the control for various choices of the mesh.

Iteration N = 10 N = 50 N = 250
0 .500000 .500000 .500000
1 .278473 .290428 .291671
2 .090857 .091727 .097923
3 .008928 .008971 .010185
4 .000082 .000084 .000105

Table 2
Error in current iterate divided by error in prior iterate squared.

Iteration N = 10 N = 50 N = 250
1 1.113 1.161 1.166
2 1.171 1.087 1.151
3 1.081 1.066 1.062
4 1.027 1.039 1.013

This problem is a variation of Problem I in [8] that has been converted from a linear-
quadratic problem to a fully nonlinear problem by making the substitution x = −y2

and by adding additional terms to the cost function that degrade the speed of the SQP
iteration so that the convergence is readily visible (without these additional terms,
the SQP iteration converges to computing precision within 2 iterations). Figures 1–3
show the control iterates for successively finer meshes. The control corresponding to
k = 3 is barely visible beneath the k = 4 iterate. Observe that the SQP iterations
are relatively insensitive to the choice of the mesh. Specifically, N = 10 is already
sufficiently large to obtain mesh independence. In Table 1 we give the L∞ error in
the successive iterates. In Table 2 we observe that the ratio of the error in the current
iterate to the error in the prior iterate squared is slightly larger than 1.
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Abstract. We show that the quantum cohomology ring of the Grassmannian can be used to find
the minimal degree of the solution to various interpolation problems involving matrices of rational
functions. We also use computations in the quantum cohomology ring to formalize the notion of
linearity in this context and distinguish between linear problems such as matrix and tangential
interpolation and nonlinear problems such as pole placement.
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Introduction. A number of rational matrix interpolation problems were refor-
mulated in terms of intersection theory on the space of maps from the projective line
P

1 into a Grassmannian in [2]. The general problem posed in [2] was shown to include
a wide range of problems of interest, but a solution to the general problem itself was
not presented.

The first goal of our paper is to show that the quantum cohomology ring of the
Grassmannian provides a general solution to the intersection theory problem posed
in [2]. This by itself seems to be a well-known fact among people who deal with quan-
tum cohomology, but we aim to make the connection clear to the interpolation theory
community. The second objective of our paper is to use the quantum cohomology
ring of the Grassmannian to make specific computations in the cases of the matrix
and tangential interpolation problems and to use these computations to show that
these problems are “linear” in the sense that they have a unique solution, no solu-
tion, or infinitely many solutions. As far as the author knows, there does not seem
to be any known explanation of the well-known fact that the matrix and tangential
interpolation problems have linear algorithms [1], [8], whereas other problems like the
pole placement problem are known to be nonlinear [10]. In the process, we also try
to formalize the notion of linearity in this context. We believe that our computations
provide the first convincing explanation of the difference between these problems.

1. Preliminaries. In this section we recall the problem formulated in [2] and
introduce some notation.

Let G = Grass(p, p+m) denote the Grassmannian of all p-dimensional subspaces
of C

m+p. We recall some of the facts of interest related to the Grassmannian. Each
point in G may be identified with the row space of a p × (m + p) matrix of full row
rank. From this point of view, one sees that the Grassmannian has an open cover
{UI}, where for a choice of a multi-index I = (i1, . . . , ip), the open set UI ⊂ G consists
of subspaces represented by p× (m+p) matrices whose maximal minor corresponding
to the index I is nonzero. Let us fix a flag V of subspaces V1 ⊂ · · · ⊂ Vm+p = C

m+p

where dimVi = i. For any p-tuple of integers 0 < a1 < · · · < ap ≤ m + p, we define
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published electronically October 20, 2000. This work was supported in part by ECU Faculty Senate
Research grant 99-41.
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the subvariety

ΩV (a1, . . . , ap) = {Λ ∈ G |dim Λ ∩ Vai ≥ i for 1 ≤ i ≤ p}.

The varieties defined above are called Schubert varieties. The homology class of the
subvariety ΩV (a1, . . . , ap) in the homology ring H∗(G,C) is independent of the flag
V and depends only on the index a = (a1, . . . , ap), since there is an invertible linear
map of C

m+p that takes the flag V to any other flag W , and the set of invertible
linear maps of C

m+p is connected. The homology class of ΩV (a1, . . . , ap) is usually
denoted by (a1, . . . , ap). It is well known that these homology classes for the various
possible choices of the index a form an additive basis for the homology ring of the
Grassmannian. The intersection theory of these homology classes in the Grassman-
nian is usually described in terms of the dual object, namely the cohomology ring, the
duality being given by the Poincaré duality map from H2i(G,C) → H2mp−2i(G,C).
Under this duality, the intersection pairing corresponds to the product in the coho-
mology ring. With this in mind, we next describe a presentation of the cohomology
ring of the Grassmannian.

The Grassmannian comes with two canonical vector bundles on it, the subbundle
S that associates to each point Λ ∈ Grass(p, p + m) the p-dimensional subspace
corresponding to Λ, and the quotient bundleQ that associates to Λ the quotient vector
space C

m+p/Λ. Let Xi ∈ H2i(G,C) denote the ith Chern class of the subbundle
S and let Yi ∈ H2i(G,C) denote the ith Chern class of the quotient bundle Q.
Then the cohomology ring H∗(G,C) is the polynomial ring C[X1, . . . , Xp] modulo the
ideal generated by (Ym+1, . . . , Yp+m), where the polynomials Yi are defined as follows:
Y1 = −X1 and for i > 1,

Yi = −Yi−1X1 − · · · − Y1Xi−1 −Xi(1)

with the convention that Xi = 0 for i > p. Alternatively, one can describe H∗(G,C) as
the polynomial ring C[Y1, . . . , Ym] modulo the ideal generated by (Xp+1, . . . , Xp+m),
where X1 = −Y1 and for i > 1,

Xi = −Xi−1Y1 − · · · −X1Yi−1 − Yi

with the convention that Yi = 0 for i > m. Thus, one can switch from a presentation
in terms of Xi or Yi, depending on which is more convenient. The homology class
(a1, . . . , ap) is Poincaré dual to the cohomology class denoted by {m+1−a1, . . . ,m+
p− ap}, where

{λ1, . . . , λp} = det(Yλi+j−i)1≤i,j≤p.

(As before, Yj = 0 for j /∈ {0, 1, . . . ,m}.) For more details on cohomology of Gras-
mannians, see [7, pp. 193–206].

There are two specific classes of Schubert varieties that will be of interest to us.
Let Ri = {Λ ∈ G |Λ ⊂Mi}, where Mi is a fixed subspace of C

m+p of codimension i.
The homology class of Ri is (m+1−i,m+2−i, . . . ,m+p−i), so that its Poincaré dual is
the cohomology class {i, . . . , i}. In terms of the Xi, one sees that the Poincaré dual of
the homology class of [R1] is the class (−1)pXp and the class of [Ri] is Poincaré dual to
(−1)piXi

p. Similarly, let Li = {Λ ∈ G |Ni ⊂ Λ}, where Ni is a fixed subspace of C
m+p

of dimension i. The homology class of Li is (1, 2, . . . , i,m + i + 1, . . . ,m + p), so that
its Poincaré dual is the cohomology class {m, . . . ,m, 0, . . . , 0}, where the m occurs i
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times. In terms of the Yi, the Poincaré dual of the homology class of [L1] is given by
Ym, and that of [Li] is given by Y i

m. The whole Grassmannian can be thought of as the
homology class (m+ 1, . . . ,m+ p) and the homology class of a point is (1, . . . , p). So
the class of a point in the Grassmannian is dual to (−1)mpXm

p = Y p
m. The Schubert

varieties Li and Ri are called sub-Grassmannians in the algebraic geometry literature.

Given two arbitrary Schubert varieties Ω1 and Ω2, in order to determine if their
intersection is nonempty, one follows the following procedure. Let ξi be the Poincaré
duals of the homology classes of Ωi. If the product ξ1 · ξ2 ∈ H∗(G,C) is nonzero, then
one knows that Ω1 ∩Ω2 is nonempty and further the homology class of Ω1 ∩Ω2 is the
Poincaré dual of ξ1 · ξ2, if the intersection is proper. On the other hand, if ξ1 · ξ2 = 0,
and the two Schubert varieties are in “general” position, then their intersection is
empty.

We try to develop this intersection theoretic approach to solving interpolation
problems involving rational matrix functions in this paper, and show that using the
quantum cohomology ring of the Grassmannian, all necessary computations can be
made quite easily. Let us first recall the following problem formulated in [2].

Problem 1.1. Given � points x1, . . . , x
 on the projective line P
1, and � Schubert

subvarieties W1, . . . ,W
 of Grass(p, p + m), find the lowest integer n for which there
is a map of degree n from P

1 into Grass(p, p+m) that maps the point xi into Wi for
i = 1, . . . , �. Further, parameterize the space of all solutions of lowest degree.

We wish to rephrase this as a problem in intersection theory, and eventually in
terms of multiplying cohomology classes. The first step is to identify the space in
which the solutions are sought. Let Mn be the space of all maps φ of degree n
from P

1 into G and let Mn be the compactification of this space, constructed in [13]
and [9]. The space Mn is a smooth, connected, compact manifold and therefore one
can use intersection theory on this space. The next step is to identify the subsets
of Mn which are being intersected. We observe that for each of the points xi ∈ P

1,
there is an evaluation map evi : Mn → G that takes a map φ ∈ Mn to its value at
xi. Now we want to decide if ∩
i=1ev−1

i (Wi) is empty and more specifically, we want
to parameterize the intersection. We also note that by [4, Lemma 2.2A], if x1, . . . , x

are distinct points and the Wi are in general position, then ∩
i=1ev−1

i (Wi) is Zariski

dense in ∩
i=1ev−1
i (Wi).

The next step is to identify the cohomology ring of Mn, identify the Poincaré

duals of the subvarieties ev−1
i (Wi), and compute their product. We note that we

are not interested in arbitrary products in the cohomology ring H∗(Mn,C) but only
of those classes that arise from pullbacks of Schubert varieties through evaluation
maps. It turns out that the quantum cohomology ring is set up to do precisely such
calculations. Now we need to identify the cohomology classes involved. It would be
most convenient to express the cohomology classes of ev−1

i (Wi) as pullbacks of the
Poincaré duals of Wi through the map on cohomology induced by the evaluation maps
evi. While this description is quite simple, there are some technical problems. The
evaluation map is not defined on all of Mn, but only on an open set and does not
directly induce a map on cohomology rings. We will specify one way of getting around
these difficulties in what follows.

The space Mn has a cellular decomposition [13, Theorem 1.3], so its coho-
mology ring is isomorphic to its Chow ring. Specifically, H2k+1(Mn,C) = 0 and
H2k(Mn,C) � Ak(Mn,C), the group of codimension k cycles onMn (with complex
coefficients) modulo rational equivalence. The evaluation maps can be thought of as
rational maps from the compactification Mn to G that are defined on at least the
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open set Mn ⊂ Mn. The closure of the graph of this map in Mn × G is a corre-
spondence, which gives a map ev∗

i : A∗(G,C) → A∗(Mn,C) [6, Chapter 16]. Since
we can identify the Chow ring with the cohomology ring, for bothMn and G, we get
a map on cohomology: ev∗

i : H∗(G,C)→ H∗(Mn,C). We should point out that the
maps ev∗

i are not ring homomorphisms but just linear maps between vector spaces.
The map induced on cohomology by the evaluation map is independent of the point
xi, namely, the maps ev∗

i = ev∗ for all i [4, Cor. 2.3]. Also, if ξi is Poincaré dual to
the class of the Schubert variety Wi in G, then ev∗

i (ξi) = ev∗(ξi) is Poincaré dual to

ev−1
i (Wi) in Mn.

With all of these preliminaries out of the way, Problem 1.1 can be reformulated
as follows.

Problem 1.2. Let ξi be the Poincaré dual of the class of the subvariety Wi

in H∗(G,C). Find the lowest integer n, such that the product ev∗(ξ1) · · · ev∗(ξ
) ∈
H∗(Mn,C) is not zero and find the product for such an n.

The answer to the question posed above will be given in terms of the quantum
cohomology ring of the Grassmannian.

We will first recall the definition of the quantum cohomology ring, as given in [3].
Recall that there is a nondegenerate inner product ( · | · ) on H∗(G,C) defined as
follows. For ξ and η ∈ H∗(G,C), define

(ξ | η) =

∫
G

ξη.

This inner product is dual, via Poincaré duality, to the intersection pairing on ho-
mology. Note that if ξ is dual to η with respect to the inner product ( · | · ), then
deg η + deg ξ = dimG = mp (all references to dimension and codimension in this
paper will be to complex dimension and complex codimension). For future reference
we note that the dual of the cohomology class Y i

m with respect to the inner product
( · | · ) is Y p−i

m and the dual of (−1)iXi
p is (−1)m−iXm−i

p .
Now, given two cohomology classes ξ and η as above, their quantum product ξ  η

is defined as follows:

ξ  η = (ξ  η)0 + q(ξ  η)1 + · · · qj(ξ  η)j + · · · ,
where

((ξ  η)j |α) =

∫
Mj

ev∗(ξ)ev∗(η)ev∗(α)(2)

In particular, (ξ  η)0 = ξ · η is the usual cohomology product. Further, since the
product in (2) is zero unless deg ξ + deg η + degα = dim Mj = mp + (m + p)j, the
series in (2) is a polynomial with only finitely many nonzero terms and the degree of
(ξ  η)j is deg ξ + deg η − (m + p)j.

Let W1, . . . ,W
+1 be subvarieties of the Grassmannian in general position, and
let ξi be the cohomology class in H∗(G,C) that is Poincaré dual to Wi. Suppose
ξ1  · · ·  ξ
 =

∑
d≥0 q

dαd and (αd | ξ
+1) �= 0. Then if the points xi are distinct, the

intersection ∩
+1
i=1ev−1

i (Wi) in Md is nonempty. Further, ∩
i=1ev−1
i (Wi) ⊂Md is also

nonempty.
Proposition 1.3. Let ξi be the Poincaré dual of the class of the subvarieties

Wi ⊂ G. Let the quantum product

ξ1  · · ·  ξ
 =
∑
d≥0

qdαd,
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where αd ∈ H∗(G,C), and let n be the smallest integer such that αn �= 0. Then, for
subvarieties Wi in general position and n distinct points xi ∈ P

1, the lowest degree of
a curve φ : P

1 → G such that φ(xi) ∈Wi is equal to n.
The final piece of the puzzle comes from an explicit characterization of the quan-

tum cohomology ring of the Grassmannian.
Theorem 1.4 (see [12]). The quantum cohomology ring QH∗(G) of the Grass-

mannian is the polynomial ring C[X1, . . . , Xp, q] modulo the ideal generated by
(Ym+1, . . . , Ym+p + (−1)pq), where the Yi are as defined in (1).

We will denote the i-fold quantum product ξ  · · ·  ξ by ξ�i and the regular i-
fold cohomology product ξ · · · ξ by ξi, as we have already used this notation in the
introduction where we identified the Poincaré duals of [Ri] and [Li].

Lemma 1.5. For 1 ≤ i ≤ p, Y �i
m = Y i

m, and for 1 ≤ j ≤ m, X�i
p = Xi

p.
Proof. We will use the quantum Pieri formula proved in [4]. The particular case

of the formula that we need can be stated as follows:

{m, 0, . . . , 0}  {λ1, . . . , λp} = {m, 0, . . . , 0} · {λ1, . . . , λp}+ q
(∑

{µ1, . . . , µp}
)
,

(3)

where the last sum ranges over all p-tuples µ that satisfy the following conditions:∑
µi =

(∑
λi

)
− p and λ1 − 1 ≥ µ1 ≥ λ2 − 1 ≥ µ2 · · · ≥ λp − 1 ≥ µp ≥ 0.(4)

As we have noted before Y i
m = {λ1, . . . , λp}, where λ1 = · · · = λi = m and λi+1 =

· · · = λp = 0. Therefore for i ≤ p − 1, the quantum product Ym  Y i
m = Y i+1

m , since
there are no p-tuples µ that can satisfy the condition −1 = λp − 1 ≥ µp ≥ 0.

Let G′ = Grass(m, p+m) be the Grassmannian of m-dimensional planes in C
p+m.

Then QH∗(G′) = C[σ1, . . . , σm]/(τp+1, . . . , τp+m + (−1)mq), where the τi are defined
analogously to the Yi in (1), namely,

τi = −τi−1σ1 − · · · − τ1σi−1 − σi.

Then, according to [5, Proposition 4.1], the map from QH∗(G) to QH∗(G′) that
takes Xi to τi is an isomorphism. Now, it follows from the first half of the proof that
τ�ip = τ ip for 1 ≤ i ≤ m. Thus X�i

p = Xi
p for 1 ≤ i ≤ m.

2. Interpolation problems. In this section we use the machinery set up in the
introduction to solve the matrix interpolation and the left and right tangential inter-
polation problems. First we briefly recall the statement of these problems, along with
their reformulation in [2] as special cases of Problem 1.1, and then their reformulation
in terms of quantum cohomology.

2.1. Matrix interpolation problem. Given � points x1, . . . , x
 ∈ P
1 and p×m

scalar matrices Z1, . . . , Z
, we wish to find a rational matrix of least McMillan degree
Z(s) such that Z(xi) = Zi. The solution to this problem is known; see [1] and [8].

If Z(s) = D−1
L NL is a left coprime factorization of Z(s), then the condition that

Z(xi) = Zi can be restated as (DL(s) |NL(s))(xi) = (Ip |Zi). Thus as reformulated
in [2], the solutions to this problem consist of maps φ from P

1 into G, such that
φ(xi) = (Ip |Zi) for i = 1, . . . , � and the McMillan degree of Z(s) equals the degree
of the map φ from P

1 to G. The conditions being imposed at each point xi are
that the evaluation at that point should be a specified point in the Grassmannian.
As seen before the Poincaré dual of the class of a point is Y p

m. Thus according to
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Proposition 1.3, the quantum product that represents the solution to this problem is
(Y p
m)�
. By Lemma 1.5 this is equal to Y �p


m .

We will now compute this product using our description of the quantum coho-
mology ring. First we let p� = a(m + p) + b, where a ≥ 0 and 0 ≤ b < m + p. Then

Y �p

m = (Y

�(m+p)
m )�aY �b

m . Now since Y �p
m = Y p

m = (−1)mp(Xp)
m = (−1)mpX�m

p , we

have Y
�(m+p)
m = (−1)mpY �m

m  X�m
p . The last relation in the ideal of the quantum co-

homology ring implies that Xp Ym = (−1)pq. Therefore Y
�(m+p)
m = (−1)2mpqm = qm.

Finally, if p < b < m + p, then we can write

Y �b
m = Y �p

m Y �(b−p)
m = (−1)mpX�m

p  Y �(b−p)
m = (−1)mp+p(b−p)qb−pX�(m+p−b)

p

= ((−1)pXp)
�(m+p−b)qb−p.

Putting all of this together,

Y �p

m =

{
qamY b

m if b ≤ p,

qam+b−p((−1)pXp)
m+p−b if p < b < m + p.

In either of these cases, it is easy to verify that the exponent of q can also be character-
ized as the smallest integer n such that the dimension ofMn which is n(m+ p) +mp
is greater than or equal to mp�, which can be thought of as the “number of conditions
imposed.”

2.2. Right tangential interpolation. Here we are given � distinct points,
x1, . . . , x
 ∈ C and m × si matrices Wi and p × si matrices Zi, such that the rank
of Wi = si ≤ m. We wish to find the lowest degree of all p × m rational matrices
Z(s) such that Z(xi)Wi = Mi for i = 1, . . . , �. If Z = D−1

L NL is a left coprime
factorization of the matrix Z(s), then one can rewrite the interpolating condition as
NL(xi)Wi = DL(xi)Zi. Thus in terms of curves from P

1 into G, one is looking for
a map φ such that φ(xi) ⊂ Mi, where Mi is a linear subspace of C

m+p of codimen-
sion si, defined by Mi · ( Wi

−Zi ) = 0. Now the Poincaré dual of the Schubert variety
Ri, consisting of all points in G whose span is contained in Mi, is (−1)psiXsi

p . So
the quantum product to be computed here is (−1)ps1Xs1

p  · · ·  (−1)ps�Xs�
p which by

Lemma 1.5 is (−1)psX�s
p , where s =

∑
si.

As in the previous section, we start by writing s = a(m + p) + b, where 0 ≤ b <

m + p. Further, (−1)p(m+p)X
�(m+p)
p = (−1)p

2

Xp
p  Y p

m = qp by a calculation similar
to the last section. If m < b < m + p, we can write

(−1)pbX�b
p = (−1)pbXm

p  Xb−m
p = (−1)p(b−m)Y p

m  Xb−m
p = (−1)2p(b−m)qb−mY m+p−b

m

= qb−mY m+p−b
m .

Thus, as in the previous section we get two cases:

(−1)psX�s
p =

{
qa(−1)pbXb

p if b ≤ m,

qa+b−mY m+p−b
m if m < b < m + p.

(5)

One can again characterize the exponent of q in either of these cases as the smallest
integer n such that n(m + p) + mp ≥ ps.
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2.3. Left tangential interpolation. Here we are given � distinct points,
x1, . . . , x
 ∈ k and ri × p matrices Vi and ri × m matrices Zi, such that rank of
Vi = ri ≤ p. We wish to find the lowest degree of a p×m rational matrix Z(s) such that
ViZ(xi) = Zi for i = 1, . . . , �. As in [2], if we let Z(s) = NRD

−1
R be the right coprime

factorization, then the required condition can be expressed as (Vi |Zi)·( NR
−DR )(xi) = 0.

The relation (DL |NL) · ( NR
−DR ) = 0 between the left and right coprime factorizations

implies that one wants the row span Ni of (Vi |Zi) to be contained in the row span
of (DL |NL)(xi), where Ni is a subspace of C

m+p of dimension ri. The Poincaré dual
of the Schubert variety Li of all points in G whose span contains Ni is Y ri

m . The
quantum product to be computed here is Y r1

m  · · ·  Y r�
m which by Lemma 1.5 is Y �r

m ,
where r =

∑
ri.

As in section 2.1 if one writes r = a(m + p) + b, where 0 ≤ b < m + p, then

Y �r
m =

{
qaY b

m if b ≤ p,

qa+b−p((−1)pXp)
m+p−b if m + p > b > p.

(6)

The calculations that we have made in each of the three cases above can all be put
together in the following lemma. The lemma is of independent interest because it deals
with the quantum computation needed for the bitangential interpolation problem, and
also provides a justification for the definition of linear interpolation problems.

Lemma 2.1. The product (−1)paX�a
p  Y �b

m in the quantum cohomology ring
QH∗(G) can be rewritten as a power of q times (−1)pcXc

p, where c ≤ m, or as a

power of q times Y d
m, where d ≤ p.

Proof. The last relation in the presentation of the quantum cohomology ring given
in Theorem 1.4 specifies that Xp  Ym = (−1)pq in the quantum cohomology ring.

Using this relation, one can rewrite (−1)paX�a
p  Y �b

m as (−1)2paqaY
�(b−a)
m = qaY

�(b−a)
m ,

if b > a and as (−1)p(a+b)qbX
�(a−b)
p = (−1)p(a−b)qbX�(a−b)

p if a ≥ b. As we have seen
in (5) and (6), any quantum power of Ym or (−1)pXp can be rewritten as claimed in
the lemma.

Given an interpolation problem of the form given in Problem 1.1, where the
interpolating conditions can be expressed in terms of the cohomology classes Ym
and (−1)pXp alone, the lemma above shows that there exists a unique interpolating
condition, corresponding to a cohomology class which can also be given in terms of
these cohomology classes, namely (−1)p(m−c)Xm−c

p or Y p−d
m , such that imposing this

additional condition on the original interpolation problem yields a unique solution of
minimal degree. In this sense the solution set to the original interpolation problem
is “weakly dual” to that of the interpolation problem corresponding to the condition
given by the classes (−1)p(m−c)Xm−c

p or Y p−d
m . A stronger duality statement, which we

had hoped to prove at first, would be to say that the cohomology class corresponding to
the product of the interpolating conditions is dual in the cohomology ring H∗(Mn,C)
to the pullback of (−1)p(m−c)Xm−c

p or Y p−d
m , where n is the minimal degree of the

interpolants, and the duality is taken with respect to the inner product ( · | · ) in
H∗(Mn,C). We are unable to prove this statement. The problem arises because the
product of cohomology classes of the interpolating conditions in H∗(Mn,C) might
contain some boundary components that are not in general identifiable using quantum
products which only compute the products of pullbacks of classes from H∗(G,C).

The matrix interpolation and the tangential problems form a distinguished class
of interpolation conditions in the following sense: given any problem in this class the
solution set is weakly dual to that of another interpolation problem from this same
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class. So we can call the interpolation conditions from this class as linear conditions.
This should be contrasted with the pole placement problem which is equivalent to
finding maps φ from P

1 to G such that at the specified points xi the span of φ(xi)
has a nontrivial intersection with a specified m-plane Λi. One checks easily that the
quantum cohomology product that needs to be computed in this case is (−X1)�
,
where � is the number of points at which this condition is imposed. The term of
lowest degree in q in this product was computed explicitly in [10] and [11]. The main
point of interest for the present discussion is that the product (−X1)�
 has terms of
multiplicity greater than one, and in particular for the values of � for which there are
only finitely many solutions of minimal degree, the solutions are not unique. Hence
these interpolation conditions are nonlinear by any reasonable definition of the term.

An important question in this context, which we cannot answer at this point,
is the following: Given that the intersection multiplicity of a class of interpolation
problems is always one, does the existence of a linear algorithm necessarily follow? In
other words, can one find a linear algorithm based on the intersection computations
alone?

Acknowledgments. We would like to thank the anonymous referees for a thor-
ough reading and their constructive criticisms.

REFERENCES

[1] A. C. Antoulas, J. A. Ball, J. Kang, and J. C. Willems, On the solution of the minimal
rational interpolation problem, Linear Algebra Appl., 137/138 (1990), pp. 511–573.

[2] J. Ball and J. Rosenthal, Pole placement, internal stabilization and interpolation conditions
for rational matrix functions: A Grassmannian formulation, in Linear Algebra for Control
Theory, P. Van Dooren and B. Wyman, eds., IMA Vol. Math. Appl. 62, Springer-Verlag,
New York, 1994, pp. 21–29.

[3] A. Beauville, Quantum cohomology of complete intersections, Mat. Fiz. Anal. Geom., 2
(1995), pp. 384–398.

[4] A. Bertram, Quantum Schubert calculus, Adv. Math., 128 (1997), pp. 289–305.
[5] A. Bertram, I. Ciocan-Fontanine, and W. Fulton, Quantum multiplication of Schur poly-

nomials, J. Algebra, 219 (1999), pp. 728–746.
[6] W. Fulton, Intersection Theory, Ergeb. Math. Grenzgeb. (3), Vol. 2, 2nd ed., Springer-Verlag,

Berlin, 1998.
[7] P. Griffiths and J. Harris, Principles of Algebraic Geometry, John Wiley, New York, 1978.
[8] M. S. Ravi, Geometric methods in rational interpolation theory, Linear Algebra Appl., 258

(1997), pp. 159–168.
[9] M. S. Ravi and J. Rosenthal, A smooth compactification of the space of transfer functions

with fixed McMillan degree, Acta Appl. Math, 34 (1994), pp. 329–352.
[10] M. S. Ravi, J. Rosenthal, and X. Wang, Dynamic pole assignment and Schubert calculus,

SIAM J. Control Optim., 34 (1996), pp. 813–832.
[11] M. S. Ravi, J. Rosenthal, and X. Wang, Degree of the generalized Plücker embedding of a
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Abstract. Standard necessary conditions for optimal control problems with pathwise state
constraints supply no useful information about minimizers in a number of cases of interest, e.g.,
when the left endpoint of state trajectories is fixed at x0 and x0 lies in the boundary of the state
constraint set; in these cases a nonzero, but nevertheless trivial, set of multipliers exists. We give
conditions for the existence of nontrivial multipliers. A feature of these conditions is that they allow
nonconvex velocity sets and measurably time-dependent data. The proof techniques are based on
refined estimates of the distance of a given state trajectory from the set of state trajectories satisfying
the state constraint, originating in the dynamic programming literature.
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1. Introduction. Consider the optimal control problem

(P)


Minimize g(x(0), x(1))
over x ∈W 1,1([0, 1];Rn) satisfying
ẋ(t) ∈ F (t, x(t)) almost everywhere (a.e.),
(x(0), x(1)) ∈ C0 × C1,
x(t) ∈ A for all t ∈ [0, 1]

for which the data comprises a function g : Rn ×Rn → R, closed sets A, C0, and C1

in Rn, and a multifunction F : [0, 1] × Rn ❀ Rn. Here, W 1,1([a, b];Rn) denotes the
Banach space of absolutely continuous Rn valued functions on the interval [a, b], with
norm

||x||W 1,1 := |x(a)|+
∫ b

a

|ẋ(t)|dt.

Interest centers on the presence of the state constraint x(t) ∈ A. We shall assume
that A is expressible as the set of points satisfying a finite number of functional
inequality constraints

A =

m⋂
j=1

{x ∈ Rn : hj(x) ≤ 0}.

Here, hj : R
n → R, j = 1, . . . ,m, are given functions of class C1,1 (functions which

are continuously differentiable with locally Lipschitz continuous derivatives). For
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simplicity of exposition in this introduction we restrict attention to the case when
m = 1.

Let x̄ be a W 1,1 local minimizer. This means that x̄ is a W 1,1([0, 1];Rn) function
which satisfies the constraints of (P) and there exists δ > 0 such that, for all x ∈
W 1,1([0, 1];Rn) satisfying the constraints of (P) and also the condition

||x− x̄||W 1,1([0,1];Rn) ≤ δ,
we have

g(x(0), x(1)) ≥ g(x̄(0), x̄(1)).
Necessary conditions for this “differential inclusion problem” with state constraints
have been known for many years. (Many advances in this area were prefigured by
the work of A. Ja. Dubovitskii and Milyutin in the early 1960s on problems with
“mixed” constraints, e.g., [12]. Later publications, making extensive use of nonsmooth
analysis, include [9], [26], [19], [30].) The following conditions, which can be deduced
from those in [19] or [30], are typical. Under suitable hypotheses on the data for
problem (P) (which include the hypothesis that F is convex valued), there exist
p ∈ W 1,1([0, 1];Rn), a nonnegative Borel measure µ ∈ C∗([0, 1];R), and λ ≥ 0 such
that

λ+

∫
[0,1]

µ(ds) + ||p||L∞ 
= 0,

supp {µ} ⊂ {t : h1(x̄(t)) = 0},
−ṗ(t) ∈(1.1)

co

{
q : (q, ˙̄x(t)) ∈ ∂H

(
t, x̄(t), p(t) +

∫
[0,t)

∇h1(x̄(t))µ(ds)
)}

a.e.,(
p(0),−

[
p(1) +

∫
[0,1]

∇h1(x̄(t))µ(ds)
])

∈ λ∂g(x̄(0), x̄(1)) +NC0
(x̄(0))×NC1

(x̄(1)).

Here, ∂H is the limiting subdifferential of the Hamiltonian

H(t, x, p) := max
v∈F (t,x)

p · v

with respect to the (x, p) variables. NS(y) denotes the limiting normal cone of the
closed set S at the point y ∈ S. ∂g(y) is the limiting subdifferential of g at y. (These
constructs are defined below.)

Necessary conditions for optimal control problems with state constraints, in which
the dynamic constraint takes the traditional form of a parameterized family of differ-
ential equations, have an even longer history. (See, for example, [11], [22], [31].)

Now, necessary conditions such as those above convey no useful information about
minimizers in certain important special cases. Consider, for example,

C0 = {x0} and h1(x0) = 0
for some point x0 ∈ Rn such that ∇h1(x0) 
= 0 (the case when the left endpoint is
fixed at x0 , and x0 lies in the boundary of the state constraint set). Then the above
conditions are satisfied with the nonzero multiplier set

λ = 0, µ = δ{0}, and p(.) ≡ −∇h1(x0)(1.2)
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for any arc x̄ which satisfies the constraints of problem (P). Here δ{0} is the unit
measure concentrated at {0}.

There is a growing literature, nondegenerate necessary conditions, which aims at
supplying useful information about minimizers in cases such as that just described.
(Early papers were [7], [3], [10].) Refinements of the standard necessary conditions
have been proved which assert that, under a suitable constraint qualification concern-
ing the dynamic constraint and the state constraint, the existence of a multiplier set
(λ, µ, p) distinct from the trivial multiplier set (1.2) is guaranteed. We note, in partic-
ular, recent advances due to Arutyunov, Aseev, and Blagodat-Skikh [4], Arutyunov
and Aseer [5], [6], and Aseev [8], in which the traditional conditions are supplemented
with a new boundary condition on the Hamiltonian which, when coupled with a con-
straint qualification, excludes the trivial multiplier set.

For the most part, nondegenerate necessary conditions for problems with general
endpoint constraints and nonsmooth data have been derived under hypotheses which
require the following.

(i) F (t, x) is Lipschitz continuous with respect to both t and x variables.
(ii) F takes values convex sets.

The proof techniques of [4], for example, depend critically on such hypotheses. This
is because time is treated as a state-like variable (and the more stringent hypotheses
governing x-dependence of F for purposes of deriving necessary conditions must there-
fore be extended to t-dependence) and because the perturbational analysis, based on
weak convergence of velocities, breaks down when F is not convex valued.

The contribution of this paper is a methodology for deriving nondegenerate nec-
essary conditions under hypotheses which apply to problems with general endpoint
constraints and which at the same time allow measurable time dependence and also
nonconvex F ’s. The methodology is to exploit estimates on the distance of a given
state trajectory (which violates the state constraint) from the set of state trajecto-
ries which satisfy the state constraint. The original motivation for deriving estimates
of this nature was their relevance to dynamic programming, specifically their role in
proving regularity properties of value functions for optimal control problems with state
constraints. The main contribution of this paper is to demonstrate the significance of
these estimates also to the derivation of necessary conditions.

Different methods were used in [15] and [16] to derive nondegenerate necessary
conditions for nonconvex problems, based on singular transformations and state con-
straint relaxation at the endpoints, respectively. The optimality conditions of [16]
are formulated for a more general class of state constraints than that considered
here. However, the present paper improves on these earlier results, in respect of the
constraint qualifications invoked to validate optimality conditions. The constraint
qualifications of [15] and [16] are expressed in terms of the minimizer we seek and
therefore are not, in general, open to direct verification. The constraint qualification
of this paper, like that of [4], is a simple hypothesis on the problem data, requiring
the existence of inward pointing admissible velocities at all relevant points of the state
constraint boundary.

Throughout, B will denote the closed unit ball in Euclidean space. We shall write
dS : R

k → R for the Euclidean distance function from a set S ⊂ Rk:
dS(x) := inf {|x− y| : y ∈ S} .

The limiting normal cone NS(x) of a closed set S ⊂ Rk at x ∈ S is defined to be
NS(x) := {ξ : ∃ sequences {Mi} in (0,∞), xi → x, ξi → ξ such that
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xi ∈ S and ξi · (y − xi) ≤M |y − xi|2 for all y ∈ Rk, i = 1, 2, . . .}.
Given a lower semicontinuous function f : Rk → R ∪ {∞}, the limiting subdiffer-

ential of f at a point x ∈ Rk such that f(x) < +∞ is the set

∂f(x) := {ξ : (ξ,−1) ∈ Nepi f (x, f(x))} .
Here, epi f denotes the epigraph set of the function f . Properties of these constructs
from nonsmooth analysis are reviewed in detail in [25] and [28]. See also [18], [20].

2. Nondegenerate necessary conditions. In this section are stated the main
results of the paper, namely nondegenerate necessary conditions for problem (P),
covering cases when the velocity set F (t, x) is nonconvex valued, and measurably
time-dependent.

We shall assume, as in the preceding section, that the state constraint set A takes
the form

A =

m⋂
j=1

{x : hj(x) ≤ 0}

for some functions hj : R
n → R, j = 1, . . . ,m, of class C1,1, but now we allow m > 1.

Theorem 2.1. Let x̄ be a W 1,1 local minimizer for problem (P). Assume that,
for some kF ∈ L1 and positive constants δ, ε, c, and r, the following hypotheses are
satisfied.
(H1) F has values closed sets, F (., x) is measurable for each x ∈ Rn,

F (t, x) ⊂ cB for all x ∈ x̄(t) + δB, t ∈ [0, 1], and
F (t, x) ⊂ F (t, x′) + kF (t)|x− x′|B for all x, x′ ∈ x̄(t) + δB, t ∈ [0, 1].

(H2) g is Lipschitz continuous on (x̄(0), x̄(1)) + δ(B ×B).
We impose, furthermore, the following constraint qualification.
(CQ) For each t ∈ [0, ε] and ξ ∈ x̄(0) + δB,

minv∈F (t,ξ)∇hj(ξ) · v < −r(2.1)

for all index values j such that hj(x̄(0)) = 0}.
Then there exist p ∈ W 1,1([0, 1];Rn), λ ≥ 0, and nonnegative Borel measures

µj ∈ C∗([0, 1];Rn), j = 1, . . . ,m, such that

λ+

∫
(0,1]

∑
j

µj(ds) +

∣∣∣∣∣∣p(0) +
∑
j

∇hj(x̄(0))µj({0})
∣∣∣∣∣∣ 
= 0,

ṗ(t) ∈ co
{
q :

(
q, p(t) +

∫
[0,t)

∑
j

∇hj(x̄(s))µj(ds)
)

(2.2)

∈ NGrF (t,.)(x̄(t), ˙̄x(t))

}
a.e.,(

p(0),−
(
p(1) +

∫
[0,1]

∑
j

∇hj(x̄(s))µj(ds)
))

∈ λ∂g(x̄(0), x̄(1)) +NC0∩A(x̄(0))×NC1
(x̄(1)),
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[0,t)

∑
j

∇hj(x̄(s))µj(ds)
 · ˙̄x(t)(2.3)

= maxv∈F (t,x̄(t))

p(t) + ∫
[0,t)

∑
j

∇hj(x̄(s))µj(ds)
 · v a.e.,

supp {µj} ⊂ {t : hj(x̄(t)) = 0} for j = 1, . . . ,m.

If, furthermore, it is assumed that F is convex valued, then (2.2) implies condition
(2.3) and also

ṗ(t) ∈ co
{
q : (−q, ˙̄x(t))(2.4)

∈
(
t, x̄(t), p(t) +

∫
[0,t)

∑
j

∇hj(x̄(s))µj(ds)
)}

a.e.

Remarks.
(i) The most significant feature of this theorem is that the customary condition

λ+ ||p||L∞ +

∫
[0,1]

∑
j

µj(ds) 
= 0

has been replaced by the condition

λ+

∫
(0,1]

∑
j

µj(ds) +

∣∣∣∣∣∣p(0) +
∑
j

∇hj(x̄(0))µj({0})
∣∣∣∣∣∣ 
= 0.

Notice that, if C0 = {x0} and m = 1, then the theorem does not allow the
trivial choice of multipliers

λ = 0, p ≡ −∇h1(x̄(0)), µ1 = δ{0},

since, for this choice,

λ = 0,

∫
(0,1]

µ1(ds) = 0,

and

p(0) +∇h1(x̄(0))µ1({0}) = −∇h1(x̄(0)) +∇h1(x̄(0)) = 0.
(ii) The hypotheses of the theorem are less restrictive than those representative

of earlier work, in so far as they allow the dynamic constraint multifunction
F to be discontinuous as a function of the time variable and to take values
nonconvex sets. On the other hand, we restrict attention to problems with
a state constraint set which is independent of time and is represented by a
finite collection of “smooth” inequality constraints.

(iii) The need for some kind of constraint qualification, of which (2.1) is an exam-
ple, is clarified by an example devised by A. Ya. and V. A. Dubovitskii and
reproduced in [6], in which there are no “inward pointing” velocities at the
left endpoint and the only Lagrange multipliers are trivial ones.
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(iv) The “adjoint inclusion” (2.2) appearing in these optimality conditions is a
“partially convexified” version of the nonsmooth Euler Lagrange conditionṗ(t), p(t) + ∫

[0,t)

m∑
j=1

∇jhj(x̄(s))µ(ds)
 ∈ coNGrF (t,.)(x̄(t), ˙̄x(t)).

Necessary conditions involving the adjoint inclusion (2.2) have attracted at-
tention in recent years, because of the unrestrictive nature of the hypotheses
under which they can be derived. They are valid, in particular, when F is
no longer assumed to be convex valued. (See [17], [21], [29]). This adjoint
inclusion has been used in connection with nondegenerate necessary condi-
tions by Aseev [8] (for “convex” state constrained problems with Lipschitz
time-dependent data).

(v) The theorem will be proved by applying necessary conditions (involving the
partially convexified Euler Lagrange inclusion above) along a suitably chosen
sequence of auxiliary optimization problems, and passage to the limit. We
stress, however, that the analysis in this paper is independent of the particu-
lar necessary conditions applied to the auxiliary problem. Indeed, we provide
a methodology for supplementing a given set of necessary conditions with
additional information to ensure nondegeneracy in the sense described in sec-
tion 1. Other known necessary conditions of choice may be inserted into the
analysis to follow. In particular, our methods can be used to prove a non-
degenerate form of the Pontryagin maximum principle for state constrained
problems. (See [23].)

(vi) Theorem 2.1 does not exclude the degenerate set of multipliers when there is
a fixed right endpoint (C1 = {x1}) with x1 a boundary point of A. In this
respect, Theorem 2.1, when specialized to the case when F is convex valued
and Lipschitz continuous with respect to t, is weaker than the corresponding
necessary conditions in [6]. This pathology does not arise, however, in the
cases when x̄(1) is interior to either A or C1.

3. Existence of locally feasible arcs. Take a multifunction F : [0, 1]×Rn ❀

Rn and a closed subset A ⊂ Rn.
In the framework of viability theory [1], conditions have been extensively studied

under which there exists an F -trajectory x̂(·) with a specified initial value, which
satisfies the state constraint

x̂(t) ∈ A for all t ∈ [0, ε′]

for some ε′ > 0.
Now suppose

A =

m⋂
j=1

{x : hj(x) ≤ 0}

for some functions hj : R
n → R, j = 1, . . . ,m, of class C1,1.

Take a nominal F -trajectory x with initial value in A but which possibly fails to
satisfy the state constraint on [0, ε′]. In this paper we shall make use of a refinement
of basic existence theorems of viability theory, in which we not only assert (under
appropriate additional hypotheses) the existence of an F -trajectory x̂ with initial



DEGENERATE CONTROL PROBLEMS 995

value x(0) satisfying the state constraint but also estimate its “distance” from the
nominal trajectory x. Specifically, we show that x can be chosen to satisfy

||x− x̂||W 1,1 ≤ K max
t∈[0,ε′]

h+(x(t))(3.1)

for some K, independent of the nominal trajectory x. Here

h+(x) := max {0, h1(x), . . . , hm(x)}.
The right side of (3.1) is a measure of the extent to which the nominal arc x violates
the state constraint. These estimates tell us, not unreasonably, that the smaller the
margin by which the nominal trajectory x fails to satisfy the state constraint on [0, ε′],
the closer we can choose x̂ to x.

The earliest results along these lines are apparently due to Soner [27], who gave
conditions under which it is possible to construct an F -trajectory x̂ obeying the state
constraint on [0, 1] and which satisfies the L∞ estimate

||x− x̂||L∞([0,1];Rn) ≤ K max
t∈[0,1]

h+(x(t)).(3.2)

Their role in this earlier application was to establish regularity properties of value
functions of optimal control problems with state constraints. Soner assumed that
the differential inclusion is parameterizable, i.e., it arises from a differential equation
parameterized by a control variable.

The applications in this article require a local, sharpened version of Soner’s es-
timate, which is valid when F is possibly nonconvex valued and nonparameterizable
and in which the L∞ estimate (3.2) is replaced by the W 1,1([0, 1];Rn) estimate

||x− x̂||W 1,1([0,1];Rn) ≤ K max
t∈[0,ε′]

h+(x(t)).(3.3)

Since theW 1,1([0, 1];Rn) norm is stronger than the L∞([0, 1];Rn) norm, (3.3) conveys
more information than (3.2). The extra information is precisely what is required to
remove the convexity hypotheses commonly invoked in derivation of nondegenerate
necessary conditions in optimal control.

The following theorem is a “local” version (we require satisfaction of the state
constraint only on a neighborhood of t = 0) of a related “global” existence theorem
(accompanied by W 1,1 estimates) proved in [14].

Theorem 3.1 (existence of neighboring feasible trajectories). Take an F -trajectory
x̄ satisfying

x̄(t) ∈ A for all t ∈ [0, 1].
Assume that, for some kF (.) ∈ L1 and positive constants c, δ, r, and ε, hypotheses
(H1) and (H2) and also the constraint qualification (CQ) of Theorem 2.1 are satisfied.
Then there exist constants δ′ ∈ (0, δ), ε′ ∈ (0, ε), and K > 0 with the following

properties. Corresponding to any F -trajectory x which satisfies the conditions

x(0) ∈ A and ||x− x̄||L∞([0,1];Rn) ≤ δ′,
an F -trajectory x̂ can be found, such that x̂(0) = x(0),

x̂(t) ∈ A for all t ∈ [0, ε′],
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and

||x− x̂||W 1,1([0,1];Rn) ≤ K max
t∈[0,ε′]

h+(x(t)).(3.4)

Proof. We note at the outset that if

hj(x̄(0)) < 0 for some j,

then, by choosing δ′ > 0 and ε′ > 0 sufficiently small, we can arrange that

hj(x(t)) < 0 for all t ∈ [0, ε′],
for any F -trajectory satisfying ||x − x̄||L∞ ≤ δ′. This means that hj does not con-
tribute to the estimate (3.4) and can be ignored. Accordingly, we assume

hj(x̄(0)) = 0 for j = 1, . . . ,m.

Notice also that, by scaling the hj ’s (this has no effect on the state constraint set they
define), we can also arrange that, for j = 1, . . . ,m,

|∇hj(y)| ≤ 1 for y ∈ x̄(0) + δB.
Fix r′ ∈ (0, r). Let ω : R+ → R+ be a modulus of uniform continuity for

t → ∫ t
0
kF (s)ds, i.e., ω(s) ↓ 0 as s ↓ 0 and ω(t− s) ≥

∫ t
s
kF (σ)dσ for all [s, t] ∈ [0, 1].

Let κ be a Lipschitz constant for ∇h on x̄(0) + δ B.
Choose a positive number τ which satisfies

τ < ε, τ < (r − r′)(c2κ)−1, ω(τ) < log

(
r − r′
8c

+ 1

)
, 2cτeω(τ) < δ/2.(3.5)

Claim. For every ξ ∈ A ∩ (x̄(0) + (δ/2)B) there exists an F -trajectory x̃ ∈
W 1,1([0, τ ];Rn) such that x̃(0) = ξ and

hj(x̃(t)) ≤ −r′t for all t ∈ [0, τ ], j = 1, . . . ,m.
We verify the claim. We can select a measurable map v : [0, ε] → Rn such that
v(t) ∈ F (t, ξ) a.e. t ∈ [0, ε], and, for j = 1, . . . ,m,

∇hj(ξ) · v(t) ≤ −r a.e. t ∈ [0, ε].
Define

z(t) = ξ +

∫ t

0

v(s)ds.

Note that z(t) ∈ x̄(0)+δB for all t ∈ [0, τ ]. From (3.5) we deduce that, for all t ∈ [0, τ ]
and j = 1, . . . ,m,

hj(z(t)) = hj(ξ) +

∫ t

0

∇hj(z(t)) · v(s)ds

≤ 0 +
∫ t

0

∇hj(z(t)) · v(s)ds

≤
∫ t

0

∇hj(ξ) · v(s)ds+
∫ t

0

|∇hj(z(t))−∇hj(ξ)| · |v(s)|ds

≤ −rt+ κc2t2/2 ≤ t(−r + (r − r′)/2) ≤ −
(
r + r′

2

)
t.
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By the Filippov Wazewski theorem [2, p.120], applied to the reference arc z, there
exists an F -trajectory x̃ ∈W 1,1([0, τ ];Rn) such that x̃(0) = ξ and

|x̃(t)− z(t)| ≤
∫ t

0

dF (s,z(s))(ż(s))exp

(∫ t

s

kF (σ)dσ

)
ds

≤ ct
∫ t

0

kF (s)exp

(∫ t

s

kF (σ)dσ

)
ds

≤ ct
(
exp

(∫ t

0

kF (s)ds)

)
− 1
)

≤ ct
(
eω(t) − 1

)
≤ r − r

′

8
t for all t ∈ [0, τ ].

But then, since each hj has a Lipschitz constant not exceeding 1 on x̄(0) + δB, we
have, for j = 1, . . . ,m,

hj(x̃(t)) ≤ |x̃(t)− z(t)|+ hj(z(t))
≤
(
r − r′
8
− r + r

′

2

)
t ≤ −r′t for all t ∈ [0, τ ].

The claim is confirmed.
Choose ε′ ∈ (0, τ) and δ′ ∈ (0, δ/2) such that

(6c/r′)(κceω(ε′)ε′+(eω(ε′)−1)) < 1, (6cδ′/r′) exp
(∫ 1

0

kF (s)ds

)
≤ δ/2 and δ′ < ε′r′/3.

Let x be any F -trajectory such that x(0) ∈ A and

||x− x̄||L∞([0,1];Rn) ≤ δ′.

Define

∆ := max
t∈[0,ε′]

h+(x(t)).

We can assume that ∆ > 0 since, otherwise, the assertions of the theorem hold good
with x̂ = x.

Notice that since the hj ’s, and therefore also h
+, have Lipschitz constant at most

1 on x̄(0) + δB,

∆ ≤ max
t∈[0,ε′]

h(x̄(t)) + ||x− x̄||L∞([0,ε′];Rn) ≤ 0 + δ′.

Set

τ̃ := 3∆/r′.

Observe that τ̃ ≤ 3δ′/r′ ≤ ε′ ≤ τ . We know from our earlier analysis that there exists
an F -trajectory x̂ : [0, τ ] → Rn such that x̂(0) = x(0) and hj(x̂(s)) ≤ −r′s for all
s ∈ [0, τ̃ ], j ∈ {1, . . . ,m}. We have, in particular,

hj(x̂(τ̃)) ≤ −r′τ̃ = −3∆ for j = 1, . . . ,m.
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By the Filippov Wazewski theorem, there exists an F -trajectory y : [τ̃ , 1]→ Rn such
that {

ẏ(t) = F (t, y(t)) a.e. t ∈ [τ̃ , 1],
y(τ̃) = x̂(τ̃),

and, for a.e. t ∈ [τ̃ , 1],

|y(t)− x(t)| ≤ exp
(∫ t

τ̃

kF (s)ds

)
|x̂(τ̃)− x(τ̃)|

≤ exp
(∫ t

τ̃

kF (s)ds

)
2cτ̃ ,(3.6)

|ẏ(t)− ẋ(t)| ≤ kF (t)exp
(∫ t

τ̃

kF (s)ds

)
|x̂(τ̃)− x(τ̃)|

≤ kF (t)exp
(∫ t

τ̃

kF (s)ds

)
2cτ̃ .(3.7)

Now extend x̂ to all of [0, 1] by setting

x̂(t) := y(t) for all t ∈ (τ̃ , 1].

Since x̂(0) = x(0), we have from (3.7)

||x̂− x||W 1,1([0,1];Rn) = || ˙̂x− ẋ||L1([0,τ̃ ];Rn) + || ˙̂x− ẋ||L1([τ̃ ,1];Rn)

≤ 2cτ̃ + 2cτ̃
(
exp

(∫ 1

τ̃

(kF (s)ds

)
− 1
)

= 2cτ̃exp

(∫ 1

τ̃

kF (s)ds

)
≤ (6c/r′)exp

(∫ 1

τ̃

kF (s)ds

)
∆.

We have shown that

||x̂− x||W 1,1([0,1];Rn) ≤ K max
t∈[0,ε′]

h+(x(t)),

in which

K := (6c/r′)exp
(∫ 1

τ̃

kF (s)ds

)
.

It remains to show that

x̂ ∈ A for all t ∈ [0, ε′].

The condition is clearly satisfied for any t ∈ [0, τ̃ ]. On the other hand, for any t ∈ [τ̃ , ε′]
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and j ∈ {1, . . . ,m}, we have from (3.6) and (3.7)

hj(x̂(t)) = hj(x̂(τ̃)) +

∫ t

τ̃

∇hj(x̂(s)) · ˙̂x(s)ds

= hj(x̂(τ̃)) +

∫ t

τ̃

∇hj(x(s)) · ẋ(s)ds+
∫ t

τ̃

(∇hj(x̂(s))−∇hj(x(s))) · ẋ(s)ds

+

∫ t

τ̃

∇hj(x̂(s)) · ( ˙̂x(s)− ẋ(s))ds

≤ −3∆ + 2∆+ (6c2κ/r′)ε′eω(ε′)∆+ (eω(ε′) − 1)2c(3/r′)∆
≤ (−1 + (6c/r′)(κcε′eω(ε′) + (eω(ε′)−1)))∆ ≤ 0,

as required. We have confirmed that x̂(t) ∈ A for all t ∈ [0, ε′]. The proof is complete.
4. Proof of Theorem 2.1. We precede the proof by a summary of key ideas.

Consider to begin with the free right endpoint problem (the case when C1 = R
n). For

simplicity, assume m = 1. It can be deduced from Theorem 3.1 that, for some K > 0
and ε′ ∈ (0, 1], the W 1,1 local minimizer x̄ for (P) is a W 1,1 local minimizer also for
the problem

Minimize g(x(0), x(1)) +Kmaxt∈[0,ε′] (max{0, h1(x(t))})
over arcs x satisfying
ẋ ∈ F (t, x),
x(0) ∈ C0 ∩A,
h1(x(t)) ≤ 0 for all t ∈ [ε, 1].

The notable feature of this problem is that the state constraint on [0, ε′] has been
replaced by a term in the cost penalizing state constraint violations on this subinterval.

The above problem can, in turn, be reformulated as a standard state-constrained
optimal control problem, for which [30] provides necessary conditions of optimality.
If λ is the cost multiplier and µ is the multiplier associated with the state constraint,
then it can be deduced from the transversality condition for the reformulated problem
that ∫

[0,ε′]
µ(ds) ≤ λ.

This condition obviously precludes degenerate multipliers sets in which λ = 0 and µ
is a nonzero measure concentrated on {0}.

Of course if a right endpoint constraint is present, the analysis is more compli-
cated. In this broader setting, we approximate the optimal control problem by a
sequence of right endpoint constraint free problems (in a manner earlier employed by
Clarke [9]), derive nondegenerate necessary conditions along the sequence as above
and deduce nondegenerate necessary conditions for the original problem by passing
to the limit.

After these preliminary comments, we are ready to initiate the proof. Allow once
again m > 1. Define the scalar valued function h to be

h(x) = max{h1(x), . . . , hm(x)}.
Let δ′ ∈ (0, δ), ε′ ∈ (0, ε) and K be the constants with the properties asserted in
Theorem 3.1. Define

D := {x ∈W 1,1([0, 1];Rn) : ẋ ∈ F (t, x(t)) a.e., x(0) ∈ C0 ∩A,
and ||x− x̄||L∞([0,1];Rn) ≤ δ′}.
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Choose an arbitrary sequence εi ↓ 0 and define

ηi(x0, x1, y) := max
{
g(x0, x1)− g(x̄(0), x̄(1)) + ε2i , y, dC1(x1)

}
.

The set {x ∈ D : x(t) ∈ A for all t ∈ [0, ε′]} is closed and the function

x→ ηi(x(0), x(1), max
t∈[ε′,1]

h+(x(t)))

is continuous on D (with respect to the strong W 1,1([0, 1];Rn) topology). Since ηi is
nonnegative valued and

ηi(x̄(0), x̄(1), max
t∈[ε′,1]

h+(x̄(t))) = ε2i ,

it follows that

ηi(x̄(0), x̄(1), max
t∈[ε′,1]

h+(x̄(t)))

≤ inf{ηi(x(0), x(1), max
t∈[ε′,1]

h+(x(t))) : x ∈ D, x(t) ∈ A for all t ∈ [0, ε′]}+ ε2i .

By Ekeland’s theorem [9, p. 265] then, there exists xi ∈ W 1,1,([0, 1];Rn) with the
properties

||xi − x̄||W 1,1([0,1];Rn) ≤ εi(4.1)

and xi is a minimizer for

Minimize {Ji(x) : x ∈ D, x(t) ∈ A for all t ∈ [0, ε′]},

where

Ji(x) := ηi(x(0), x(1), max
t∈[ε′,1]

h+(x(t))) + εi||x− xi||W 1,1([0,1];Rn).

In view of (4.1), we can arrange, by subsequence extraction, that

xi → x̄i uniformly and ẋi → ˙̄x a.e.

Set

yi := max
t∈[ε′,1]

h+(xi(t)).

Lemma 4.1. For each i sufficently large,

(a, b, c) ∈ ∂ηi(xi(0), xi(1), yi)

implies that c ≥ 0 and

(a, b) ∈ α∂g(xi(0), xi(1)) + (0, ξ)

for some α ≥ 0 and some ξ ∈ NC1(xi(1)) satisfying

α+ |ξ|+ c = 1.
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Proof. Note, to begin with, that, for all i sufficently large,

ηi(xi(0), xi(1), max
t∈[ε′,1]

h+(xi(t))) > 0.

Indeed, by choosing i sufficiently large we can make ||xi − x̄||W 1,1 arbitrarily small.
If the above strict inequality is not satisfied, then xi satisfies the constraints of (P)
and has cost less than x̄, in contradiction to our assumption that x̄ is a W 1,1 local
minimizer.

There are two cases to consider.
Case 1. dC1(xi(1)) = 0. In view of the preceding strict inequality, we deduce

from the max rule for limiting subdifferentials [25] that

a ∈ α∂g(xi(0), xi(1))
for some α ≥ 0 such that α + c = 1. The assertions of the lemma are satisfied with
ξ = 0.
Case 2. dC1(xi(1)) > 0. In this case (by well-known properties of the distance

function)

ξ ∈ ∂dC1
(xi(1)) implies |ξ| = 1.

The max rule now asserts that c ≥ 0 and that there exist α ≥ 0 and λ ≥ 0 such that
α+ λ+ c = 1 and

(a, b) ∈ α∂g(xi(0), xi(1)) + (0, λξ′)
for some ξ′ ∈ ∂dC1(xi(1)) such that |ξ′| = 1. Writing ξ = λξ′, we find that

(a, b) ∈ α∂g(xi(0), xi(1)) + (0, ξ)
and α+ |ξ|+ c = 1. Since ξ ∈ NC1(xi(1)), the lemma is proved.

In the proof of the next lemma we shall use the easily confirmed fact that there
exists some k > 0 (independent of i) such that, for any x, x′ ∈ D,

|Ji(x)− Ji(x′)| ≤ k||x− x′||W 1,1([0,1];Rn).

Lemma 4.2. For all i sufficiently large, xi is a W
1,1 local minimizer for the

optimization problem

(Qi) Minimize

{
Ji(x) + kK max

t∈[0,ε′]
h+(x(t)) : x ∈ D

}
.

Proof. Define

J̃i(x) := Ji(x) + kK max
t∈[0,ε′]

h+(x(t)).

Suppose the assertions of the lemma are false. Take any δ′′ ∈ (0, δ′). Then for any
index value i0 there exists i ≥ i0 and x ∈ D such that ||x− xi||W 1,1 ≤ δ′′ and

J̃i(x) < J̃i(xi).

According to Theorem 3.1, there exists an F -trajectory x̂ such that x̂(0) = x(0),

h(x̂(t)) ≤ 0 for t ∈ [0, ε′],
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and

||x̂− x||W 1,1([0,1];Rn) ≤ K max
t∈[0,ε′]

h+(x(t)).

By choosing i0 sufficiently large and δ
′′ sufficiently small we can arrange that x̂ lies

in D. It then follows from the minimizing properties of xi that

J̃i(xi) ≤ J̃i(x̂) = Ji(x̂)
≤ Ji(x) + k||x̂− x||W 1,1([0,1];Rn)

≤ Ji(x) + kK max
t∈[0,ε′]

h+(x(t)) = J̃i(x) < J̃i(xi),

which is not possible. The lemma is proved.
We deduce from the preceding lemma that, for i sufficiently large,(

xi, yi ≡ max
t∈[ε′,1]

h+(xi(t)), zi ≡ 0
)

is a strong local minimizer for the optimal control problem

Minimize max{g(x(0), x(1))− g(x̄(0), x̄(1)) + ε2i , y(1), dC1(x(1))}
+εi|x(0)− xi(0)|+ εi

∫ 1

0
|ẋ(t)− ẋi(t)|dt+ kKmax {0, z(1)}

over x ∈W 1,1([0, 1];Rn), y ∈W 1,1([0, 1];R) and z ∈W 1,1([0, 1];R) satisfying
(ẋ(t), ẏ(t), ż(t)) ∈ F (t, x(t))× {0} × {0} a.e.,
x(0) ∈ C0 ∩A,
h̃(t, x(t), y(t), z(t)) ≤ 0 for all t ∈ [0, 1].

Here, h̃ : [0, 1]×Rn ×R×R is the function

h̃(t, x, y, z) :=


h(x)− z for t ∈ [0, ε),
h(x) + max{−z,−y} for t = ε,
h(x)− y for t ∈ (ε, 1].

We have arrived at a problem to which the Euler Lagrange type conditions of [30]
are applicable. (Note, in particular, that the state constraint functional h̃ has the
requisite upper semicontinuity properties.)

Taking note of Lemma 4.1, we draw the following conclusions: there exist pi ∈
W 1,1([0, 1];Rn), qi ∈ W 1,1([0, 1];R), and ri ∈ W 1,1([0, 1];R) (the costate functions
associated with xi, yi, and zi, respectively), constants λ

′
i ≥ 0, αi ∈ [0, 1], βi ∈ [0, 1],

π0
i ∈ [0, 1], π1

i ∈ [0, 1], ξi ∈ Rn, a Borel measurable function γi : [0, 1] → Rn, and
nonnegative Borel measures νi ∈ C∗([0, 1];R) such that

||pi||L∞ + ||qi||L∞ + ||ri||L∞ + λ′i +
∫

[0,1]

νi(ds) = 1,(4.2)

αi + βi + |ξi| = 1, π0
i + π

1
i = 1,(4.3)

ṗi(t) ∈ co
{
η :

(
η, pi(t) +

∫
[0,t)

γi(s)νi(ds)

)

∈ NGrF (t,.)(xi(t), ẋi(t)) + {0} × λ′iεiB
}

a.e.,(4.4)
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pi(0),−

(
pi(1) +

∫
[0,1]

γi(s)νi(ds)

))
∈ αiλ′i∂g(xi(0), xi(1))

+ εiλ
′
iB × {λ′iξi}+NC0∩A(xi(0))× {0},

qi(0) = 0, q̇i = 0,

∫
(ε′,1]

νi(ds) + π
0
i νi({ε′}) = βiλ′i,

ri(0) = 0, ṙi = 0,

∫
[0,ε′)

νi(ds) + π
1
i νi({ε′}) ≤ kKλ′i,

ξi ∈ NC1(xi(1)),(
pi(t) +

∫
[0,t)

γi(s)νi(ds)

)
· ẋi(t)

= maxv∈F (t,xi(t))

(
pi(t) +

∫
[0,t)

γi(s)νi(ds)

)
· v − εi|v − ẋi(t)| a.e.,

supp {νi} ⊂ {t ∈ [0, ε′] : h(xi(t)) = 0} ∪ {t ∈ [ε′, 1] : h(xi(t)) = yi},
γi(t) ∈ co ∂h(xi(t)) ν-a.e.

It can be deduced from (4.4) (see [20]) that, for each i,

|ṗi(t)| ≤ kF (t)
∣∣∣∣∣pi(t) +

∫
[0,t)

γ(s)νi(ds)

∣∣∣∣∣ a.e.

(We remark on the significance of the “partially convexified” adjoint inclusion (4.4):
if (4.4) were replaced by the coarser inclusion (ṗi, pi) ∈ coNGrF , then this pointwise
bound on the ṗi, which has an important role in the convergence analysis, would no
longer be valid under the hypotheses of Theorem 2.1.)

From (4.2), {pi} is a bounded sequence. By Gronwall’s lemma then, the pi’s are
uniformly bounded and the ṗi’s are uniformly integrably bounded. It can be deduced
from the Dunford Pettis theorem that, along some subsequence,

pi → p uniformly and ṗi → ṗ weakly in L1

for some p ∈ W 1,1([0, 1];Rn). In view of (4.2), and (4.3), we can arrange, by further
subsequence extraction, that

νi(dt)→ ν(dt) and γi(t)νi(dt)→ γ(t)ν(dt) weakly∗

for some nonnegative Borel measure ν ∈ C∗([0, 1];R) and some ν-integrable function
γ. Also,

(λ′i, αi, βi, ξi, π
0
i π

1
i )→ (λ′, α, β, ξ, π0, π1)

for some ξ ∈ Rn, λ′ ≥ 0, α ∈ [0, 1] β ∈ [0, 1], π0 ∈ [0, 1], and π1 ∈ [0, 1].
Using an analysis similar to that of [29] and [30], we may pass to the limit in the

above relationships. We thereby arrive at the following relationships:

||p||L∞ + λ′ +
∫

[0,1]

ν(ds) = 1,(4.5)

α+ β + |ξ| = 1, π0 + π1 = 1,(4.6)



1004 FRANCO RAMPAZZO AND RICHARD VINTER

ṗ(t) ∈ co
{
η :

(
η, p(t) +

∫
[0,t)

γ(s)ν(ds)

)
∈ NGrF (t,.)(x̄(t), ˙̄x(t))

}
a.e.,(4.7) (

p(0),−
(
p(1) +

∫
[0,1]

γ(s)ν(ds)

))
(4.8)

∈ αλ′∂g(x̄(0), x̄(0)) +NC0∩A(x̄(0))× {λ′ξ},∫
(ε′,1]

ν(ds) + π0νi({ε′}) = βλ′,(4.9) ∫
[0,ε′)

νi(ds) + π
1
i νi({ε′}) ≤ kKλ′,(4.10)

ξ ∈ NC1(x̄(1)),(
p(t) +

∫
[0,t)

γ(s)ν(ds)

)
· ˙̄x(t) = maxv∈F (t,xi(t))

(
p(t) +

∫
[0,t)

γ(s)ν(ds)

)
· v

γ(t) ∈ co ∂h(x̄(t)) ν-a.e.
supp{ν} ⊂ {t : h(x̄(t)) = 0}.

The most challenging task in justifying these relationships is to confirm the adjoint
inclusion (4.7); we give details of this step alone. The following conclusions can
be drawn from Mazur’s and Carathéodory’s theorems. For each i there exist in-
tegers 0 ≤ ki0 ≤ · · · ≤ kin and a convex combination {αi0, . . . , αin} such that∑n
j=0 αij ṗi+kij (t), i = 1, 2, . . ., converges strongly in L1 to ṗ. We can arrange by

subsequence extraction that convergence is pointwise on some set D of full measure.
By modifying the set D, if necessary, we can also arrange that ẋi → ˙̄x pointwise on D.
Fix t ∈ D. For each j, αij , i = 1, 2, . . . , and ṗi+kij (t), i = 1, 2, . . . , are bounded. After
further subsequences have been extracted, we have that, for j = 0, . . . , n, αij → αj
for some αj and ṗi+kij (t) → pj for some p̃j . Again making use of Carathéodory’s
theorem, we deduce that, for each k,

p̃j ∈ co

{
η :

(
η, p(t) +

∫
[0,t)

γ(s)ν(ds)

)
∈ NGrF (t,.)(x(t), ẋ(t))

}
.

Clearly, the αj ’s are nonnegative and sum to one, so

ṗ(t) =

n∑
j=0

αj p̃j(t)

∈ co
{
η :

(
η, p(t) +

∫
[0,t)

γ(s)ν(ds)

)
∈ NGrF (t,.)(x(t), ẋ(t))

}
a.e.

Note that (4.7) implies

|ṗ(t)| ≤ kF (t)
∣∣∣∣∣p(t) +

∫
[0,t)

γ(s)ν(ds)

∣∣∣∣∣ a.e.(4.11)

We see immediately that λ′ 
= 0, for otherwise (4.8), (4.9), (4.10), and (4.11)
(together with Gronwall’s inequality) imply that ν = 0 and p = 0, which contradicts
(4.5).
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Now define λ = αλ′. We claim that

λ+

∫
(0,1]

ν(ds) + |p(0) + γ(0)ν({0})| 
= 0.(4.12)

Suppose that this condition is violated. Then α = 0 and (by (4.9)) β = 0. It follows
from (4.6) that |ξ| = 1. But then, by (4.8),∣∣∣∣∣p(1) +

∫
[0,1]

γ(s)ν(ds)

∣∣∣∣∣ 
= 0.

However, we have assumed that
∫
(0,1]
ν(ds) = 0 and |p(0) + γ(0)ν({0})| = 0. It

follows from (4.11) and Gronwall’s inequality that |p(1) + ∫
[0,1]
γ(s)ν(ds)| = 0. This

contradiction confirms (4.12).
It can be deduced from the inclusion

γ(t) ∈ co ∂h+(x̄(t)) ν-a.e.,
the max rule for limiting subdifferentials and a measurable selection theorem, that
there exist Borel measurable functions α1, . . . , αm : [0, 1]→ [0, 1] such that, ν-a.e.,

γ(t) =
∑
j

αj(t)∇hj(x̄(t)),
∑
j

αj(t) = 1,

and

hj(x̄(t)) < h(x̄(t)) implies αj(t) = 0 for j ∈ {1, . . . ,m}.
Define the nonnegative Borel measures µj ∈ C∗([0, 1];R), j = 1, . . . ,m, to be

µj(dt) := αj(t)ν(dt).

We note that, for any Borel subset I ⊂ [0, 1],∫
I

γ(s)ν(ds) =

∫
I

∑
j

∇hj(x̄(s))µj(ds),

∫
I

ν(ds) =

∫
I

∑
j

αj(s)

 ν(ds) = ∫
I

∑
j

µj(ds).

Since supp {ν} ⊂ {t : h(x̄(t)) = 0}, we conclude that
supp {µj} ⊂ {t : hj(x̄(t)) = 0} for j = 1, . . . ,m.

The earlier relationships, expressed in terms of the µj ’s in place of ν, amount to the
assertions of the theorem, with the exception of the additional claims when F is convex
valued. Notice in particular that, from (4.12), we can deduce the nondegeneracy
condition

λ+

∫
(0,1]

∑
j

µj(ds) +

∣∣∣∣∣∣p(0) +
∑
j

∇hj(x̄(0))µj({0})
∣∣∣∣∣∣ 
= 0.
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Finally suppose that F is convex valued. In this case and under the hypotheses of
the theorem, equivalence of the adjoint inclusion (2.2) and the generalized Hamiltonian
condition (2.4) is established in [24]. (See also [17].) The fact that (in the convex
case) the Hamiltonian inclusion (2.4) implies the Weierstrass condition (2.3) is well
known. (See, for example, [9].)
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Abstract. A new approach to the synthesis problem of optimal controls of feedback type is
considered. Algorithms of operating optimal controllers which are able to calculate values of opti-
mal feedbacks during each particular control process in real time are described. The algorithm of
operating the controller of the first type (continuous controller) is based on solving special (defining)
equations in real time using the Newton method. For operating the optimal controller of the sec-
ond type (discrete controller) the dual method of linear programming is used. In control problems
for systems under uncertainty, a nonstochastic model is used, around which guaranteed results are
obtained. Under incomplete and inexact information, problems of optimal observation and identifi-
cation are introduced. Algorithms of operating the optimal estimator and identifier which are able to
construct estimates of available information required for operating the optimal output controller in
real time are described. Results are illustrated by optimization problems of the fourth order control
system.

Key words. optimal control problem, optimal state and output feedbacks, synthesis of optimal
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1. Introduction. Problems of optimal control (OC) have been intensively in-
vestigated in the world literature for over forty years. During this period, a series of
fundamental results have been obtained, among which should be noted the maximum
principle [53] and dynamic programming [6, 7]. For many of the problems of the
optimal control theory (OCT) adequate solutions are found [1, 8, 51]. Results of the
theory were taken up in various fields of science, engineering, and economics. How-
ever, it is generally recognized that one of the central problems of the OCT, which is,
undoubtedly, the problem of synthesis of optimal feedback, has not yet been solved
even for linear systems apart from special cases [9, 12]. This essentially retards the
deeper integration of the results of the OCT to practice because controls of feedback
type but not open-loop controls (which are investigated in a great deal of published
works) are used for solving many practical problems. This is also evidenced by the
fact that synthesis of OC in the Kalman–Letov linear-quadratic problem [46, 52] is
extraordinarily widely used for solving various applied problems. The Kalman–Letov
problem, by virtue of its specific character, takes a particular place in the OCT. This
problem is, in fact, a problem of the classical calculus of variations because in this
problem there are no geometric constraints of controls which have defined the origin of
the modern trend of the calculus of variations named the OCT. It is worth noting that
geometric constraints are a typical nonlinearity most often met in applied problems.
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The purpose of the article is to present some results of investigations on the
problem of optimal synthesis conducted in Minsk since the beginning of 90’s. These
investigations rely on a new approach to the problem [19, 41]. Analysis of the classical
statement of the optimal synthesis problem showed that it could not be solved for
more or less serious cases. This problem imposes extremely stringent requirements
on the result, and these requirements cannot be satisfied by analytical mathematical
methods. It turns out that for applications it is sufficient to have much less information
on optimal synthesis, and this information does not have to be in analytical form. By
virtue of this, the basis for the approach described below is the idea of reasonable
combination of analytical mathematical methods and potentials of modern computing.
It is obvious that such an idea could not arise at the time when the classical statement
of the optimal synthesis problem appeared (the beginning of 50’s). In modern times
it is, in our opinion, quite natural.

As well as in the case of the Kalman–Letov problem, the obtained results on
optimal synthesis were taken up for solving actual problems of both the classical and
modern control theory which in initial statement does not have extremal nature. But
in this work we do not dwell on these problems.

The work has the following structure. In section 2 the terminal OC problem is
formulated, and the notions of a realization of optimal feedback and an optimal con-
troller are introduced. In sections 3–5 algorithms of operating three types of optimal
controllers (continuous, discrete, combined open-closed loop) are described. In section
6 the terminal OC problem under constantly acting disturbances is investigated, and
four various types of feedback are discussed. In section 7 the terminal OC problem
under incomplete and inexact information on a current system state is considered, and
the notion of a realization of optimal output feedback is introduced. In section 8 a
linear optimal observation problem (OO) is introduced, and an algorithm of operating
a continuous estimator, which calculates estimates of an a posteriori distribution of
the initial state, is described. In section 9 an algorithm of operating a discrete estima-
tor is described. This estimator uses measurements of output signals only at discrete
moments. In section 10 an OO problem under constantly affecting bounded distur-
bances is solved. The cases of different information on disturbances with identification
or without identification of parameters are considered. In section 11 a realization of
optimal output feedback without outside disturbances is constructed. Realization
of optimal output feedback under constantly affecting disturbances is described in
section 12.

2. Problem statement. In the class of piecewise continuous functions u(t),
t ∈ T = [0, t∗], consider a linear OC problem

J(u) = c′x(t∗) −→ max, ẋ = Ax + bu, x(0) = x0,
(2.1)

Hx(t∗) = g, |u(t)| ≤ 1, t ∈ T.

Here x = x(t) is an n-vector of a state of the control system at a moment t, u = u(t)
is a value of a scalar (one-dimensional) control, g is an m-vector of given values of
output signals, and t∗ is a terminal (fixed) moment; vectors participate in operations
as columns, and transposition ′ (prime) is used for obtaining a row vector.

Suppose that rank (b, Ab, . . . , An−1b) = n and rank H = m < n.
Problem (2.1) is the simplest OC problem in the sense that removal of any element

from this problem makes it trivial. On the other hand, it contains almost all typical
elements of the OC problem. Some other statements of OC problems are considered
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in [3, 4, 14, 38, 40]. From the qualitative point of view, problem (2.1) has been
investigated very deeply. Also, there exist effective numerical methods of constructing
its open-loop solutions.

By an open-loop solution to problem (2.1), it is meant a piecewise continuous
function u0(t), t ∈ T , which (1) satisfies the geometric constraint |u0(t)| ≤ 1, t ∈ T ,
(2) generates the trajectory x0(t), t ∈ T , satisfying the terminal constraint Hx0(t∗) =
g, and (3) provides the maximum value of the control criterion: J(u0) = maxJ(u).

In spite of the significance of open-loop solutions for many applied problems, in
the majority of applications of the control theory preference is given to positional
solutions or (in another terminology) OCs of feedback type. To define such controls
let us imbed problem (2.1) into a family of problems

J(u) = c′x(t∗) −→ max, ẋ = Ax + bu, x(τ) = z,
(2.2)

Hx(t∗) = g, |u(t)| ≤ 1, t ∈ T (τ) = [τ, t∗],

depending on a scalar τ ∈ T and an n-vector z ∈ Rn.
Denote by u0(t|τ, z), t ∈ T (τ), an optimal open-loop control for problem (2.2) for

a fixed pair (τ, z) called a position. Let Xτ be a set of all vectors z ∈ Rn for which
problem (2.2) has a solution for a fixed moment τ .

Definition. A function

u0(τ, z) = u0(τ |τ, z), z ∈ Xτ , τ ∈ T,(2.3)

is said to be an OC of feedback type (a positional solution) of problem (2.2).
Constructing function (2.3) is called the synthesis of the optimal system.
Unlike an open-loop solution, a positional solution to problem (2.2) cannot be

effectively constructed either by the maximum principle or by the dynamic program-
ming. The maximum principle, first of all, is oriented to optimal open-loop controls
although time-optimal systems can be synthesized with its help on plane (n = 2).
In due time great hopes were pinned on the dynamic programming. Really, a result
obtained by this method has the form of OC of feedback type. However, to obtain
this result it is necessary, first of all, to define the corresponding solution to the Bell-
man equation and then to find a method for its constructing. Even if one manages
to overcome these difficulties, the famous “curse of dimension” arises. Due to this it
is impossible to tabulate functions of many variables to the high enough precision in
the course of numerical solving of the Bellman equation for problem (2.2) with n ≥ 3.

Sources of difficulties under the classical approach to the problem are, at our
glance, in the classical statement of the optimal synthesis problem itself. First of
all, one should take into account that the problem was stated by engineers as early
as the beginning of 50’s when potentials of today’s computing could not even be
inferred. Engineers working with heuristic feedback and synthesizing time-optimal
linear two-dimensional systems thought that invoking more powerful mathematical
methods could solve the problem also in the general case (if only for linear problems
of OC). Furthermore, the problem statement of optimal synthesis was also influenced
by the traditional (school) concept of the solution to mathematical problems when
the main purpose was to obtain an answer in terms of a formula that will allow one to
solve the problem once and for all. Certainly, knowing the history of mathematics, one
could foresee unsolvability of the optimal synthesis problem formulated at that time.
Finally, the problem statement of optimal synthesis could have been considerably
influenced by the conventional (in those years) form of realization of feedback with
the help of mechanical, hydraulic, electrical, etc. devices.
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To leave an impasse, let us analyze the use of optimal feedbacks in actual practice
as if they have been constructed in some way. First of all, it is necessary to under-
stand that even though optimal feedback (2.3) is introduced by determined model
(2.1), engineers well know that it is needed for operating a control system under real
conditions when the system is affected by unaccounted and unknown disturbances
in (2.1). That alone is reason enough to say that open-loop controls are useless. In
mathematical works no attention is given to this circumstance. Thus, assume that
for problem (2.2) optimal feedback (2.3) is constructed. Let us close control system
(2.1) by it and study the behavior of the closed system1 at the presence of unknown
disturbances w(t), t ≥ 0,

ẋ = Ax + bu0(t, x) + w(t), x(0) = x0.(2.4)

Denote by w∗(t), t ∈ T , a disturbance realized in some particular control process.
It generates a trajectory x∗(t), t ∈ T , of (2.4),2 i.e., for almost all t ∈ T the identity

ẋ∗(t) ≡ Ax∗(t) + bu0(t, x∗(t)) + w∗(t), t ∈ T, x∗(0) = x∗
0,(2.5)

is fulfilled.
From (2.5) it is obvious that in the process under consideration the input of

control system (2.1) is fed only by the signals

u∗(t) = u0(t, x∗(t)), t ∈ T.(2.6)

Thus, in a particular control process, not all of the optimal feedback is used,
but its values are necessary only along the isolated continuous curve x∗(t), t ∈ T .
Moreover, for each current moment τ ∈ T the value u∗(τ) = u0(τ, x∗(τ)) does not
have to be known beforehand; it is enough to know how to calculate it at the moment
τ , when the system appears in a current state x∗(τ). The purpose of the proposed
approach is to show that in view of the finite rate of real processes and the high speed
of up-to-date computer facilities it is possible to obtain the values of the function
u∗(t), t ∈ T , in real time3 for many problems (2.1).

Definition. Function (2.6) is said to be a realization of optimal feedback (2.3),
and a device able to calculate its values in real time is called an optimal controller.

Thus, the problem of synthesis of optimal systems in the new statement is reduced
to constructing an algorithm of operating the optimal controller.

3. Defining equations and an algorithm of operating the optimal con-
troller. Suppose that an algorithm of operating the optimal controller has been
created and the optimal controller has been operating on the interval [0, τ [. Denote
by u∗(t), t ∈ [0, τ [, a control produced by the controller up to the moment τ , denote
by w∗(t), t ∈ [0, τ [, a realized disturbance, by x∗(τ) a state of the control system at
the moment τ corresponding to u∗(t), w∗(t), t ∈ [0, τ [, and the initial state x(0) = x0.
To calculate the current value u∗(τ) of the control u0(τ, x∗(τ)), according to defini-
tion (2.3), the optimal controller has to know the open-loop solution u0(t|τ, x∗(τ)),
t ∈ T (τ), to the OC problem

1To simplify notations let us consider model (2.1) to be exact.
2For simplicity it is assumed that (2.4) has a solution, although for the classical statement of

optimal synthesis problem it is not a simple question, because function (2.3) is discontinuous with
respect to x.

3The concept “real time mode” is explained below in section 3.
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c′x(t∗) −→ max, ẋ = Ax + bu, x(τ) = x∗(τ),(3.1)

Hx(t∗) = g, |u(t)| ≤ 1, t ∈ T (τ).

From the Pontryagin maximum principle [53] it follows that the optimal open-loop
control u0(t|τ, x∗(τ)), t ∈ T (τ), has the form

u0(t|τ, x∗(τ)) = sgn∆(t|τ, x∗(τ)), t ∈ T (τ),(3.2)

where ∆(t|τ, x∗(τ)) = ψ′(t|τ, x∗(τ))b, ψ̇ = −A′ψ, ψ(t∗) = c−H ′y(τ, x∗(τ)), y(τ, x∗(τ))
is the Lagrange optimal vector.

From (3.2) it is obvious that the open-loop solution to problem (3.1) is completely
defined by the set

æ(τ) =
(
t1 = t1(τ, x∗(τ)), . . . , tp = tp(τ, x

∗(τ)); y = y(τ, x∗(τ))
)
,(3.3)

consisting of switching points of the OC and the Lagrange vector. Set (3.3) is said to
be the defining elements of the OC. They satisfy the equations

F (æ|τ) = 0⇐⇒
{

Hx(t∗) = g,
∆(tk|τ, x∗(τ)) = 0, k = 1, p = p(τ, x∗(τ)).

(3.4)

Equations (3.4) are said to be the defining equations of the optimal controller. When
∆̇(tk) 
= 0, k = 1, p, the Jacobi matrix of (3.4) is nonsingular on the OC with respect
to variables (3.3). So the solution to the defining equations can be constructed by the
Newton method if a good enough initial approximation is known.

Based on these properties, it is possible to propose the following algorithm of
operating the optimal controller. The algorithm consists of three procedures: (1) the
starting procedure, (2) the procedure of constructing the defining elements on regular
intervals and on sliding intervals, and (3) the procedure of changing the structure (the
set of the defining equations and variables).

The first procedure constructs the initial values

æ(0) =
(
t1(0, x0), . . . , tp(0)(0, x0); y(0, x0)

)
(3.5)

of defining elements (3.3). For this purpose, the optimal open-loop control u0(t|0, x0),
t ∈ T , of problem (2.1) is constructed before the beginning of the control process,
based on a priori information. In doing so there are no limitations on the time of
calculation. The switching points and the Lagrange vector of the constructed solution
set vector (3.5).

The second procedure is used on intervals of control where the number of defining
equations (3.4) does not change and on intervals where sliding modes arise ((2.4) does
not have the classical solution). In the first case, the earlier constructed solution
æ(τ) is used as an initial approximation for constructing a solution æ(τ + h) to the
defining equations at the moment τ + h. The number h > 0 is chosen in such a way
that it would take no more than three iterations to obtain the solution æ(τ + h) by
the Newton method with given accuracy. This allows us to evaluate the number of
calculations. If the time the computer device takes to carry out this work does not
exceed h units, one can say that the optimal controller using this device realizes the
optimal feedback in real time. The appropriate estimates are easy to obtain from
the properties of the Newton method [5]. The algorithm of operating the optimal
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controller changes on sliding intervals. In [2] several alternative algorithms for sliding
intervals are described.

The third procedure is intended for revealing moments for changing the structure
of the defining equations and for calculating initial values for the defining elements
on new intervals of constancy of the structure. Details are presented in [32, 33].

The described approach to solving the synthesis problem of optimal systems allows
us, on the one hand, to select a computer device able to realize the optimal feedback
for the given OC problem and, on the other hand, to point out problems in which the
given computer device may be used for synthesizing the OC.

As an example of using the described approach, consider the synthesis of the
optimal feedback for the problem of damping a two-mass oscillating system (Figure
3.1).

Denote by m,M masses of the objects, by x1, x2 their coordinates, by c1, c2 the
coefficients of elasticity of springs, and by u the damping action. The mathematical
model of the problem has the form∫ t∗

0

u(t)dt −→ min, ẋ1 = x3, ẋ2 = x4,

ẋ3 = (−c1x1 + c1x2 + u)/m, ẋ4 = (c1x1 − (c1 + c2)x2)/M,

x(0) =
(
x1(0), x2(0), x3(0), x4(0)

)
= x0, x(t∗) = 0, 0 ≤ u(t) ≤ 1, t ∈ [0, t∗[.

Set the following values of parameters: m = 1, M = 10, c1 = 1, c2 = 9.2, t∗ = 20.
The vector x0 = (2, 0.5, 0, 0) is chosen as an initial state. Introducing a new variable
ẋ5 = u, x5(0) = 0, we obtain the problem of form (2.1)

− x5 −→ max, ẋ1 = x3, ẋ2 = x4,

ẋ3 = −x1 + x2 + u, ẋ4 = 0.1x1 − 1.02x2,(3.6)

xi(0) = x0i, i = 1, 4, x5(0) = 0, xi(20) = 0, i = 1, 4, 0 ≤ u(t) ≤ 1, t ∈ [0, 20[.

In Figure 3.2 dashed lines present the phase trajectories of the objects under the
optimal open-loop control. The optimal value of the control criterion equals 3.040471.
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Fig. 3.2.

Let the unknown for the controller disturbance w(t) = 0.5 sin 5t, t ∈ [0, 9[, w(t) = 0,
t ∈ [9, 20], affect the system so that the behavior of the system is described by the
equations

ẋ1 = x3, ẋ2 = x4,

ẋ3 = −x1 + x2 + u, ẋ4 = 0.1x1 − 1.02x2 + w(t).

The phase trajectories corresponding to the realized disturbance and the control pro-
duced by the optimal controller are presented in Figure 3.2 (solid lines). The control
criterion takes the value 3.210243. In the curves the states of the system realized at
the moments t = 5, 10, 15 are marked.

4. Synthesis of optimal discrete controls of feedback type. When includ-
ing discrete-acting devices in control channels, it is natural to use discrete controls.
A control u(t), t ∈ T , is said to be discrete with the quantization period ν > 0 if it
takes the form

u(t) = uk, t ∈ [kν, (k + 1)ν[, k = 0, 1, 2, . . . ,

i.e., a discrete control is described by a piecewise constant function in which discon-
tinuities are possible only at moments tk = kν, k = 0, 1, 2, . . ..

Consider problem (2.1) once again but this time in the class of discrete controls,
assuming for simplicity that t∗ = Nν.

To define the optimal discrete control of feedback type, the family of problems
(2.2) will be considered for τ = kν, k = 0, 1, . . . , N − 1, z ∈ Rn. The optimal
discrete control of feedback type is again defined by formula (2.3), where τ = kν, k =
0, N − 1. Introduction of discrete time does not facilitate the search of function (2.3)
considerably. Therefore, in the discrete case, by analogy with the continuous case, we
introduce the concept of realization u∗(t) = u0(t, x∗(t)), t = kν, k = 0, N − 1, of the
optimal discrete feedback and the concept of the optimal discrete controller. However,
the algorithm of operating the optimal discrete controller differs fundamentally from
the analogous one in the continuous case [43, 44, 45].

Suppose once again that the optimal discrete controller has been constructed and
the control process is in the position (τ = kν, x∗(τ)). To calculate the value u∗(kν)
the discrete controller has to solve problem (2.2) with τ = kν, z = x∗(kν). This
problem is equivalent to the linear programming (LP) problem. By the assumption,
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Fig. 4.1.

the controller has already faced the similar problem at the previous moment τ − ν =
(k−1)ν. Therefore instead of solving a new LP problem for τ , it is sufficient to correct
the previous solution. In LP, there exists an extraordinarily effective dual method
[10, 13] performing this work in a small number of iterations. If the mentioned work
is performed by the available computer device in a time not exceeding ν, one can
remark again about the realization of the optimal discrete feedback in real time. The
initial value u∗(0) is obtained after solving problem (2.2) with τ = 0, z = x0. This
problem can be solved beforehand because it does not contain uncertain elements. In
the discrete case the procedure for constructing a new structure is eliminated and the
question of sliding modes does not arise. From this point of view, optimal discrete
controllers are especially convenient for practical problems.

In conclusion, let us describe the starting procedure. The optimal controller
begins its work at the moment t = 0. In calculation of the initial control signal
u∗(0) = u0(0, x∗(0)), two situations are possible: (1) the initial state x∗(0) is known
beforehand (up to the moment t = 0), and (2) it is only known that initial state
x∗(0) belongs to the bounded set G0. In the case (1), before starting the control
process, the open-loop solution u0(t|0, x∗(0)), t ∈ T , is constructed based on a priori
available information. In doing so, there are no restrictions on the time of solving the
problem. Following definition (2.6), at the initial moment t = 0 the optimal controller
sets u∗(0) = u0(0|0, x∗(0)). In the case (2) the domain G0 is covered with sufficiently
dense finite grid. Before the beginning of the control process the optimal controller
calculates optimal open-loop controls u0(t|0, x(i)), t ∈ T , for nodes x(i), i = 1, q, of the
grid. At the initial moment t = 0 of the control process any initial state x∗(0) ∈ G0

is realized. The optimal controller seeks the closest to x∗(0) node x(k). According
to the above described scheme, the controller corrects the optimal open-loop control
u0(t|0, x(k)), t ∈ T , to the control u0(t|0, x∗(0)), t ∈ T , by the dual method and sets
u∗(0) = u0(0|0, x∗(0)). It is clear that for a given domain G0 one can choose a grid
such that it takes no more than ν units of time to calculate u∗(0). Then the whole
control process can be realized in real time.

Operation of the optimal discrete controller is illustrated by the example consid-
ered earlier (section 3). Choose various values of the quantization period ν = 0.2,
ν = 1. On the optimal open-loop control the value of the control criterion is equal to
3.046312 for ν = 0.2, and 3.216836 for ν = 1. As in section 3, the system is affected
by unknown disturbance w(t) = 0.5 sin 5t, t ∈ [0, 9[; w(t) = 0, t ∈ [9, 20]. The phase
trajectories of the control objects are presented in Figure 4.1. Solid lines correspond
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to ν = 0.2, and dash lines correspond to ν = 1. The points identify the states of the
system realized at the moments t = 5, 10, 15. The value of the control criterion is
equal to 3.292034 for ν = 0.2 and 4.223683 for ν = 1.

5. Realization of combined open-closed-loop solutions to optimal con-
trol problems. Generalization of positional (section 3) and discrete (section 4) so-
lutions to OC problems is a combined open-closed-loop solution. Consider a family
of problems (2.2) in the class of piecewise continuous controls.

Definition. For a given ν = t∗/M > 0 the function

u0
ν(t, x), t ∈ [0, ν[, x ∈ Xτ , τ ∈ T,(5.1)

is said to be a combined open-closed-loop solution to problem (2.2) if
(1) u0

ν(t, x) = u0(τ + t|τ, x), t ∈ [0, ν[, x ∈ Xτ , τ ∈ T ,
(2) the trajectory x(t), t ∈ T , of the system

ẋ = Ax + bu0
ν(t, x), x(0) = x0,

obtained from (2.1) with the help of closure by combined open-closed-loop feedback
(5.1) presents a continuous solution to the control system

ẋ = Ax + bu(t), x(0) = x0,

u(t) = u0
ν(t− kν, x(kν)), t ∈ [kν, (k + 1)ν[, k = 0, N − 1.

Thus, optimal combined open-closed-loop control (5.1) is corrected not at each mo-
ment τ ∈ T (as it was with positional solution) but only at discrete moments τ = kν,
k = 0, N − 1, (as in the case of discrete controls). However, unlike the discrete po-
sitional control the combined open-closed-loop control does not remain constant on
intervals [kν, (k + 1)ν[, k = 0, N − 1, and can appear to be an arbitrary piecewise
continuous function.

The combined open-closed-loop solution to problem (2.1) can be realized both
by the continuous controller (section 3) and by its discrete analogue (section 4). For
definiteness we describe only the algorithm of operating the second controller. (The
continuous one is described in [27].) Restrict the class of accessible controls of problem
(2.1) by discrete controls with quantization period µ = t∗/M , assuming for simplicity
that ν = Kµ, K ≥ 1, is an integer.

Up to the initial moment τ = 0 the optimal controller solves problem (2.1) in
the class of discrete controls with quantization period µ. (This problem is equivalent
to the LP problem.) The controller feeds the constructed optimal open-loop control
u0(t|0, x0), t ∈ T , into the input of the system during the period of time [0, ν[.
Suppose that the controller has operated at the moments 0, ν, . . . , (k − 1)ν and the
control system at the moment τ = kν appears in the state x∗(τ). Using the results of
the solution to LP problem at the moment τ−ν, the controller constructs the solution
to the current LP problem at the moment τ using the dual method [13, 18].

The constructed optimal open-loop control u0(t|τ, x∗(τ)), t ∈ [τ, t∗], is fed into
the input of system (2.4) on the interval [τ, τ + ν[.

Remark. For a large ν the correction of the OC may require a significant number
of iterations of the dual method. To reduce the time of correction, one can correct the
solutions to the LP problems at moments τ − ν +µ, τ − ν + 2µ, . . . , τ −µ. For small
µ > 0 these corrections require small work. Then the control u∗(t), t ∈ [τ, τ + ν[,
is obtained by correcting the control u0(t|τ − µ, x∗(τ − µ)), t ∈ [τ − µ, t∗]. Clearly,
results of intermediate corrections at moments τ − ν + µ, . . . , τ − µ are not used in
control of system (2.4).
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6. Optimal controls of feedback type for systems under disturbances.
As was mentioned in the classical statement of the optimal synthesis problem the OC
of feedback type is constructed by the determined model even though it is intended for
systems functioning under unknown disturbances. And in so doing, no information
on disturbances is used; it is incorrect to remark on estimating the quality of the
feedback with respect to disturbances. Engineers, of course, understood [12] that
the reasonable use of information on disturbances can only increase the quality of
the feedback. However, it was clear that in the new statement the optimal synthesis
problem was considerably more difficult than the classical synthesis problem and for
its solution new methods are required.

In studies of systems under disturbances it is necessary, first of all, to agree
about a model of disturbances. At present time, two types of models of disturbances
are distinguished: stochastic and nonstochastic. In the first case, disturbances are
described in terms of the theory of stochastic processes, and in the second case only
the class of possible realizations and the set of possible values of disturbances are
given. Effective results on synthesis of optimal systems with the use of the first model
of disturbances were obtained in stochastic analogues of the Kalman–Letov problem
with the Gauss disturbances [50]. The investigations of this trend are not discussed
in this work. We are dealing with OC problems based on nonstochastic models of
disturbances [26, 35]. The possibility of investigation of similar problems appeared
only with the creation of the OCT, with its development on differential games and
nonsmooth analysis.

The inclusion of disturbances in the mathematical model of the OC problem, first
of all, considerably expands the set of possible types of optimal feedback. It was, at
first, noted by S. E. Dreyfus [11] in one stochastic extremal problem. In OC problems
with disturbances four types of feedback are distinguished: (1) unclosed feedbacks
(open-loop controls) which are closed only at the initial moment, i.e., use only a
priori information; (2) unclosable feedbacks (an analogue of the classical feedback for
systems without disturbances) which are closed at each current moment but do not use
the fact that the closure is possible in future moments too, i.e., their action is based
only on current information on the state of the system; (3) closable feedbacks which
are closed at each current moment and additionally take into account that closure
certainly will happen at some given future moments; (4) closed feedbacks which use
information on the current states of the system and know that such information will
be accessible at all future moments.

Extreme (the first and the fourth) types of feedback are not considered below
because the first type does not relate to the discussed topic and the second one is so
complicated that at the present moment there are not any interesting constructive
results for it.

The unclosable feedback in the framework of the accepted approach in this paper
was investigated in [37]. Let us briefly give only the principal moments of this work.

Instead of problem (2.1), let us introduce the problem

J(u) = c′x(t∗) −→ max, ẋ = Ax + bu + dw, x(0) = x0,
(6.1)

x(t∗) ∈ X∗ = {x ∈ Rn : h′
ix ≥ gi, i = 1,m}, |u(t)| ≤ 1, t ∈ T,

where w(t), t ∈ T , is a piecewise continuous disturbance satisfying the condition

|w(t)| ≤ 1, t ∈ T.
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To define the optimal unclosable feedback, problem (6.1) is imbedded into the
family of problems

c′x(t∗) −→ max, ẋ = Ax + bu + dw, x(τ) = z,
(6.2)

x(t∗) ∈ X∗, |u(t)| ≤ 1, t ∈ T (τ).

A piecewise continuous function u(t), |u(t)| ≤ 1, t ∈ T (τ), is said to be an accessible
(guaranteeing) open-loop control for the position (τ, z) if all solutions (for all possible
w(t), t ∈ T (τ)) to the equation

ẋ = Ax + bu(t) + dw(t), x(τ) = z,(6.3)

satisfy the condition

x(t∗) ∈ X∗.(6.4)

Denote by X(t|uτ (·)) (uτ (·) = (u(t), t ∈ T (τ))
)

the set of all possible states x(t)
of system (6.3). Then requirement (6.4) can be written in the form X(t∗|uτ (·)) ⊂ X∗.

The quality of the accessible control uτ (·) is evaluated by the value of the func-
tional

J(uτ ) = min c′x, x ∈ X(t∗|uτ (·)).
An accessible control u0(t|τ, z), t ∈ T (τ), is said to be an optimal (guaranteeing)

open-loop control for the position (τ, z) if

J(u0
τ ) = maxJ(uτ ).

From here at τ = 0, z = x0 we obtain the exact nature of problem (6.2).
Let Xτ be a set of all the vectors for which problem (6.2) with a fixed τ has an

open-loop solution u0(t|τ, z), t ∈ T (τ).
Definition. The function

u0(τ, z) = u0(τ |τ, z), z ∈ Xτ , τ ∈ T,

is said to be an optimal (guaranteeing) control of feedback type (or, briefly, optimal
unclosable feedback).

Realization u∗(t) = u0(t, x∗(t)), t ∈ T , of the optimal unclosable feedback and
the optimal controller calculating this realization are defined by analogy with section
3.

To describe an algorithm of operating the optimal controller, let us consider an
arbitrary current moment τ and a current state x∗(τ). In the position (τ, x∗(τ)), in
order to calculate the current value u∗(τ) of the realization of the optimal unclosable
feedback, the optimal controller has to know the open-loop guaranteeing solution to
the following problem:

c′x(t∗) −→ max, ẋ = Ax + bu + dw, x(τ) = x∗(τ),

x(t∗) ∈ X∗, |u(t)| ≤ 1, t ∈ T (τ).

In [37] it is shown that the solution u0(t|τ, x∗(τ)), t ∈ T (τ), to this problem
coincides with the optimal open-loop control of the determined problem

c′x(t∗) −→ max, ẋ = Ax + bu, x(τ) = 0,
(6.5)

h′
ix(t∗) ≥ gi(τ), i = 1,m; |u(t)| ≤ 1, t ∈ T (τ),
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where gi(τ) = gi−h′
iF (t∗−τ)x∗(τ)+

∫ t∗
τ
|h′
iF (t∗−t)d|dt, F (t), t ≥ 0, is a fundamental

matrix of solutions to the homogeneous equation ẋ = Ax.

The optimal controller for problem (6.5) is constructed by the scheme of section
3. It will be an optimal controller for problem (6.1). At this point, the process of
solving the synthesis problem of the optimal unclosable feedback is finished.

It is more difficult to construct a realization of an optimal closable feedback.
This work was carried out in [25, 29, 30, 31], but due to massive calculations it
is not possible to give the obtained results here. From the analysis of the method
[29] it is obvious that the complexity of the optimal closable feedback grows rapidly
as the number of moments of closure increases. However, in doing so, the quality
of the optimal closable feedback approaches the optimal closed feedback which “in
principle” is obtained from the Bellman–Isaacs equation. So it may be inferred that
optimal closed feedback is such an ideal that cannot be achieved as yet but there are
ways of steering (with appropriate efforts) to as small as one likes its neighborhood.

7. Optimal output feedbacks. So far it has been assumed that at each current
moment τ ∈ T of the control process a complete and exact information on the current
state x∗(τ) of the control system is available. Therein lies one of the features of the
classical statement of the synthesis problem. It was possible for this assumption to
be accepted in the 50’s as the order of systems being studied was not very high. But
today this assumption is considered too restrictive because available information on
states of modern complex control systems is, as a rule, incomplete and inexact. Now
one comes to a decision based on the readings of a measurer able to measure only
some output signals of the system with limited accuracy.

That is why the output feedbacks defined not on system states but on its available
output signals are urgent for the modern theory of control. Feedbacks described in
previous sections are usually called state feedbacks. The problem of constructing
optimal output feedbacks has been much studied in the framework of the Kalman–
Letov stochastic problem [50]. Below, only nonstochastic OC problems are considered.

The essence of the new problem is illustrated by the simplest problem. More
complex statements are studied in [20, 23, 24, 36]. In formal terms, the problem has
the form

h′
0x(t∗) −→ max, ẋ = Ax + bu,

x(0) = x0 ∈ X0 = {x ∈ Rn : Dx = δ, d∗ ≤ x ≤ d∗}, x(t∗) ∈ X∗,(7.1)

y(t) = c′x(t) + ξ(t), ξ∗ ≤ ξ(t) ≤ ξ∗, |u(t)| ≤ 1, t ∈ T,

rankD = l < n.

The problem has the following sense. The initial state of the optimized system is not
known exactly. A priori information on the initial state is exhausted by the inclusion
x0 ∈ X0. By analogy with the theory of filtration we say that the set X0 is an a
priori distribution of the initial state of the control system, omitting the adjective
“probable.” In the control process current states are not available; only the output
signal c′x(t), t ∈ T , of the system is measured and the measurer does it with the error
ξ(t), t ∈ T , so at each moment of the control only a number y(t) is at our disposal. As
an error of measurement, any piecewise continuous function ξ(t), t ∈ T , satisfying the
inequalities ξ∗ ≤ ξ(t) ≤ ξ∗, t ∈ T , may be realized. At each moment τ ∈ T based on
the written signal yτ (·) = (y(t), t ∈ Tτ = [0, τ ]), the optimal controller has to produce
controls u0(τ, yτ (·)), |u0(τ, yτ (·))| ≤ 1, τ ∈ T , which at the moment t = t∗ steer the
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system to the terminal set X∗ with assurance and give the maximal guaranteed value
for the control criterion h′

0x(t∗).
For more precise definitions let us consider a particular control process at any

current moment τ ∈ T . Denote by y∗τ (·) = (y∗(t), t ∈ Tτ ) a signal of the measurer
written by that time, and by u∗

τ (·) the control used (fed into the system). As the
information, available at the moment τ , contains, in the general case, additional
knowledge of the initial state x∗

0 realized in the process, so let us use this knowledge to
decrease an a priori uncertainty. A vector x∗ ∈ X0 is called an initial state compatible
with the functions u∗

τ (·), y∗τ (·) if the corresponding trajectory of system (7.1) together
with some possible function of errors ξ∗(t), t ∈ Tτ , generates the signal c′x∗(t)+ξ∗(t),
t ∈ Tτ , coinciding with the written signal y∗(t), t ∈ Tτ : y∗(t) ≡ c′x∗(t)+ξ∗(t), t ∈ Tτ .

Denote by X̂0(τ) the set of all vectors x∗ ∈ X0 compatible with u∗
τ (·), y∗τ (·), and

call it the τ -a-posteriori distribution of the initial state. The set

X̂τ (τ) =

{
x : x = F (τ)x0 +

∫ τ

0

F (τ − s)bu∗(t)dt, x0 ∈ X̂0(τ)

}
is said to be the τ -a-posteriori distribution of the state x(τ).

A piecewise continuous function uτ (·) = (u(t), t ∈ T (τ)), |u(t)| ≤ 1, t ∈ T (τ), is
said to be an admissible (guaranteeing) control if at the moment t = t∗ it steers all
states from the set X̂τ (τ) to the terminal set X∗. Let

X(t∗|uτ (·)) =

{
x : x = F (t∗ − τ)xτ +

∫ t∗

τ

F (t∗ − s)bu(s)ds, xτ ∈ X̂τ (τ)

}
.

Then the admissibility of the control uτ (·) can be written briefly: X(t∗|uτ (·)) ⊂ X∗.
As a control criterion, the functional

J(uτ (·)) = minh′
0x, x ∈ X(t∗|uτ (·)),

is considered.
An admissible control u0(t|τ, X̂τ (τ)), t ∈ T (τ), is called a τ -a-posteriori optimal

(guaranteeing) open-loop control [21] if it satisfies the equality

J(u0
τ (·)) = maxJ(uτ (·)).

The optimal (guaranteeing) output feedback is defined by the equality

u0(τ, yτ (·)) = u0(τ |τ, X̂τ (τ)), yτ (·) ∈ Yτ , τ ∈ T,

where Yτ is the set of all signals of measurer for which there exists u0(t|τ, X̂τ (τ)),
t ∈ T (τ).

Following section 2, one can introduce the notion of the realization of the optimal
output feedback u∗(τ) = u(τ, y∗τ (·)), τ ∈ T , and the optimal controller able to calculate
its values in real time.

It is shown in [36] that for calculating u∗(τ) it is sufficient to solve the determined
OC problem

h′
0x(t∗) −→ max, ẋ = Ax + bu, x(τ) = 0,

(7.2)
h′
ix(t∗) ≥ gi(τ), i = 1,m, |u(t)| ≤ 1, t ∈ T (τ),
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in real time, where gi(τ) = gi − αi(τ), i = 1,m, are obtained by solving m linear
problems of OO

αi(τ) = min
x∈X̂τ (τ)

h′
iF (t∗ − τ)x, i = 1,m,(7.3)

in real time.
Let us dwell on the latter problem.

8. OO problem, defining equations, and algorithm of operating optimal
estimator. In “pure form” the OO problem used for solving the OC problem under
uncertainty consists in the following.

On the interval T = [0, t∗] the behavior of the dynamic system is described by
the equation

ẋ = Ax (x ∈ Rn).(8.1)

The initial state of system (8.1) is not known exactly. It is only known that the vector
x0 belongs to the set

X0 = {x ∈ Rn : Dx = δ, d∗ ≤ x ≤ d∗},(8.2)

which above was called the a priori distribution of an initial state.
To refine the actual initial state x∗

0 realized in some particular process the behavior
of system (8.1) is observed and readings y(t), t ∈ T , of the measurer

y = c′x + ξ, ξ∗ ≤ ξ(t) ≤ ξ∗, t ∈ T,(8.3)

are obtained.
According to relation (8.3) the measurer at each moment t ∈ T can measure the

given linear combination c′x(t) =
∑n
j=1 cjxj(t) of the components x1(t), . . . , xn(t) of

the current state x(t) of system (8.1) with an error ξ(t). Suppose that the function
ξ(t), t ∈ T , of measuring errors, an arbitrary piecewise continuous function satisfying
inequalities (8.3), may be realized.

Denote by y(t), t ∈ T , a signal written by the device (8.3) in some observation
process. The information inherent in the signal y(t), t ∈ T , allows us to decrease the
a priori uncertainty of the realized vector x∗

0.
Definition. A set X̂0 is called the a posteriori distribution of the initial state

of system (8.1) if it consists of those and only those elements of the set X0 which
together with admissible functions ξ(t), t ∈ T , can produce the written signal y(t),
t ∈ T .

The analytical description of the set X̂0 has the form: a vector x ∈ X̂0 if and
only if it satisfies the relations

ξ∗ ≤ y(t)− c′F (t)x ≤ ξ∗, t ∈ T ; Dx = δ, d∗ ≤ x ≤ d∗.(8.4)

The description of the set X̂0 contains a continuum of inequalities; thus, its structure
may be very complex for effective tabulation. Luckily, in many applied problems the
set X̂0 is not used entirely, all one has to do is to know some of its estimates (numerical
characteristics). Thus, in order to solve problem (7.1), the estimates of the form

p′x −→ max, x ∈ X̂0,(8.5)

are necessary, i.e., the extension of the set X̂0 in the direction of the vector p ∈ Rn.
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Problem (8.5) is called a linear OO problem. In view of (8.4) this problem is
a linear semi-infinite extremal problem. Similar problems occur in various applica-
tions and have a sufficiently developed theory [47]. It is interesting to note that
problem (8.5) in some sense is a “dual” to the OC problem (2.1): there is a finite
number of variables but an infinite number of general constraints in problem (8.5)
and, conversely, there is an infinite number of variables and a finite number of general
constraints in problem (2.1).

A finite method of solving problem (8.5) is described in [48].
To define positional solutions to problem (8.5) let us imbed it into the family of

the problems

p′x −→ max, x ∈ X̂0(τ),(8.6)

where X̂0(τ) is an a posteriori distribution of an initial state of system (8.1) corre-
sponding to the observation yτ (·).

A vector x0
τ = x0(τ, yτ (·)) ∈ X̂0(τ), which gives the control criterion of problem

(8.6) the maximum value, is called the optimal open-loop solution to problem (8.6).
Let Y (τ) be a set of signals yτ (·) which can be realized on the interval [0, τ ] for

any initial states x0 ∈ X0 and any measuring errors ξ∗ ≤ ξ(t) ≤ ξ∗, t ∈ Tτ . The
functional x0(τ, yτ (·)), yτ (·) ∈ Y (τ), τ ∈ T , is said to be a positional solution to the
OO problem (8.5).

Constructing a positional solution to the OO problem in an explicit form is an
extraordinarily complex problem. As in the case of the OC problem, consider a
particular observation process in which an output signal y∗(t), t ∈ T , is realized. It
is clear that in this process values of the functional x0(τ, yτ (·)), yτ (·) ∈ Y (τ), τ ∈ T ,
are necessary only along the curve y∗(t), t ∈ T .

The function x∗(τ) = x0(τ, y∗τ (·)), y∗τ (·) ∈ Y (τ), τ ∈ T , is said to be a realization
of the positional solution to the OO problem, and any device able to calculate its
values in real time is called an optimal continuous estimator.

Describe an algorithm of operating the optimal estimator.
Suppose that the estimator has been constructed and operated on the interval

Tτ . Using the written signal y∗(t), t ∈ Tτ , at the moment τ the estimator has to solve
problem (8.6). In detailed notation, problem (8.6) has the form

p′x −→ max, α∗(t) ≤ a′(t)x ≤ α∗(t), t ∈ Tτ ,
(8.7)

Dx = δ, d∗ ≤ x ≤ d∗,

where α∗(t) = ξ∗ − y∗(t), α∗(t) = ξ∗ − y∗(t), a′(t) = (aj(t), j ∈ J) = −c′F (t),
J = {1, 2, . . . , n}.

Let x̂τ be an optimal feasible point of problem (8.7). Introduce the sets where
constraints of problem (8.7) are active:

Ta(τ) = T+
a (τ) ∪ T−

a (τ), T+
a (τ) = {t ∈ Tτ : a′(t)x̂τ = α∗(t)},

T−
a (τ) = {t ∈ Tτ : a′(t)x̂τ = α∗(t)},

J+(τ) = {j ∈ J : x̂τj = d∗j}, J−(τ) = {j ∈ J : x̂τj = d∗j}.

The optimal feasible point x̂τ satisfies the relations

∆j(τ) ≥ 0 if j ∈ J−(τ), ∆j(τ) ≤ 0 if j ∈ J+(τ),

∆j(τ) = 0 if j ∈ J\(J+(τ) ∪ J−(τ)),
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where ∆j(τ) =
∑
t∈Ta(τ) aj(t)η(t) +η′Dj +pj , ητ = (η(t), t ∈ Ta(τ); η), is an optimal

dual feasible point of problem (8.7) [39]:

η(t) ≥ 0, t ∈ T+
a (τ); η(t) ≤ 0, t ∈ T−

a (τ); η ∈ Rl.

A pair {x̂τ , ητ} is called a positional solution to problem (8.7).
Introduce a set J0(τ) = {j ∈ J : ∆j(τ) = 0}. A solution to problem (8.7) is called

nonsingular if
(1) rank(D′

j ; aj(t), t ∈ Ta(τ); ȧj(t), t ∈ Ta(τ)\ {0, τ}; j ∈ J0(τ)) = |J0(τ)|,
(2) rank(D′

j ; aj(t), t ∈ Ta(τ); j ∈ J0(τ)) = |Ta(τ)|+ l,
(3) d∗j < x̂τj < d∗j , j ∈ J0(τ),
(4) η(t) 
= 0, t ∈ Ta(τ).
Here J0(τ) = {j ∈ J : ∆j(τ) = 0}. Suppose that {0} 
∈ Ta(τ), τ > 0.
Let {x̂τ∗ , ητ∗} be a nonsingular solution to (8.7) at τ = τ∗. Describe rules of

constructing solution to problem (8.7) for τ ∈]τ∗, t∗]. Two situations are possible: (1)
τ∗ ∈ Ta(τ∗), (2) τ∗ 
∈ Ta(τ∗).

Consider case (1). Assume a′(τ∗)x̂τ∗ = α∗(τ∗), ȧ′(τ∗)x̂τ∗ 
= α̇∗(τ∗).
As is shown in [39], the set

æ(τ) = {x̂τ , ητ , Ta(τ)},(8.8)

consisting of the optimal primal and dual feasible points of problem (8.7) and the
active moments, is sought from the equations

F (æ|τ) = 0⇐⇒


x̂τj = d∗j , j ∈ J−; x̂τj = d∗j , j ∈ J+; Dx̂τ = δ,
a′(ti(τ))x̂τ = αi(ti(τ)), i = 1, q,
ȧ′(ti(τ))x̂τ = α̇i(ti(τ)), i = 1, q − 1; tq(τ) = τ,
∆j(ti(τ)) = 0, j ∈ J0.

(8.9)

Here q = |Ta(τ)|, J0 = J0(τ∗), I0 = {1, . . . , q}, I+
0 = {i ∈ I0 : ti(τ) ∈ T+

a (τ)},
I−0 = I0\I+

0 , J+ = (J\J0) ∩ J+(τ), J− = (J\J0) ∩ J−(τ), αi(t) = α∗(t) for i ∈ I+
0 ;

αi(t) = α∗(t) for i ∈ I−0 .
Equations (8.9) are said to be the defining equations of the optimal estimator.

The set

{q, J0, J+, J−, I+
0 , I−0 }

is called a structure of the defining equations.
A moment τ̄ of changing the structure of equations (8.9) is characterized by one

of the following properties.
(1) At any t0 ∈ [0, τ̄ ]\{ti(τ̄), i = 1, q} one of the inequalities α∗(t0) ≤ a′(t0)x̂τ̄ ≤

α∗(t0) becomes an equality.
(2) For any j0 ∈ J0 one of the inequalities d∗j0 ≤ x̂τ̄ j0 ≤ d∗j0 becomes an equality.
(3) For any i0 ∈ I0\{q} the equality η(ti0(τ̄)) = 0 takes place.
(4) For any j0 ∈ J\J0 the equality ∆j0(τ̄) = 0 takes place.
(5) The equality ȧ′(τ̄)x̂(τ̄) = ᾱq(τ̄) takes place.
Consider case (2). For τ ∈ T+(τ∗) elements (8.8) has the form

x̂τ = x̂τ∗ , ητ = ητ∗ , Ta(τ) = Ta(τ∗).(8.10)

A solution to problem (8.7) is constructed according to rule (8.10) till a moment τ̄ ∈
[τ∗, t∗] where a′(τ̄)x̂τ̄ = α∗(τ̄), ȧ′(τ̄)x̂τ̄ 
= α̇∗(τ̄) or a′(τ̄)x̂τ̄ = α∗(τ̄), ȧ′(τ̄)x̂τ̄ 
= α̇∗(τ̄).
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For τ ∈ T+(τ̄) a solution to problem (8.7) is constructed according to case (1).
As in the case of an optimal controller, the algorithm of operating the optimal

estimator consists of three procedures: (1) the starting procedure, (2) the procedure
of constructing defining elements (8.8) on intervals with constant structure, and (3)
the procedure of changing the structure.

Details of these procedures are described in [34, 39].

9. Optimal discrete estimator. To introduce a discrete estimator let us change
some conditions of observation. The object of observation remains as before (see
(8.1)). Formally (8.3) of the measurer also remains. But this time, suppose that on the
interval [0, t∗] measurements are written at discrete moments tk = kν, k = 0, 1, . . . , N ,
ν = t∗/N . Errors of measurements are numbers ξk, k = 0, 1, . . . , N , satisfying the
inequalities ξ∗ ≤ ξk ≤ ξ∗, k = 0, 1, . . . , N . Formally, the notion of a posteriori distri-
bution X̂0 of an initial state (see section 8) remains, but its analytical form is radically
changed: a vector x0 ∈ X̂0 if and only if it satisfies the finite set of inequalities

ξ∗ ≤ y(kν)− c′F (kν)x0 ≤ ξ∗, k = 0, N,

Dx0 = δ, d∗ ≤ x0 ≤ d∗.

Of course now, the structure of the set X̂0 is also essentially more complex than that
of the set X0. But this structure allows one to solve OO problems considerably more
easily and without any demand on analytical properties of available signals y(t), t ∈ T .
This is very important for solving applied problems.

Now, the OO problem takes the form

p′x −→ max, ξ∗ ≤ y(kν)− c′F (kν)x ≤ ξ∗, k = 0, N,
(9.1)

Dx = δ, d∗ ≤ x ≤ d∗,

i.e., it is an LP problem. The optimal feasible point x0 of problem (9.1) presents an
open-loop solution to the discrete OO problem.

To introduce a positional solution to the OO problem let us imbed problem (9.1)
into a family of problems (8.6) where as τ discrete moments kν, k = 0, N , are consid-
ered, the sets X̂0(τ) are appropriately changed to X̂0(τ) = {x : ξ∗ ≤ y(iν)−c′F (iν)x ≤
ξ∗, i = 0, k, Dx = δ, d∗ ≤ x ≤ d∗}, yτ (·) = {y(iν), i = 0, k}.

Let x0
τ = x0(τ, yτ (·)) ∈ X̂0(τ) be an optimal feasible point of problem (8.6) at

τ = kν. The functional

x0(τ, yτ (·)), yτ (·) ∈ Y (τ), τ ∈ Tν = [0, ν, . . . , Nν],(9.2)

is said to be a positional solution to the discrete OO problem. In spite of simplification
of the OO problem in the discrete case, it is very difficult to construct functional (9.2).
So let us follow the approach described above for the continuous OO problem. Suppose
that functional (9.2) is constructed. Use it in a particular observation process when the
signal y∗(kν), k = 0, N , is written. This signal corresponds to the estimates α∗(kν) =
p′x0(kν, y∗kν(·)) of a posteriori distribution X̂0(kν). It is clear that in order to obtain
these estimates the entire functional (9.2) is not used, but it is sufficient to know its
values along the sequence y∗(kν), k = 0, N . The function x∗(kν) = x0(kν, y∗kν(·)),
y∗kν(·) ∈ Y (kν), k = 0, N , is said to be a discrete realization of a positional solution
to the OO problem, and a device able to calculate its values in real time is called an
optimal discrete estimator. Algorithms of operating optimal discrete estimators are
given in [15, 44].
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Fig. 9.1.

To describe an algorithm of operating a discrete estimator let us study a situation
at an arbitrary moment τ = kν. According to the definition, in order to calculate
α∗(τ), the optimal estimator needs to know a solution to the LP problem

p′x −→ max, ξ∗ − y∗(iν) ≤ −c′F (iν)x ≤ ξ∗ − y∗(iν), i = 0, k,
(9.3)

Dx = δ, d∗ ≤ x ≤ d∗.

At the previous moment (k − 1)ν the estimator dealt with the problem

p′x −→ max, ξ∗ − y∗(iν) ≤ −c′F (iν)x ≤ ξ∗ − y∗(iν), i = 0, k − 1,
(9.4)

Dx = δ, d∗ ≤ x ≤ d∗.

As problems (9.3) and (9.4) differ only by one constraint, knowing the solution
to problem (9.4) makes it possible that a very few iterations would be sufficient to
construct a solution x0(kν, y∗kν(·)) to problem (9.3) with the help of the dual method
of LP. If the time that it takes to do this work does not exceed ν, then one may say
that the positional solution to the OO problem is realized in real time.

Return to example (3.6) and eliminate a control from the equation. The mathe-
matical model of the system becomes of the form

ẋ1 = x3, ẋ2 = x4, ẋ3 = −x1 + x2, ẋ4 = 0.1x1 − 1.02x2.(9.5)

Suppose that the information on the initial state of the system is

x1 = 0, x2 = 0, 0.8 ≤ x3 ≤ 1.1, 0.4 ≤ x4 ≤ 0.6,

and a measurer has the form

y = x1 + ξ, |ξ| ≤ 0.5.
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Observation is conducted on the interval T = [0, 20] with ν = 0.5. The compo-
nents of the initial state unknown for the estimator are x∗

3 = 1, x∗
4 = 0.5; the function

of measuring errors unknown for the estimator has the form ξ∗(t) = 0.5 sin 2t, t ∈ T .

In Figure 9.1 results of solving four OO problems are presented. In these problems
the estimates

αi = xi(t
∗) −→ max, i = 1, 4,

are calculated.

10. Observation under constantly affecting bounded disturbances. In
sections 8 and 9, the OO problem, in which motion of the system takes place under
ideal conditions according to equation (8.1), is considered. In this section the OO
problem is studied for the case when the dynamic system is under bounded distur-
bances.

10.1. Observation without identification of disturbances. Suppose that
on the interval T = [0, t∗] the behavior of the dynamic system is described by the
equation

ẋ = Ax + dw,
(
x ∈ Rn, w ∈ R

)
,(10.1)

where w(t), t ∈ T , is an unknown piecewise continuous function of disturbances
satisfying the constraint w∗ ≤ w(t) ≤ w∗, t ∈ T .

The a priori distribution X0 of the initial state x0 of system (10.1) and the
equation of the measurer remain in the form of (8.2), (8.3).

Reformulate the main notions of section 8 with regard to disturbances in model
(10.1).

A set X̂0 is said to be an a posteriori distribution of the initial state of system
(10.1) corresponding to the written signal y(t), t ∈ T , if it consists of those and only
those elements of the set X0 which together with some admissible functions w(t), ξ(t),
t ∈ T , can generate the signal y(t), t ∈ T . The set X̂0 is described analytically by the
following: a vector x ∈ X̂0 if and only if there exists a piecewise continuous function
w(t), w∗ ≤ w(t) ≤ w∗, t ∈ T , such that the relations

ξ∗ ≤ y(t)− c′F (t)x−
∫ t

0

c′F (t− s)dw(s)ds ≤ ξ∗, t ∈ T,

Dx = δ, d∗ ≤ x ≤ d∗,

are fulfilled.

The OO problem for system (10.1) also takes the form of (8.5), but as the de-
scription of the set X̂0 contains an infinite-dimensional variable w(t), t ∈ T , so now
problem (8.5) is an “infinite” extremal problem, i.e., it contains an unknown element
of the infinite-dimensional space and a continuum of constraints.

For the purpose of numerically constructing a positional solution to problem (8.5),
let us make an assumption that the function of disturbances w(t), t ∈ T , is a piecewise
constant function with a quantization period ν = t∗/N , where N is an integer. Signals
of the measurer will be correspondingly written at the moments4 tk = kν, k = 0, N .

4The quantization period of the disturbance w(t), t ∈ T , and intervals between two written
signals y(t), t ∈ T , may be chosen to be different.
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Then problem (8.5) takes the form

p′x −→ max, ξ∗ − y(kν) ≤ −c′F (kν)x

−
k−1∑
j=0

∫ (j+1)ν

jν

c′F (kν − s)ddswj ≤ ξ∗ − y(kν), k = 0, N,(10.2)

Dx = δ, d∗ ≤ x ≤ d∗, w∗ ≤ wj ≤ w∗, j = 0, N − 1,

where wj = w(t), t ∈ [jν, (j + 1)ν[, j = 0, N − 1.
Problem (10.2) is an LP problem with n + N variables xi, i = 1, n; wj , j =

0, N − 1. The optimal feasible point (x0, w0) provides the open-loop solution x0 to
the OO problem (8.5). As in the case of the OO problem without disturbances, for
defining a positional solution to problem (8.5) let us imbed it into a family of problems
(8.6) where

X̂0(τ) = X̂0(kν) = {x : ξ∗ ≤ y(iν)− c′F (iν)x

−
k−1∑
j=0

∫ (j+1)ν

jν

c′F (kν − s)ddswj ≤ ξ∗, i = 0, k, Dx = δ, d∗ ≤ x ≤ d∗,

w∗ ≤ wj ≤ w∗, j = 0, N − 1}, yτ (·) = {y(iν), i = 0, k}.

Let x0
τ = x0(τ, yτ (·)) ∈ X̂0(τ) be an open-loop solution to problem (8.6) at

τ = kν. For the problem under consideration Y (τ) is the set of signals yτ (·) which
can be realized on the interval [0, τ ] for any initial states x0 ∈ X0, any disturbances
w(t), |w(t)| ≤ 1, t ∈ Tτ , and any measuring errors ξ(t), ξ∗ ≤ ξ(t) ≤ ξ∗, t ∈ Tτ .

A functional

x0(τ, yτ (·)), yτ (·) ∈ Y (τ), τ ∈ Tν ,

is said to be a positional solution to the discrete OO problem under constantly affect-
ing disturbances.

By analogy with section 9 consider a particular observation process, in which a
signal y∗(kν), k = 0, N , is written, and introduce a notion of a discrete realization
x∗(kν) = x0(kν, y∗kν(·)), y∗kν(·) ∈ Y (kν), k = 0, N , of a positional solution to the OO
problem.

Thus, at the moment τ = kν in order to calculate the estimate α∗(kν) =
p′x0(kν, y∗kν(·)), the optimal estimator solves the following LP problem:

p′x −→ max, ξ∗ − y∗(iν) ≤ −c′F (iν)x

−
i−1∑
j=0

∫ (j+1)ν

jν

c′F (iν − s)ddswj ≤ ξ∗ − y∗(iν), i = 0, k,

Dx = δ, d∗ ≤ x ≤ d∗, w∗ ≤ wj ≤ w∗, j = 0, k − 1.

This problem differs from the one solved at the previous moment (k − 1)ν by a
new constraint and a new variable wk. In order to solve it, the dual method of LP is
used.

10.2. Optimal identification problem of parametric disturbances. Let
us consider a dynamic system on the interval T = [0, t∗] with a known initial state

ẋ = Ax + dµ, x(0) = x0 (x ∈ Rn, µ ∈ R).(10.3)
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Mathematical model (10.3) contains the disturbances µ(t), t ∈ T , and the follow-
ing a priori information about them is known: (1) functions µ(t), t ∈ T , admit the
representation

µ(t) = µ(t, w) = w1ω1(t) + · · ·+ wqωq(t), t ∈ T,

where ω1(t), . . . , ωq(t), t ∈ T , are known piecewise continuous functions, and w1, . . . , wq
are constant numbers; and (2) the vector w = (w1, . . . , wq) is not known exactly, and
it can take any value from the bounded set

W̌ = {w ∈ Rq : f∗ ≤ w ≤ f∗}.(10.4)

The set W̌ is said to be an a priori distribution of parameters of a disturbance.

The measurement of the output signal is made by measurer (8.3). In the course
of observation of the output signal y(t), t ∈ T , there appears additional information
on realized values of parameters w of the disturbance.

A set Ŵ is called an a posteriori distribution of parameters of the disturbance of
system (10.3) corresponding to the written signal y(t), t ∈ T , if it consists of those
and only those elements of the set W̌ which together with admissible functions ξ(t),
t ∈ T , can generate the signal y(t), t ∈ T , for the initial state x0.

The problem of optimal identification (OI) of parametric disturbances [42, 49]
consists of calculating an estimate α of the set Ŵ :

α = max p′w, w ∈ Ŵ .(10.5)

In detailed notation, problem (10.5) takes the form

p′w −→ max, ξ∗ − y(t) + c′F (t)x0

≤ −
q∑
j=1

∫ t

0

c′F (t− s)dωj(s)dswj ≤ ξ∗ − y(t) + c′F (t)x0, f∗ ≤ w ≤ f∗, t ∈ T.

As well as problem (8.5), problem (10.5) is a semi-infinite extremal problem.

In order to define positional solutions to problem (10.5) let us imbed it into a
family of problems

p′w −→ max, w ∈ Ŵ (τ),(10.6)

where Ŵ (τ) is an a posteriori distribution of parameters of the disturbance corre-
sponding to the observation yτ (·).

Let w0
τ = w0(τ, yτ (·)) ∈ Ŵ (τ) be the optimal feasible point of problem (10.6),

and let Y (τ) be the set of signals yτ (·) which can be realized on the interval [0, τ ] for
any parameters w ∈ W̌ of a disturbance and any measuring errors ξ∗ ≤ ξ(t) ≤ ξ∗,
t ∈ Tτ . A functional w0(τ, yτ (·)), yτ (·) ∈ Y (τ), τ ∈ T , is said to be a positional
solution to the OI problem of parametric disturbances.

Consider some particular identification process in the course of which an output
signal y∗(t), t ∈ T , is realized. The function w∗(τ) = w0(τ, y∗τ (·)), y∗τ (·) ∈ Y (τ),
τ ∈ T , is called a realization of the positional solution to the OI problem of parametric
disturbances. Any device able to calculate its values in real time is said to be an
optimal identifier of parametric disturbances.
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In order to calculate the estimate α∗(τ) = p′w0(τ, y∗τ (·)) the identifier solves
problem (10.6) with y(t) = y∗(t), t ∈ Tτ :

p′w −→ max, ξ∗ − y∗(t) + c′F (t)x0

≤ −
q∑
j=1

∫ t

0

c′F (t− s)dωj(s)dswj ≤ ξ∗ − y∗(t) + c′F (t)x0, f∗ ≤ w ≤ f∗, t ∈ Tτ .

In the case of constructing a discrete realization w∗(kν) = w0(kν, y∗kν(·)), y∗kν(·) ∈
Y (kν), k = 0, N , of the positional solution to the OI problem of parametric distur-
bances, the identifier solves the LP problem with q variables wj , j = 1, q:

p′w −→ max,

ξ∗ − y∗(iν) + c′F (iν)x0 ≤ −
q∑
j=1

∫ iν

0

c′F (iν − s)dωj(s)dswj

≤ ξ∗ − y∗(iν) + c′F (iν)x0, i = 0, k, f∗ ≤ w ≤ f∗,

using the dual method.

10.3. Observation with identification of parametric disturbances. Let
us expand the above studied OI problem of parametric identification by the element
of the OO problem—uncertainty in the initial state. Now we consider the situation
when in system (10.3) the initial state x0 is not known exactly; it is only known that
it belongs to a given set X0 (8.2).

Vectors x0 ∈ X0, w ∈ W̌ are said to be compatible with the written signal y(t),
t ∈ T , if the trajectory x(t) = x(t|x0, w), t ∈ T , corresponding to the initial state
x0 and the disturbance µ(t, w) =

∑q
i=1 wiωi(t), t ∈ T , together with any admissible

error function ξ(t), t ∈ T , generates the signal y(t), t ∈ T .
The set of all pairs (x0, w) of vectors x0 ∈ X0, w ∈ W̌ , compatible with a y(t),

t ∈ T , is denoted by X̂0 × Ŵ and is called an a posteriori distribution of the initial
state and parameters of the disturbance.

The problem of optimal observation-identification (OOI) consists in calculating
an estimate α of the set X̂0 × Ŵ :

α = max(p′1x + p′2w), x ∈ X̂0, w ∈ Ŵ .(10.7)

Problem (10.7) is a semi-infinite LP problem with n+ q variables xi, i = 1, n; wj ,
j = 1, q.

To introduce positional solutions to problem (10.7) let us imbed it into the family
of problems

p′1x + p′2w −→ max, x ∈ X̂0(τ), w ∈ Ŵ (τ),(10.8)

where X̂0(τ)× Ŵ (τ) is an a posteriori distribution of an initial state and parameters
of a disturbance corresponding to the observation yτ (·).

Let x0
τ = x0(τ, yτ (·)) ∈ X̂0(τ), w0

τ = w0(τ, yτ (·)) ∈ Ŵ (τ) be an optimal feasible
point of problem (10.7), and let Y (τ) be a set of signals yτ (·) which can be realized
on the interval [0, τ ] for any initial state x0 ∈ X0, any parameters w ∈ W̌ of a
disturbance, and any measuring error ξ∗ ≤ ξ(t) ≤ ξ∗, t ∈ Tτ . A pair(

x0(τ, yτ (·)), w0(τ, yτ (·))), yτ (·) ∈ Y (τ), τ ∈ T,(10.9)
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is said to be a positional solution to the OOI problem.
As well as in the OO problem, consider a particular process in the course of which

the output signal y∗(t), t ∈ T , is realized. A pair(
x∗(τ) = x0(τ, y∗τ (·)), w∗(τ) = w0(τ, y∗τ (·))), y∗τ (·) ∈ Y (τ), τ ∈ T,(10.10)

is said to be a realization of the positional solution to the OOI problem.
In order to calculate the estimate α∗(τ) = p′1x

0(τ, y∗τ (·))+p′2w
0(τ, y∗τ (·)), problem

(10.8), solved by the optimal estimator in detailed notation, takes the form

p′1x + p′2w −→ max,

ξ∗ − y∗(t) ≤ −c′F (t)x−
q∑
j=1

∫ t

0

c′F (t− s)dωj(s)dswj ≤ ξ∗ − y∗(t),

Dx = δ, d∗ ≤ x ≤ d∗, f∗ ≤ w ≤ f∗, t ∈ Tτ .

In the case of constructing a discrete realization x∗(kν) = x0(kν, y∗kν(·)), w∗(kν) =
w0(kν, y∗kν(·)), y∗kν(·) ∈ Y (kν), k = 0, N , of the positional solution to the OOI prob-
lem, the estimator solves the LP problem

p′1x + p′2w −→ max,

ξ∗ − y∗(iν) ≤ −c′F (iν)x−
q∑
j=1

∫ iν

0

c′F (iν − s)dωj(s)dswj

≤ ξ∗ − y∗(iν), i = 0, k, Dx = δ, d∗ ≤ x ≤ d∗, f∗ ≤ w ≤ f∗,

by the dual method.

10.4. Observation with partial identification of parametric disturbances.
Suppose that on the interval T = [0, t∗] the behavior of a dynamic system is described
by the equation

ẋ = Ax + d1µ + d2v, x0 ∈ X0 (x ∈ Rn, µ, v ∈ R).(10.11)

System (10.11) contains the uncertainties studied in systems (10.1) and (10.3):
the initial state of system (10.11) is not known exactly; it is only known that it
belongs to a set X0 (8.2); a disturbance µ(t), t ∈ T , affecting the system in the course
of observation process is a linear combination of known piecewise continuous functions
ωj(t), t ∈ T , j = 1, q, with unknown coefficients w = (wj , j = 1, q) from the set W̌
(10.4); furthermore, there are unknown piecewise continuous disturbances v(t), t ∈ T ,
satisfying the constraints v∗ ≤ v(t) ≤ v∗, t ∈ T , in the system.

Vectors x0 ∈ X0, w ∈ W̌ are said to be compatible with the written signal y(t),
t ∈ T , if the trajectory x(t) = x(t|x0, w), t ∈ T , of system (10.11) corresponding to
the initial state x0 and the disturbance µ(t, w) =

∑q
i=1 wiωi(t), t ∈ T , together with

some admissible functions v(t), ξ(t), t ∈ T , generates the signal y(t), t ∈ T .
A set of all vectors x0 ∈ X0, w ∈ W̌ compatible with y(t), t ∈ T , is denoted by

X̂0 × Ŵ and is called an a posteriori distribution of an initial state and parameters
of a disturbance.

A pair (x,w) ∈ X̂0× Ŵ if and only if there exists a piecewise continuous function
v(t), v∗ ≤ v(t) ≤ v∗, t ∈ T , such that the relations

ξ∗ ≤ y(t)− c′F (t)x−
q∑
j=1

∫ t

0

c′F (t− s)d1ωj(s)dswj −
∫ t

0

c′F (t− s)d2v(s)ds ≤ ξ∗,

Dx = δ, d∗ ≤ x ≤ d∗, f∗ ≤ w ≤ f∗, t ∈ T,
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hold.
The OOI problem for system (10.11) has the form of (10.7). As there is the

infinite-dimensional variable v(t), t ∈ T , in description of the set X̂0 × Ŵ , so let
us move on to the discrete form of the OOI problem; namely, consider that the
function v(t), t ∈ T , is piecewise continuous with a quantization period ν = t∗/N
and measurements are conducted at the moments tk = kν, k = 0, N . Problem (10.7)
becomes of the form

p′1x + p′2w −→ max,

ξ∗ − y(iν) ≤ −c′F (iν)x−
q∑
j=1

∫ iν

0

c′F (iν − s)d1ωj(s)dswj

(10.12)

−
i−1∑
j=0

∫ (j+1)ν

jν

c′F (iν − s)d2dsvj ≤ ξ∗ − y(iν), i = 0, N,

Dx = δ, d∗ ≤ x ≤ d∗, f∗ ≤ w ≤ f∗, v∗ ≤ vj ≤ v∗, j = 0, N − 1,

where v(t) = vj , t ∈ [jν, (j + 1)ν[, j = 0, N − 1.
Problem (10.12) is an LP problem with n+q+N variables xi, i = 1, n; wi, i = 1, q;

vi, i = 0, N − 1. As before, in order to define positional solutions, problem (10.12) is
imbedded into a family of problems (10.8), the positional solution to problem (10.12)
is defined by relation (10.9), and the notion of realization of the positional solution
(10.10) to the OOI problem is introduced.

To calculate the estimate α∗(kν) = p′1x
0(kν, y∗τ (·)) + p′2w

0(kν, y∗τ (·)), the optimal
estimator at the moment τ = kν solves the LP problem

p′1x + p′2w −→ max,

ξ∗ − y∗(iν) ≤ −c′F (iν)x−
q∑
j=1

∫ iν

0

c′F (iν − s)dωj(s)dswj

−
i−1∑
j=0

∫ (j+1)ν

jν

c′F (iν − s)d2dsvj ≤ ξ∗ − y∗(iν), i = 0, k,

Dx = δ, d∗ ≤ x ≤ d∗, f∗ ≤ w ≤ f∗, v∗ ≤ vj ≤ v∗, j = 0, k − 1,

by the dual method.

10.5. Example. Consider system (9.5) under unknown bounded disturbances
w(t), t ∈ T = [0, 20]:

ẋ1 = x3, ẋ2 = x4, ẋ3 = −x1 + x2, ẋ4 = 0.1x1 − 1.02x2 + w.

There is the following information on an initial state of the system:

x1 = 0, x2 = 0, 0.8 ≤ x3 ≤ 1.1, 0.4 ≤ x4 ≤ 0.6.

In the course of the observation process, the output signal

y = x1 + ξ, |ξ| ≤ 0.2,

is available.
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Fig. 10.1.

The parameter of the method ν is put to be equal to 0.5, the components of the
initial state unknown for the estimator take the values x∗

2 = 1, x∗
4 = 0.5, and the

function of measuring errors has the form ξ∗(t) = 0.2 sin 3t, t ∈ T . As an unknown
disturbance, the function of the form w(t) = w1ω1(t) + w2ω2(t) + w3ω3(t), t ∈ T , is
taken: w∗(t) = 0.15 sin 0.5t + 0.1 sin 2t + 0.05 sin 5t, t ∈ T .

In the course of the observation process, the value of the estimate α = maxx1(20)
is calculated. With the help of the Cauchy formula it can be written in the form

α = max

(
h′

1F (20)x0 +

∫ 20

0

h′
1F (20− s)w(s)ds

)
,(10.13)

where h1 = (1, 0, 0, 0).
Curve 1 in Figure 10.1a presents the behavior of the estimates α∗(τ), τ ∈ T ,

calculated by the optimal estimator without identification of disturbances with re-
gard to the constraints |wj | ≤ 0.3, j = 0, 39. Curve 2 is constructed as a result of
observation with partial identification of disturbances: the functions ω1(t) = sin 0.5t,
ω2(t) = sin 2t, t ∈ T , were considered to be known for the estimator, the coefficients
w1, w2 were identified during observation process, and the inequalities 0 ≤ wj ≤ 0.2,
j = 1, 2, were set for them. The addend v(t) = 0.05 sin 5t, t ∈ T , was unknown for
the estimator. The estimator knew only that this addend had satisfied the constraint
|vj | ≤ 0.05, j = 0, 39.

In Figure 10.1b there are the values of the estimate α∗(τ), τ ∈ T , obtained
by solving the OI problem of parametric disturbances with the known initial state
(curve 1) and solving the OOI problem (curve 2). As the identified parameters, the
coefficients w1, w2, w3 satisfying the inequalities 0 ≤ wj ≤ 0.2, j = 1, 2, 0 ≤ w3 ≤ 0.1
were considered. The functions ω1(t) = sin 0.5t, ω2(t) = sin 2t, ω3(t) = sin 5t, t ∈ T ,
were considered to be known for the estimator.

The actual value of the estimate calculated according to (10.13) on the base of
the exact values x0 and w(t), t ∈ T , is equal to α0 = −0.996845, and it is presented
by dashed lines in the figures.

11. Realization of optimal output feedback. As was noted in section 7,
the calculation of the realization of the optimal output feedback u∗(τ), τ ∈ T , is
performed by solving problems (7.2), (7.3) in real time [24, 36].

Problem (7.2) differs form the previously studied OC problem (2.1) by the pres-
ence of terminal constraints-inequalities.
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According to the Pontryagin maximum principle [53] the optimal open-loop con-
trol u0(t|τ), t ∈ T (τ), of problem (7.2) has the form of (3.2), where the adjoint system
becomes of the form

ψ̇ = −A′ψ, ψ(t∗) = h0 −
∑
i∈I(τ)

hiνi(τ),

where ν(τ) = (νi(τ), i ∈ I(τ)) is the Lagrange optimal vector, and I(τ) = {i ∈
I : h′

ix
0
τ (t∗) = gi(τ)}, I = {1, 2, . . . ,m}, x0

τ (t), t ∈ T (τ), is the optimal trajectory of
problem (7.2).

Thus, the defining elements of problem (7.2) are the switching points of OC and
the Lagrange vector

æ(τ) =
(
t1(τ), . . . , tp(τ); ν(τ))

)
.(11.1)

Elements (11.1) satisfy the equations

F (æ|τ) = 0⇐⇒
{

h′
ix(t∗) = gi(τ), i ∈ I(τ),

∆(tk|τ) = 0, k = 1, p(τ).
(11.2)

The algorithm of operating the optimal controller is analogous to the one discussed
in section 3.

The values gi(τ) = gi − αi(τ), i = 1,m, used in problem (7.2), are calculated by
solving problems (7.3).

Consider one (ith) of problems (7.3). With the help of the Cauchy formula it can
be written in the form

αi(τ) = h′
iF (t∗)x +

∫ τ

0

h′
iF (t∗ − t)bu∗(t)dt −→ min

x
,

(11.3)
α∗(t) ≤ a′(t)x ≤ α∗(t), t ∈ Tτ , Dx = δ, d∗ ≤ x ≤ d∗,

where α∗(t) = ξ∗ − y∗(t) +
∫ t
0
h′
iF (t − s)bu∗(s)ds, α∗(t) = ξ∗ − y∗(t) +

∫ t
0
h′
iF (t −

s)bu∗(s)ds, t ∈ Tτ , and a′(t) = −h′
iF (t).

According to the scheme described in section 8, the optimal estimator at a current
moment τ ∈ T constructs a solution x0(τ, y∗τ (·)) to problem (11.3) and calculates an
estimate αi(τ) = h′

iF (t∗)x0(τ, y∗τ (·)) +
∫ τ
0
h′
iF (t∗ − t)bu∗(t)dt.

All m problems (11.3) are solved in parallel based on the known values of the
output signal y∗τ (·) and the realization of the optimal feedback u∗(t), t ∈ Tτ . Con-
structed values αi(τ), i = 1,m, are used by the optimal controller for calculating the
realization u∗(τ).

In the case of constructing a discrete realization of the optimal output feedback
u∗(kν) = u0(kν, y∗kν(·)), k = 0, N − 1, the optimal controller at each current moment
τ = kν uses a solution to the LP problem
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h′
0

N−k∑
j=1

∫ (k+j)ν

(k+j−1)ν

F (t∗ − t)bdtuj −→ max,

h′
i

N−k∑
j=1

∫ (k+j)ν

(k+j−1)ν

F (t∗ − t)bdtuj ≥ gi(kν), i = 1,m,(11.4)

|uj | ≤ 1, j = 1, N − k,

which is equivalent to problem (7.2).

The solution (u0
j , j = 1, N − k) to problem (11.4) is constructed by the dual

method according to section 4. The value u∗(kν) = u0
1 is fed into the input of system

(7.1).

The OO problems (7.3) for the moment τ = kν in the discrete case take the form

αi(kν) = h′
iF (t∗)x +

k−1∑
j=0

∫ (j+1)ν

jν

h′
iF (t∗ − t)bdtu∗(jν) −→ min

x
,

(11.5)
α∗(jν) ≤ a′(jν)x ≤ α∗(jν), j = 0, k, Dx = δ, d∗ ≤ x ≤ d∗,

where α∗(jν) = ξ∗ − y∗(jν) +
∑j−1
r=0

∫ (r+1)ν

rν
h′
iF (jν − s)bdsu∗(rν), α∗(jν) = ξ∗ −

y∗(jν) +
∑j−1
r=0

∫ (r+1)ν

rν
h′
iF (jν − s)bdsu∗(rν), a′(jν) = −h′

iF (jν).

According to the scheme described in section 9, the optimal estimator at a current
moment τ ∈ T constructs a solution x0(kν, y∗kν(·)) to problem (11.5) and calculates

an estimate αi(kν) = h′
iF (t∗)x0(kν, y∗kν(·)) +

∑k−1
j=0

∫ (j+1)ν

jν
h′
iF (t∗ − t)bdtu∗(jν).

As in the case of continuous realization, problems (11.5) are solved in parallel by
m estimators, and constructed values αi(kν), k = 0, N − 1, are used by the optimal
controller for calculating the realization u∗(kν).

Discrete realization of optimal output feedback is considered in detail in [28, 44].

12. Optimal output feedback under constantly affecting disturbances.
In section 11 the optimization problem of control systems with uncertainty in the
initial state is considered. In this section the case in point is the optimization problem
of a dynamic system under uncertainty both in an initial state and in an equation of
motion [16, 17, 22, 37].

12.1. Optimization of a control system under uncertainty without iden-
tification of disturbances. In the class of piecewise continuous controls u(t), t ∈ T ,
consider the problem

J(u) = h′
0x(t∗) −→ max, ẋ = Ax + bu + dµ,

x(0) = x0 ∈ X0 = {x ∈ Rn : Dx = δ, d∗ ≤ x ≤ d∗},(12.1)

x(t∗) ∈ X∗ = {x ∈ Rn : h′
ix ≥ gi, i = 1,m}, |u(t)| ≤ 1, t ∈ T,

where µ(t), t ∈ T , is an unknown piecewise continuous function of disturbances sat-
isfying the inequality w∗ ≤ µ(t) ≤ w∗, t ∈ T . In the course of the control process the
measurement of the output signal y = c′x + ξ, ξ∗ ≤ ξ(t) ≤ ξ∗, t ∈ T , is conducted.

Give the necessary definitions for problem (12.1).

Consider some particular control process at an arbitrary current moment τ ∈ T .
Denote by y∗τ (·) = (y∗(t), t ∈ Tτ ) a signal of the measurer written up until this
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moment, and denote by u∗
τ (·) a control fed into the system.

A vector x∗ ∈ X0 is said to be compatible with the functions u∗
τ (·), y∗τ (·) if the

trajectory x∗(t) = x∗(t|x∗) corresponding to the initial state x∗, and the control
u∗
τ (·) together with some admissible functions of disturbances µ∗(t), t ∈ Tτ , and

errors ξ∗(t), t ∈ Tτ , generates the written signal y∗(t), t ∈ Tτ . The set of all vectors
x∗ ∈ X0 compatible with u∗

τ (·), y∗τ (·) is denoted by X̂0(τ) and is called a τ -a-posteriori
distribution of the initial state. The set

X̂τ (τ) =

{
x : x = F (τ)x0 +

∫ τ

0

F (τ − t)bu∗(t)dt +

∫ τ

0

F (τ − t)dµ∗(t)dt,

x0 ∈ X̂0(τ), w∗ ≤ µ∗(t) ≤ w∗, t ∈ Tτ

}

is called a τ -a-posteriori distribution of a state x(τ).

As in section 7, the notion of a τ -a-posteriori optimal open-loop control is intro-
duced. The optimal output feedback is defined by the equation

u0(τ, yτ (·)) = u0(τ |τ, X̂τ (τ)), yτ ∈ Yτ , τ ∈ T,

where Yτ is a set of all signals of the measurer for which there exists u0(t|τ, X̂τ (τ)),
t ∈ T (τ).

As there is the infinite-dimensional variable µ∗(t), t ∈ Tτ , in description of the
set X̂τ (τ), so let us describe a way of constructing a discrete realization u∗(kν) =
u0(kν, y∗kν(·)), k = 0, N − 1, of the optimal feedback. In order to calculate the value
u∗(kν) at the current moment kν, the optimal controller solves the determined LP
problem (11.4) in real time. In the problem the values gi(kν) = gi−αi(kν), i = 1,m,
are necessary. They are calculated as a result of solving in real time m problems

αi(kν) = min

[
h′
iF (t∗)x +

k−1∑
j=0

∫ (j+1)ν

jν

h′
iF (t∗ − s)ddsµj

]

+

k−1∑
j=0

∫ (j+1)ν

jν

h′
iF (t∗ − s)bdsu∗(jν),

(12.2)

α∗(jν) ≤ −h′
iF (jν)x−

j−1∑
r=0

∫ (r+1)ν

rν

h′
iF (jν − s)ddsµj ≤ α∗(jν), j = 0, k,

Dx = δ, d∗ ≤ x ≤ d∗, w∗ ≤ µj ≤ w∗, j = 0, N − 1,

where α∗(jν) = ξ∗ − y∗(jν) +
∑j−1
r=0

∫ (r+1)ν

rν
h′
iF (jν − s)bdsu∗(rν) and α∗(jν) = ξ∗ −

y∗(jν) +
∑j−1
r=0

∫ (r+1)ν

rν
h′
iF (jν − s)bdsu∗(rν).

The optimal estimator at a current moment kν constructs a solution (x0; µj , j =
0, N − 1) to problem (12.2) and calculates an estimate αi(kν). Problems (12.2) are
solved in parallel mode by m estimators. Calculated values αi(kν), i = 1,m, are given
to the optimal controller. The optimal controller constructs the solution (u0

j , j =

1, N − k) to problem (11.4) by the dual method and feeds the value u∗(kν) = u0
1 into

the system input.
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12.2. Optimization of control systems under uncertainty with identi-
fication of parametric disturbances. Let a disturbance µ(t), t ∈ T , in problem
(12.1) contain known piecewise continuous functions ωj(t), t ∈ T , j = 1, q, and un-
known parameters w = (wj , j = 1, q) from the set W̌ :

µ(t) = µ(t, w) = w1ω1(t) + · · ·+ wqωq(t), t ∈ T,

w = (w1, . . . , wq) ∈ W̌ = {w ∈ Rq : f∗ ≤ w ≤ f∗}.
Suppose that in some particular process by the time τ ∈ T an output signal y∗τ (·)

and a control u∗
τ (·) have been realized.

Vectors x∗ ∈ X0, w∗ ∈ W̌ are said to be compatible with the functions u∗
τ (·), y∗τ (·)

if the trajectory x∗(t) = x∗(t|x∗, w∗), t ∈ Tτ , corresponding to the initial state x∗, the
disturbance µ(t, w∗), t ∈ Tτ , and the control u∗

τ (·) together with some admissible error
function ξ∗(t), t ∈ Tτ , generates the signal y∗(t), t ∈ Tτ . The set of all pairs (x∗, w∗)
of vectors x∗ ∈ X0, w∗ ∈ W̌ compatible with u∗

τ (·), y∗τ (·) is denoted by X̂0(τ)× Ŵ (τ)
and is called a τ -a-posteriori distribution of an initial state and parameters of a
disturbance. The set

X̂τ (τ) =

{
x : x = F (τ)x0 +

∫ τ

0

F (τ − t)bu∗(t)dt +

∫ τ

0

F (τ − t)dµ(t, w∗)dt,

x0 ∈ X̂0(τ), w∗ ∈ Ŵ (τ)

}

is called a τ -a-posteriori distribution of a state x(τ). As in section 7, introduce the
notion of an optimal output feedback

u0(τ, yτ (·)) = u0(τ |τ, X̂τ (τ)), yτ ∈ Yτ , τ ∈ T,(12.3)

where Yτ is a set of all admissible signals of the measurer for which there exists a
τ -a-posteriori optimal open-loop control u0(t|τ, X̂τ (τ)), t ∈ T (τ).

Similarly, the notion of a realization of the optimal output feedback u∗(τ) =
u0(τ, y∗τ (·)), τ ∈ T , and an optimal controller able to construct its values in real time
are introduced.

It can be shown that values u∗(τ), τ ∈ T , are calculated by solving the determined
OC problem (7.2) in real time, where

gi(τ) = gi − αi(τ), i = 1,m,

αi(τ), i = 1,m, are estimates calculated as a result of solving in real time m OOI
problems

αi(τ) = min

[
h′
iF (t∗)x +

q∑
j=1

∫ τ

0

h′
iF (t∗ − t)dωj(t)dtwj

]
+

∫ τ

0

h′
iF (t∗ − t)bu∗(t)dt,

α∗(t) ≤ −h′
iF (t)x−

q∑
j=1

∫ t

0

h′
iF (t− s)dωj(s)dswj ≤ α∗(t), t ∈ Tτ ,(12.4)

Dx = δ, d∗ ≤ x ≤ d∗, f∗ ≤ w ≤ f∗,

where α∗(t) = ξ∗ − y∗(t) +
∫ t
0
h′
iF (t− s)bu∗(s)ds and α∗(t) = ξ∗ − y∗(t) +

∫ t
0
h′
iF (t−

s)bu∗(s)ds, t ∈ Tτ .
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Problems (7.2), (12.4) are solved in real time according to the scheme of section 11.
In the case of constructing a discrete realization u∗(kν), k = 0, N − 1, of optimal

feedback the controller in real time solves the determined LP problem (11.4) in which
the values gi(kν) = gi − αi(kν), i = 1,m, are calculated as a result of solving m
discrete OOI problems in real time

αi(kν) = min

[
h′
iF (t∗)x +

q∑
j=1

k−1∑
r=0

∫ (r+1)ν

rν

h′
iF (t∗ − s)dωj(s)dswj

]

+

k−1∑
j=0

∫ (j+1)ν

jν

h′
iF (t∗ − s)bdsu∗(jν),

(12.5)

α∗(jν) ≤ −h′
iF (jν)x−

q∑
l=1

j−1∑
r=0

∫ (r+1)ν

rν

h′
iF (jν − s)ddsµj ≤ α∗(jν), j = 0, k,

Dx = δ, d∗ ≤ x ≤ d∗, w∗ ≤ µj ≤ w∗, j = 0, N − 1,

where α∗(jν) = ξ∗ − y∗(jν) +
∑j−1
r=0

∫ (r+1)ν

rν
h′
iF (jν − s)bdsu∗(rν) and α∗(jν) = ξ∗ −

y∗(jν) +
∑j−1
r=0

∫ (r+1)ν

rν
h′
iF (jν − s)bdsu∗(rν).

The scheme of solving problems (7.2), (12.5) is analogous to the one given in
section 11.

12.3. Optimization of control systems under uncertainty with partial
identification of parametric disturbances. In the class of piecewise continuous
controls u(t), t ∈ T , consider the problem

J(u) = h′
0x(t∗) −→ max, ẋ = Ax + bu + d1µ + d2v,

(12.6)
x(0) = x0 ∈ X0, x(t∗) ∈ X∗, |u(t)| ≤ 1, t ∈ T,

where µ(t) = µ(t, w) = w1ω1(t) + · · · + wqωq(t), t ∈ T , w = (w1, . . . , wq) ∈ W̌ ;
ωj(t), j = 1, q, t ∈ T , are known piecewise continuous functions and v(t), t ∈ T , is
an unknown piecewise continuous function of disturbances satisfying the inequality
v∗ ≤ v(t) ≤ v∗, t ∈ T . The equation of the measurer has form (8.3).

Vectors x∗ ∈ X0, w∗ ∈ W̌ are said to be compatible with a written signal y∗τ (·)
and the control u∗

τ (·) if the trajectory x∗(t) = x∗(t|x∗, w∗), t ∈ Tτ , corresponding to
the initial state x∗, the disturbance µ(t, w∗), t ∈ Tτ , and the control u∗

τ (·) together
with some admissible functions v∗(t), ξ∗(t), t ∈ Tτ , generates the signal y∗(t), t ∈ Tτ .
The set of all pairs (x∗, w∗) of vectors x∗ ∈ X0, w∗ ∈ W̌ compatible with u∗

τ (·), y∗τ (·)
is denoted by X̂0(τ) × Ŵ (τ) and is called a τ -a-posteriori distribution of an initial
state and parameters of a disturbance. The set

X̂τ (τ) =

{
x : x = F (τ)x0 +

∫ τ

0

F (τ − t)bu∗(t)dt +

∫ τ

0

F (τ − t)d1µ(t, w∗)dt

+

∫ τ

0

F (τ − t)d2v(t)dt, x0 ∈ X̂0(τ), w∗ ∈ Ŵ (τ), v∗ ≤ v(t) ≤ v∗
}

is called a τ -a-posteriori distribution of a state x(τ). The optimal output feedback is
defined by equality (12.3).

As in the case of optimal feedback without identification of disturbances, move
on to a discrete realization u∗(kν) = u0(kν, y∗kν(·)), k = 0, N − 1.
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Values u∗(kν), k = 0, N − 1 are calculated by the optimal controller in real time
as a result of solving the LP problem (11.4). In order to calculate the values gi(kν) =
gi − αi(kν), i = 1,m, in real time m, discrete OOI problems

αi(kν) = min

[
h′
iF (t∗)x +

q∑
j=1

k−1∑
r=0

∫ (r+1)ν

rν

h′
iF (t∗ − s)d1ωj(s)dswj

+

k−1∑
r=0

∫ (r+1)ν

rν

h′
iF (t∗ − s)d2dsvr

]
+

k−1∑
r=0

∫ (r+1)ν

rν

h′
iF (t∗ − s)bdsu∗(rν),

α∗(jν) ≤ −h′
iF (jν)x−

q∑
l=1

j−1∑
r=0

∫ (r+1)ν

rν

h′
iF (jν − s)d1ωl(s)dswl(12.7)

−
j−1∑
r=0

∫ (r+1)ν

rν

h′
iF (jν − s)d2dsvr ≤ α∗(jν), j = 0, k,

Dx = δ, d∗ ≤ x ≤ d∗, w∗ ≤ wj ≤ w∗, v∗ ≤ vj ≤ v∗, j = 0, N − 1,

are solved where α∗(jν) = ξ∗ − y∗(jν) +
∑j−1
r=0

∫ (r+1)ν

rν
h′
iF (jν − s)bdsu∗(rν), and

α∗(jν) = ξ∗ − y∗(jν) +
∑j−1
r=0

∫ (r+1)ν

rν
h′
iF (jν − s)bdsu∗(rν).

Problem (12.7) contains n + 2N variables xj , j = 1, n; wj , vj , j = 0, N − 1.
Problems (7.2), (12.7) are solved in real time by the scheme of section 11.

12.4. Numerical modelling. The operation of the proposed optimal feedbacks
is illustrated by the problem of minimization of fuel consumption in steering a two-
mass mechanical system (Figure 3.1) in the vicinity of the equilibrium state. The
mathematical model of the problem has the form∫ 20

0

u(t)dt −→ min,

ẋ1 = x3, ẋ2 = x4, ẋ3 = −x1 + x2, ẋ4 = 0.1x1 − 1.02x2 + w,

x(0) ∈ X0, x(20) ≤ 0.

The set X0 is described by the relations

x1 = 0, x2 = 0, 0.8 ≤ x3 ≤ 1.1, 0.4 ≤ x4 ≤ 0.6.

Three types of feedback are studied: (1) classical state feedback (section 2), (2)
guaranteeing state feedback (section 6), and (3) guaranteeing output feedback.

In all cases the initial state is the vector x(0) = (0, 0, 1, 0.5).
The following information on disturbances is available: (a) a controller knows that

a disturbance does not affect the system (classical determined case); (b) a disturbance
affecting the system is known; (c) it is known that the system is under disturbances
but there is no information on disturbances; (d) the system is under a bounded
disturbance of general form (a piecewise continuous disturbance with a known set of
values |w(t)| ≤ 0.3, t ∈ T ); (e) a disturbance is a sum of a bounded disturbance of
general form and a disturbance is known with a precision of parameters (section 12.3);
(f) a disturbance is parametric (section 12.2).

When constructing the optimal output feedback, the measurer y = x1+ξ, |ξ(t)| ≤
0.2 is used.
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Table 12.1
Results of numerical modelling.

Type of feedback
State Output
1 2

N Information on disturbances J Terminal
state

J Terminal
state

a) Classical
feedback

1 Disturbances are absent 2.6014 0 0 0 0 2.6082 0.00377
0.00069
0.00269
0.00050

2 Controller knows disturbances 2.9232 0 0 0 0 3.1324 0.00377
0.00070
0.00270
0.00050

3 There is not any information
on disturbances

8.4457 3.9889
0.02551
2.17137
0.12837

9.36812 2.82342
0.31323
2.43286
0.39572

b) Unclosable
feedback

Disturbance is
not identified

4 Disturbances of general form
with known set of values

8.8744 3.98291
0.06223
2.17727
0.27214

13.4163 2.27723
1.25260
4.85734
1.01632

Parameters of
disturbance
are identified

5 Disturbance: Sum of bounded
disturbance of general form
with known set of values and
parametric disturbance

3.8132 0.24984
0.10335
0.14617
0.13778

9.7320 0.69001
1.09105
1.38797
1.05552

6 Parametric disturbance 3.7163 0.15076
0.09622
0.15070
0.11869

3.1619 0.00659
0.01533
0.05437
0.10126

In each case a discrete realization of the optimal feedback is constructed. The
parameter ν is put to be equal to 0.5, and the realized error function has the form
ξ∗(t) = 0.2 sin 3t, t ∈ T . The system is under the disturbance of the form w(t) =
w1ω1(t) + w2ω2(t) + w3ω3(t), t ∈ T : w∗(t) = 0.15 sin 0.5t + 0.1 sin 2t + 0.05 sin 5t,
t ∈ T . OO problems are solved with the same data as in section 10.5.

Results of numerical experiments are listed in Table 12.1. In the table, for each
situation under consideration, fuel consumption and coordinates of the terminal state
are presented. The ideal situation (determined system, optimal state feedback) is
identified by a box (1, 1) placed in the first row and in the first column. It is seen
from the table that results are impaired as uncertainty increases: fuel consumption
grows, and the terminal state moves away from the equilibrium state; additional
efforts on identification of parametric disturbances improve efficiency of control.

In Figure 12.1a the phase trajectories of the optimized control system closed
by the optimal output feedback are presented. The dashed line corresponds to the
case when a disturbance does not affect the system. The solid line is constructed
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Fig. 12.1.

for the case of identification of parametric disturbances. In Figure 12.1b the dashed
line presents the phase trajectory constructed without identification of disturbances,
and the solid line is constructed for the case of partial identification of parametric
disturbances.
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Abstract. Given a locally Lipschitz control system which is globally asymptotically controllable
at the origin, we construct a control-Lyapunov function for the system which is Lipschitz on bounded
sets, and we deduce the existence of another one which is semiconcave (and so locally Lipschitz)
outside the origin. The proof relies on value functions and nonsmooth calculus.

Key words. asymptotic stabilizability, semiconcave Lyapunov function, nonsmooth analysis,
viscosity solutions
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1. Introduction. This paper is concerned with the stabilization problem for a
standard control system of the form ẋ(t) = f(x(t), u(t)). Lyapunov-like techniques
have been successfully used in many problems in control theory, such as stabilizability,
asymptotic controllability, and stability. Stabilization by smooth feedback has been
a subject of research by many authors. Among them, Artstein provided an impor-
tant contribution (see [3]), proving that a control system admits a smooth Lyapunov
function if and only if there is a stabilizing relaxed feedback. Moreover, if the system
is affine in the control, there exists an ordinary stabilizing feedback continuous out-
side the origin. In general, however, such a feedback fails to exist, as pointed out by
Sontag and Sussmann [27] and by Brockett [8] among others [25],[12]. Consequently,
a smooth Lyapunov function in general does not exist. This fact leads to the de-
sign of time-varying (see [15],[16]) or discontinuous feedbacks. The construction of
the latter (see [11]) has used the existence of a continuous control-Lyapunov function
(CLF) whose decrease condition is stated in terms of Dini derivates or, equivalently,
of proximal subgradients. Moreover, more recently, Clarke, Ledyaev, Stern, and Rif-
ford [10] invoked the existence of such a CLF which is locally Lipschitz in order to
construct a discontinuous feedback law which stabilizes the underlying system to any
given tolerance and which possesses a robustness property relative to measurement
error. The first result of this article is that, under certain mild assumptions on f (a
local Lipschitz condition and bounded dynamics near the origin), for globally asymp-
totically controllable (GAC) systems, such locally Lipschitz CLF always exist. This
fact extends the well-known result of Sontag [26] and brings an affirmative answer
to a conjecture that has been attributed to Sontag and Sussmann. Furthermore, the
main result shows that a semiconcave CLF outside the origin always exists under the
same assumptions. The semiconcavity is an intermediate property between Lipschitz
continuity and continuous differentiability. Semiconcave functions have been used, for
instance, to obtain uniqueness results for weak solutions of Hamilton–Jacobi equations
(see [19],[20]). More recently, attention has been focused on the differential properties
of such functions (see [1], [2]). In the case of the stabilization problem, the semicon-
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cavity will be exploited to derive an efficient construction for stabilizing discontinuous
feedbacks by means of Euler trajectories. Furthermore, the semiconcave regularity of
the CLF will be used to obtain some regularity of our discontinuous feedback outside
a set of singularities which will be proven small on account of semiconcavity. These
results will appear in forthcoming articles [22], [23], [21]. Some works and general
references related to this article include [5], [6], [17], [18], [24].

2. Definitions and statements of the results. In this paper, we study sys-
tems of the general form

ẋ(t) = f(x(t), u(t)),(2.1)

where the state x(t) takes values in a Euclidean space X = R
n, the control u(t) takes

values in a given set U , and f satisfies the following hypotheses.
Assumption 2.1. f is locally Lipschitz in x(uniformly in u). That is, for all

x ∈ X, there exists Vx, a neighborhood of x, and Lx ≥ 0 such that

‖f(y′, u)− f(y, u)‖ ≤ Lx‖y′ − y‖ ∀y, y′ ∈ Vx, ∀u ∈ U.

Assumption 2.2. f is bounded on the ball RB̄×U for all R > 0 (or, equivalently,
in view of the preceding assumption for some R > 0).

A special element “0” is distinguished in U , and the state x = 0 of X is an
equilibrium point, i.e., f(0, 0) = 0. (No linear structure on U is used, however.) The
set of admissible controls is the set of measurable and locally essentially bounded
functions u : R≥0 −→ U . R≥0 denotes nonnegative reals, B denotes the open ball
B(0, 1) := {x : ‖x‖ < 1} in X, and B̄ denotes the closure of B.

We now introduce our definitions and the main result.
Definition 2.3. The system (2.1) is GAC if there exist a nondecreasing function

M : R>0 −→ R>0 such that limR↓0 M(R) = 0 and a function T : R>0×R>0 −→ R≥0

with the following property.
For any 0 < r < R, for each initial state ξ, ‖ξ‖ ≤ R, there exist a control

u : R≥0 −→ U and corresponding trajectory x(·) : R≥0 −→ X such that
1. limt→∞ x(t) = 0,
2. for all t ≥ 0, ‖x(t)‖ ≤M(R),
3. for all t ≥ T (r,R), ‖x(t)‖ ≤ r.
Remark 2.4. A routine argument involving continuity of trajectories with respect

to initial states shows that the requirements of the above standard definition are equiv-
alent to the following apparently weaker pair of conditions used in some references
(see [28], [29]).

1. For each ξ ∈ X there is a control u : R≥0 −→ U that drives ξ asymptotically
to 0.

2. For each ε > 0, there is a δ > 0 such that for each ξ ∈ X with ‖ξ‖ ≤ δ there
is a control u : R≥0 −→ U that drives ξ asymptotically to 0 and such that the
corresponding trajectory x(·) satisfies ‖x(t)‖ ≤ ε for all t ≥ 0.

Moreover, the authors of [28], [29] add a condition on bounded controls; this one
implies Assumption 2.2 by restriction to the system near the origin.

A function V : X −→ R≥0 is positive definite if V (0) = 0 and V (x) > 0 for x = 0,
and proper if V (x)→ +∞ as ‖x‖ → +∞.

Definition 2.5. A Lyapunov pair for the system (2.1) is a pair (V,W ) consisting
of a continuous, positive definite, proper function V : X −→ R and a positive definite
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continuous function W : X −→ R, with the property that for each x ∈ X \ {0} we have

∀ζ ∈ ∂PV (x), inf
u∈U
〈ζ, f(x, u)〉 ≤ −W (x).(2.2)

Here ∂PV (x) refers to the proximal subdifferential of V at x (which may be
empty): ζ belongs to ∂PV (x) if and only if there exists σ and η > 0 such that

V (y)− V (x) + σ‖y − x‖2 ≥ 〈ζ, y − x〉 ∀y ∈ x + ηB.

The condition (2.2) is, in fact, equivalent to another one often used in the definition
of a nonsmooth Lyapunov function (see [26], [28], [29]); this other notion is based on
the notion of directional or Dini subderivate. The equivalence between these two con-
ditions is a consequence of Subbotin’s theorem (see, for example, [14], our principal
source for the theory of nonsmooth analysis, and [10] for a discussion of the equiva-
lence). We remark that there exists a complete calculus of proximal subdifferentials,
one that extends all the theorems of the usual smooth calculus.

Definition 2.6. A CLF for the system (2.1) is a function V : X −→ R such that
there exists a continuous positive definite W : X −→ R with the property that (V,W )
is a Lyapunov pair for (2.1).

We will say that V is a locally Lipschitz CLF if V is a CLF which is locally
Lipschitz on X. We claim the following theorem.

Theorem 1. Let (f, U) be a control system as described above. Then under
Assumptions 2.1 and 2.2, if the system is GAC, there exists a locally Lipschitz CLF.

Remark 2.7. The converse is true and relatively easy if we suppose that f is
continuous in u (we need this to obtain the existence of trajectories); we refer to
Sontag [26].

We now recall the definition of a semiconcave function [19] in an open set Ω of X.
Definition 2.8. Let g : Ω −→ R be a continuous function on Ω; it is said to be

semiconcave on Ω if for any point x0 ∈ Ω there exist ρ,C > 0 such that

g(x) + g(y)− 2g

(
x + y

2

)
≤ C‖x− y‖2(2.3)

for all x, y ∈ x0 + ρB.
We shall deduce as a corollary of the preceding theorem the main result of this

article.
Theorem 2. Let (f, U) be a control system as described above. Then under As-

sumptions 2.1 and 2.2, if the system is GAC, there exists a CLF which is semiconcave
on X \ {0}.

Remark 2.9. The CLF is a viscosity supersolution of

sup
u∈U
{−〈f(x, u), DV 〉} −W ≥ 0.

We begin by giving some regularity results about certain value functions. Then
we give the proof of Theorem 1. In the last section, we conclude with the proof of
Theorem 2.

3. A result on value functions in finite time. Throughout this section, we
are given a multifunction F mapping X to the subsets of X, and we consider the
differential inclusion

ẋ(t) ∈ F (x(t)) almost everywhere (a.e.).(3.1)
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We say that x(·) is a solution of (3.1) on the interval [a, b] if it is an absolutely
continuous function x : [a, b] −→ X which, together with ẋ, satisfies (3.1); such an
arc will be called an F -trajectory on the interval [a, b]. We need for this section two
properties of F which turn out to be particularly important.

Assumption 3.1. The multifunction F is locally Lipschitz with nonempty com-
pact convex values.

Assumption 3.2. For some positive constants K and M , and for all x ∈ X,

v ∈ F (x) =⇒ ‖v‖ ≤ K‖x‖+ M

(that is called the linear growth condition).
Under these two conditions, for all x0 ∈ X, there exists a trajectory of (3.1)

defined on R≥0 such that x(0) = x0, and for any trajectory with initial data x0 we
have the following estimate:

∀t ≥ 0, ‖x(t)‖ ≤ ‖x0‖eKt + MteKt.(3.2)

This inequality is an easy consequence of Gronwall’s lemma (see [14]).
Let us consider a function L : X −→ R≥0 and a compact set T of X satisfying the

following assumption.
Assumption 3.3. L is locally Lipschitz and for all x ∈ X, L(x) ≥ 1.
Assumption 3.4. There exists δ > 0 such that for all x ∈ T , δB̄ ⊂ F (x).
We proceed now to define a value function V (·) on X in terms of trajectories of

F as follows:

V (x) := inf

{∫ T

0

L(x(t))dt : x(0) = x, ẋ(t) ∈ F (x(t)) a.e. and x(T ) ∈ T
}

.

(Note that T is a choice variable in this “free-time” problem.)
We introduce the notation

R := {x ∈ X : V (x) < +∞} .
The letter R stands for reachable; the set of points where V is finite is the set of points
which can be driven to the target T in finite time. We have the following theorem.

Theorem 3. Assume (3.1)–(3.4). Then
(i) R is open,
(ii) V is locally Lipschitz in R,
(iii) for all x ∈ R \ T , for all ζ ∈ ∂PV (x),minv∈F (x)〈ζ, v〉 ≤ −L(x).
Proof. First, by the Lipschitz condition on F and (3.4), there exists 0 < r ≤ 1

such that for all x ∈ T +rB̄, δ2 B̄ ⊂ F (x). Hence, each state x of T +rB̄ can be driven
to T by a trajectory of (3.1) in time 2

δd(x, T ) (where d(x, T ) denotes minτ∈T ‖x−τ‖).
This proves that V is finite on T + rB̄. If we set m := maxx∈T +rB̄ L(x), we have

∀x ∈ T + rB̄, V (x) ≤ 2m

δ
d(x, T ).(3.3)

Now fix x0 /∈ T such that V (x0) < +∞.
By the definition of V , there exists an F -trajectory x0(·) and T > 0 such that

x0(0) = x0, x0(T ) ∈ T and ∫ T

0

L(x(s))ds ≤ V (x0) + 1.(3.4)
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The estimate (3.2) gives

∀t ∈ [0, T ], ‖x0(t)‖ ≤ ‖x0‖eKT + MTeKT .

Let A := [‖x0‖ + MT ]eKT , and let λF be the Lipschitz constant of F on the ball
(A + 1)B̄. Fix y ∈ B(x0, re

−λFT ).
By [4, Cor. 1, p. 121], there exists an F -trajectory y(·) such that y(0) = y,

verifying

∀t ∈ [0, T ], ‖y(t)− x0(t)‖ ≤ eλFT ‖y − x0‖, and ‖y(t)‖ ≤ A + 1.(3.5)

Consequently, if we set λL as the Lipschitz constant of L on the ball (A + 1)B̄, we
obtain ∫ T

0

L(y(s))ds ≤
∫ T

0

L(x0(s))ds +

∫ T

0

[L(y(s))− L(x0(s))]ds

≤ V (x0) + 1 +

∫ T

0

λL‖y(s)− x0(s)‖ds

≤ V (x0) + 1 + TλLe
λFT ‖y − x0‖

≤ V (x0) + 1 + TλLr.

On the other hand, d(y(T ), T ) ≤ ‖y(T ) − x0(T )‖ ≤ eλFT ‖y − x0‖ ≤ r; this implies
by (3.3) that

V (y(T )) ≤ 2m

δ
d(y(T ), T ) ≤ 2mr

δ
.

Consequently, we have that for all y ∈ B(x0, re
−λFT ),

V (y) ≤
∫ T

0

L(y(s))ds +
2mr

δ
(3.6)

≤ V (x0) + 1 + TλLr +
2mr

δ
=: c < +∞.(3.7)

We have shown that B(x0, re
−λFT ) ⊂ R, which gives (i).

Now, let x ∈ B(x0, re
−λFT ); then for each positive integer n, there exists an

F -trajectory xn(·) and Tn
x ≥ 0 such that xn(0) = x, xn(Tn

x ) ∈ T , and∫ Tnx

0

L(xn(s))ds ≤ V (x) +
1

n
.

Thus L ≥ 1 implies Tn
x ≤ V (x) + 1

n ≤ c + 1
n by (3.6). As before, the estimate (3.2)

gives for each n

∀t ∈ [0, Tn
x ], ‖xn(t)‖ ≤ ‖x‖eKTnx + MTxe

KTnx

≤ [‖x‖+ M(c + 1)]eK(c+1)

≤ [‖x0‖+ 1 + M(c + 1)]eK(c+1).

So we find a uniform bound for ‖ẋn(·)‖ on the intervals [0, Tn
x ] ⊂ [0, V (x)+1]. Hence,

since our trajectories xn(·) are uniformly bounded and equicontinuous on the compact
interval [0, c+ 1

n ], the theorem of Arzela–Ascoli and the compactness of trajectories (see
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[14]) imply that there exists a trajectory x(·) with initial data x such that x(Tx) ∈ T
and

V (x) =

∫ Tx

0

L(x(s))ds,

with T ≤ V (x). That means that the infimum is attained in the definition of V .
We set A′ := [‖x0‖ + 1 + M(c + 1)]eK(c+1), and λ′

F is the Lipschitz constant
of F on the ball (A′ + 1)B̄. We proceed to show that V is Lipschitz on the ball
B̄(x0,

r
2e

−λ′
F (c+1)).

Fix x, y in B̄(x0,
r
2e

−λ′
F (c+1)). Then there exists, as above, x(·) as an F -trajectory

and Tx ≥ 0 such that x(0) = x, x(Tx) ∈ T , and

V (x) =

∫ Tx

0

L(x(s))ds.

By [4, Cor. 1, p. 121], there exists an F -trajectory y(·) such that y(0) = y, verifying

∀t ∈ [0, Tx], ‖y(t)− x(t)‖ ≤ eλ
′
FTx‖y − x‖, and ‖y(t)‖ ≤ A′ + 1.

Consequently, if we set, as before, λ′
L as the Lipschitz constant of L on the ball

(A′ + 1)B̄, we obtain∫ Tx

0

L(y(s))ds ≤
∫ Tx

0

L(x(s))ds +

∫ Tx

0

λ′
L‖y(s)− x(s)‖ds

≤ V (x) + Txλ
′
Le

λ′
FTx‖y − x‖

≤ V (x) + cλ′
Le

λ′
F c‖y − x‖.

Now, V (y(Tx)) ≤ 2m
δ d(y(Tx), T ) ≤ 2m

δ eλ
′
F c‖y − x‖. Hence, we conclude that

V (y) ≤ V (x) +

[
cλ′

L +
2m

δ

]
eλ

′
F c‖y − x‖.

Thus, since all the constants in the preceding inequality are independent of x and y,
we find

|V (y)− V (x)| ≤
[
(c + 1)λ′

L +
2m

δ

]
eλ

′
F (c+1)‖y − x‖,

which proves (ii). We now have to prove (iii). For that, consider x ∈ R \ T and a
trajectory x(·) of (3.1) attaining the infimum in the definition of V (x). Let ζ belong
to ∂PV (x); then there exists σ and η > 0 such that

V (y)− V (x) + σ‖y − x‖2 ≥ 〈ζ, y − x〉 ∀y ∈ x + ηB.

By the optimality of the trajectory x(·), for all t ∈ [0, T ], V (x(t)) =
∫ T
t

L(x(s))ds.
Then, for t sufficiently small,∫ T

t

L(x(s))ds−
∫ T

0

L(x(s))ds + σ‖x(t)− x‖2 ≥ 〈ζ, x(t)− x〉,

which gives

−1

t

∫ t

0

L(x(s))ds + tσ

∥∥∥∥x(t)− x

t

∥∥∥∥2

≥
〈
ζ,

x(t)− x

t

〉
.
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We find (iii) by passing to the limit t ↓ 0.

Remark 3.5. In [10], a result of this type is proven differently by an argument
based on Hamiltonian necessary conditions.

Remark 3.6. The conclusions of Theorem 3 remain true if we weaken Assump-
tion 3.4 to the proximal condition

min
v∈F (x)

〈ζ, v〉 ≤ −δ‖ζ‖

for all x ∈ T and ζ ∈ NP
T (x), where NP

T (x) denotes the proximal normal cone to T
at x (see the book of Clarke, Ledyaev, Stern, and Wolenski [14]). (This result is a
consequence of proximal criteria for attainability; see [13], [14].) This kind of condition
added to the smooth regularity of F is used in [9] to obtain the semiconcavity of the
minimum-time function. However, these results (on the Lipschitz property or on the
semiconcavity property) do not hold if we omit the linear growth condition (3.2); see,
for example, [7, Ex. 1.3, p. 238].

Remark 3.7. The conclusion (iii) can be strengthened to equality. The value
function V is the viscosity solution of a certain Hamilton–Jacobi equation (see [7],
[14]).

4. Proof of Theorem 1. We suppose first that we have constructed a CLF V
which is continuous on X and locally Lipschitz on X \ {0}. Thus, there exists another
continuous positive definite function W : X −→ R≥0 such that (V,W ) is a Lyapunov
pair for (2.1). We proceed to show that we can deduce the existence of a new CLF
which is locally Lipschitz on all the space X. We set for any 0 ≤ a ≤ b

SV (b) := {x;V (x) ≤ b} and SV [a, b] := {x; a ≤ V (x) ≤ b};

these are compact sets of X. We proceed to construct a sequence of functions on X

which will converge uniformly to our desired locally Lipschitz CLF.

First, we set V0(x) := max{V (x), 1}. This function is locally Lipschitz on X,
proper, positive, constant on SV (1), and it verifies

∀x /∈ SV (1),∀ζ ∈ ∂PV0(x), inf
u∈U
〈ζ, f(x, u)〉 ≤ −W (x).

By assumption, for all n ≥ 0, V is Lipschitz on SV [ 1
2n+1 ,

1
2n ]; we denote by

K( 1
2n+1 ,

1
2n ) = Kn its Lipschitz constant on this set. (Without loss of generality

we can choose this constant greater than 1.)

We define now a sequence inductively. Suppose Vn is given; we set

Vn+1(x) :=


Vn(x) if x /∈ SV ( 1

2n ),
Vn(x) + 1

Kn
[V (x)− 1

2n ] if x ∈ SV [ 1
2n+1 ,

1
2n ],

Vn(x)− 1
2n+1Kn

if x ∈ SV ( 1
2n+1 ).

We have the following lemma.

Lemma 4.1. For all n ≥ 1, Vn is 1-Lipschitz on SV (1), proper, and constant on
SV ( 1

2n ). Moreover, Vn satisfies the following properties:

∀x ∈ X,Vn(x) ≥ 1−
n∑

k=1

1

2kKk−1
,
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and for all x ∈ SV ( 1
2n−1 ) \ SV ( 1

2n ), for all ζ ∈ ∂PVn(x),

inf
u∈U
〈ζ, f(x, u)〉 ≤ −W (x)

Kn−1
.(4.1)

Proof. We are going to prove only the last assertion. The other ones are left to
the reader; they are the consequence of an easy inductive proof.

Let n ≥ 1, x ∈ SV ( 1
2n−1 ) \ SV ( 1

2n ), and ζ ∈ ∂PVn(x).
We remark that for all y not in SV ( 1

2n ), we have

Vn(y) = min

{
Vn−1(y),Vn−1(y) +

V (y)− 1
2n−1

Kn−1

}
.

For the x chosen above, the minimum is attained in the second term, so

ζ ∈ ∂P

[
Vn−1(x) +

V (x)− 1
2n−1

Kn−1

]
= ∂P

[
Vn−1(x) +

V (x)

Kn−1

]
.(4.2)

First case. n > 1. We remark now that for all y ∈ SV ( 1
2n−2 ),

Vn−1(y) = max

{
Cn−2 +

V (y)− 1
2n−2

Kn−2
, Cn−2 − 1

2n−1Kn−2

}
,

where Cn−2 is the value of Vn−2 on the set SV ( 1
2n−2 ). We deduce by (4.2) that

ζ ∈ ∂P

[
max

{
V (x)

Kn−2
+ A,A′

}
+

V (x)

Kn−1

]
,

where A = Cn−2 − 1
2n−2Kn−2

and A′ = Cn−2 − 1
2n−1Kn−2

.

Hence, we obtain that ζ is in the set

∂P

[
max

{(
1

Kn−2
+

1

Kn−1

)
V (x) + A,

V (x)

Kn−1
+ A′

}]
.

Now, by the basic calculus on the proximal subgradients, we have

ζ ∈ co

{(
1

Kn−2
+

1

Kn−1

)
∂PV (x),

1

Kn−1
∂PV (x)

}
.

Then, there exists ζ1 and ζ2 in ∂PV (x) and t ∈ [0, 1] such that

ζ = t

(
1

Kn−2
+

1

Kn−1

)
ζ1 + (1− t)

1

Kn−1
ζ2

=

[
t

(
1

Kn−2
+

1

Kn−1

)
+ (1− t)

1

Kn−1

]
ζ̂,

where ζ̂ ∈ ∂PV (x), because ∂PV (x) is a convex set. Now, we invoke the decrease

property of V , infu∈U 〈ζ̂, f(x, u)〉 ≤ −W (x). Then

inf
u∈U
〈ζ, f(x, u)〉 ≤ −W (x)

Kn−1
,

which gives the result.
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Second case. If n = 1, the proof is similar.
Now, note that for each x = 0, the sequence (Vn(x))n≥0 is stationary; thus it

converges. So, we can define

V(x) := lim
n→∞Vn(x)− C,

where C := 1 −∑+∞
n=0

1
2n+1Kn

∈ [0, 1] (because the Lipschitz constants have been
chosen greater than 1).

By the preceding lemma, Vn is always positive and for x = 0,

Vn(0) = 1−
n∑

k=1

1

2kKk−1
→n→∞ C =: V(0) + C.

We deduce that V(0) = 0 and then that V is positive definite. On the other hand, it
is locally Lipschitz everywhere as a simple limit of Lipschitz functions (with the same
constant in each compact set on X), and it verifies the decreasing property (2.2) with
a continuous positive definite function W defined as follows:

W(x) := inf
y∈X

{w(y) + ‖x− y‖} ∀ x ∈ X,

where

w(x) :=


W (x) if x /∈ SV (1),
W (x)
Kn

if x ∈ SV ( 1
2n ) \ SV ( 1

2n+1 ),

0 if x = 0.

The decrease property is an immediate consequence of (4.1).
To complete the proof of Theorem 1, we now have to prove the existence of a

CLF which is continuous on X and locally Lipschitz outside the origin. We begin by
defining a multifunction F , which is useful because it is uniformly bounded:

∀x ∈ X, F (x) := cl co

{
f(x, u)

1 + ‖f(x, u)‖ , u ∈ U
}

.

We study the differential inclusion

ẋ(t) ∈ F (x(t)) a.e.

This dynamic has the same properties as the system (2.1).
Proposition 1.
(i) F is locally Lipschitz and compact convex valued.
(ii) The system ẋ(t) ∈ F (x(t)) is GAC.
Proof.
(i) First of all, it is clear by construction that for all x ∈ X, the set F (x) is

compact convex. Moreover, since the function

x �→ f(x, u)

1 + ‖f(x, u)‖
is locally Lipschitz uniformly in u, we deduce that the multifunction F is also
locally Lipschitz.
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(ii) We now prove the global asymptotic controllability of the differential inclusion

ẋ(t) ∈ F (x(t)) a.e.(4.3)

Let x ∈ X with ‖x‖ ≤ R be given. By assumption, there is a trajectory
x(·) of (2.1) on [0,∞) which verifies the assumptions of global asymptotic
controllability (Definition 2.3). We set

φ(t) :=

∫ t

0

[1 + ‖ẋ(s)‖]ds,

and we define a function x̃ on [0,∞] by

x̃(τ) := x(t),

where t = t(τ) is determined in [0,∞] by

τ =

∫ t

0

[1 + ‖ẋ(s)‖]ds.

(This change of variables or time scale is known as the Erdmann transform.)
Then

dx̃

dτ
=

ẋ(t)

1 + ‖ẋ(t)‖ ∈ F (x̃(τ)) a.e.,

so that x̃ is an F -trajectory.
But by construction, for all τ ≥ 0, ‖x̃(τ)‖ ≤ M(R), and if τ ≥ φ(T (r,R)),
then ‖x̃(τ)‖ ≤ r.
The trajectory x(·) remains in the ball M(R)B̄, so if NR denotes the maxi-
mum of ‖f(x, u)‖ for x ∈ M(R)B̄ and u ∈ U (finite by Assumption 2.2), we
have

∀t ≥ 0, φ(t) ≤ t(1 + NR).

We deduce that if τ ≥ T (r,R)(1+NR), then τ ≥ φ(T (r,R)) and consequently
‖x̃(τ)‖ ≤ r.
The differential inclusion (4.3) is GAC with suitable values M(R) and
T̃ (r,R) := T (r,R)(1 + NR).

We shall use the notation M(·) and T̃ (·, ·) for the functions of the global asymp-
totic stability of F .

Remark 4.2. We have, in fact, by a similar proof the following property.
Proposition 2. Let β : X −→ R>0 be locally Lipschitz. Then the differential

inclusion

ẋ(t) ∈ β(x(t))F (x(t)) a.e.

is locally Lipschitz with convex compact values and it is GAC with appropriate con-
stants M(R) ↓ 0 and T̃β(r,R) = T (r,R) maxx∈M(R)B̄{β(x)−1}.

We proceed now to define iteratively a sequence of value functions for targets
shrinking down to the equilibrium. We make an inductive proof which is mainly based
on the Theorem 3. In the first step we define the first value function V0, and then
in order to set out the idea of the induction, we construct explicitly the second value
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function V1 in the second step. Finally, we finish our proof by giving the induction
for all n (third step) and by defining our definitive CLF in the fourth step.

First step. We begin the inductive proof by setting a first value function V0.

First of all, we define a new multifunction Γ0 as follows:

Γ0(x) :=


[
1 + (‖x‖ −M(1))

T̃ ( 1
2 ,1)

M(1)2

]−1

F (x) for ‖x‖ ≥M(1),

F (x) for 1 ≤ ‖x‖ ≤M(1),
F (x) + 4[1− ‖x‖]B̄ for 1

2 ≤ ‖x‖ ≤ 1,
F (x) + 2B̄ for ‖x‖ ≤ 1

2 .

By construction (and by Proposition 2), we have immediately the following lemma.

Lemma 4.3. Γ0 is compact convex valued, locally Lipschitz, uniformly bounded
(by 1), and the differential inclusion ẋ ∈ Γ0(x(t)) is GAC.

On the other hand, B̄ ⊂ Γ0(x) for all x in 1
2 B̄. Hence, Theorem 3 can be applied

with T = T0 := 1
2 B̄ and L = L0 := 1. So we define the value function

V0(x) := inf

{
T : x(0) = x, ẋ(t) ∈ Γ0(x(t)) a.e. and x(T ) ∈ 1

2
B̄

}
for all x ∈ X.

Lemma 4.4. V0 is locally Lipschitz on X, positive, proper, and for all x /∈ B,

∀ζ ∈ ∂PV0(x), min
v∈F (x)

〈ζ, v〉 ≤ −1.

Proof. This is an easy corollary of Theorem 3.

We set m0 := max{V0(x); ‖x‖ ≤ 1} and S0 := {x;V0(x) ≤ m0}. We define a new
function Ṽ0 as follows:

Ṽ0(x) := max{0, V0(x)−m0}.

Lemma 4.5.

(a) Ṽ0(x) = 0⇐⇒ x ∈ S0.
(b) B̄ ⊂ S0 ⊂ 3M(1)B̄.
(c) For all x /∈ S0, for all ζ ∈ ∂P Ṽ0(x),minv∈F (x)〈ζ, v〉 ≤ −1.

Proof.

(a) The proof of (a) is obvious by the definition of Ṽ0.
(b) The first inclusion is given by the definition of S0. However, the second one

is less easy. Since the system ẋ ∈ F (x) is GAC, for all α ∈ B̄ there exists a
F -trajectory x(·) such that
(1) x(0) = α and ẋ(t) ∈ F (x(t)) a.e.,
(2) for all t ≥ 0, ‖x(t)‖ ≤M(1),
(3) for all t ≥ T̃ ( 1

2 , 1), ‖x(t)‖ ≤ 1
2 .

Now, from the definition of Γ0, for all x ∈M(1)B̄, F (x) ⊂ Γ0(x); then

V0(α) ≤ T̃

(
1

2
, 1

)
.

Consequently, m0 ≤ T̃ ( 1
2 , 1).

Let us consider now α ∈ X such that ‖α‖ ≥ 3M(1).
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We remark that for ‖x‖ ≥ 2M(1), we have

‖Γ0(x)‖ ≤
[

1 +
T̃ ( 1

2 , 1)

M(1)

]−1

.

Then the time needed by a Γ0 trajectory with initial condition α to reach the

ball 2M(1)B̄ is greater than [1 +
T̃ ( 1

2 ,1)

M(1) ]M(1).

Hence, V0(α) ≥M(1) + T̃ ( 1
2 , 1) > m0.

Consequently, S0 ⊂ 3M(1)B̄.
(c) This last assertion is a consequence of Lemma 4.4.
Second step. We present now the construction of the second value function V1

in order to give the idea of our inductive proof.
We set

Γ1(x) :=



[
1 + (‖x‖ −M( 1

2 ))
T̃ ( 1

4 ,
1
2 )

M( 1
2 )2

]−1

F (x) for ‖x‖ ≥M( 1
2 ),

F (x) for 1
2 ≤ ‖x‖ ≤M( 1

2 ),

F (x) + 8
[
1
2 − ‖x‖

]
B̄ for 1

4 ≤ ‖x‖ ≤ 1
2 ,

F (x) + 2B̄ for ‖x‖ ≤ 1
4 .

We have immediately the following result.
Lemma 4.6. Γ1 is compact convex valued, and the differential inclusion

ẋ(t) ∈ Γ1(x(t)) is GAC (with possible constants M1(R) = M(R) ↓ 0 and T̃1(r,R)).
We need an auxiliary function with the local Lipschitz property. We define for all

x ∈ X

B0(x) := max{V0(y) : ‖y‖ ≤ ‖x‖+ M(1)}.
As before, the new multifunction leads to a value function R1 associated to the set
T1 := 1

4 B̄. We set for all x in X

R1(x) := inf

{∫ T

0

L1(x(t))dt : x(0) = x, ẋ ∈ Γ1(x) a.e. and x(T ) ∈ T1
}

,

where L1(x) := 1 + max{0, ‖x‖ − 3M(1)} B0(x)
ρ1M(1)2 and

ρ1 :=
m0/2

m0

[
1 + (3M(1)−M( 1

2 ))
T̃ ( 1

4 ,
1
2 )

M( 1
2 )2

]
+ T̃1( 1

4 , 1)
≤ 1.

Theorem 3 gives the following lemma.
Lemma 4.7.
(a) R1 is locally Lipschitz on X.
(b) For all ‖x‖ ≥ 1

2 , for all ζ ∈ ∂PR1(x),minv∈F (x)〈ζ, v〉 ≤ −L1(x).
Proof. Since L1 and Γ1 are locally Lipschitz and the system associated to Γ1 is

GAC, R1 is finite everywhere and Theorem 3 proves the assertions.
As in the first step, we are going to evaluate the size of a certain level set given

by R1. We set mR1
:= max{R1(y) : y ∈ 1

2 B̄} and

SR1
(mR1) = {x : R1(x) ≤ mR1}.

By Proposition 1, for any x ∈ 1
2 B̄, there exists an F -trajectory x(·) such that
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1. x(0) = x,
2. for all t ≥ 0, ‖x(t)‖ ≤M( 1

2 ),

3. for all t ≥ T̃ ( 1
4 ,

1
2 ), x(t) ∈ T1.

Moreover, for all x ∈M( 1
2 )B̄, F (x) ⊂ Γ1(x) and L1(x) = 1; then

R1(x) ≤ T̃

(
1

4
,

1

2

)
.

Consequently, mR1 ≤ T̃ ( 1
4 ,

1
2 ).

Now, we consider an initial state α such that ‖α‖ ≥ 3M( 1
2 ).

We remark that for ‖x‖ ≥ 2M(1), we have

‖Γ1(x)‖ ≤
[

1 +
T̃ ( 1

4 ,
1
2 )

M( 1
2 )

]−1

.

Then the time used by a Γ1-trajectory with initial condition α to reach the ball

2M( 1
2 )B̄ is greater than [1 +

T̃ ( 1
4 ,

1
2 )

M( 1
2 )

]M( 1
2 ).

Hence, L1 ≥ 1 implies R1(α) ≥M( 1
2 ) + T̃ ( 1

4 ,
1
2 ) > mR1

.
Consequently,

SR1(mR1
) ⊂ 3M

(
1

2

)
B̄.

Indeed, from the proof follows the following lemma.
Lemma 4.8. 1

2 B̄ ⊂ SR1
(mR1

) ⊂ 3M( 1
2 )B̄.

We want now to compare R1 with V0.
Lemma 4.9.
(a) For all x ∈ S0, ρ1R1(x) ≤ m0

2 .
(b) If ‖x‖ ≥ 5M(1), then V0(x) ≤ ρ1R1(x).
Proof.
(a) Let x ∈ S0. Indeed, there exists a Γ0-trajectory x(·) which connects x to the

set B̄ in time Tx ≤ V0(x) ≤ m0. Hence, for all t ≥ 0, x(t) ∈ S0 ⊂ 3M(1)B̄ (by
Lemma 4.5(b)). In the zone ‖x‖ ∈ [1, 3M(1)] we can write Γ1(x) ⊂ β(x)Γ0(x)
with β(x) as follows (assuming that M( 1

2 ) ≥ 1):

β(x) :=



1 if ‖x‖ ∈ [ 12 ,M( 1
2 )],[

1 + (‖x‖ −M( 1
2 ))

T̃ ( 1
4 ,

1
2 )

M( 1
2 )2

]−1

if ‖x‖ ∈ [M( 1
2 ),M(1)],[

1+(‖x‖−M( 1
2 ))

T̃ ( 1
4
, 1
2
)

M( 1
2
)2

]−1[
1+(‖x‖−M(1))

T̃ ( 1
2
,1)

M(1)2

]−1 if ‖x‖ ∈ [M(1), 3M(1)].

We observe that if M( 1
2 ) < 1, we have to omit it in the definition of β. Now,

an appropriate change of variables (see Proposition 2) shows that there exists
a Γ1-trajectory x(·) which remains in 3M(1)B̄ and drives x to B̄ in a time
T ≤ Tx max‖x‖∈[1,3M(1)] β(x)−1.

Thus, we obtain T ≤ m0[1 + (3M(1)−M( 1
2 ))

T̃ ( 1
4 ,

1
2 )

M( 1
2 )2

].

Now, we can extend this trajectory to T1 with the following property (by
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Lemma 4.6): for all t ≥ T, x(t) ∈ M(1)B̄ and x(T + T̃1( 1
4 , 1)) ∈ 1

4 B̄. Thus,
we have constructed a trajectory which remains in 3M(1)B̄ (where L1 = 1)
and reaches the set T1.

Consequently, R1(x) ≤ m0[1 + (3M(1)−M( 1
2 ))

T̃ ( 1
4 ,

1
2 )

M( 1
2 )2

] + T̃1( 1
4 , 1).

We conclude by the definition of ρ1.
(b) Let x be such that ‖x‖ ≥ 5M(1). By the definition of B0 we have

‖y‖ ≥ ‖x‖ −M(1) =⇒ B0(y) ≥ V0(x) =⇒ L1(y) ≥ 1 +
V0(x)

ρ1M(1)2
.

On the other hand, the time required to go from {‖y‖ ≥ ‖x‖ −M(1)} to
{‖y‖ ≥ ‖x‖− 2M(1)} is greater than M(1). (The dynamic is bounded by 1.)
Consequently,

R1(x) ≥M(1)

[
1 +

V0(x)

ρ1M(1)

]
≥ V0(x)

ρ1
.

We finish this step by defining a new function V1 as follows.

∀x ∈ X, V1(x) := min{Ṽ0(x) + m0, ρ1R1(x)}.
We set m1 := max{V1(x) : x ∈ 1

2 B̄} and S1 := {x : V1(x) ≤ m1}. We have the
following lemma.

Lemma 4.10. V1 is locally Lipschitz on X. Moreover, we have
(a) m1 ≤ m0

2 ;
(b) for all x ∈ S0 ∪ S1, V1(x) = ρ1R1(x);
(c) 1

2 B̄ ⊂ S1 ⊂ 3M( 1
2 )B̄;

(d) if ‖x‖ ≥ 5M(1), then V1(x) = V0(x);
(e) for 1

2 ≤ ‖x‖ ≤ 5M(1), for all ζ ∈ ∂PV1(x),minv∈F (x)〈ζ, v〉 ≤ −ρ1;
(f) for ‖x‖ > 5M(1), for all ζ ∈ ∂PV1(x),minv∈F (x)〈ζ, v〉 ≤ −1.
Proof.
(a) By Lemma 4.9 (a), for any x ∈ S0, ρ1R1(x) ≤ m0

2 . Hence by definition of
V1, for all x ∈ S0, V1(x) = ρ1R1(x). Thus we conclude by remarking that
1
2 B̄ ⊂ S0. We have, in fact, m1 = ρ1mR1

.
(b) Let x ∈ S0 ∪ S1. If x ∈ S0, we have shown the equality in the first assertion.

Otherwise, V1(x) ≤ m1 ≤ m0

2 implies the equality.
(c) If x ∈ S1, then V1(x) = ρ1R1(x) ≤ m1. And by the remark in (a), R1(x) ≤

mR1 , which gives the inclusion.
(d) For ‖x‖ ≥ 5M(1), we have that V0(x) = Ṽ0(x)+m0 (because S0 ⊂ 3M(1)B̄).

We conclude by Lemma 4.9(b).
(e) Let x ∈ X such that 1

2 ≤ ‖x‖ ≤ 5M(1) and ζ ∈ ∂PV1(x). We recall the
definition of V1(x):

V1(x) := min{Ṽ0(x) + m0, ρ1R1(x)}.
First case. The minimum is attained by the second term. Then ζ ∈ ∂P ρ1R1(x) =
ρ1∂PR1(x). We conclude by Lemma 4.7 (b).
Second case. The minimum is attained by the first term and not by the
second one. In this case, x /∈ S0 and ζ ∈ ∂P (Ṽ0 + m0)(x) = ∂P Ṽ0(x). We
conclude by Lemma 4.5 (c).
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(f) This is an easy consequence of Lemma 4.9(b).
Third step. We finish the construction of the sequence (Vn)n≥0 by induction on

n.
Assume (Vk, Tk, Lk, Rk,Γk) have already been defined for 1 ≤ k ≤ n with the

following properties:
1. 1

2k
B̄ ⊂ Sk ⊂ 3M( 1

2k
)B̄,

2. for ‖x‖ ≥ 5M( 1
2k−1 ), Vk(x) = Vk−1(x),

3. for 1
2k
≤ ‖x‖ ≤ 5M( 1

2k−1 ), for all ζ ∈ ∂PVk(x),minv∈F (x)〈ζ, v〉 ≤ −ρk,

4. Lk = 1 on the ball 3M( 1
2k−1 )B̄,

5. for all x ∈ R
N , Vk(x) = 0⇐⇒ x ∈ 1

2k+1 B̄ =: Tk,
6. for all k ∈ [1, n],mk ≤ mk−1

2 , and ρk ≤ ρk−1 ≤ 1 =: ρ0,
where

mk := max

{
Vk(x); ‖x‖ ≤ 1

2k

}
, Sk := {x;Vk(x) ≤ mk},

and the ρk’s are some positive constants.
As before, we can define a new function Vn+1. We proceed as follows: for all

x ∈ X, we set Γn+1(x) :=

[
1 + (‖x‖ −M( 1

2n+1 ))
T̃ ( 1

2n+2 ,
1

2n+1 )

M( 1

2n+1 )2

]−1

F (x) if ‖x‖ ≥M( 1
2n+1 ),

F (x) if ‖x‖ ∈ [ 1
2n+1 ,M( 1

2n+1 )],
F (x) + 2n+3[ 1

2n+1 − ‖x‖]B̄ if ‖x‖ ∈ [ 1
2n+2 ,

1
2n+1 ],

F (x) + 2B̄ if ‖x‖ ≤ 1
2n+2 .

As before, we need an auxiliary function with the local Lipschitz property. We define
for all x ∈ X

Bn(x) := max

{
Vn(y) : ‖y‖ ≤ ‖x‖+ M

(
1

2n

)}
.

From this multifunction, we define a value function associated to the set Tn+1 :=
1

2n+2 B̄. We set for any x ∈ X

Rn+1(x) := inf

{∫ T

0

Ln+1(x(t))dt : x(0) = x, ẋ ∈ Γn+1(x), and x(T ) ∈ Tn+1

}
,

where Ln+1(x) := 1 + max{0, ‖x‖ − 3M( 1
2n )} Bn(x)

ρn+1M( 1
2n )2

with

ρn+1 :=
ρnmn/2

mn

[
1 + (3M( 1

2n )−M( 1
2n+1 ))

T̃ ( 1

2n+2 ,
1

2n+1 )

M( 1

2n+1 )2

]
+ T̃n+1( 1

2n+2 ,
1
2n )

≤ ρn.

The differential inclusion ẋ ∈ Γn+1(x) is GAC; we denote by T̃n+1(·, ·) its new con-
stant. (We saw that we can choose M̃n+1 = M .) On the other hand, we set

mRn+1 := max

{
Rn+1(y) : y ∈ 1

2n+1
B̄

}
,

and SRn+1(mRn+1) := {x : Rn+1(x) ≤ mRn+1}.
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Lemma 4.11.
(a) Rn+1 is locally Lipschitz on X.
(b) For all ‖x‖ ≥ 1

2n+1 , for all ζ ∈ ∂PRn+1(x),minv∈F (x)〈ζ, v〉 ≤ −Ln+1(x).

(c) 1
2n+1 B̄ ⊂ SRn+1(mRn+1) ⊂ 3M( 1

2n+1 )B̄.
(d) For all x ∈ Sn, ρn+1Rn+1(x) ≤ mn

2 .
(e) If ‖x‖ ≥ 5M( 1

2n ), then Vn(x) ≤ ρn+1Rn+1(x).
Proof. (a) and (b) are evident by Theorem 1. The assertion (c) is proved as before

(Lemma 4.8). We prove now (d) and (e); we begin with (e).
Let ‖x‖ ≥ 5M( 1

2n ) be given. By the definition of Bn we have

‖y‖ ≥ ‖x‖ −M

(
1

2n

)
=⇒ Bn(y) ≥ Vn(x) =⇒ Ln+1(y) ≥ 1 +

Vn(x)

ρn+1M( 1
2n )2

.

On the other hand, the time required for driving from {‖y‖ ≥ ‖x‖ − M( 1
2n )} to

{‖y‖ ≥ ‖x‖ − 2M( 1
2n )} is greater than M( 1

2n ). (The dynamic is bounded by 1.)
Consequently,

Rn+1(x) ≥M

(
1

2n

)[
1 +

Vn(x)

ρn+1M( 1
2n )

]
≥ Vn(x)

ρn+1
.

We prove now (d). Let x ∈ Sn. Indeed, there exists a Γn-trajectory x(·) which
takes x to the set 1

2n B̄ in time Tx ≤ Vn(x) ≤ mn and which remains in Sn (because
Sn ⊂ 3M( 1

2n B̄ and Ln = 1 on 3M( 1
2n B̄). In the zone ‖x‖ ∈ [ 1

2n , 3M( 1
2n )] we can

write Γn+1(x) ⊂ β(x)Γn(x) with β(x) as follows (assuming that M( 1
2n+1 ) ≥ 1

2n ; we
adapt otherwise):

β(x) :=



1 for ‖x‖ ∈ [ 1
2n ,M( 1

2n+1 )],[
1 + (‖x‖ −M( 1

2n+1 ))
T̃ ( 1

2n+2 ,
1

2n+1 )

M( 1

2n+1 )2

]−1

for ‖x‖ ∈ [M( 1
2n+1 ),M( 1

2n )],[
1+(‖x‖−M( 1

2n+1 ))
T̃ ( 1

2n+2
, 1
2n+1

)

M( 1
2n+1

)2

]−1

[
1+(‖x‖−M( 1

2n ))
T̃ ( 1

2n+1
,2n)

M( 1
2n

)2

]−1 for ‖x‖ ∈ [M( 1
2n ), 3M( 1

2n )].

An appropriate change of variables (see Proposition 2) shows that there exists a
Γn+1-trajectory x(·) which remains in 3M( 1

2n )B̄ and takes x to 1
2n B̄ in a time T ≤

Tx max‖x‖∈[ 1
2n ,3M( 1

2n )] β(x)−1.

Thus, we have T ≤ mn[1 + (3M( 1
2n )−M( 1

2n+1 ))
T̃ ( 1

2n+2 ,
1

2n+1 )

M( 1

2n+1 )2
].

Now, we can extend this trajectory to Tn+1 with the following property (by
Lemma 4.6): for all t ≥ T, x(t) ∈M( 1

2n )B̄ and x(T + T̃n+1( 1
2n+2 ,

1
2n )) ∈ Tn+1. In this

way, we have constructed a trajectory which remains in 3M( 1
2n )B̄ (where Ln+1 = 1)

and reaches the set Tn+1.
Consequently,

Rn+1(x) ≤ mn

[
1 +

(
3M

(
1

2n

)
−M

(
1

2n+1

))
T̃ ( 1

2n+2 ,
1

2n+1 )

M( 1
2n+1 )2

]
+ T̃1

(
1

2n+2
,

1

2n

)
.

We conclude by the definition of ρn+1.
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We can now define the new function Vn+1. We set for all x ∈ X

Vn+1(x) := min{Ṽn(x) + mn, ρn+1Rn+1(x)},

where Ṽn(x) := max{0, Vn(x)−mn}.
As before, we consider

mn+1 := max

{
Vn+1(x) : x ∈ 1

2n+1
B̄

}
and Sn+1 := {x : Vn+1(x) ≤ mn+1}.

We have the following lemma.
Lemma 4.12. Vn+1 is locally Lipschitz on X. Moreover, we have the following.
(a) mn+1 ≤ mn

2 .
(b) 1

2n+1 B̄ ⊂ Sn+1 ⊂ 3M( 1
2n+1 )B̄.

(c) If ‖x‖ ≥ 5M( 1
2n ), then Vn+1(x) = Vn(x).

(d) For 1
2n+1 ≤ ‖x‖ ≤ 5M( 1

2n ), for all ζ ∈ ∂PVn+1(x),minv∈F (x)〈ζ, v〉 ≤ −ρn+1.
Proof. The proof is similar to the proof of Lemma 4.10. This is left to the

reader.
Fourth step. The function V .
We study the convergence of the sequence (Vn)n≥0; for that, we need a last lemma.
Lemma 4.13. For all k, 0 ≤ k ≤ n, for all x ∈ Sk, Vn(x) ≤ mk.
Proof. We do an inductive proof. Since the result has already been proved for

n=1 (Lemma 4.10), we assume that we have proved the result for n ≥ 1; we establish
the property for n + 1.

Let us consider 0 ≤ k ≤ n + 1 and x ∈ Sk.
First case. k ≤ n.
If x /∈ Sn, then by definition of Vn, Vn(x) = Ṽn(x) + mn. Hence, Vn+1(x) ≤

Vn(x) ≤ mk by induction.
Otherwise, x ∈ Sn. In this case, Ṽn(x) = 0 implies Vn+1(x) ≤ mn ≤ mk by the

property on the sequence (mk).
Second case. k = n + 1.
The property follows from the definition of Sn+1.
We can now conclude. Let us consider a compact set K in X \ {0}. Then, as

limn→∞ M( 1
2n ) = 0, there exists a positive integer nK such that

‖x‖ ≥ 5M

(
1

2nK

)
∀x ∈ K.

By the second property of the sequence (Vn)n≥0, for any n ≥ nK , Vn(x) = VnK (x).
Hence, the sequence (Vn(x))n≥0 converges for all x in K and the limit is a locally

Lipschitz function in K (as a stationary limit of locally Lipschitz functions). On the
other hand, for any n ≥ 0, Vn(0) = 0; so we can define for all x ∈ X

V (x) := lim
n→∞Vn(x).

By the proof above, V is locally Lipschitz on X \ {0}, positive definite, and proper
(since Vn = V0, for all n if ‖x‖ ≥ 5M(1)); we have to show that V is continuous at
the origin. This fact is a consequence of the preceding lemma.

Let us consider xp −→p→∞ 0. We want to show that f(xp) −→p→∞ 0.
Let ε > 0. There exists n0 ≥ 0 such that mn0 ≤ ε (because mn ≤ m0

2n ). Thus, by
the last lemma, for all n ≥ n0, for all x ∈ Sn0

, Vn(x) ≤ ε.
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There exists P > 0 such that if p ≥ P ,

xp ∈ 1

2n0
B̄ ⊂ Sn0 .

We deduce that for all n ≥ n0, for all p ≥ P, Vn(xp) ≤ ε. By passing to the limit: for
all p ≥ P, V (xp) ≤ ε, which gives the continuity on the origin.

Now, we set for all x ∈ X

w(x) :=


ρn if 5M( 1

2n+1 ) < ‖x‖ ≤ 5M( 1
2n ),

1 if ‖x‖ > 5M(1),
0 if x = 0.

We can now define the function W by

∀x ∈ X,W (x) := inf
y∈X

{w(y) + ‖x− y‖}.

W is a positive definite and locally Lipschitz function. The decrease condition (2.2)
is the consequence of the stationarity of the sequence (Vn(x))n≥0 outside the origin
and of Lemma 4.12 (d). This completes the proof of Theorem 1.

5. Existence of a semiconcave CLF. We begin with some preliminaries on
semiconcavity. It is easy to show that any semiconcave function in Ω is locally Lip-
schitz. Concave functions are of course semiconcave. Another class of semiconcave
functions is that of C1 functions with locally Lipschitz gradients. Moreover we have
the two following lemmas.

Lemma 5.1. Let Ψ : R −→ R be an increasing semiconcave function, and let
g : Ω −→ R be a semiconcave function on Ω. Then Ψ ◦ g is a semiconcave function
on Ω.

Lemma 5.2. Let g, h : Ω −→ R be two semiconcave functions on Ω. Then the
function min{g, h} is semiconcave on Ω.

A convenient way to build semiconcave approximations of a given function is
provided by the method of inf-convolution, a standard tool in convex and nonsmooth
analysis. Let Ω be a subset of X, and let g be a positive function in Ω. Define, for
any α > 0,

gα(x) := inf
y∈Ω
{g(y) + α‖x− y‖2}.(5.1)

Lemma 5.3. Let g : X −→ R be a locally Lipschitz and proper function. Then
gα is semiconcave on X (in (5.1) the infimum is actually a minimum) and, moreover,
gα ↗ g, as α→ +∞, locally uniformly in X.

Proof. We leave the proof to the reader.
We can link the proximal subdifferentials of u and its inf-convolution. We have

the following lemma. (We refer to [14, Thm. 5.1, p. 44] for the proof.)
Lemma 5.4. Suppose that x ∈ X is such that ∂P gα(x) is nonempty. Then there

exists a point ȳ ∈ X satisfying the following.
a) The infimum in (5.1) is attained uniquely at ȳ.
b) The proximal subgradient ∂P gα(x) is the singleton {2α(x− ȳ)}.
c) 2α(x− ȳ) ∈ ∂P g(ȳ).
Proof of Theorem 2. By Theorem 1, there exists a control-Lyapunov pair for

the system (2.1); without loss of generality, we can suppose that the function W is
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1-Lipschitz on X. (Otherwise, we can set W̃ (x) := infy∈X{W (y) + ‖x− y‖}.)
For any 0 < r < R, we define the following sets:

SV [r,R] := {x ∈ X : V (x) ∈ [r,R]} and SV (R) := {x ∈ X : V (x) ≤ R}.

Let us consider an integer n ∈ N
∗. By the Lipschitz property of f and V , we can

consider Ln
f ≥ 1 (respectively, Ln

V ≥ 1) the Lipschitz constant of f(·, u) (respectively,
of V ) on the level set SV (Mn), where the constant Mn is defined by

Mn := max{V (x) : x ∈ SV (11n) + B̄}.

On the other hand, we denote by wn the minimum of W on SV [ 1
2n , 11n], and we set

αn := max

{
8n(Ln

V )2 + 1,
2Ln

V (1 + Ln
V Ln

f )

wn
+ 1, 11n

}
.(5.2)

We define by inf-convolution the function Vαn as follows:

Vαn(x) := inf
y∈X

{V (y) + αn‖x− y‖2}.(5.3)

Lemma 5.5. Let x0 ∈ SV (Mn). If the infimum in the definition of Vαn(x0) is
attained at ȳ, then ‖x0 − ȳ‖ ≤ min{ 1

8nLn
V
, wn

2(1+Ln
V
Ln
f
)} and

V (x0)− 1

8n
≤ Vαn(x0) ≤ V (x0).

Proof. If the infimum is attained for ȳ, then V (ȳ) ≤ V (x0) ≤ Mn =⇒ ȳ ∈
SV (Mn). Hence, if ‖x0 − ȳ‖ > min{ 1

8nLn
V
, wn

2(1+Ln
V
Ln
f
)}, then, by definition of Ln

f and

Ln
V ,

Vαn(x0) = V (ȳ) + αn‖x0 − ȳ‖2
≥ V (x0)− Ln

V ‖x0 − ȳ‖+ αn‖x0 − ȳ‖2
≥ V (x0) + ‖x0 − ȳ‖[αn‖x0 − ȳ‖ − Ln

V ]

≥ V (x0) + ‖x0 − ȳ‖
[
αn min

{
1

8nLn
V

,
wn

2(1 + Ln
V Ln

f )

}
− Ln

V

]
> V (x),

we find a contradiction. Hence, ‖x0 − ȳ‖ ≤ min{ 1
8nLn

V
, wn

2(1+Ln
V
Ln
f
)}. On the other

hand, we have found the estimate

Vαn(x0) ≥ V (x0) + ‖x0 − ȳ‖[αn‖x0 − ȳ‖ − Ln
V ].

Consequently, Vαn(x0) ≥ V (x0) − Ln
V ‖x0 − ȳ‖, which implies the desired inequality

by the bound on ‖x0 − ȳ‖.
Lemma 5.6. Let x0 ∈ SV [ 1

2n , 11n] and ζ ∈ ∂PVαn(x0); then

inf
u∈U
〈ζ, f(x0, u)〉 ≤ −W (x0)

2
.

Proof. By Lemmas 5.4 and 5.5, the infimum in the definition of Vαn(x0) is attained
uniquely at a point ȳ ∈ SV (11n) which satisfies ‖x0 − ȳ‖ ≤ wn

2(1+Ln
V
Ln
f
) and such that
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ζ ∈ ∂PV (ȳ). Thus, by the Lipschitz properties of f , V , and W , we can write

inf
u∈U
〈ζ, f(x0, u)〉 ≤ inf

u∈U
〈ζ, f(ȳ, u)〉+ sup

u∈U
‖ζ‖‖f(x0, u)− f(ȳ, u)‖

≤ −W (ȳ) + Ln
V Ln

f ‖x0 − ȳ‖ (decrease condition)

≤ −W (x0) + (1 + Ln
V Ln

f )‖x0 − ȳ‖

≤ −W (x0) +
wn

2
≤ −W (x0)

2
.

Lemma 5.7. For each n, there exists an increasing, C∞ function Ψn : R≥0 −→
R≥0 satisfying the following properties.

(i) For all t ∈ [0, 1
2n ],Ψn(t) = t + 1

8n .
(ii) For all t ∈ [ 1

n − 1
8n , 10n],Ψn(t) = t.

(iii) For all t ∈ [11n− 1
8n ,∞),Ψn(t) ≥ 11n + max{V (x) : Vαn(x) ≤ t}.

(iv) For all t ≥ 0,Ψ′
n(t) ≥ 1

2 .
Proof. The different intervals being disjoint, the different properties (i)–(iv) allow

us to define an increasing, piecewise, affine function that can be regularized in order
to get a C∞ function Ψn.

The function Ṽn := Ψn ◦ Vαn is semiconcave on X by Lemma 5.1. The definitive
Lyapunov pair (V,W) is defined for all x ∈ X by

V(x) := min
n∈N∗
{Ṽn(x)} and W(x) :=

W (x)

4
.(5.4)

Lemma 5.8. For all n ∈ N
∗, for all x0 ∈ SV [ 1

n , 10n],V(x0) = min1≤p≤n Ṽp(x0).
Furthermore, if ζ ∈ ∂PV(x0), then

inf
u∈U
〈ζ, f(x0, u)〉 ≤ −W (x0)

4
.(5.5)

Proof. Let be given n ∈ N
∗ and x0 ∈ SV [ 1

n , 10n]. By Lemma 5.5, Vαn(x0) ∈
[ 1
n − 1

8n , 10n]. Hence, Lemma 5.7 implies that Ṽn(x0) = Vαn(x0). On the other hand,
for any p ≥ n, by construction αp ≥ αn and then Vαp(x0) ≥ Vαn(x0). The same
argument as above on Ψp leads to

Ṽp(x0) = Vαp(x0) ≥ Ṽn(x0) = Vαn(x0).

Consequently, we have shown that V(x0) = min1≤p≤n Ṽp(x0). Now, if the minimum

in the definition of V(x0) is attained for Ṽn0(x0) (with 1 ≤ n0 ≤ n) then

ζ ∈ ∂PV(x0) =⇒ ζ ∈ ∂P Ṽn0(x0) = Ψ′(Vαn0
(x0))∂PVαn0

(x0).

We now have to show the inequality (5.5).
First case. If V (x0) > 11n0 and Vαn0

(x0) ≤ 11n0, then there exists ȳ ∈ x0 + B̄

(because αn0 ≥ 11n0) such that Vαn0
(x0) = V (ȳ) + αn0‖x0 − ȳ‖2. Therefore, ȳ ∈

SV (11n0) and x0 ∈ SV (Mn0) by definition of Mn0 . By Lemmas 5.5 and 5.7 (iii), we
obtain Vαn0 (x0) ≥ 11n0− 1

8n0
and Ṽn0(x0) ≥ 11n0 +V (x0). But Lemma 5.7(ii) implies

that

Ṽn(x0) = Vαn(x0) ≤ V (x0).

Since n0 is optimal and Ṽn0(x0) ≥ V (x0), we get a contradiction. Therefore, this case
cannot appear.



SEMICONCAVE CONTROL-LYAPUNOV FUNCTIONS 1063

Second case. If V (x0) > 11n0 and Vαn0
(x0) > 11n0, then Lemma 5.7(iii) implies

Ṽn0(x0) ≥ 11n0 + V (x0), and we conclude as in the first case.
Third case. If V (x0) < 1

2n0
, then

Vαn0
(x0) ≤ V (x0) <

1

2n0
=⇒ Ṽn0(x0) = Vαn0

(x0) +
1

8n0
≥ V (x0).

But we proved that Ṽn(x0) = Vαn(x0) ≤ V (x0), so the minimum is also attained for
n; then we have (5.5) by Lemma 5.6.

Fourth case. If x0 ∈ SV [ 1
2n0

, 11n0], then we conclude by Lemmas 5.6 and
5.7 (iv).

This last lemma shows that the minimum in the definition of V(x) is always
attained for x = 0. Therefore, the function V is semiconcave outside the origin (by
Lemma 5.2). On the other hand, V is continuous at the origin (because 0 ≤ V ≤ V )
and satisfies the decrease condition by (5.5). Consequently, V provides a CLF, which
proves the Theorem 2.

Acknowledgments. The author thanks Professor Francis Clarke for his com-
ments and his suggestions, and two anonymous referees who read the paper with great
care pointed out a large number of misprints and made interesting remarks.
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Abstract. In part I of this paper [S. Chen, X. Li, and X. Zhou, SIAM J. Control Optim., 36
(1998), pp. 1685–1702], an optimization model of stochastic linear quadratic regulators (LQRs) with
indefinite control cost weighting matrices is proposed and studied. In this sequel, the problem of
solving LQR models with system diffusions dependent on both state and control variables, which is
left open in part I, is tackled. First, the solvability of the associated stochastic Riccati equations
(SREs) is studied in the normal case (namely, all the state and control weighting matrices and the
terminal matrix in the cost functional are nonnegative definite, with at least one positive definite),
which in turn leads to an optimal state feedback control of the LQR problem. In the general indefinite
case, the problem is decomposed into two optimal LQR problems, one with a forward dynamics and
the other with a backward dynamics. The well-posedness and solvability of the original LQR problem
are then obtained by solving these two subproblems, and an optimal control is explicitly constructed.
Examples are presented to illustrate the results.

Key words. stochastic linear quadratic regulator, well-posedness, stochastic Riccati equation,
backward stochastic differential equation
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1. Introduction. The optimal linear quadratic regulator (LQR) problem, initi-
ated by Kalman [15], is one of the most important classes of optimal control problems.
In the deterministic case, it is well known that when the control weighting matrix R
in the cost function is positive definite, the problem can be solved elegantly via the
Riccati equation; see, e.g., [2] for a thorough study of the Riccati approach. For the
case when R is possibly singular, the deterministic LQR problem has also been exten-
sively studied as the problem of singular LQ control; refer to, e.g., [11, 14, 22]. The
stochastic LQR problem was first studied by Wonham [23] and has since been studied
by many other researchers (see, for example, [4, 12, 3] and the references therein); its
theory is widely believed to have been well developed and established. However, this
belief is challenged by our recent finding [9] that a class of stochastic LQR problems
with indefinite control weight cost is sensible and well-posed. (A related observation
in the context of stochastic stability, namely, that the corresponding Lyapunov func-
tion exists even if R is indefinite, was made in [7].) To be precise, let us consider the
following stochastic LQR problem:

Minimize J = E

{∫ T

0

1

2
[x(t)′Q(t)x(t) + u(t)′R(t)u(t)]dt +

1

2
x(T )′Hx(T )

}
subject to

{
dx(t) = [A(t)x(t) + B(t)u(t)]dt + [C(t)x(t) + D(t)u(t)]dW (t),
x(0) = x0.
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Here W (t) is a Brownian motion and the control variable u(t) takes value in some
Euclidean space. In part I of this paper [9], it is revealed that the above problem may
be well-posed even when R, the so-called control cost weighting matrix, is indefinite
(in particular, negative definite). This is quite contrary to the finite-dimensional,
deterministic case1 and has very deep reasons behind it, due to the uncertainty present
in the system. On the other hand, this phenomenon may occur only when the diffusion
coefficient of the system dynamics depends on the control (i.e., D �= 0), meaning that
controls would or could influence the uncertainty scale in the system. For a detailed
discussion and many examples, see [9].

In [9], a stochastic Riccati equation (SRE) is introduced to solve the LQR problem.
In general, when all the coefficients A,B, etc., are random processes, the SRE is a
nonlinear backward stochastic differential equation (BSDE) of the Pardoux–Peng [20]
type. If all the coefficients are deterministic, then the SRE reduces to the following
(deterministic) ODE:

Ṗ (t) = −(P (t)A(t) + A(t)′P (t) + C(t)′P (t)C(t) + Q(t))
+(P (t)B(t) + C(t)′P (t)D(t))(R(t) + D(t)′P (t)D(t))−1

×(B(t)′P (t) + D(t)′P (t)C(t)),
P (T ) = H,
K(t) ≡ R(t) + D(t)′P (t)D(t) > 0 ∀t ∈ [0, T ].

(1.1)

If the SRE admits a solution, then it is shown in [9] that an optimal control of the LQR
problem can be constructed explicitly as a linear state feedback via the solution to the
SRE. However, note that the SRE is in general different from the conventional Riccati
equation (for the deterministic case) due to the presence of the term (R +D′PD)−1,
and is in fact substantially more difficult to handle. In [9], a special case when C(t) ≡ 0
is treated, and necessary and sufficient conditions of solvability of the SRE (1.1) are
obtained. The general case when C(t) �≡ 0 remains an outstanding open problem.

This paper proceeds to tackle this open problem. We study two cases. The first
one is the so-called normal case, namely, when Q,R,H are all nonnegative definite,
with at least one positive definite. The solvability of the SRE (1.1) in this case is
shown under the assumption that either R or D′D is nonsingular, via a constructive
proof. This case is interesting in its own right, particularly in view of many financial
application problems where R is typically zero, whereas D′D is nonsingular under
the assumption of a complete market; refer to [26, 16]. Moreover, the normal case is
useful in solving the second case, the indefinite case with indefinite control weights.
In the indefinite case, we propose to decompose the original LQR problem into two
LQR problems, one with a forward dynamics (which is solvable via the SRE) and the
other with a backward dynamics. The stochastic maximum principle for systems with
backward dynamics [21, 13] is applied to solve the second problem. This leads to the
necessary conditions of the well-posedness and solvability of the original problem as
well as an explicit construction of its optimal control.

The rest of the paper is organized as follows. In section 2 the formulation of
optimal stochastic LQR models is given and some preliminary results are presented.
In section 3 we study a stochastic LQR problem with nonhomogeneous dynamics.
Sections 4 and 5 are devoted to the normal and indefinite cases, respectively. Finally,
section 6 gives some concluding remarks.

1It was recently found that some infinite-dimensional deterministic LQR problems are well-posed,
even though the control weight operator is negative; see [19, 8].
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2. Problem formulation and preliminaries. We consider in this paper a
stochastic optimal control problem. The system is governed by the following linear
Ito’s stochastic differential equation (SDE):

{
dx(t) = [A(t)x(t) + B(t)u(t)]dt + [C(t)x(t) + D(t)u(t)]dW (t),
x(0) = x0,

(2.1)

where W (t) is a given one-dimensional standard Brownian motion on [0, T ] (with
W (0) = 0); and u(·), an admissible control, is an Rm-valued, square integrable Ft-
adapted measurable process with

Ft = σ{W (s) : 0 ≤ s ≤ t}.(2.2)

The set of all such admissible controls is denoted by Uad. Note that we assumed
the Brownian motion to be one-dimensional just for simplicity; there is no essential
difficulty in the analysis below for the multidimensional case.

For each u(·) ∈ Uad, the associated cost is

J(u(·)) = E

{∫ T

0

1

2
[x(t)′Q(t)x(t) + u(t)′R(t)u(t)]dt +

1

2
x(T )′Hx(T )

}
.(2.3)

The solution x(·) of the SDE (2.1) is called the response of the control u(·) ∈ Uad,
and (x(·), u(·)) is called an admissible pair. The objective of the optimal control
problem is to minimize the cost function J(u(·)) over all u(·) ∈ Uad. An admissible
pair (x∗(·), u∗(·)) is called optimal if u∗(·) achieves the infimum of J(u(·)). The op-
timization problem (2.1)–(2.3) is called well-posed if infu(·)∈Uad J(u(·)) > −∞. Since
the data (A,B,C,D,Q,R,H) completely determine the optimal LQR problem (2.1)–
(2.3), sometimes for simplicity we may interchangeably use (A,B,C,D,Q,R,H) to
denote the problem.

Notation. We use the following notation in this paper:

M ′ : the transpose of any vector or matrix M ;
M j : the jth entry of any vector M ;

|M | : =
√∑

i,j m
2
ij for any matrix or vector M = (mij);

Sn : the space of all n× n symmetric matrices;
Sn+ : the subspace of all nonnegative definite matrices of Sn;

Ŝn+ : the subspace of all positive definite matrices of Sn;
C([0, T ];X) : the Banach space of X-valued continuous functions on [0, T ]

endowed with the maximum norm ‖ · ‖ for a given Hilbert space X;
ρx : the gradient or Jacobian of a function ρ with respect to the

variable x;
ρxx : the Hessian of a scalar function ρ with respect to the variable x.

Given a probability space (Ω,F , P ) with a filtration {Ft : a ≤ t ≤ b} (−∞ ≤
a < b ≤ +∞), a Hilbert space X with the norm ‖ · ‖X , and p (1 ≤ p ≤ +∞), define
the Banach space LpF (a, b;X) = {φ(·) = {φ(t, ω) : a ≤ t ≤ b}| φ(·) is an Ft-adapted,
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X-valued measurable process on [a, b], and E
∫ b
a
‖ φ(t, ω) ‖pX dt < +∞}, with the

norm

‖ φ(·) ‖F,p=
(
E

∫ b

a

‖ φ(t, ω) ‖pX dt

) 1
p

.

In the rest of this paper, we shall employ the usual convention of suppressing the
ω-dependence of all random functions. Sometimes we even write A for a (deterministic
or stochastic) process A(t), omitting the variable t, whenever no confusion arises.
Under this convention, when A ∈ C([0, T ];Sn), A ≥ (>)0 means A(t) ≥ (>)0 ∀t ∈
[0, T ].

The following basic assumption will be in force throughout this paper.
(A) The data appearing in the LQR problem satisfy

A,C ∈ L∞(0, T ;Rn×n),
B,D ∈ L∞(0, T ;Rn×m),
Q ∈ L∞(0, T ;Sn+),
R ∈ L∞(0, T ;Sm),
H ∈ Sn+.

Note that we restrict Q and H, but not R, to be nonnegative definite.
Let us consider the SRE (1.1). A function P ∈ C([0, T ];Sn) is called a solution

of (1.1) if it satisfies all the constraints in (1.1) (in particular, the third inequality
constraint). The following result is taken from [9, Theorem 3.2].

Theorem 2.1. If the SRE (1.1) admits a solution P , then the stochastic LQR
problem (A,B,C,D,Q,R,H) is well-posed. In addition, the feedback control

u∗(t, x) = −K−1(t)[B(t)′P (t) + D(t)′P (t)C(t)]x,(2.4)

which results in a unique solution of the state equation (2.1), is optimal with the
optimal value

inf
u(·)∈Uad

J(u(·)) =
1

2
x′

0P (0)x0.(2.5)

Remark 2.1. Theorem 2.1 implies that if the SRE (1.1) is solvable, then the origi-
nal LQR problem is completely solved. In general we call the problem (A,B,C,D,Q,R,H)
solvable via SRE if (1.1) admits a solution P and (2.4) gives an optimal feedback con-
trol. Note that, completely different from the deterministic case, the solvability of
the problem (A,B,C,D,Q,R,H) does not necessarily imply its solvability via SRE,
or the solvability of (1.1).

While the existence of the SRE (1.1) remains a hard problem, the uniqueness can
be proved in a rather routine way, which is presented in the following theorem for the
readers’ convenience.

Theorem 2.2. There is at most one solution to (1.1).
Proof. Suppose P1, P2 ∈ C([0, T ];Sn) are two solutions to (1.1). Consider the

following LQR problem:

Minimize J(s, y;u(·)) = E

{∫ T

s

1

2
[x(t)′Q(t)x(t) + u(t)′R(t)u(t)]dt +

1

2
x(T )′Hx(T )

}
subject to

{
dx(t) = [A(t)x(t) + B(t)u(t)]dt + [C(t)x(t) + D(t)u(t)]dW (t),
x(s) = y,
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where (s, y) ∈ [0, T ] × Rn. Theorem 2.1 implies that both 1
2y

′P1(s)y and 1
2y

′P2(s)y
are the minimum value of the cost functional J(s, y;u(·)), and hence they must be
identical. The desired result follows then from the arbitrariness of (s, y).

3. Nonhomogeneous LQR problem. In this section we consider the optimal
LQR problem where the cost is the same as that of (2.3) while there are random
nonhomogeneous terms in the dynamics:

(3.1){
dx(t) = [A(t)x(t) + B(t)u(t) + f(t)]dt + [C(t)x(t) + D(t)u(t) + g(t)]dW (t),
x(0) = x0,

with f, g ∈ L2
F (0, T ;Rn). While the study of this kind of system is interesting on its

own, it will be useful later in section 5.
Introduce an equation

(3.2){
dφ(t) = −[Ā(t)′φ(t) + C̄(t)′λ(t) + P (t)f(t) + C̄(t)′P (t)g(t)]dt + λ(t)dW (t),
φ(T ) = 0,

where

(3.3)

Ā = A−BK−1L, C̄ = C −DK−1L, L = B′P + D′PC, K = R + D′PD,

and P (·) is the solution to the SRE (1.1) (assuming that (1.1) is solvable). Equation
(3.2) is a BSDE whose solution is a pair of processes (φ, λ). If (1.1) admits a solution
P ∈ C([0, T ];Sn), then it is well known that (3.2) must have an Ft-adapted solution
(φ, λ) ∈ L2

F (0, T ;Rn)×L2
F (0, T ;Rn). See [5, 6] for the origin of the linear BSDE and

[25, Chapter 7] for a systematic account of the latest BSDE theory.
Theorem 3.1. If equations (1.1) and (3.2) admit solutions P ∈ C([0, T ];Sn) and

(φ, λ) ∈ L2
F (0, T ;Rn) × L2

F (0, T ;Rn), respectively, then the stochastic LQR problem
consisting of (3.1) and (2.3) has an optimal feedback control

u∗(t, x) = −K−1(t)[L(t)x + h(t)],(3.4)

where h(t) = B(t)′φ(t) + D(t)′λ(t) + D(t)′P (t)g(t). Moreover, the optimal value is

inf
u(·)∈Uad

J(u(·)) =
1

2
E

∫ T

0

[−h′K−1h + g′Pg + 2φ′f + 2λ′g](t)dt

+
1

2
x′

0P (0)x0 + φ(0)′x0.

(3.5)

Proof. Applying Ito’s formula, we get

1

2
d(x′Px) =

1

2
[u′D′PDu + x′(−Q + L′K−1L)x

+2u′Lx + 2x′(Pf + C ′Pg) + 2u′D′Pg + g′Pg](t)dt

+
1

2
{. . .}dW (t)

(3.6)

and

d(x′φ) = [x′(L′K−1B′φ− Pf − C ′Pg + L′K−1D′Pg + L′K−1D′λ)
+u′B′φ + u′D′λ + φ′f + λ′g](t)dt + {. . .}dW (t).

(3.7)
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Integrating both (3.6) and (3.7) from 0 to T , taking expectations, adding them to-
gether, and noting (2.3), one obtains

(3.8)

J(u(·)) ≡ J(u(·)) + E

{∫ T

0

d

(
1

2
x′Px + x′φ

)
−
(

1

2
x′Px + x′φ

) ∣∣∣T
0

}
=

1

2
E

∫ T

0

[u′Ku + 2u′(B′Px + D′PCx + D′Pg + B′φ + D′λ) + x′L′K−1Lx

+2x′L′K−1B′φ + 2x′L′K−1D′(Pg + λ) + g′Pg + 2φ′f + 2λ′g](t)dt

+
1

2
x′

0P (0)x0 + φ(0)′x0

=
1

2
E

∫ T

0

{[u + K−1(Lx + h)]′K[u + K−1(Lx + h)]− h′K−1h

+g′Pg + 2φ′f + 2λ′g}(t)dt + 1

2
x′

0P (0)x0 + φ(0)′x0.

It follows immediately that the optimal feedback control is given by (3.4) and the
optimal value by (3.5), provided that the corresponding state exists under such a
feedback control. To see if the latter assertion is true, notice that under (3.4), the
system (3.1) reduces to{

dx(t) = [Ā(t)x(t) + f̄(t)]dt + [C̄(t)x(t) + ḡ(t)]dW (t),
x(0) = x0,

(3.9)

where Ā and C̄ are given by (3.3), f̄ = f − BK−1h, and ḡ = g −DK−1h. Equation
(3.9) is a nonhomogeneous linear SDE. Since P ∈ C([0, T ];Sn), K−1 ∈ C([0, T ];Sn+),
and (φ, λ) ∈ L2

F (0, T ;Rn) × L2
F (0, T ;Rn), the coefficients Ā(t) and C̄(t) are uni-

formly bounded functions and the nonhomogeneous terms f̄ , ḡ ∈ L2
F (0, T ;Rn). Hence

(3.9) admits one and only one solution by standard SDE theory. This completes the
proof.

4. Solvability of SRE in normal case. We say that the (homogeneous) LQR
problem (2.1)–(2.3) (or (A,B,C,D,Q,R,H) or even (Q,R,H)) is in the normal case
if

Q ≥ 0, R ≥ 0, H ≥ 0,(4.1)

with at least one strictly positive definite at any time. It is seen directly from the cost
functional (2.3) that the LQR problem must be well-posed in the normal case (with
a nonnegative infimum). As we mentioned, the well-posedness of the LQR problem
in general does not necessarily lead to the solvability of the SRE (1.1). However, we
will show that in the normal case there does exist a solution to the SRE (1.1), under
the additional assumption that either R or D′D is positive definite, and therefore the
LQR problem is solvable via SRE. Note that, once again, the existence result to be
presented in this section is not only interesting for its own sake but also useful in
dealing with the case with indefinite control weights in section 5.

First we give a technical lemma.
Lemma 4.1. Given F,G ∈ L∞(0, T ;Rn×n), Q ∈ L∞(0, T ;Sn), and H ∈ Sn, the

linear matrix equation{
Ẋ(t) + X(t)F (t) + F (t)′X(t) + G(t)′X(t)G(t) + Q(t) = 0,
X(T ) = H,

(4.2)
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admits a unique solution X ∈ C([0, T ];Sn). Moreover, X(t) is nonnegative definite
for all t ∈ [0, T ] if Q(t) and H are nonnegative definite for all t ∈ [0, T ], and X(t)
is positive definite for all t ∈ [0, T ] if either Q(t) or H is positive definite for all
t ∈ [0, T ].

Proof. Since (4.2) is linear with bounded coefficients, the existence and uniqueness
are clear. Now let Φ be the solution of the following matrix stochastic differential
equation: {

dΦ(t) = F (t)Φ(t)dt + G(t)Φ(t)dW (t),
Φ(0) = I.

(4.3)

Clearly this equation admits a unique solution. Moreover, Φ(t) is invertible for all
t ∈ [0, T ], P -a.s. Indeed, by Ito’s formula, it is easy to show that the solution Ψ(·) to
the following equation:{

dΨ(t) = −Ψ(t)[F (t)−G2(t)]dt−Ψ(t)G(t)dW (t),
Φ(0) = I,

(4.4)

satisfies Ψ(t)Φ(t) = I for all t ∈ [0, T ], P -a.s. Now applying Ito’s formula again, we
obtain

d(Φ(t)′X(t)Φ(t)) = −Φ(t)′Q(t)Φ(t)dt + Φ(t)′[G(t)′X(t) + X(t)G(t)]Φ(t)dW (t).

Hence, noting that X(t) is deterministic, we have

(4.5)

X(t) = E

{
Φ−1(t)′Φ(T )′HΦ(T )Φ−1(t) +

∫ T

t

[Φ−1(t)′Φ′(r)Q(r)Φ(r)Φ−1(t)]dr

}
.

This proves the second part of the lemma.
Theorem 4.1. In the normal case, the SRE (1.1) admits a solution P ∈ C([0, T ];Sn+)

if either of the following two conditions holds:
(a) R(t) > 0 ∀t ∈ [0, T ];
(b) R(t) is singular, and D(t)′D(t) > 0 ∀t ∈ [0, T ].
Proof. First, (1.1) can be rewritten as{

Ṗ + PF + F ′P + G′PG + M ′RM + Q = 0,
P (T ) = H,

(4.6)

where

(4.7)

F = A−BM, G = C −DM, M = K−1L ≡ (R + D′PD)−1(B′P + D′PC).

We now introduce an iterative scheme to construct the solution to (4.6). Initially, let

(4.8)

P0 ≡ I, M0 = (R+D′P0D)−1(B′P0 +D′P0C), F0 = A−BM0, G0 = C −DM0.

Note that R + D′P0D = R + D′D is invertible at any time under either of the cases
(a) or (b). For i = 0, 1, 2, . . . , let Pi+1 be the solution to the following linear matrix
equation: {

Ṗi+1 + Pi+1Fi + F ′
iPi+1 + G′

iPi+1Gi + M ′
iRMi + Q = 0,

Pi+1(T ) = H,
(4.9)
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and set

(4.10)

Mi+1 = (R+D′Pi+1D)−1(B′Pi+1+D′Pi+1C), Fi+1 = A−BMi+1, Gi+1 = C−DMi+1.

Note that in the normal case, (4.9) must admit a solution Pi+1 ∈ C([0, T ];Sn+) in
view of Lemma 4.1. In case (a), R + D′Pi+1D always has an inverse. In case (b),
either Q(t) or H is positive definite for all t ∈ [0, T ], resulting in Pi+1 > 0 by Lemma
4.1. Therefore, in either case (a) or (b), the inverse in defining Mi+1 in (4.10) always
exists. Setting ∆i+1 = Pi+1 − Pi, one can show that ∆i+1 satisfies the following:

(4.11){
∆̇i+1 + ∆i+1Fi + F ′

i∆i+1 + G′
i∆i+1Gi − (Mi −Mi−1)

′(R + D′PiD)(Mi −Mi−1) = 0,
∆i+1(T ) = 0.

Once again, by Lemma 4.1 we conclude that ∆i+1 ≤ 0. Hence {Pi(·)} is a decreasing
sequence in C([0, T ];Sn+) and therefore has a limit (with respect to the max norm of
C([0, T ];Sn+)), denoted by P (·). Clearly P (·) is the solution to (4.6), and hence to
(1.1).

Equations (4.8)–(4.10) actually constitute a numerical algorithm to compute the
solution of the SRE (1.1). The following proposition presents an estimate for the
convergence speed of this algorithm.

Proposition 4.1. Let the assumptions of Theorem 4.1 hold. Let

{Pi} ⊂ C([0, T ];Sn+)

be constructed by the algorithm (4.8)–(4.10) and P ∈ C([0, T ];Sn+) be the solution to
the Riccati equation (1.1). Then

|Pi(t)− P (t)| ≤ c

∞∑
j=i

(c′)j−2

(j − 2)!
(T − t)j−2, i = 2, 3, . . . ,(4.12)

where c and c′ are constants that depend only on the coefficients of (1.1).
Proof. Note that ∆i+1 ≡ Pi+1 − Pi satisfies (4.11). Set Ki = R + D′PiD; then

(4.13)

Mi −Mi−1 = K−1
i (B′∆i + D′∆iC)−K−1

i−1D
′∆iDK−1

i (B′Pi−1 + D′Pi−1C).

Putting this into (4.11) and taking integration, we obtain

∆i+1(t) =

∫ T

t

[∆i+1Fi + F ′
i∆i+1 + G′

i∆i+1Gi

−(∆iB + C ′∆iD)K−1
i (B′∆i + D′∆iC)

+2(∆iB + C ′∆iD)K−1
i−1D

′∆iDK−1
i (B′Pi−1 + D′Pi−1C)

−(Pi−1B + C ′Pi−1D)K−1
i D′∆iDK−1

i−1KiK
−1
i−1D

′∆iDK−1
i

×(B′Pi−1 + D′Pi−1C)](s)ds.

(4.14)

By the proof of Theorem 4.1, the sequences {|Pi|}, {|Ki|}, and {|K−1
i |} are uniformly

bounded, and as a consequence so are the other sequences involved in (4.14). Hence,

|∆i+1(t)| ≤ c

∫ T

t

[|∆i+1(s)|+ |∆i(s)|]ds.(4.15)
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Denote vi(t) =
∫ T
t
|∆i+1(s)|ds. Then (4.15) reads

v̇i(t) + cvi(t) + cvi−1(t) ≥ 0,

which implies

vi(t) ≤ cecT
∫ T

t

vi−1(s)ds ≡ c′
∫ T

t

vi−1(s)ds.

By induction, we deduce that

vi(t) ≤ (c′)i−1

(i− 1)!
(T − t)i−1v1(0).

It then follows from (4.15) that

|∆i+1(t)| ≤ c

{
(c′)i−1

(i− 1)!
(T − t)i−1 +

(c′)i−2

(i− 2)!
(T − t)i−2

}
v1(0).(4.16)

This easily yields (4.12).
Remark 4.1. Theorem 4.1 gives sufficient conditions for an LQR problem to be

solved completely via the solution to the SRE in the normal case, with an optimal lin-
ear feedback control explicitly given by (2.4). It should be noted that the assumptions
of Theorem 4.1 do not exclude the possibility that the control weights R(t) might be
singular or even identically zero. In this case D(t)′D(t) needs to be positive definite
in order for the problem to be well-posed (see condition (b) of Theorem 4.1). The
term D(t)′D(t) measures how the control would influence the uncertainty, leading
to what we call the uncertainty cost or risk cost. It is this indirect cost that makes
the problem meaningful despite the fact that there is no direct control cost. Such a
situation typically occurs in financial applications. For example, in a mean-variance
portfolio selection problem, the risk (measured by the covariance matrix) is the only
factor that concerns the investor, which can be translated into an uncertainty cost for
the investor to make a decision. See Zhou and Li [26] for a detailed investigation of
such a model and Kohlmann and Zhou [16] for a related Black–Scholes model.

5. LQR control with indefinite control weights. Now we consider the prob-
lem where the control weighting matrix R is possibly indefinite. In view of Theorem
2.1, the problem boils down to the one of finding solutions to the SRE (1.1). However,
the solvability of (1.1) in general remains an open problem at the moment. In this
section, we are going to derive some necessary conditions for the LQR problem to be
solvable without directly dealing with the SRE (1.1). The problem that we are able
to handle is one that can be decomposed into two subproblems: one can be solved via
SRE, and the other cannot. Let us make it more precise. Since R(t) is symmetric, it
may be assumed to be a diagonal matrix for simplicity of exposition. Write R(t) as

R(t) =

(
R1(t) 0
0 R2(t)

)
,(5.1)

where the sizes of R1(t) and R2(t) are m1 and m2 (independent of t), respectively,
with m1 > 0 and m1 + m2 = m. We then divide the matrices B and D accordingly,
namely,

B(t) = (B1(t), B2(t)), D(t) = (D1(t), D2(t)).(5.2)
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Suppose that the LQR problem (A,B1, C,D1, Q,R1, H) is solvable via SRE. A typical
case is when (A,B1, C,D1, Q,R1, H) satisfies the assumptions of Theorem 4.1 or, in
particular, when R1 > 0; see section 4.

Using the above decomposition, we can rewrite system (2.1) and cost functional
(2.3) as 

dx(t) = [A(t)x(t) + B1(t)u1(t) + B2(t)u2(t)]dt
+[C(t)x(t) + D1(t)u1(t) + D2(t)u2(t)]dW (t),

x(0) = x0,
(5.3)

and

J(u(·)) = E

{∫ T

0

1

2
[x(t)′Q(t)x(t) + u1(t)

′R1(t)u1(t)

+u2(t)
′R2(t)u2(t)]dt +

1

2
x(T )′Hx(T )

}
.(5.4)

The main idea of our approach is to first fix u2(·), viewing f(t) ≡ B2(t)u2(t) and
g(t) ≡ D2(t)u2(t) as nonhomogeneous terms (which are random since u2(·) is random
in general) for an LQR problem where the dynamics is (5.3) with the control u1(·)
and the cost is (5.4). After this problem (parameterized by u2(·)) is solved, we solve
the remaining control problem in terms of u2(·). Namely, we carry out a two-step
procedure, which is made precise by the following lemma.

Lemma 5.1. We have the following:
(a) infu(·) J(u(·)) ≡ inf(u1(·),u2(·)) J(u1(·), u2(·)) = infu2(·) infu1(·) J(u1(·), u2(·)).
(b) u∗(·) = (u∗

1(·), u∗
2(·)) minimizes J(u(·)) if and only if u∗

2(·) minimizes
infu1(·) J(u1(·), u2(·)) and u∗

1(·) minimizes J(u1(·), u∗
2(·)).

Proof. (a) The conclusion is straightforward by the definition of infimum.
(b) Necessity. If u∗

2(·) does not minimize infu1(·) J(u1(·), u2(·)), then there exists
ū2(·) so that

inf
u1(·)

J(u1(·), ū2(·)) < inf
u1(·)

J(u1(·), u∗
2(·)).

By (a), we have

J(u∗
1(·), u∗

2(·)) = inf
u2(·)

inf
u1(·)

J(u1(·), u2(·))
≤ inf
u1(·)

J(u1(·), ū2(·))
< inf
u1(·)

J(u1(·), u∗
2(·))

≤ J(u∗
1(·), u∗

2(·)),
which leads to a contradiction. This proves the first assertion. As a consequence,

inf
u1(·)

J(u1(·), u∗
2(·)) = inf

u2(·)
inf
u1(·)

J(u1(·), u2(·)) = J(u∗
1(·), u∗

2(·)).

This shows the second assertion.
Sufficiency. If u∗(·) = (u∗

1(·), u∗
2(·)) does not minimize J(u(·)), then there is

ū(·) = (ū1(·), ū2(·)) ∈ Uad such that

J(ū1(·), ū2(·)) < J(u∗
1(·), u∗

2(·)) = inf
u1(·)

J(u1(·), u∗
2(·)).
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On the other hand,

J(ū1(·), ū2(·)) ≥ inf
u2(·)

inf
u1(·)

J(u1(·), u2(·)) = inf
u1(·)

J(u1(·), u∗
2(·)).

This leads to a contradiction.
In the first step, we consider the parameterized LQR problem (5.3)–(5.4), where

the state and control variables are x(·) and u1(·), respectively, with u2(·) regarded
as a parameter. This problem is one with nonhomogeneous terms which has been
studied in section 3. Equations (1.1) and (3.2) specialize to the following equations
in the present case:

Ṗ + PA + A′P + C ′PC + Q
−(PB1 + C ′PD1)(R1 + D′

1PD1)
−1(B′

1P + D′
1PC) = 0,

P (T ) = H,
K1(t) ≡ R1(t) + D′

1(t)P (t)D1(t) > 0 ∀t ∈ [0, T ],

(5.5)

and {
dφ = −[A′

1φ + C ′
1λ + (B′

2P + D′
2PC)′u2]dt + λdW (t),

φ(T ) = 0,
(5.6)

where P is the solution to (5.5), and

A1 = A−B1K
−1
1 (B′

1P + D′
1PC), C1 = C −D1K

−1
1 (B′

1P + D′
1PC).(5.7)

Owing to the way we decompose the matrix R into R1 and R2, the SRE (5.5) admits
a solution P ∈ C([0, T ];Sn). Then by Theorem 3.1, an optimal feedback control of
the problem (5.3)–(5.4) (with u2(·) regarded as a parameter) is

u1(t, x) = −K−1
1 (t){[B1(t)

′P (t) + D1(t)
′P (t)C(t)]x + B1(t)

′φ(t)
+D1(t)

′λ(t) + D1(t)
′P (t)D2(t)u2(t)},(5.8)

with the optimal value (which is a functional of u2(·))
(5.9)

J2(u2(·)) ≡ inf
u1(·)

J(u1(·), u2(·))

=
1

2
E

∫ T

0

{u′
2[D

′
2(P − PD1K

−1
1 D′

1P )D2 + R2]u2

+2φ′(B2 −B1K
−1
1 D′

1PD2)u2 + 2λ′(D2 −D1K
−1
1 D′

1PD2)u2

−2φ′B1K
−1
1 D′

1λ− λ′D1K
−1
1 D′

1λ− φ′B1K
−1
1 B′

1φ}(t)dt
+

1

2
x′

0P (0)x0 + φ(0)′x0

=
1

2
E

∫ T

0

{u′
2R̄u2 + 2φ′B̄u2 + 2λ′D̄u2 − (B′

1φ + D′
1λ)

′K−1
1 (B′

1φ + D′
1λ)}(t)dt

+
1

2
x′

0P (0)x0 + φ(0)′x0,

where 
R̄ = D′

2(P − PD1K
−1
1 D′

1P )D2 + R2,
B̄ = B2 −B1K

−1
1 D′

1PD2,
D̄ = D2 −D1K

−1
1 D′

1PD2.
(5.10)
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The next step is then to choose u2(·) so as to minimize (5.9) subject to (5.6). We see
that this is an LQR problem where the system dynamics (5.6) is a linear backward
stochastic differential equation (with (φ(·), λ(·)) as a pair of state variables) and the
cost functional (5.9) involves an initial cost. Let us call such a problem a backward
LQR problem. Our objective now is to solve this problem.

Peng [21] derived a set of necessary conditions (maximum principle) for optimal
controls of nonlinear forward-backward systems, which include the backward LQR
problem as a special space. However, the maximum principle presented in [21] is in a
local form. Recently Dokuchaev and Zhou [13] proved the global maximum principle.
For the readers’ convenience, let us first state the maximum principle for nonlinear
backward systems and then specialize to the backward LQR model.

Given ξ ∈ Rn,

minimize J(u(·)) = E

[∫ T

0

l(t, x(t), z(t), u(t))dt + h(x(0))

]
(5.11)

subject to

{
dx(t) = f(t, x(t), z(t), u(t))dt + z(t)dW (t),
x(T ) = ξ.

(5.12)

The set of admissible controls is defined as BUad = L2
F (0, T ;Rm). We assume

that
(B) f, l, h are continuous in their argument(s) and continuously differentiable in

(x, z, u). Moreover, the derivatives of f are uniformly bounded, the deriva-
tives of l are bounded by C(1 + |x| + |z| + |u|), and the derivative of h is
bounded by C(1 + |x|).

Under the above assumption, given u(·) ∈ BUad, the nonlinear backward SDE
(5.12) admits a unique Ft-adapted solution pair (x(·), z(·)) (see Pardoux and Peng
[20]) and the cost (5.11) is well defined.

Define a Hamiltonian

H(t, x, z, u, q) = q′f(t, x, z, u)− l(t, x, z, u)(5.13)

for (t, x, z, u, q) ∈ [0, T ]×Rn ×Rn ×Rm ×Rn.
Theorem 5.1 (see [13, Theorem 3.1]). If (x∗(·), z∗(·), u∗(·)) is optimal for prob-

lem (5.11)–(5.12), then it must satisfy

(5.14)

H(t, x∗(t), z∗(t), u∗(t), q(t)) = max
u∈Rm

H(t, x∗(t), z∗(t), u, q(t)), P-a.s., a.e. t ∈ [0, T ],

where q(·) is the solution of the adjoint equation

(5.15){
dq(t) = −Hx(t, x

∗(t), z∗(t), u∗(t), q(t))dt−Hz(t, x
∗(t), z∗(t), u∗(t), q(t))dW (t),

q(0) = −hx(x∗(0)).

We now apply the above result to the backward LQR problem consisting of (5.6)
and (5.9). If (φ∗(·), λ∗(·), u∗

2(·)) is an optimal triple, then the corresponding adjoint
equation (5.15) reduces to

dq(t) = [A1q + B1u
∗
2 −B1K

−1
1 B′

1φ
∗ −B1K

−1
1 D′

1λ
∗](t)dt

+[C1q + D1u
∗
2 −D1K

−1
1 B′

1φ
∗ −D1K

−1
1 D′

1λ
∗](t)dW (t),

q(0) = −x0.
(5.16)
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Theorem 5.2. If (φ∗(·), λ∗(·), u∗
2(·)) is optimal for (5.6) and (5.9), then

(5.17)

R̄(t) ≡ D2(t)
′[P (t)− P (t)D1(t)K

−1
1 (t)D1(t)

′P (t)]D2(t) + R2(t) ≥ 0 ∀t ∈ [0, T ].

Moreover, if R̄(t) > 0 ∀t ∈ [0, T ], then the optimal control u∗
2(·) must satisfy

u∗
2(t) = −R̄−1(t)[(B′

2P + D′
2PC1)q + B′

1φ
∗ + D′

1λ
∗](t).(5.18)

Proof. The derivative of the Hamiltonian in u in the present LQR case is

Hu(t, φ, λ, u2, q) = −R̄(t)u2 − [(B′
2P + D′

2PC1)(t)q + B1(t)
′φ + D1(t)

′λ].(5.19)

Therefore the desired (5.18) and (5.17) follow from the first-order and second-order
necessary conditions of the maximum condition (5.14), respectively.

To summarize the above results, we have the following theorem.
Theorem 5.3. Assume that R(t) is decomposed according to (5.1) such that

the SRE (5.5) has a solution P (·). If the stochastic LQR problem (5.3)–(5.4) has an
optimal control u∗(·) = (u∗

1(·), u∗
2(·)), then the following must hold:

D′
2[P − PD1(R1 + D′

1PD1)
−1D′

1P ]D2 + R2 ≥ 0.(5.20)

Moreover, if we assume that the inequality in (5.20) is strict (for all t ∈ [0, T ]), then
the optimal control u∗(·) = (u∗

1(·), u∗
2(·)) can be obtained by the following:

(5.21)

u∗
2(t) = −R̄−1(t){[B2(t)

′P (t) + D2(t)
′P (t)C1(t)]q(t) + B1(t)

′φ(t) + D1(t)
′λ(t)},

where (q(·), φ(·), λ(·)) is the solution to the following forward-backward SDE:

(5.22)

dq(t) = {[A1 −B1R̄
−1(B′

2P + D′
2PC1)]q −B1(R̄

−1 + K−1
1 )B′

1φ
−B1(R̄

−1 + K−1
1 )D′

1λ}(t)dt
+{[C1 −D1R̄

−1(B′
2P + D′

2PC1)]q −D1(R̄
−1 + K−1

1 )B′
1φ

−D1(R̄
−1 + K−1

1 )D′
1λ}(t)dW (t),

dφ(t) = −{[A1 −B1R̄
−1(B′

2P + D′
2PC1)]

′φ + [C1 −D1R̄
−1(B′

2P + D′
2PC1)]

′λ
+(B′

2P + D′
2PC1)

′R̄−1(B′
2P + D′

2PC1)}(t)dt + λ(t)dW (t),
q(0) = −x0,
φ(T ) = 0,

and

u∗
1(t) = −K−1

1 (t){[B1(t)
′P (t) + D1(t)

′P (t)C(t)]x(t) + B1(t)
′φ(t)(5.23)

+D1(t)
′λ(t) + D1(t)

′P (t)D2(t)u
∗
2(t)},

with x(·) being the solution to the following SDE:

(5.24)
dx(t) = [A1x− (B1K

−1
1 D′

1PD2 −B2)u
∗
2 −B1K

−1
1 B′

1φ−B1K
−1
1 D′

1λ](t)dt
+[C1x− (D1K

−1
1 D′

1PD2 −D2)u
∗
2 −D1K

−1
1 B′

1φ−D1K
−1
1 D′

1λ](t)dW (t),
x(0) = x0.
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Proof. First, (5.22) is obtained by replacing u∗
2(t) with the right-hand side of

(5.18) in (5.16) and (5.6). This is an essentially decoupled forward-backward SDE.
Therefore, one can first solve the backward equation for (φ, λ) and then solve the for-
ward equation for q. The existence and uniqueness of the solutions to the two equa-
tions are clear, as they are linear with bounded coefficients and square-integrable non-
homogeneous terms. Next, if u∗(·) = (u∗

1(·), u∗
2(·)) is optimal for the problem (5.3)–

(5.4), then by Lemma 5.1, u∗
2(·) must minimize J2(u2(·)) ≡ infu1(·) J(u1(·), u2(·)),

which is a backward LQR problem where the dynamics is (5.6) and the cost is (5.9).
Then (5.20) is implied by Theorem 5.2. Furthermore, as mentioned, if we substitute
the optimal control obtained in (5.18) to (5.6) and (5.16), then we get exactly (5.22).
Thus (5.21) is given by (5.18). Second, (5.24) is obtained by replacing u∗

1(t) with (5.8)
in (5.3), which evidently has a unique solution. Then (5.23) is identical to (5.8). This
completes the proof.

Remark 5.1. Condition (5.20) gives the precise trade-off between the “good” part
(R1, D1) and the “bad” part (R2, D2) of the overall system in order for the problem
to be well-posed and solvable. For example, suppose R1 > 0 and R2 ≤ 0. Then (5.20)
shows that R2 cannot be more negative than −D′

2[P −PD1(R1+D′
1PD1)

−1D′
1P ]D2.

On the other hand, we see that the larger D2 is (which is the part of the noise
corresponding to the “bad” component), or the smaller D1 is (which is the part of
the noise corresponding to the “good” component), the more likely it is that the LQR
problem will be well-posed.

Example 5.1. Consider the following LQR problem:

Minimize J = E

{∫ 1

0

1

2
[x2(t) + r1(t)u

2
1(t) + r2(t)u2(t)

2]dt +
1

2
x(1)2

}
subject to

{
dx(t) = (u1(t) + u2(t))dW (t),
x(0) = 0,

(5.25)

where both r1(t) and r2(t) are possibly negative. In this case, A(t) = B1(t) = B2(t) =
C(t) = 0, D1(t) = D2(t) = 1, Q(t) = 1, (R1(t), R2(t)) = (r1(t), r2(t)), and H = 1.
The SRE (5.5) corresponding to u1 is

Ṗ (t) = −1, P (1) = 1.

Hence P (t) = 2 − t. The equation has a solution when r1(t) + 2 − t > 0 ∀t ∈ [0, 1],
which is equivalent to r1(t) > −1. In this case K1(t) = r1(t) + 2− t. It is easy to see
that the necessary condition (5.20) for the overall problem to be well-posed reduces
to

r1(t)(2− t)

r1(t) + 2− t
+ r2(t) ≥ 0 ∀t ∈ [0, 1].(5.26)

Moreover, when the above inequality is strict, the forward-backward equation (5.22)
specializes to {

dq(t) = 0, dφ(t) = λ(t)dW (t),
q(0) = 0, φ(1) = 0,

which, by the uniqueness of its solutions, has the solution (q(t), φ(t), λ(t)) = (0, 0, 0).
Therefore the optimal (feedback) controls (5.23) and (5.21) (if they exist) reduce to
u∗

1(t) = u∗
2(t) = 0.
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To see that the above control is indeed optimal under (5.26), by applying Ito’s
formula to x(t)2 one easily gets the following:

J(u(·)) =
1

2
E

∫ 1

0

{(2− t)[u1(t) + u2(t)]
2 + r1(t)u1(t)

2 + r2(t)u2(t)
2}dt

=
1

2
E

∫ 1

0

[(r1(t) + 2− t)u1(t)
2 + 2(2− t)u1(t)u2(t) + (2− t + r2(t))u2(t)

2]dt

≥ 1

2
E

∫ 1

0

[
(r1(t) + 2− t)u1(t)

2 + 2(2− t)u1(t)u2(t) +
(2− t)2

r1(t) + 2− t
u2(t)

2

]
dt

=
1

2
E

∫ 1

0

(r1(t) + 2− t)

[
u1(t) +

2− t

r1(t) + 2− t
u2(t)

]2
dt,

where the last inequality is due to (5.26). Therefore the optimal value must be non-
negative. However, the control (u∗

1(t), u
∗
2(t)) = (0, 0) gives rise to the zero cost, and

hence must be optimal.
Let us now look at a more substantial example.
Example 5.2. Consider the following LQR problem:

Minimize J = E

{∫ 1

0

1

2
[r1u1(t)

2 + r2u2(t)
2]dt +

1

2
x(1)2

}
subject to

{
dx(t) = u1(t)dt + u2(t)dW (t),
x(0) = x0,

(5.27)

where r1 > 0 and r2 are given constants. In this case, A(t) = B2(t) = C(t) = D1(t) =
0, B1(t) = D2(t) = 1, Q(t) = 0, (R1(t), R2(t)) = (r1, r2), and H = 1. We see that
u1(·) and u2(·) control the drift and diffusion parts, respectively. The SRE (5.5)
corresponding to u1 is  Ṗ (t)− P (t)2r−1

1 = 0,
P (1) = 1,
r1 > 0.

(5.28)

The solution to this equation is

P (t) =
r1

1 + r1 − t
.(5.29)

We can then calculate via (5.7) to get

A1(t) =
1

t− 1− r1
, C1(t) = 0.(5.30)

Moreover, condition (5.20) reduces to

R̄(t) ≡ r1

1 + r1 − t
+ r2 ≥ 0 ∀t ∈ [0, 1],(5.31)

or, equivalently,

r1

1 + r1
+ r2 ≥ 0.(5.32)

This gives the trade-off between r1 and r2. Furthermore, when the above inequality
is strict, the equation for (φ(·), λ(·)) in (5.22) becomes a homogeneous linear equation
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with terminal value being 0. Hence by the uniqueness of its solution we have φ(t) ≡
λ(t) ≡ 0. Therefore (5.21) gives u∗

2(t) = 0. Putting u∗
2(·), φ(·) and λ(·) into (5.24), we

get

ẋ(t) =
1

t− 1− r1
x(t), x(0) = x0.(5.33)

The solution to this equation is x(t) = 1+r1−t
1+r1

x0. From (5.23), it follows that u∗
1(t) =

− 1
1+r1

x0. To conclude, the optimal control of this problem, if it ever exists, must be

given by u∗(t) = (− 1
1+r1

x0, 0). A direct computation shows that the corresponding

optimal value is 1
2

r1
1+r1

x2
0 (which is nonnegative).

6. Concluding remarks. The stochastic LQR problem with indefinite control
weights is not only mathematically interesting and challenging, but also practically
important in touching the deep nature of the uncertainty as well as suggesting how
to control the uncertainty. In [9], it is shown that the stochastic LQR problem can be
completely solved if the corresponding SRE has a solution. In this paper, we presented
the sufficient conditions for the existence and uniqueness of solutions to SRE in the
normal case. As for the indefinite case (with C �= 0), we are still not able to prove the
solvability of SRE. However, we construct an optimal feedback control for the original
LQR problem based on a decomposition approach.

It is interesting to see that the above decomposition approach leads to a backward
LQR problem. This problem is actually interesting in its own right. More generally,
we may consider a nonlinear stochastic control problem with backward dynamics.
This kind of problem may also have potential applications in finance.

The work in [9] has led to a series of in-depth research projects on indefinite
stochastic LQR control. For example, the problem with integral constraints was
studied in [17], and the discrete-time case was treated in [18]. In [10] the problem with
random coefficients was tackled by using functional analysis and forward-backward
SDE theory. The computational aspect of the problem was first investigated in [1]
by means of linear matrix inequalities and semidefinite programming, followed by a
thorough study in [24]. Applications to finance problems were discussed in [26, 16].

To conclude, this is a very exciting research domain. Many fundamentally impor-
tant problems remain open, and the resolutions to these problems will in turn give
rise to new problems.

Acknowledgment. The authors would like to thank the two referees for their
constructive comments that led to an improved version of the paper.
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ON STATE CONSTRAINT REPRESENTATIONS AND
MESH-DEPENDENT GRADIENT PROJECTION CONVERGENCE

RATES FOR OPTIMAL CONTROL PROBLEMS∗
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Abstract. Two distinct nonlinear programming formulations are investigated for ODE optimal
control problems with pointwise state and control constraints. The first formulation treats the differ-
ential equations of state as an equality constraint in the conventional manner. The second formulation
employs a different equality constraint entailing the integrated state transition map. Related con-
vergence rate estimates are developed for augmented gradient projection methods and discrete-time
approximations to a large representative class of ODE control problems. In the first formulation, the
rate estimates are mesh-dependent, and the predicted number of inner loop gradient projection iter-
ations needed to achieve a fixed small deviation from the optimal value of the augmented Lagrangian
is inversely proportional to the square of the mesh width. In the second formulation, the conver-
gence rates and predicted iteration counts are mesh-invariant. The computational costs-per-iteration
in the two formulations are comparable. These estimates elucidate previously published numerical
experiments with augmented gradient projection methods and constrained regulator problems.

Key words. optimal control, pointwise state/control constraints, regulator problems, nonlinear
programs, constraint representations, discrete-time approximations, gradient projection methods,
mesh-dependent convergence rates
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1. Introduction. An ODE or PDE optimal control problem can be formulated
in various ways as an infinite-dimensional nonlinear program (NLP) with specially
structured cost function and constraints. Each such formulation, combined with a
standard iterative NLP method and an approximate finite difference or finite element
representation for the differential equations of state, yields a different numerical algo-
rithm for the control problem. In general, the effectiveness of the resulting algorithm
depends not only on the iterative method and discrete approximation scheme, but
also on the underlying NLP formulation. The numerical experiments reported in [17]
demonstrate this for an unscaled augmented gradient projection (AGP) method and
the Euler finite difference approximation expressed in two different NLP formulations
of a prototype ODE regulator problem with pointwise state and control constraints.

The first NLP formulation addressed in [17] is the conventional one for state
constrained control problems, i.e., state and control vectors x and u are the primal
variables and the discrete approximation to the differential equations of state is treated
as an equality constraint that implicitly defines a functional relationship between x
and u. The second formulation in [17] is new for control problems with pointwise state
constraints. In this scheme, the state vectors in the primal variable set are replaced by
artificial variables v linked to u through an equality constraint φ(u)−v = 0 that entails
the explicit “integrated” state solution map u→ x = φ(u) for the discrete equations of
state. Computational costs-per-iteration for efficient implementations of the unscaled

∗Received by the editors February 1, 1999; accepted for publication (in revised form) August 2,
2000; published electronically November 15, 2000. This research was supported by NSF research
grant DMS-9803755.

http://www.siam.org/journals/sicon/39-4/35165.html
†Mathematics Department, Box 8205, North Carolina State University, Raleigh, NC 27695-8205

(joe dunn@ncsu.edu).

1082



STATE CONSTRAINTS AND GRADIENT PROJECTION 1083

AGP method are similar in the two NLP formulations, and inversely proportional
to the Euler mesh width in each case. On the other hand, the mesh-dependent
convergence properties of the AGP method are very different in the two schemes.
In the conventional NLP formulation, the number of inner and outer AGP iterates
required to achieve fixed residual tolerances increases rapidly with decreasing mesh
width, whereas the comparable iteration counts in the alternative formulation are
essentially mesh-invariant. This formulation-dependent disparity in iteration counts
is clearly reflected in the ordinates of the FLOP count graphs of [17], which can
already differ by several orders of magnitude even on meshes that are still too coarse
to support good approximations to the limiting ODE control problem.

The present article reinforces the numerical experiments of [17] with an analysis of
the AGP inner loop based on the convergence theory of [11] and new root-mean-square
(RMS) norm quadratic growth and Lipschitz norm estimates for the augmented La-
grangian and its gradient. The latter estimates are derived separately for the two NLP
formulations of the uniform mesh Euler discrete-time approximation for an important
class of ODE optimal control problems with strongly convex costs, linear state equa-
tions, and pointwise quasi-convex inequality constraints on control and state vectors.
The Lagrangian quadratic growth constants behave similarly in both formulations
as the Euler mesh-width approaches zero; however, the corresponding Lagrangian
gradient Lipschitz norms act quite differently. In the conventional formulation, the
Lipschitz norm is inversely proportional to the square of the mesh width. In the
alternative formulation, the Lipschitz norm remains bounded as the mesh width ap-
proaches zero. These estimates produce disparate cost value convergence rate bounds
that mirror the behavior observed in the numerical calculations of [17]. Although a
comparable analysis for higher order discrete approximation schemes with uniform or
nonuniform time steps is not attempted in the present investigation, a consideration of
the L

2 continuity properties of the continuous-time augmented Lagrangians suggests
that similar formulation-dependent convergence rate disparities are likely to occur
for any consistent numerical integration scheme. It is interesting to note here that
mesh-invariant Lipschitz continuity properties for derivatives are also crucial in the
mesh independence principle of Allgower et al. [2] for consistent finite-dimensional
implementations of Newton’s method for nonlinear equations F (x) = 0 in Banach
spaces.

When pointwise constraints are imposed separately on the state and control vari-
ables, the associated alternative NLP formulation proposed in [17] enjoys two addi-
tional advantages. In this commonly encountered situation, the sets of admissible
primal variable values (u(t), v(t)) are finite-dimensional Cartesian products, the cor-
responding augmented Lagrangian can be minimized explicitly with respect to the
artificial variable v, the resulting reduced augmented Lagrangian is often locally Lip-
schitz continuously differentiable, and hence gradient projection methods can be used
to minimize this reduced Lagrangian approximately with respect to the remaining
primal variable u. (Augmented Lagrangian methods employing similar reduced La-
grangians have been proposed by Rockafellar [28] and Bertsekas [5] in conjunction with
squared slack variable treatments of general inequality-constrained finite-dimensional
NLPs.) It is readily seen that the elimination of v from the primal variable set will gen-
erally yield a major reduction in the cost of each inner iteration in the AGP scheme.
Moreover, estimates derived here for a gradient projection (GP) method prototype
applied with and without explicit minimization of the augmented Lagrangian in v
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indicate that the former AGP scheme not only has a smaller computational cost per
inner iteration, but also may converge more rapidly.

An extreme instance of separated pointwise constraints occurs when the state
is entirely unrestricted. In this case, the augmented Lagrangian in the alternative
NLP formulation of [17] is trivially minimized over v for each admissible u by set-
ting the (unconstrained) artificial variable v equal to the φ(u) + λ/c, where λ is the
equality constraint’s multiplier and c is the penalty constant in the augmented La-
grangian. The resulting reduced augmented Lagrangian is then merely the control
problem’s cost function with x replaced by φ(u), the artificial variable v, and the
equality constraint and the multiplier λ disappear from the formulation at the first
AGP multiplier update, and the AGP scheme effectively collapses to a basic single
loop GP iteration for the given control-constrained optimal control problem. Certain
mesh-independent ε-active constraint identification results have already been proved
by Kelley and Sachs [23] for a standard GP method and Euler discrete-time approxi-
mations to ODE optimal control problems with bounded scalar control variables and
unrestricted states. In addition, infinite-dimensional local convergence rate theorems
have also been proved in [29] and [16] for this class of bounded input ODE optimal
control problems, and for vector-valued extensions with polyhedral admissible control
input sets.

For general NLPs, deteriorating convergence rates are also seen in AGP inner
loop iterations when the penalty constant c is increased without bound and the cor-
responding inner relaxed AGP optimization problem thereby becomes increasingly
ill-conditioned. First order scaling operators designed to address this issue have been
investigated by Luenberger [25] and Hager [20] for unconstrained relaxed optimization
problems with penalty terms, and by Hager [21] for analogous constrained problems
with penalized objective functions. These scaling operators are prima facie well suited
to the conventional NLP formulation of the pointwise constrained ODE optimal con-
trol problem, since they derive from the Jacobian of the penalized dynamic equation
constraint, and the inherent sparse “staircase structure” in this Jacobian should be
exploitable in the calculation of the iteration maps for associated scaled gradient-
related descent methods. (This is clearly true for the unconstrained relaxed penalized
problems that arise in the absence of pointwise constraints, but somewhat less obvi-
ous for pointwise inequality-constrained relaxed penalized problems and related scaled
GP methods.) Moreover, since the mesh width parameter appears explicitly in the
discrete-time dynamic equation constraints, it has been suggested that the scaling
principles in [25], [20], and [21] may enhance the convergence behavior of associated
gradient-related descent methods, not only as c increases without bound but also as
the mesh width approaches 0. Unfortunately, this interesting conjecture is at present
completely unsupported by any numerical or theoretical investigations for pointwise
inequality-constrained ODE control problems and related AGP methods. Even in the
absence of pointwise constraints, there are no pertinent published numerical results,
and it is not known how the c-invariant upper limits on geometric convergence ratios
in the extant general scaled steepest descent convergence theorems of [25] and [20]
behave as the mesh width approaches 0. In particular, if these upper limits are not
bounded away from 1 as the mesh width approaches 0, the associated scaled steepest
descent methods may exhibit mesh-dependent deteriorating convergence rates.

2. The ODE optimal control problem. In the continuous-time optimal con-
trol problems treated here, the control schedules u(·) are considered to be bounded
measurable functions from [0, 1] to R

m, the state trajectories x(·) are absolutely con-
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tinuous functions from [0, 1] to R
n, the cost functionals are integrated running loss

functions, ∫ 1

0

f0(t, u(t), x(t)) dt,(2.1)

and the constraints are differential side conditions,

dx

dt
(t)

a.e.
= f(t, u(t), x(t)), t ∈ [0, 1],(2.2a)

x(0) = η0,(2.2b)

and pointwise vector-valued inequalities,

γ(t, u(t), x(t)) ≤ 0, t ∈ [0, 1].(2.3)

The ensuing analysis is restricted to Lipschitz continuously differentiable strongly
convex cost functionals, continuous quasi-convex constraint component functions
γ1(t, ·), . . . , γr(t, ·), and linear rate functions,

f(t, ξ, η) = A(t)η +B(t)ξ,(2.4)

with bounded measurable matrix-valued coefficient functions A(·) and B(·). The class
of optimal control problems that meet these restrictions is broadly representative, and
includes the prototype ODE linear-quadratic regulator (LQR) problem with pointwise
bounds on the state and control vector components.

3. Nonlinear programming formulations. The ODE optimal control prob-
lem of section 2 can be cast as an infinite-dimensional NLP,

min
w∈S

J(w),(3.1a)

subject to the constraints

g(w) ≤ 0(3.1b)

and

h(w) = 0,(3.1c)

where S is a linear variety (i.e., translated subspace) in a normed vector space W, J
is a real-valued functional on W, g and h map W to normed vector spaces Zg and Zh,
respectively, and “≤” is a partial order relation on Zg. Many such formulations are
possible. Two are considered here.

3.1. Formulation I. The ODE optimal control problem of section 2 is com-
monly treated as an infinite-dimensional nonlinear program (3.1) in a direct sum
W = U⊕X, where U is a vector space of bounded measurable functions u(·) : [0, 1]→
R
m, X is a vector space of absolutely continuous functions x(·) : [0, 1] → R

n with
bounded measurable derivatives, S is the linear variety of pairs w = (u, x) ∈ W for
which x(0) = η0, Zg is a space of bounded measurable functions from [0, 1] to R

r with
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the standard pointwise partial order relation, Zh is a space of bounded measurable
functions from [0, 1] to R

n, and J , g, and h are defined by

J(w) =

∫ 1

0

f0(t, u(t), x(t)) dt,(3.2a)

g(w)(t) = γ(t, u(t), x(t)),(3.2b)

and

h(w)(t)
a.e
=

dx

dt
(t)−A(t)x(t)−B(t)u(t)(3.2c)

for t ∈ [0, 1]. Most often, Zg and Zh are equipped with standard L
∞ norms, and

the norm on W is comprised of matching L
∞ and Sobolev norms on the u and x

components of w, respectively. Under reasonable conditions on f0 and γ, the functions
J , g, and h are then well defined and continuously Fréchet differentiable at least
once. However, since finite-dimensional discrete-time augmented gradient projection
calculations are typically implemented in simple RMS norms on the vectors that
approximate w and h(w), it can be seen that smoothness properties of J , g, and h
relative to function space L

2 counterparts of the RMS norms on x are potentially more
interesting for present considerations than the contrasting L

∞-Sobolev properties.
Hence, it is significant that the equality constraint map h in (3.2c) and an associated
augmented Lagrangian,

L(λ,w) = J(w) + 〈λ, h(w)〉+ 1

2
c ‖h(w)‖2

= J(w) +
1

2
c

(∥∥∥∥λc + h(w)

∥∥∥∥2

−
∥∥∥∥λc
∥∥∥∥2
)

,(3.3)

are not even continuous, much less continuously differentiable, when U, X, and Zh

are provided with L
2 inner products and norms. This L

2 smoothness singularity sug-
gests that the convergence properties of discrete-time AGP implementations related to
the present continuous-time NLP formulation may deteriorate on increasingly refined
meshes.

Note 1. When the subspaces X and Zh are equipped with L
2 norms, it is easily

shown that the linear differential operator in (3.2c) is unbounded and hence discon-
tinuous. As might be expected, a related construction in Example 1 of section 7
demonstrates that the RMS norms of the associated bounded Euler finite-difference
operators on uniform meshes for the interval [0, 1] increase without limit as the mesh
width approaches zero, and the resulting unbounded growth in Lipschitz norms of the
Lagrangian gradient has potentially adverse consequences for AGP convergence rates.

On the other hand, suppose that X is supplied with the inner product induced X
2
1

Sobolev norm, and that U, Zg, and Zh are provided with the inner product induced
L

2 norms. The differential operator d/dt is now trivially bounded, and for a restricted
but still important class of functions f0 and γ, the related maps h, g and J and L
are Lipschitz continuously Fréchet differentiable with respect to the inherited inner
product induced norm on the direct sum W = U⊕X, and in addition, the augmented
Lagrangian L simultaneously satisfies strong convexity and quadratic coercivity con-
ditions in this norm. (The latter properties can be established with constructions
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similar to those used in the proof of Lemma 8.3.) This suggests that discrete-time
AGP implementations in finite-dimensional inner product space counterparts of W

may exhibit asymptotically mesh-independent convergence rates as mesh widths are
reduced to zero. Unfortunately, in practice, the required gradient/projection compu-
tations in the Sobolev-like finite-dimensional weighted inner products are prohibitively
expensive.

3.2. Formulation II. Reference [17] proposes an alternative NLP formulation
for the optimal control problem of section 2 in a direct sum W = U ⊕ V, where U

and V are vector spaces of bounded measurable functions from [0, 1] to R
m and R

n,
respectively, the linear variety S is W itself, and Zg and Zh are as before in section 3.1.
In this setting, J , g, and h are prescribed by

J(u) =

∫ 1

0

f0(t, u(t), φ(u)(t)) dt,(3.4a)

g(w)(t) = γ(t, u(t), v(t))(3.4b)

and

h(w)(t) = φ(u)(t)− v(t)(3.4c)

for t ∈ [0, 1], where φ(u) is the unique absolutely continuous solution of the linear
ODE initial value problem

dx

dt
(t)

a.e.
= A(t)x(t) +B(t)u(t), t ∈ [0, 1],(3.5a)

x(0) = η0.(3.5b)

Equivalently, φ is the affine map defined by

φ(u) = Θu+ θ,(3.6a)

where

(Θu)(t) =

∫ t

0

Φ(t, s)B(s)u(s) ds(3.6b)

and

θ(t) = Φ(t, 0)η0(3.6c)

for t ∈ [0, 1], and Φ(·, s) is the fundamental solution matrix prescribed by the initial
value problem

∂

∂t
Φ(t, s)

a.e.
= A(t)Φ(t, s), t ∈ [0, 1],(3.7a)

Φ(s, s) = I(3.7b)

for s ∈ [0, 1] [8]. Note that the cost J in (3.4a) depends only on the u component
of w. Note also that if v and the equality constraint function (3.4c) were removed
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and if x(t) were replaced by φ(u)(t) in γ, then the resulting inequality constraints
g(u)(t) = γ(t, u(t), φ(u)(t)) ≤ 0 would also refer only to u but would not impose
simple pointwise conditions on u in the interesting cases where γ(t, u, x) ≤ 0 implies
nontrivial restrictions on the state variable x.

The introduction of v and the equality constraint function (3.4c) not only simpli-
fies the inequality constraint g(w) ≤ 0 in this context, but also ensures differentiability
of the corresponding augmented Lagrangian (3.3) in norms suitable for AGP meth-
ods. If the function spaces U, V, and Zh in this NLP formulation are considered to
be pre-Hilbert spaces with L

2 inner products and norms, then the affine constraint
function h in (3.4c) is Lipschitz continuously Fréchet differentiable, and for a large and
important class of running loss functions f0, the augmented Lagrangian (3.3) is also
L

2-Lipschitz continuously differentiable [16]. In such cases, there is no L
2 smoothness

singularity for the augmented Lagrangian in the present alternative continuous-time
NLP formulation, and it seems plausible that the convergence properties of the re-
lated discrete-time AGP implementations may not deteriorate on increasingly refined
meshes.

The heuristic arguments set forth here and in section 3.1 are vindicated by the
subsequent AGP convergence analyses for finite-dimensional discrete-time approxi-
mations to the continuous-time optimal control problem of section 2.

4. Riemann–Euler discrete-time approximations. Let k be a positive in-
teger greater than 1, put ∆t = 1/k, and construct the uniform mesh

0 = t0 < · · · < tk = 1(4.1a)

with

ti+1 = ti +∆t(4.1b)

for i = 0, . . . , k − 1. Then the integral cost functional, linear ODE state equations,
and pointwise inequality constraints in the optimal control formulation of section 2
have the corresponding first order Riemann–Euler approximations:

k−1∑
i=0

f0(ti, ui, xi) ∆t,(4.2)

xi+1 − xi
∆t

= A(ti)xi +B(ti)ui, 0 = 1, . . . , k − 2,(4.3a)

x0 = η0,(4.3b)

and

γ(ti, ui, xi) ≤ 0, i = 0, . . . , k − 1.(4.4)

For each control sequence u = (u0, . . . , uk−1) ∈ R
km, the discrete-time state equations

(4.3) have a unique solution φ(u) = (φ(u)0, . . . , φ(u)k−1) ∈ R
kn. More specifically, φ

is the affine map defined by

φ(u) = Θu+ θ,(4.5a)
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where

(Θu)0 = 0,(4.5b)

(Θu)i =

i−1∑
j=0

Φi,jB(tj)uj∆t, i = 1, . . . , k − 1,(4.5c)

θi = Φi,0η0, i = 0, . . . , k − 1,(4.5d)

and Φ·,j is the fundamental solution matrix prescribed by the initial value problem

Φi+1,j − Φi,j

∆t
= A(ti)Φi,j , i = j, . . . , k − 2,(4.6a)

Φj,j = I(4.6b)

for j = 0, . . . , k − 2. Note that (4.5) immediately yields

Φi,j =

i−1∏
l=j

(I +A(tl)∆t)(4.7)

for 0 ≤ j < i ≤ k − 1.
The foregoing constructions now lead directly to discrete-time counterparts of the

NLP formulations in sections 3.1 and 3.2.

4.1. Formulation I. A discrete-time approximation to the continuous-time NLP
formulation (3.2) is obtained by letting U = R

km, X = R
kn, W = U ⊕ X, S = {w ∈

W : x0 = η0}, Zg = R
kr, Zh = R

(k−1)n and defining the cost and constraint functions
J , g, and h by

J(w) =

k−1∑
i=0

f0(ti, ui, xi) ∆t,(4.8a)

g(w)i = γ(ti, ui, xi), i = 0, . . . , k − 1,(4.8b)

and

h(w)i =
xi+1 − xi

∆t
−A(ti)xi −B(ti)ui, i = 0, . . . , k − 2.(4.8c)

RMS inner products and norms are provided here for the spaces U, X, W, Zg,
and Zh as natural discrete-time analogues of continuous-time L

2 inner products and
norms. In particular, on W,

〈wa, wb〉rms = 〈ua, ub〉rms + 〈xa, xb〉rms(4.9a)

and

‖w‖2rms = ‖u‖2rms + ‖x‖2rms,(4.9b)
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where

〈ua, ub〉rms =

k−1∑
i=0

〈uai , ubi 〉 ∆t, 〈xa, xb〉rms =

k−1∑
i=0

〈xai , xbi 〉 ∆t(4.9c)

and

‖u‖2rms =

k−1∑
i=0

‖ui‖2 ∆t, ‖x‖2rms =

k−1∑
i=0

‖xi‖2 ∆t,(4.9d)

and where 〈·, ·〉 and ‖ · ‖ denote the ordinary Euclidean inner product and norm on
R
m or R

n.

4.2. Formulation II. A discrete-time approximation to the alternative continu-
ous-time NLP formulation (3.4) is obtained by letting U = R

km, V = R
kn, W = U⊕V,

S = W, Zg = R
kr, Zh = R

kn, and defining the cost and constraint functions J , g, and
h by

J(u) =
k−1∑
i=0

f0(ti, ui, φ(u)i) ∆t,(4.10a)

g(w)i = γ(ti, ui, vi),(4.10b)

and

h(w)i = φ(u)i − vi(4.10c)

for i = 0, . . . , k−1, where φ(·) is the affine state equation solution map in (4.5)–(4.6).
As in section 4.1, RMS inner products and norms are provided for the spaces U,

V, W, Zg, and Zh. In particular, on W,

〈wa, wb〉rms = 〈ua, ub〉rms + 〈va, vb〉rms(4.11a)

and

‖w‖2rms = ‖u‖2rms + ‖v‖2rms,(4.11b)

where

〈ua, ub〉rms =

k−1∑
i=0

〈uai , ubi 〉 ∆t, 〈va, vb〉rms =

k−1∑
i=0

〈vai , vbi 〉 ∆t(4.11c)

and

‖u‖2rms =

k−1∑
i=0

‖ui‖2 ∆t, ‖v‖2rms =

k−1∑
i=0

‖vi‖2 ∆t,(4.11d)

and where 〈·, ·〉 and ‖ · ‖ once again denote the Euclidean inner product and norm on
R
m or R

n.
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5. Multiplier methods. The multiplier method proposed by Hestenes [22] and
Powell [27] treats finite-dimensional equality-constrained minimization problems,

min
w∈RN

J(w)(5.1a)

subject to

h(w) = 0,(5.1b)

by solving a related sequence of relaxed unconstrained minimization problems,

min
w∈RN

L(λ(i), w),(5.2)

where L(λ,w) is an augmented Lagrangian (3.3) with nonnegative penalty constant
c, and {λ(i)} is a sequence of multiplier vectors generated by the recursion

λ(i+1) = λ(i) + c h(w(i+1))(5.3)

in which w(i+1) denotes an approximation to some exact solution of the unconstrained
minimization problem (5.2). The exact solution is generally inaccessible and the
approximate minimizer w(i+1) is typically produced by a truncated inner iterative
calculation that begins at w(i) for the unconstrained problem (5.2). In the classic
formulations of [22] and [27], the domain W = R

N is equipped with the standard
Euclidean norm, the codomain Zh is R

q, λ is a vector in R
q, and 〈·, ·〉 and ‖ ·‖ in (3.3)

are the standard Euclidean inner product and norm on R
q.

5.1. AGP methods. Many elaborations of the Hestenes–Powell multiplier
method have been proposed and analyzed for equality-constrained minimization prob-
lems and NLPs with equality and inequality constraints (see [5], [6], and the bibli-
ographies therein). The AGP methods addressed in [3], [15], [17], and the present
investigation are intended for NLPs (3.1) that have difficult equality constraints but
tractable quasi-convex inequality constraints with simple closed convex solutions sets,

Ωg = {w ∈ S : g(w) ≤ 0},(5.4)

whose associated proximal point projector maps PΩg are easily computed. The sim-
plest of these methods employs the first order Hestenes–Powell multiplier rule (5.3)
and a Goldstein–Levitin–Polyak GP method [18], [24] to compute approximate solu-
tions w(i) for the corresponding relaxed NLPs,

min
w∈Ωg

L(λ(i), w).(5.5)

More specifically, w(i+1) is obtained from w(i) by a truncated GP iteration,

ζ(0) = w(i),(5.6a)

ζ(j+1) = PΩg (ζ
(j) − αsj∇wL(λ(i), ζ(j))), j = 0, . . . , ji,(5.6b)

w(i+1) = ζ(ji+1),(5.6c)
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where α is a positive scaling parameter and sj is a real number in (0, 1] prescribed by
the Bertsekas–Armijo step length rule [4], i.e., with β and δ fixed in (0, 1), sj is the
largest number s such that

s ∈ {1, β, β2, . . .}(5.7a)

and

(5.7b)

L(λ, ζ)− L(λ, PΩg (ζ − αs∇wL(λ, ζ))) ≥ δ〈∇wL(λ, ζ), ζ − PΩg (ζ − αs∇wL(λ, ζ))〉
with λ = λ(i) and ζ = ζ(j). In these formulas, α, β, and δ are constants; however, the
convergence rate estimates in subsequent sections are readily modified to accomodate
variable scaling parameters α(j) that are bounded away from 0 and∞, and step length
parameters β(j) and δ(j) that are bounded away from 0 and 1.

5.2. Reduced AGP methods. If W is a direct sum W
a ⊕W

b and the feasible
set in the relaxed NLP (5.5) is also a Cartesian product,

Ωg = Ωa
g × Ωb

g,(5.8)

of closed convex sets Ωa
g ⊂W

a and Ωb
g ⊂W

b, then (5.5) reduces to

min
wa∈Ωag

L̂(λ,wa),(5.9a)

where

L̂(λ,wa) = min
wb∈Ωbg

L(λ, (wa, wb)).(5.9b)

In some cases, explicit formulas can be found for an exact minimizer ŵb(λ,wa)
of L(λ, (wa, ·)) in Ωb

g, and for the corresponding reduced augmented Lagrangian

L̂(λ,wa). If L̂(λ,wa) retains sufficient smoothness in the variable wa, then GP
methods can be applied to the simpler reduced NLP (5.9) to obtain an approxi-
mate minimizer w = (wa, ŵb(λ,wa)) for L(λ,w) in Ωg. A reduced augmented gra-
dient projection (RAGP) method of this type for control problems with separated
pointwise constraints on the control and state variables was proposed in [17], and is
investigated further here. Similar strategies for slack variable formulations of general
finite-dimensional inequality-constrained NLPs are proposed and analyzed in [28] and
[5].

5.3. The AGP method in formulation I. For the discrete-time NLP of sec-
tion 4.1, the primal variable is a vector w = (u, x) in the direct sum W = R

km⊕R
kn,

and the relaxed NLP (5.5) becomes

min
w∈Ωg

L(λ,w),(5.10a)

with

Ωg = {w : x0 = η0, γ(ti, ui, xi) ≤ 0, i = 0, . . . , k − 1},(5.10b)

and

L(λ,w) = J(w) +
1

2
c

(∥∥∥∥λc +Dx−Ax− Bu
∥∥∥∥2

rms

−
∥∥∥∥λc
∥∥∥∥2

rms

)
,(5.10c)
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where

J(w) =

k−1∑
i=0

f0(ti, ui, xi) ∆t,(5.10d)

λ = (λ0, . . . , λk−2) ∈ R
(k−1)n,(5.10e)

(Ax)i = A(ti)xi,(5.10f)

(Bu)i = B(ti)ui,(5.10g)

and

(Dx)i =
xi+1 − xi

∆t
(5.10h)

for i = 0, . . . , k − 2.
For AGP methods, it is significant that the RMS projection operator for the set

Ωg has the pointwise decomposition formula

PΩg (u, x) = (ξ, η)(5.11a)

with

(ξi, ηi) = PZi(ui, xi), i = 0, . . . , k − 1,(5.11b)

Z0 = {(u0, x0) : x0 = η0, γ(t0, u0, x0) ≤ 0},(5.11c)

and

Zi = {(ui, xi) : γ(ti, ui, xi) ≤ 0}, i = 1, . . . , k − 1.(5.11d)

In these equations, PZi denotes the standard Euclidean projection operator for sets
Zi ⊂ R

m ⊕ R
n.

5.4. The AGPmethod in formulation II. The primal variable in the discrete-
time NLP of section 4.2 is a vector w = (u, v) in the direct sum W = R

km⊕R
kn, and

the relaxed NLP (5.5) becomes

min
w∈Ωg

L(λ,w)(5.12a)

with

Ωg = {w : γ(ti, ui, vi) ≤ 0, i = 0, . . . , k − 1},(5.12b)

and

L(λ,w) = J(u) +
1

2
c

(∥∥∥∥λc + φ(u)− v

∥∥∥∥2

rms

−
∥∥∥∥λc
∥∥∥∥2

rms

)
,(5.12c)
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where

J(u) =

k−1∑
i=0

f0(ti, ui, φ(u)i) ∆t,(5.12d)

λ = (λ0, . . . , λk−1) ∈ R
kn,(5.12e)

and φ(·) is the affine state equation solution map in (4.5)–(4.6).
Once again, the RMS projection operator for the set Ωg in this scheme has the

useful pointwise decomposition formula

PΩg (u, v) = (ξ, η)(5.13a)

with

(ξi, ηi) = PZi(ui, vi), i = 0, . . . , k − 1,(5.13b)

and

Zi = {(ui, vi) : γ(ti, ui, vi) ≤ 0}, 0 = 1, . . . , k − 1.(5.13c)

As before, the symbol PZi in these equations denotes the standard Euclidean projec-
tion operator for sets Zi ⊂ R

m ⊕ R
n.

Note that formula (5.12c) can be rewritten as

L(λ,w) =

k−1∑
i=0

l0(ti.λi, ui, vi, φ(u)i) ∆t,(5.14a)

where

l0(ti.λi, ui, vi, xi) = f0(ti, ui, xi)

+
1

2
c

(∥∥∥∥λic + xi − vi

∥∥∥∥2

−
∥∥∥∥λic

∥∥∥∥2
)

.(5.14b)

Thus, the relaxed NLP (5.12) amounts to a new discrete-time optimal control prob-
lem with unconstrained states, pointwise constrained control inputs (ui, vi), running
losses l0(ti.λi, ui, vi, xi), and the original state equations (4.3). As explained in [17], it
follows that the RMS gradient of L(λ, ·) can be calculated efficiently in O(k) floating
point operations (FLOPS) with adjoint recursions for the Euler discrete-time equa-
tions (4.3). In fact, when f0 is twice continuously differentiable, it is also possible
to compute Newtonian scaling operators for L(λ, ·) in O(k)FLOPS with auxiliary
dynamic programming recursions [13], [14].

5.5. The RAGP method in formulation II. The reduced augmented gradi-
ent projection scheme is applicable in formulation II when the pointwise inequality
constraints on state and control variables are “separated” in the sense that

γ(t, ξ, η) = (γu(t, ξ), γx(t, η)),(5.15)

where γu maps R
1 ⊕ R

m to R
ru , γx maps R

1 ⊕ R
n to R

rx , and ru + rx = r. In
this frequently encountered special case, the feasible set Ωg in (5.12b) is a Cartesian
product,

Ωg = Ωu
g × Ωv

g ,(5.16a)
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where

Ωu
g = {u : γu(ti, ui) ≤ 0, i = 0, . . . , k − 1}(5.16b)

and

Ωv
g = {v : γx(ti, vi) ≤ 0, i = 0, . . . , k − 1}.(5.16c)

Hence, the corresponding reduced NLP (5.9) becomes

min
u∈Ωug

L̂(λ, u)(5.17a)

with

L̂(λ, u) =

(
J(u)− 1

2
c

∥∥∥∥λc
∥∥∥∥2

rms

)
+

1

2
c min
v∈Ωvg

∥∥∥∥(λ

c
+ φ(u)

)
− v

∥∥∥∥2

rms

=

(
J(u)− 1

2
c

∥∥∥∥λc
∥∥∥∥2

rms

)
+

1

2
c

∥∥∥∥(λ

c
+ φ(u)

)
− PΩvg

(
λ

c
+ φ(u)

)∥∥∥∥2

rms

,(5.17b)

where

J(u) =
k−1∑
i=0

f0(ti, ui, φ(u)i) ∆t,(5.17c)

and

λ = (λ0, . . . , λk−1) ∈ R
kn.(5.17d)

Note that the components of the product set Ωg are now also Cartesian products
with associated RMS projector decomposition formulas. More specifically,

Ωu
g =

k−1∏
i=0

Ui Ωv
g =

k−1∏
i=0

Vi(5.18a)

with

Ui = {ξ ∈ R
m : γu(ti, ξ) ≤ 0}, Vi = {η ∈ R

n : γx(ti, η) ≤ 0}(5.18b)

for i = 0, . . . , k − 1 and

PΩug (u)i = PUi(ui), PΩvg (v)i = PVi(vi)(5.19)

for i = 0, . . . , k−1. The decomposition formula for PΩug facilitates the implementation
of GP methods for the reduced NLP (5.17). On the other hand, the formula for PΩvg

simplifies the construction of L̂(λ, ·) and its RMS gradient. By rewriting (5.9b) as

L̂(λ, u) =

k−1∑
i=0

l̂0(ti, λi, ui, φ(u)i) ∆t(5.20a)
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with

l̂0(ti, λi, ui, xi) =

(
f0(ti, ui, xi)− 1

2
c

∥∥∥∥λic
∥∥∥∥2
)

+
1

2
c

∥∥∥∥(λi
c
+ xi

)
− PVi

(
λi
c
+ xi

)∥∥∥∥2

,(5.20b)

it becomes evident that the reduced NLP (5.17) is a discrete-time control problem with
unconstrained states, pointwise constrained control inputs ui, running loss functions
l̂0(ti, λi, ui, xi), and the original state equations (4.3). Moreover, it turns out that l̂0 is
smooth enough in (ui, xi) to admit the standard efficient adjoint recursive calculation
of the RMS gradient of L̂(λ, ·) (cf. section 8.2 and [17]).

6. General GP convergence rate estimates. Reference [11] provides a com-
prehensive convergence rate analysis of basic GP methods for constrained minimiza-
tion problems,

min
w∈Ω

F (w),(6.1)

with closed convex feasible sets Ω in a real Hilbert space W, and convex Lipschitz
continuously Fréchet differentiable cost functions F : W→ R

1. The convergence rate
estimates in [11] are directly applicable to the AGP inner loop calculation outlined in
section 5 for discrete-time optimal control problems cast as NLPs in finite-dimensional
Euclidean spaces with RMS inner products. In this setting, Ω is a solution set for
the control problem’s pointwise quasi-convex state/control inequality constraints, and
F (·) is either an augmented Lagrangian L(λ, ·) or a reduced augmented Lagrangian
L̂(λ, ·). The structure of the feasible set is similar in NLP formulations I and II of sec-
tion 4; however, the augmented Lagrangians in these formulations are quite different,
and these differences are strongly manifested in the corresponding GP convergence
estimates as the mesh width ∆t approaches zero.

In the general context of (6.1), the GP iteration of section 5.1 becomes

w(j+1) = PΩ(w
(j) − αsj∇F (w(j))), j = 0, 1, 2, . . . ,(6.2a)

where α is a fixed positive scaling parameter and sj is the largest number s such that

s ∈ {1, β, β2, . . .}(6.2b)

and

F (w)− F (PΩ(w − αs∇F (w)))

≥ δ〈∇F (w), w − PΩ(w − αs∇F (w))〉(6.2c)

with w = w(j), and β and δ fixed in (0, 1). When the convex function F has a unique
minimizer w ∈ Ω, the convergence rate of the value sequences {F (w(n)} generated by
(6.2) correlates strongly with the gradient Lipschitz norm,

Λ = sup
wa �=wb

‖∇F (wa)−∇F (wb)‖
‖wa − wb‖ ,(6.3)

and the growth properties of the nondecreasing nonnegative real function,

γ(d) = inf{F (w)− F (w) : w ∈ Ω and ‖w − w‖ ≥ d} (d ≥ 0).(6.4)
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Roughly speaking, the convergence rate estimates derived in [11] for {F (w(n))} im-
prove as Λ decreases or the growth rate of γ(·) increases. One such estimate will
suffice for present purposes.

Theorem 6.1. Suppose that Ω is a nonempty closed convex set in a real Hilbert
space W, that F is a convex Lipschitz continuously Fréchet differentiable real function
on W, and that Λ is the Lipschitz norm of ∇F in (6.3). In addition, suppose that F
has a unique minimizer w in Ω and that the corresponding function γ(·) in (6.4) grows
quadratically with

Γ = inf
d>0

γ(d)

d2
> 0.(6.5)

Let {w(j)} be any sequence in Ω generated by the gradient projection method (6.2).
For j = 0, 1, 2, . . ., let sj be the associated Bertsekas–Armijo step length and let rj =
F (w(j))− F (w) ≥ 0. Then {sj} is bounded away from zero by

σ = min

{
α,

2β(1− δ)

Λ

}
.(6.6)

Moreover, either rj = 0 eventually or {rj} converges geometrically to zero with

0 ≤ rj+1

rj
≤ ν, j = 0, 1, 2, . . . ,(6.7a)

and

ν = 1− 4Γσδ

(
√
1 + 4Γσ + 1)2

.(6.7b)

Proof. Directly from the proof of Theorem 4.3 in [11], and the step length lower
bound estimate in [4].

Note that in all cases, the convergence factor ν in (6.7) lies in the interval 1− δ <

ν < 1. Moreover, if α ≥ 2β(1−δ)
Λ , then σ = 2β(1−δ)

Λ and the formula for ν in Theorem
6.1 can be written as

ν = (1− δ) + δ

(
2√

1 + ρ+ 1

)
(6.8a)

with

ρ = 8β(1− δ)

(
Γ

Λ

)
.(6.8b)

It is now apparent that if α ≥ 2β(1−δ)
Λ , then the convergence factor ν is independent

of the scale factor α, and ν → 1− as Γ/Λ → 0+. On the other hand, if α < 2β(1−δ)
Λ ,

then σ = α and

ν = 1− 4Γαδ

(
√
1 + 4Γα+ 1)2

,

in which case ν is independent of Λ and ν → 1− as Γα→ 0+.
Note also that for convex cost functions on finite-dimensional spaces W, the

growth function γ for a unique minimizer w is always positive-definite [12]; however,
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in general, the rate at which γ grows with d depends on the structure of F and Ω.
For present purposes, consideration is limited to Lipschitz continuously differentiable
cost functions F whose gradients satisfy the strong monotonicity condition

(6.9)

∃µ > 0 for all wa, wb ∈W, 〈∇F (wa)−∇F (wb), wa − wb〉 ≥ µ‖wa − wb‖2
(cf. [30]). Such functions are strongly convex, and the following result is readily
proved with elementary techniques originally developed by Vainberg, Zarantonello,
and Browder et al. (e.g., [30], [7], and the still earlier unpublished and currently
inaccessible technical report [31] cited in [7]).

Theorem 6.2. Suppose that Ω is a nonempty closed convex set in a real Hilbert
space W, that F is a Lipschitz continuously Fréchet differentiable real function on W,
and that ∇F satisfies the strong monotonicity condition (6.9). Then F is strongly con-
vex in the sense of [6], the corresponding convex program (6.1) has a unique minimizer
w, and the quadratic growth condition (6.5) in Theorem 6.1 holds with Γ ≥ 1

2µ.
Proof. The existence and uniqueness of a minimizer w for F in the closed convex

set Ω can be established with the contraction mapping principle, as outlined in [7].
For s > 0, define the associated map Ts : Ω→ Ω by the rule

for all w ∈ Ω Ts(w) = PΩ(w − s∇F (w)).

With elementary calculus and the Hilbert space projection theorem, it is now easily
seen that the following statements are equivalent for all w:

(a) w is a minimizer of the convex real function F in the nonempty closed convex
set Ω.

(b) For all w ∈ Ω, 〈∇F (w), w − w〉 ≥ 0.
(c) For some s > 0, w = Ts(w).
(d) For all s > 0, w = Ts(w).

Moreover, since the projector map PΩ is nonexpansive [26], it follows from (6.9) and
the Lipschitz continuity of ∇F (·) that

‖Ts(wa)− Ts(w
b)‖2 ≤ ‖wa − wb − s(∇F (wa)−∇F (wb))‖2

≤ (1− 2µs+ Λ2s2) ‖wa − wb‖2
for all s > 0 and all wa and wb in Ω, where µ is the positive constant in the strong
monotonicity condition (6.9) and Λ is the finite Lipschitz norm for ∇F (·) in (6.3).
Evidentially, Ts is a contraction map for sufficiently small fixed positive values of
s. In addition, since W is complete, the closed set Ω is also complete in the metric
induced by 〈·, ·〉. Hence the assertions developed above imply that the maps Ts have
a common unique fixed point w, that w is the unique global minimizer of F in Ω, and
that 〈∇F (w), w − w〉 ≥ 0 for all w ∈ Ω. Now note that for all w in W,

F (w)− F (w) =

∫ 1

0

d

dt
F (w + t(w − w)) dt

=

∫ 1

0

〈∇F (w + t(w − w)), w − w〉 dt,

and hence for all w in Ω,

F (w)− F (w) ≥
∫ 1

0

〈∇F (w + t(w − w))−∇F (w), w − w〉 dt

≥ 1

2
µ ‖w − w‖2.
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Note 2. The Lipschitz continuity hypothesis and strong monotonicity condition
(6.9) in Theorem 6.2 automatically hold if F is twice continuously Fréchet differ-
entiable and the spectral sets for the corresponding Hessian operators ∇2F (w) are
bounded away from zero and infinity as w ranges over W.

Note 3. The proof strategy employed here for Theorem 6.2 is valid in infinite-
dimensional Hilbert spaces; hence this theorem applies to certain continuous-time
ODE optimal control problems cast in L

2 function spaces, as well as their finite-
dimensional discrete-time RMS approximations. A finite-dimensional counterpart of
Theorem 6.2 can be proved with a compactness argument when F is merely continu-
ously differentiable (however, even in finite-dimensional spaces, the GP convergence
rate estimate in Theorem 6.1 still requires Lipschitz continuity of ∇F (·)). More
specifically, if ∇F (·) is continuous, then, as in the proof of Theorem 6.2, the strong
monotonicity condition (6.9) yields

F (w)− F (w0) ≥ 1

2
µ ‖w − w0‖2 + 〈∇F (w0), w − w0〉

for all w and w0. It is now easily seen that every level set of F is bounded and closed,
and therefore compact in finite-dimensional normed spaces. But in this case, F must
attain its infimum at some w in the closed set Ω. Since Ω is convex, it follows that
〈∇F (w), w−w〉 ≥ 0 for all w in Ω, and the foregoing estimate applied to the increment
F (w)−F (w) immediately proves uniqueness of w and the quadratic growth property
(6.5).

7. Mesh-dependent rate estimates in formulation I. Theorem 6.1 yields
AGP inner loop convergence factors ν that can approach 1 as ∆t goes to zero in the
discrete-time formulation I of section 5.3. This does not prove that the actual cost
value errors rj = L(λ,wj) − L(λ,w) converge more slowly on increasingly refined
meshes, since νj provides only an upper bound on the ratio rj/r0. On the other hand,
the numerical results in [17] do demonstrate rapidly deteriorating mesh-dependent
convergence behavior in formulation I that is at least qualitatively consistent with the
behavior of ν as ∆t goes to zero. Accordingly, it seems worthwhile to explore briefly
how ν may depend on ∆t in formulation I for a representative linear-quadratic curve
follower problem with pointwise bounds on the state variable.

Example 1. Let xref (·) be a fixed continuous real valued function on [0, 1] and
let m = n = r = 1, f0(t, ξ, η) = 1

2 (ξ
2 + (η − xref (t))2), f(t, ξ, η) = ξ, γ(t, ξ, η) =

|η| − 1 and |η0| ≤ 1 in the continuous-time ODE model (2.1)–(2.3). With reference to
(5.10b)–(5.10c), the associated discrete-time feasible set and augmented Lagrangian
in formulation I are then

Ωg = {w = (u, x) : x0 = η0, |xi| ≤ 1, i = 0, . . . , k − 1}(7.1a)

and

L(λ,w) =
1

2
‖w − wref‖2rms +

1

2
c

(∥∥∥∥λc +Dx− Bu
∥∥∥∥2

rms

−
∥∥∥∥λc
∥∥∥∥2

rms

)
,(7.1b)

where

wref = (0, xref ),(7.1c)

(Bu)i = ui,(7.1d)
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and

(Dx)i =
xi+1 − xi

∆t
(7.1e)

for i = 0, . . . , k − 2. It will now be shown that the corresponding growth constant Γ
for L(λ, ·) and Lipschitz norm Λ for ∇wL(λ, ·) satisfy

Γ ≤ 1

2
(1 + c)(7.2)

and

Λ ≥ 1 + 2
( c

∆t2

)
(7.3)

for 0 < ∆t ≤ 1
2 and λ ∈ R

k−1. With these estimates and (6.7), it is readily seen that
ν = 1−O(∆t2). More specifically, if α ≥ 1 and c ≥ 1, then

ν ≥ 1− β∆t2(7.4)

for all ∆t ∈ (0, 1/2], uniformly in λ.
To prove (7.2), fix λ and note that both terms in the augmented Lagrangian (7.1b)

are convex and Lipschitz continuously differentiable in the RMS norm, and that the
first term satisfies the strong monotonicity condition (6.9) with µ = 1. Hence, L(λ, ·)
satisfies (6.9) with some µ ≥ 1, and by Theorem 6.2, must therefore have a unique
minimizer w in the nonempty closed convex set (7.1a) with an associated quadratic
growth constant Γ > 0 that depends on ∆t (i.e., on k). Since the pointwise constraints
in (7.1a) restrict x alone, assertions (a)–(d) in the proof of Theorem 6.2 yield the first
order optimality condition

∇uL(λ,w) = 0.(7.5)

A simple “completion of squares” now gives

L(λ,w)− L(λ,w) = 〈∇xL(λ,w), x− x〉rms

+
1

2
‖w − w‖2rms +

1

2
c ‖D(x− x)− B(u− u)‖2rms.(7.6)

Moreover, the pairs (u, x) lie in Ωg for all u ∈ R
k, and thus the growth function

γ for L(λ, ·) satisfies
γ(d) = inf{L(λ,w)− L(λ,w) : w ∈ Ωg and ‖w − w‖rms ≥ d}

≤ inf{L(λ, (u, x))− L(λ, (u, x)) : u ∈ R
k and ‖u− u‖rms ≥ d}

= inf

{
1

2
‖u− u‖2rms +

1

2
c ‖B(u− u)‖2rms : u ∈ R

k and ‖u− u‖rms ≥ d

}
≤ inf

{
1

2
(1 + c)‖u− u‖2rms : u ∈ R

k and ‖u− u‖rms ≥ d

}
=

1

2
(1 + c)d2,(7.7)

in which case

Γ = inf
d>0

γ(d)

d2
≤ 1

2
(1 + c)

for all k and λ ∈ R
k−1, as claimed.
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To prove (7.3), note that the augmented Lagrangian L(λ, ·) in (7.1b) has the
partial RMS gradients

∇uL(λ,w) = u− B∗(λ+ c(Dx− Bu))(7.8a)

and

∇xL(λ,w) = x− xref +D∗(λ+ c(Dx− Bu)),(7.8b)

where D∗ and B∗ denote RMS adjoints of the bounded linear operators D and B.
Therefore, for all wa and wb in R

k ⊕ R
k, Cauchy’s inequality produces

‖wa − wb‖rms · ‖∇wL(λ,wa)−∇wL(λ,wb)‖rms

≥ 〈wa − wb,∇wL(λ,wa)−∇wL(λ,wb)〉rms = ‖wa − wb‖2rms

+ c ‖D(xa − xb)− B(ua − ub)‖2rms,(7.9)

and therefore

Λ = sup
wa �=wb

‖∇wL(λ,wa)−∇wL(λ,wb)‖rms

‖wa − wb‖rms

≥ 1 + c sup
(ξ,η) �=0

‖Dη − Bξ‖2rms

‖ξ‖2rms + ‖η‖2rms

≥ 1 + c

(
sup

‖η‖rms=1

‖Dη‖rms

)2

.(7.10)

Now construct η̂ ∈ R
k with η̂i = (−1)i for i = 0, 1, . . . k − 1, and consider that

‖η̂‖2rms =

k−1∑
i=0

[(−1)i]2 ∆t

=

k−1∑
i=0

1

k

= 1(7.11)

and

‖Dη̂‖2rms =

k−2∑
i=0

(
η̂i+1 − η̂i

∆t

)2

∆t

=
k − 1

k

(
2

∆t

)2

≥ 2

∆t2
(7.12)

for all k ≥ 2 and λ ∈ R
k−1 (cf. Note 1). Thus,

Λ ≥ 1 + 2
( c

∆t2

)
(7.13)

for 0 < ∆t ≤ 1
2 and λ ∈ R

k−1, as claimed.
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Note 4. If c is decreased to keep c/∆t2 constant as ∆t → 0 , then the Lipschitz
norms Λ in (7.3) need not increase without bound and the AGP inner loop geomet-
ric convergence ratios ν in (7.4) may remain bounded away from 1. On the other
hand, such reductions in c would quickly destroy convergence of the Hestenes–Powell
multiplier iteration

λ
(j+1)
i = λ

(j)
i + c

(
x

(j+1)
i+1 − x

(j+1)
i

∆t
− f(ti, u

(j+1)
i , x

(j+1)
i )

)
,

and other AGP outer loop multiplier update formulas. Note that the c-reduction
scheme just described amounts to employing augmented Lagrangian and multiplier
update formulas in which λ is replaced by λ̂ = λ/∆t, c is replaced by ĉ = c/∆t2, the
“rate” form of the Euler discrete-time equality constraint function is replaced by the
difference form,

h(u, x)i = xi+1 − xi − f(ti, ui, xi) ∆t,

and ĉ is kept constant as ∆t→ 0. To maintain adequate AGP outer loop convergence
in this scheme, it would be necessary to increase ĉ as ∆t → 0, and this would drive
the inner loop GP convergence ratios ν toward 1 as before.

The inequality (7.4) for ν immediately yields a corresponding lower bound Nε on
the number of GP iterations needed to make the error estimate νj in (6.7) smaller
than some fixed value ε ∈ (0, 1], namely,

Nε >
| ln ε|

| ln(1− β∆t2)|
≥ 3| ln ε|

4β

(
1

∆t2

)
=

3| ln ε|
4β

k2(7.14)

for k ≥ 2. Since the cost of computing one GP iterate for discrete-time optimal control
problems is proportional to k, the estimate (7.14) suggests that the total number of
FLOPS required to make the AGP inner loop errors r = L(λ,w) − L(λ,w) smaller
than a fixed threshold ε may increase like k3. Direct comparisons with the numerical
results in [17] are not possible here since the exact solution for the example in [17] is
unknown and it was therefore necessary to terminate inner loop AGP iterations on
small computed residuals related to the first order necessary conditions. Nevertheless,
the monotonically increasing concave graphs of FLOPS versus k in [17] are again
qualitatively like the potential O(k3) growth admitted by the present analysis.

8. Mesh-invariant rate estimates in formulation II. In the convergence
theorems of this section, the discrete-time cost functions J(·) in (4.10a) are required
to be RMS strongly convex and Lipschitz continuously differentiable uniformly in
the mesh width ∆t (i.e., uniformly in the number k of mesh points). Related mesh-
invariant RMS strong convexity and gradient Lipschitz continuity conditions can then
be deduced for the associated discrete-time augmented Lagrangians (5.12c) and re-
duced augmented Lagrangians (5.17b). By Theorems 6.1 and 6.2, the Lagrangian
properties then support mesh-invariant geometric convergence rate estimates for the
related AGP and RAGP inner loop iterations.



STATE CONSTRAINTS AND GRADIENT PROJECTION 1103

The required mesh-invariant properties for J in (4.10a) are implied by a k-uniform
boundedness property of the discrete-time state transition operators Θ defined in
(4.5)–(4.6) and by certain t-uniform convexity and gradient Lipschitz continuity con-
ditions on the continuous-time running loss functions f0(t, ·), t ∈ [0, 1].

Lemma 8.1. For each positive integer k ≥ 2, let Θ : R
km → R

kn be the bounded
linear operator in the discrete-time state equation solution (4.5)–(4.6) with RMS norm

‖Θ‖rms = sup
‖u‖rms=1

‖Θu‖rms.(8.1)

In addition, let

a = sup
t∈[0,1]

‖A(t)‖ <∞, b = sup
t∈[0,1]

‖B(t)‖ <∞,(8.2)

where A(t) : R
n → R

n and B(t) : R
m → R

n are the uniformly bounded coefficient
operators in the continuous-time rate functions (2.4) and ‖ · ‖ denotes the associated
Euclidean operator norm in either case. Then

for all k ≥ 2, ‖Θ‖rms ≤ b exp a.(8.3)

Proof. By a straightforward application of (4.5)–(4.7), Cauchy’s inequality, the
formula

∑n
i=1, i = n(n+1)/2, and the estimate, (1+ a/k)k < exp a for a > 0 and all

positive integers k.
Lemma 8.2. For t ∈ [0, 1], let f0(t, ·) : R

m ⊕ R
n → R

1 be the running loss func-
tions in (4.10a) for the discrete-time cost functions J(·) : R

km → R
1 in formulation

II. Put ζ = (ξ, η) ∈ R
m⊕R

n and let ∇ζf
0(t, ζ) denote the standard Euclidean gradient

of f0(t, ·) at ζ. Assume that there are numbers µ0 > 0 and Λ0 ≥ 0 such that for all
t ∈ [0, 1] and all ζa and ζb in R

m ⊕ R
n,

〈∇ζf
0(t, ζa)−∇ζf

0(t, ζb), ζa − ζb〉 ≥ µ0 ‖ξa − ξb‖2,(8.4)

and

‖∇ζf
0(t, ζa)−∇ζf

0(t, ζb)‖ ≤ Λ0 ‖ζa − ζb‖,(8.5)

where 〈·, ·〉 is the Euclidean inner product on R
m ⊕ R

n, and ‖ · ‖ signifies the norm
on R

m and R
m ⊕ R

n in (8.4) and (8.5), respectively. Then J(·) is strongly convex
and Lipschitz continuously differentiable in the RMS sense, uniformly for all positive
integers k ≥ 2. More precisely, there are numbers µJ > 0 and ΛJ ≥ 0 such that for
all k ≥ 2 and all ua and ub in R

km,

〈∇J(ua)−∇J(ub), ua − ub〉rms ≥ µJ ‖ua − ub‖2rms(8.6)

and

‖∇J(ua)−∇J(ub)‖rms ≤ ΛJ ‖ua − ub‖rms.(8.7)

Proof. Let θ ∈ R
kn and Θ : R

km → R
kn be the vector and bounded linear operator

in the discrete-time state equation solution formula (4.5)–(4.6). For u ∈ R
km, define

αu(u) ∈ R
km and αx(u) ∈ R

kn by the rules

αu(u)i = ∇ξf
0(ti, ui, φ(u)i), αx(u)i = ∇ηf

0(ti, ui, φ(u)i)(8.8)
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for i = 0, . . . , k − 1, where ∇ξf
0 and ∇ηf

0 are the (ξ, η) components of ∇ζf
0. In

addition, let Θ∗ : R
kn → R

km denote the RMS bounded linear adjoint operator for
Θ, i.e., for all x ∈ R

kn and u ∈ R
km,

〈x,Θu〉rms = 〈Θ∗x, u〉rms,(8.9)

where 〈·, ·〉rms signifies the RMS inner product in R
kn and R

km on the left and right
sides of (8.9), respectively. Then for all u ∈ R

km, the corresponding RMS gradient of
J(·) is readily shown to be

∇J(u) = αu(u) + Θ∗αx(u).(8.10)

Hence for all ua and ub in R
km, conditions (8.4) and (8.9) imply that

〈∇J(ua)−∇J(ub), ua − ub〉rms ≥ 〈αu(u
a)− αu(u

b), ua − ub〉rms

+〈αx(u
a)− αx(u

b),Θ(ua − ub)〉rms

= 〈αu(u
a)− αu(u

b), ua − ub〉rms

+〈αx(u
a)− αx(u

b), φ(ua)− φ(ub)〉rms

≥ µ0 ‖ua − ub‖2rms.

Furthermore, since it is known that ‖Θ∗‖rms = ‖Θ‖rms, condition (8.5) yields

‖∇J(ua)−∇J(ub)‖2rms ≤ 2(‖αu(u
a)− αu(u

b)‖2 + ‖Θ∗(αx(u
a)− αx(u

b))‖2rms)

≤ 2 max{1, ‖Θ∗‖2rms}(‖αu(u
a)− αu(u

b)‖2rms

+‖αx(u
a)− αx(u

b)‖2rms)

≤ 2 max{1, ‖Θ‖2rms}Λ2
0 (‖ua − ub‖2rms

+‖φ(ua)− φ(ub)‖2rms)

= 2 max{1, ‖Θ‖2rms}Λ2
0 (‖ua − ub‖2rms

+‖Θ(ua − ub)‖2rms)

≤ 2 max{1, ‖Θ‖2rms}(1 + ‖Θ‖2rms)Λ
2
0 ‖ua − ub‖2rms.

With reference to Lemma 8.1, these estimates now give (8.6) and (8.7) with µJ = µ0

and ΛJ = Λ0

√
2max{1, b2 exp 2a}(1 + b2 exp 2a).

Note 5. The t-uniform convexity and Lipschitz continuity conditions (8.4) and
(8.5) are satisfied by the prototype autonomous LQR loss function

f0(t, ξ, η) =
1

2
〈ξ, Sξ〉+ 1

2
〈η,Qη〉

when S : R
m → R

m is a symmetric positive-definite bounded linear operator and
Q : R

n → R
n is a symmetric positive-semidefinite bounded linear operator.

Note 6. The linear operator Θ in the continuous-time state equation solution (3.6)
is bounded in the L

2 sense, and an L
2 counterpart of Lemma 8.2 can therefore be

proved for the continuous-time cost function J(·) in (3.4a) of formulation II, provided
that measurabilty restrictions of the Carathéodory type [8], [1] for f0(·, ζ) are added
to the hypotheses on f0(t, ·) in (8.4) and (8.5).

8.1. Unseparated pointwise constraints. The following key lemma estab-
lishes (k, λ)-uniform RMS strong convexity and Lipschitz continuity results for the
discrete-time augmented Lagrangians in formulation II. These results lead directly to
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a mesh-invariant and λ-invariant AGP inner loop convergence rate estimate in closed
convex feasible sets Ωg ⊂ R

km ⊕ R
kn prescribed by general unseparated continuous

quasi-convex inequality constraint functions γ(t, ·) : R
m ⊕ R

n → R
r.

Lemma 8.3. Assume that the discrete-time cost functions J(·) : R
km → R

1

defined by (4.10a) in formulation II are convex, with gradients that satisfy the k-
uniform RMS strong monotonicity and Lipschitz continuity conditions (8.6) and (8.7).
Then the corresponding augmented Lagrangians L(λ, ·) : R

km ⊕ R
kn → R

1 in (5.12c)
satisfy analogous conditions uniformly for k ≥ 2 and λ ∈ R

kn. More precisely, for all
k ≥ 2, λ ∈ R

kn, and wa and wb in R
km ⊕ R

kn,

〈∇L(λ,wa)−∇L(λ,wb), wa − wb〉rms ≥ µL ‖wa − wb‖2rms(8.11a)

with

µL =
c µJ

µJ + c (1 + b2 exp 2a)
(8.11b)

and

‖∇L(λ,wa)−∇L(λ,wb)‖rms ≤ ΛL ‖wa − wb‖rms(8.12a)

with

ΛL = ΛJ + c
√
2max{1, b2 exp 2a}(1 + b2 exp 2a),(8.12b)

where a and b are the coefficient bounds in Lemma 8.1.
Proof. Let F (λ, u, v) denote the shifted penalty term in the augmented La-

grangians (5.12c), i.e.,

F (λ, u, v) =
1

2
c

∥∥∥∥λc +Θu+ θ − v

∥∥∥∥2

rms

.(8.13)

Then for all w = (u, v) ∈ R
km ⊕ R

kn,

∇wL(λ,w) = (∇J(u) +∇uF (λ, u, v) , ∇vF (λ, u, v))(8.14a)

with

∇uF (λ, u, v) = c Θ∗
(

λ

c
+Θu+ θ − v

)
,(8.14b)

∇vF (λ, u, v) = −c

(
λ

c
+Θu+ θ − v

)
.(8.14c)

Hence,

〈∇wL(λ,wa)−∇wL(λ,wb), wa − wb〉rms ≥ µJ‖ua − ub‖2rms

+c (‖Θ(ua − ub)‖2rms − 2‖Θ(ua − ub)‖rms‖va − vb‖rms + ‖va − vb‖2rms).(8.15)

Let ξ = ua − ub and η = va − vb, and observe that ‖Θξ‖rms ≤ ‖Θ‖rms‖ξ‖rms. Then
for any fixed ε > 0, the right side of the inequality (8.15) is bounded below by

(8.16)

(µJ − εc ‖Θ‖2rms)‖ξ‖2rms + c ((1 + ε)‖Θξ‖2rms − 2‖Θξ‖rms‖η‖rms + ‖η‖2rms).
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Consider that the polynomial (1 + ε)z2 − 2z + 1 has the minimum value ε/(1 + ε) in
R

1. This fact and the k-uniform upper bound for ‖Θ‖rms in Lemma 8.1 proves that
the expression in (8.16) is itself bounded below by

(µJ − εc b2 exp 2a)‖ξ‖2rms +
c ε

1 + ε
‖η‖2rms(8.17)

for all ε > 0, k ≥ 2 and all (ξ, η) in R
km ⊕ R

kn. The estimate (8.11) is now obtained
by verifying that

max
ε>0

min

{
µJ − εc b2 exp 2a,

c ε

1 + ε

}
=

c µJ
µJ+c (1+b2 exp 2a)

2 +
√
(µJ+c (1+b2 exp 2a)

2 )2 − c µJ

≥ c µJ
µJ + c (1 + b2 exp 2a)

.

To prove (8.12), note that by (8.14)

‖∇wL(λ,wa)−∇wL(λ,wb)‖rms ≤ ΛJ‖ua − ub‖rms

+ c
√
1 + ‖Θ∗‖2rms‖Θ(ua − ub)− (va − vb)‖rms.(8.18)

Moreover, since ‖Θ∗‖rms = ‖Θ‖rms and

‖Θ(ua − ub)− (va − vb)‖2rms ≤ 2(‖Θ‖2rms‖ua − ub‖2rms + ‖va − vb‖2rms),

it now follows from Lemma 8.1 that the right side of the inequality (8.18) is bounded
above by

[ΛJ + c
√
2max{1, b2 exp 2a}(1 + b2 exp 2a) ] ‖wa − wb‖rms

for all k ≥ 2, λ ∈ R
kn, and wa and wb in R

km ⊕ R
kn.

Theorem 8.4. Assume that the discrete-time cost functions J(·) : R
km → R

1 de-
fined by (4.10a) in formulation II are convex with gradients that satisfy the k-uniform
RMS strong monotonicity and Lipschitz continuity conditions (8.6) and (8.7). Sup-
pose that the inequality constraint functions γ(t, ·) : R

m ⊕R
n → R

r that prescribe the
relaxed feasible sets Ωg ⊂ R

km ⊕ R
kn in (5.12b) are continuous and quasi-convex for

all t ∈ [0, 1]. Let L(λ, ·) : R
km ⊕ R

kn → R
1 denote the augmented Lagrangians in

(5.12c). Then for each k ≥ 2 and λ ∈ R
kn, the relaxed NLP (5.12) has a correspond-

ing unique solution w(λ). Moreover, let {w(j)} be any sequence in Ωg generated by
the AGP inner loop iteration (5.6)–(5.7), and let rj = L(λ,w(j))− L(λ,w(λ)). Then
for all k ≥ 2 and λ ∈ R

kn, the sequence {rj} converges geometrically to zero with

0 ≤ rj
r0
≤ (νL)

j , j = 0, 1, 2, . . . ,(8.19a)

where

νL = 1− 2µLσLδ

(
√
1 + 2µLσL + 1)2

,(8.19b)

σL = min

{
α,

2β(1− δ)

ΛL

}
,(8.19c)

and µL and ΛL are the (k, λ)-invariant numbers in Lemma 8.3.
Proof. Immediate from Lemma 8.3, and Theorems 6.1 and 6.2.
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8.2. Separated pointwise constraints. An RAGP counterpart of Theorem
8.4 is established below for problems with separated inequality constraint functions
γ(t, ·) = (γu(t, ·), γx(t, ·)) that have continuous quasi-convex components γu(t, ·) :
R
m → R

ru and γu(t, ·) : R
n → R

rx for t ∈ [0, 1]. The following lemmas are needed in
this development.

Lemma 8.5. Let Y be a nonempty convex set in R
N that is closed relative to

a norm ‖ · ‖ induced by some inner product 〈·, ·〉. Define g : R
N ⊕ R

N → R
1 and

ĝ : R
N → R

1 by the rules

g(x, y) =
1

2
‖x− y‖2

and

ĝ = min
y∈Y

g(x, y),

and let PY (x) denote the unique minimizer of g(x, ·) in Y . Then ĝ(·) is Lipschitz
continuously differentiable relative to ‖ · ‖, and the formula

∇ĝ(x) = ∇xg(x, PY ) = x− PY (x)(8.20)

prescribes the gradient of ĝ(·) relative to the inner product 〈·, ·〉.
Proof. Since {RN , 〈·, ·〉, ‖·‖} is a Hilbert space, the projection theorem establishes

the existence and uniqueness of the proximal point map PY . If the closed set Y is
bounded and hence compact, then the assertions of the lemma follow directly from
results in [9] and [10]. On the other hand, suppose that Y is not bounded. Fix
x0 ∈ R

N and δ0 > 0, and put ρ0 = ‖x0 − PY (x0)‖ + δ0. By the triangle inequality
and the nonexpansive property for PY [26], it follows that for ‖x− x0‖ < δ0,

‖x0 − PY (x)‖ ≤ ‖x0 − PY (x0)‖+ ‖PY (x0)− PY (x)‖
≤ ‖x0 − PY (x0)‖+ ‖x0 − x‖
≤ ρ0

and therefore

ĝ(x) = min
y∈Y (ρ0)

g(x, y),

where Y (ρ0) is the compact set {y ∈ Y : ‖y − x0‖ ≤ ρ0}. But in this case, the
assertions of the lemma follow again from trivial adjustments to the proofs in [9] and
[10].

Finally, note that if (8.20) holds, then ∇ĝ(·) is Lipschitz continuous with
‖∇ĝ(x1)−∇ĝ(x2)‖ ≤ ‖x1 − x2‖+ ‖PY (x1)− PY (x2)‖

≤ 2 ‖x1 − x2‖(8.21)

for all x1 and x2.
Lemma 8.6. Suppose that the relaxed feasible sets Ωg ⊂ R

km⊕R
kn are Cartesian

products Ωu
g×Ωv

g prescribed by separated continuous quasi-convex inequality constraint

functions in (5.15). Assume that the discrete-time cost functions J(·) : R
km → R

1

defined by equation (4.10a) in formulation II are convex with gradients that satisfy the
k-uniform RMS strong monotonicity and Lipschitz continuity conditions (8.6) and
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(8.7). Then the corresponding reduced augmented Lagrangians L̂(λ, ·) : R
km → R

1 in
(5.17b) satisfy analogous conditions uniformly for k ≥ 2 and λ ∈ R

kn. More precisely,
for all k ≥ 2, λ ∈ R

kn, and ua and ub in R
km,

〈∇L̂(λ, ua)−∇L̂(λ, ub), ua − ub〉rms ≥ µL̂ ‖ua − ub‖2rms(8.22a)

with

µL̂ = µJ(8.22b)

and

‖∇L̂(λ, ua)−∇L̂(λ, ub)‖rms ≤ ΛL̂ ‖ua − ub‖rms(8.23a)

with

ΛL̂ = ΛJ +
√
2cb2 exp 2a.(8.23b)

Proof. For λ ∈ R
kn and u ∈ R

km, let

F̂ (λ, u) = min
v∈Ωvg

F (λ, u, v),

where F (λ, u, v) is the shifted penalty term (8.13) in the augmented Lagrangians
(5.12c). Then

F̂ (λ, u) = J(u) + F̂ (λ, u)− 1

2
c

∥∥∥∥λc
∥∥∥∥2

rms

.(8.24)

By Lemma 8.5 and the chain rule, F̂ (λ, ·) is Lipschitz continuously differentiable with

∇uF̂ (λ, u) = c Θ∗
(

λ

c
+Θu+ θ − PΩvg

(
λ

c
+Θu+ θ

))
.(8.25)

For ua and ub in R
km, put xa = λ

c + Θua + θ and xb = λ
c + Θub + θ. Since PΩvg

is nonexpansive and monotone nondecreasing [26], [32], and ‖Θ∗‖rms = ‖Θ‖rms, it
follows from (8.25) and Lemma 8.1 that for all k ≥ 2, λ ∈ R

km, and ua and ub in
R
km,

〈∇uF̂ (λ, u
a)−∇uF̂ (λ, u

b), ua − ub〉rms = c ‖Θ(ua − ub)‖2rms

−c 〈PΩvg
(xa)− PΩvg

(xb),Θ(ua − ub)〉rms ≥ c ‖Θ(ua − ub)‖2rms

−‖PΩvg
(xa)− PΩvg (x

b)‖rms ‖Θ(ua − ub)‖rms ≥ 0(8.26)

and

‖∇uF̂ (λ, u
a)−∇uF̂ (λ, u

b)‖2rms ≤ c2‖Θ∗‖2rms(‖Θ(ua − ub)‖2rms

−2〈xa − xb, PΩvg
(xa)− PΩvg

(xb)〉
+‖PΩvg (x

a)− PΩvg (x
b)‖2rms)

≤ 2c2(b2 exp 2a)2‖ua − ub‖2rms.(8.27)

The (k, λ)-uniform estimates (8.22) and (8.23) are immediate consequences of (8.26),
(8.27), (8.24), and the hypotheses for J(·).
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Theorem 8.7. Suppose that the relaxed feasible sets Ωg ⊂ R
km ⊕ R

kn are
Cartesian products Ωu

g × Ωv
g prescribed by separated continuous quasi-convex inequal-

ity constraint functions in (5.16). Assume that the discrete-time cost functions J(·) :
R
km → R

1 defined by (4.10a) in formulation II are convex with gradients that satisfy
the k-uniform RMS strong monotonicity and Lipschitz continuity conditions (8.6)
and (8.7). Let L̂(λ, ·) : R

km → R
1 denote the reduced augmented Lagrangians in

(5.17b). Then for each k ≥ 2 and λ ∈ R
kn, the reduced NLP (5.17) has a corre-

sponding unique solution u(λ). Moreover, let {u(j)} be any sequence in Ωu
g generated

by the RAGP counterpart of the inner loop iteration (5.6)–(5.7) for (5.17) and let
rj = L̂(λ, u(j)) − L̂(λ, u(λ)). Then for all k ≥ 2 and λ ∈ R

kn, the sequence {rj}
converges geometrically to zero with

0 ≤ rj
r0
≤ (νL̂)

j , j = 0, 1, 2, . . . ,(8.28a)

where

νL̂ = 1− 2µL̂σL̂δ

(
√
1 + 2µL̂σL̂ + 1)2

,(8.28b)

σL̂ = min

{
α,

2β(1− δ)

ΛL̂

}
,(8.28c)

and µL̂ and ΛL̂ are the (k, λ)-invariant constants in Lemma 8.6.
Proof. Immediate from Lemma 8.6 and Theorems 6.1 and 6.2.
Note 7. As c → ∞, the growth constants µL and µL̂ in Theorems 8.4 and 8.7

remain bounded, the Lipschitz constants ΛL and ΛL̂ increase without bound, and
the corresponding (k, λ)-invariant AGP and RAGP inner loop convergence rate fac-
tors νL and νL̂ approach 1. Moreover, this deterioration in convergence rate bounds
is reflected in the actual convergence rate properties of the subject algorithms in
formulation II. Augmented Lagrangian methods in formulation I are also adversely
affected by large values of c, although the estimates in section 7 are too crude to show
this. In fact, such large penalty constant ill-conditioning is a familiar feature of un-
scaled augmented Lagrangian methods applied to general NLPs, and preconditioning
schemes designed specifically to address this issue for penalized objective functions
have been proposed in [25], [20], and [21]. In the present optimal control context,
the implementation of such methods remain to be explored. (See the final paragraph
in section 1 for additional comments on the application of these preconditioners to
control problems in formulation I.) Note that the estimates in Theorems 8.4 and 8.7
also predict deteriorating convergence rates for the AGP and RAGP methods when
the state transition operator norms ‖Θ‖rms are large compared to 1.

Note 8. For optimal control problems with separated simple pointwise inequal-
ity constraints (e.g., bounds on the components of the state and control vectors),
the RAGP iteration map typically costs significantly less to compute than its AGP
counterpart. What is more, the estimates in Theorems 8.4 and 8.7 indicate that the
RAGP method may have a convergence rate advantage over AGP as well, in cases
where both methods are applicable. To see this, observe that

ΛL = ΛJ + c
√
2 max{1, b2 exp 2a}(1 + b2 exp 2a)

≥ ΛJ +
√
2cb2 exp 2a

= ΛL̂,
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and therefore

σL = min

{
α,

2β(1− δ)

ΛL

}
≤ min

{
α,

2β(1− δ)

ΛL̂

}
= σL̂.

Moreover,

µL =
c µJ

µJ + c (1 + b2 exp 2a)

<
µJ

1 + b2 exp 2a

=
µL̂

1 + b2 exp 2a
.

Consequently,

µLσL <
µL̂σL̂

1 + b2 exp 2a
,

and therefore νL̂ < νL < 1. It remains to be shown that this disparity in convergence
rate estimates reflects the actual convergence behavior observed in numerical imple-
mentations of AGP and RAGP methods for the class of optimal control problems
treated here.

Note 9. Reference [19] describes effective alternative primal/dual Lagrangian al-
gorithms for specially structured fine-mesh ill-conditioned discrete-time optimal con-
trol problems.
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Abstract. We study a class of functional which can be used for matching objects which can be
represented as mappings from a fixed interval, I, to some “feature space.” This class of functionals
corresponds to “elastic matching” in which a symmetry condition and a “focus invariance” are im-
posed. We provide sufficient conditions under which an optimal matching can be found between two
such mappings, the optimal matching being a homeomorphism of the interval I. The differentiability
of this matching is also studied, and an application to plane curve comparison is provided.

Key words. calculus of variations, shape representation and recognition, elastic matching,
geodesic distance
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1. Introduction. In many applications, objects of interest can be represented
as numerical functions θ which are defined on some interval I ⊂ R and take values
in R

d. Several examples may come from signal processing, in which measurements
are made during a certain time interval (e.g., speech recognition), analysis of one-
dimensional (1D) geological data (e.g., measurements in wells, I being a depth inter-
val), or shape recognition, in which an object can represent a two-dimensional (2D)
or three-dimensional (3D) curve.

A problem one typically has to face when dealing with such functional objects is
to find ways to compare them. This comparison problem is most of the time posed as
a matching problem, which may be described as “finding similar structures appearing
at similar places (or similar times).” To be more explicit, given two “objects” θ and
θ′, expressed as functions defined on the same interval I, the issue is to find, for each
x ∈ I, some x′ ∈ I such that x � x′ and θ(x) � θ′(x′). The matching is consistent if
the correspondence x �→ x′ is one-to-one, i.e., there cannot be two distinct locations
on θ which are associated to the same location on θ′; it is complete if each location
in θ is matched to some location in θ′, and bicomplete if, in addition, each location
in θ′ is matched to some location in θ. Consistent bicomplete matchings thus can be
represented by bijections φ : I → I, and the matching problem can be formulated
as finding such a φ such that φ � id (where id is the identity function x �→ x) and
θ � θ′ ◦ φ (in this last sentence, � must be understood as “as close as possible to”).

A common approach to realize this program is to minimize some functional
Lθ,θ′(φ) which is small when the requirements above are satisfied. One simple ex-

ample is (letting φ̇ = dφ
dx )

Lθ,θ′(φ) =

∫
I

(φ̇− 1)2dx+ λ

∫
I

(θ(x)− θ′ ◦ φ(x))2dx,(1.1)
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and many functionals which are used in the literature fall into this category, with
some variations. One of the drawbacks in this formulation is the lack of symmetry
in θ and θ′. In general, matching θ to θ′ or θ′ to θ would yield distinct results.
This is undesirable, unless there is some reason to privilege one object to the other,
and symmetrical matching seems appealing in many contexts. A sufficient condition
yielding symmetrical matching would be

Lθ,θ′(φ) = Lθ′,θ(φ
−1) ,

which is true for functionals of the kind (see section 2)

Lθ,θ′(φ) =

∫
I

F (φ̇, θ, θ′ ◦ φ)dx(1.2)

with ξF (1/ξ, v, u) = F (ξ, u, v).
One way to modify (1.1) in order to put it into the above form could be to set

F (ξ, u, v) = (
√
ξ − 1)2 + λ

√
ξ(u− v)2.

Note that, denoting by |I| the length of the interval I, one has, in this case,
(because φ is increasing from I onto I)∫

I

F (φ̇, θ(x), θ′ ◦ φ(x))dx = 2|I| −
∫
I

√
φ̇
(
2− λ(θ(x)− θ′ ◦ φ(x))2

)
dx,

and the problem is equivalent to maximizing
∫
I

√
φ̇
(
2− λ(θ(x)− θ′ ◦ φ(x))2

)
dx.

The problem which has motivated this paper is the functional which has been
designed in [9], [10]. In this case, F is given by

F (ξ, u, v) =
√
ξ

∣∣∣∣cos
u− v

2

∣∣∣∣ .(1.3)

The functional can be used to compare and match plane curves, θ being in this case
the angle between the tangent and some reference axis. It has been shown that the
minimum, over φ, of arccosLθ,θ′(φ) provides a distance between plane curves seen up
to translation and scaling. (That is, it is not only symmetrical but also satisfies the
triangular inequality.) In fact, this function F comes in a very natural way from the
computation of paths of minimal energy in the space of plane curves.

In the present paper, we only consider the case when F can be written as√
ξG(u, v), and one tries to maximize∫ 1

0

√
φ̇G(θ, θ′ ◦ φ)dx.

Some discussion on how this formulation can be seen as a consequence of some simple
assumptions on the matching will be provided in section 2. We shall then study the
existence and the properties of solutions of this type of variational problem. More
precisely, we shall ask whether there exists some optimal matchings φ, which are
bijective. When such a φ exists, we then want to discuss on its smoothness properties,

and check, in particular, that the normalization by

√
φ̇ has not harmed too much of

the smoothing properties of the initial formulation (1.1).
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If we forget about θ and θ′, we must thus deal with variational problems which
fit into the following framework. Without loss of generality, we take I = [0, 1] for the
rest of the paper and we introduce some notations.

Notation 1. Let Hom+ be the set of increasing homeomorphisms on [0, 1], i.e., the
set of continuous strictly increasing functions φ : [0, 1] → [0, 1] such that φ(0) = 0,
φ(1) = 1.

Since φ ∈ Hom+ is continuous and increasing, φ is differentiable almost every-
where (a.e.). This derivative is denoted φ̇.

Given a measurable function f : [0, 1]× [0, 1]→ R+, we define, for φ ∈ Hom+,

Uf (φ) =

∫ 1

0

√
φ̇f(φ(x), x)dx .

We also let f̃(x, y) = f(y, x).
Most of the paper (sections 4, 5, and 6) will be devoted to proving the results

which are stated in section 3. Some auxiliary results will also be given in section 7.
We start with a discussion on which general form a matching function F (ξ, u, v) may
assume when some simple invariance properties are required.

2. Invariance properties of the matching. Let a function F be defined on
[0,+∞[×R

d×R
d, and specify the problem of optimal matching between two functions

θ and θ′, defined on [0, 1], and with values in R
d through the functional, defined for

all φ, which are increasing diffeomorphisms of [0, 1],

Lθ,θ′(φ) =

∫ 1

0

F (φ̇(x), θ(x), θ′ ◦ φ(x))dx.

As said before, one desirable property is symmetry: for any functions θ and θ′,
we want that

φ = argmaxLθ,θ′ ⇔ φ−1 = argmaxLθ′,θ.

Since

Lθ′,θ(φ
−1) =

∫ 1

0

φ̇(x)F

(
1

φ̇(x)
, θ′ ◦ φ(c), θ(x)

)
dx,

a sufficient condition for symmetry is the following.
[C1] For all (ξ, u, v) ∈ [0,+∞[×R

d × R
d, one has F (ξ, u, v) = ξF (1/ξ, v, u).

Since we maximize Lθ,θ′ , one should build F with suitable properties with respect
to maximization. One such property is that F should be concave with respect to its
first variable ξ. (To understand why concavity in the first variable is essential for this
kind of problem, one can refer to [2].) This is stated in condition [C2].

[C2] For all u, v, ξ �→ F (ξ, u, v) is concave on [0,+∞[.
It is important to notice that this concavity assumption is consistent with the

symmetry [C1] in the following sense. If [C1] is not true, it is natural to try to
symmetrize F by replacing it by

F s(ξ, u, v) = F (ξ, u, v) + ξF

(
1

ξ
, v, u

)
.

It is easily shown, then, that condition [C2] is true for F s as soon as it was originally
true for F .
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Another natural condition for the functional is that, when comparing a function θ
with itself, the optimal φ is φ = id. In other terms, one should have, for all functions
θ and all diffeomorphisms φ,∫ 1

0

F (φ̇, θ, θ ◦ φ)dx ≤
∫ 1

0

F (1, θ, θ)dx.

A sufficient condition for this can be that, for all ξ, u, v, F (ξ, u, v) ≤ F (1, u, u). If one

takes into account the constraint
∫ 1

0
φ̇ = 1, this can be weakened into the following

condition (which can be shown to be necessary and sufficient [8]).
[C3] There exists a measurable function λ : R

d → R such that, for all ξ > 0, u, v ∈
R
d,

F (ξ, u, v) ≤ F (1, u, u) + λ(v)ξ − λ(u).

Indeed, assuming [C3], we have∫ 1

0

F (φ̇, θ, θ ◦ φ)dx ≤
∫ 1

0

F (1, θ, θ)dx+

∫ 1

0

φ̇λ ◦ θ ◦ φdx−
∫ 1

0

λ ◦ θdx,

and the last two integrals are equal by a change of variables.
Additional constraints may come from invariance properties which may be im-

posed on the matching. The first invariance property we consider will be called
“focus invariance.” Consider θ and θ′ as signals, defined on [0, 1], and assume that
they have been matched by some function φ∗. Let [a, b] be a subinterval of [0, 1], and
set [a′, b′] = [φ∗(a), φ∗(b)]. We want to refocus the matching on these intervals. For
this, we can rescale the functions θ and θ′ on these intervals to get new signals defined
on [0, 1], and match the new signals. The question which arises then is whether this
new matching is consistent with the one which has been obtained initially.

Let us be more precise. To rescale θ (resp., θ′), we define θab(x) = θ(a+(b−a)x)
(resp., θ′a′b′(x) = θ′(a′ + (b′ − a′)x)), x ∈ [0, 1]. Comparing these signals with the
functional F yields an optimal matching which, if it exists, maximizes∫ 1

0

F (φ̇(x), θa,b(x), θ′a′,b′ ◦ φ(x))dx.(2.1)

The optimal matching between the initial functions θ and θ′ clearly maximizes∫ b

a

F (φ̇(y), θ(y), θ′ ◦ φ(y))dy

with the constraints φ(a) = a′ and φ(b) = b′. Making the change of variables y =
a+ (b− a)x and setting ψ(x) = (φ(y)− a′)/(b′ − a′), this integral can be written as

(b− a)

∫ 1

0

F (λψ̇(x), θa,b(x), θ′a′,b′ ◦ ψ(x))dx(2.2)

with λ = b′−a′
b−a . We say that F satisfies a focus invariance propertyies if, for any θ

and θ′, the maximizer of (2.1) is the same as the maximizer of (2.2). One possible
condition ensuring such a property is that F is itself (relatively) invariant under the
transformation (ξ, u, v) = (λξ, u, v).

[Focus] For some α > 0, for all ξ > 0, u, v ∈ R
d, F (λξ, u, v) = λαF (ξ, u, v).
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This condition trivially implies that F (ξ, u, v) = ξαF (1, u, v). If condition [C1] is
imposed, one sees that α has to be equal to 1/2. We thus get the following.

The only matching functionals which satisfy [C1] and [Focus] take the form

F (ξ, u, v) =
√
ξF1(u, v)(2.3)

with F1(u, v) = F1(v, u).
These functionals satisfy [C2] as soon as F1 ≥ 0. For [C3], we must have, for all

u, v ∈ R
d,

F1(u, v) ≤
√
F1(u, u)F1(v, v).(2.4)

Indeed, assuming [C3], we must have, for some function λ,

F1(u, u)− λ(u) = max
v,ξ

√
ξF1(u, v)− λ(v)ξ.

For a fixed v,
√
ξF1(u, v) − λ(v)ξ has a finite maximum if λ(v) > 0, or if F1(u, v) =

λ(v) = 0. In the first case, the maximum is given by

F1(u, v)
2

4λ(v)
.

This implies that

F1(u, u)− λ(u) = max
v

F1(u, v)
2

4λ(v)
(2.5)

with the convention 0/0 = 0. In particular, taking v = u, one has

F1(u, u)2 − 4λ(u)F1(u, u) + 4λ(u)2 ≤ 0,

which is possible only if F1(u, u) = 2λ(u). Given this fact, (2.5) clearly implies (2.4).
We thus have the following.

The only matching functionals which satisfy [C1]–[C3] and [Focus] take the form

F (ξ, u, v) =
√
ξF1(u, v)(2.6)

with F1(u, v) = F1(v, u), F1(u, v) ≥ 0, and F1(u, v) ≤
√
F1(u, u)F1(v, v).

The functional in (1.3) satisfies this property.
One must note, however, that focus invariance under the above form is not a

suitable constraint for every matching problem. Let us restrict our attention to the
comparison of plane curves, which has initially motivated the present paper. In this
case, the functions θ are typically geometrical features computed along the curve and
expressed as functions of the (euclidean) arc-length. In such a context, focusing should
rather be interpreted from a geometrical point of view, as rescaling (a portion of) a
plane curve to length 1. But, in this case, applying such a scale change may have
some impact not only on the variable x (which here represents the length), but also
on the values of the geometric features θ. In example (1.3), the geometric features
were the orientation of the tangents, which are not affected by scale change, so that
focus invariance is in this case equivalent to geometric scale invariance. Letting κ
be the curvature computed along the curve, the same invariance would be true if
we had taken θ = κ′/κ2 (which is the “curvature” which characterizes curves up



DIFFEOMORPHIC MATCHING PROBLEMS 1117

to similitudes). But if we had chosen to compare precisely euclidean curvatures, the
invariance constraints on the matching would be different. Since curvatures are scaled
by λ−1 when a curve is scaled by λ, the correct condition should be (instead of [Focus])

F (λξ, λu, v) = λαF (ξ, u, v).

This comes from rescaling only the first curve. Rescaling the second curve yields

F (λξ, u, v/λ) = λβF (ξ, u, v).

Note that, if the symmetry condition is valid, we must have β = 1 − α, which we
assume hereafter.

One can solve this identity and compute all the (continuously differentiable) func-
tions which satisfy it. This yields functions F of the kind

F (ξ, u, v) = H
(
ξ
v

u

)
uαvα−1.

Note that, since F should be concave as a function of ξ, H itself should be concave.
The symmetry condition is ensured as soon as xH(1/x) = H(x) for all x. One may
set

F (ξ, u, v) = −|ξv − u| ,
which satisfies [C1]–[C3].

Many variations can be done on these computations. Inspiration on how devising
functionals which satisfy given criteria of invariance can be obtained from the first
chapters of [4].

We now return to our original problem, which contains, according to the above
terminology, symmetrical, focus invariant matchings.

3. Main results.

3.1. Existence results.
Notation 2. Let a and b be two points in [0, 1]2 such that a = (a1, a2) and

b = (b1, b2). We denote by [a, b] the closed segment from a to b, i.e., the set of
points a+ t(b− a), for 0 ≤ t ≤ 1, and by ]a, b[ the open segment from a to b defined
by ]a, b[= [a, b] \ {a, b}. Moreover, we say that such a segment is horizontal (resp.,
vertical) if a2 = b2 (resp., a1 = b1).

Notation 3. Denote by ∆f the integral ∆f =
∫ 1

0
f(x, x)dx.

Let Ωf be the set

Ωf =

(y, x) ∈ [0, 1]2 | |x− y| ≤
√

1−
(

∆f

‖f‖∞

)2
 .

Theorem 3.1. Assume that f ≥ 0 is bounded and satisfies conditions [H1] and
[H2].

[H1] There exists a finite family of closed segments ([aj , bj ])j∈J such that each
of them is horizontal or vertical and f is continuous on [0, 1]2 \ F , where
F =

⋃
j∈J [aj , bj ].

[H2] Let fs be defined by

fs(x) = lim
δ→0

(
inf{ f(u) | u ∈ [0, 1]2 \ F, |u− x| < δ }) .
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There does not exist any nonempty open vertical or horizontal segment ]a, b[ such
that ]a, b[⊂ Ωf and fs vanishes on ]a, b[.

Then there exists φ∗ ∈ Hom+ such that Uf (φ
∗) = max{Uf (φ), φ ∈ Hom+}. More-

over, if φ is a maximizer of Uf , one has, for all x ∈ [0, 1], (φ(x), x) ∈ Ωf .

3.2. Regularity of the optimal matching. We now give some conditions
under which the optimal matching satisfies some smoothness properties.

Definition 3.2. We say that f : [0, 1]2 → R is Hölder continuous at (y, x) if
there exist α > 0 and C > 0 such that

|f(y′, x′)− f(y, x)| ≤ C max(|y′ − y|α, |x′ − x|α)(3.1)

for any (y′, x′) ∈ [0, 1]2.
We say that f is locally uniformly Hölder continuous at (y0, x0) if there exists a

neighborhood V of (y0, x0) such that f is Hölder continuous at all (y, x) ∈ V , with
constants C and α, which are uniform over V .

Theorem 3.3. Let f be a nonnegative real-valued measurable function on [0, 1]2

and assume that Uf reaches its maximal value on Hom+ at φ∗. Then for any x0 ∈
[0, 1], if f(φ(x0), x0) > 0 and if f is Hölder continuous at (φ(x0), x0), then φ∗ is
differentiable at x0 with strictly positive derivative.

Moreover, if f is locally uniformly Hölder continuous, then φ̇∗ is continuous in a
neighborhood of x0.

Theorem 3.4. Assume that f is continuously differentiable in both variables. Let
φ ∈ Hom+ be such that Uf (φ) = max{Uf (ψ) |ψ ∈ Hom+} and that, for all x ∈ [0, 1],
one has f(φ(x), x) > 0. Then, φ is twice continuously differentiable.

4. Remarks.

4.1. Positivity of f . It is necessary to control the vanishing sets of the function
f (as in condition [H2]) to obtain a homeomorphism. One simple example is when
f vanishes on a square S =] 12 − a, 1

2 + a[2⊂ [0, 1]2, and f = 1 outside. (Such an f
satisfies condition [H1].) Using the fact that (as a consequence of Lemma 5.16 below),
φ must be linear on any section which does not encounter S, it is not very difficult
to prove that the maximum is attained for φ which is discontinuous at x = a + 1/2,
more precisely such that φ(x) = 1

2 − a and φ(x+ 0) = 1
2 + a.

4.2. Piecewise constant functions. A particular and important case in which
condition [H1] is valid is the case of piecewise constant functions f . We state this as
a corollary.

Corollary 4.1. Assume that there exists 0 = x0 < x1 < · · · < xm = 1 (resp.,
0 = x′0 < x′1 < · · · < x′n = 1) and constants fkl > 0, 1 ≤ k ≤ m, 1 ≤ l ≤ n such that

f(x, x′) =

m∑
k=1

n∑
l=1

fkl1[xk−1,xk[×[x′
l−1,x

′
l[
(x, x′).

Then, there exists φ∗ ∈ Hom+, which is piecewise linear such that

Uf (φ
∗) = max{Uf (φ) |φ ∈ Hom+}.

Remark. In fact, one needs to assume only that fkl > 0 for k and l such that
[xk−1, xk[×[x′l−1, x

′
l[ is sufficiently close from the diagonal of the unit square, i.e.,

intersects the set Ωf .
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Fig. 4.1. Matching of flat sections. Left: Situation in which [H2] is not true. A point on the
first curve has a whole interval of possible matches on the second one with an opposite orientation
of the tangent. Right: In this situation, there still exist portions in the second curve with opposite
tangents, but because their respectve arc-lengths are far apart, they can be ignored (using the set
Ωf ): [H2] is true.

Proof. We need to show only that the optimal φ is piecewise linear. But we have

Uf (φ) =

m∑
k=1

n∑
l=1

fkl

∫ xk

xk−1

√
φ̇(x)1[xl−1,xl[(φ(x))dx.

Let yk = φ(xk), k = 0, . . . ,m. Let y′l = φ−1(x′l), l = 0, . . . , n. We have, writing
a ∨ b = max(a, b) and a ∧ b = min(a, b),

Uf (φ) =

m∑
k=1

n∑
l=1

fkl

∫ xk∧y′
l

xk−1∨y′
l−1

√
φ̇(x)dx,

and Lemma 5.16 yields the result.

4.3. Application to optimal matching of functions. Let us see what con-
ditions [H1] and [H2] mean when f is of the kind

f(y, x) = F1(θ(y), θ
′(x)) .

One of the examples we have in mind is the case when θ(y) and θ′(y) take values in
[0, 2π[, and F1(u, v) = | cos[(u− v)/2]|. In this case, these functions, θ and θ′, corre-
spond to rotation angles of the unitary tangents to some plane curves, and matching
is used to compare shapes on the basis of their silhouettes.

In this particular case, F1 is continuous, but not continuously differentiable. It
is, however, smooth enough to fit into the regularity condition [H1], so that the true
constraint is on θ and θ′. Note that f is discontinuous on a horizontal (resp., vertical)
segment as soon as θ (resp., θ′) is discontinuous at the position of the segment in the
horizontal (resp., vertical) axis. Thus [H1] implies that θ and θ′ are continuous except
at a finite number of points. Points of discontinuity of θ and θ′ are angular points
for the plane curves they represent; thus condition [H1] implies that one can safely
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perform a matching between shapes having a finite number of angular points, which
is the case of most of the objects which can be observed in a standard environment.
Note that, in this case, piecewise constant f corresponds to polygonal shapes, which
is also an important example to deal with.

Condition [H2] essentially means that one cannot have intervals on which, for a
given x0, F (θ(.), θ′(x0)) = 0. In the case of curve matching, when θ is an angle, and
formula (1.3) is used, this means that one of the curves cannot have a flat portion
which may be matched to a point of the other curve with opposite tangent. (Note that
one can restrict this condition to points which are located at close enough positions on
both curves; see Figure 4.1 for an illustration.) In particular, the condition is always
true if the compared curves contain no flat sections.

5. Proof of the existence.

5.1. Sketch of the proof. In the next section, we will introduce a compact set
D∗, containing Hom+, and extend the functional Uf to this space. We first prove
the existence of the maximum for this extended functional through the following
proposition.

Proposition 5.1. If f satisfies condition [H1], then Uf is upper-semicontinuous
on D∗. Since D∗ is compact, there exists φ∗ ∈ D∗ such that

Uf (φ
∗) = sup{Uf (ψ) |ψ ∈ D∗}.

Moreover, if φ is a maximizer of Uf , one has, for all x ∈ [0, 1], (φ(x), x) ∈ Ωf .
Theorem 3.1 will then be a consequence of the following proposition.
Proposition 5.2. If f satisfies condition [H2] in Theorem 3.1 and φ∗ ∈ D∗ is

such that

Uf (φ
∗) = sup{Uf (ψ) |ψ ∈ D∗},

then φ ∈ Hom+.
Before proving these propositions, we introduce D∗.

5.2. The set D∗.

5.2.1. Definition. Let M1 be the set of the positive Radon measures µ on [0, 1]
such that µ([0, 1]) = 1. Let M be the set of measures on [0, 1] such that µ([0, 1]) ≤ 1.
We let D∗ be the set of all φ which can be written as

φ(s) = µ([0, s[)

for some µ ∈M1. Such φ are nondecreasing, left continuous, and satisfy φ(0) = 0 and
φ(1) ≤ 1. Conversely, any φ satisfying these properties is in D∗, and the associated
measure is unique and will be denoted by µφ. Note that µφ({1}) = 1 − φ(1) for all
x ∈ [0, 1[, µφ({x}) = φ(x+ 0)− φ(x), where φ(x+ 0) is the right limit of φ at x.

Any µ ∈M1 can be written in a unique way under the form

µ = ωdx+ ν,

where dx is the Lebesgue measure on [0, 1], ω is a measurable, nonnegative, function
on [0, 1], and ν is singular. (There exists a set E of Lebesgue measure 0 such that
ν(A) = ν(A ∩ E) for every Borel set A ⊂ [0, 1].) For φ ∈ D∗, we take the notation

dµφ = ωφds+ dνφ.
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Definition 5.3. For a function φ ∈ [0, 1], we let φ̇(x) be the limit when ε→ 0 of
φ(x+ε)−φ(x)

ε when this limit exists and φ̇(x) = 0 otherwise. If φ ∈ D∗, one has φ̇ = ωφ
a.e. [7, Theorem 8.18].

Following [6], we extend the functional Uf to D∗ by letting

Uf (φ) =

∫ 1

0

√
φ̇(x)f(φ(x), x)ds .

We also denote by D∗
+ the set of functions φ ∈ D∗ for which

∫ b
a
φ̇ > 0 for any

0 ≤ a < b ≤ 1. We have φ ∈ Hom+ if φ ∈ D∗
+, and νφ is diffuse, i.e., νφ({x}) = 0 for

any x ∈ [0, 1]. (Note that this is not a necessary condition: there exists functions in
Hom+ such that φ̇ = 0 a.e. See [3, example 18–8] .

5.2.2. Weak convergence in D∗.
Measures µn ∈M, n ≥ 0 are said to converge for the weak∗-topology to a limit µ

if, for every continuous function F on [0, 1], one has

lim
n→∞

∫ 1

0

Fdµn =

∫ 1

0

Fdµ.

Since this is the only kind of convergence we use on M and M1, the statement “µn
converges to µ” will always mean convergence in the weak∗-topology. We say that
φn ∈ D∗ weakly converges to φ ∈ D∗ if µφn converges to µφ.

We list some results related to this convergence.
Proposition 5.4 (see [5]). The sets M and M1 are compact for the weak∗-

topology.
If φn weakly converges to φ, then, for all x ∈ [0, 1] such that φ is continuous at

x, one has φn(x)→ φ(x).
Note that, since φ is increasing, its discontinuity set is at most countable.
Proposition 5.5. Let φn be a sequence in D∗, such that φ̇ndx and νφn both

converge in M, respectively, to αdx+ ρ and βdx+ τ . Then µφn converges to µ ∈M1

such that µ = (α+ β)dx+ (ρ+ τ).
This is obvious. Note that, by compactness of M, from any sequence φn one can

extract a subsequence such that both φ̇ndx and νφn converge.
We introduce, here and for what follows, a mollifier g, i.e., an infinitely differ-

entiable mapping g : R → R, with compact support included in ] − 1, 1[, such that∫ 1

−1
g(x)dx = 1. For ε > 0, we let gε(x) = g(x/ε)/ε. One has the following lemma.
Lemma 5.6 (see [6]). Let µn = ωndx be a sequence of absolutely continuous

measures in M which converges to αdx+ ρ. Then, for any ε > 0, one has

lim
n→∞

∫ 1

0

|ωn ∗ gε − α ∗ gε − ρ ∗ gε| dx = 0.

Here, µ ∗ gε denotes (as usually) the convolution of µ by gε,

µ ∗ gε(x) =

∫ 1

0

gε(x− y)dµ(y) .

5.2.3. A symmetry property of Uf . For φ ∈ D∗, we define, for y ∈ [0, 1],

φ−(y) = sup{x ∈ [0, 1] |φ(x) < y},
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with the convention that sup ∅ = 0.
Our purpose is to prove the following proposition (recall that we have denoted

f̃(x, y) = f(y, x)).
Proposition 5.7. For all φ ∈ D∗, one has

Uf (φ) = Uf̃ (φ
−).

The proof will be carried on with several lemmas.
Lemma 5.8. Let φ ∈ D∗.
1. We have φ− ∈ D∗ and (φ−)− = φ.
2. For any x ∈ [0, 1],

φ−(φ(x)) ≤ x ≤ φ−(φ(x) + 0)(5.1)

so that φ− ◦ φ(x) = x as soon as φ− is continuous at φ(x).
3. For any y ∈ [0, 1],

φ(φ−(y)) ≤ y ≤ φ(φ−(y) + 0)(5.2)

so that φ ◦ φ−(y) = y as soon as φ is continuous at φ−(y).
Moreover, if φ ∈ D∗

+, then φ− is continuous.
Proof. φ− is nondecreasing, φ−(0) = 0, φ−(1) ≤ 1, and φ− is left continuous,

since

φ−(y) = sup
h>0

(sup{x, φ(x) < y − h}) = sup
h>0

φ−(y − h)

so that φ− ∈ D∗. Now, let us show that for any (x, y) ∈ [0, 1]2,

φ(x) > y ⇒ φ−(y) < x.(5.3)

Indeed (assume x �= 0—otherwise the result is trivial), if φ(x) > y, since φ is left
continuous, there exists h > 0 such that φ(x − h) > y so that φ−(y) ≤ x − h < x.
Moreover, we deduce from the definition of φ− that for any x, y ∈ [0, 1],

φ−(y) < x⇒ φ(x) ≥ y.(5.4)

Now, since φ(x) = sup{ y ∈ [0, 1] | y < φ(x) }, using (5.3) and (5.4), we get

φ(x) ≤ sup{y ∈ [0, 1]| φ−(y) < x} = (φ−)−(x) ≤ sup{y ∈ [0, 1]|φ(x) ≥ y} = φ(x)

so that 1 is proved.
From 1, we deduce that 2 ⇐⇒ 3 so that it is sufficient to prove 3. For any y,

there exists an increasing sequence xn which converges to φ−(y) such that φ(xn) < y.
Since φ is left continuous, this yields φ ◦ φ−(y) ≤ y. Moreover, for all h > 0, one has
φ(φ−(y) + h) ≥ y so that y ≤ φ(φ−(y) + 0).

Now, assume that φ ∈ D∗
+ and assume that φ− is discontinuous at y0 ∈ [0, 1[.

Then φ−(y0 + 0) > φ−(y0) so that (φ−)− has the constant value y0 on ]φ−(y0),
φ−(y0 + 0)]. Since (φ−)− = φ, we get a contradiction with the fact that φ is strictly
increasing.

Note that φ is continuous at φ−(y) if and only if µφ({φ−(y)}) = νφ({φ−(y)}) = 0.
Lemma 5.9. Let φ ∈ D∗. If φ is derivable at x, then

lim
h→0

φ(x+ h+ 0)− φ(x)

h
= φ̇(x).
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Proof. Let us show that, for any sequence xn which converges to x, xn �= x, one

has φ(xn+0)−φ(x)
xn−x → φ̇(x). Since φ is increasing, the limit is clearly larger than φ̇(x).

Letting εn = (xn − x)2 > 0, we have

φ(xn + 0)− φ(x)

xn − x
≤ φ(xn + εn)− φ(x)

xn − x
=

φ(xn + εn)− φ(x)

xn + εn − x
(1 + |xn − x|),

and the last term converges to φ̇(x).
Define Pφ = { x ∈ [0, 1] | φ̇(x) > 0 } to be the set of locations where the derivative

of φ exists and is strictly positive (see Definition 5.3). One has the following lemma.
Lemma 5.10. For any x0 ∈ [0, 1], x0 ∈ Pφ ⇐⇒ φ(x0) ∈ Pφ− . Hence,

φ̇(x) =
1

φ̇−(φ(x))
1Pφ− (φ(x))

(with the convention 0/0 = 0).
Proof. (⇐) Assume that φ(x0) ∈ Pφ− ; then φ is continuous at x0. Indeed, if

φ(x0) < φ(x0 + 0), then φ− is constant on ]φ(x0), φ(x0 + 0)[ so that φ̇−(φ(x0)) = 0
and φ(x0) /∈ Pφ− (which is a contradiction). Moreover, since φ− is continuous at
φ(x0), we deduce from Lemma 5.8 that φ−(y0) = x0, where y0 = φ(x0). Now, noting
that for any h ∈ R

∗ such that x0 +h ∈ [0, 1], φ(x0 +h) �= φ(x0) (otherwise φ− should
be discontinuous at y0 = φ(x0)), we get using (5.1) and the fact that φ−(φ(x0)) = x0

φ(x0 + h)− φ(x0)

φ−[φ(x0 + h) + 0]− φ−[φ(x0)]
≤ φ(x0 + h)− φ(x0)

h
≤ φ(x0 + h)− φ(x0)

φ−[φ(x0 + h)]− φ−[φ(x0)]
.

Since φ is continuous at x0, Lemma 5.9 applied to φ− implies that [φ(x0+h)−φ(x0)]/h

converges to (φ̇− ◦ φ(x0))
−1 > 0 when h tends to 0 so that x0 ∈ Pφ.

(⇒) Now, assume that x0 ∈ Pφ. Then if y0 = φ(x0), φ
− is continuous at y0.

Indeed, if φ−(y0) < φ−(y0+0), then since φ = (φ−)−, φ is constant on ]φ−(y0), φ
−(y0+

0)]. However, from (5.1), we get that x0 ∈ [φ−(y0), φ
−(y0 + 0)] so that φ̇(x0) = 0

(which is a contradiction). Hence, φ− is continuous at y0 = φ(x0) and φ−(y0) = x0.
Now, using the part (⇐) for φ−, we deduce that y0 = φ−(y0) ∈ Pφ = P(φ−)− implies
y0 ∈ Pφ− , i.e., φ(x0) ∈ Pφ− so that the proof is finished.

Lemma 5.11. If φ ∈ D∗ and g is a measurable function, one has, for all x ∈ [0, 1],∫ φ(x)

0

g ◦ φ−(v)dv =

∫ x

0

g(u)φ̇(u)du+

∫
1[0,x[(u)g(u)dνφ(u).(5.5)

Proof. This lemma can be proved first for g = 1[0,b[ and extended to any g in a
standard way.

We can now prove Proposition 5.7. Applying Lemma 5.10 to φ− instead of φ, we
get

Uf̃ (φ
−) =

∫ 1

0

1Pφ(φ
−(u))√

φ̇ ◦ φ−(u)
f(u, φ−(u))du

=

∫ φ(1)

0

1Pφ(φ
−(u))√

φ̇ ◦ φ−(u)
f(φ ◦ φ−(u), φ−(u))du.
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To justify this equality, we must show that the replacements of 1 by φ(1) and of u
by φ ◦ φ−(u) are valid. Assume that φ(1) < 1. This implies that νφ({1}) > 0 and
thus that 1 /∈ Pφ; for u > φ(1), one has φ−(u) = 1, so that 1Pφ(φ

−(u)) = 0, which
justifies the first replacement. For the second one, one has φ ◦ φ−(x) �= x only if φ is
discontinuous at φ−(x) and so not differentiable at φ−(x), so that φ−(x) /∈ Pφ.

Now, Lemma 5.11 implies Uf̃ (φ
−) = Uf (φ) since φ is not derivable (hence, with

our convention φ̇ = 0) νφ a.e. [7, Theorem 8.11].

5.3. Proof of Proposition 5.1. We prove that Uf is upper-semicontinuous on
D∗. Let us consider the following lemma.

Lemma 5.12. Let f be a nonnegative function on [0, 1]2 which satisfies [H1].
Then, there exists a sequence (fn)n≥0 of continuous and nonnegative functions on
[0, 1]2 such that for all φ ∈ D∗

Uf (φ) = inf
n≥0

Ufn(φ).

Proof. Let F =
⋃
j∈J [aj , bj ] be the compact set defined in Theorem 3.1, let

M = ‖f‖∞, and consider the sequence (fn)n≥0 of nonnegative functions defined by

fn(x) = (1− αn(x))M + αn(x)f(x),

where αn(x) = (Cd(x, F ))1/n and d(x, F ) is the usual distance from x to F and
0 < C < 1/

√
2. One easily shows that fn is continuous on [0, 1] and that (fn(x))n≥0

is a decreasing sequence converging to f(x) for any x ∈ [0, 1]2 \ F .
Now consider φ ∈ D∗. By definition of the fn’s, Ufn(φ) is a decreasing sequence.

To show the result, it is sufficient to prove that√
φ̇fn(φ(x), x)→

√
φ̇f(φ(x), x) a.e.

The result is obviously true for x ∈ { z ∈ [0, 1] | φ̇(z) = 0 or (φ(z), z) ∈ [0, 1]2 \ F}.
However, the set F = { z ∈ [0, 1] | φ̇(z) > 0, (φ(z), z) ∈ F } contains only isolated
points, so that the result is proved: indeed, by contradiction assume that there exist
x ∈ F and a sequence (xn)n≥0 of points of F \ {x} converging to x. Since F contains
only a finite number of segments, there exists j0 ∈ J such that (up to the extraction
of a subsequence) xn ∈ [aj0 , bj0 ] for all n ≥ 0. Moreover, since there exist n and n′

such that xn �= xn′ , the segment [aj0 , bj0 ] is vertical so that φ(xn) has a constant

value and φ̇(x) = 0, which is a contradiction.
Using Lemma 5.12, we deduce that if Theorem 3.1 is proved for nonnegative and

continuous f , then, using the fact that the infimum of a family of upper-semicontinuous
functions is upper-semicontinuous, we will get the result for any f nonnegative and
satisfying condition [H1]. Hence, we can assume that f is continuous and nonnegative
and prove that Uf is upper-semicontinuous.

For this, we consider a sequence φn ∈ D∗ such that φn weakly converges to φ in
D∗ (i.e., µφn converges to µφ in M). Replacing, if needed, φn by a subsequence, we

assume that both φ̇ndx and νφn converge in M, respectively to αdx+ ρ and βdx+ τ .
By Proposition 5.5, φn weakly converges to φ ∈ D∗ with µφ = (α + β)dx + (ρ + τ).
We shall show that lim supUf (φn) ≤ Uf (φ). We have

Uf (φ)− Uf (φn) =

∫ 1

0

(√
φ̇(x)−

√
φ̇n(x)

)
f(φ(x), x)dx

+

∫ 1

0

√
φ̇n(x)(f(φ(x), x)− f(φn(x), x))dx.
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Moreover,∣∣∣∣∫ 1

0

√
φ̇n(x)(f(φ(x), x)− f(φn(x), x))dx

∣∣∣∣
≤
∫ 1

0

√
φ̇n(x) |(f(φ(x), x)− f(φn(x), x))| dx

≤
[∫ 1

0

φ̇n(x)dx

]1/2 [∫ 1

0

|(f(φ(x), x)− f(φn(x), x))|2 dx
]1/2

=

[∫ 1

0

|(f(φ(x), x)− f(φn(x), x))|2 dx
]1/2

.

This last integral tends to 0 by dominated convergence, since φn converges to φ
a.e. (Proposition 5.4) and f is continuous. We thus have

lim
n→∞

∫ 1

0

√
φ̇n(x)(f(φ(x), x)− f(φn(x), x))dx = 0.(5.6)

We now study ∫ 1

0

(√
φ̇(x)−

√
φ̇n(x)

)
f(φ(x), x)dx.

We show that

lim sup

∫ 1

0

√
φ̇n(x)f(φ(x), x)dx

is smaller than ∫ 1

0

√
α(x)f(φ(x), x)dx.

Since ∫ 1

0

√
φ̇(x)f(φ(x), x)dx =

∫ 1

0

√
α(x) + β(x)f(φ(x), x)dx,

this will prove Proposition 5.1.
We follow the method of [6], using the mollifier gε. We first prove the following

lemmas.
Lemma 5.13. For any ε > 0, we have

lim
n→∞

∫ 1

0

√
φ̇n ∗ gε(x)f(φ(x), x)dx =

∫ 1

0

√
α ∗ gε(x) + ρ ∗ gε(x)f(φ(x), x)dx.(5.7)

Proof. Indeed, we have∫ 1

0

∣∣∣∣√φ̇n ∗ gε(x)−
√
α ∗ gε(x) + ρ ∗ gε(x)

∣∣∣∣ f(φ(x), x)dx

≤ ‖f‖∞
∫ 1

0

∣∣∣∣√φ̇n ∗ gε(x)−
√
α ∗ gε(x) + ρ ∗ gε(x)

∣∣∣∣ dx
≤ ‖f‖∞

[∫ 1

0

|φ̇n ∗ gε(x)− (α ∗ gε(x) + ρ ∗ gε(x))|dx
]1/2

≤ ‖f‖∞
[∫ ∞

−∞
|φ̇n ∗ gε(x)− (α ∗ gε(x) + ρ ∗ gε(x))|dx

]1/2
,
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which tends to 0 by Lemma 5.6. We have used the inequality |√a − √b|2 ≤ |a − b|,
which is true for all a, b ≥ 0.

Lemma 5.14. We have

lim
ε→0

sup
n

∣∣∣∣∫ 1

0

√
φ̇n ∗ gε(x)f(φ(x), x)dx−

∫ 1

0

√
φ̇nf(φ(x), x)dx

∣∣∣∣ .
Proof. For any η > 0 one can find a continuous function Fη on [0, 1] such that∫ 1

0

|Fη(x)− f(φ(x), x)|2dx < η2 .

Fixing such an η, one has∫ 1

0

√
φ̇n ∗ gε(x) |f(φ(x), x)− Fη(x)| dx ≤ η

[∫ 1

0

φ̇n ∗ gε(x)dx

]1/2
≤ η,

where we have used the fact that, by Jensen’s inequality, we have for all n ≥ 0√
φ̇n ∗ gε(x) ≤

√
φ̇n ∗ gε.

Similarly, ∫ 1

0

√
φ̇n(x) |f(φ(x), x)− Fη(x)| dx ≤ η.

We have ∣∣∣∣∫ 1

0

√
φ̇n ∗ gε(x)Fη(x)dx−

∫ 1

0

√
φ̇n(y)Fη(y)dy

∣∣∣∣
≤
∫ 1+ε

−ε

dx

∫ 1

0

dy

√
φ̇n(y)gε(x− y)|Fη(x)− Fη(y)|

≤ Kη(ε)

∫ 1

0

√
φ̇n(y)dy

∫ 1+ε

−ε

gε(x− y)dx

≤ Kη(ε)

∫ 1

0

√
φ̇n(y)dy ≤ Kη(ε),

where Kη(ε) = sup|y−x|≤ε (|Fη(x)− Fη(y)|): we have used the fact that, for all y,∫ 1+ε

−ε

gε(x− y)dx ≤
∫ ∞

−∞
gε(x− y)dx =

∫ ∞

−∞
gε(x)dx = 1

and ∫ 1

0

√
φ̇n(y)dy ≤ 1.

Hence, we deduce that, for all n,∣∣∣∣ ∫ 1

0

(√
φ̇n ∗ gε(x)−

√
φ̇n(x)

)
f(φ(x), x)dx

∣∣∣∣ ≤ 2η +Kη(ε).
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Since for η > 0, Kη(ε)→ 0 when ε vanishes, we get the result.
We end with the following lemma.
Lemma 5.15. We have

lim
ε→0

∫ 1

0

√
α ∗ gε(x) + ρ ∗ gε(x)f(φ(x), x)dx =

∫ 1

0

√
α(x)f(φ(x), x)dx.(5.8)

Proof. Indeed,∣∣∣∣∫ 1

0

[√
α ∗ gε(x) + ρ ∗ gε(x)−

√
α(x)
]
f(φ(x), x)dx

∣∣∣∣
≤
∣∣∣∣∫ 1

0

[√
α ∗ gε(x) + ρ ∗ gε(x)−

√
α ∗ gε(x)

]
f(φ(x), x)dx

∣∣∣∣
+

∣∣∣∣∫ 1

0

[√
α ∗ gε(x)−

√
α(x)
]
f(φ(x), x)dx

∣∣∣∣
≤ ‖f‖∞

∣∣∣∣∫ 1

0

√
ρ ∗ gε(x)dx

∣∣∣∣+ ‖f‖∞ ∣∣∣∣∫ 1

0

[√
α ∗ gε(x)−

√
α(x)
]
dx

∣∣∣∣ .
One has ρ ∗ gε(x) =

∫ 1

0
gε(x− y)dρ(y) ≤ 1

ερ(]x− ε, x+ ε[). Since ρ is singular, this
upper-bound tends to 0 a.e. (cf., for example, [7, Theorem 8.6]). Thus∫ 1

0

√
ρ ∗ gε(x)dx ≤

∫ 1

0

√
ρ ∗ gε(x)1ρ∗gε(x)≤1dx+

∫ 1

0

√
ρ ∗ gε(x)1ρ∗gε(x)>1dx

≤
∫ 1

0

√
ρ ∗ gε(x)1ρ∗gε(x)≤1dx

+

[∫ 1

0

ρ ∗ gε(x)dx

]1/2 [∫ 1

0

1ρ∗gε(x)>1dx

]1/2
≤
∫ 1

0

√
ρ ∗ gε(x)1ρ∗gε(x)≤1dx+

[∫ 1

0

1ρ∗gε(x)>1dx

]1/2
,

which tends to 0 by dominated convergence. We have used the fact that
∫ 1

0
ρ ∗

gε(x)dx ≤ 1.
On the other hand,∣∣∣∣∫ 1

0

[√
α ∗ gε(x)−

√
α(x)
]
dx

∣∣∣∣2 ≤ ∫ 1

0

|α ∗ gε(x)− α(x)|dx,

which tends to 0 by [1, Theorem IV.22] .
We can now end the proof of Proposition 5.1. For any η > 0, we deduce from

Lemmas 5.15 and 5.14 that there exists ε > 0 so that∫ 1

0

√
α ∗ gε(x) + ρ ∗ ε(x)f(φ(x), x)dx ≤

∫ 1

0

√
α(x)f(φ(x), x)dx+ η,

and for all n ≥ 0∫ 1

0

√
φ̇nf(φ(x), x)dx ≤

∫ 1

0

√
φ̇n ∗ gε(x)f(φ(x), x)dx+ η.
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Now, using Lemma 5.13, we deduce that for n sufficiently large, we have∫ 1

0

√
φ̇n ∗ gε(x)f(φ(x), x)dx ≤

∫ 1

0

√
α ∗ gε(x) + ρ ∗ ε(x)f(φ(x), x)dx+ η.

Moreover, by Jensen’s inequality, we have, for all n,

√
φ̇n ∗ gε(x) ≤

√
φ̇n ∗ gε so that,

using the previous inequalities, we get for sufficiently large n∫ 1

0

√
φ̇nf(φ(x), x)dx ≤

∫ 1

0

√
α(x)f(φ(x), x)dx+ 3η.

Taking the lim sup and since η is arbitrary, we get the result.
We now prove the last statement of Proposition 5.1, that is, the fact that if φ is

a miximizer of Uf , then, for all x ∈ [0, 1], one has (φ(x), x) ∈ Ωf . We start with a
simple fact.

Lemma 5.16. Let [a, b] ⊂ [0, 1] and [ã, b̃] ⊂ [0, 1]. Then

max

{∫ b

a

√
φ̇(x)dx | φ ∈ D∗, φ(a) = ã, φ(b) = b̃

}
=
√
b− a

√
b̃− ã,

and the maximum is attained for φ linear between a and b.
Proof. Indeed, [∫ b

a

√
φ̇

]2
≤ (b− a)

∫ b

a

φ̇ ≤ (b− a)(b̃− ã)

with equality if φ is linear.
Lemma 5.17.

Uf (φ) ≤ ‖f‖∞
√

1− ‖φ− id ‖2∞.

Proof. Take x ∈ [0, 1] and set M = |φ(x)− x|. Assume first that φ(x) = x + M .
Applying Lemma 5.16 between 0 and x and between x and 1, we get

Uf (φ) ≤ ‖f‖∞
∫ 1

0

√
φ̇dx ≤ ‖f‖∞

(√
x
√
x+M +

√
1− x

√
1− x−M

)
,

and elementary calculus yields that the right-hand side is always smaller than

‖f‖∞
√

1−M2 .

The case φ(x) = x−M is handled similarly and yields the same upper-bound.
We thus have that, for all x ∈ [0, 1],

Uf (φ) ≤ ‖f‖∞
√

1− |φ(x)− x|2,
and taking the infimum of the upper-bound over all x yields the conclusion of the
lemma.

Now, if U∗
f = sup{Uf (φ), φ ∈ D∗}, we always have

U∗
f ≥ Uf (id ) =

∫ 1

0

f(x, x)dx = ∆f .
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Thus, if Uf (φ) = U∗
f , we have

∆f ≤ Uf (φ) ≤ ‖f‖∞
√

1− ‖φ− id ‖2∞ ;

that is,

‖φ− id ‖∞ ≤
√

1−
(

∆f

‖f‖∞

)2

,

which concludes the proof of Proposition 5.1.

5.4. Proof of Proposition 5.2. Let φ ∈ D∗ such that Uf (φ) is maximal. We
denote by m the Lebesgue’s measure on [0, 1]. Proposition 5.2 is an obvious conse-
quence of the two following lemmas.

Lemma 5.18. For any 0 ≤ a < b ≤ 1, we have
∫ b
a
φ̇(x)dx > 0, i.e., φ ∈ D∗

+.
Proof. Let us assume that Ωf has a nonempty interior; that is, ∆f < ‖f‖∞. (If

this is not the case, Proposition 5.1 implies that the only maximizer is φ = id , which
trivially belongs to D∗

+.)
First, let us prove that Uf (φ) > 0. Indeed, from condition [H2], we get that there

exists a point (y0, x0) in the interior of [0, 1]2 such that fs(y0, x0) > 0. Since fs is lower-
semicontinuous, fs is strictly positive in a small neighborhood of (y0, x0). Now, define
φ̃ such that φ̃(0) = 0, and φ̃(1) = 1, φ̃(x0) = y0, and φ̃ is linear on [0, x0] and [x0, 1]
(by Lemma 5.16). Since φ̃ is strictly increasing on [0, 1], we deduce from [H1] that
except possibly for a finite number of x, (φ(x), x) /∈ F so that f(φ(x), x) = fs(φ(x), x).
Hence, Uf (φ) ≥ Uf (φ̃) = Ufs(φ̃) > 0.

Now assume that there exists 0 ≤ a < b ≤ 1 such that
∫ b
a
φ̇(x)dx = 0. Let

a′ = inf{z ∈ [0, a] | ∫ b
z
φ̇(x)dx = 0 } and b′ = sup{ z ∈ [b, 1] | ∫ z

b
φ̇(x)dx = 0 }. We

have
∫ b′
a′ φ̇(x)dx = 0, and since Uf (φ) > 0, we have a′ > 0 or b′ < 1. Assume that

b′ < 1. (The case a′ > 0 can be handled similarly.)
Now, for any η > 0 such that b′ + η ≤ 1, and any α ∈]0, 1[, let us define

ωα,η(x) = φ̇(x)1x/∈[a′,b′+η] + (1− α)φ̇(x)1x∈]b′,b′+η] + α
Kη

φ

b′ − a′
1[a′,b′],

where Kη
φ =
∫ b′+η

a′ φ̇(x)dx =
∫ b′+η

b′ φ̇(x)dx. Let µα,η = ωα,ηm + νφ. One has µα,η ∈
M1, and, letting φα,η(x) = µα,η([0, x[), one has

|φα,η(x)− φ(x)| = α

∣∣∣∣∣
∫ x

0

(
Kη

φ

b′ − a′
1[a′,b′] − φ̇1]b′,b′+η]

)∣∣∣∣∣ ≤ α

∫ 1

0

φ̇ ≤ α,

so that ‖φα,η − φ‖∞ ≤ α.
Let us show that φ(a′) = φ(b′). Let R be the rectangle containing the points

(y, x) such that x ∈]a′, b′[ and y ∈]φ(a′), φ(b′)[. If φ(a′) < φ(b′), then this rectangle
has a nonempty interior. Since (φ(a′), a′) ∈ Ωf and (φ(b′), b′) ∈ Ωf , the intersection
R ∩Ωf also has a nonempty interior and, in particular, contains horizontal segments
on which f cannot identically vanish. Thus, if φ(a′) < φ(b′), there exist x0 ∈]a′, b′[
and y0 ∈ ]φ(a′), φ(b′)[ such that fs(y0, x0) > 0, and this in turn implies that fs is
strictly positive in a small neighborhood of (y0, x0). Now considering φ̃ such that
φ̃(x) = φ(x) on [0, a′]∪ [b′, 1], φ̃(x0) = y0, and φ̃ is linear on [a′, x0] and on [x0, b

′], we
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have (using the same argument as in the beginning of the proof) Uf (φ) < Uf (φ̃) with

φ̃ ∈ D∗, which is a contradiction.
Since φ(a′) = φ(b′), the segment with end points (φ(a′), a′) and (φ(b′), b′) is

vertical and clearly lies in Ωf , so that by condition [H2] there exists x0 ∈]a′, b′[ such
that fs(φ(x0), x0) > 0. Using the fact that ‖φα,η − φ‖∞ ≤ α, we deduce that there
exist δ > 0 and c > 0 such that for any sufficiently small α and any x ∈ [0, 1], except
eventually a finite number (we use here the fact that φα,η is strictly increasing on
[a′, b′] and condition [H1]), if |x−x0| < δ, we have f(φα,η(x), x) = fs(φα,η(x), x) ≥ c.

Now we have

Uf (φα,η)− Uf (φ) =

∫ b′

a′

√
αKη

φ

b′ − a′
f(φα,η(x), x)dx

+

∫ b′+η

b′

[√
(1− α)φ̇(x)f(φα,η(x), x)−

√
φ̇(x)f(φ(x), x)

]
dx.

However, for α sufficiently small,∫ b′

a′

√
αKη

φ

b′ − a′
f(φα,η(x), x)dx ≥

(
2cδ√
b′ − a′

)√
αKη

φ,

and ∣∣∣∣ ∫ b′+η

b′

√
(1− α)φ̇(x)f(φα,η(x), x)−

√
φ̇(x)f(φ(x), x)dx

∣∣∣∣
≤ 2‖f‖∞

∫ b′+η

b′

√
φ̇(x)dx ≤ 2

√
η‖f‖∞

√
Kη

φ,

so that

Uf (φα,η)− Uf (φ) ≥
√
Kη

φ

(
2cδ√
b′ − a′

√
α− 2

√
η‖f‖∞

)
.

Hence, choosing η sufficiently small, say η < 4η2δ2α
(b′−a′)‖f‖∞

, we get Uf (φα,η)−Uf (φ) > 0,

which is a contradiction with the definition of φ as a maximizer.
Lemma 5.19. For any a ∈ [0, 1], νφ({a}) = 0.
Proof. Let φ ∈ D∗

+ such that Uf (φ) = maxD∗ Uf . Proposition 5.7 implies that

Uf̃ (φ
−) = maxD∗ Uf̃ . But if f satisfies conditions [H1] and [H2], so does f̃ , and thus,

one has φ− ∈ D∗
+. Lemma 5.8 now implies that φ = (φ−)− is continuous, which

concludes the proof.

6. Proof of the regularity results.
Proof of Theorem 3.3. The idea of the proof is to use the fact that after a proper

change of variable and rescaling, φ∗ is the solution of a local variational problem
around any point x. Hence, the behavior of φ∗ at x depends only on the properties
of the locally optimal solutions involving the values of f in a small neighborhood of
(φ∗(x), x).

Let 0 ≤ a < b ≤ 1, and define for any φ ∈ Hom+ the new “focusing” functions
φa,b ∈ Hom+ and fφa,b : [0, 1]2 → R by

φa,b(x
′) =

φ(a+ x′(b− a))− φ(a)

φ(b)− φ(a)
∀x′ ∈ [0, 1],
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and

fφa,b(y
′, x′) = f(φ(a) + y′(φ(b)− φ(a)), a+ x′(b− a)).

One has, after a simple computation,∫ b

a

√
φ̇(x)f(φ(x), x)dx =

√
(b− a)(φ(b)− φ(a))Ufφa,b

(φa,b)

so that

U
fφ

∗
a,b

(φ∗
a,b) = max

φ∈Hom+
U
fφ

∗
a,b

(φ).

Let δa,b = ‖fφ∗
a,b‖∞ −

∫ 1

0
fφ

∗
a,b(x

′, x′)dx′ and assume that ‖fφ∗
a,b‖∞ > 0; then we deduce

from Theorem 3.1 that

‖φ∗
a,b − Id‖∞ ≤

√√√√1−
(
‖fφ∗

a,b‖∞ − δa,b

‖fφ∗
a,b‖∞

)2

≤
√

2
δa,b

‖fφ∗
a,b‖∞

.(6.1)

Hence, if x0 ∈ [a, b] and f is Hölder continuous with parameter α > 0 at (φ∗(x0), x0)
and if f(φ∗(x0), x0) > 0, then we get easily that there exists a constant kx0

(depending
only on (φ∗(x0), x0)) such that

δa,b ≤ kx0
max(|φ∗(b)− φ∗(a)|α, (b− a)α) .

Using the fact that ‖fφ∗
a,b‖∞ ≥ f(φ∗(x0), x0) > 0, we deduce from inequality (6.1) that

‖φ∗
a,b − Id‖∞ ≤ Cx0(b− a)α/2 max

(( |φ∗(b)− φ∗(a)|
b− a

)α/2
, 1

)
,(6.2)

with Cx0 =
√

2kx0
f(φ∗(x0),x0)

. Choosing a = x0 and b = x0 + h with any h > 0 such that

x0 + h ≤ 1, we deduce from the previous inequality that, for all u ∈]0, 1],

|∆φ∗(x0, uh)−∆φ∗(x0, h)| ≤ ∆φ∗(x0, h)Cx0

hα/2

u
max(∆φ∗(x0, h)α/2, 1),(6.3)

where for any h′ > 0 we have ∆φ∗(x0, h
′) = (φ∗(x0 + h′)− φ∗(x0))/h

′. The fact that

lim
h→0,h′>0

∆φ∗(x0, h
′)

exists and is positive is a consequence of the following lemma, applied to F (h) =
∆φ∗(x0, h). (Note that hF (h)→ 0 if h→ 0, since φ∗ is continuous.)

Lemma 6.1. Let F > 0 be a function defined on ]0, β] (for some β > 0) and such
that, for all h ∈]0, β] and for all u ∈]0, 1], and for some constants K > 0, ρ > 0, and
β > 0,

|F (uh)− F (h)| ≤ K.F (h)(1 + F (h)ρ)
hρ

u
.(6.4)

Assume, moreover, that limh→0 hF (h) = 0. Then, limh→0 F (h) exists and is strictly
positive.
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Proof of Lemma 6.1. Let h0 ∈]0, β], and let, for n ≥ 1, vn = F (h02
−n). From

(6.4), we get, for some constant K ′,

|vn+1 − vn| ≤ K ′hρ0vn(1 + vρn)2−ρn .(6.5)

Clearly, to prove that vn converges, it suffices to prove that it is bounded. In fact,
it merely suffices to prove that vn ≤ C.2γn for some γ < 1, since, in this case, (6.5)
yields an inequality of the kind

|vn+1 − vn| ≤ K ′′vn2−ρ′n

for some constants K ′′ and ρ′ > 0, which implies in turn that vn is bounded, since∏∞
k=0(1 +K ′′2−ρ′k) <∞.

So, fix γ < 1 and let us prove that, if h0 is taken to be small enough, one has, for
all n, vn ≤ F (h0)2

γn. Assuming that this is true for n ≥ 0 (recall that v0 = F (h0),
so that it is true for n = 0), we show that this is true for n+ 1. We have

vn+1 ≤ F (h0).2
γn(1+K ′hρ0(1+F (h0)

ρ2ργn)2−ρn) ≤ F (h0)2
γn(1+K ′hρ0(1+F (h0)

ρ))

so that it suffices to take h0 such that 1 +K ′hρ0(1 + F (h0)
ρ) < 2γ to get the desired

conclusion.
Thus, vn converges to a limit v. But since (6.5) implies that

vn+1 ≥ vn(1−K ′hρ02
−ρn),

we have, letting n0 such that K ′hρ02
−ρn0 < 1, for all n ≥ n0,

0 < vn0

∞∏
k=n0

(1−K ′hρ02
−ρk) ≤ vn,(6.6)

which imples that v > 0.
Now, if hn is any sequence which tends to 0 from above, one can find, for all n,

an integer kn such that h02
−kn−1 < hn ≤ h02

−kn , and (6.4) implies that

|F (hn)− vkn | ≤ K ′|vkn |2−ρkn

so that, since kn tends to infinity, F (hn) tends to v, which proves Lemma 6.1.
We thus have proved that φ∗ has a strictly positive right derivative denoted

φ̇∗
r(x0). In the same way, we can prove that the left derivative denoted φ̇∗

l (x0) exists
and is stricly positive. It thus remains to prove that both derivatives coincide. In
fact, relation (6.2) with a = x0 − h and b = x0 + h yields

lim
h→0

∣∣∣∣ φ∗(x0)− φ∗(x0 − h)

φ∗(x0 + h)− φ∗(x0 − h)
− 1

2

∣∣∣∣ = 0 .

Since the left-hand part of the inequality also tends to
φ̇∗
l

φ̇∗
l+φ̇∗

r

− 1
2 , we get the result.

Hence the first part of the theorem is proved.
Now, if f is locally uniformly Hölder continuous at x0, there exists (since φ∗

is continuous) an ε > 0 in [0, 1] such that (3.1) holds at point (φ(x), x) for all x
such that |x − x0| < ε. As a consequence, φ∗ will thus be differentiable at all
such x ∈ ]x0 − ε, x0 + ε[ and the increments ∆φ∗(x, h) will converge, as h → 0,
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uniformly to φ̇∗(x). Since these increments are continuous, φ̇∗ is also continuous on
]x0 − ε, x0 + ε[.

Proof of Theorem 3.4. By Theorem 3.3, φ is continuously differentiable. Moreover,
one has, for any ψ smooth diffeomorphism of [0, 1],∫ 1

0

√
φ̇(x)

√
ψ̇(x)f(φ(x), ψ(x))dx ≤

∫ 1

0

√
φ̇(x)f(φ(x), x)dx(6.7)

(simply using that the left-hand term is Uf (φ ◦ ψ−1)). If h is any smooth function
in [0, 1] such that h(0) = h(1) = 0, there exists a small enough t such that ψ(x) =
x + th(x) is a diffeomorphism, and, after computation of the first variation in the
left-hand term of (6.7), one gets that, for all smooth h with h(0) = h(1) = 0,∫ 1

0

√
φ̇(x)ḣ(x)f(φ(x), x) = −2

∫ 1

0

√
φ̇(x)

∂f

∂y
(φ(x), x).h(x)dx.

So, letting q(x) =

√
φ̇(x)f(φ(x), x), one has

q(x) = q(0) + 2

∫ x

0

√
φ̇(u)

∂f

∂y
(φ(u), u)du

so that q is differentiable in the ordinary sense, with derivative 2

√
φ̇∂f
∂y (φ(.), .), which

is continuous. Since

φ̇(x) =
q2(x)

f(φ(x), x)
,

the numerator being positive and continuously differentiable, we get the fact that φ̇
is continuously differentiable.

7. Auxiliary results. We conclude this paper with two simple results which
have important practical applications. The first one validates the possibility of im-
plementing a matching combined with the fitting of some registration parameters.
This enables us to recover some invariance properties which have not directly been
incorporated in F .

The second result provides an approximation scheme, which permits us to work
safely with discretized versions of a signal. It also naturally yields consistent multi-
scale minimization procedures, which is important for efficiency of numerical imple-
mentations.

7.1. Handling additional parameters. In many practical situations, a match-
ing is searched for up to some given finite-dimensional parameter which performs some
registration between the two quantities which are compared. For example, in the for-
mulation f(φ(x), x) = F (θ◦φ(x), θ′(x)), one may consider that the functions θ should
be identified to θ+ b for any b ∈ R (in order to get a translation invariant matching),
so that the complete problem becomes maximizing∫ 1

0

√
φ̇F (θ ◦ φ(x) + b, θ′(x))dx

over all φ and b. For example, in [9], translation on θ represented rotations of plane
curves, rotation-invariant comparison being a desirable feature for shape comparison.
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More generally, we shall deal in this section with a function f , which depends on
an additional extraneous parameter λ ∈ R

d, and we shall try to find φ∗ and λ∗ which
maximize

Vf (φ, λ) =

∫ 1

0

√
φ̇(x)f(φ(x), x, λ)dx

for φ ∈ D and λ ∈ K, where K is a compact subset of R
2. Sufficient conditions for

existence are provided in the following theorem. We let fλ be the function (x, y) �→
f(x, y, λ).

Theorem 7.1. We assume that f is continuous in λ ∈ K, uniformly in (x, y),
and that, for all λ, the function fλ satisfies conditions [H1] and [H2] of Theorem 3.1.
Then, there exist λ∗ ∈ K and φ∗ ∈ Hom+ such that

Vf (φ
∗, λ∗) = max{Vf (φ, λ) |φ ∈ Hom+, λ ∈ K}.

Proof. By Theorem 3.1, for all λ ∈ K, the functional φ �→ Vf (φ, λ) is upper-
semicontinuous in φ ∈ D∗. Moreover, it is uniformly continuous in λ, since

|Vf (φ, λ)− Vf (φ, λ
′)| ≤

∫ 1

0

√
φ̇|f(φ(x), x, λ)− f(φ(x), x, λ′)|dx

≤ sup
x,y
|f(x, y, λ)− f(x, y, λ′)|,

which tends to 0 if λ tends to λ′. This implies that U is upper-semicontinuous as
a function of the two variables φ and λ, and thus that there exists a maximizer
(φ∗, λ∗) ∈ D∗ × K. Now, since φ∗ is a maximizer of Uf (., λ

∗) over D∗, Proposition
5.2 implies that φ∗ ∈ Hom+.

7.2. Approximation schemes.
Theorem 7.2. Let (fn, n ≥ 0) and f be functions defined on [0, 1]2 × K such

that

lim
n→∞ sup

x,y,λ
|fn(x, y, λ)− f(x, y, λ)| = 0.

Assume that all fn and f satisfy the conditions of Theorem 7.1. Let (φ∗
n, λ

∗
n) be

maximizers of Vfn over D∗ × K; then, there exists a subsequence of (φ∗
n, λ

∗
n) which

converges in D∗ ×K to a maximizer (φ∗, λ∗) of Vf .
Proof. Indeed, the hypotheses trivially imply that Un converges to U uniformly

on D∗ ×K, so that maxUn → maxU and

lim
n→∞U(φ∗

n, λ
∗
n) = maxU .

Now from (φ∗
n, λ

∗
n) one can extract a converging subsequence in the compact space

D∗ ×K to a limit denoted (φ, λ), and one must have U(φ, λ) = maxU because U is
upper-semicontinuous.

One application of the theorem is the following. Assume, for example, that f
is continuous and fλ satisfies condition [H2] of Theorem 3.1 for all λ ∈ K. Let
gn(x, y, λ) be a piecewise constant approximation of f , and let fn = εn + gn, where
εn is a sequence which tends to 0. Then, each fn satisfies the conditions of Theorem
7.1 so that Theorem 7.2 applies. Such a situation is typical in numerical procedures.
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PROXIMAL POINT APPROACH AND APPROXIMATION OF
VARIATIONAL INEQUALITIES∗
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Abstract. A general approach to analyze convergence of the proximal-like methods for varia-
tional inequalities with set-valued maximal monotone operators is developed. It is oriented to methods
coupling successive approximation of the variational inequality with the proximal point algorithm as
well as to related methods using regularization on a subspace and weak regularization. This approach
also covers so-called multistep regularization methods, in which the number of proximal iterations
in the approximated problems is controlled by a criterion characterizing these iterations as to be
effective. The conditions on convergence require control of the exactness of the approximation only
in a certain region of the original space. Conditions ensuring linear convergence of the methods are
established.

Key words. variational inequalities, monotone operators, convex programming, proximal point
methods, weak regularization

AMS subject classifications. 47H05, 47H19, 65J20

PII. S0363012998333116

1. Introduction. Variational inequalities with maximal monotone operators in-
clude convex programs, convex-concave saddle point problems, equations, and inclu-
sions with maximal monotone operators and a series of other problems.

The proximal point method, introduced by Martinet [28] and later investigated
in a more general setting by Rockafellar [34], has initiated a couple of new algorithms
for solving these problems. We refer to [2], [14], [35], [42] for algorithms based on
multiplier methods and to [1], [4], [15], [16], [17] for modifications of the penalty
technique. Proximal variants of bundle methods for nonsmooth convex optimization
problems are given in [3], [22], [25], [29], and for partial inverses of monotone operators
as well as for decomposition and parallel optimization methods; see [5], [6], [9], [39],
and [40]. The number of papers dealing with the proximal point approach is growing
fast and we can cite here only a few of them. Moreover, it is known (see [16], [24], [34])
that some classical numerical methods can be interpreted as special applications of this
approach. In [8] this fact was established concerning the Douglas–Rachford splitting
method for finding a zero of the sum of two monotone operators. This points out new
applications of the proximal technique, in particular, to problems in mathematical
physics; for such problems, see, for instance, [26].

The basic results of Rockafellar [34] on convergence of the proximal point method
for solving variational inequalities with maximal monotone operators were generalized
in [27] concerning the rate of convergence, and in [11] a similar analysis was made for
methods using the proximal technique on a subspace. More precisely, in the papers
mentioned the methods were studied for the equivalent problem of finding a zero of a
maximal monotone operator under the assumption that the proximal iterations can
be performed inexactly. However, an approximation of the data of the problem was
not considered there.
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In this paper the convergence analysis covers methods which couple a successive
approximation of the variational inequality with the proximal point approach, as well
as related methods using a regularization on a subspace or a weak regularization.

The problem under consideration is the following variational inequality:

find u ∈ K such that ∃ y ∈ T u : 〈y, v − u〉 ≥ 0 ∀v ∈ K,(1.1)

with K a convex, closed subset of a Hilbert space V, T : V → 2V
′
a monotone

operator, D(T ) ≡ {v ∈ V : T v �= ∅} ⊃ K, V ′ the dual space of V , and 〈·, ·〉 the
duality pairing between V and V ′.

We recall that an operator A : V → 2V
′
is said to be monotone if

〈w − z, u− v〉 ≥ 0 whenever w ∈ Au, z ∈ Av,
and strongly monotone if

〈w − z, u− v〉 ≥ γ‖u− v‖2 with some γ > 0.

A monotone operator A is called maximal monotone if its graph is not properly
contained in the graph of any other monotone operator A1 : V → 2V

′
.

Throughout the whole paper it is supposed that H is a given Hilbert space such
that V can be continuously embedded into H, V1 is a given closed subspace of V , and
P : V → V1 is the orthogonal projection operator (orthoprojector). If V1 is also closed
in H, then P can be defined as the orthoprojector according to the norm of H. In
the framework of the approach considered, the solution of (1.1) is obtained by solving
approximately the sequence of variational inequalities

u ∈ Ki : 〈Tiu, v − u〉+ χi(Pu− Pui,s−1,Pv − Pu)H ≥ 0 ∀v ∈ Ki,(1.2)

s = 1, . . . , s(i); i = 1, 2, . . . ,

with Ti : V → V ′, and Ki certain approximations for T and K, respectively, (·, ·)H
the inner product in H, ui,s−1 a solution of the previous problem (ui,0 ≡ ui−1,s(i−1)),
0 < χi ≤ χ̄.

For example, treating variational problems in mechanics, often Ki is an internal
approximation of K constructed by means of a finite element method, and Ti is the
gradient of a smoothened energy functional (cf. the approximation of the linear model
of elasticity with friction in [10, section 4.2] that corresponds formally to (1.2) with
χi ≡ 0; by the way, we avoid the identification of V and V ′ taking into account the
standard estimation technique in finite element methods).

The choice of the space H as well as of the subspace V1 ⊂ V depends on specific
properties of the problem under consideration. In particular, this choice has to ensure
the strong monotonicity of the operators Ti + χiM, whereM : V → V ′ is defined by
〈Mu, v〉 = (Pu,Pv)H ∀u, v ∈ V. For variational inequalities studied in [19], the space
V is of the type H1(Ω) and the operator T is not strongly monotone in V . However,
(weak) regularization with V1 = V, H = L2(Ω) ensures strong monotonicity of the
operators T +χiM, Ti+χiM and weak convergence of the iterates in V, i.e., it leads
to the same quality of convergence as in the case of applying the standard (strong)
proximal regularization with V1 = V, H = V.

The situation, that a subspace V1 �= V with appropriate properties is known, is
typical for problems in mathematical physics. Referring again to [19], for a two-body
contact problem considered there, V1 is a known 3-dimensional subspace of the rigid
displacements of one of the bodies.



1138 A. KAPLAN AND R. TICHATSCHKE

A suitable choice of V1 and H can accelerate essentially the numerical calculation
(see the analysis of some examples in [16], [18], and numerical experiments with real-
life problems in [36], [37].)

The strong formalization of method (1.2) is described in section 2 as multistep
regularization method (MSR-method). The notion “multistep regularization” reflects
the presence of an inner cycle (with respect to s) of proximal iterations.

The case that T is a subdifferential of a convex functional, H = V = V1, and
s(i) = 1 ∀i, includes several “diagonal” variants of the proximal point method for
convex optimization (cf. [16, sections 9 and 12], [23] and the references therein).

There are a lot of papers concerning the diagonal approximation of the ill-posed
problem (1.1) with the use of the Browder–Tikhonov regularization. In this case the
auxiliary problems have the form

u ∈ Ki : 〈Tiu+ χiM0(u− û), v − u〉 ≥ 0 ∀v ∈ Ki,

whereM0 : V → V ′ is a strongly monotone operator, û ∈ V is a fixed element, and
χi > 0, lim χi = 0. Fundamental results in this direction were obtained by Mosco
[30]; for concrete algorithms see Vasil’ev [41].

In as much as χi → 0 is not necessary for the convergence of proximal meth-
ods, they possess a better stability and provide a better efficiency of fast convergent
algorithms solving the regularized auxiliary problems.

In methods of type (1.2) the iterations with respect to s (for a fixed approximation
level i) continue “as long as they remain effective” (see Remark 3.12 below). The MSR-
methods were developed in [16] for convex variational problems, i.e., in the case that T
is a subdifferential of a convex functional. In [19], [12], [13], and [20] they were adapted
to some problems in elasticity theory and optimal control with PDEs. In comparison
with diagonal proximal processes, the MSR-methods allow better approximations of
a sought solution of the original problem under the same approximate data Ti, Ki

and the same χi, εi, so that the numerical expense can be reduced. This has been
confirmed, in particular, by numerical experiments for Bingham problems in [37] and
for optimal control problems governed by elliptic equations in [36].

Here we investigate the convergence of such methods in the more general setting
that the operator T may be nonpotential. This permits consideration of new ap-
plications, in particular, saddle point problems and complementarity problems. The
principal distinction to the convergence analysis made in [16] is caused by the fact
that the condition about the uniform approximation of the objective functional used
in [16] cannot be adapted in order to describe the closeness between T and Ti.

In comparison to the present paper, in [21] the convergence (without rate of
convergence) of scheme (1.2) is investigated for the particular case H = V = V1

(hence, P is the identity operator) and under more restrictive assumptions concerning
the approximation of the operator T and the set K; cf. conditions (c′), (d′), (e′) below
in Remark 3.5(ii) and Assumptions 3.4(c), (d), (e).

The paper is organized as follows. Section 2 contains the description of a gener-
alized MSR-scheme. Its convergence is studied in section 3 and estimates of the rate
of convergence for the basic variant (with H = V = V1) are given in section 4.

We do not consider here the adaptation of the generalized MSR-scheme to partic-
ular problems. This will be the object of a forthcoming paper. For some applications of
the basic variant to variational inequalities with potential and nonpotential operators
T we refer to [21].
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2. Multistep proximal regularization scheme. We denote by ‖ · ‖, ‖ · ‖V ′ ,
and ‖ · ‖H the norms in V, V ′, and H, respectively. With z, C,D from V (respectively,
from V ′), let

dist(z,D) = inf
w∈D
‖z − w‖, dist(C,D) = sup

z∈C
dist(z,D),

(resp., distV ′(z,D) = inf
w∈D
‖z − w‖V ′ , distV ′(C,D) = sup

z∈C
distV ′(z,D)).

The following assumption concerns the chosen triple H,V1, and P.
Assumption 2.1. For a given linear, continuous, and monotone operator B :

V → V ′ with the symmetry property

〈Bu, v〉 = 〈Bv, u〉 ∀u, v ∈ V

and a given χ̃ > 0 there exists β0 > 0 such that

χ̃〈Bu, u〉+ ‖Pu‖2H ≥ β0‖u‖2 ∀u ∈ V.(2.1)

If this assumption is valid, one can introduce on V a new norm ‖| · ‖| by

‖|u‖|2 = χ̃〈Bu, u〉+ ‖Pu‖2H ,(2.2)

which is equivalent to the original one ‖ · ‖ because of

β0‖u‖2 ≤ ‖|u‖|2 ≤ (β1χ̃+ β2
2)‖u‖2,(2.3)

with β1 = supu �=0
‖Bu‖V ′

‖u‖ and β2 : ‖u‖H ≤ β2‖u‖ ∀u ∈ V .

Denote Sτ = {u ∈ V : ‖|u‖| ≤ τ}. Let {Ti}, Ti : V → V ′, be a sequence of
monotone and hemicontinuous (i.e., weak continuous along each line segment in V )
operators, approximating T , and {Ki}, Ki ⊂ D(Ti) ⊂ V, be a sequence of convex
closed sets, approximating K.

Henceforth it is supposed that the solution set U∗ of problem (1.1) is nonempty,
Assumption 2.1 is fulfilled, and radii r and r∗ are chosen such that

U∗ ∩ Sr∗/8 �= ∅ and r ≥ r∗.(2.4)

Multistep regularization method.
Let {χi}, {εi}, {δi} be positive controlling sequences with

sup
i

χi ≤ χ̄ <∞, lim
i→∞

εi = 0,

and u0 ∈ Sr∗/4.
Step i: Given ui−1.

(a) Set ui,0 := ui−1, s := 1.
(b) Given ui,s−1, define

ui,s : ‖ui,s − ūi,s‖ ≤ εi,(2.5)

where ūi,s is the exact solution of the variational inequality

u ∈ Ki : 〈Tiu, v − u〉+ χi(Pu− Pui,s−1,Pv − Pu)H ≥ 0 ∀v ∈ Ki.(2.6)



1140 A. KAPLAN AND R. TICHATSCHKE

(c) If ‖Pui,s − Pui,s−1‖H > δi, then set s := s+ 1 and repeat (b).
Otherwise, set s(i) := s, ui := ui,s, i := i+ 1 and repeat Step i.

The choice H = V = V1 corresponds to the basic variant of the MSR-method [16],
and V1 �= V reflects the (MSR-) method with regularization on a subspace (cf. [16],
[12], [13], [20]). If V1 = V and ‖ · ‖H is weaker than ‖ · ‖, one deals with the (MSR-)
method with a weak regularization (see [16], [19], [37]). For the diagonal method with
regularization on a subspace we refer to [11] and to Rockafellar’s interpretation for
the multiplier method in [35].

Of course, condition (2.5) is not a practicable criterion. However, it is convenient
to unify the investigation of algorithms with different stopping rules for the auxiliary
problems: in fact, (2.6) is a variational inequality with a strongly monotone operator
(see Remark 3.5(i)), and therefore, criterion (2.5) can be satisfied by means of the own
stopping rule of an algorithm inserted into the MSR-method to solve the auxiliary
problems (2.6). In Remark 3.14 we discuss the use of the criterion

ui,s ∈ Ki :

〈Tiui,s, v − ui,s〉+ χi
(Pui,s − Pui,s−1,Pv − Pui,s)

H
≥ −ε′i‖v − ui,s‖

∀v ∈ Ki.

One should refer also to [7], [38] for practicable notions of inexact proximal iterations.

3. Convergence analysis. According to Riesz’s representation theorem, the
variational inequality (2.6) can be rewritten in the form

u ∈ Ki : 〈Tiu+ χiM(u− ui,s−1), v − u〉 ≥ 0 ∀v ∈ Ki,(3.1)

where the linear operatorM : V → V ′ is defined by

〈Mu, v〉 = (Pu,Pv)H ∀u, v ∈ V.

In order to prove convergence of this method, we need some auxiliary statements.
Lemma 3.1. Let G ⊂ V be a closed convex set, and let A : V → V ′ be a

single-valued operator with D(A) ⊃ G. Suppose that the inequality

〈Au−Av, u− v〉 ≥ 〈Bu− Bv, u− v〉 ∀u, v ∈ G(3.2)

is valid with B as in Assumption 2.1. Moreover, for arbitrary a0 ∈ V and χ ∈
(0, 2χ̃−1], let a1 be a solution of the variational inequality

u ∈ G : 〈Au, v − u〉+ χ(Pu− Pa0,Pv − Pu)H ≥ 0 ∀v ∈ G.(3.3)

Then the inequality

‖|a1 − v‖|2 − ‖|a0 − v‖|2 ≤ −‖Pa1 − Pa0‖2H +
2

χ
〈Av, v − a1〉(3.4)

is true for each v ∈ G.
Proof. From the definition of ‖| · ‖| we obtain

‖|a1 − v‖|2 − ‖|a0 − v‖|2 = −‖Pa1 − Pa0‖2H
−2(Pa1 − Pa0,Pv − Pa1)H

+χ̃〈B(a1 − v), a1 − v〉 − χ̃〈B(a0 − v), a0 − v〉.
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Using this inequality together with (3.3) one can conclude that

‖|a1 − v‖|2 − ‖|a0 − v‖|2 ≤ −‖Pa1 − Pa0‖2H +
2

χ
〈Aa1, v − a1〉

+χ̃〈B(a1 − v), a1 − v〉 − χ̃〈B(a0 − v), a0 − v〉,(3.5)

and, due to (3.2) and 0 < χ ≤ 2χ̃−1, this yields

‖|a1 − v‖|2 − ‖|a0 − v‖|2 ≤ −‖Pa1 − Pa0‖2H −
2

χ
〈Av −Aa1, v − a1〉

+
2

χ
〈Av, v − a1〉+ χ̃〈B(v − a1), v − a1〉 − χ̃〈B(a0 − v), a0 − v〉

≤ −‖Pa1 − Pa0‖2H +
2

χ
〈Av, v − a1〉.

Lemma 3.2. Let G ⊂ V, G1 ⊂ V , and G be a convex closed set. For a given
y ∈ Y ′, let a solution ū of the problem

find u ∈ G ∩G1 : 〈y, v − u〉 ≥ 0 ∀v ∈ G ∩G1(3.6)

belong to intG1. Then ū is also a solution of the problem

find u ∈ G : 〈y, v − u〉 ≥ 0 ∀v ∈ G.(3.7)

Proof. Take an arbitrary w ∈ G\G1. Because ū ∈ intG1, there exists λ = λ(w) ∈
(0, 1) such that ū+ λ(w − ū) ∈ G1; hence ū+ λ(w − ū) ∈ G ∩G1. Therefore, we get
from (3.6) that

〈y, ū+ λ(w − ū)− ū〉 ≥ 0,

thus

〈y, w − ū〉 ≥ 0 ∀w ∈ G\G1,(3.8)

and combining (3.6), (3.8) we obtain that ū solves (3.7).
Lemma 3.3. Let G ⊂ V be a closed convex set, and let A : V → 2V

′
be a maximal

monotone operator with D(A) ⊃ G, G ∩ intD(A) �= ∅. Assume that

sup
v∈G

sup
y∈Av

‖y‖V ′ <∞,(3.9)

and for some u ∈ G and each v ∈ G, there exists y(v) ∈ Av satisfying

〈y(v), v − u〉 ≥ 0.(3.10)

Then, with some y ∈ Au, the inequality

〈y, v − u〉 ≥ 0

holds for each v ∈ G.
Proof. Let A1v = Av + I(v − u), with I : V → V ′ the operator of the canonical

isometry. The operator A1 is strongly monotone, and due to Theorem 1 in [33], it is
maximal monotone.
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For fixed q(u) ∈ Au, using the inequality

〈q(v) + I(v − u), v − u〉 ≥ 〈q(u), v − u〉+ ‖v − u‖2
≥ ‖v − u‖ (‖v − u‖ − ‖q(u)‖V ′) ,

which holds for any q(v) ∈ Av, one can conclude that

〈q(v) + I(v − u), v − u〉 ≥ 0(3.11)

if

‖v‖ ≥ ‖u‖+ ‖q(u)‖V ′ .

Taking into account (3.11) and G∩ intD(A) �= ∅, the straightforward application1

of Theorem 5 in [33] guarantees that the variational inequality

find w ∈ G such that ∃ y1(w) ∈ A1w : 〈y1(w), v − w〉 ≥ 0 ∀v ∈ G

is solvable. If w = u, then of course y1(w) ∈ Au; hence the statement of the lemma
is true.

Otherwise, we use the relation

〈ȳ(v), v − u〉 ≥ 0 ∀v ∈ G,(3.12)

which follows from (3.10) with ȳ(v) = y(v) + I(v − u) ∈ A1v. Let wλ = u+ λ(w− u)
for λ ∈ (0, 1]. Obviously, wλ ∈ G, and according to (3.12), there exists ȳ(wλ) ∈ A1wλ
such that

〈ȳ(wλ), w − u〉 ≥ 0.

Due to (3.9), the set {ȳ(wλ) : λ ∈ (0, 1]} is bounded in V ′. Hence, if λ tends to 0 in a
suitable manner, the corresponding sequence {ȳ(wλ)} converges weakly in V ′ to some
ȳ. Because also wλ → u in V, the maximal monotonicity of A1 yields ȳ ∈ A1u and

0 ≤ lim 〈ȳ(wλ), w − u〉 = 〈ȳ, w − u〉.
From the last inequality and the inequality 〈y1(w), v − w〉 ≥ 0, given with v = u, we
obtain

〈ȳ − y1(w), u− w〉 ≤ 0,

but this contradicts the strong monotonicity of A1.
Let us recall that Assumption 2.1 is supposed to be fulfilled and r, r∗ are chosen

according to (2.4). Set

Qi = Ki ∩ Sr, Q = K ∩ Sr, Q∗ = U∗ ∩ Sr∗ .(3.13)

To investigate the convergence of the MSR-method for problem (1.1) we make the
following general assumption.

Assumption 3.4.
(a) supu∈Q supy∈T u ‖y‖V ′ ≤ µ(r) <∞ and Q ∩ intD(T ) �= ∅;
1Condition G ∩ intD(A) �= ∅ corresponds to the case (b) in the theorem mentioned, and (3.11)

ensures that 〈q1, v − u〉 ≥ 0 whenever v ∈ D(A1) ∩G, ‖v‖ > α ≡ ‖u‖ + ‖q(u)‖V ′ , and q1 ∈ A1(v).
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(b) with B and χ̃ from Assumption 2.1, for each i, the relation

〈Tiu− Tiv, u− v〉 ≥ 〈Bu− Bv, u− v〉 ∀u, v ∈ Qi

is valid, and χ̃ ≤ 2χ̄−1;
(c) for each z ∈ Q there exist points vi(z) ∈ Qi and a compact set Λ(z) ⊂ T z

such that

lim
i→∞
〈y, vi(z)− z〉 = 0 ∀y ∈ Λ(z), lim

i→∞
distV ′(Tivi(z),Λ(z)) = 0

(Λ(z) may depend on {vi(z)}).
For given sequences {ϕi}, {σi}, such that limi→∞ ϕi = limi→∞ σi = 0, it holds that

(d) for each u ∈ Q∗ there exist points wi ∈ Qi, satisfying

‖u− wi‖ ≤ ϕi, distV ′(Tiwi, Λ̂(u)) <
√

β0σi, i = 1, 2, . . . ,

where Λ̂(u) = {y ∈ T u : 〈y, v − u〉 ≥ 0 ∀v ∈ Q};
(e) for each triple u ∈ Q∗, y ∈ Λ̂(u), and vi ∈ Qi there exists wi ∈ Q such that

〈y, wi − vi〉 ≤ ϕi‖y‖V ′ (i = 1, 2, . . .);

(f) all weak limit points of an arbitrary sequence {vi}, vi ∈ Qi, belong to Q.
Remark 3.5.
(i) According to Assumption 3.4(b), the operator Ti+χiM is strongly monotone

on Qi.
(ii) If V1 = V = H, then Assumption 2.1 is fulfilled with B = 0. Therefore,
‖|u‖| = ‖u‖ ∀u ∈ V, and Assumption 3.4(b) follows from the monotonicity of
Ti. In this case all results given below hold also true with β1 = 0, β2 = 1 if,
instead of Assumptions 3.4(c), (d), and (e), the following conditions are valid
(cf. [21]):
(c′) for each z ∈ Q there exist points vi(z) ∈ Qi and a compact set Λ(z) ⊂ T z

such that

lim
i→∞

‖vi(z)− z‖ = 0, lim
i→∞

distV ′(Tivi(z),Λ(z)) = 0;

(d′) dist(Q∗, Qi) ≤ ϕi, i = 1, 2, . . . ;
(e′) for each i and ui ∈ Qi there exists vi ∈ Q, satisfying

‖ui − vi‖ ≤ ϕi, distV ′(Tiui, T vi) < σi.

We underline that estimate (3.19) and relation (3.34) below remain true also.
In section 4 we shall use the modified Assumption 3.4 with (d′) and (e′) instead of
(d) and (e).

Lemma 3.6. Let Assumptions 3.4(a), (b), (d), (e) be fulfilled, and let the relations

1

4r

(
4

χi
(µ(r)ϕi + rσi)− ε̃2i

)
+ β3εi < 0, ε̃i = δi − β2εi > 0(3.14)

hold for i ≤ i0, with β3 =
(
2β1χ̄

−1 + β2
2

)1/2
. Moreover, assume that in the MSR-

method the relations s(i) <∞ for i < i0, and ‖|ui0,s‖| < r∗, ‖|ūi0,s‖| < r∗ for each s
are valid. Then s(i0) <∞ is true.
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Proof. Fix u∗∗ ∈ U∗ ∩ Sr∗ . Due to Assumptions 3.4(d), (e), one can choose
vi0 ∈ Qi0 , vi0,s ∈ Q such that

‖u∗∗ − vi0‖ ≤ ϕi0 ,

and, for some y ∈ Λ̂(u∗∗),

〈y, vi0,s − ūi0,s〉 ≤ ϕi‖y‖V ′ ,
∥∥Ti0vi0 − y

∥∥
V ′ ≤

√
β0σi0 .

Then, regarding Assumption 3.4(a) and (2.3),〈Ti0vi0 , vi0 − ūi0,s
〉

=
〈
y, vi0 − ūi0,s

〉
+
〈Ti0vi0 − y, vi0 − ūi0,s

〉
=
〈
y, u∗∗ − vi0,s

〉
+
〈
y, vi0 − u∗∗〉

+
〈
y, vi0,s − ūi0,s

〉
+
〈Ti0vi0 − y, vi0 − ūi0,s

〉
≤ 〈y, u∗∗ − vi0,s

〉
+ 2rσi0 + 2µ(r)ϕi0 .

However, from the definition of Λ̂(u) and vi0,s ∈ Q, one can conclude that

〈y, u∗∗ − vi0,s〉 ≤ 0;

hence, 〈Ti0vi0 , vi0 − ūi0,s
〉 ≤ 2rσi0 + 2µ(r)ϕi0 .(3.15)

Now, using Assumption 3.4(b) and Lemma 3.1 with A = Ti0 , G = Ki0 , χ =
χi0 , v = vi0 , and a0 = ui0,s−1, in view of (2.6) and (3.15) we obtain

‖|ūi0,s − vi0‖|2 − ‖|ui0,s−1 − vi0‖|2

≤ −‖Pūi0,s − Pui0,s−1‖2H +
2

χi0
〈Ti0vi0 , vi0 − ūi0,s〉(3.16)

≤ −‖Pūi0,s − Pui0,s−1‖2H +
4

χi0
(rσi0 + µ(r)ϕi0) .

With regard to (2.5) and ‖Pu‖H ≤ β2‖u‖ ∀u ∈ V, the second inequality in (3.14)
ensures

‖Pūi0,s − Pui0,s−1‖H ≥ ‖Pui0,s − Pui0,s−1‖H − ‖Pui0,s − Pūi0,s‖H
≥ ‖Pui0,s − Pui0,s−1‖H − β2‖ui0,s − ūi0,s‖ > δi0 − β2εi0 > 0

for 1 ≤ s < s(i0). Together with (3.16) this yields

‖|ūi0,s − vi0‖|2 − ‖|ui0,s−1 − vi0‖|2

< −ε̃2i0 +
4

χi0
(rσi0 + µ(r)ϕi0) ,(3.17)

and taking into account the first inequality in (3.14), we have

‖|ūi0,s − vi0‖| < ‖|ui0,s−1 − vi0‖|.
Also, the straightforward application of (2.3), (2.5), and χ̃ ≤ 2χ̄−1 gives

‖|ūi0,s − ui0,s‖| ≤ β3εi0 .
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Moreover, from the last inequality, (3.14), and (3.17), due to ‖|ui0,s−1‖| < r∗, ‖|ūi0,s‖|
< r∗, ‖|vi0‖| ≤ r, r∗ ≤ r, we obtain immediately that

‖|ui0,s − vi0‖| − ‖|ui0,s−1 − vi0‖|
<

1

4r

[
4

χi0
(rσi0 + µ(r)ϕi0)− ε̃2i0

]
+ β3εi0 < 0(3.18)

is valid for 1 ≤ s < s(i0).
Summing up the inequalities (3.18) for s = 1, . . . , s̄, with s̄ < s(i0) arbitrarily

chosen, one gets

‖|ui0,s̄ − vi0‖| < ‖|ui0,0 − vi0‖|+ s̄

[
1

4r

(
4

χi0
(rσi0 + µ(r)ϕi0)− ε̃2i0

)
+ β3εi0

]
;

therefore,

s̄ < ‖|ui0,0 − vi0‖|
[
1

4r

(
ε̃2i0 −

4

χi0
(rσi0 + µ(r)ϕi0)

)
− β3εi0

]−1

,

and

s(i0) < ‖|ui0,0 − vi0‖|
[
1

4r

(
ε̃2i0 −

4

χi0
(rσi0 + µ(r)ϕi0)

)
− β3εi0

]−1

+ 1(3.19)

proves the lemma.
Corollary 3.7. Let Assumptions 3.4(a), (b), (d), (e), and (for each i) the rela-

tions (3.14) be satisfied. Moreover, assume that the inequalities ‖|ūi,s‖| < r∗, ‖|ui,s‖| <
r∗ are fulfilled step by step. Then the relation s(i) < ∞ holds for each i, i.e., the
method suggested is well defined.

Lemma 3.8. Let Assumptions 3.4(a), (b), (d), (e) be fulfilled, and let the control-
ling parameters εi, χi, δi, σi, and ϕi satisfy

1

4r

(
4

χi
(µ(r)ϕi + rσi)− (δi − β2εi)

2

)
+ β3εi < 0(3.20)

and

∞∑
i=1

(
2

(
µ(r)ϕi + rσi

χi

)1/2

+ β3(εi + 2ϕi)

)
<

1

2
r∗,(3.21)

with β2 : ‖u‖H ≤ β2‖u‖ ∀u ∈ V and β3 defined in Lemma 3.6. Then, (3.14) holds
and in the MSR-method s(i) < ∞ is valid for each i; variational inequality (2.6) is
uniquely solvable, and ‖|ui,s‖| < r∗, ‖|ūi,s‖| < r∗ are true for all (i, s).

Proof. The inequality δi − β2εi > 0 follows immediately from (3.20), (3.21).
Indeed, (3.21) yields β3εi < 1

2r
∗, and due to (3.20), β3εi < 1

4r (δi − β2εi)
2. If

δi ≤ β2εi, then (δi − β2εi)
2 ≤ (β2εi)

2; hence,

β3εi <
1

4r
(β2εi)

2.

In view of β3 =
(
2β1χ̄

−1 + β2
2

)1/2 ≥ β2, we have β2εi ≤ β3εi <
1
2r

∗; therefore

β3εi <
1

4r
(β2εi)

2 <
r∗

8r
β2εi.

However, this contradicts β3 ≥ β2, r
∗ < r.
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Suppose that i0 and s0 are kept fixed, s(i) <∞ for i < i0, and that 0 ≤ s0 < s(i0).
Denote

Θ0 = {(i, s) : i < i0, 0 < s ≤ s(i) and i = i0, 0 < s ≤ s0}.

Assume, moreover, that for all (i, s) ∈ Θ0 the variational inequality (2.6) is uniquely
solvable2 and the inequalities ‖|ui,s‖| < r∗, ‖|ūi,s‖| < r∗ are true.

For fixed u∗∗ ∈ Sr∗/8 ∩U∗ and each i, due to Assumption 3.4(d), one can choose

vi ∈ Qi and yi ∈ Λ̂(u∗∗) such that

‖vi − u∗∗‖ ≤ ϕi, ‖Tivi − yi‖V ′ ≤
√

β0σi.(3.22)

Then, as in the proof of Lemma 3.6, we obtain (cf. (3.18)) for i < i0, 0 < s < s(i),
and i = i0, 0 < s ≤ s0 that

‖|ui,s − vi‖| − ‖|ui,s−1 − vi‖| ≤ 1

4r

(
τi − ε̃2i

)
+ β3εi < 0,(3.23)

with τi =
4
χi

(µ(r)ϕi + rσi) , ε̃i = δi − β2εi.

Also for i < i0, s = s(i), similarly to (3.16), one can conclude that

‖|ūi,s(i) − vi‖|2 − ‖|ui,s(i)−1 − vi‖|2 ≤ τi,

and regarding ‖|ūi,s(i)−ui,s(i)‖| < β3εi and the implication a2−b2 < c2 ⇒ a−|b| < |c|,
it follows that

‖|ui,s(i) − vi‖| − ‖|ui,s(i)−1 − vi‖| ≤ √τi + β3εi.(3.24)

Summing up the inequalities (3.23), where i < i0 is fixed and 0 < s < s(i), together
with (3.24), we get

‖|ui,s(i) − vi‖| − ‖|ui,0 − vi‖| ≤ √τi + β3εi.

Due to (2.3) and (3.22), this yields

‖|ui,s(i) − u∗∗‖| − ‖|ui,0 − u∗∗‖| ≤ √τi + β3(εi + 2ϕi).(3.25)

Because the mapping u → Ti0u + χi0M(u − ui0,s0) is monotone and hemicon-
tinuous on Qi0 and Qi0 is a convex closed and bounded set, by Theorem 5 in [33],
Remark 3.5(i), and (3.1) the variational inequality

u ∈ Qi0 : 〈Ti0u, v − u〉+ χi0
(Pu− Pui0,s0 ,Pv − Pu)

H
≥ 0 ∀v ∈ Qi0(3.26)

is uniquely solvable. We denote its solution by ûi0,s0+1. The use of Lemma 3.1 (as in
the proof of estimate (3.16)) leads to

‖|ûi0,s0+1 − vi0‖| ≤ ‖|ui0,s0 − vi0‖|+√τi0 .(3.27)

Observing (3.22), (3.23) (taken with i = i0, 0 < s ≤ s0), and (3.27), the inequality

‖|ûi0,s0+1 − u∗∗‖| ≤ ‖|ui0,0 − u∗∗‖|+√τi0 + 2β3ϕi0(3.28)

2This can be proved directly. We shall get solvability of (2.6) from the solvability of (3.26) below.
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can be obtained similarly to (3.25). Regarding that ui+1,0 := ui,s(i) (cf. Step (c) of
the MSR-method), the inequalities (3.25) and (3.28) imply

‖|ûi0,s0+1 − u∗∗‖| ≤ ‖|u1,0 − u∗∗‖|

+

i0−1∑
k=1

(
√
τk + β3(εk + 2ϕk)) +

√
τi0 + 2β3ϕi0 .(3.29)

Due to (3.21) and the choice of u∗∗ and u1,0, estimate (3.29) yields

‖|ûi0,s0+1‖| < r∗ − β3εi0 .(3.30)

Thus, we are in the situation of Lemma 3.2 (for y = Ti0 ûi0,s0+1+χi0M(ûi0,s0+1−
ui0,s0), G = Qi0 , G1 = Sr∗) and Remark 3.5(i), and hence, the variational inequality
(2.6) with i = i0 and s = s0 + 1 is uniquely solvable, ūi0,s0+1 = ûi0,s0+1, and

‖|ui0,s0+1‖| < r∗.(3.31)

This enables us to conclude that

‖|ūi0,s‖| < r∗, ‖|ui0,s‖| < r∗ ∀s,

and Lemma 3.6 ensures that s(i0) < ∞. To complete the induction, note that the
unique solvability of (2.6) with i = 1, s = 1, as well as the inequalities

‖|ū1,1‖| < r∗, ‖|u1,1‖| < r∗

and the finiteness of s(1), can be established quite analogously.
Notice for the future that, using (3.21) and (3.29), one can conclude that

supi,s ‖|ūi,s‖| < r∗, too.
Theorem 3.9. Let T be a maximal monotone operator, Assumption 3.4 be ful-

filled, and suppose that the points ui,s, generated by the MSR-method, as well as the
points ūi,s which solve the variational inequalities (2.6), satisfy the relations

‖|ūi,s‖| < r∗ and ‖|ui,s‖| < r∗ ∀i, s.

Moreover, assume that the controlling parameters satisfy (3.14) and

∞∑
i=1

√
σi
χi

<∞,

∞∑
i=1

√
ϕi
χi

<∞,

∞∑
i=1

εi <∞.(3.32)

Then, s(i) <∞ holds for each i and the sequences
{
ui,s
}
,
{
ūi,s
}

converge weakly in
V to an element u∗ ∈ U∗.

Proof. Corollary 3.7 ensures that s(i) < ∞ for each i. With an arbitrary w ∈
U∗ ∩ Sr∗ , the inequality

‖|ui+1,0 − w‖| − ‖|ui,0 − w‖| ≤ √τi + β3(εi + 2ϕi)

with the same τi = 4
χi
(µ(r)ϕi + rσi), β3 = (2β1χ̄

−1 + β2
2)

1/2 can be established

similarly to (3.25). Therefore, condition (3.32) and Lemma 2.2.2 in [32] imply the
convergence of the sequence

{‖|ui,0 − w‖|}.
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Note that the inequalities (3.23), (3.24) remain true with a “new” vi ∈ Qi which
is chosen according to Assumption 3.4(d) such that

‖vi − w‖ ≤ ϕi, inf
y∈Λ̂(w)

‖Tivi − y‖V ′ <
√

β0σi.

For 1 ≤ s < s(i) this leads to the relation

−(√τi + β3(εi + 2ϕi)) + ‖|ui+1,0 − w‖| ≤ ‖|ui,s − w‖|
< ‖|ui,0 − w‖|+ 2β3ϕi.(3.33)

Indeed, from (3.23) we get immediately

‖|ui,s − vi‖| < ‖|ui,0 − vi‖| if 1 ≤ s < s(i),

and from (3.24) it follows that

−√τi − β3εi + ‖|ui+1,0 − vi‖| ≤ ‖|ui,s − vi‖| < ‖|ui,0 − vi‖|.
The latter inequality together with ‖|vi − w‖| ≤ β3ϕi proves (3.33).

Hence, the sequences
{‖|ui,s − w‖|} and

{‖|ūi,s − w‖|} converge to the same limit

as
{‖|ui,0 − w‖|}.
Now, from inequality (3.16), which can be extended to each i and 1 ≤ s ≤ s(i),

taking into account that

‖|vi − w‖| ≤ β3ϕi, ‖|ūi,s‖| < r∗, ‖|ui,s−1‖| < r∗, ‖|vi‖| ≤ r,

one can conclude that

‖Pūi,s − Pui,s−1‖2H
≤ −‖|ūi,s − vi‖|2 + ‖|ui,s−1 − vi‖|2 + τi

≤ 4r
∣∣−‖|ūi,s − vi‖|+ ‖|ui,s−1 − vi‖|∣∣+ τi

≤ 4r
(∣∣−‖|ūi,s − w‖|+ ‖|ui,s−1 − w‖|∣∣+ 2β3ϕi

)
+ τi.

Therefore,

lim
i→∞

max
1≤s≤s(i)

‖Pūi,s − Pui,s−1‖H = 0.(3.34)

Using the definition of ūi,s, we get

〈Tiūi,s, v − ūi,s〉+ χi
(Pūi,s − Pui,s−1,Pv − Pūi,s)

H
≥ 0 ∀v ∈ Qi,(3.35)

and, in view of the monotonicity of Ti, this yields
〈Tiv, v − ūi,s〉+ χi

(Pūi,s − Pui,s−1,Pv − Pūi,s)
H
≥ 0 ∀v ∈ Qi.(3.36)

For an arbitrary z ∈ Q, let us choose vi(z) ∈ Qi and yi ∈ Λ(z) such that

lim
i→∞
〈y, vi(z)− z〉 = 0 ∀y ∈ Λ(z), lim

i→∞
‖Tivi(z)− yi‖V ′ = 0.(3.37)

This choice is possible due to Assumption 3.4(c). Then,

〈yi, z − ūi,s〉+ χi
(Pūi,s − Pui,s−1,Pz − Pūi,s)

H

= 〈yi, z − vi(z)〉+ χi
(Pūi,s − Pui,s−1,Pz − Pvi(z))

H

+〈yi − Tivi(z), vi(z)− ūi,s〉(3.38)

+
[〈Tivi(z), vi(z)− ūi,s〉+ χi

(Pūi,s − Pui,s−1,Pvi(z)− Pūi,s)
H

]
,
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and in view of (3.36) the term in the square brackets is nonnegative.
Let

{
ūi,s
}

(i,s)∈Γ
be a subsequence of

{
ūi,s
}
, which converges weakly in V to some

u∗. With regard to supi,s ‖|ūi,s‖| < r∗ and Assumption 3.4(f) one can easily show that

u∗ ∈ K ∩ intSr. Now, we choose from
{
ūi,s
}

(i,s)∈Γ
an infinite subsequence

{
ūi,si

}
i∈I

and, without loss of generality, suppose that {yi}i∈I converges in V ′ to an element
y (according to Assumption 3.4(c), {yi} belongs to the compact set Λ(z)). Maximal
monotonicity of T yields y ∈ T z. Passing to the limit with s = si, i → ∞, i ∈ I
in equality (3.38), in view of the relations (3.34), (3.37), and the boundedness of the
sequences {χi}, {ūi,s}, we obtain

〈y, z − u∗〉 ≥ 0.

Now, on using Assumption 3.4(a), Lemma 3.3 permits us to conclude that

〈y∗, z − u∗〉 ≥ 0 for some y∗ ∈ T u∗ and all z ∈ Q.

Since u∗ ∈ int Sr, Lemma 3.2 guarantees that 〈y∗, z−u∗〉 ≥ 0 ∀z ∈ K, hence u∗ ∈ U∗.
Now, due to Lemma 1 in [31], both sequences

{
ūi,s
}
and

{
ui,s
}
converge weakly in

V to u∗.
Remark 3.10. Theorem 3.9 establishes convergence of the MSR-method if the set

K is bounded and distV (Ki,K) ≤ supi ϕi. Indeed, if r∗ is chosen such that K ⊂ Sτ
holds with some τ < r∗ − β3(supi ϕi + supi εi), we get

‖|ūi,s‖| < r∗, ‖|ui,s‖| < r∗ ∀i, s.
Thus, the conditions (3.14) (used for all i) and (3.32) ensure weak convergence of{
ūi,s
}
and

{
ui,s
}
to an element u∗ ∈ U∗.

If boundedness of K is not supposed, compiling Lemma 3.8 and Theorem 3.9, the
following statement on convergence of the MSR-method can be obtained immediately.

Theorem 3.11. Let T be a maximal monotone operator and let Assumption 3.4
as well as the conditions (3.20), (3.21) be fulfilled. Then, the MSR-method started with
arbitrary u0 ∈ Sr∗/4 has the following properties:

(i) s(i) <∞ ∀i;
(ii) ‖|ui,s‖| < r∗, ‖|ūi,s‖| < r∗ for each (i, s);
(iii) both sequences

{
ui,s
}
and

{
ūi,s
}
converge weakly in V to an element u∗ ∈ U∗.

Remark 3.12. Now we are ready to specify the notion “effective iteration” used
in the introduction. The (i, s)th iteration is considered to be effective if ‖Pui,s −
Pui,s−1‖H > δi, where δi and the other controlling parameters satisfy the conditions
(3.20), (3.21) (or (3.14), (3.32) in case K is bounded). To fulfill condition (3.14),
(3.32), the parameters can be chosen a priori, for instance in the following way:

χi ≡ χ ∈ (0, χ̄], ϕi = σi =
1

(a+ i)2+α
, εi =

1

(a+ i)1+α
,

with α a small positive number and an arbitrary a ≥ 0. Then, the values δi can be
easily calculated from (3.14). In case the conditions (3.20), (3.21) are used, the choice
of a ≥ 0 in the ratios above has to ensure (3.21), and then δi has to be calculated
from (3.20). In both cases, under appropriate ϕi, σi, and εi, it makes sense to take δi
as small as possible.

Of course, a faster decrease of ϕi, σi, εi (and hence, δi) is admissible, too.
Remark 3.13. If δi is chosen sufficiently large (for instance, δi > 2r∗ ∀i), then

from Theorem 3.11 (also from Remark 3.10) it follows that s(i) = 1 for each i. Indeed,
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successively for i = 1, 2, . . . we obtain (without the use of (3.20)) that ‖|ui,0‖| <
r∗, ‖|ui,1‖| < r∗, and regarding (2.2),

‖Pui,1 − Pui,0‖H ≤ ‖|ui,1 − ui,0‖| < 2r∗

holds true, and thus ‖Pui,1 − Pui,0‖H < δi.
This means that the MSR-method passes over to the usual (one-step) diagonal

method. Obviously, in this case condition (3.20) can be omitted in Lemma 3.8 and
Theorem 3.11.

Remark 3.14. Now let us return to the stopping rule for the auxiliary problems
(2.6). Suppose that χ̃ ≤ 2χ̄−1,

〈Tiu− Tiv, u− v〉 ≥ 〈Bu− Bv, u− v〉 ∀u, v ∈ Ki,

(a modification of Assumption 3.4(b)) and that Assumption 2.1 is valid also. Moreover,
instead of (2.5), let ui,s ∈ Ki be defined by

〈Tiui,s, v − ui,s〉
+ χi(Pui,s − Pui,s−1,Pv − Pui,s)H ≥ −ε′i‖v − ui,s‖ ∀v ∈ Ki.(3.39)

Then, inserting in this inequality v = ūi,s and summing up the result with the obvious
inequality

〈Tiūi,s, ui,s − ūi,s〉+ χi(Pūi,s − Pui,s−1,Pui,s − Pūi,s)H ≥ 0,

we obtain

〈Tiūi,s − Tiui,s, ūi,s − ui,s〉+ χi(Pūi,s − Pui,s,Pūi,s − Pui,s)H ≤ ε′i‖ūi,s − ui,s‖.
With regard to this inequality, the modified Assumption 3.4(b) and formula (2.1) lead
to

β0

2
‖ūi,s − ui,s‖2 ≤ ε′i

χi
‖ūi,s − ui,s‖;

hence ‖ūi,s − ui,s‖ ≤ 2ε′i
β0χi

.

Thus, under the mentioned modification of Assumption 3.4(b) the convergence
results above remain true if ui,s is defined by criterion (3.39) with ε′i ≤ 1

2β0εiχi.
Theorem 3.15. Let the conditions of Theorem 3.9 or Theorem 3.11 be fulfilled

and let

lim
i→∞

max
1≤s≤s(i)

‖Pui,s − Pu∗‖H = 0,(3.40)

with u∗ a weak limit of {ui,s}. Then both sequences {ui,s} and {ūi,s} converge to u∗

(strongly) in V .
In particular, if dimV1 <∞, condition (3.40) follows from the weak convergence

of {ui,s}, taking into account that the orthoprojector is a continuous operator and
in the finite dimensional space weak and strong convergence coincides. Also, if the
embedding of V into H is compact, (3.40) is obviously fulfilled.

Proof. Due to (2.5) and the continuous embedding of V into H, relation (3.40)
leads to

lim
i→∞

max
1≤s≤s(i)

‖Pūi,s − Pu∗‖H = 0.(3.41)
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Assumptions 3.4(d), (e) permit one to choose vi ∈ Qi, y
i ∈ Λ̂(u∗), and vi,s ∈ Q such

that

‖u∗ − vi‖ ≤ ϕi, ‖Tivi − yi‖V ′ ≤
√

β0σi, i = 1, 2, . . . ,(3.42)

and

〈yi, vi,s − ūi,s〉 ≤ ϕi‖yi‖V ′ for each i and 1 ≤ s ≤ s(i).(3.43)

On account of Assumption 3.4(b) and the symmetry of the operator B, one gets

〈Būi,s − Bu∗, ūi,s − u∗〉
= 〈Būi,s − Bvi, ūi,s − vi + vi − u∗〉+ 〈Bvi − Bu∗, ūi,s − u∗〉
= 〈Būi,s − Bvi, ūi,s − vi〉 − 〈Bu∗ − Bvi, ūi,s − u∗〉 − 〈Būi,s − Bvi, u∗ − vi〉
≤ 〈Tiūi,s − Tivi, ūi,s − vi〉 − 〈Būi,s − Bu∗, u∗ − vi〉 − 〈Būi,s − Bvi, u∗ − vi〉,

and the use of inequality (3.35) with v = vi yields

〈Būi,s − Bu∗, ūi,s − u∗〉
≤ 〈Tivi, vi − ūi,s〉+ χi

(Pūi,s − Pui,s−1,Pvi − Pūi,s)
H

+ 〈Bu∗ + Bvi − 2Būi,s, u∗ − vi〉
= 〈Tivi − yi, vi − ūi,s〉+ 〈yi, vi − u∗〉+ 〈yi, vi,s − ūi,s〉+ 〈yi, u∗ − vi,s〉
+ χi

(Pūi,s − Pui,s−1,Pvi − Pūi,s)
H

+ 〈Bu∗ + Bvi − 2Būi,s, u∗ − vi〉.(3.44)

Now, in view of 〈yi, u∗−vi,s〉 ≤ 0, the boundedness of {χi} and {yi} (see the definition
of Λ̂(u) and Assumption 3.4(a)) and of the monotonicity of B, from (3.34), (3.42),
and (3.43) we obtain

lim
i→∞

max
1≤s≤s(i)

〈Būi,s − Bu∗, ūi,s − u∗〉 = 0.

The last relation together with (3.41) leads to

lim
i→∞

max
1≤s≤s(i)

‖|ūi,s − u∗‖| = 0,

and all we have to do is to use (2.3) and (2.5).
The proximal point method studied in [34], applied to the variational inequality

(1.1), corresponds formally to the MSR-scheme with H = V = V1, Ti = T , Ki =
K, s(i) = 1. However, because we have supposed above that Ti belongs to the class
of hemicontinuous operators, convergence of the method in [34] does not follow from
our Theorem 3.11.

Remark 3.16. Lemma 3.1 remains true without any change in the proofs if we
suppose that A is a multivalued operator and inequality (3.2) is fulfilled for any pair
of elements belonging to Au and Av, respectively.

Lemmas 3.6 and 3.8 and Theorems 3.9, 3.11, and 3.15 remain true with minor
(and straightforward) modifications in the proofs if, instead of the hemicontinuity of
Ti, we suppose that Ti : V → 2V

′
are maximal monotone operators and the following

alterations in Assumption 3.4 are performed:



1152 A. KAPLAN AND R. TICHATSCHKE

• replace limi→∞ distV ′ (Tivi(z),Λ(z)) = 0 by
limi→∞ infη∈Tivi(z) distV ′ (η,Λ(z)) = 0 in (c);

• replace distV ′ (Tiwi, Λ̂(u)) <
√
β0σi by

infη∈Tiwi(z) distV ′ (η, Λ̂(u)) <
√
β0σi in (d);

• add any condition which provides the solvability of (3.26).
Taking into account that in this case the operator Ti + χiM is also maximal
monotone (cf. [33, Theorem 1]) and Qi is a bounded set, it suffices to suppose
that Ki ∩ intD(Ti) �= ∅ or Ti is locally bounded at some u ∈ Ki (Theorem 5
in [33]).

The inequality

〈Tiu− Tiv, u− v〉 ≥ 〈Bu− Bv, u− v〉

in Assumption 3.4(b) means in this case that

〈η(u)− η(v), u− v〉 ≥ 〈Bu− Bv, u− v〉 ∀η(u) ∈ Tiu, ∀η(v) ∈ Tiv.

4. Rate of convergence. In this section we investigate the rate of convergence
of the basic variant of the MSR-method that corresponds to H = V = V1,B = 0, and
hence, the norms ‖| · ‖| and ‖ · ‖ coincide.

Let δ ∈ (0, 2r∗), l > 0, be fixed and denote Uδ = {u ∈ Q : dist(u,Q∗) ≤ δ}. We
need the following additional assumption.

Assumption 4.1. There exists a constant d0 > 0 such that, for each u ∈ Uδ and
each y ∈ T u, the inequality

inf
v∈Q∗

〈y, u− v〉 ≥ d0‖u− u∗(u)‖l(4.1)

holds with u∗(u) = argminw∈Q∗ ‖u− w‖.
Assumption 4.1 supposes implicitly that r∗ = r or U∗ = Q∗ has to be.
Lemma 4.2. Let Assumption 4.1 be fulfilled. Then, for each u ∈ Q and each

y ∈ T u, the inequality

inf
v∈Q∗

〈y, u− v〉 ≥ d‖u− u∗(u)‖l(4.2)

is valid with d = ( δ
r+r∗ )

ld0.
Proof. Consider the nontrivial case Q\Uδ �= ∅ and let u ∈ Q\Uδ, v ∈ Q∗ be

chosen arbitrarily. Define λ = λ(u, v) ∈ (0, 1) such that ũ = λu+(1−λ)v ∈ ∂Uδ (∂Uδ
is the boundary of Uδ). Obviously, ũ−v = λ(u−v), 1−λ

λ (ũ−v) = u− ũ, and regarding
the monotonicity of T , we obtain that

1− λ

λ
〈y(u)− y(ũ), ũ− v〉 = 〈y(u)− y(ũ), u− ũ〉 ≥ 0

for any y(u) ∈ T u, y(ũ) ∈ T ũ.
Hence, due to Assumption 4.1,

〈y(u), ũ− v〉 ≥ 〈y(ũ), ũ− v〉 ≥ d0‖ũ− u∗(ũ)‖l

and

〈y(u), u− v〉 ≥ d0

λ
‖ũ− u∗(ũ)‖l > d0‖ũ− u∗(ũ)‖l.
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But ‖ũ− u∗(ũ)‖ = δ, ‖u− u∗(u)‖ < r + r∗; therefore

〈y(u), u− v〉 >
(

δ

r + r∗

)l
d0‖u− u∗(u)‖l.

Because v is an arbitrary point in Q∗, this leads to (4.2). But if u ∈ Uδ, then (4.2)
follows immediately from (4.1) and δ < 2r∗.

Let

ρi,s = dist2
(
ui,s, Q∗) ,

γi = 4r(εi + ϕi) +
4

χi
[rσi + (µ(r) + 2dr)ϕi + 2drεi] ,

ci = ρ1,0

i∏
k=1

(
1 +

2d

χk

)−s(k)+ 1
2

for i ≥ 1, c0 = ρ1,0,

and define by s̄(i) the largest integer not exceeding
√
ci−1ϕ

−1
i + 2.

Theorem 4.3. Let Assumptions 3.4(a), (d′), (e′) (see Remark 3.5(ii)) be ful-
filled. Moreover, suppose that the controlling parameters of the MSR-method satisfy
the relations (3.21).

(i) If Assumption 4.1 with l = 2 is valid, as well as

γi ≤ ci−1

(
1 +

2d

χi

)−s̄(i)+1
[(

1 +
2d

χi

)1/2

− 1

]
(4.3)

and

−(δi − εi)
2 +

4

χi
(rσi + µ(r)ϕi)

+ 4rεi +
8d

χi
rεi +

(
4 +

8d

χi

)
rϕi < 0,(4.4)

then, for each i and 0 ≤ s < s(i), the estimate

ρi,s ≤ ci−1

(
1 +

2d

χi

)−s

= ρ1,0

(
1 +

2d

χi

)−s i−1∏
k=1

(
1 +

2d

χk

)−s(k)+ 1
2

(4.5)

holds true.
(ii) If Assumption 4.1 (with l = 1) and relation (3.20) are valid, then there exists

i0 such that the estimate

dist(ui,s, U∗ ∩ Sr∗)

≤
(
3 +

4rχ̄

d

)
εi + 2

(
1 +

2rχ̄

d
+

2µ(r)

d

)
ϕi +

4r

d
σi(4.6)

holds for i ≥ i0 and 1 ≤ s ≤ s(i).
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Proof. Because (4.4) implies (3.20), and also since (3.20), (3.21) imply (3.14), the
conclusions of Lemmas 3.6 and 3.8 remain true (see Remark 3.5(ii)). For a fixed pair
(i, s) with 1 ≤ s ≤ s(i), choose vi,s ∈ Q, yi,s ∈ T vi,s, and qi,s−1 ∈ Qi such that

‖vi,s − ūi,s‖ ≤ ϕi, ‖Tiūi,s − yi,s‖V ′ ≤ σi

and

‖qi,s−1 − u∗(ui,s−1)‖ ≤ ϕi.

This is possible due to Assumptions 3.4(d′) and (e′). Then we get

〈Tiūi,s, qi,s−1 − ūi,s〉
= 〈Tiūi,s − yi,s, qi,s−1 − ūi,s〉+ 〈yi,s, qi,s−1 − u∗(ui,s−1)〉
+ 〈yi,s, u∗(ui,s−1)− vi,s〉+ 〈yi,s, vi,s − ūi,s〉
≤ 〈yi,s, u∗(ui,s−1)− vi,s〉+ 2(rσi + µ(r)ϕi).

However, with regard to Remark 3.5(ii), inequality (3.5) given with H = V, P the
identity operator, B = 0,A = Ti, χ = χi, a

0 = ui,s−1, a1 = ūi,s, v = qi,s−1 leads to

‖ūi,s − qi,s−1‖2 − ‖ui,s−1 − qi,s−1‖2

≤ −‖ūi,s − ui,s−1‖2 + 2

χi
〈Tiūi,s, qi,s−1 − ūi,s〉.

Therefore

‖ūi,s − qi,s−1‖2 − ‖ui,s−1 − qi,s−1‖2

≤ −‖ūi,s − ui,s−1‖2 + 2

χi
〈yi,s, u∗(ui,s−1)− vi,s〉+ 4

χi
(rσi + µ(r)ϕi).

Using Assumption 4.1 and Lemma 4.2, this yields

‖ūi,s − qi,s−1‖2 − ‖ui,s−1 − qi,s−1‖2

≤ −‖ūi,s − ui,s−1‖2 − 2d

χi
‖vi,s − u∗(vi,s)‖l + 4

χi
(rσi + µ(r)ϕi).(4.7)

Now, we prove statement (i) and use the relations

‖ūi,s − qi,s−1‖2 − ‖ui,s−1 − qi,s−1‖2
=
(
ui,s − u∗(ui,s−1)− ui,s−1 + u∗(ui,s−1) + ūi,s − ui,s,

ui,s + ui,s−1 − 2u∗(ui,s−1) + ūi,s − ui,s + 2u∗(ui,s−1)− 2qi,s−1
)

≥ ‖ui,s − u∗(ui,s−1)‖2 − ‖ui,s−1 − u∗(ui,s−1)‖2 − 4r(εi + ϕi),

‖vi,s − u∗(vi,s)‖2 ≥ ‖ui,s − u∗(vi,s)‖2 − 4r(ϕi + εi),

and

‖ūi,s − ui,s−1‖2 ≥ di,s,

with

di,s =

{
(δi − εi)

2 if 1 ≤ s < s(i),
0 if s = s(i).
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Inserting these relations in (4.7), which is now valid with l = 2, one gets

‖ui,s − u∗(ui,s−1)‖2 + 2d

χi
‖ui,s − u∗(vi,s)‖2 − ‖ui,s−1 − u∗(ui,s−1)‖2

≤ −di,s + γi.(4.8)

By the use of the definition of u∗(u) and ρi,s, inequality (4.8) leads to(
1 +

2d

χi

)
ρi,s − ρi,s−1 ≤ −di,s + γi.(4.9)

Obviously, condition (4.4) is stronger than the first condition (3.14) given with β2 =
β3 = 1. Thus, the estimate

s(i) < ‖ui,0 − vi‖
[
1

4r

(
(δi − εi)

2 − 4

χi
(rσi + µ(r)ϕi)

)
− εi

]−1

+ 1(4.10)

remains true with some vi satisfying ‖u∗(ui,0) − vi‖ ≤ ϕi (see Remark 3.5(ii) and
(3.19)).

Suppose now that for a given pair (i, s) with 0 ≤ s < s(i) the estimate

ρi,s ≤ ci−1

(
1 +

2d

χi

)−s
(4.11)

is valid. Then (4.4), (4.10), and ‖u∗(ui,0)− vi‖ ≤ ϕi ensure that

s(i) ≤ s̄(i).(4.12)

If s < s(i)− 1, then from (4.4), we obtain −di,s+1 + γi < 0, and from (4.9) it follows
that

ρi,s+1 ≤ ci−1

(
1 +

2d

χi

)−s−1

.(4.13)

But, if s = s(i)− 1, then di,s+1 = 0, and (4.9) leads to(
1 +

2d

χi

)
ρi,s(i) − ρi,s(i)−1 ≤ γi.(4.14)

Combining (4.3), (4.12), (4.11), and (4.14), one can conclude that

ρi+1,0 = ρi,s(i)≤
(
1 +

2d

χi

)−1
[
ci−1

(
1 +

2d

χi

)−s(i)+1

+ci−1

(
1 +

2d

χi

)−s(i)+1
((

1 +
2d

χi

)1/2

− 1

)]

= ci−1

(
1 +

2d

χi

)−s(i)+1/2

= ci.

To prove statement (ii), we start with the estimate

‖ui,s − u∗(ui,s)‖ ≤ ‖ui,s − u∗(vi,s)‖ ≤ ‖vi,s − u∗(vi,s)‖+ (εi + ϕi).(4.15)
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Inserting (4.15) in inequality (4.7) (with l = 1), one gets

2d

χi
‖ui,s − u∗(ui,s)‖ ≤ −‖ūi,s − ui,s−1‖2 + ‖ui,s−1 − qi,s−1‖2

− ‖ūi,s − qi,s−1‖2 + 4

χi
(rσi + µ(r)ϕi) +

2d

χi
(εi + ϕi)

≤ −‖ūi,s − ui,s−1‖2 + 4

χi
(rσi + µ(r)ϕi) +

2d

χi
(εi + ϕi)

+
(
ui,s−1 − u∗(ui,s−1)− ui,s + u∗(ui,s−1) + ui,s − ūi,s,

ui,s−1 − u∗(ui,s−1) + ui,s − u∗(ui,s−1)

− ui,s + ūi,s + 2u∗(ui,s−1)− 2qi,s−1
)

≤ −‖ūi,s − ui,s−1‖2 + ‖ui,s−1 − u∗(ui,s−1)‖2 − ‖ui,s − u∗(ui,s−1)‖2 + θi

≤ −‖ūi,s − ui,s−1‖2 + ‖ui,s−1 − u∗(ui,s)‖2
− ‖ui,s − u∗(ui,s)‖2 + θi,(4.16)

where θi = (4r + 4µ(r)+2d
χi

)ϕi + (4r + 2d
χi
)εi +

4r
χi
σi.

If ‖ui,s − ui,s−1‖ ≤ εi, then inequality (4.16) yields

2d

χi
‖ui,s − u∗(ui,s)‖

≤ ‖ui,s−1 − ui,s‖ (‖ui,s−1 − u∗(ui,s)‖+ ‖ui,s − u∗(ui,s)‖)+ θi

≤ ‖ui,s−1 − ui,s‖ (2‖ui,s − u∗(ui,s)‖+ εi
)
+ θi.(4.17)

But if ‖ui,s − ui,s−1‖ > εi, then

‖ūi,s − ui,s−1‖2 ≥ ‖ui,s − ui,s−1‖2 + ε2i − 2εi‖ui,s − ui,s−1‖,
and (4.16) leads to

2d

χi
‖ui,s − u∗(ui,s)‖

< −‖ui,s − ui,s−1‖2 + 2εi‖ui,s − ui,s−1‖+ ‖ui,s−1 − u∗(ui,s)‖2
− ‖ui,s − u∗(ui,s)‖2 + θi

= 2
(
ui,s−1 − ui,s, ui,s − u∗(ui,s)

)
+ 2εi‖ui,s − ui,s−1‖+ θi

≤ 2‖ui,s−1 − ui,s‖ (‖ui,s − u∗(ui,s)‖+ εi
)
+ θi.(4.18)

Due to the relation (2.5) and (3.34) (see also Remark 3.5(ii)), there exists i0 such that

‖ui,s−1 − ui,s‖ ≤ d

2χ̄
for i ≥ i0, 1 ≤ s ≤ s(i).

Together with (4.17), (4.18), and χi ≤ χ̄, this gives

d

χi
‖ui,s − u∗(ui,s)‖ ≤ dεi

χ̄
+ θi,

proving relation (4.6).
Remark 4.4. If problem (1.1) is uniquely solvable, estimate (4.5) shows that {ui,s}

converges to u∗ not slower than a geometrical progression with the factor (1+ 2d
χ̄ )−1/4.
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In the general case, analogous estimates can be proved for the distance of ui,s to U∗.
If, moreover, Assumption 3.4(c′) is valid, then using the proof of Theorem 14.6 in
[16], linear convergence of {ui,s} to an element u∗ ∈ U∗ can be established, too.

Estimate (4.6), in particular, leads to the known result on “finite convergence” of
the exact proximal point method (cf. [34], [27]).

It should be emphasized that statement (i) in Theorem 4.3 is mainly qualitative,
because a very fast decrease of the parameters ϕi, σi, and εi could be necessary. The
choice of the parameters according to statement (ii) can be performed in the same
manner as described in Remark 3.12.

In [27], sections 2–3, and [34], section 3, the rate of convergence of the classical
proximal point method applied to the problem

find u ∈ V : 0 ∈ T̃ u(4.19)

with T̃ : V → 2V a maximal monotone operator, has been investigated. In these
papers a data approximation is not included. If problem (1.1) is considered with
V ′ = V, then it can be rewritten in the form (4.19) with

T̃ u =

{ T u+NK(u) if u ∈ K,
∅ if u �∈ K,

(4.20)

where NK(u) is the normal cone to K at the point u. The operator T̃ in (4.20) is
maximal monotone, for instance, if K ∩ intD(T ) �= ∅ [33, Theorem 1].

To prove linear convergence, in [34] it is supposed that
(a) problem (4.19) is uniquely solvable and, for some a > 0, θ > 0,

‖u− ū‖ ≤ a‖w‖ whenever u ∈ T̃ −1w and ‖w‖ ≤ θ

(ū is the solution of (4.19)).
In [27] this assumption is generalized to the case that problem (4.19) may have more
than one solution. Here, denoting by Ū the solution set of (4.19), the corresponding
assumption is

(b) for some a > 0, θ > 0,

dist(u, Ū) ≤ a‖w‖ whenever u ∈ T̃ −1w and ‖w‖ ≤ θ.

The “finite convergence” of the exact method is established in [34] under the condition
(c) 0 ∈ intT̃ ū,

which is generalized in [27] as follows:
(d) for some θ > 0, the inclusion u ∈ Ū holds if u ∈ T̃ −1w and ‖w‖ ≤ θ.

The correlation between these conditions and Assumption 4.1 is not completely clear.
There exist simple examples where Assumption 4.1 with l = 1 (resp., l = 2) is fulfilled,
whereas conditions (a), (b) (resp., (c), (d)) are disturbed. Moreover, one can prove
the following relations for the case r∗ = r:

• If T is a potential operator, then (a) ⇒ Assumption 4.1 (l = 2);
• (c) ⇒ Assumption 4.1 (l = 1).

However, if r∗ = r andK ⊂ Sr, then Assumption 4.1 (l = 2)⇒ (b) and Assumption 4.1
(l = 1)⇒ (d).

Note that Assumption 4.1 as well as the conditions (b), (d) do not prevent from
unboundedness or/and infinite-dimensionality of the solution set.
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Dunod, Gauthier-Villars, Paris, 1969.

[27] F.J. Luque, Asymptotic convergence analysis of the proximal point algorithm, SIAM J. Control
Optim., 22 (1984), pp. 277–293.

[28] B. Martinet, Régularisation d’inéquations variationelles par approximations successives, Rev.
Française Informat. Recherche Opérationnelle, 4 (1970), pp. 154–158.

[29] R. Mifflin, A quasi-second-order proximal bundle algorithm, Math. Programming, 73 (1996),
pp. 51–72.

[30] U. Mosco, Convergence of convex sets and of solutions of variational inequalities, Adv. Math.,
3 (1969), pp. 510–585.

[31] Z. Opial, Weak convergence of the successive approximaions for nonexpansive mappings in
Banach spaces, Bull. Amer. Math. Soc., 73 (1967), pp. 591–597.

[32] B.T. Polyak, Introduction to Optimization, Optimization Software, Inc., Publications Divi-
sion, New York, 1987.

[33] R.T. Rockafellar, On the maximality of sums of nonlinear monotone operators, Trans.
Amer. Math. Soc., 149 (1970), pp. 75–88.

[34] R.T. Rockafellar, Monotone operators and the proximal point algorithm, SIAM J. Control
Optim., 14 (1976), pp. 877–898.

[35] R.T. Rockafellar, Augmented Lagrange multiplier functions and applications of the proximal
point algorithm in convex programming, Math. Oper. Res., 1 (1976), pp. 97–116.

[36] S. Rotin, Konvergenz des Proximal-Punkt-Verfahrens für inkorrekt gestellte Optimalsteuer-
probleme mit partiellen Differentialgleichungen, Ph.D. thesis, University of Trier, Germany,
1999.
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Abstract. We study the energy decay of a Bernoulli–Euler beam which is subject to a pointwise
feedback force. We show that both uniform and nonuniform energy decay may occur. The uniform
or nonuniform decay depends on the boundary conditions. In the case of nonuniform decay in the
energy space we give explicit polynomial decay estimates valid for regular initial data. Our method
consists of deducing the decay estimates from observability inequalities for the associated undamped
problem via sharp trace regularity results.

Key words. pointwise stabilization, observability inequality, unbounded feedback, exponential
stability

AMS subject classifications. 35E15, 93D15, 93D20, 35B37, 35Q72
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1. Introduction. The aim of this paper is to study the pointwise feedback sta-
bilization of a Bernoulli–Euler beam. More precisely, we consider the following initial
and boundary value problems:

∂2u

∂t2
(x, t) +

∂4u

∂x4
(x, t) +

∂u

∂t
(ξ, t) δξ = 0, 0 < x < π, t > 0,(1.1)

u(0, t) = u(π, t) =
∂2u

∂x2
(0, t) =

∂2u

∂x2
(π, t) = 0, t > 0,(1.2)

u(x, 0) = u0(x),
∂u

∂t
(x, 0) = u1(x), 0 < x < π,(1.3)

and

∂2u

∂t2
(x, t) +

∂4u

∂x4
(x, t) +

∂u

∂t
(ξ, t) δξ = 0, 0 < x < π, t > 0,(1.4)

u(0, t) =
∂u

∂x
(π, t) =

∂2u

∂x2
(0, t) =

∂3u

∂x3
(π, t) = 0, t > 0,(1.5)

u(x, 0) = u0(x),
∂u

∂t
(x, 0) = u1(x), 0 < x < π.(1.6)

Here u denotes the transverse displacement of the beam, δξ is the Dirac mass concen-
trated in the point ξ ∈ (0, π), and we suppose that the length of the beam is equal
to π. The boundary condition (1.2) means that both ends of the beam are simply
supported, whereas (1.5) signifies that the end x = 0 is simply supported and at x = π
there is a shear hinge end. Simple calculation shows that (1.1) is equivalent to the
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equations modelling the vibrations of two Bernoulli–Euler beams with a dissipative
joint (see [4] for further discussion of the model).

Pointwise stabilization of Bernoulli–Euler beams, or, equivalently, stabilization of
serially connected beams with dissipative joints, has been widely studied in recent
literature (see [4], [5], [6], [7], [17], [23]). In [4], [5], [6], [20], and [23] the authors
give several examples showing that both uniform and nonuniform decay may occur.
Their method is based on a classical result of Huang and Prüss (see [14] and [22])
combined with elaborate eigenvalues, calculations, or with concepts in system theory.
In the cases when we have strong, but not exponential decay, as far as we know, no
estimates were given in the literature.

In the present paper we give a simple proof of the fact that for any ξ ∈ (0, π)
solutions of (1.1)–(1.3) are not uniformly stable in the energy space. For the solutions
of (1.4)–(1.6) we give a complete characterization of points ξ for which the solutions
are uniformly stable in the energy space. The main novelty of the paper consists in
the fact that, even in the cases when we have no uniform energy decay, we give explicit
decay estimates for regular initial data. These estimates depend on the diophantine
approximations properties of ξ. As far as we know, the results in previous literature
concerning beam equations with pointwise feedbacks are essentially devoted to expo-
nential stabilization. In the case of strong, but not exponential stability, no estimates
were given. In the case of bounded feedback controls, similar estimates were given by
Russell in [24]. Russell’s method cannot be extended to unbounded feedbacks and,
namely, to the case of pointwise stabilizers.

Even for the particular case of exponential decay our method is different from
those previously used in pointwise stabilization problems. Our approach, avoiding
frequency domain methods and spectrum calculations, is based on sharp trace regu-
larity results combined with observability inequalities valid for solutions of appropriate
conservative problems. As far as we know this is the first example in which observ-
ability estimates for the undamped problem are used to derive stability estimates in
the presence of an unbounded feedback. Due to the appropriate choice of the asso-
ciated undamped problem the basic observability estimates are simply obtained by
applying Ingham’s inequality. For bounded feedbacks a similar method was used in
[13] in order to study uniform stabilization of second-order equations. Since in our
case the feedback is unbounded we have to use new arguments, namely, some sharp
trace regularity results.

The plan of the paper is as follows. In section 2 we give precise statements of
the main results. Section 3 contains some new trace regularity results needed in the
following sections. In section 4 we prove exact pointwise observability results for the
associated undamped problem. The proof of the main result is given in section 5.

2. Statement of the main results. If u is a solution of (1.1)–(1.3) or of (1.4)–
(1.6), we define the energy of u at instant t by

E(u(t)) =
1

2

∫ π

0

(∣∣∣∣∂u∂t (x, t)

∣∣∣∣2 +

∣∣∣∣∂2u

∂x2
(x, t)

∣∣∣∣2
)

dx.(2.1)

Simple formal calculations show that a sufficiently smooth solution of (1.1)–(1.3)
or of (1.4)–(1.6) satisfies the energy estimate

E(u(0))− E(u(t)) =

∫ t

0

∣∣∣∣∂u∂t (ξ, s)

∣∣∣∣2 ds ∀ t ≥ 0.(2.2)
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In particular, (2.2) implies that

E(u(t)) ≤ E(u(0)) ∀t ≥ 0.

The estimate above suggests that the natural wellposedness spaces for (1.1)–(1.3)
(respectively, for (1.4)–(1.6)) are V1 × L2(0, π) (respectively, V2 × L2(0, π)), where

V1 = H2(0, π) ∩H1
0 (0, π), V2 =

{
φ ∈ H2(0, π)|φ(0) =

dφ

dx
(π) = 0

}
are Hilbert spaces for the inner product〈(

u1

v1

)
,

(
u2

v2

)〉
Vi×L2(0,π)

=

∫ π

0

[
d2u1

dx2

d2ū2

dx2
+ v1v̄2

]
, i = 1, 2.

Denote

Y =
[
H2(0, π) ∩H4(0, ξ) ∩H4(ξ, π)

]×H2(0, π),(2.3)

D(A1) =
{

(u, v) ∈ Y, u(0) = v(0) = u(π) = v(π) = d2u
dx2 (0) = d2u

dx2 (π) = 0,

d2u
dx2 (ξ+) = d2u

dx2 (ξ−), d3u
dx3 (ξ+)− d3u

dx3 (ξ−) = −v(ξ)
}
,

(2.4)

D(A2) =
{

(u, v) ∈ Y, u(0) = v(0) = du
dx (π) = dv

dx (π) = d2u
dx2 (0) = d3u

dx3 (π) = 0,

d2u
dx2 (ξ+) = d2u

dx2 (ξ−), d3u
dx3 (ξ+)− d3u

dx3 (ξ−) = −v(ξ)
}
.

.(2.5)

The corresponding operators A1 and A2 will be defined in section 5. If (u0, u1) ∈ Y ,
we denote

||(u0, u1)||2Y = ‖u0‖2H4(0,ξ) + ‖u0‖2H4(ξ,π) + ‖u1‖2H2(0,π).(2.6)

We first check that (1.1)–(1.3) (respectively, (1.4)–(1.6)) are well posed in the spaces
above. Then we study the behavior of E(u(t)) when t→∞. The wellposedness and
strong stability properties are summarized in the result below.

Proposition 2.1. The following assertions hold true.
1. Suppose that (u0, u1) ∈ D(A1) (respectively, that (u0, u1) ∈ D(A2)). Then
the problem (1.1)–(1.3) (respectively, (1.4)–(1.6)) admits a unique solution(

u
∂u
∂t

)
∈ C(0, T ;D(A1))

(
respectively,

(
u
∂u
∂t

)
∈ C(0, T ;D(A2))

)
.

2. If (u0, u1) ∈ V1 × L2(0, π) (respectively, (u0, u1) ∈ V2 × L2(0, π)), then the
problem (1.1)–(1.3) (respectively, (1.4)–(1.6)) admits a unique solution

u ∈ C(0, T ;V1) ∩ C1(0, T ;L2(0, π)) (respectively, u ∈ C(0, T ;V2)

∩C1(0, T ;L2(0, π))),

such that u(ξ, ·) ∈ H1(0, T ) and

‖u(ξ, ·)‖2H1(0,T ) ≤ C(‖u0‖2H2(0,π) + ‖u1‖2L2(0,π)),(2.7)

where the constant C > 0 depends only on ξ and T . Moreover, u satisfies the
energy estimate (2.2).
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3. The estimate limt→∞E(u(t)) = 0 holds true for any finite energy solution
of (1.1)–(1.3) (respectively, of (1.4)–(1.6)) if and only if ξ

π �∈ Q (respectively,
ξ
π �= 2p

2q−1 ∀p, q ∈ N).
Remark 1. The result above shows, in particular, that one cannot expect strong

stabilization ∀ξ ∈ (0, π).
The main results in this paper concern the precise asymptotic behavior of the

solutions of (1.1)–(1.3) and of (1.4)–(1.6). As we will see below, the systems (1.1)–
(1.3) and (1.4)–(1.6) are generally not uniformly stable in the natural energy spaces.
However, we prove that, in some cases of strong but not exponential stability, the
energy decay is uniform for all initial data lying in more regular spaces.

Denote by Q the set of all rational numbers. Let us also denote by S the set of
all numbers ρ ∈ (0, π) such that ρ

π �∈ Q and if [0, a1, . . . , an, . . .] is the expansion of
ρ
π as a continued fraction, then (an) is bounded. Let us notice that S is obviously
uncountable and, by classical results on diophantine approximation (cf. [3, p. 120]),
its Lebesgue measure is equal to zero. Roughly speaking, the set S contains the
irrationals which are “badly” approximable by rational numbers. In particular, by
the Euler–Lagrange theorem (cf. [18, p. 57]) S contains all ξ ∈ (0, π) such that ξ

π is
an irrational quadratic number (i.e., satisfying a second degree equation with rational
coefficients). According to a classical result (see, for instance, [26] and the references
therein), if ξ ∈ S, then there exists a constant Cξ > 0 such that

| sin (nξ)| ≥ Cξ

n
∀ n ≥ 1.(2.8)

Our main results can now be stated as follows.
Theorem 2.2.
1. For any ξ ∈ (0, π), the system described by (1.1)–(1.3) is not exponentially
stable in V1 × L2(0, π).

2. ∀ξ ∈ S and ∀t ≥ 0 we have

E(u(t)) ≤ Cξ

(t + 1)2
||(u0, u1)||2Y ∀ (u0, u1) ∈ D(A1),(2.9)

where Cξ > 0 is a constant depending only on ξ.
3. ∀ε > 0 there exists a set Bε ⊂ [(0, π) \πQ], the Lebesgue measure of Bε being
equal to π, such that ∀ξ ∈ Bε and ∀t ≥ 0 we have

E(u(t)) ≤ Cξ,ε

(t + 1)
2

1+ε

||(u0, u1)||2Y ∀ (u0, u1) ∈ D(A1),(2.10)

where Cξ,ε > 0 is a constant depending only on ξ and ε.
Theorem 2.3.
1. The system described by (1.4)–(1.6) is exponentially stable in V2 ×L2(0, π) if
and only if ξ

π is a rational number with coprime factorization

ξ

π
=

p

q
, where p is odd.(2.11)

2. ∀ξ ∈ S and ∀t ≥ 0 we have

E(u(t)) ≤ Cξ

(t + 1)2
||(u0, u1)||2Y ∀ (u0, u1) ∈ D(A2),(2.12)

where Cξ > 0 is a constant depending only on ξ.
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3. ∀ε > 0 there exists a set Bε ⊂ [(0, π) \πQ], the Lebesgue measure of Bε being
equal to π, such that ∀ξ ∈ Bε and ∀t ≥ 0 we have

E(u(t)) ≤ Cξ,ε

(t + 1)
2

1+ε

||(u0, u1)||2Y ∀ (u0, u1) ∈ D(A2),(2.13)

where Cξ,ε > 0 is a constant depending only on ξ and ε.
Remark 2. In the case of a string with pointwise stabilizer, the explicit eigenvalue

calculation in [27] suggests that one cannot expect polynomial decay estimates like
(2.10) for any ξ satisfying the assumption in the third assertion of Proposition 2.1.
By analogy with the result in [27] we conjecture that ∀ε > 0 there exists ξ satisfying
the assumption in the third assertion of Proposition 2.1 and the sequences (tn) (of
real numbers), and (un) (of finite energy solutions), with tn →∞, such that

lim
n→∞ tεn

E(un(tn))

‖(un(0), ∂un∂t (0))‖2Y
=∞.

3. Some regularity results. Consider the initial and boundary value problems

∂2v

∂t2
(x, t) +

∂4v

∂x4
(x, t) = k(t)δξ, 0 < x < π, t > 0,(3.1)

v(x, 0) = 0,
∂v

∂t
(x, 0) = 0, 0 < x < π,(3.2)

and either

v(0, t) = v(π, t) =
∂2v

∂x2
(0, t) =

∂2v

∂x2
(π, t) = 0, t > 0,(3.3)

or

v(0, t) =
∂v

∂x
(π, t) =

∂2v

∂x2
(0, t) =

∂3v

∂x3
(π, t) = 0, t > 0.(3.4)

The equations above are models for the vibrations of an undamped Bernoulli–Euler
beam, in the presence of a pointwise force. The main result of this section gives
regularity properties of the solutions of (3.1)–(3.3) and of (3.1),(3.2), and (3.4). These
regularity results are sharp (according to Remark 4 below).

Proposition 3.1. Suppose that k ∈ L2(0, T ). Then the problem (3.1)–(3.3)
(respectively, (3.1),(3.2),(3.4)) admits a unique solution having the regularity

v ∈ C(0, T ;V1) ∩ C1(0, T ;L2(0, π)) (respectively,(3.5)

v ∈ C(0, T ;V2) ∩ C1(0, T ;L2(0, π))).(3.6)

Moreover, v(ξ, ·) ∈ H1(0, T ) and there exists a constant C > 0, depending only on T ,
such that

‖v(ξ, ·)‖H1(0,T ) ≤ C‖k‖L2(0,T ) ∀ k ∈ L2(0, T ).(3.7)

Remark 3. We notice that the interior regularity (3.5) (respectively, (3.6)) does
not follow from the Sobolev regularity of the right-hand side of (3.1) or from the results
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in [25]. Moreover, estimate (3.7) is not a consequence of the interior regularity (3.5)
(respectively, (3.6)).

In order to prove Proposition 3.1 we first study the case of free vibrations of an
undamped beam, i.e., we consider the initial and boundary value problem

∂2φ

∂t2
(x, t) +

∂4φ

∂x4
(x, t) = 0, 0 < x < π, t > 0,(3.8)

φ(0, t) = φ(π, t) =
∂2φ

∂x2
(0, t) =

∂2φ

∂x2
(π, t) = 0, t > 0,(3.9)

φ(x, 0) = u0(x),
∂φ

∂t
(x, 0) = u1(x), 0 < x < π,(3.10)

and the problem formed by (3.8), (3.10), and the boundary conditions

φ(0, t) =
∂φ

∂x
(π, t) =

∂2φ

∂x2
(0, t) =

∂3φ

∂x3
(π, t) = 0, t > 0.(3.11)

The following result, besides showing that the problems above are well posed in the
natural energy spaces, gives a sharp inequality on the trace of φ at the point ξ.

Lemma 3.2. Suppose that (u0, u1) ∈ V1 × L2(0, π) (respectively, (u0, u1) ∈ V2 ×
L2(0, π)). Then the initial and boundary value problem (3.8)–(3.10) (respectively,
(3.8),(3.10), and (3.11)) admits a unique solution

φ ∈ C(0, T ;V1) ∩ C1(0, T ;L2(0, π)),(3.12)

respectively,

φ ∈ C(0, T ;V2) ∩ C1(0, T ; ;L2(0, π)),(3.13)

satisfying

φ(ξ, ·) ∈ H1(0, T ).

Moreover, there exists a constant C > 0, depending only on T , such that

‖φ(ξ, ·)‖2H1(0,T ) ≤ C(‖u0‖2H2(0,π) + ‖u1‖2L2(0,π)).(3.14)

Proof. We first notice that problem (3.8)–(3.10) can be written as

∂

∂t

(
φ
∂φ

∂t

)
= A0

(
φ
∂φ

∂t

)
,

where

D(A0) =

{(
u
v

)
∈ (H4(0, π) ∩H1

0 (0, π)
)× (H2(0, π) ∩H1

0 (0, π)
)

∣∣∣∣d2u

dx2
(0) =

d2u

dx2
(π) = 0

}
,(3.15)
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and

A0 : D(A0)→ V1 × L2(0, π), A0

(
u
v

)
=

(
v

−d
4u

dx4

)
.(3.16)

One can easily check that A0 is skew-adjoint. So, by Stone’s theorem, it generates
a semigroup of isometries in V1 × L2(0, π). This implies that (3.8)–(3.10) admits a
unique solution φ satisfying (3.12).

In order to prove (3.14) we put

u0(x) =

∞∑
n=1

an sin (nx), u1(x) =

∞∑
n=1

n2bn sin (nx),(3.17)

with
∑∞

n=1 n
4(a2

n + b2n) <∞. In this case the solution of (3.8)–(3.10) is given by

φ(x, t) =
∑
n≥1

[an cos (n2t) sin (nx) + bn sin (n2t) sin (nx)],(3.18)

which implies that

φ(ξ, t) =

∞∑
n=1

[
an cos (n2t) sin (nξ) + bn sin (n2t) sin (nξ)

]
.(3.19)

If we consider the right-hand side of (3.19) as a Fourier series in t (see Theorem 4.1
from [10] for details) we obtain the existence of a constant C depending on T such
that

‖φ(ξ, ·)‖2H1(0,T ) ≤ C

∞∑
n=1

n4(a2
n + b2n),(3.20)

which obviously implies (3.14).
The problem (3.8), (3.10), (3.11) can be treated in a completely similar manner.

It suffices to replace formulas (3.17) and (3.18) by the relations

u0(x) =

∞∑
n=0

an sin

(
2n + 1

2
x

)
, u1(x) =

∞∑
n=0

(2n + 1)2

4
bn sin

(
2n + 1

2
x

)
,

φ(x, t) =
∞∑
n=0

[
an cos

(
(2n + 1)2

4
t

)
sin

(
2n + 1

2
x

)

+ bn sin

(
(2n + 1)2

4
t

)
sin

(
2n + 1

2
x

)]
.(3.21)

The relations above clearly imply (3.14).
In order to prove Proposition 3.1 we need the following technical result.
Lemma 3.3. Let γ > 0, ξ ∈ (0, π) be two fixed real numbers and

Cγ = {w ∈ C | Re(w)Im(w) = −γ
2 }. Then the functions

f1(w) =
i

2w

{
− sin(w ξ) sin[w (ξ − π)]

sin(wπ)
+

sh(w ξ) sh[w (ξ − π)]

sh(wπ)

}
(3.22)
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and

f2(w) =
i

2w

{
− sin(w ξ) cos[w (ξ − π)]

cos(wπ)
+

sh(w ξ) ch[w (ξ − π)]

ch(wπ)

}
(3.23)

are bounded on Cγ , uniformly with respect to ξ ∈ [0, π].
Proof. Let us suppose that f1 is not bounded on Cγ . In this case there exists a

sequence (wn) ⊂ Cγ such that

lim
n→+∞ |f1(wn)| = +∞.(3.24)

As f1 is analytical in the open set D = {w ∈ C | Re(w)Im(w) < 0} and Cγ ⊂ D,
relation (3.24) clearly implies that |wn| → +∞. Due to the definition of Cγ this can
happen in two situations :

|Re(wn)| → +∞, |Im(wn)| = γ

2 |Re(wn)| → 0,(3.25)

or

|Im(wn)| → +∞, |Re(wn)| = γ

2 |Im(wn)| → 0.(3.26)

Suppose that (3.25) holds true. In this case a simple calculation shows that

lim
n→+∞

∣∣∣∣sh(wn ξ) sh[wn (ξ − π)]

sh(wnπ)

∣∣∣∣ =
1

2
,(3.27)

and

lim sup
n→+∞

| sin(wn ξ) sin[wn (ξ − π)]| ≤ 1.(3.28)

Relations (3.24), (3.27), and (3.28) imply that

lim
n→+∞ |wn sin(wn π)| = 0.(3.29)

Since lim
n→+∞ |wn| = +∞, relation (3.29) yields

lim
n→+∞ | sin(wn π)| = 0.

It is easily checked that the relation above implies the existence of a subsequence of
(wn), denoted also by (wn), and of the sequences (αn) ⊂ N, (βn) ⊂ [0, 1[, satisfying

|Re(wn)| = αn + βn, lim
n→+∞βn = 0.(3.30)

We obviously have

|wn sin(wnπ)| =
∣∣∣∣ wn

Re(wn)

∣∣∣∣
∣∣∣∣∣∣
sin
(
βnπ − iπ γ

2Re(wn)

)
βnπ − iπ γ

2Re(wn)

∣∣∣∣∣∣
∣∣∣βnπRe(wn)− iπ

γ

2

∣∣∣ .(3.31)

On the other hand, (3.25) and (3.30) imply

lim
n→+∞

∣∣∣∣∣∣
sin
(
βnπ − iπ γ

2Re(wn)

)
βnπ − iπ γ

2Re(wn)

∣∣∣∣∣∣ = 1, lim
n→∞

∣∣∣∣ wn

Re(wn)

∣∣∣∣ = 1.(3.32)
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Moreover, we obviously have∣∣∣βnπRe(wn)− iπ
γ

2

∣∣∣ ≥ πγ

2
∀ n ≥ 1.(3.33)

Relations (3.31)–(3.33) contradict (3.29). It follows that (3.24) and (3.25) cannot
both be true. By a similar method we can show that (3.24) and (3.26) cannot both
hold true. This means that assumption (3.24) is false, i.e., that f1 is bounded on Cγ .
The proof that f2 is also bounded on Cγ can be done in a completely similar manner.
The bounds are uniform with respect to ξ since supw∈Cγ |fi(w)|, i = 1, 2 depends
continuously on ξ ∈ [0, π].

We can now give the proof of the main result of this section.
Proof of Proposition 3.1. We use the method of transposition. Let D(A0) be the

space defined in (3.15), and denote by D[(A0)]′ the dual space of D(A0) with respect
to the pivot space V1 × L2(0, π). It is well known that A0 can be extended to a
skew-adjoint operator (denoted also by A0),

A0 : V1 × L2(0, π)→ [D(A0)]′,

such that A0 generates a group of isometries in [D(A0)]′, denoted by S(t).
Moreover, we define the operator

B0 : R→ [D(A0)]′, B0r =

(
0
rδξ

)
∀r ∈ R.(3.34)

With the notation above the problem (3.1)–(3.3) can be written as a Cauchy
problem in [D(A0)]′ under the form

∂

∂t

(
v(t)
∂v
∂t (t)

)
= A0

(
v(t)
∂v
∂t (t)

)
+ B0k(t) ∀ t > 0,(3.35)

v(0) =
∂v

∂t
(0) = 0.(3.36)

After a simple calculation we get that the operator B∗
0 : D(A0)→ R is given by

B∗
0

(
u
v

)
= v(ξ) ∀

(
u
v

)
∈ D(A0).

This implies that

B∗
0S

∗(t)

(
u0

u1

)
=

∂φ

∂t
(ξ, t) ∀

(
u0

u1

)
∈ D(A0),(3.37)

with φ satisfying (3.8)–(3.10). From (3.14) and (3.37) we deduce that there exists a
constant C > 0 such that∫ T

0

∣∣∣∣B∗
0S

∗(t)

(
u0

u1

)∣∣∣∣2 dt ≤ C

∥∥∥∥u0

u1

∥∥∥∥2

V1×L2(0,π)

∀
(
u0

u1

)
∈ D(A0).(3.38)

According to Theorem 3.1 in [2, p. 173], inequality (3.38) implies that (3.35), (3.36)
admit a unique solution (

v
∂v
∂t

)
∈ C(0, T ;V1 × L2(0, π)),
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which obviously implies the conclusion (3.5). The proof that the interior regularity
property (3.6) holds true for all solutions of (3.1), (3.2), and (3.4) can be obtained in
a completely similar manner, so we skip it here.

We still have to prove the trace regularity property (3.7).
As (3.1) is time reversible, after extending k by zero for t ∈ R \ [0, T ], we can

solve (3.1)–(3.3) for t ∈ R. In this way we obtain a function, denoted also by v, such
that

v ∈ C(0, T ;V1) ∩ C1(0, T ;L2(0, π)), v(x, t) = 0, ∀ t ≤ 0,(3.39)

and v satisfies (3.1)–(3.3) ∀(x, t) ∈ [0, π]×R.
Let v̂(x, λ), where λ = γ + iη, γ > 0, and η ∈ R, be the Laplace (with respect to

time) transform of v. Since v satisfies (3.39), estimate (3.7) is equivalent to the fact
that the function t → e−γtv(ξ, t) belongs to H1(R) and that there exists a constant
M1 > 0 such that

‖e−γ·v(ξ, ·)‖2H1(−∞,∞) ≤M1‖k‖2L2(−∞,∞).

Equivalently, by the Parseval identity (see, for instance, [9, p. 212]), it suffices to prove
that the function

η → (γ + iη)v̂(ξ, γ + iη)

belongs to L2(Rη) for some γ > 0, and that there exists a constant M2 > 0 such that

‖(γ + iη)v̂(ξ, γ + iη)‖2
L2(Rη)

≤M2

∫ ∞

−∞
|k(γ + iη)|2dη.(3.40)

It can be easily checked that v̂ satisfies

λ2v̂(x, λ) +
∂4v̂

∂x4
(x, λ) = 0, x ∈ (0, ξ) ∪ (ξ, 1), Reλ > 0,(3.41)

v̂(0, λ) = v̂(π, λ) =
∂2v̂

∂x2
(0, λ) =

∂2v̂

∂x2
(π, λ) = 0, Reλ > 0,(3.42)

[v̂]ξ =

[
∂v̂

∂x

]
ξ

=

[
∂2v̂

∂x2

]
ξ

= 0,(3.43)

[
∂3v̂

∂x3

]
ξ

= k̂(λ), Reλ > 0,(3.44)

where we denote by [f ]ξ the jump of the function f at the point ξ. As the equations
above are linear, we deduce that, for every λ ∈ C, Reλ > 0, we can find H1(λ) ∈ C,
such that

λ v̂(ξ, λ) = H1(λ)k̂(λ) ∀Reλ > 0.(3.45)

In order to compute H1(λ) we notice that the solutions of (3.41) have the form

v̂(x, λ) =

{
Aeiwx + Be−iwx + Cewx + De−wx, x ∈ (0, ξ),

A1e
iw(x−π) + B1e

−iw(x−π) + C1e
w(x−π) + D1e

−w(x−π), x ∈ (ξ, π),
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where A,B,C,D,A1, B1, C1, and D1 are constants and w is the unique complex num-
ber satisfying the conditions

λ = iw2, w = reiθ, with r > 0 and θ ∈
[
−π

2
, 0
]
.(3.46)

Using (3.42), we obtain

v̂(x, λ) =

{
2iA sin(wx) + 2Csh(wx), x ∈ (0, ξ),

2iA1 sin[w(x− π)] + 2C1sh[w(x− π)], x ∈ (ξ, π).

Consequently, the solutions of (3.41)–(3.43) have the following form:

v̂(x, λ) =



2iA sin(wx)− 2iA
sin(wπ)sh[w(ξ − π)]

sh(wπ) sin[w(ξ − π)]
sh(wx), x ∈ (0, ξ),

2iA
sin(wξ)

sin[w(ξ − π)]
sin[w(x− π)]

−2iA
sin(wπ)sh(wξ)

sh(wπ) sin[w(ξ − π)]
sh[w(x− π)], x ∈ (ξ, π).

(3.47)

Then, using (3.44) and (3.45), we obtain

H1(λ) = f1(w),(3.48)

where f1 is defined by (3.22). By (3.46), the relation Reλ = γ > 0 implies that
w ∈ Cγ , with Cγ defined in Lemma 3.3 . We can now apply Lemma 3.3 to obtain the
existence of a constant M2 > 0 such that (3.40) holds true. This ends the proof of
the fact that (3.7) holds for all solutions of (3.1)–(3.3).

If v is the solution of (3.1), (3.2), and (3.4), similar calculations (see also [23])
imply that

λ v̂(ξ, λ) = H2(λ)k̂(λ) ∀Reλ > 0,

where H2(iw2) = f2(w) and f2 is defined in (3.23). Again applying Lemma 3.3 and
the method above, we can easily conclude that (3.7) holds for all solutions of (3.1),
(3.2), and (3.4).

Remark 4. It can be easily checked that ∀ε > 0, λεHi(λ), i = 1, 2, is not bounded
on Cγ . This means that estimate (3.7) is no longer valid if we replace the H1 norm
by the H1+ε norm in the left-hand side of (3.7). This means that (3.7) is a sharp
estimate.

Remark 5. In [23] it is shown that the system (3.1), (3.2), (3.4) can be written
as

ż + Az = Bk

in an appropriate Hilbert space, with the input k and the output y = B∗k. The
results we proved in this section say that this system is well posed, in the sense used
in [23]. According to classical results (see again [23] and the references therein), this
fact is equivalent to the boundedness of H2 on some half plane Reλ ≥ γ > 0. This
boundedness was proved in the appendix of [23]. Since we didn’t use H2 for the proof
of the interior regularity, we a priori needed only the boundedness of H2 on the line
Reλ = γ > 0. Due to this fact, our approach can be easily adapted for other systems
such as strings or Kirchhoff beams.
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4. Some observability inequalities. In this section we gather, for easy refer-
ence, some observability inequalities concerning the trace at the point x = ξ of the
solutions of (3.8)–(3.10) and of (3.8), (3.9), (3.11). The results in this section are sim-
ilar to those obtained in [26] in a slightly different situation. Our first result concerns
problem (3.8)–(3.10), and it can be stated as follows.

Proposition 4.1. Let T > 0 be fixed and S ⊂ [0, π] be the set introduced in
section 2. Then we have the following.

1. ∀ξ ∈ S the solution φ of (3.8)–(3.10) satisfies∫ T

0

∣∣∣∣∂φ∂t (ξ, t)

∣∣∣∣2 dt ≥ Cξ

(
‖u0‖2H1(0,π) + ‖u1‖2H−1(0,π)

)

∀(u0, u1) ∈ V1 × L2(0, π),(4.1)

where Cξ > 0 is a constant depending only on ξ.
2. ∀ε > 0 and for almost all ξ ∈ (0, π) the solution φ of (3.8)–(3.10) satisfies∫ T

0

∣∣∣∣∂φ∂t (ξ, t)

∣∣∣∣2 dt ≥ Cξ,ε

(
‖u0‖2H1−ε(0,π) + ‖u1‖2H−1−ε(0,π)

)

∀(u0, u1) ∈ V1 × L2(0, π),(4.2)

where Cξ,ε > 0 is a constant depending only on ξ and ε.
3. The result in assertion 1 is sharp in the sense that, ∀ξ ∈ (0, π), there exists
a sequence (u0

m, u1
m) ⊂ V1 × L2(0, π) such that the corresponding sequence of

solutions (φm) of (3.8), (3.9) with initial data (u0
m, u1

m) satisfies ∀ε > 0

lim
m→∞

∫ T
0

∣∣∣∂φm∂t (ξ, t)
∣∣∣2 dt

‖u0
m‖2H1+ε(0,π) + ‖u1

m‖2H−1+ε(0,π)

= 0.(4.3)

Proof. Notice first that, thanks to Lemma 3.2, the left-hand side of (4.1) is well
defined and

∂φ

∂t
(ξ, t) =

∞∑
n=1

[−n2an sin (n2t) sin (nξ) + n2bn cos (n2t) sin (nξ)
]

(4.4)

in L2(0, T ), provided that u0, u1 are given by (3.17). Moreover, from (4.4) and
the Ball–Slemrod generalization of Ingham’s inequality (cf. [1], [11]) we obtain that,
∀T > 0, there exists a constant CT > 0 such that∫ T

0

∣∣∣∣∂φ∂t (ξ, t)

∣∣∣∣2 dt ≥ CT

∞∑
n=1

[
n4a2

n sin2 (nξ) + n4b2n sin2 (nξ)
]
.(4.5)

Suppose now that ξ belongs to the set S defined in section 2. Then relations (4.5)
and (2.8) imply the existence of a constant KT,ξ > 0 such that∫ T

0

∣∣∣∣∂φ∂t (ξ, t)

∣∣∣∣2 dt ≥ KT,ξ

∞∑
n=1

[
n2a2

n + n2b2n
] ∀ ξ ∈ S,

which is exactly (4.1).
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In order to prove (4.2) we use a result in [3, p. 120] (see also Proposition 2.4 in
[26]) to get that ∀ε > 0 there exists a set Bε ⊂ (0, π) having the Lebesgue measure
equal to π and a constant C > 0, such that for any ρ ∈ Bε

| sin (nρ)| ≥ C

n1+ε
∀ n ≥ 1.(4.6)

Let us notice that by Roth’s theorem Bε contains all numbers in (0, π) having the
property that ξ

π is an algebraic irrational (see, for instance, [3, p. 104]). Inequalities
(4.5) and (4.6) obviously imply (4.2).

We still have to show the existence of a sequence satisfying (4.3). By using
continuous fractions (see again [26] and the references therein for details) we can
construct a sequence (qm) ⊂ N such that qm →∞ and

| sin (qmξ)| ≤ π

qm
∀ m ≥ 1.(4.7)

Using (4.4) and (4.7), a simple calculation shows that the sequence (φ0
m, φ1

m) =
(sin (qmπx), 0) satisfies (4.3).

The observability results for (3.8), (3.9), and (3.11) are given in the proposition
below.

Proposition 4.2. Let T > 0 be fixed and S be the set introduced in section 2.
Then the following assertions hold true.

1. The existence of a constant Cξ > 0, such that the solutions φ of (3.8), (3.10),
and (3.11) satisfy∫ T

0

∣∣∣∣∂φ∂t (ξ, t)

∣∣∣∣2 dt ≥ Cξ

(
‖u0‖2H2(0,π) + ‖u1‖2L2(0,π)

)
∀(u0, u1) ∈ V1 × L2(0, π),(4.8)

is equivalent to the fact that ξ satisfies (2.11).
2. ∀ξ ∈ S the solution φ of (3.8), (3.10), and (3.11) satisfies (4.1).
3. ∀ε > 0 and for almost all ξ ∈ (0, π) the solution φ of (3.8), (3.10), and (3.11)
satisfies (4.2).

Proof. From (3.21) and the Ball–Slemrod generalization of Ingham’s inequality
we obtain the existence of a constant CT > 0 such that the solution φ of (3.8), (3.10),
and (3.11) satisfies∫ T

0

∣∣∣∣∂φ∂t (ξ, t)

∣∣∣∣2 dt ≥ CT

∑
n≥0

(2n + 1)4

16
(a2

n + b2n)

∣∣∣∣sin(2n + 1

2
ξ

)∣∣∣∣2 .(4.9)

If ξ satisfies (2.11), then, by Lemma 2.9 in [23], there exists a constant kξ > 0 such
that ∣∣∣∣sin [ (2n + 1)ξ

2

]∣∣∣∣ ≥ kξ ∀ n ≥ 0.(4.10)

Inequalities (4.9) and (4.10) imply that (4.8) holds true ∀ξ satisfying (2.11).
On the other hand, if ξ does not satisfy (2.11), we can again apply Lemma 2.9

from [23] to get the existence of a sequence (pm) ⊂ N, limm→∞ pm =∞ such that

lim
m→∞ sin

[
(2pm + 1)ξ

2

]
= 0.(4.11)
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If we denote by φm the solution of (3.8), (3.11) with initial data

φm(x, 0) = sin

[
(2pm + 1)x

2

]
,
∂φm
∂t

(x, 0) = 0 ∀ x ∈ (0, π),

a simple calculation using (4.11) implies that

lim
m→∞

∫ T
0

∣∣∣∂φm∂t (ξ, t)
∣∣∣2 dt

‖φm(0)‖2H2(0,π) + ‖∂φm∂t (0)‖2L2(0,π)

= 0,

so (4.8) is false for any ξ not satisfying (2.11). Assertions 2 and 3 of the proposi-
tion can be proved by simply adapting the proof of Proposition 4.1, so we skip the
details.

5. Proof of the main results.
Proof of Proposition 2.1. The existence and uniqueness of finite energy solutions

of (1.1)–(1.3) (respectively, the problem (1.4)–(1.6)) can be obtained by standard
semigroup methods. However, for the sake of completeness we sketch the proof here.

Consider the unbounded linear operator

A1 : D(A1)→ V1 × L2(0, π), A1

(
u
v

)
=

(
v

−d4u
dx4 − v(ξ)δξ

)
,

where the derivatives with respect to x are calculated in D′(0, π), and D(A1) is defined
in (2.4). If (u, v) ∈ D(A1), we denote by h1 (respectively, by h2) the function in
L2(0, ξ) (respectively, in L2(ξ, π)) defined by

h1(x) =
d4u

dx4
, calculated in D′(0, ξ),

h2(x) =
d4u

dx4
, calculated in D′(ξ, π).

Moreover, we define {d4u
dx4 } ∈ L2(0, π) by{

d4u

dx4

}
=

{
h1(x) if x ∈ (0, ξ),
h2(x) if x ∈ (ξ, π).

A simple calculation shows that

A1

(
u
v

)
=

(
v

−
{
d4u
dx4

}) ∀
(
u
v

)
∈ D(A1).(5.1)

We remark that D(A1) ⊂ Y and that the graph norm in D(A1) is equivalent to ‖ · ‖Y .
A simple calculation gives〈

A1

(
u
v

)
,

(
u
v

)〉
V1×L2(0,π)

= −|v(ξ)|2 ∀
(
u
v

)
∈ D(A1),

so A1 is a dissipative operator. Moreover, it can be easily checked that A1 is onto, so,
according to Theorems 4.3 and 4.6 from [21, p. 14–15], we obtain that A1 generates
a continuous semigroup of linear contractions acting on V1 × L2(0, π).
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This implies the existence and uniqueness of solutions u of (1.1)–(1.3) satisfying(
u
∂u
∂t

)
∈ C(0, T ;D(A1)), if (u0, u1) ∈ D(A1),

and

u ∈ C(0, T ;V1) ∩ C1(0, T ;L2(0, π)), if (u0, u1) ∈ V1 × L2(0, π).

In order to prove estimate (2.2) and the trace regularity property (2.7), it suffices to
remark that, through simple integration by parts, they hold true for regular solutions
(i.e., ( u

∂u
∂t

) ∈ C(0, T ;D(A1)). We can then use the density of D(A1) in V1 × L2(0, π).

The similar properties for problem (1.4)–(1.6) can be proved by simply replacing A1

by the operator

A2 : D(A2)→ V2 × L2(0, π), A2

(
u
v

)
=

(
v

−d4u
dx4 − v(ξ)δξ

)
,

where D(A2) is defined in (2.5).
The strong stability estimates at the end of Proposition 2.1 can be obtained by

a simple application of LaSalle’s invariance principle. However, for the sake of com-
pleteness we give here the proof. Let S(t) be the semigroup of contractions generated
by the operator A1, already introduced. In order to prove the strong stability of the
solutions of (1.1)–(1.3), it clearly suffices to show that

lim
t→∞S(t)

(
u0

u1

)
= 0 ∀

(
u0

u1

)
in D(A1).

We will show that this holds true provided that

ξ

π
�∈ Q.(5.2)

Since the imbedding D(A1) ⊂ V1 × L2(0, π) is compact, the set

orb

(
u0

u1

)
= ∪t≥0S(t)

(
u0

u1

)
is precompact in V1 × L2(0, π) for any (u

0

u1 ) in D(A1). In this case the ω-limit set of

(u
0

u1 ) defined by

ω

(
u0

u1

)
=

{
U ∈ V1 × L2(0, π),∃(tn), tn →∞, S(tn)

(
u0

u1

)
→ U, n→∞

}
is nonvoid for any (u

0

u1 ) in D(A1). On the other hand, by LaSalle’s invariance principle
(we refer to [8], [12, p. 18] for more details),

if

(
φ0

φ1

)
∈ ω

(
u0

u1

)
,

then ∥∥∥∥(φ0

φ1

)∥∥∥∥
V1×L2(0,π)

= lim
tn→+∞

∥∥∥∥S(tn)

(
u0

u1

)∥∥∥∥
V1×L2(0,π)

= lim
n→+∞

∥∥∥∥S(t + tn)

(
u0

u1

)∥∥∥∥
V1×L2(0,π)

=

∥∥∥∥S(t)

(
φ0

φ1

)∥∥∥∥
V1×L2(0,π)

.
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Thus,

∥∥∥∥( φ(., t)
∂φ
∂t (·, t)

)∥∥∥∥
V1×L2(0,π)

=

∥∥∥∥(φ0

φ1

)∥∥∥∥
V1×L2(0,π)

for any t ≥ 0.

The relation above and (2.2) imply that φ satisfies the system (1.1)–(1.2) together
with

∂φ

∂t
(ξ, t) = 0 ∀ t ∈ (0, T ).(5.3)

In particular, this implies that φ is the solution of (3.8)–(3.9) with φ(x, 0) = φ0(x),
∂φ
∂t (x, 0) = φ1(x). If we put

φ0(x) =
∑
n≥1

cn sin(nx), φ1(x) =
∑
n≥1

n2dn sin(nx),

with (cn), (dn) ⊂ l2(R), we have

∂φ

∂t
(ξ, t) =

∑
n≥1

n2
{
− cn sin(n2t) + dn cos(n2t)

}
sin(nξ).

The relation above, (5.2), and Ingham’s inequality imply that cn = dn = 0 ∀n ∈ N

so φ0 ≡ φ1 ≡ 0. We can now conclude that condition (5.2) is sufficient for the strong
stability of the solutions of (1.1)–(1.3).

If we suppose that ξ doesn’t satisfy (5.2), i.e., that ξ
π = p

q , with p, q ∈ Z, one can

easily check that the solution u of (1.1)–(1.3) with initial data u0 = sin (qx), u1 = 0
satisfies E(u(t)) = E(u(0)) ∀t ≥ 0, so (5.2) is also necessary for the strong stability
of the solutions of (1.1)–(1.3).

In a completely similar manner we can tackle the strong stability for
(1.4)–(1.6).

Let u ∈ C(0, T ;V1)∩C1(0, T ;L2(0, π)) be the solution of (1.1)–(1.3). Then u can
be written as

u = φ + ψ,(5.4)

where φ is the solution of (3.8)–(3.10) and ψ satisfies

∂2ψ

∂t2
+

∂4ψ

∂x4
+

∂u

∂t
(ξ, t) δξ = 0 in (0, π)× (0, T ),(5.5)

ψ(0, t) = ψ(π, t) =
∂2ψ

∂x2
(0, t) =

∂2ψ

∂x2
(π, t) = 0, t ∈ (0, T ),(5.6)

ψ(x, 0) =
∂ψ

∂t
(x, 0) = 0, x ∈ (0, π).(5.7)
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In the same way the solution of (1.4)–(1.6) can be decomposed as in (5.4), where φ is
the solution of (3.8), (3.10), (3.11), and ψ satisfies (5.5), (5.7) together with

ψ(0, t) =
∂2ψ

∂x2
(0, t) =

∂ψ

∂x
(π, t) =

∂3ψ

∂x3
(π, t) = 0, t ∈ (0, T ).(5.8)

The main ingredient of the proofs of Theorems 2.2 and 2.3 is the following result.
Lemma 5.1. Suppose that (u0, u1) ∈ V1 × L2(0, π) (respectively, (u0, u1) ∈ V2 ×

L2(0, π)). Then the solutions u of (1.1)–(1.3) (respectively, of (1.4)–(1.6)) and the
solution φ of (3.8)–(3.10) (respectively, of (3.8), (3.10), (3.11)) satisfy

C1

∫ T

0

∣∣∣∣∂φ∂t (ξ, t)

∣∣∣∣2 dt ≤ ∫ T

0

∣∣∣∣∂u∂t (ξ, t)

∣∣∣∣2 dt ≤ 4

∫ T

0

∣∣∣∣∂φ∂t (ξ, t)

∣∣∣∣2 dt,(5.9)

where C1 > 0 is a constant independent of (u0, u1).
Remark 6. By Proposition 2.1, ∂u

∂t (ξ, ·) ∈ L2(0, T ). So, (5.5) makes sense. The

result above shows that the L2 norm of ∂u∂t (ξ, ·) is equivalent to the L2 norm of ∂φ∂t (ξ, ·).
(Notice that ∂φ

∂t (ξ, ·) ∈ L2(0, T ) by Lemma 3.2.)
Proof of Lemma 5.1. We prove (5.9) only for u satisfying (1.1)–(1.3) and the φ

solution of (3.8)–(3.10). As for u satisfying (1.4)–(1.6) and the φ solution of (3.8),
(3.10), (3.11), the proof is a completely similar one.

Relation (5.4) implies that∫ T

0

∣∣∣∣∂φ∂t (ξ, t)

∣∣∣∣2 dt ≤ 2

{∫ T

0

∣∣∣∣∂u∂t (ξ, t)

∣∣∣∣2 dt +

∫ T

0

∣∣∣∣∂ψ∂t (ξ, t)

∣∣∣∣2 dt
}
.

The estimate above combined with inequality (3.7) in Proposition 3.1 implies the
existence of a constant C1 > 0, independent of (u0, u1), such that

C1

∫ T

0

∣∣∣∣∂φ∂t (ξ, t)

∣∣∣∣2 dt ≤ ∫ T

0

∣∣∣∣∂u∂t (ξ, t)

∣∣∣∣2 dt.(5.10)

On the other hand, according to Remark 6 and to relation (5.4), we have that
∂φ
∂t (ξ, ·) ∈ L2(0, T ). This means that (5.5) can be rewritten as

∂2ψ

∂t2
(x, t) +

∂4ψ

∂x4
(x, t) +

∂ψ

∂t
(ξ, t)δξ = −∂φ

∂t
(ξ, t) δξ in (0, π)× (0, T ).(5.11)

If we formally multiply (5.11) by ∂ψ̄
∂t (this can be done rigorously by considering a

regularizing sequence), we obtain∫ T

0

∣∣∣∣∂ψ∂t (ξ, t)

∣∣∣∣2 dt ≤
∣∣∣∣∣
∫ T

0

∂φ

∂t
(ξ, t)

∂ψ̄

∂t
(ξ, t)dt

∣∣∣∣∣ ,
which obviously yields ∥∥∥∥∂ψ∂t (ξ, t)

∥∥∥∥2

L2(0,T )

≤
∥∥∥∥∂φ∂t (ξ, t)

∥∥∥∥2

L2(0,T )

.

Relation (5.4) and the inequality above imply that∥∥∥∥∂u∂t (ξ, t)

∥∥∥∥2

L2(0,T )

≤ 4

∥∥∥∥∂φ∂t (ξ, t)

∥∥∥∥2

L2(0,T )

.(5.12)

Inequalities (5.10) and (5.12) obviously yield the conclusion (5.9).
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Before giving the proof of the main results we need one more technical lemma.
This lemma extends a result in [16].

Lemma 5.2. Let (Ek) be a sequence of positive real numbers satisfying

Ek+1 ≤ Ek − CE2+α
k+1 ∀k ≥ 0,(5.13)

where C > 0 and α > −1 are constants. Then there exists a positive constant M
(depending on α and C) such that

Ek ≤ M

(k + 1)
1

(1+α)

∀k ≥ 0.(5.14)

Proof. Consider the sequence

Fk =
M

(k + 1)
1

1+α

,

where M > 0 is to be determined. After a simple calculation we obtain that

1

M
lim
k→∞

[
(Fk −Fk+1)k(k + 2)

1
1+α

]
=

1

1 + α
,(5.15)

so there exists k0 > 0 such that

Fk −Fk+1 ≤ 2M

(1 + α)k(k + 2)
1

1+α

∀k ≥ k0.

The relation above implies that

Fk −Fk+1 ≤ 4

(1 + α)M1+α
F2+α
k+1 ∀k ≥ k1 = max {k0, 2}.(5.16)

If we suppose now that

4

(1 + α)M1+α
< C and

M

(k1 + 1)
1

1+α

≥ Ek1 ,(5.17)

from (5.16) we get

Fk −Fk+1 ≤ CF2+α
k+1 ∀k ≥ k1.(5.18)

It obviously suffices to show that

Ek ≤ Fk ∀k ≥ k1.(5.19)

We shall do that by induction over k.
For k = k1, (5.19) follows directly from (5.17). If we suppose that (5.19) holds

true for k ≤ m, by combining (5.13) and (5.18) we obtain

Em+1 + CE2+α
m+1 ≤ Fm+1 + CF2+α

m+1,

which obviously implies that Em+1 ≤ Fm+1.
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We can now prove the main results.
Proof of Theorem 2.2. 1. Suppose that there exists ξ ∈ (0, π) such that solutions

of (1.1)–(1.3) satisfy the estimate

E(u(t)) ≤Me−ωtE(u(0)) ∀ t ≥ 0,(5.20)

where M,ω > 0 are constants depending only on ξ. Relation (5.20) implies the
existence of a time T > 0 and of a constant C > 0 (depending on T ) such that

E(u(0))− E(u(T )) ≥ CE(u(0)) ∀ (u0, u1) ∈ V1 × L2(0, π).

The relation above combined with (2.2) yields∫ T

0

∣∣∣∣∂u∂t (ξ, s)

∣∣∣∣2 ds ≥ CE(u(0)) ∀ (u0, u1) ∈ V1 × L2(0, π),

which, by Lemma 5.1, implies that the solution φ of (3.8)–(3.10) satisfies∫ T

0

∣∣∣∣∂φ∂t (ξ, s)

∣∣∣∣2 ds ≥ C

4
E(u(0)) ∀ (u0, u1) ∈ V1 × L2(0, π).

The inequality above clearly contradicts assertion 3 in Proposition 4.1. So assumption
(5.20) is false. We end in this way the proof of the first assertion of Theorem 2.2.

We pass now to the proof of the second assertion of this theorem. Let ξ ∈ S. By
Proposition 4.1 and Lemma 5.1, the solution u of (1.1)–(1.3) satisfies the inequality∫ T

0

∣∣∣∣∂u∂t (ξ, t)

∣∣∣∣2 dt ≥ K1

(
‖u0‖2H1(0,π) + ‖u1‖2H−1(0,π)

)
∀(u0, u1) ∈ V1 × L2(0, π),

where K1 > 0 is a constant. The relation above and (2.2) imply that

‖{u(T ), u′(T )}‖2V1×L2(0,π) ≤ ‖{u0, u1}‖2V1×L2(0,π)

−K1‖{u0, u1}‖2H1(0,π)×H−1(0,π) ∀ (u0, u1) ∈ D(A1).(5.21)

By using a simple interpolation inequality (cf. [19, p. 49]), the fact that the func-
tion t→ ‖{u(t), u′(t)}‖2V1×L2(0,π) is nonincreasing, and relation (5.21), we obtain the
existence of a constant K2 > 0 such that

‖{u(T ), u′(T )}‖2V1×L2(0,π) ≤ ‖{u0, u1}‖2V1×L2(0,π)

−K2

‖{u(T ), u′(T )}‖3V1×L2(0,π)

‖{u0, u1}‖Y .(5.22)

We follow now the method used in [24]. Estimate (5.22) remains valid in successive
intervals [kT, (k + 1)T ]. So, ∀k ≥ 0, we have

‖{u((k + 1)T ), u′((k + 1)T )}‖2V1×L2(0,π)

≤ ‖{u(kT ), u′(kT )}‖2V1×L2(0,π) −K2

‖{u((k + 1)T ), u′((k + 1)T )}‖3V1×L2(0,π)

‖{u(kT ), u′(kT )}‖Y .
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Since A1 generates a semigroup of contractions in D(A1) and the graph norm on
D(A1) is equivalent to ‖ · ‖Y , the relation above implies the existence of a constant
K3 > 0 such that

‖{u((k + 1)T ), u′((k + 1)T )}‖2V1×L2(0,π) ≤ ‖{u(kT ), u′(kT )}‖2V1×L2(0,π)

−K3

‖{u((k + 1)T ), u′((k + 1)T )}‖3V1×L2(0,π)

‖{u0, u1}‖Y ∀ (u0, u1) ∈ D(A1).(5.23)

If we adopt now the notation

Ek =
‖{u(kT ), u′(kT )}‖2V1×L2(0,π)

‖{u0, u1}‖2Y
,(5.24)

relation (5.23) gives

Ek+1 ≤ Ek −K3E
3
2

k+1 ∀k ≥ 0.(5.25)

By applying Lemma 5.2 for α = − 1
2 and using relation (5.25), we obtain the existence

of a constant M > 0 such that

‖{u(kT ), u′(kT )}‖2V1×L2(0,π) ≤
M‖{u0, u1}‖2Y

(k + 1)2
∀k ≥ 0.

The conclusion (2.9) follows now by simply using the fact that the function

t→ ‖{u(t), u′(t)}‖2V1×L2(0,π)

is nonincreasing.
Let us now suppose that ε > 0 and that ξ belongs to the set Bε, introduced in

section 4. From (2.2), (4.2), and Lemma 5.1, it follows that

‖{u(T ), u′(T )}‖2V1×L2(0,π) ≤ ‖{u0, u1}‖2V1×L2(0,π)

−C‖{u0, u1}‖2H1−ε(0,π)×H−1−ε(0,π).

Using now the same method as above and the interpolation theorem from [19, p. 81],
we obtain that the sequence Ek, defined by (5.24), satisfies

Ek+1 ≤ Ek −KE
3+ε
2

k+1 ∀k ≥ 1.

The relation above and Lemma 5.2 (with α = ε−1
2 ) give

Ek ≤ M

(k + 1)
2

1+ε

∀k ≥ 1,

which obviously implies (2.10).
Proof of Theorem 2.3. As above, we use the fact that all finite energy solutions

of (1.4)–(1.6) are exponentially stable in V2 × L2(0, π) if and only if there exist the
positive constants T and KT such that

E(u(0))− E(u(T )) ≥ KTE(u(0)) ∀ (u0, u1) ∈ V2 × L2(0, π).(5.26)
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Using now (2.2), (5.26), and Lemma 5.1, we obtain the existence of a constant Cξ > 0
such that all solutions φ of (3.8), (3.9), and (3.11) satisfy (4.8). By Proposition 4.2,
inequality (4.8) holds true if and only if ξ satisfies (2.11). Consequently, we obtain
that the finite energy solutions of (1.4)–(1.6) are exponentially stable in V2×L2(0, π)
if and only if ξ satisfies (2.11).

The proof of estimates (2.12), (2.13) can be done by using obvious adaptations
of the proof of estimates (2.9), (2.10), so it is omitted.
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1. Introduction. Let T be a positive number, Ω be a bounded open subset in
R

N (N ≥ 2) with a Lipschitz boundary Γ, and q, σ, and σ̄ be numbers satisfying

q > N/2 + 1 and σ > σ̄ > N + 1.

Consider the parabolic system

∂y

∂t
+Ay + f(x, t, y) = 0 in Q,

∂y

∂nA
+ g(s, t, y, v) = 0 on Σ, y(0) = y0 in Ω(1.1)

(where Q := Ω×]0, T [, Σ := Γ×]0, T [, T > 0, v is a boundary control, y0 ∈ C(Ω), A
is a second order elliptic operator) and the following control and state constraints:

v ∈ Ṽad := {v ∈ Lσ(Σ) | v(s, t) ∈ V (s, t) for almost every (a.e.) (s, t) ∈ Σ} ,

Φ(y) ∈ C,(1.2)

∫
Σ

Ψi(s, t, y(s, t), v(s, t)) dsdt = 0, 1 ≤ i ≤ m0,

∫
Σ

Ψi(s, t, y(s, t), v(s, t)) dsdt ≤ 0, m0 + 1 ≤ i ≤ m.

(1.3)

(V is a measurable set-valued mapping from Σ with closed and nonempty values in
P(Rk), the set of all subsets of R

k, Ψ = (Ψ1, . . . ,Ψm), is a function with values in
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R
m, Φ is a continuous mapping from C(D) into C(D), C ⊂ C(D), D is a nonempty

compact subset of Q.) Let us consider the following class of optimal control problems:

(P) inf{J(y, v) | y ∈W (0, T ) ∩ C(Q), v ∈ Vad, (y, v) satisfies (1.1), (1.2), (1.3)},
where Vad is a subset of Ṽad (to be stated precisely later), and the cost functional is
defined by

J(y, v) =

∫
Q

F (x, t, y(x, t)) dx dt+

∫
Σ

G(s, t, y(s, t), v(s, t)) ds dt+

∫
Ω

L(x, y(x, T ))dx.

We are mainly interested in optimality conditions for such problems, in the form of
Pontryagin’s principles. The existence of optimal solutions for (P) is a priori supposed.

In the case where Vad ≡ Ṽad, and Ṽad is a bounded subset in L∞(Σ) (the case of
bounded controls), Pontryagin’s principles for (P) have been obtained in [3, 9, 16, 17,
11, 25, 26, 4]. In this case the Pontryagin’s principle is of the form

HΣ(ȳ, v̄, p̄, ν̄, λ̄) = min
v∈Ṽad

HΣ(ȳ, v, p̄, ν̄, λ̄),(1.4)

where

HΣ(y, v, p, ν, λ) =

∫
Σ

[νG(s, t, y, v)− pg(s, t, y, v) + λΨ(s, t, y, v)] dsdt,

(ȳ, v̄) is an optimal solution, λ̄ is a multiplier associated with the mixed control-state
constraints (1.3), ν̄ is a multiplier of the cost functional, p̄ is the adjoint state (the
multiplier associated with the state constraints (1.2) only intervenes in the adjoint
equation satisfied by p̄). Notice that (1.4) can also be replaced by a pointwise Pon-
tryagin’s principle.

Observe that in [9, 16, 17, 11, 4] there is no mixed control-state constraint. Results
with mixed control-state constraint are obtained in [2].

As explained in [8, p. 595] and in [21], the case of unbounded controls, that is,

when Vad ≡ Ṽad is not bounded in L∞(Σ), leads to some difficulties. In this case
Pontryagin’s principles are more recent results [8, 10, 21].

Now consider a control set of the form

Vad = {v ∈ Ṽad | v satisfies (1.6)}(1.5)

with ∫
Σ

hi(s, t, v(s, t)) dsdt = 0, 1 ≤ i ≤ $0,

∫
Σ

hi(s, t, v(s, t)) dsdt ≤ 0, $0 + 1 ≤ i ≤ $,

(1.6)

where h = (h1, . . . , h�) is a function with values in R
�. Obviously control constraints

(1.6) can be considered as a particular case of mixed control-state constraints (1.3).
The corresponding Pontryagin’s principle for the problem (P), with the control set
Vad defined by (1.5), may be written in the form

HΣ(ȳ, v̄, p̄, ν̄, λ̄, λ̂) = min
v∈Ṽad

HΣ(ȳ, v, p̄, ν̄, λ̄, λ̂),(1.7)

where λ̂ is a multiplier for the control constraints (1.6).
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The novelty of our paper is the following Pontryagin’s principle for the problem
(P) (Theorem 2.1):

HΣ(ȳ, v̄, p̄, ν̄, λ̄) = min
v∈Vad

HΣ(ȳ, v, p̄, ν̄, λ̄),(1.8)

when the control set Vad is defined by (1.5). Let us insist on the fact that the minimum

in (1.7) is stated with controls in Ṽad, while in (1.8) it is stated with controls in Vad.
Since Vad takes integral control constraints of isoperimetric type into account, the
result is of a different nature. As an application, we are able to prove a Pontryagin’s
principle (Corollary 2.2) for local solutions of (P) (local in the Lσ(Σ)-sense). To
our knowledge, this result is completely new. Control problems for semilinear elliptic
equations, with integral control constraints, are considered in [5], but the Pontryagin’s
principle for local solutions was not obtained there. Also we can deduce from (1.8) the
classical pointwise Pontryagin’s principle for local solutions in Lσ(Σ) of the previous
control problems; see Corollaries 2.3 and 2.4.

Let us finally mention that we deal with parabolic equations of the form (1.1),
where the coefficients of the operator A are not regular, and where the nonlinear
terms f(x, t, ·) and g(s, t, ·) are neither Lipschitz nor monotone with respect to y.
When g(s, t, ·, v) is Lipschitz and monotone such an equation is studied in [4] for
bounded controls. For unbounded controls, when g(s, t, ·, v) is neither Lipschitz nor
monotone, but when the coefficients of A are time independent and regular, (1.1) is
studied in [20, 21] by means of estimates on analytic semigroups. Here we combine
these different difficulties. Equation (1.1) and the adjoint state equation are studied
in section 3.

Our main results are stated in section 2. Section 4 is devoted to the study of the
metric space of the controls and to the existence of diffuse perturbations of controls.
These perturbations are the key for the proof of Pontryagin’s principle, which is done
in section 5.

2. Main results. We set Ω0 = Ω × {0} and ΩT = Ω × {T}. For every 1 ≤
τ ≤ ∞, the usual norms of the spaces Lτ (Ω), Lτ (Γ), Lτ (Q), Lτ (Σ) will be denoted by
‖.‖τ,Ω, ‖.‖τ,Γ, ‖.‖τ,Q, ‖.‖τ,Σ. For every t > 0, we define the norm ‖.‖Q(t) by ‖y‖2Q(t) :=

‖y‖2L2(0,t;H1(Ω)) + ‖y‖2L∞(0,t;L2(Ω)). The Hilbert space W (0, T ;H1(Ω), (H1(Ω))′) =

{y ∈ L2(0, T ;H1(Ω)) | dy
dt ∈ L2(0, T ; (H1(Ω))′)}, endowed with its usual norm, will

be denoted by W (0, T ). We denote by Vad the set of admissible controls

Vad := {v ∈ Ṽad | v satisfies (1.6)}.
2.1. Assumptions.
(A1) The operator A is defined by

Ay(x, t) = −
N∑
i=1

Di

 N∑
j=1

(aij(x, t)Djy(x, t)) + ai(x, t)y(x, t)

+ N∑
i=1

(bi(x, t)Diy(x, t)),

the coefficients aij belong to L∞(Q), ai and bi belong to L2q(Q), and

Λ|ξ|2 ≤
N∑

i,j=1

aij(x, t)ξjξi for all ξ ∈ R
N and for a.e. (x, t) ∈ Q with Λ > 0.(2.1)

We make the following assumptions on f , g, F , G, L, Φ, Ψ.
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(A2) For every y ∈ R, f(·, y) is measurable on Q. For almost every (x, t) ∈ Q,
f(x, t, ·) is of class C1 on R. The following estimates hold:

|f(x, t, 0)| ≤M1(x, t), C0 ≤ f ′
y(x, t, y) ≤M1(x, t)η(|y|),

whereM1 belongs to L
q(Q), η is a nondecreasing function from R

+ to R
+ and C0 ∈ R.

(We have denoted by f ′
y the partial derivative of f with respect to y, throughout what

follows we adopt the same kind of notation for other functions.)

(A3) For every (y, v) ∈ R
2, g(·, y, v) is measurable on Σ. For almost every (s, t) ∈

Σ and every v ∈ R, g(s, t, ·, v) is of class C1 on R. For almost every (s, t) ∈ Σ, g(s, t, ·)
and g′y(s, t, ·) are continuous on R× R. The following estimates hold:

|g(s, t, 0, v)| ≤M2(s, t) + Λ1|v|, C0 ≤ g′y(s, t, y, v) ≤ (M2(s, t) + Λ1|v|)η(|y|),

where M2 belongs to Lσ(Σ), Λ1 > 0, C0 and η are as in (A2).

(A4) For every y ∈ R, L(·, y) is measurable on Ω. For almost every x ∈ Ω, L(x, ·)
is of class C1 on R. The following estimate holds:

|L(x, y)|+ |L′
y(x, y)| ≤M3(x)η(|y|),

where M3 ∈ L1(Ω), η is as in (A2).

(A5) For every y ∈ R, F (·, y) is measurable on Q. For almost every (x, t) ∈ Q,
F (x, t, ·) is of class C1 on R. The following estimate holds:

|F (x, t, y)|+ |F ′
y(x, t, y)| ≤M4(x, t)η(|y|),

where M4 ∈ L1(Q), η is as in (A2).

(A6) For every (y, v) ∈ R
2, G(·, y, v) is measurable on Σ. For almost every

(s, t) ∈ Σ and every v ∈ R, G(s, t, ·, v) is of class C1 on R. For almost every (s, t) ∈ Σ,
G(s, t, ·) and G′

y(s, t, ·) are continuous on R× R. The following estimates hold:

−M5(s, t)− Λ1|v|σ̄ ≤ G(s, t, 0, v) ≤M5(s, t) + Λ1|v|σ,

|G′
y(s, t, y, v)| ≤ (M5(s, t) + Λ1|v|σ̄)η(|y|),

where M5 ∈ L1(Σ), Λ1 and η are as in (A3).

(A7) The function h = (h1, . . . , h�) is a Carathéodory function from Σ × R into
R

� satisfying

|hi(s, t, v)| ≤M5(s, t) + Λ1|v|σ̄ for i = 1, . . . , $0,

−M5(s, t)− Λ1|v|σ̄ ≤ hi(s, t, v) ≤M5(s, t) + Λ1|v|σ for i = $0 + 1, . . . , $;

Λ1 and M5 are the same as above.

(A8) The function Ψ = (Ψ1, . . . ,Ψm) is a Carathéodory function from Σ × R
2

into R
m. For almost every (s, t) ∈ Σ and every v ∈ R, Ψ(s, t, ·, v) is of class C1 on R.
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For almost every (s, t) ∈ Σ, Ψ′
y(s, t, ·) is continuous on R×R. The following estimates

hold:

|Ψi(s, t, 0, v)| ≤M5(s, t) + Λ1|v|σ̄ for i = 1, . . . ,m0,

−M5(s, t)− Λ1|v|σ̄ ≤ Ψi(s, t, 0, v) ≤M5(s, t) + Λ1|v|σ for i = m0 + 1, . . . ,m,

|Ψ′
iy(s, t, y, v)| ≤ (M5(s, t) + Λ1|v|σ̄)η(|y|) for i = 1, . . . ,m,

where Λ1,M5, η are as before. We also suppose that the function Φ : C(D) → C(D)
is of class C1, and that C ⊂ C(D) is a closed convex subset of finite codimension in
C(D), where D is a compact subset of Q.

2.2. Statement of the main result. We define the boundary Hamiltonian
function by

HΣ(y, v, p, ν, λ) =

∫
Σ

[νG(s, t, y, v)− pg(s, t, y, v) + λΨ(s, t, y, v)] dsdt

for every (y, v, p, ν, λ) ∈ C(Q) × Lσ(Σ) × Lσ′
(Σ) × R

1+m. (Here λ = (λ1, . . . , λm),
λΨ(s, t, y, v) =

∑m
i=1 λ

iΨi(s, t, y, v). Throughout the paper we adopt the same kind
of notation for scalar products in R

m.)
Theorem 2.1. If (A1)–(A8) are fulfilled and if (ȳ, v̄) is a solution of (P), then

there exist p̄ ∈ L1(0, T ;W 1,1(Ω)), ν̄ ∈ R, λ̄ ∈ R
m, µ̄ ∈ M(D) (the space of Radon

measures on D) such that

(ν̄, λ̄, µ̄) �= 0, ν̄ ≥ 0, for m0+1 ≤ i ≤ m, λ̄i ≥ 0, λ̄i

∫
Σ

Ψi(s, t, ȳ, v̄) dsdt = 0,(2.2)

〈µ̄, z − Φ(ȳ)〉D ≤ 0 for all z ∈ C,(2.3)



−∂p̄

∂t
+A∗p̄+ f ′

y(x, t, ȳ)p̄ = ν̄F ′
y(x, t, ȳ) + [Φ

′(ȳ)∗µ̄]|Q in Q,

∂p̄

∂nA∗
+ g′y(s, t, ȳ, v̄)p̄ = ν̄G′

y(s, t, ȳ, v̄) + λ̄Ψ′
y(s, t, ȳ, v̄) + [Φ

′(ȳ)∗µ̄]|Σ on Σ,

p̄(T ) = ν̄L′
y(x, ȳ(T )) + [Φ

′(ȳ)∗µ̄]|ΩT on Ω,

(2.4)

p̄ ∈ Lδ′(0, T ;W 1,d′
(Ω)) for every (δ, d) satisfying

N

2d
+
1

δ
<
1

2
,(2.5)

HΣ(ȳ, v̄, p̄, ν̄, λ̄) = min
v∈Vad

HΣ(ȳ, v, p̄, ν̄, λ̄),(2.6)

where [Φ′(ȳ)∗µ̄]|Q is the restriction of [Φ′(ȳ)∗µ̄] to Q, [Φ′(ȳ)∗µ̄]|Σ is the restriction
of [Φ′(ȳ)∗µ̄] to Σ, and [Φ′(ȳ)∗µ̄]|ΩT is the restriction of [Φ′(ȳ)∗µ̄] to ΩT , [Φ′(ȳ)∗µ̄] is

the Radon measure on D defined by z �−→ 〈µ̄,Φ′(ȳ)z〉M(D)×C(D) for z ∈ C(D), 〈·, ·〉D
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denotes the duality pairing between M(D) and C(D), A∗ is the formal adjoint of A,
that is,

A∗y(x, t) = −
N∑
i=1

Di

(
N∑
i=1

(aji(x, t)Djy(x, t)) + bi(x, t)y(x, t)

)
+

N∑
i=1

ai(x, t)Diy(x, t).

2.3. Pontryagin’s principles for local solutions. By definition, a local solu-
tion (ȳ, v̄) of (P) in Lσ(Σ) is a solution of the problem

(Pv̄,ε) inf{J(y, v) | y ∈ C(Q), v ∈ Ṽad, (y, v) satisfies (1.1)–(1.3), ‖v̄ − v‖σ,Σ ≤ ε}

for some ε > 0. The following Pontryagin’s principle for local solutions of (P) is a
direct consequence of Theorem 2.1.

Corollary 2.2. If (A1)–(A8) are fulfilled and if (ȳ, v̄) is a solution of (Pv̄,ε),
there then exist p̄ ∈ L1(0, T ;W 1,1(Ω)), ν̄ ∈ R, λ̄ ∈ R

m, µ̄ ∈ M(D) satisfying (2.2)–
(2.5) along with

HΣ(ȳ, v̄, p̄, ν̄, λ̄) = min
v∈Vad,‖v̄−v‖σ,Σ≤ε

HΣ(ȳ, v, p̄, ν̄, λ̄).

As a consequence of this corollary we can get the classical pointwise Pontryagin
principle for a local solution in Lσ(Σ) of the control problem

(P̃) inf{J(y, v) | y ∈W (0, T ) ∩ C(Q), v ∈ Ṽad, (y, v) satisfies (1.1), (1.2), (1.3)}.

Corollary 2.3. If (A1)–(A8) are fulfilled and if (ȳ, v̄) is a local solution of
(P̃) in Lσ(Σ), there then exist p̄ ∈ L1(0, T ;W 1,1(Ω)), ν̄ ∈ R, λ̄ ∈ R

m, µ̄ ∈ M(D)
satisfying (2.2)–(2.5) along with

HΣ(s, t, ȳ(s, t), v̄(s, t), p̄(s, t), ν̄, λ̄) = min
ξ∈V (s,t)

HΣ(s, t, ȳ(s, t), ξ, p̄(s, t), ν̄, λ̄)

for almost all (s, t) ∈ Σ, where

HΣ(s, t, y, ξ, p, ν, λ) = νG(s, t, y, ξ)− pg(s, t, y, ξ) + λΨ(s, t, y, ξ).

Proof. The pointwise Pontryagin’s principle stated in the corollary may be de-
rived from the integral Pontryagin’s principle of Corollary 2.2 by using the same
construction as in [21, proof of Theorem 2.1]. The idea in the proof of [21] is
to construct a pointwise perturbation vn of v̄ such that lim(s,t)→(s0,t0)vn(s, t) = ξ,
limnLN ({(s, t) ∈ Σ | vn(s, t) �= v̄(s, t)}) = 0, where ξ ∈ V (s0, t0), (s0, t0) ∈ Σ, LN

denotes the N -dimensional Lebesgue measure. We obtain the pointwise Pontrya-
gin’s principle by replacing v by vn in the integral Pontryagin’s principle of Corollary
2.2, by dividing by LN ({(s, t) ∈ Σ | vn(s, t) �= v̄(s, t)}) �= 0, and by passing to the
limit when n tends to infinity. The only difference with [21] is that vn must satisfy
‖v̄ − vn‖σ,Σ ≤ ε. Due to the condition limnLN ({(s, t) ∈ Σ | vn(s, t) �= v̄(s, t)}) = 0, it
is clear that this condition will be realized for n big enough.

Let us observe that integral control constraints can be studied in the framework of
the problem (P̃). Indeed, the mixed constraints (1.3) can include the integral control
constraints. Then Corollary 2.3 provides a Pontryagin’s principle for problems with
integral constraints on the control and the state, even with mixed integral constraints,
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as well as pointwise constraints on the control and state too. The corresponding result
is stated in the following corollary.

Corollary 2.4. If (A1)–(A8) are fulfilled and if (ȳ, v̄) is a local solution of

(P̃) in Lσ(Σ), there then exist p̄ ∈ L1(0, T ;W 1,1(Ω)), ν̄ ∈ R, λ̄ ∈ R
m, λ̂ ∈ R

�, and
µ̄ ∈M(D) such that

(ν̄, λ̄, λ̂, µ̄) �= 0, ν̄ ≥ 0, 〈µ̄, z − Φ(ȳ)〉D ≤ 0 for all z ∈ C,

λ̄i

∫
Σ

Ψi(s, t, ȳ, v̄) dsdt = 0 for 1 ≤ i ≤ m, λ̄i ≥ 0 for m0 + 1 ≤ i ≤ m,

λ̂i

∫
Σ

hi(s, t, v̄) dsdt = 0 for 1 ≤ i ≤ $, λ̂i ≥ 0 for $0 + 1 ≤ i ≤ $,



−∂p̄

∂t
+A∗p̄+ f̄ ′

y p̄ = ν̄F̄ ′
y + [Φ

′(ȳ)∗µ̄]|Q in Q,

∂p̄

∂nA∗
+ ḡ′y p̄ = ν̄Ḡ′

y + λ̄Ψ̄′
y + λ̂h̄+ [Φ′(ȳ)∗µ̄]|Σ on Σ,

p̄(T ) = ν̄L′
y(x, ȳ(T )) + [Φ

′(ȳ)∗µ̄]|ΩT on Ω,

where f̄ ′
y stands for f̄ ′

y(x, t, ȳ), Ḡ
′
y for Ḡ′

y(s, t, ȳ, v̄), and the same convention is used
for other functions. Also, the following pointwise Pontryagin’s principle holds:

HΣ(s, t, ȳ(s, t), v̄(s, t), p̄(s, t), ν̄, λ̄, λ̂) = min
ξ∈V (s,t)

HΣ(s, t, ȳ(s, t), ξ, p̄(s, t), ν̄, λ̄, λ̂)

for almost all (s, t) ∈ Σ, where

HΣ(s, t, y, ξ, p, ν, λ̄, λ̂) = νG(s, t, y, ξ)− pg(s, t, y, ξ) + λ̄Ψ(s, t, y, ξ) + λ̂h(s, t, ξ).

3. State and adjoint equations.

3.1. State equation. Existence and regularity results for (1.1) and (2.4) rely
on estimates in C(Q) for solutions of linear equations of the form

∂y

∂t
+Ay + ay = φ− divξ in Q,

∂y

∂nA
+ by = ψ on Σ, y(0) = y0 in Ω.(3.1)

If assumption (A1) is satisfied, if (a, φ) ∈ Lq(Q) × Lq(Q), (b, ψ) ∈ Lσ̄(Σ) × Lσ̄(Σ),
the existence of a unique solution in C([0, T ];L2(Ω)) ∩ L2([0, T ];H1(Ω)) for (3.1) is
proved in [12, Chapter 3, Theorem 5.1] when ξ ≡ 0. The result can be extended to
(3.1) by the same method if the support of ξ is compact in Q and if ξ belongs to
Lδ(0, T, (Ld(Ω))N ) with d > 1, δ > 1, N/2d+ 1/δ < 1/2. Recall that a weak solution
in L2(0, T ;H1(Ω)) ∩ C([0, T ];L2(Ω)) of (3.1) is a function y ∈ L2(0, T ;H1(Ω)) ∩
C([0, T ];L2(Ω)) satisfying

∫
Q

−y ∂z
∂t
+
∑
i,j

aijDjyDiz +
∑
i

(aiyDiz + biDiyz) + ayz

 dxdt+

∫
Σ

byz dsdt

=

∫
Q

[
φz +

∑
i

ξiDiz

]
dxdt+

∫
Σ

ψz dsdt+

∫
Ω

y(0)z(0) dx
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for every z ∈ C1(Q) such that z(·, T ) = 0 on Ω. For linear equations with Dirichlet
boundary conditions

∂y

∂t
+Ay + ay = φ− divξ in Q, y = ψ on Σ, y(0) = y0 in Ω,

estimates of the form

‖y‖L∞(Q) ≤ C

(
‖φ‖q,Q + ‖ψ‖∞,Σ +

∑
i

‖ξi‖d,δ,Ω + ‖y0‖C(Ω)

)
(3.2)

are obtained in [12, Chapter 3, Theorem 7.1] for d > 1, δ > 1, N/2d + 1/δ < 1/2. In
this estimate the constant C depends on T,Ω, N,Λ, q, σ̄, δ, d,

∑
i ‖a2

i ‖q,Q,
∑

i ‖b2i ‖q,Q,
but also on ‖a‖q,Q. The case of Robin boundary conditions is considered in [4] to study
nonlinear equations of the form (1.1) when the function g(s, t, ·, v), in the boundary
condition, is monotone and Lipschitz, and when the boundary control v is bounded
[4, Theorem 5.1]. The case when the function g(s, t, ·, v) in (1.1) is neither Lipschitz
nor monotone (g satisfies (A3)), and when the control v belongs to Lσ̄(Σ), but when
the coefficients of the operator A are regular and independent of the time variable,
is studied in [19]. Estimates in C(Q) are obtained by semigroup techniques and
comparison principles [19, Proposition 3.3 and Theorem 3.1]. Here we emphasize the
fact that assumptions on the operator A are minimal (bounded leading coefficients,
unbounded coefficients of order zero), that we deal with nonhomogeneous boundary
conditions, and that source terms in the domain and in the boundary conditions are
unbounded.

Theorem 3.1. Under assumptions (A1)–(A3), if v ∈ Lσ̄(Σ), then (1.1) admits
a unique weak solution yv in W (0, T ) ∩ C(Q). This solution obeys

||yv||C(Q) ≤ C1(||v||σ̄,Σ + 1),

where C1 = C1(T,Ω, N,C0, q, σ̄). Moreover, the mapping v �−→ yv is continuous from
Lσ̄(Σ) into C(Q).

Proof. The proof relies on Theorem 3.2 (see [19]).
Theorem 3.2. Suppose that (A1) is satisfied, (a, φ) ∈ Lq(Q) × Lq(Q), (b, ψ) ∈

Lσ̄(Σ) × Lσ̄(Σ), and ξ belongs to (D(Q))N . If in addition a ≥ C0 a.e. in Q and
b ≥ C0 a.e. in Σ (for some C0 ∈ R), then the unique weak solution y of (3.1) belongs
to C(Q) and satisfies the following estimate:

‖y‖C(Q) ≤ C2

(
‖φ‖q,Q + ‖ψ‖σ̄,Σ +

∑
i

‖ξi‖Lδ(0,T ;Ld(Ω)) + ‖y0‖C(Ω)

)
,

where d > 1, δ > 1 satisfy N/2d+1/δ < 1/2 and the constant C2 only depends on T ,
Ω, N , C0, Λ, q, σ̄, δ, d,

∑
i ‖a2

i ‖q,Q,
∑

i ‖b2i ‖q,Q.
Remark 3.3. Notice that the constant C2 does not depend on ‖a‖q,Q and ‖b‖σ̄,Σ.

As in [12] (see the above estimate (3.2)), the assumption a ≥ C0 may be dropped out,
and in this case the constant C2 must be replaced by a constant also depending on
‖a‖q,Q. But the corresponding estimate cannot be used to treat nonlinear equations
of the form (1.1).

Proof. To prove this theorem, we need only to establish the L∞-estimate; the
rest is classical. We prove the L∞-estimate by using the so-called truncation method
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as in [12, Chapter 3, proof of Theorem 7.1]. If y is a weak solution of (3.1), then we
have ∫

Ω

[y(x, t)z(x, t)− y(x, 0)z(x, 0)] dx

+

∫ t

0

∫
Ω

−y ∂z
∂t
+
∑
i,j

aijDjyDiz +
∑
i

(aiyDiz + biDiyz) + ayz

 dxdτ

+

∫ t

0

∫
Γ

byz dsdτ =

∫ t

0

∫
Ω

[
φz +

∑
i

ξiDiz

]
dxdτ +

∫ t

0

∫
Γ

ψz dsdτ

for every t ∈ [0, T ] and every z ∈ W 1,1
2 (Q). We establish only the upper bound

for y. (The lower bound can be obtained in the same way.) For k ≥ 0 we set
yk(x, t) = max(y(x, t)−k, 0). By using Steklov averagings, as in [12, p. 183], we prove
that

1

2

∫
Ω

[yk(x, t)2 − yk(x, 0)2] dx(3.3)

+

∫ t

0

∫
Ω

∑
i,j

aijDjy
kDiy

k +
∑
i

(aiyDiy
k + biDiy

kyk) + ayyk

 dxdτ

+

∫ t

0

∫
Γ

byyk dsdτ =

∫ t

0

∫
Ω

[
φyk +

∑
i

ξiDiy
k

]
dxdτ +

∫ t

0

∫
Γ

ψyk dsdτ

for every t ∈]0, T ]. Thus, it follows that

1

2

∫
Ω

yk(x, t)2 dx+

∫ t

0

∫
Ω

∑
i,j

aijDjy
kDiy

k + (a− C0 + Λ)yy
k

 dxdτ(3.4)

+

∫ t

0

∫
Γ

(b− C0)yy
k dsdτ = −

∫ t

0

∫
Ω

[∑
i

(aiyDiy
k + biDiy

kyk) + (C0 − Λ)yyk
]
dxdτ

−
∫ t

0

∫
Γ

C0yy
k dsdτ +

∫ t

0

∫
Ω

[
φyk +

∑
i

ξiDiy
k

]
dxdτ +

∫ t

0

∫
Γ

ψyk dsdτ

for every k > k̃ := ‖y0‖C(Ω). Since a − C0 ≥ 0 a.e. in Q, b − C0 ≥ 0 a.e. on Σ, and
yyk ≥ (yk)2 a.e. in Q, with (2.1) we obtain

‖yk(t)‖22,Ω + 2Λ‖yk‖2L2(0,t;H1(Ω))(3.5)

≤ −2
∫ t

0

∫
Ω

[∑
i

(aiyDiy
k + biDiy

kyk) + (C0 − Λ)yyk
]
dxdτ

−2
∫ t

0

∫
Γ

C0yy
k dsdτ + 2

∫ t

0

∫
Ω

[
φyk +

∑
i

ξiDiy
k

]
dxdτ + 2

∫ t

0

∫
Γ

ψyk dsdτ
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for every k > k̃. Set Ak(t) = {x ∈ Ω | y(x, t) > k}, Bk(t) = {s ∈ Γ | y(s, t) > k},
Qk(t) = {(x, τ) ∈ Ω×]0, t[| y(x, τ) > k}, Σk(t) = {(s, τ) ∈ Γ×]0, t[| y(s, τ) > k}. We
estimate the terms in the right-hand side of (3.5) by means of Young’s inequality and
we obtain

‖yk(t)‖22,Ω + Λ‖yk‖2L2(0,t;H1(Ω))

≤ 3

Λ

∫ t

0

∫
Ak(τ)

[∑
i

((aiy)
2 + (biy

k)2) + (C0 − Λ)2y2

]
dxdτ +

3K2

Λ

∫ t

0

∫
Bk(τ)

C2
0y

2 dsdτ

+2

∫ t

0

∫
Ak(τ)

[
|φ||yk|+

∑
i

|ξi||Diy
k|
]
dxdτ + 2

∫ t

0

∫
Bk(τ)

|ψ||yk| dsdτ,

where K > 0 satisfies ‖ϕ‖2,Γ ≤ K‖ϕ‖H1(Ω) for all ϕ ∈ H1(Ω). Since y = yk + k in
Ak(τ) and Bk(τ) for a.e. τ , it follows that

‖yk(t)‖22,Ω + Λ‖yk‖2L2(0,t;H1(Ω))

≤ 6

Λ

∫ t

0

∫
Ak(τ)

[∑
i

(a2
i + b2i ) + (C0 − Λ)2

]
((yk)2 + k2) dxdτ

+
6K2

Λ

∫ t

0

∫
Bk(τ)

C2
0 ((y

k)2 + k2) dsdτ + 2

∫ t

0

∫
Ak(τ)

[
|φ||yk|+

∑
i

|ξi||Diy
k|
]
dxdτ

+2

∫ t

0

∫
Bk(τ)

|ψ||yk| dsdτ

for every t ∈ [0, T ] and every k > k̃. With Hölder’s inequality we have

‖yk(t)‖22,Ω + Λ‖yk‖2L2(0,t;H1(Ω))(3.6)

≤
(
K1(|Qk(t)|

1
q′ + |Qk(t)|) +K2|Σk(t)|

)
k2

+K1(|Qk(t)| 2
N+2 + |Qk(t)|

1
q′ − N

N+2 )‖yk‖22(N+2)
N ,Ω×]0,t[

+2‖φ‖q,Q|Qk(t)|
1
q′ − N

2(N+2) ‖yk‖ 2(N+2)
N ,Ω×]0,t[

+K2|Σk(t)| 1
N+1 ‖yk‖22(N+1)

N ,Γ×]0,t[
+ 2‖ψ‖σ̄,Σ|Σk(t)|

1
σ̄′ − N

2(N+1) ‖yk‖ 2(N+1)
N ,Γ×]0,t[

+
Λ

2
‖yk‖2L2(0,t;H1(Ω)) +

2K3

Λ

(∫ t

0

|Ak(τ)|
δ(d−2)
d(δ−2) dτ

) δ−2
δ

,

where

K1 =
6

Λ

[∑
i

(‖a2
i ‖q,Q + ‖b2i ‖q,Q) + (C0 − Λ)2

]
,
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K2 =
6K2

Λ
C2

0 and K3 =
∑
i

‖ξi‖2Lδ(0,T ;Ld(Ω)),

|Qk(t)| denotes the (N + 1)-dimensional Lebesgue measure of Qk(t), |Σk(t)| denotes
theN -dimensional Lebesgue measure of Σk(t), and |Ak(τ)| denotes theN -dimensional
Lebesgue measure of Ak(τ). Notice that N(d−2)

2d + δ−2
δ > N

2 . Then there exists

r̃ > 2δ
δ−2 > 2 such that N(d−2)

2d + δ−2
δ > N

2
r̃(δ−2)

2δ > N
2 . For such an r̃ we have

1
r̃ (

N
2

δ
δ−2

d−2
d + 1) > N

4 . We define r > 2 by 1
r = 1

r̃
δ

δ−2
d−2
d < d−2

2d < 1
2 and we

obtain N
2r +

1
r̃ > N

4 . Thus the imbedding from L2(0, t;H1(Ω)) ∩ C([0, t];L2(Ω)) into
Lr̃(0, t;Lr(Ω)) is continuous; see [12, p. 75]. Observe that

|Qk(t)| 2
N+2 + |Qk(t)|

1
q′ − N

N+2 ≤ (t|Ω|) 2
N+2 +(t|Ω|) 1

q′ − N
N+2 , |Σk(t)| 1

N+1 ≤ (t|Γ|) 1
N+1 .

Let us choose t̄ > 0 small enough to have

K1((t̄|Ω|) 2
N+2 + (t̄|Ω|) 1

q′ − N
N+2 )‖y‖22(N+2)

N ,Ω×]0,t̄[
+K2(t̄|Γ|) 1

N+1 ‖y‖22(N+1)
N ,Γ×]0,t̄[

(3.7)

≤ 1

2
min

(
1,
Λ

2

)
‖y‖2Q(t̄)

for every y ∈ L2(0, t̄;H1(Ω))∩C([0, t̄];L2(Ω)). Then from (3.6) and imbedding theo-
rems, it follows that

ν(‖yk‖ 2(N+2)
N ,Ω×]0,t̄[

+ ‖yk‖ 2(N+1)
N ,Γ×]0,t̄[

+ ‖yk‖Lr̃(0,t̄;Lr(Ω))) ≤(3.8)

≤ ‖y‖Q(t̄) ≤ K4

(
|Qk(t̄)|

1
2q′ + |Qk(t̄)| 12 + |Σk(t̄)| 12

)
k

+K4

(
|Qk(t̄)|

1
q′ − N

2(N+2) + |Σk(t̄)|
1
σ̄′ − N

2(N+1)

)
+K4

(∫ t̄

0

|Ak(τ)|
δ(d−2)
d(δ−2) dτ

) δ−2
2δ

,

for k > k̃, where ν > 0 depends on Λ, and where K4 depends on K1, K2, K3, ‖φ‖q,Q,
‖ψ‖σ̄,Σ, and Λ. Now, we set θ(k) = |Qk(t̄)|

N
2(N+2) + |Σk(t̄)|

N
2(N+1) + (

∫ t̄

0
|Ak(τ)| r̃r dτ) 1

r̃ .

Observe that, for every $ ≥ k ≥ 0, we have yk ≥ $ − k a.e. in Q�(t̄), a.e. on Σ�(t̄),
and a.e. in A�(τ) for a.e. τ ∈]0, t̄[; therefore

($− k)θ($) ≤ ‖yk‖ 2(N+2)
N ,Ω×]0,t̄[

+ ‖yk‖ 2(N+1)
N ,Γ×]0,t̄[

+ ‖yk‖Lr̃(0,t̄;Lr(Ω)).(3.9)

Taking k = 0 in the above inequality, with the definition of the function θ we first
obtain $θ($) ≤ K0 for all $ ≥ 0, where K0 = ‖y‖ 2(N+2)

N ,Ω×]0,t̄[
+ ‖y‖ 2(N+1)

N ,Γ×]0,t̄[
+

‖y‖Lr̃(0,t̄;Lr(Ω)). In particular, for $ = K0, this implies θ(K0) ≤ 1. On the other hand,
(3.8) and (3.9) give

($− k)θ($) ≤ K4

ν

(
|Qk(t̄)|

1
2q′ + |Qk(t̄)| 12 + |Σk(t̄)| 12(3.10)

+|Qk(t̄)|
1
q′ − N

2(N+2) + |Σk(t̄)|
1
σ̄′ − N

2(N+1)

)
k +

K4

ν

(∫ t̄

0

|Ak(τ)|
δ(d−2)
d(δ−2) dτ

) δ−2
2δ
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for all $ ≥ k > max(K0, 1, k̃). Set

α1 =
N + 2

Nq′
, α2 =

N + 1

Nσ̄′ , α3 = r̃
δ − 2
2δ

, α = min(α1, α2, α3),

and observe that α > 1. Since θ(K0) ≤ 1, and since θ is a nonincreasing function,

we also have |Qk(t̄)| ≤ 1, |Σk(t̄)| ≤ 1, and
∫ t̄

0
|Ak(τ)| r̃r dτ ≤ 1 for all k ≥ K0. Thus it

follows that

|Qk(t̄)|
1

2q′ + |Σk(t̄)| 12 + |Qk(t̄)| 12

+|Qk(t̄)|
1
q′ − N

2(N+2) + |Σk(t̄)|
1
σ̄′ − N

2(N+1) +

(∫ t̄

0

|Ak(τ)| r̃r dτ
) δ−2

2δ

≤ 3θ(k)α.

From (3.10), we deduce

($− k)θ($) ≤ K5θ(k)
αk(3.11)

for every $ ≥ k > max(K0, 1, k̃). With the same arguments as in [12, Chapter 3, p.
186], still using (3.8), we finally obtain

‖y‖∞,Q ≤ K6,(3.12)

where K6 depends not only on T,Ω, N,C0,Λ, q, σ̄, δ, d,
∑

i ‖a2
i ‖q,Q,

∑
i ‖b2i ‖q,Q, but

also on K0, ‖y0‖C(Ω), ‖φ‖q,Q, ‖ψ‖σ̄,Σ, and
∑

i ‖ξi‖2Lδ(0,T ;Ld(Ω)). The constant K6

depends on K0 = ‖y‖ 2(N+2)
N ,Ω×]0,t̄[

+ ‖y‖ 2(N+1)
N ,Γ×]0,t̄[

+ ‖y‖Lr̃(0,t̄;Lr(Ω)) ≤ C‖y‖Q(t̄).

By using the same trick as in (3.4), we can obtain an estimate of ‖y‖Q(t̄) depending
on T , Ω, N , C0, Λ, q, σ̄, δ, d,

∑
i ‖a2

i ‖q,Q,
∑

i ‖b2i ‖q,Q, ‖y0‖C(Ω),
∑

i ‖ξi‖2Lδ(0,T ;Ld(Ω)),

‖φ‖q,Q, and ‖ψ‖σ̄,Σ, but independent of ‖a‖q,Q and ‖b‖σ̄,Σ. Since (3.1) is linear, the
estimate given in Theorem 3.2 can be easily deduced from (3.12).

3.2. Adjoint equation. Let (a, b) be in Lq(Q)×Lσ̄(Σ) with a ≥ C0 and b ≥ C0.
We consider the terminal boundary value problem

− ∂p

∂t
+A∗p+ ap = µQ in Q,

∂p

∂nA∗
+ bp = µΣ on Σ, p(T ) = µΩT

on Ω,(3.13)

where µ = µQ+µΣ+µΩT
is a bounded Radon measure on Q\Ω0, µQ is the restriction

of µ to Q, µΣ is the restriction of µ to Σ, and µΩT
is the restriction of µ to ΩT . A

function p ∈ L1(0, T ;W 1,1(Ω)) is a weak solution of (3.13) if

ap ∈ L1(Q), bp ∈ L1(Σ), aiDip ∈ L1(Q), and bip ∈ L1(Q) for i = 1, . . . , N,

∫
Q

p
∂y

∂t
+
∑
i,j

ajiDjpDiy +
∑
i

(aiDipy + bipDiy) + apy

 dxdt+

∫
Σ

bpy dsdt

=

∫
Q\Ω0

ydµ(x, t) for every y ∈ C1(Q) satisfying y(x, 0) = 0 on Ω.

As for elliptic equations [23], it is well known that (3.13) may admit more than
one solution. However, uniqueness is guaranteed if we look for solutions of (3.13)
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satisfying some Green formula. (Such uniqueness results are proved in [1] for elliptic
equations and in [4] for parabolic equations.)

Theorem 3.4. Let µ be in Mb(Q \ Ω0) and let (a, b) be in Lq(Q) × Lσ̄(Σ)
satisfying a ≥ C0 a.e. in Q, b ≥ C0 a.e. Σ, for some C0 ∈ R. Equation (3.13) admits
a unique solution p in L1(0, T ;W 1,1(Ω)) satisfying∫

Q

p

{
∂y

∂t
+Ay + ay

}
dxdt+

∫
Σ

p

{
∂y

∂nA
+ by

}
dsdt = 〈y, µ〉Cb(Q\Ω0)×Mb(Q\Ω0)

for every y ∈ {y ∈ W (0, T ) ∩ C(Q) | ∂y
∂t + Ay ∈ Lq(Q), ∂y

∂nA
∈ Lσ̄(Σ), y(x, 0) =

0 on Ω}. Moreover p belongs to Lδ′(0, T ;W 1,d′
(Ω)) for every δ > 2, d > 2 satisfying

N
2d +

1
δ < 1

2 and we have

‖p‖Lδ′ (0,T ;W 1,d′ (Ω)) ≤ C4(δ, d)‖µ‖Mb(Q\Ω0)
,

where C4(δ, d) = C4(T,Ω, N,C0, q, σ̄, δ, d, ‖ai‖L2q(Q), ‖bi‖L2q(Q)), but C4 is indepen-
dent of a and b.

Proof. Due to Theorem 3.2, the proof of Theorem 3.3 follows the lines of the
proofs of Theorem 6.3 in [4] and of Theorem 4.2 in [18]. Since we improve the results
given in [4, 18], we sketch the main points of the proof. Let (hn)n be a sequence in
Cc(Q) (the space of continuous functions with compact support in Q), (kn)n be a
sequence in Cc(Σ), and ($n)n be a sequence in C(Ω) such that

‖hn‖L1(Q) = ‖µQ‖Mb(Q), ‖kn‖L1(Σ) = ‖µΣ‖Mb(Σ), ‖$n‖L1(Ω) = ‖µΩT
‖M(ΩT ),

limn

∫
Q

hnφdxdt = 〈φ, µQ〉Cb(Q)×Mb(Q),

limn

∫
Σ

knφdsdt = 〈φ, µΣ〉Cb(Σ)×Mb(Σ),

limn

∫
Ω

$nφdx = 〈φ, µΩ̄T 〉C(ΩT )×M(ΩT )

for every φ ∈ C(Q). Let (pn)n be the sequence in W (0, T ) defined by

−∂pn
∂t

+Apn + apn = hn in Q,
∂pn
∂nA

+ bpn = kn on Σ, pn(T ) = $n in Ω.

Due to Theorem 3.2, and by using the same arguments as in [4, 18], we can prove
that there exists a constant C5(δ, d) = C5(T,Ω, N,C0, q, σ̄, δ, d, ‖ai‖L2q(Q), ‖bi‖L2q(Q))
such that

‖pn‖Lδ′ (0,T ;W 1,d′ (Ω)) ≤ C5(δ, d)‖µ‖Mb(Q̄\Ω̄0)

for every (δ, d) satisfying N
2d +

1
δ < 1

2 . Since q > N
2 + 1 and σ̄ > N + 1, there exist

(δ1, d1), (δ2, d2), (δ3, d3) satisfying
N
2di

+ 1
δi

< 1
2 for i = 1, 2, 3, such that δ′1 ≥ q′,

d′∗1 =
Nd′

1

N−d′
1
≥ q′, δ′2 ≥ σ̄′, (N−1)d2d

′
2

(N−1)d2−d′
2
≥ σ̄′, δ′3 ≥ (2q)′, and d′3 ≥ (2q)′. Therefore

‖pn‖Lq′ (Q) ≤ C‖pn‖Lδ′1 (0,T ;W
1,d′

1 (Ω))
≤ CC5(δ1, d1)‖µ‖Mb(Q̄\Ω̄0),
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‖pn‖Lσ̄′ (Σ) ≤ C‖pn‖Lδ′2 (0,T ;W
1,d′

2 (Ω))
≤ CC5(δ2, d2)‖µ‖Mb(Q̄\Ω̄0),

‖pn‖L(2q)′ (0,T ;W 1,(2q)′ (Ω)) ≤ C‖pn‖Lδ′3 (0,T ;W
1,d′

3 (Ω))
≤ CC5(δ3, d3)‖µ‖Mb(Q̄\Ω̄0).

Then, there exist a subsequence, still indexed by n, and p such that (pn)n converges to
p for the weak-star topology of Lδ′(0, T ;W 1,d′

(Ω)) for every (δ, d) satisfying N
2d +

1
δ <

1
2 . By passing to the limit in the variational formulation satisfied by (pn)n, we prove
that p is a solution of (3.13). The uniqueness can be proved as in [1, 4].

4. Technical results.

4.1. Metric space of controls. To apply the Ekeland variational principle, we
have to define a metric space of controls in such a way that the mapping v �−→ yv
be continuous from this metric space to C(Q). Due to Theorem 3.1, this continuity
condition will be realized if convergence in the metric space of controls implies con-
vergence in Lσ̄(Σ). In the case where boundary controls are bounded, convergence in
(Vad, d) (where d is the so-called Ekeland’s distance) implies convergence in Lσ̄(Σ).
This condition is no longer true for unbounded controls; see [10, p. 227]. To overcome
this difficulty, we proceed as in [5] and we define a new metric space in the following
way. Let ṽ be in Vad. (In section 5, ṽ will be an optimal boundary control that we
want to characterize.) For 0 < M <∞, we define the set

Vad(ṽ,M) = {v ∈ Vad | ‖v − ṽ‖σ,Σ ≤M} .

We endow the set Vad(ṽ,M) with the Ekeland metric

d(v1, v2) = LN ({(s, t) ∈ Σ | v1(s, t) �= v2(s, t)}).

Proposition 4.1. Let ṽ be in Vad. Let M > 0 and {(vn)n, v} ⊂ V (ṽ,M). If
(vn)n tends to v in (V (ṽ,M), d), then (vn)n tends to v in Lσ̄(Σ).

Proof. Since 1 ≤ σ̄ < σ, the proof is immediate if we notice that we have∫
Σ

|v − vn|σ̄ ds ≤ ‖v − vn‖σ̄σ,Σ(d(vn, v))
σ−σ̄
σ ≤ (2M)σ̄(d(vn, v))

σ−σ̄
σ .

Proposition 4.2. For every M > 0, we have that

(i) (Vad(ṽ,M), d) is a complete metric space;
(ii) the mapping which associates yv with v is continuous from (Vad(ṽ,M), d) into

C(Q);
(iii) the mappings v → J(yv, v) and v → ∫

Σ
Ψi(s, t, yv, v) dsdt are continuous

(respectively, lower semicontinuous) on (Vad(ṽ,M), d) for 1 ≤ i ≤ m0 (re-
spectively, m0 + 1 ≤ i ≤ m).

Proof. Claims (i) and (ii) are proved in [5], for control problems of elliptic equa-
tions; this proof can be repeated here with the obvious modifications. Contrary to
[4], [21], the mapping v → J(yv, v) is not necessarily continuous on the space of
“truncated controls” endowed with the Ekeland metric. We can prove only a lower
semicontinuity result. This result is stated in [5, Proposition 3.1] under the additional
assumption that G(s, t, y, ·) is convex. In fact we can prove the same result without
this convexity assumption. Let (vn)n be a sequence converging to v in (Vad(ṽ,M), d).
From Proposition 4.1 and Theorem 3.1 we know that (vn)n converges to v in Lσ̄(Σ)
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and (yvn)n converges to yv uniformly on Q. With assumption (A6), with Fatou’s
lemma, and with Lebesgue’s dominated convergence theorem we have

liminfn

∫
Σ

G(s, t, 0, vn) dsdt ≥
∫

Σ

G(s, t, 0, v) dsdt,

limn

∫
Σ

∫ 1

0

G′
y(s, t, θyvn , vn)yvndθ dsdt =

∫
Σ

∫ 1

0

G′
y(s, t, θyv, v)yvdθ dsdt.

Therefore we obtain

liminfn

∫
Σ

G(s, t, yvn , vn) dsdt = liminfn

∫
Σ

G(s, t, 0, vn) dsdt

+limn

∫
Σ

∫ 1

0

G′
y(s, t, θyvn , vn)yvndθ dsdt

≥
∫

Σ

G(s, t, 0, v) dsdt+

∫
Σ

∫ 1

0

G′
y(s, t, θyv, v)yvdθ dsdt =

∫
Σ

G(s, t, yv, v) dsdt.

Following the same ideas, we can prove the continuity (for 1 ≤ i ≤ m0) or the lower
semicontinuity (for m0 + 1 ≤ i ≤ m) of v → ∫

Σ
Ψi(s, t, yv, v) dsdt.

4.2. Existence of diffuse perturbations. Let ṽ be an admissible control, and
let v1 and v2 be in Vad(ṽ,M). A diffuse perturbation of v1 by v2 is a family of functions
(vρ)ρ>0 defined by

vρ(s, t) =

{
v1(s, t) on Σ \ Eρ,
v2(s, t) on Eρ,

where Eρ is a measurable subset of Σ satisfying some conditions. Such perturbations
are used to derive Pontryagin’s principles from the Ekeland variational principle.
In the case of bounded controls (when Vad(ṽ,M) ≡ Vad) the use of this kind of
perturbations goes back to Yao [24, 25] and Li [13] (see also [17, 11, 26, 14]). Some
variants have been developed in [4] for bounded controls, and in [21] for unbounded
controls. In [5] we have investigated the case of unbounded controls with integral
control constraints. Here we prove that the diffuse perturbations defined in [21] may
be extended to derive a Pontryagin’s principle for problems with integral coupled
control-state constraints. Before proving the existence of such diffuse perturbations
let us state an auxiliary lemma analogous to Lemma 3.2 of [5].

Lemma 4.3. Let ρ be such that 0 < ρ < 1. For every v1, v2, v3 ∈ Vad, there exists
a sequence of measurable sets (En

ρ )n in Σ such that

LN (En
ρ ) = ρLN (Σ),(4.1) ∫

Enρ

|vi − v3|σ dsdt = ρ

∫
Σ

|vi − v3|σ dsdt for i = 1, 2,(4.2) ∫
Enρ

h(s, t, vi) dsdt = ρ

∫
Σ

h(s, t, vi) dsdt for i = 1, 2,(4.3)

1

ρ
χEnρ ⇀ 1 weakly-star in L∞(Σ) when n tends to infinity,(4.4)
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where χEnρ
is the characteristic function of En

ρ .
Proof. We follow the ideas of [21, Lemma 4.1]. Let us take a sequence (ϕn)n

dense in L1(Σ). For n ≥ 1 we define fn ∈ (L1(Σ))n+2�+3 by

fn = (1, ϕ1, . . . , ϕn, |v1 − v3|σ, |v2 − v3|σ, h(·, ·, v1), h(·, ·, v2)).

Thanks to Lyapunov’s convexity theorem, for every n ≥ 1 and every ρ ∈ (0, 1), there
exists a measurable subset En

ρ ⊂ Σ satisfying∫
Enρ

fn dsdt = ρ

∫
Σ

fn dsdt.

As in [21], it is easy to prove that (4.1)–(4.4) hold for the sequence (En
ρ )n.

Theorem 4.4. Let ρ be such that 0 < ρ < 1. For every v1, v2, v3 ∈ Vad, there
exists a measurable subset Eρ ⊂ Σ such that

LN (Eρ) = ρLN (Σ),(4.5) ∫
Σ\Eρ

|v1 − v3|σ dsdt+
∫
Eρ

|v2 − v3|σ dsdt

= (1− ρ)

∫
Σ

|v1 − v3|σ dsdt+ ρ

∫
Σ

|v2 − v3|σ dsdt,
(4.6)

∫
Σ\Eρ

h(s, t, v1) dsdt+

∫
Eρ

h(s, t, v2) dsdt

= (1− ρ)

∫
Σ

h(s, t, v1) dsdt+ ρ

∫
Σ

h(s, t, v2) dsdt,

(4.7)

yρ = y1 + ρz + rρ with lim
ρ→0

1

ρ
||rρ||C(Q̄) = 0,(4.8)

J(yρ, vρ) = J(y1, v1) + ρ[J ′
y(y1, v1)z + J(y1, v2)− J(y1, v1)] + o(ρ),(4.9) ∫

Σ

Ψ(s, t, yρ, vρ) dsdt(4.10)

=

∫
Σ

(
Ψ(s, t, y1, v1) + ρ[Ψ′

y(s, t, y1, v1)z +Ψ(s, t, y1, v2)−Ψ(s, t, y1, v1)]

)
dsdt+ o(ρ),

where vρ is the control defined by

vρ(s, t) =

{
v1(s, t) on Σ \ Eρ,
v2(s, t) on Eρ,

(4.11)

yρ, y1 are the solutions of (1.1) corresponding, respectively, to vρ and to v1, z is the
weak solution of

∂z

∂t
+Az + f ′

y(x, t, y1)z = 0 in Q,

∂z

∂nA
+ g′y(s, t, y1, v1)z = g(s, t, y1, v1)− g(s, t, y1, v2) on Σ,

z(0) = 0 in Ω.

(4.12)
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Proof. Using Lemma 4.3, the proof is similar to the one of Theorem 4.1 in [21]
and the one of Theorem 3.4 in [4]. The relation (4.10), which does not appear in our
previous papers, is deduced with the help of (4.4) and (4.8).

5. Proof of Pontryagin’s principle.

5.1. Penalized problem. Following [15, 16], since C(D) is separable, there
exists a norm | · |C(D), which is equivalent to the usual norm ‖ · ‖C(D) such that

(C(D), | · |C(D)) is strictly convex, andM(D), endowed with the dual norm of | · |C(D)

(denoted by | · |M(D)), is also strictly convex; see [7, Corollary 2, p. 148 or Corollary

2, p. 167]. We define the distance function to C (for the new norm | · |C(D)) by

dC(ϕ) = inf
z∈C
|ϕ− z|C(D).

Since C is convex, then dC is convex and Lipschitz of rank 1, and we have

lim sup
ρ↘0,

ϕ′→ϕ

dC(ϕ′ + ρz)− dC(ϕ′)
ρ

= max{〈ξ, z〉M(D)×C(D) | ξ ∈ ∂dC(ϕ)}(5.1)

for every ϕ, z ∈ C(D), where ∂dC is the subdifferential in the sense of convex analysis
(see [6]). Therefore, for a given ϕ ∈ C(D) we have

(5.2)

〈ξ, z − ϕ〉M(D)×C(D) + dC(ϕ) ≤ dC(z) for all ξ ∈ ∂dC(ϕ) and for all z ∈ C(D),

|ξ|M(D) ≤ 1 for every ξ ∈ ∂dC(ϕ).

Moreover it is proved in [16, Lemma 3.4] that, since C is a closed convex subset of
C(D), for every ϕ �∈ C, and every ξ ∈ ∂dC(ϕ), then |ξ|M(D) = 1. Since ∂dC(ϕ) is
convex inM(D) and (M(D), | · |M(D)) is strictly convex, if ϕ �∈ C, then ∂dC(ϕ) is a
singleton and dC is Gâteaux-differentiable at ϕ.

Let (ȳ, v̄) be an optimal solution of (P). Consider the penalized functional

Jk(y, v) =


[(

J(y, v)− J(ȳ, v̄) +
1

k2

)+
]2

+ (dC(Φ(y)))
2

+

m0∑
i=1

[∫
Σ

Ψi(s, t, y, v) dsdt

]2
+

m∑
i=m0+1

[(∫
Σ

Ψi(s, t, y, v) dsdt

)+
]2


1
2

.

We easily verify that (ȳ, v̄) is a 1
k2 -solution of the penalized problem

(PM
k ) inf{Jk(y, v) | y ∈W (0, T ) ∩ C(Q), v ∈ Vad(v̄,M), (y, v) satisfies (1.1)}

for every M > 0 and every k > 0. For every k > 0, we set Mk = k( 1
2σ̄− 1

2σ ) and we
denote by (Pk) the penalized problem (PMk

k ).

5.2. Proof of Theorem 2.1. Step 1. For every k ≥ 1, the metric space
(Vad(v̄,Mk), d) is complete; see Proposition 4.2. Let us prove that the functional
v �−→ Jk(yv, v) is lower semicontinuous on this metric space. Since the mappings
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v → J(yv, v) and v → ∫
Σ
Ψi(s, t, yv, v) dsdt (m0 + 1 ≤ i ≤ m) are lower semi-

continuous on (Vad(ṽ,Mk), d), it is clear that v → (
J(yv, v)− J(ȳ, v̄) + 1

k2

)+
and

v → (∫
Σ
Ψi(s, t, yv, v) dsdt

)+
(m0 + 1 ≤ i ≤ m) are also lower semicontinuous on

(Vad(ṽ,Mk), d) because r → r+ is a nondecreasing continuous mapping from R into
R

+. On the other hand, the mappings v → ∫
Σ
Ψi(s, t, yv, v) dsdt (1 ≤ i ≤ m0) are

continuous on (Vad(ṽ,Mk), d). Since the mappings r → r2 and r → r
1
2 are nonde-

creasing and continuous from R
+ into R

+, then v → Jk(yv, v) is lower semicontinuous.
Due to Ekeland’s variational principle, for every k ≥ 1, there exists vk ∈ Vad(v̄,Mk)
such that

d(vk, v̄) ≤ 1

k
and Jk(yk, vk) ≤ Jk(yv, v) +

1

k
d(vk, v) for every v ∈ Vad(v̄,Mk).(5.3)

(yk and yv are the solutions of (1.1) corresponding, respectively, to vk and v.) Let v0

be in Vad. Let k0 be large enough so that v0 belong to Vad(v̄,Mk) for every k ≥ k0.
Observe that, for the above choice of Mk, (vk)k tends to v̄ in Lσ̄(Σ). Let us check
this. Denote by Σk the set of points (s, t) ∈ Σ where vk(s, t) �= v̄(s, t). From (5.3) we
know that LN (Σk) ≤ 1/k. Then∫

Σ

|v̄ − vk|σ̄dsdt =
∫

Σk

|v̄ − vk|σ̄dsdt ≤ ‖v̄ − vk‖σ̄σ,ΣLN (Σk)
1− σ̄

σ

≤M σ̄
k k

σ̄
σ−1 = k

1
2 ( σ̄σ−1) −→ 0 when k → +∞.

(5.4)

Step 2. Theorem 3.1 gives the existence of measurable sets Ek
ρ ⊂ Σ, such that

LN (Ek
ρ ) = ρLN (Σ),∫

Σ\Ekρ
|vk − v̄|σ dsdt+

∫
Ekρ

|v0 − v̄|σ dsdt

= (1− ρ)

∫
Σ

|vk − v̄|σ dsdt+ ρ

∫
Σ

|v0 − v̄|σ dsdt,

(5.5)

∫
Σ\Ekρ

h(s, t, vk) dsdt+

∫
Ekρ

h(s, t, v0) dsdt

= (1− ρ)

∫
Σ

h(s, t, vk) dsdt+ ρ

∫
Σ

h(s, t, v0) dsdt,

(5.6)

∫
Σ

(Ψ(s, t, ykρ , v
k
ρ)−Ψ(s, t, yk, vk)) dsdt

= ρ

∫
Σ

(Ψ′
y(s, t, yk, vk)zk +Ψ(s, t, yk, v0)−Ψ(s, t, yk, vk)) dsdt+ o(ρ),

(5.7)

ykρ = yk + ρzk + rkρ , lim
ρ→0

1

ρ
‖rkρ‖C(Q) = 0,(5.8)

J(ykρ , v
k
ρ) = J(yk, vk) + ρ∆Jk + o(ρ),(5.9)

where vkρ is defined by

vkρ(s, t) =

{
vk(s, t) on Σ \ Ek

ρ ,
v0(s, t) on Ek

ρ ,
(5.10)
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ykρ is the state corresponding to vkρ , zk is the weak solution of

∂zk
∂t

+Azk + f ′
y(x, t, yk)zk = 0 in Q,

∂zk
∂nA

+ g′y(s, t, yk, vk)zk = g(s, t, yk, vk)− g(s, t, yk, v0) on Σ,

zk(0) = 0 in Ω,

and

∆Jk =

∫
Q

F ′
y(x, t, yk(x, t))zk(x, t) dxdt+

∫
Σ

G′
y(s, t, yk(s, t), vk(s, t))zk(s, t) dsdt

+

∫
Σ

[G(s, t, yk(s, t), v0(s, t))−G(s, t, yk(s, t), vk(s, t))] dsdt+

∫
Ω

L′
y(x, yk(T ))zk(T ) dx.

On the other hand, for every k > k0 and every 0 < ρ < 1, due to (5.5) and (5.6), vkρ
belongs to Vad(v̄,Mk). If we set v = vkρ in (5.3), it follows that

lim
ρ→0

Jk(yk, vk)− Jk(y
k
ρ , v

k
ρ)

ρ
≤ 1

k
LN (Σ).(5.11)

Taking (5.1), (5.7), (5.9), and the definition of Jk into account, we obtain

− νk∆Jkλk

∫
Σ

[
Ψ(·, yk, v0)−Ψ(·, yk, vk) + Ψ′

y(·, yk, vk)zk
]
dsdt(5.12)

−〈µk,Φ
′(yk)zk〉D ≤

1

k
LN (Σ),

where

λi
k =

∫
Σ
Ψi(s, t, yk, vk) dsdt

Jk(yk, vk)
for 1 ≤ i ≤ m0,

λi
k =

(∫
Σ
Ψi(s, t, yk, vk) dsdt )

+

Jk(yk, vk)
for m0 + 1 ≤ i ≤ m,

νk =
(J(yk, vk)− J(ȳ, v̄) + 1

k2 )
+

Jk(yk, vk)
, µk =


dC(Φ(yk))∇dC(Φ(yk))

Jk(yk, vk)
if Φ(yk) �∈ C,

0 otherwise.

For every k > 0, we consider the weak solution pk of

−∂pk
∂t

+A∗pk + f ′
y(x, t, yk)pk = νkF

′
y(x, t, yk) + [Φ

′(yk)∗µk]|Q,

∂pk
∂nA∗

+ g′y(·, yk, vk)pk = νkG
′
y(·, yk, vk) + λkΨ

′
y(·, yk, vk) + [Φ′(yk)∗µk]|Σ,

pk(T ) = νkL
′
y(x, yk(T )) + [Φ

′(yk)∗µk]|ΩT ,

(5.13)
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where [Φ′(yk)∗µk]|Q, [Φ′(yk)∗µk]|Σ, and [Φ′(yk)∗µk]|Ω̄T have the same meaning as in
Theorem 2.1. By using the Green formula of Theorem 3.4, we obtain

νk

∫
Q

F ′
y(x, t, yk)zk dxdt+ νk

∫
Σ

G′
y(s, t, yk, vk)zk dsdt+ νk

∫
Ω

L′
y(x, yk(T ))zk(T ) dx

+λk

∫
Σ

Ψ′
y(s, t, yk, vk)zk dsdt+ 〈µk,Φ

′(yk)zk〉D

=

∫
Q

pk

(
∂zk
∂t

+Azk + f ′
y(x, t, yk)zk

)
dxdt+

∫
Σ

pk

(
∂zk
∂nA

+ g′y(s, t, yk, vk)zk

)
dsdt

=

∫
Σ

pk[g(s, t, yk, vk)− g(s, t, yk, v0)] dsdt.

With this equality, (5.12), and the definition of ∆Jk, we have∫
Σ

[νkG(s, t, yk, vk) + λkΨ(s, t, yk, vk)− pkg(s, t, yk, vk)] dsdt(5.14)

≤
∫

Σ

[νkG(s, t, yk, v0) + λkΨ(s, t, yk, v0)− pkg(s, t, yk, v0)] dsdt+
1

k
LN (Σ)

for every k ≥ k0.
Step 3. Notice that ν2

k +
∑

i(λ
i
k)

2 + |µk|2M(D)
= 1. Then there exist an element

(ν̄, λ̄, µ̄) in R
1+m × M(D) with ν̄ ≥ 0 and λ̄i ≥ 0 for m0 + 1 ≤ i ≤ m, and a

subsequence, still denoted by (νk, λk, µk)k, such that

(νk, λk) −→ (ν̄, λ̄) in R
1+m, µk ⇀ µ̄ weak-star inM(D).

From Theorem 3.4, we obtain the estimate

‖pk‖Lδ′ (0,T ;W 1,d′ (Ω)) ≤ C4(δ, d)
{
‖F ′

y(·, yk)‖1,Q + ‖G′
y(·, yk, vk)‖1,Σ +

‖L′
y(·, yk(T ))‖1,Ω + |λk|‖Ψ′

y(., yk, vk)‖1,Σ + |µk|M(D)‖Φ′
y(yk)‖L(C(D);C(D))

}
for every (δ, d) satisfying N

2d +
1
δ < 1

2 , where L(C(D);C(D)) denotes the space of
linear continuous mappings from C(D) to C(D).

Since the sequences (νk)k, (λk)k, (µk)k, (yk)k, and (vk)k are bounded, respec-
tively, in R, R

m, M(D), C(Q), and in Lσ̄(Σ), the sequence (pk)k is bounded in
Lδ′(0, T ;W 1,d′

(Ω)). Then there exist p̄ ∈ Lδ′(0, T ;W 1,d′
(Ω)) and a subsequence, still

denoted by (pk)k, such that (pk)k weakly converges to p̄ in Lδ′(0, T ;W 1,d′
(Ω)) for

every (δ, d) satisfying N
2d +

1
δ < 1

2 . By using the same arguments as in [21], we can
prove that p̄ is the weak solution of (2.4).

Step 4. Recall that (vk)k tends to v̄ in Lσ̄(Σ) (see (5.4)).
By passing to the limit when k tends to infinity in (5.14), with Fatou’s lemma

(applied to the sequence of functions (νkG(·, 0, vk(·)), λkΨ(·, 0, vk(·)))k and the con-
vergence results stated in Step 2, we obtain

HΣ(ȳ, v̄, p̄, ν̄, λ̄) ≤ HΣ(ȳ, v0, p̄, ν̄, λ̄),(5.15)
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for every v0 ∈ Vad. On the other hand, from definitions of µk and λk, and from (5.2),
we deduce

λi
k

∫
Σ

Ψi(s, t, yk, vk) dsdt = 0, m0 + 1 ≤ i ≤ m,

〈µk, z − Φ(yk)〉M(D)×C(D) ≤ 0 for all z ∈ C.

We obtain (2.2) and (2.3) by passing to the limit in these expressions. Since C is of
finite codimension, by using the same arguments as in [22], we prove that (ν̄, λ̄, µ̄) is
nonzero.
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Abstract. An infinite-dimensional linear system described by ẋ(t) = Ax(t) + Bu(t) (t ≥ 0) is
said to be optimizable if for every initial state x(0), an input u ∈ L2 can be found such that x ∈ L2.
Here, A is the generator of a strongly continuous semigroup on a Hilbert space and B is an admissible
control operator for this semigroup. In this paper we investigate optimizability (also known as the
finite cost condition) and its dual, estimatability. We explore the connections with stabilizability and
detectability. We give a very general theorem about the equivalence of input-output stability and
exponential stability of well-posed linear systems: the two are equivalent if the system is optimizable
and estimatable. We conclude that a well-posed system is exponentially stable if and only if it is
dynamically stabilizable and input-output stable. We illustrate the theory by two examples based
on PDEs in two or more space dimensions: the wave equation and a structural acoustics model.
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1. Introduction and outline of the results. This paper is mainly about
linear infinite-dimensional systems described either by{

ẋ(t) = Ax(t) +Bu(t) , x(0) = x0 ,
y(t) = x(t) , t ≥ 0 ,

(1.1)

or (in the dual situation) by{
ẋ(t) = Ax(t) + u(t) , x(−∞) = 0 ,
y(t) = CΛx(t) , t ≤ 0 .

(1.2)

Here, A is the generator of a strongly continuous semigroup of operators T on the
state space X, B is an admissible control operator for T, defined on the input space
U , and C : D(A)→Y is an admissible observation operator for T. U,X, and Y are
Hilbert spaces and the operator CΛ is the Λ-extension of C:

CΛz = lim
λ→+∞

Cλ(λI −A)−1z(1.3)

for all z ∈ X for which the limit exists. In both types of systems, u is the input
function, x is the state trajectory, and y is the output function. The first system is
determined by the pair (A,B) and the second by the pair (A,C).

The pair (A,B) is called optimizable if for every x0 ∈ X, a function u in L2 can
be found such that x is in L2. If B is bounded, then optimizability is equivalent to
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stabilizability via a bounded state feedback operator: u(t) = Fy(t) in (1.1); see [12].
For unbounded B, stabilizability implies optimizability, but we do not know if the
converse holds. Here, by stabilizability we mean a rather general concept, which will
be recalled in section 2 and which involves an unbounded state feedback operator.
Obviously, exact controllability implies optimizability.

Estimatability is (by definition) the dual of optimizability: the pair (A,C) is es-
timatable if (A∗, C∗) is optimizable. If C is bounded, then estimatability is equivalent
to detectability via a bounded output injection operator: u(t) = Hy(t) in (1.2). For
unbounded C, detectability implies estimatability, but we do not know if the converse
holds. For the precise meaning of detectability which we have in mind, we refer to
section 2. Obviously, exact observability implies estimatability.

In this paper we investigate the concepts of optimizability and estimatability.
Optimizability (sometimes called the finite cost condition) has received some atten-
tion in recent years; see, for example, Flandoli, Lasiecka, and Triggiani [13], Jacob
and Zwart [16], Rebarber and Zwart [23] and the references therein. As far as we
know, estimatability has not yet been considered. Of course, every statement about
optimizability can be translated into a dual statement about estimatability, but there
is more to estimatability than just this. For example, it is interesting to derive the
duality-free definition of estimatability, namely, that a final state estimator exists for
the system (1.2). Also, certain estimates appear to be natural in the context of es-
timatability, but not in the dual context. It will be interesting to look at well-posed
linear systems which are both optimizable and estimatable.

We now outline the contents of the sections and state some of the results. In
section 2 we recall the necessary background on admissible control and observation
operators, well-posed linear systems, stabilizability, and detectability.

In section 3 we study the concept of optimizability. We are concerned with sys-
tems described by (1.1). We review some LQ optimal control theory results for opti-
mizable systems and derive some simple consequences. We derive a Hautus test for
optimizability. We introduce the open-loop L2-stabilization problem, which is to find a
bounded operator F from X to L2([0,∞), U) such that, taking in (1.1) u = Fx0, the
state trajectory x is in L2([0,∞), X) and depends continuously on x0. As is easy to
guess, it turns out that this problem (and its optimal version, also defined in section
3) is solvable if and only if (A,B) is optimizable.

In section 4 we study the concept of estimatability. We show that estimatability of
(A,C) is equivalent to the solvability of the associated final state estimation problem.
This concerns systems described by (1.2). The function u is in L2((−∞, 0], X), it has
compact support, and x(t) = 0 for large negative t. The problem is to estimate x(0),
based on the knowledge of y, such that the estimation error depends continuously on
u (with its L2-norm). This is difficult because, unless T is exponentially stable, x(0)
and y do not depend continuously on u (with its L2-norm). Indeed, if the system is
unstable and the support of u is far from zero (i.e., it is in the “distant past”), then
its influence on x(0) and on the “recent past” of y can be very large.

A stronger version of this problem is the optimal final state estimation problem,
which turns out to be the dual of the optimal open-loop L2-stabilization problem
introduced in section 3. Based on this duality, we derive that the estimatability of
(A,C) implies the existence of a K > 0 such that

∫ T

0

‖Ttx0‖2dt ≤ K2

(
‖x0‖2 +

∫ T

0

‖CTtx0‖2dt
)
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for all x0 ∈ D(A) and for all T ≥ 0. We do not know if this estimate is sufficient
for estimatability. Another consequence of estimatability is the following: there exist
δ > 0 and m > 0 such that for all s ∈ C with Re s > −δ

‖(sI −A)z‖+ ‖Cz‖ ≥ m‖z‖ ∀ z ∈ D(A) .

Again, we do not know if the converse holds.
In section 5 we investigate the relation between two stability concepts. A well-

posed linear system with input space U and output space Y is called input-output
stable if it maps inputs in L2([0,∞), U) into outputs in L2([0,∞), Y ). Here, the
initial state is considered to be zero. Input-output stability is equivalent to the fact
that the transfer function G of the system is an L(U, Y )-valued H∞ function (i.e.,
G is bounded on the open right half-plane). A well-posed linear system is called
exponentially stable if its semigroup is exponentially stable.

It is well known that exponential stability implies input-output stability (see, e.g.,
[36]), but the converse is not true (not even for finite-dimensional systems). There
has been much interest in recent years in finding additional conditions on the system
which imply that these two kinds of stability are equivalent (we shall give a short
account of this). The main result of section 7 is a generalization of all the results
known to us in this direction. Our result is the following.

Theorem 1.1. A well-posed linear system is exponentially stable if and only if it
is optimizable, estimatable, and input-output stable.

In section 6 we show that optimizability and estimatability are preserved under
output feedback. This is needed in the study of the dynamic stabilizability of well-
posed linear systems. Such a system is called dynamically stabilizable if it can be
embedded as a subsystem of a larger, exponentially stable well-posed linear system.
The “other half” of this larger system is a so-called stabilizing controller with internal
loop (see section 6 for the precise definition). Our definition of dynamic stabilization
includes stabilization by static feedback, as well as stabilization by a controller in the
usual sense, as discussed, for example, in Chapter 4 of Curtain and Zwart [12] (where
the control and observation operators are assumed to be bounded, which simplifies the
analysis). Sufficient conditions for dynamic stabilizability in our general sense (and a
design procedure) were given in Weiss and Curtain [40], in the context of regular linear
systems. (Regular linear systems are a large subclass of well-posed linear systems; see
section 2.) The main result of section 6 is the following.

Theorem 1.2. A well-posed linear system is dynamically stabilized by a controller
with internal loop if and only if (1) both subsystems are optimizable and estimatable,
(2) the closed-loop system is input-output stable.

This, combined with Theorem 1.1, implies the following useful corollary.
Corollary 1.3. A well-posed linear system is exponentially stable if and only if

it is dynamically stabilizable and input-output stable.
We give examples of transfer functions which cannot be associated to dynamically

stabilizable systems. For example, if G is a Blaschke product with zeros at 1
n ± in,

then no system with transfer function G can be dynamically stabilizable.
In section 7 we give two examples based on partial differential equations (PDEs).

One concerns the n-dimensional wave equation with mixed boundary control and
boundary observation on a subset of the boundary, and the other is a structural
acoustic system (the two-dimensional wave equation interacting with a beam equa-
tion). Both examples use the last corollary to conclude that the system is not dynam-
ically stabilizable. Since the proof of Corollary 1.3 relies on a majority of the other
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results derived in this paper, these results about PDE systems rely on a complex chain
of abstract systems-theoretical results.

2. Some background on infinite-dimensional systems. In this section we
gather, for easy reference, some basic facts about admissible control and observation
operators, about well-posed and regular linear systems, and about stabilizability and
detectability. However, the material cannot be learned from this section, and for
details we refer to the literature.

Throughout this section, X is a Hilbert space and A : D(A)→X is the generator
of a strongly continuous semigroup T on X. The Hilbert space X1 is D(A) with the
norm ‖z‖1 = ‖(βI − A)z‖, where β ∈ ρ(A) is fixed (this norm is equivalent to the
graph norm). The Hilbert space X−1 is the completion of X with respect to the norm
‖z‖−1 = ‖(βI −A)−1z‖. This space is isomorphic to D(A∗)∗, and we have

X1 ⊂ X ⊂ X−1

densely and with continuous embeddings. T extends to a semigroup on X−1, denoted
by the same symbol. The generator of this extended semigroup is an extension of A,
whose domain is X, so that A : X→X−1.

U is a Hilbert space and B ∈ L(U,X−1) is an admissible control operator for T,
defined as in Weiss [33]. This means that if x is the solution of

ẋ(t) = Ax(t) +Bu(t) ,(2.1)

with x(0) = x0 ∈ X and u ∈ L2([0,∞), U), then x(t) ∈ X for all t ≥ 0. In this
case, x is a continuous X-valued function of t. We have x(t) = Ttx0 + Φtu, where
Φt ∈ L(L2([0,∞), U), X) is defined by

Φtu =

∫ t

0

Tt−σBu(σ)dσ .(2.2)

The above integration is done in X−1, but the result is in X. The Laplace transform
of x is

x̂(s) = (sI −A)−1 [x0 +Bû(s)] .

B is called bounded if B ∈ L(U,X) (and unbounded otherwise).
Y is another Hilbert space and C ∈ L(X1, Y ) is an admissible observation operator

for T, defined as in Weiss [35]. This means that for every T > 0 there exists a KT ≥ 0
such that ∫ T

0

‖CTtx0‖2dt ≤ K2
T ‖x0‖2 ∀ x0 ∈ D(A) .(2.3)

C is called bounded if it can be extended such that C ∈ L(X,Y ).
We regard L2

loc([0,∞), Y ) as a Fréchet space with the seminorms being the L2-
norms on the intervals [0, n], n ∈ N. Then the admissibility of C means that there is
a continuous operator Ψ : X→L2

loc([0,∞), Y ) such that

(Ψx0)(t) = CTtx0 ∀ x0 ∈ D(A) .(2.4)

The operator Ψ is completely determined by (2.4), because D(A) is dense in X.
However, replacing C by its Λ-extension CΛ, defined in (1.3), formula (2.4) becomes
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true for all x0 ∈ X and for almost every t ≥ 0. If y = Ψx0, then its Laplace transform
is

ŷ(s) = C(sI −A)−1x0 .(2.5)

The operator Ψ is an extended output map for T, which means that

S∗
τΨ = ΨTτ ∀ τ ≥ 0 ,(2.6)

where S∗
τ denotes the left shift by τ on L2

loc([0,∞), Y ). There is a representation
theorem stating that every extended output map for T is of the form (2.4) for some
admissible observation operator C.

By a well-posed linear system we mean a linear time-invariant system such that
on any finite time interval, the operator from the initial state and the input function
to the final state and the output function is bounded. The input, state, and output
spaces are Hilbert spaces, and the input and output functions are of class L2

loc. For the
detailed definition, background, and examples we refer to Salamon [27], [28], Staffans
[29], [30], Weiss [36], [37], Avalos and Weiss [5], and Weiss2 [41].

We recall some necessary facts about well-posed linear systems. Let Σ be such a
system, with input space U , state space X, and output space Y . We consider positive
time, t ≥ 0. The state trajectories of Σ satisfy (2.1) and the comments from the
beginning of this section apply. T is called the semigroup of Σ and B is called the
control operator of Σ. If u is the input function of Σ, x0 is its initial state, and y is
the corresponding output function, then

y = Ψx0 + Fu .(2.7)

Here, Ψ is an extended output map for T, so that it can be represented by (2.4), and
C is called the observation operator of Σ.

The operator F : L2
loc([0,∞), U)→L2

loc([0,∞), Y ) satisfies the following func-
tional equation:

S∗
τ F = ΨΦτ + FS∗

τ ∀ τ ≥ 0 ,(2.8)

where Φτ is the operator from (2.2) and S∗
τ is as in (2.6). It follows from (2.6) and

(2.8) that if x(τ) = Tτ x0 +Φτ u and y is given by (2.7), then

S∗
τ y = Ψx(τ) + FS∗

τ u .(2.9)

F is easiest to represent using Laplace transforms. An operator-valued analytic
function is called well-posed if its domain contains a right half-plane in C such that the
function is uniformly bounded on this half-plane. We do not distinguish between two
well-posed functions if one is a restriction of the other. There exists a unique L(U, Y )-
valued well-posed function G, called the transfer function of Σ, which determines F

as follows: if u ∈ L2([0,∞), U) and y = Fu, then y has a Laplace transform ŷ and,
for Re s sufficiently large,

ŷ(s) = G(s)û(s) .

This determines F, since L2 is dense in L2
loc. We have

G(s)−G(β) = C
[
(sI −A)−1 − (βI −A)−1

]
B
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for any s, β in the open right half-plane determined by the growth bound of T. This
shows that G is determined by A,B, and C up to an additive constant operator. If T

is exponentially stable, then G is in H∞, i.e., it is bounded on the half-plane where
Re s > 0 (and even on a larger half-plane).

An operator K ∈ L(Y,U) is called an admissible feedback operator for Σ (or for
G) if I − GK has a well-posed inverse (equivalently, if I − KG has a well-posed
inverse). If this is the case, then the system with output feedback shown in Figure 1
is well-posed (its input is v, its state and output are the same as for Σ). This new
system is called the closed-loop system corresponding to Σ and K, and it is denoted by
ΣK . Its transfer function is GK = G(I−KG)−1 = (I−GK)−1G. We have that −K
is an admissible feedback operator for ΣK and the corresponding closed-loop system
is Σ. For more details on closed-loop systems we refer to [37]. Any interconnection
of finitely many well-posed systems can be thought of as a closed-loop system in the
above sense.

✻+
❤✲

+
✲ Σ ✲

✛K

v u y

Fig. 1. A well-posed linear system Σ with output feedback via K. If K is admissible, then this
is a new well-posed linear system ΣK , called the closed-loop system.

The system Σ is called regular if the limit

lim
s→+∞G(s)v = Dv

exists for every v ∈ U , where s is real (see [36]). In this case, the operator D ∈ L(U, Y )
is called the feedthrough operator of Σ. Regularity is equivalent to the fact that the
product CΛ(sI −A)−1B makes sense. In this case,

G(s) = CΛ(sI −A)−1B +D ,(2.10)

as in finite dimensions. Moreover, the function y from (2.7) satisfies, for almost every
t ≥ 0,

y(t) = CΛx(t) +Du(t) ,(2.11)

where x is the state trajectory of the system. The operators A,B,C,D are called the
generating operators of Σ because they determine Σ via (2.1) and (2.11). Regular
linear systems are usually considered on the time interval [0,∞), but other intervals
are possible, for example, (−∞, 0]. We refer to section 5 of [41] for a discussion of
this latter case. The equations (2.1) and (2.11) are not affected by the time interval
chosen. (A,B,C) is called a regular triple if A,B,C, 0 are the generating operators of a
regular linear system. Equivalently, A generates a semigroup, B and C are admissible,
the product CΛ(sI − A)−1B exists and it is bounded on some right half-plane (see
section 2 of [40]). In particular, if A is a generator, one of B and C is admissible and
the other is bounded, then (A,B,C) is a regular triple. Thus, the systems in (1.1)
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and (1.2) are both regular and their generating operators are A,B, I, 0 for (1.1) and
A, I, C, 0 for (1.2).

The generator of a semigroup is called exponentially stable if the corresponding
semigroup is exponentially stable.

Definition 2.1. (A,B) is stabilizable if there exists F ∈ L(X1, U) such that
(i) (A,B, F ) is a regular triple;
(ii) I is an admissible feedback operator for FΛ(sI −A)−1B;
(iii) A+BFΛ (with its natural domain) is exponentially stable.
In this case we say that F stabilizes (A,B).
For the concepts appearing in this definition and for further comments we refer to

[22] and [40], but we summarize here the main facts in a few sentences. Since (A,B, F )
is a regular triple, the transfer function G(s) = FΛ(sI−A)−1B is well defined. Recall
that I being an admissible feedback operator for G means that (I −G)−1 exists and
is well-posed. The natural domain of Af = A+BFΛ is

D(Af ) =
{
z ∈ D(FΛ)

∣∣ Az +BFΛz ∈ X
}
.

Conditions (i) and (ii) imply (see [37]) thatAf is the generator of a strongly continuous
semigroup T

f on X and we have

T
f
t x0 = Ttx0 +

∫ t

0

Tt−σBFΛT
f
σx0dσ .(2.12)

Moreover, (Af , B, FΛ) is a regular triple and

(I −G(s))−1 = I + FΛ(sI −Af )−1B .

It follows from the assumed exponential stability of T
f (point (iii) in the definition)

that (I−G)−1 ∈ H∞(L(U)), the space of bounded analytic L(U)-valued functions on
the half-plane where Re s > 0. Definition 2.1 is rather general, but we mention that
Staffans [30] and Morris [19] have proposed a more general (and difficult) definition,
with no regularity assumptions. It is not known if their definition is genuinely more
general, i.e., if there exists a pair (A,B) which is stabilizable in the sense of [30] and
[19], but not in the sense of Definition 2.1.

Definition 2.2. (A,C) is detectable if there exists H ∈ L(Y,X−1) such that
(i) (A,H,C) is a regular triple;
(ii) I is an admissible feedback operator for CΛ(sI −A)−1H;
(iii) A+HCΛ is exponentially stable.
In this case we say that H detects (A,C).
The comments that can be made about the conditions above are similar to those

at Definition 2.1, so we do not repeat them. This concept is almost the dual of
stabilizability, but not quite: the trouble is that if (A,H,C) is a regular triple, it does
not follow that (A∗, C∗, H∗) is a regular triple (it is weakly regular; see [41]). If Y
is finite-dimensional, then the duality holds (i.e., (A,C) is detectable if and only if
(A∗, C∗) is stabilizable); see section 3 of [40].

3. Optimizability. In this section we are concerned with systems of the type
(1.1). We use the notation X,X−1, U,A,B, and T from sections 1 and 2.

Definition 3.1. The pair (A,B) is optimizable if for every x0 ∈ X, there exists
a u ∈ L2([0,∞), U) such that x ∈ L2([0,∞), X), where

x(t) = Ttx0 +

∫ t

0

Tt−τBu(τ) dτ .(3.1)
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Note that x in (3.1) is the solution of (2.1) with x(0) = x0.
Remark 1. It is easy to see that stabilizability implies optimizability. Indeed,

assume that (A,B) is stabilized by F and let T
f be the semigroup generated by A +

BFΛ. For x0 ∈ X, define the function u by u(t) = FΛT
f
t x0 for almost every t ≥ 0.

The exponential stability of T
f implies that u ∈ L2([0,∞), U). From (2.12) we see

that the function x from (3.1) is in fact x(t) = T
f
t x0, so that x ∈ L2.

We shall need the following cost functional associated with the pair (A,B): for
every x0 ∈ X and every u ∈ L2([0,∞), U), define

J(x0, u) =

∫ ∞

0

(‖x(t)‖2 + ‖u(t)‖2) dt,(3.2)

where x(t) is as in (3.1). Note that J(x0, u) might be infinite, and optimizability
means that for every x0, J can be made finite.

The following three results are known from linear quadratic optimal control the-
ory, as developed in Flandoli, Lasiecka and Triggiani [13] (see also Staffans [31] or
Zwart [42]). In [13], optimizability is called the finite cost condition. (In Weiss2 [41],
the particular case of a stable system is treated, and our notation follows this paper.)

Proposition 3.2. Suppose that (A,B) is optimizable. Then for every x0 ∈ X
there is a unique function uopt ∈ L2([0,∞), U) such that

J(x0, u
opt) = min

u
J(x0, u) .(3.3)

There is a positive operator P ∈ L(X) such that for all x0 and uopt as above,

J(x0, u
opt) = 〈Px0, x0〉 .

The following proposition tells us that the optimal state trajectories of the system
(1.1), given by (3.1) with u = uopt, determine a semigroup.

Proposition 3.3. Suppose that (A,B) is optimizable. Then there is a strongly
continuous semigroup T

opt on X such that for every x0 ∈ X, if uopt is as in (3.3),
then

Tt
optx0 = Ttx0 +

∫ t

0

Tt−σBuopt(σ) dσ .(3.4)

The semigroup T
opt is exponentially stable.

The third result concerns an operator Fopt, which in some weak sense can be
thought of as an optimal feedback operator.

Proposition 3.4. With the notation of the previous two propositions, let Aopt :
D(Aopt)→X denote the generator of T

opt. Then P : D(Aopt)→D(A∗), so that we can
define Fopt : D(Aopt)→U by

Foptx0 = −B∗Px0 ∀ x0 ∈ D(Aopt) .(3.5)

Fopt is an admissible observation operator for T
opt, and for every x0 ∈ D(Aopt),

uopt(t) = Fopt
Tt

optx0 ∀ t ≥ 0 ,(3.6)

Aoptx0 = (A+BFopt)x0 .(3.7)
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The operator P satisfies a Riccati equation on D(Aopt) and possibly also on D(A),
but this is not needed here, so we only refer to [13], [31], [41], [42].

It follows from (3.6) that, denoting by F opt
Λ the Λ-extension of Fopt, as in (1.3),

uopt(t) = F opt
Λ Tt

optx0 ,(3.8)

for every x0 ∈ X and almost every t ≥ 0. The Laplace transform of uopt is

ûopt(s) = Fopt(sI −Aopt)−1x0 .(3.9)

Combining (3.8) with (3.4), we get that

Tt
optx0 = Ttx0 +

∫ t

0

Tt−σBF opt
Λ Tσ

optx0 dσ .(3.10)

This formula resembles (2.12), but the context is different: for example, we do not
know if B is an admissible control operator for T

opt. The formula (3.7) can be derived
from (3.10) using the Laplace transformation.

The following proposition is an extension of the Hautus test for stabilizability to
infinite-dimensional systems. It is a simple particular case of a result in section 2 of
Rebarber and Zwart [23]. We denote by Ran [sI −A |B] the subspace of X−1 which
consists of all vectors of the form (sI −A)z +Bv, where z ∈ X and v∈ U .

Proposition 3.5. If (A,B) is optimizable, then there exists a δ > 0 such that,
for all s ∈ C with Re s > −δ,

Ran [sI −A |B] ⊃ X .

Proof. Let Aopt and Fopt be the operators from Proposition 3.4. Since Aopt is
exponentially stable, there exists a δ > 0 such that sI − Aopt is invertible for all s
with Re s > −δ. We have for every such s and for every x0 ∈ X,

x0 = (sI −Aopt)(sI −Aopt)−1x0

= (sI −A)(sI −Aopt)−1x0 −BFopt(sI −Aopt)−1x0 .

Denoting z = (sI − Aopt)−1x0 and v = −Fopt(sI − Aopt)−1x0, we get the desired
representation of x0: x0 = (sI −A)z +Bv.

Definition 3.6. The open-loop L2-stabilization problem for (A,B) is to find a
bounded linear operator

F : X→L2([0,∞), U)

such that, taking in (3.1) u = Fx0, x should depend continuously on x0, i.e.,

sup
‖x0‖≤1

‖x‖L2([0,∞),X) < ∞ .(3.11)

It looks as if the solvability of this problem is a more restrictive condition than
optimizability, but the optimal control theory results listed earlier imply that they
are in fact equivalent (this will be needed in section 4).

Proposition 3.7. The open-loop L2-stabilization problem for (A,B) is solvable
if and only if (A,B) is optimizable. If the latter condition holds, then one solution of
the open-loop L2-stabilization problem is the operator Fopt defined by

(Foptx0)(t) = F opt
Λ Tt

optx0(3.12)
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for every x0 ∈ X and almost every t ≥ 0, where F opt
Λ and T

opt are as in (3.8).
Proof. It is obvious that the solvability of the open-loop L2-stabilization problem

via an operator F implies optimizability by choosing u = Fx0.
Conversely, suppose that (A,B) is optimizable. Since T

opt is exponentially stable
and Fopt is admissible for T

opt, the operator Fopt from (3.12) is bounded, as requir-
ed in Definition 3.6. If we take in (3.1) u = Foptx0, then u = uopt and by (3.4),
x(t) = Tt

optx0 . Since T
opt is exponentially stable, the above operator from x0 to the

function x in L2([0,∞), X) is bounded, i.e., (3.11) holds.
We want to introduce the optimal version of the open-loop L2-stabilization prob-

lem. For this, we introduce the operators

Ψ : X→L2
loc([0,∞), X) , F : L2([0,∞), U)→L2

loc([0,∞), X)
by

(Ψx0)(t) = Ttx0 , (Fu)(t) =

∫ t

0

Tt−σBu(σ)dσ .(3.13)

(Both Ψx0 and Fu are in fact continuous X-valued functions of t.) Ψ and F are the
operators from (2.7) for the regular linear system described by (1.1). If the semigroup
T is exponentially stable, then the operators Ψ and F are bounded if we apply the
L2-norm to Ψx0 and to Fu. Without exponential stability, Ψ and F are in general
unbounded, and this is the case of interest.

The function x from (3.1) is x = Ψx0 +Fu, so that if F is an operator from X to
L2([0,∞), U), then taking u = Fx0, x can be written as

x = (FF+Ψ)x0 .(3.14)

This shows that the supremum appearing on the left of (3.11) is the norm of the oper-
ator FF+Ψ (from X to L2([0,∞), X)). Thus, we obtain the following reformulation
of the open-loop L2-stabilization problem for (A,B): find a bounded linear operator
F : X→L2([0,∞), U) such that FF+Ψ is bounded.

Definition 3.8. The optimal open-loop L2-stabilization problem for (A,B) is to
find a bounded operator

Fopt : X→L2([0,∞), U)

such that FFopt +Ψ is bounded (from X to L2([0,∞), X)) and∥∥∥∥[ FFopt +Ψ
Fopt

]∥∥∥∥ = min
F

∥∥∥∥[ FF+Ψ
F

]∥∥∥∥ .
Proposition 3.9. The optimal open-loop L2-stabilization problem for (A,B) is

solvable if and only if (A,B) is optimizable.
If the latter condition holds, then one solution of the optimal open-loop L2-stabili-

zation problem is the operator Fopt defined in (3.12).
Proof. It is clear that the solvability of the optimal open-loop L2-stabilization

problem via an operator Fopt implies optimizability, by choosing u = Foptx0.
Conversely, suppose that (A,B) is optimizable, and let Fopt be defined by (3.12).

We know from Proposition 3.7 that Fopt solves the open-loop L2-stabilization problem,
so that (using the reformulation of this problem given before Definition 3.8) FFopt+Ψ
is bounded. From (3.14) it is easy to see that

J(x0,Fx0) =

∥∥∥∥[ FF+Ψ
F

]
x0

∥∥∥∥2 ,
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where J is the cost functional from (3.2). For each x0 ∈ X, the left-hand side above
is minimized for F = Fopt (this follows from Proposition 3.4), so that the norm of the
operator appearing on the right-hand side must be minimal for F = Fopt.

Recently, Jacob and Zwart [16] have obtained interesting necessary conditions
for optimizability of systems with a finite-dimensional input space. These conditions
concern the spectrum of A and the multiplicity of its eigenvalues.

4. Estimatability. In this section we are concerned with systems of the type
(1.2). We use the notation X,X1, Y, A,C,CΛ, and T from sections 1 and 2. If we
denote byX∗

−1 the completion ofX with respect to the norm ‖x‖∗−1 = ‖(βI−A∗)−1x‖,
then X∗

−1 = (X1)
∗ and C∗ ∈ L(Y,X∗

−1). As is well known, C∗ is an admissible control
operator for T

∗. We have A∗ : D(A∗)→X, which can be extended to A∗ : X→X∗
−1.

Definition 4.1. The pair (A,C) is estimatable if (A∗, C∗) is optimizable.
Estimatability is equivalent to the solvability of the final state estimation problem,

which we describe in what follows.
Consider the system Σ described by (1.2). Recall that the time is negative. We

assume that u ∈ L2((−∞, 0], X) and u has compact support. The system is at rest
before u becomes active, i.e., x(t) = 0 if u(τ) = 0 for all τ ≤ t.

Definition 4.2. The final state estimation problem for (A,C) is to find a
bounded linear operator

E : L2((−∞, 0], Y )→X

such that for the system Σ in (1.2), denoting e = Ey − x(0), e should depend contin-
uously on u, i.e,

sup
‖u‖≤1

‖e‖ < ∞ .(4.1)

If (4.1) holds, then Ey is a reasonable estimate (or guess) of x(0), based only on
the information y, and e is the estimation error; see Figure 2 (with w = 0). The
operator E could be called a final state estimator for the system in (1.2).

Σ✲ ✲ ❤
❄ ✲ E ✲ ❤ ✲

✻

+

+

+

−

u

w

y e

x(0)

Fig. 2. The final state estimation problem. The system Σ is described by (1.2), the time
is negative, and w = 0. We are looking for a bounded operator E (the estimator) such that the
operator from u to e should be bounded. Here, e is the estimation error. In the optimal version of
this problem, the output noise w is in L2 and we want to minimize the norm of the operator from
the pair (u,w) to e.

It follows from the description of Σ in (1.2) that

x(0) = Φu, y = Lu,
where

Φu =

∫ ∞

0

Tσu(−σ) dσ , (Lu)(t) = CΛ

∫ ∞

t

Tt+σu(−σ) dσ .(4.2)
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If T is exponentially stable, then these operators are bounded if we apply the L2-
norm to u. If T is not exponentially stable, then the operators Φ and L are in general
unbounded (this is the case of interest) and their domain contains the L2-functions
with compact support. With this notation, the formula for e becomes

e = (EL− Φ)u.(4.3)

The expression on the left of (4.1) is the norm of the operator EL − Φ (from
L2((−∞, 0], X) to X). Thus, we obtain the following reformulation of the final state
estimation problem for (A,C): find a bounded linear operator E from L2((−∞, 0], Y )
to X such that EL− Φ is bounded.

The time-reflection operator I
´́
⊂̧⊂... : L2((−∞, 0],W )→L2([0,∞),W ) is defined by

( I
´́
⊂̧⊂... w)(t) = w(−t) ∀t ≥ 0 ,

where W is an arbitrary Hilbert space. Note that ( I
´́
⊂̧⊂...

∗
v)(t) = v(−t) for all v in

L2([0,∞),W ), so that I
´́
⊂̧⊂... I
´́
⊂̧⊂...

∗
= I and I

´́
⊂̧⊂...

∗ I
´́
⊂̧⊂... = I.

Theorem 4.3. The final state estimation problem for (A,C) is solvable if and
only if (A,C) is estimatable. If the latter condition holds, then one solution of the
final state estimation problem is the operator Eopt defined by

Eopt = − (Fopt
)∗

I
´́
⊂̧⊂... ,(4.4)

where Fopt is the operator from Proposition 3.7, but with (A∗, C∗) in place of (A,B).
A system-theoretic interpretation of (4.4) will be given after the proof.
Proof. Suppose that (A,C) is estimatable. By Proposition 3.7, the open-loop L2-

stabilization problem is solvable for (A∗, C∗), and one solution is the operator Fopt

from (3.12). Thus, with the notation from (3.13) (with T
∗ and C∗ in place of T and

B) we have that FFopt +Ψ is bounded (from X to L2([0,∞), X)).
We claim that Eopt

L− Φ is bounded and

Eopt
L− Φ = − (FFopt +Ψ

)∗
I

´́
⊂̧⊂... .(4.5)

We have to be careful with the proof of (4.5), because the operators L, Φ, F, and Ψ
are in general unbounded. Let u ∈ L2((−∞, 0], X) have compact support and take
z ∈ X and v ∈ L2([0,∞), Y ). We need the identities

〈 I
´́
⊂̧⊂... Lu, v〉 = 〈 I

´́
⊂̧⊂... u,Fv〉 , 〈Φu, z〉 = 〈 I

´́
⊂̧⊂... u,Ψz〉 .(4.6)

By 〈 I
´́
⊂̧⊂... u,Fv〉 we mean

∫∞
0
〈u(−t), (Fv)(t)〉dt, which makes sense because u has com-

pact support, and a similar explanation applies to 〈 I
´́
⊂̧⊂... u,Ψz〉. The formulas (4.6) are

verified by simple computations, using (3.13) and (4.2).
We have, using (4.4) and (4.6),

〈(Eopt
L− Φ)u, z〉 = −〈 I

´́
⊂̧⊂... Lu,Foptz〉 − 〈Φu, z〉

= −〈 I
´́
⊂̧⊂... u,FFoptz〉 − 〈 I

´́
⊂̧⊂... u,Ψz〉

= −〈 I
´́
⊂̧⊂... u, (FFopt +Ψ)z〉 .
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Since functions with compact support are dense in L2((−∞, 0], X), this shows that
Eopt

L − Φ is bounded and (4.5) holds. Thus, Eopt is a solution of the final state
estimation problem for (A,C) (it is a final state estimator).

Conversely, suppose that the final state estimation problem for (A,C) is solvable
and let E be a final state estimator for the system in (1.2), i.e., EL − Φ is bounded
(from L2((−∞, 0], X) to X). Define F : X→L2([0,∞), X) by

F = − I
´́
⊂̧⊂... E∗ ,

so that E = −F∗ I
´́
⊂̧⊂... , like in (4.4). Then by a similar argument as in the first part of

this proof, we obtain that

〈(EL− Φ)u, z〉 = − 〈 I
´́
⊂̧⊂... u, (FF+Ψ)z〉 ,(4.7)

which shows that FF+Ψ is bounded. This means that the open-loop L2-stabilization
problem is solvable for (A∗, C∗). By Proposition 3.7, (A∗, C∗) is optimizable, i.e.,
(A,C) is estimatable.

To understand the meaning of (4.4), we write it in a more explicit way. Let
T

opt denote the optimal semigroup from (3.4), corresponding to the optimal control
problem (3.1), (3.2), (3.3), but with (A,B) replaced by (A∗, C∗) (in particular, T is
replaced by its adjoint semigroup T

∗). We denote by Aopt the generator of T
opt and

by Fopt the operator from (3.5), so that Fopt ∈ L(X1
opt, Y ), where X1

opt is D(Aopt)
with the graph norm. By Proposition 3.4, Fopt is an admissible observation operator
for T

opt and, according to (3.5), Fopt = −CP .
Let Aopt

d and Hopt denote the adjoints of Aopt and Fopt. Thus, Hopt ∈ L(Y,Xd
−1),

where Xd
−1 is the dual of X1

opt (the completion of X with respect to the norm ‖z‖d−1 =

‖(Aopt
d )−1z‖). Aopt

d is the generator of the semigroup S
opt, which is the adjoint of the

semigroup T
opt . By duality we know that Hopt is an admissible control operator for

S
opt. By an easy computation we can write(

Fopt
)∗

v =

∫ ∞

0

St
optHoptv(t)dt.(4.8)

Now we can rewrite the formula for Eopt:

Eopty = −
∫ ∞

0

St
optHopty(−t)dt.(4.9)

This corresponds to the following system:

ż(t) = Aopt
d z(t)−Hopty(t)(4.10)

with t ≤ 0 and z(−∞) = 0. The final state z(0) of this system is Eopty. For bounded
C, see also the comments after Proposition 4.4.

Now we derive the dual counterparts of (3.10) and (3.7).
Proposition 4.4. Assume that (A,C) is estimatable. Let S

opt and Hopt be as
in (4.9) and let Aopt

d be the generator of S
opt. Then for every x0 ∈ X,

St
optx0 = Ttx0 +

∫ t

0

St−σ
opt HoptCΛTσx0dσ(4.11)

and, for every z0 ∈ D(A),

Az0 =
(
Aopt
d −HoptC

)
z0 .(4.12)
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Proof. The formula (4.11) follows from (3.10) (with T
∗
t and C∗ in place of Tt and

B) by taking adjoints and making some simple computations. Applying the Laplace
transformation to (4.11), we obtain

(sI −Aopt
d )−1x0 − (sI −A)−1x0 = (sI −Aopt

d )−1HoptC(sI −A)−1x0 .(4.13)

Applying (sI −Aopt
d ) to both sides and denoting z0 = (sI −A)−1x0, we get

(sI −A)z0 − (sI −Aopt
d )z0 = HoptCz0

(this is an identity in Xd
−1). From here, (4.12) follows.

Assuming for a moment that C (and hence also Hopt) is bounded, using (4.12),
we can rewrite (4.10) of the final state estimator in the form

ż(t) = Az(t) +Hopt(Cz(t)− y(t)) .

Here we recognize the equation of a Kalman estimator from finite-dimensional systems
theory (this estimator has no access to the driving noise u).

Proposition 4.5. If (A,C) is estimatable, then there is a K > 0 such that for
every x0 ∈ D(A) and every T ≥ 0∫ T

0

‖Ttx0‖2dt ≤ K2

(
‖x0‖2 +

∫ T

0

‖CTtx0‖2dt
)

.

Proof. SinceHopt from (4.9) is admissible for S
opt and S

opt is exponentially stable,
it follows that (sI −Aopt

d )−1Hopt is in H∞; see, for example, [38]. Denote

k = sup
Re s>0

‖(sI −Aopt
d )−1Hopt‖L(Y,X) .

If y ∈ L2
loc([0,∞), Y ) and w : [0,∞)→X is defined by

w(t) =

∫ t

0

St−σ
optHopty(σ)dσ,

then, since ŵ(s) = (sI −Aopt
d )−1Hoptŷ(s), we have that for all T ≥ 0,∫ T

0

‖w(t)‖2dt ≤ k2

∫ T

0

‖y(t)‖2dt.

Take in this inequality y(t) = CΛTtx0. Then (4.11) implies that for all T ≥ 0,(∫ T

0

‖Ttx0‖2dt
) 1

2

≤
(∫ T

0

‖Stoptx0‖2dt
) 1

2

+ k

(∫ T

0

‖CΛTtx0‖2dt
) 1

2

.

Since the first term on the right-hand side is ≤ M‖x0‖, denoting K2 = M2 + k2 we
get the estimate in the proposition.

Now consider the situation when there is an output noise (or uncertainty) w added
to the output y of the plant from (1.2), as shown in Figure 2. The function w is in
L2((−∞, 0], Y ). It is easy to see that in this situation, if E is a final state estimator
for the system in (1.2), then the estimation error will be

e =
[
EL− Φ E

] [ u
w

]
.(4.14)
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Trying to minimize this error leads to the following problem.
Definition 4.6. The optimal final state estimation problem for (A,C) is to find

a bounded linear operator

Eopt : L2((−∞, 0], Y )→X

such that Eopt
L− Φ is bounded (from L2((−∞, 0], X) to X) and[

Eopt
L− Φ Eopt

]
= min

E

[
EL− Φ E

]
.

Note that this problem is the dual of the optimal open-loop L2-stabilization prob-
lem introduced in Definition 3.8.

Proposition 4.7. The optimal final state estimation problem for (A,C) is solv-
able if and only if (A,C) is estimatable. If the latter condition holds, then one solution
of the optimal final state estimation problem is the operator Eopt defined in (4.4).

The above result is the dual counterpart of Proposition 3.9 and it follows from it
by duality, using formula (4.7).

Proposition 4.8. If (A,C) is estimatable, then there exist δ > 0 and m > 0
such that, for all s ∈ C with Re s > −δ,

‖(sI −A)z‖+ ‖Cz‖ ≥ m‖z‖ ∀ z ∈ D(A) .(4.15)

This is approximately the dual version of Proposition 3.5 (the Hautus test). Ac-
tually, it is somewhat stronger than the dual of Proposition 3.5 because we prove a
uniform lower bound instead of just a lower bound for each individual s.

Proof. According to (4.12), we have for every z ∈ D(A),

(sI −Aopt
d )−1(sI −A−HoptC)z = z ,

which means that[
(sI −Aopt

d )−1 − (sI −Aopt
d )−1Hopt

] [ sI −A
C

]
z = z .

Since Aopt
d is exponentially stable, there is a δ > 0 such that both (sI − Aopt

d )−1 and

(sI−Aopt
d )−1Hopt are uniformly bounded on the half-plane where Re s > −δ; see, for

example, [38]. Thus, there is an M > 0 such that, for all s ∈ C with Re s > −δ,∥∥[(sI −Aopt
d )−1 − (sI −Aopt

d )−1Hopt
]∥∥ ≤ M

with the norm evaluated in L(X × Y,X). Hence, for such s and every z ∈ D(A),

‖z‖ ≤ M

∥∥∥∥[ sI −A
C

]
z

∥∥∥∥
≤ M (‖(sI −A)z‖+ ‖Cz‖) .

Denoting m = 1
M , we get the desired estimate.

It would be interesting to know whether the converse of Proposition 4.8 is true.
Remark 2. The estimate (4.15) can be replaced by the stronger looking

‖(sI −A)z‖+ ‖Cz‖ ≥ m(1 + |Re s|)‖z‖ ∀ z ∈ D(A) ,
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but this does not really tell more than (4.15). The last estimate holds because for large
Re s, it holds even with C = 0, by semigroup theory. For this reason, numbers s
with large Re s are not very interesting in this context: what is interesting is the area
around σ(A) in the half-plane where Re s > −δ.

For other infinite-dimensional extensions of the Hautus test we refer to Jacob and
Zwart [16], Grabowski and Callier [14], and Russell and Weiss [26].

Remark 3. Using the operators Φ and L defined in (4.2), it is possible to prove
the following: (A,C) is estimatable if and only if the estimate

‖Φu‖2 ≤ K2
(‖u‖2 + ‖Lu‖2)

holds for some K > 0 and for all u ∈ L2((−∞, 0], X) with compact support. The
proof is a bit involved and we omit it, since this does not seem to be a practical way
to check estimatability. The key step is that L(I + L

∗
L)−1Φ∗ is bounded.

5. Equivalence of exponential and input-output stability. The purpose
of this section is to prove Theorem 1.1. Before doing so, we say a few words about
the history of this result. For finite-dimensional systems, it is well known that if the
system is stabilizable, detectable and the transfer function is stable (i.e., all the poles
are in the open left half-plane), then the system is stable (i.e., all the eigenvalues are
in the open left half-plane). We cannot point to a specific source of this proposition.
In the 1980s, this result was generalized to infinite-dimensional systems with bounded
control and observation operators and finite-dimensional input and output spaces by
S. A. Nefedov and F. A. Sholokhovich and by C. A. Jacobson and C. N. Nett. Related
results were derived by H. Logemann. For precise bibliographic details on this period
we refer to Curtain [8]. For a time-varying finite-dimensional version we refer to Ravi
and Khargonekar [21].

The result was generalized to Pritchard–Salamon systems in [8] and then again
to well-posed linear systems in Curtain [9]. In the latter reference, however, the
definitions of stabilizability, of detectability, and of input-output stability are much
more restrictive than the concepts used in this paper. In Rebarber [22] it was shown
that a regular linear system is exponentially stable if and only if it is stabilizable,
detectable, and input-output stable (see also section 3 of [40]). The papers [22] and
[40] use exactly the same terminology which is used here. The result of [22] was
generalized by Staffans [30] and (independently) by Morris [19]. Both of them have
eliminated all the regularity assumptions: they consider well-posed linear systems,
and their definitions of stabilizability and of detectability are also regularity-free,
so that they are less restrictive (and more difficult) than the concepts used here.
(Actually, in [30] input-output stability is replaced by a more restrictive condition,
so that the result in [19] is stronger.) Their definitions of exponential stabilizability
and detectability imply optimizability and estimatability, respectively, so that our
Theorem 1.1 is a generalization of their result. We mention that [30] gives also related
results concerning the strong stability of the semigroup.

To prove Theorem 1.1, we need some preliminary results. We use the notation
X,X1, X−1, U, Y,A,B,C from section 2.

Proposition 5.1. The following two statements are equivalent:

(a) (A,B) is optimizable and (sI −A)−1B is in H∞,

(b) A is exponentially stable.

Recall that by “(sI−A)−1B is in H∞” we mean that (sI−A)−1B, as an L(U,X)-
valued analytic function of s, is bounded on the half-plane where Re s > 0.
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Proof. It is clear that (b) implies (a). Now assume that (a) holds. Applying the
Laplace transformation to (3.4) and using (3.9), we obtain

(sI −Aopt)−1 − (sI −A)−1 = (sI −A)−1BFopt(sI −Aopt)−1 .(5.1)

Since T
opt is exponentially stable and Fopt is admissible for T

opt, we have that
Fopt(sI − Aopt)−1 ∈ H∞. Since (sI − A)−1B ∈ H∞, it follows that the right-hand
side of (5.1) is in H∞. Since (sI − Aopt)−1 ∈ H∞, it follows that (sI − A)−1 ∈ H∞.
By a result of Prüss [20] (see also section 4 of [34]), T is exponentially stable.

The following proposition is just the dual version of Proposition 5.1, so that no
proof is necessary.

Proposition 5.2. The following two statements are equivalent:
(a) (A,C) is estimatable and C(sI −A)−1 is in H∞,
(b) A is exponentially stable.
We now restate Theorem 1.1.
Theorem 5.3. Let Σ be a well-posed linear system with semigroup generator

A, control operator B, observation operator C, and transfer function G. Then Σ is
exponentially stable if and only if

(1) (A,B) is optimizable,
(2) (A,C) is estimatable,
(3) G ∈ H∞ (i.e, Σ is input-output stable).
Proof. We denote by T the semigroup of Σ. It is clear that the exponential

stability of T implies the properties (1), (2), and (3). To prove the converse, we
assume that these properties hold. By Propositions 3.2 and 3.3, there is a semigroup
T

opt on X such that (3.4) holds. Let Ψ and F be the operators from (2.7) and Fopt

the operator from (3.12). Using the operator Φτ from (2.2), we rewrite (3.4):

Tτ
optx0 = Tτ x0 +Φτu

opt .(5.2)

We define Ψopt = Ψ+ FFopt, so that

Ψoptx0 = Ψx0 + Fuopt(5.3)

(Ψoptx0 is the output function of the optimally controlled system).
We claim that Ψopt is an extended output map for T

opt, i.e.,

S∗
τΨ

opt = Ψopt
Tτ

opt ∀ τ ≥ 0 ,(5.4)

as explained in section 2. Indeed, from (5.3), (2.8), and (5.2) we see that

S∗
τΨ

optx0 = S∗
τΨx0 + S∗

τ Fuopt

= ΨTτx0 +ΨΦτu
opt + FS∗

τu
opt

= ΨTτ
optx0 + FS∗

τ F
optx0 .

We know that Fopt is an extended output map for T
opt, i.e.,

S∗
τ F

opt = Fopt
Tτ

opt ∀ τ ≥ 0 .

Substituting this into the previous formula, we get

S∗
τΨ

optx0 =
(
Ψ+ FFopt

)
Tτ

optx0 .
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Now by the definition of Ψopt we obtain that (5.4) holds.
By the representation theorem for extended output maps (explained in section

2), there is an operator Copt : D(Aopt)→Y with

(Ψoptx0)(t) = Copt
Tt

optx0 ∀ x0 ∈ D(Aopt) .

Applying the Laplace transformation to (5.3) and using (2.5) and (3.9), we get

Copt(sI −Aopt)−1 = C(sI −A)−1 +G(s)Fopt(sI −Aopt)−1 .(5.5)

According to Proposition 3.4, Fopt (like Copt) is an admissible observation oper-
ator for T

opt. Moreover, according to Proposition 3.3, T
opt is exponentially stable.

This implies (see, e.g., Weiss [38]) that

Fopt(sI −Aopt)−1 ∈ H∞ , Copt(sI −Aopt)−1 ∈ H∞ .

Using this and property (3) in the theorem, we conclude from (5.5) that C(sI−A)−1 ∈
H∞. By Proposition 5.2, A is exponentially stable.

We make a remark about the particular case when Σ is regular, with feedthrough
operator D. Then from (5.1) and (2.10) we see that D(Aopt) ⊂ D(CΛ) and

CΛ(sI −Aopt)−1 − C(sI −A)−1 = [G(s)−D]Fopt(sI −Aopt)−1 .

Comparing this with (5.5), we conclude that

Coptz = (CΛ +DFopt)z ∀ z ∈ D(Aopt) .

We introduce two more concepts. We say that (A,C) is exactly observable if
(A∗, C∗) is exactly controllable. It is clear that if (A,C) is exactly observable, then
it is also estimatable. We say that a transfer function G is in H∞

α (with α ∈ R) if G
is bounded (and analytic) on the half-plane where Re s > α.

Corollary 5.4. Let Σ, A,B,C, and G be as in Theorem 5.3 and let T be the
semigroup of Σ. If (A,B) is exactly controllable, (A,C) is exactly observable and if
G ∈ H∞

α , then there exist β < α and M ≥ 1 such that

‖Tt‖ ≤ Meβt ∀ t ≥ 0 .(5.6)

Proof. Introduce the “shifted” well-posed linear system Σα with semigroup gen-
erator A − αI, control operator B, observation operator C, and transfer function
Gα(s) = G(s+ α). This system is again exactly controllable and exactly observable,
so that it is optimizable and estimatable. Its transfer function is in H∞, so that by
Theorem 5.3, A− αI is exponentially stable. This is equivalent to (5.6).

Finally, we give a proposition which is related to Proposition 5.2. For this, we
need the following concept: C is called infinite-time admissible for T if it is possible
to take T =∞ in (2.3). For a detailed discussion of this concept (e.g., its relation to
Lyapunov equations) we refer to Grabowski and Callier [14] and to Hansen and Weiss
[15]. Recall that, according to the notation used in this section, C is an admissible
observation operator for T, the semigroup generated by A.

Proposition 5.5. The following two statements are equivalent:
(a) (A,C) is estimatable and C is infinite-time admissible for T,
(b) A is exponentially stable.
Proof. It is clear that (b) imples (a). Conversely, if C is infinite-time admissible,

then for every x0 ∈ X, C(sI−A)−1x0 is in the Hardy space H2 (since it is the Laplace



1222 GEORGE WEISS AND RICHARD REBARBER

transform of a function in L2). Since (A,C) is estimatable, Proposition 4.4 applies
and, in particular, the formula (4.13) from its proof holds. Since Aopt

d is exponentially

stable, we have that (sI−Aopt
d )−1Hopt ∈ H∞. This implies that the right-hand side of

(4.13) is in H2. On the left-hand side, (sI−Aopt
d )−1x0 is in H2, so that (sI−A)−1x0

must also be in H2. Thus, the trajectories of T are in L2. By a well-known proposition
of Datko, T is exponentially stable.

We leave it to the reader to formulate the dual version of this proposition.

6. Dynamic stabilization. In the first part of this section we prove that op-
timizability and estimatability are invariant under feedback. In what follows, U , X,
Y , and R are Hilbert spaces.

Lemma 6.1. Let A be the generator of a strongly continuous semigroup T on X
and let B ∈ L(U,X−1) be an admissible control operator for T. Assume that x0 ∈ X
and u ∈ L2([0,∞), U) are such that x ∈ L2([0,∞), X), where x is the state trajectory
defined by (3.1). Then for every τ > 0, we have that

∞∑
n=1

‖x(nτ)‖2 < ∞ .

Proof. We define the sequences un ∈ L2([0, τ ], U) and xn ∈ L2([0, τ ], X) by
un(t) = u((n− 1)τ + t) and xn(t) = x((n− 1)τ + t), so that the sequences ‖un‖ and
‖xn‖ are square summable. Using the notation from (2.2) and (2.6), we have that for
every n ∈ N and every t ∈ [0, τ ],

x(nτ) = Ttxn(τ − t) + ΦtS
∗
τ−tun .

Denoting m1 = supt∈[0,τ ] ‖Tt‖ and m2 = ‖Φτ‖ (so that ‖Φt‖ ≤ m2 for all t ∈ [0, τ ]),
we have that

‖x(nτ)‖ ≤ m1‖xn(τ − t)‖+m2‖un‖ ,
so that, denoting m = m2

1+m2
2 , ‖x(nτ)‖2 ≤ m

(‖xn(τ − t)‖2 + ‖un‖2
)
. Integrating

this inequality with respect to t ∈ [0, τ ], we obtain

τ‖x(nτ)‖2 ≤ m‖xn‖2 +mτ‖un‖2 .
This shows that the sequence ‖x(nτ)‖ is square summable.

Lemma 6.2. Let Σ be a well-posed linear system with input space U , state space
X, and output space Y . We denote by T the semigroup of Σ and by B its control
operator. Assume that x0 ∈ X and u ∈ L2([0,∞), U) are such that x ∈ L2([0,∞), X),
where x is the state trajectory defined by (3.1). Let y be the corresponding output
function, given by (2.7). Then y ∈ L2([0,∞), Y ).

Proof. Take τ > 0. We define the sequences un ∈ L2([0, τ ], U) and yn ∈
L2([0, τ ], Y ) by un(t) = u((n − 1)τ + t) and yn(t) = y((n − 1)τ + t). We denote
by Pτ the projection from L2

loc([0,∞), Y ) to L2([0, τ ], Y ) (by truncation). It follows
from (2.9) that (with the notation from (2.7))

yn = PτΨx((n− 1)τ) +Pτ Fun .

Since PτΨ and Pτ F are bounded operators, there is a k > 0 such that

‖yn‖ ≤ k (‖x((n− 1)τ)‖+ ‖un‖) .
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✻+
❤✲

+
✲ Σp

❄
+

+
❤✛✛Σc

vp up yp

yc uc vc

Fig. 3. A plant Σp with a stabilizing controller Σc. The closed-loop system is well-posed and
exponentially stable.

By the assumption and by Lemma 6.1, both sequences ‖un‖ and ‖x((n − 1)τ)‖ are
square summable, so that ‖yn‖ is square summable.

Theorem 6.3. Let Σ be a well-posed linear system, let K be an admissible
feedback operator for Σ, and let ΣK be the corresponding closed-loop system (see
Figure 1). We denote by A the semigroup generator of Σ, by B the control operator
of Σ, and by C the observation operator of Σ. We denote by AK , BK , and CK the
corresponding operators for ΣK . Then the following holds:

(a) (A,B) is optimizable if and only if (AK , BK) is optimizable.
(b) (A,C) is estimatable if and only if (AK , CK) is estimatable.
Proof. We denote by U,X, and Y the input, state, and output space of Σ (and

also of ΣK). First we prove statement (a). Suppose that (AK , BK) is optimizable, let
x0 ∈ X be an initial state for ΣK , and let v ∈ L2([0,∞), U) be an input function which
causes the state trajectory of ΣK to be in L2([0,∞), X). Let y be the corresponding
output function of ΣK . We know from Lemma 6.2 that y ∈ L2([0,∞), Y ). If u is the
corresponding input function of Σ (which causes the same state trajectory and the
same output function in Σ) then u = v+Ky (see Figure 1). Thus, u ∈ L2([0,∞), U),
so that (A,B) is optimizable. To prove the converse direction, assuming that (A,B)
is optimizable, we follow the same argument but we regard Σ as a closed-loop system
obtained from ΣK via the output feedback through −K.

Now we prove statement (b). We introduce the dual systems Σd and ΣKd (see
section 6 of [41] or [39]). Then ΣKd is the closed-loop system obtained from Σd via
the output feedback K∗. The semigroup generator of Σd is A∗, its control operator
is C∗, and its observation operator is B∗. A similar characterization applies to ΣKd.
Now statement (b) is equivalent to statement (a) applied to these dual systems.

We mention that, with the notation of the last theorem, for every x0 ∈ D(AK)
and for every z0 ∈ D(A),

AKx0 =
(
A+BKCK

)
x0 , Az0 =

(
AK −BKKC

)
z0 .

For the proof of these formulas and for further details we refer to [37].
We say that a well-posed linear system is optimizable if the corresponding pair

(A,B) is optimizable. The meaning of a system being estimatable is similar.
Let Σp be a well-posed linear system. A stabilizing controller for Σp is another

well-posed linear system Σc such that the interconnection shown in Figure 3 is well-
posed and the closed-loop system is exponentially stable. The input signals of the
closed-loop system are vp and vc and the output signals are yp and yc.

This is the framework for dynamic stabilization in Chapters 4, 5, and 9 of Curtain
and Zwart [12] and many earlier references, where the systems are assumed to have
bounded B and C operators. A rather different concept of dynamic control can
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be found in Russell [25], to model “indirect damping.” The original system (more
precisely, its semigroup generator) is embedded in (the semigroup generator of) a
larger, coupled system. The input and output signals are not restricted to be in L2

loc,
like they are in our framework. This approach is applied in [25] to modelling thermal
effects in vibrating systems.

The concept of a stabilizing controller as in Figure 3, while much used and intu-
itively appealing, is too narrow: it does not admit all the observer-based controllers
for Σp, and the Youla parametrization of such stabilizing controllers is not clean,
requiring extra invertibility and well-posedness conditions. This is the case even for
finite-dimensional plants Σp if they are not strictly proper. To overcome these dif-
ficulties, the following generalization was introduced in Weiss and Curtain [40] (and
was further investigated in Curtain, Weiss, and Weiss [10] and [11]).

A stabilizing controller with internal loop for Σp is a well-posed linear system Σk

with two inputs and two outputs such that the interconnection shown in Figure 4 is
a well-posed linear system Σp,k and this system is exponentially stable. The inputs
of the closed-loop system Σp,k are the three external signals going to the summation
points, and the outputs are the outputs of the two subsystems.

✻+
❤✲

+
✲ Σp

❄+

+

+

+

❤✛✛

Σk
❤✛✛
✻

Fig. 4. A plant Σp with a stabilizing controller with internal loop Σk. Again, the closed-loop
system is well-posed and exponentially stable. Closing only one of the two loops may lead to a
non-well-posed system.

Each of the signals in Figure 4 may be Hilbert space-valued, of course. The lower
loop in Figure 4 is referred to as the internal loop of the controller. Closing only one
of the two loops may lead to a non-well-posed system. Thus, in particular, it may be
impossible to close the internal loop in the absence of the plant Σp, in which case the
controller with internal loop cannot be reduced to a usual stabilizing controller (as in
Figure 3). Examples for this are given in section 6 of [40]. However, every stabilizing
controller can be thought of as a stabilizing controller with internal loop (with no
signal in the internal loop). We say that Σp is dynamically stabilizable if there exists a
stabilizing controller with internal loop for Σp. Broadly speaking, Σp is dynamically
stabilizable if it can be made into a subsystem of a stable system.

In Proposition 5.3 of [40], a list of three conditions were given which imply dy-
namic stabilizability for a regular linear system (a design procedure for Σk was also
provided). The first two of these conditions are stabilizability and detectability. We
do not know if these two conditions alone imply dynamic stabilizability, and we also
do not know if dynamic stabilizability implies stabilizability and detectability. Some
of the results from [40] were generalized to well-posed linear systems by Staffans [30].

For systems with bounded B and C, dynamic stabilizability is equivalent to sta-
bilizability by a bounded F and detectability by a bounded H (see Exercise 6.13 in
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Curtain and Zwart [12]) and no internal loop is needed in this case. For systems
with bounded control and observation operators, stabilizability and detectability in
the general sense which we are using are equivalent to stabilizability and detectability
in the more restrictive sense of [12], i.e., with bounded F and H. This follows from
the results in section 3 (in particular, formula (3.5)) and duality.

Now we look at dynamic stabilization from the point of view of transfer functions.
We denote by P the transfer function of the plant Σp and by K the transfer function
of the controller Σk. Thus, if the input and output spaces of Σp are U and Y , then
P(s) ∈ L(U, Y ). We denote by R the Hilbert space where the signal of the internal
loop takes values, so that K ∈ L(Y ×R,U ×R). K is naturally partitioned into K11,
K12, K21, and K22. We introduce Σl, the parallel connection of Σp and Σk, which is
a well-posed linear system with two components, Σp and Σk, operating independently
(see also section 4 of [40]). The transfer function of Σl is

L =

 0 K11 K12

P 0 0
0 K21 K22

 .(6.1)

The closed-loop system Σp,k from Figure 4 is obtained from Σl via the output feedback
operator I (acting on U × Y × R). Thus, its transfer function is L(I − L)−1 =
(I − L)−1 − I. The following result, a restatement of Theorem 1.2, is a strengthened
version of Proposition 4.11 from [40]. (By this we mean that the result in [40] is an
immediate consequence of the theorem below, but not conversely.)

Theorem 6.4. Let Σp and Σk be well-posed linear systems, with transfer func-
tions P and K, such that P(s) ∈ L(U, Y ) and K(s) ∈ L(Y × R,U × R). After a
proper partitioning of K, we define L by (6.1). Then Σk is a stabilizing controller
with internal loop for Σp if and only if the following two conditions hold:

(1) Both Σp and Σk are optimizable and estimatable.
(2) (I − L)−1 ∈ H∞ (i.e., the closed-loop system is input-output stable).
Proof. First assume that Σk is a stabilizing controller with internal loop for Σp,

i.e., the closed-loop system Σp,k from Figure 4 is exponentially stable. As explained
earlier, its transfer function is (I−L)−1−I. Since exponential stability implies input-
output stability, we have that (I−L)−1 ∈ H∞. The system Σp,k is obtained from the
parallel connection Σl (introduced before (6.1)) via the output feedback operator I.
Since Σp,k is obviously optimizable and estimatable, by Theorem 6.3 these properties
are shared also by Σl. Because of the nature of Σl, this implies that Σp and Σk are
optimizable and estimatable.

Conversely, assume that (1) and (2) hold. Then (1) implies that Σl is optimizable
and estimatable. By Theorem 6.3, Σp,k is also optimizable and estimatable. By (2),
Σp,k is input-output stable. By Theorem 5.3, Σp,k is exponentially stable.

Remark 4. It follows from Theorems 5.3 and 6.4 that a well-posed linear system
is exponentially stable if and only if it is dynamically stabilizable and input-output
stable. This is stated in Corollary 1.3 and it will be useful in the examples in section
7. Hence, if an unstable system (i.e., one that is not exponentially stable) has its
transfer function in H∞, then it cannot be dynamically stabilizable.

Remark 5. If for some α ≥ 0 we have that G ∈ H∞
α (defined in section 5),

but for all ε > 0, G cannot be extended to a function in H∞
α−ε, then any system

with transfer function G is not dynamically stabilizable. For α = 0, the proof goes as
follows: If a system Σ with transfer function G were dynamically stabilizable, then by
Theorem 6.4 it would be optimizable and estimatable. Now Theorem 5.3 would imply
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that Σ is exponentially stable, and this would imply (see [36]) that G ∈ H∞
−ε for some

ε > 0. To extend this argument to α > 0, we have to use shifted systems, as in the
proof of Corollary 5.4. For example, a system whose transfer function is e−

1
s , or a

Blaschke product with zeros arbitrarily close to the imaginary axis (as described at the
end of section 1), cannot be dynamically stabilizable.

7. Examples.
Example 1. In this example we illustrate Corollary 1.3 (Remark 4) with two

results about a model for elastic structure/acoustics interaction. These results are
improvements on results in Avalos, Lasiecka, and Rebarber [2].

Let Ω be either a rectangular region in R
2 or a region in R

2 with Lipschitz
boundary Γ. Let Γ0 be a smooth (C2) segment of Γ with endpoints a and b, called
the active boundary. Let z = z(t, ζ) for t ∈ [0,∞) and ζ ∈ Ω, let v = v(t, ξ) for
t ∈ [0,∞) and ξ ∈ Γ0, and let ∂/∂ν denote the outward normal derivative to Γ. Let
U = R

r and B ∈ L(U,H−α(Γ0)), where α = 7/4 when Ω is rectangular, and α = 5/3
when Ω has a smooth boundary. In applications Ω is a cross section of an acoustic
cavity, z is the acoustic velocity potential, and v is the normal displacement of the
active wall. The following model has been studied extensively in recent years—see
Banks and Smith [6] for a discussion of the modelling:

ztt = ∆z on [0,∞)× Ω ,

∂z

∂ν
= vt on [0,∞)× Γ0 ,

∂z

∂ν
= 0 on [0,∞)× Γ \ Γ0 ,(7.1)

vtt = −∆2v −∆2vt − zt + Bu on [0,∞)× Γ0 ,

v(a, t) = v(b, t) = vx(a, t) = vx(b, t) = 0 for t ∈ [0,∞) .

We consider three natural quantities that can be observed for (7.1): the active
boundary displacement v, the active boundary velocity vt, and the acoustic velocity
zt, which is proportional to the acoustic pressure. The observation of these quantities
is typically taken at points on Γ0 for v and vt, and at points in Ω for zt. The output
signal may be a vector of such measurements.

Define the state space

X := H1(Ω)/R× L2(Ω)/R×H2
0 (Γ0)× L2(Γ0),

where Hr(Ω)/R = {f ∈ Hr(Ω) | ∫
Ω
f dx = 0} for r > 0. Letting

x(t) = [z(t, ·), zt(t, ·), v(t, ·), vt(t, ·)]T ,
it is shown in Avalos and Lasiecka [1] that (7.1) can be put in the form

ẋ(t) = Ax(t) +Bu(t) .

Here, A generates a strongly stable but not exponentially stable semigroup T on X,
and B is an admissible control operator for T. If Y = R

k+j and

y(t) = C1x(t) := [v(α1), . . . , v(αj), vt(β1), . . . , vt(βk)]
T(7.2)

with αi, βi ∈ Γ0, then it is shown in [2] that (7.1), (7.2) is a regular linear system
with feedthrough operator 0. In Theorem 5.9 of [2] it is shown that if there exists a
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stabilizing controller for (7.1), (7.2), then the stabilization is not robust with respect
to delays in the feedback loop. In this context, when we say that stabilization is “not
robust with respect to delays,” we mean that there exist sequences {εn} and {pn},
with εn > 0, εn→0, and pn ∈ C0 such that if a delay of length εn is introduced into
the feedback loop, then the closed-loop transfer function has a pole at pn; for details
see [2] or Logemann, Rebarber, and Weiss [18]. This result in [2] uses Remark 4 from
this paper, and “stabilizing controller” can be easily replaced with the more general
“stabilizing controller with internal loop.”

In Remark 5.11 of [2] it is mentioned that it might not even be possible to dy-
namically stabilize (7.1), (7.2). Using a recent result from Avalos, Lasiecka, and
Rebarber [4], we prove that this lack of stabilization is indeed the case.

Theorem 7.1. Let Y = H2
0 (Γ0)×H2

0 (Γ0) and define the observation

y(t) = [ v(t), vt(t) ]
T .(7.3)

Then (7.1), (7.3) cannot be dynamically stabilized.
Proof. It is shown in [4] that if the initial state for (7.1) is zero, then there exists

an M > 0 such that∫ ∞

0

(
‖v(t, ·)‖2H2

0 (Γ0)
+ ‖vt(t, ·)‖2H2

0 (Γ0)

)
dt ≤M

∫ ∞

0

‖u(t)‖2U dt.

Hence (7.1), (7.3) is input-output stable. Since T is not exponentially stable, by
Remark 4 this system is not dynamically stabilizable.

Corollary 7.2. The system (7.1), (7.2) is not dynamically stabilizable.
Proof. Clearly, the output signal in (7.2) is obtained by applying a (static)

bounded operator to y from (7.3). Using Theorem 7.1, we see that (7.1), (7.2) is
not dynamically stabilizable.

Since it is impossible to stabilize (7.1) with observations taken only along the beam
component, we turn our attention to output signals which include point observations
of the acoustic pressure. Let Y = R

j+k+l and

C2x(t) = [v(α1), . . . , v(αj), vt(β1), . . . , vt(βk), zt(ζi), . . . , zt(ζl)]
T(7.4)

for αi, βi ∈ Γ0, and ζi ∈ Ω. It is easy to verify that C2 is not admissible for T when
the state space is X, and for this reason, in [2] the lack-of-robustness result was only
given in the input-output setting. In particular, it was shown that if the open-loop
transfer function for (7.1), (7.4) is not stable, and there exists a controller (without
internal loop) which input-output stabilizes (7.1), (7.4), then this stabilization is not
robust with respect to delays—see Theorem 5.12 in [2] for details. Using recent results
from Avalos, Lasiecka, and Rebarber [3], we can put this lack of robustness into a
state space setting. We use the following result, which also appears in a slightly less
general form in [2] (where it was also a corollary of Remark 4).

Corollary 7.3. Suppose that Σp is a regular linear system with semigroup
generator A, input space U and output space Y , U , and Y are finite-dimensional,
σ(A) is contained in the open left half-plane but A is not exponentially stable.

If there exists a regular stabilizing controller Σc for Σp (as in Figure 3), then the
stability of the closed-loop system is not robust with respect to delays.

Proof. Remark 4 shows that if there exists a stabilizing controller for Σp, then
P is unbounded on C0, where P is the transfer function of Σp. Since (sI − A)−1

is analytic on a set containing the closed right half-plane, the same is true for P,
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in particular, P is continuous on the closed right half-plane. This, together with its
unboundedness implies that

lim sup
|s|→∞, s∈C0

‖P(s)‖L(X) = ∞ .

Now we can apply Theorem 8.5 from [18] to conclude that if the closed-loop system
is stable, then its stability is not robust with respect to delays.

Remark 6. If the feedthrough operator of Σp is zero, then Corollary 7.3 is true
even if Σc is not regular. This is because PC will still be regular, where C is the
transfer function of Σc.

In [2] this result was not applied to (7.1), (7.4) because at the time that paper
was written no natural state space was identified for this system. In Avalos, Lasiecka,
and Rebarber [3] a state space is given so that the natural (A,B,C) representation
for (7.1), (7.4) is a regular system. This state space is

X :=

{
[z0, z1, v0, v1] ∈ H

3
2 (Ω)

R
× H

1
2 (Ω)

R
×H2

0 (Γ0)× L2(Γ0),

∣∣∣∣ z0 −Nv1 ∈ H
}

,

where N is the Neumann map and

H =

{
f ∈ H

3
2 (Ω)

R

∣∣∣∣ ∇f ∈ L2
− 1

2
(Ω)

}
.

Here, L2
− 1

2

(Ω) denotes the space of functions h on Ω such that h9−
1
2 ∈ L2(Ω), with

9(x) being the distance from x to Γ; see [3] for details.
We can apply Corollary 7.3 to (7.1), (7.4) to conclude the following.
Corollary 7.4. Suppose Σp is stabilized (in the state space X given above) by

a stabilizing controller Σc. Then this stability is not robust with respect to delays.
Example 2. We consider the linear infinite-dimensional system described by the

wave equation on an n-dimensional domain, with mixed boundary control and mixed
boundary observation. The bounded domain Ω ⊂ R

n is assumed to have a C2 bound-
ary Γ, and Ω is locally on one side of Γ. Γ0 and Γ1 are nonempty open subsets of Γ
such that Γ0 ∩ Γ1 = ∅ and Γ0 ∪ Γ1 = Γ. We denote by x the space variable (x ∈ Ω).
The equations of the system are

wtt(x, t) = ∆w(x, t) on Ω× [0,∞),

w(x, t) = 0 on Γ0 × [0,∞),

∂
∂νw(x, t) + wt(x, t) = u(x, t) on Γ1 × [0,∞),

∂
∂νw(x, t)− wt(x, t) = y(x, t) on Γ1 × [0,∞),

w(x, 0) = w1(x), wt(x, 0) = w2(x) on Ω,

(7.5)

where u is the input function, and y is the output function. The functions w1 and w2

are the initial state of the system. The part Γ0 of the boundary is just reflecting waves,
while the active portion Γ1 is where both the observation and the control take place.
We shall often write w(t) to denote a function of x, meaning that w(t)(x) = w(x, t),
and similarly for other functions. The state of the system is

z(t) =

[
w(t)
ẇ(t)

]
.



OPTIMIZABILITY AND ESTIMATABILITY 1229

We introduce the input space U and the state space X by

U = L2(Γ1) , X = H1
Γ0
(Ω)× L2(Ω) ,(7.6)

where H1
Γ0
(Ω) =

{
v ∈ H1(Ω) | v|Γ0

= 0
}
. The output space is also U . The norm on

X is defined by ∥∥∥∥[ w1

w2

]∥∥∥∥2
X

= 2 ‖∇w1‖2L2(Ω) + 2‖w2‖2L2(Ω) .(7.7)

The equations (7.5) are well-posed, i.e., they determine a well-posed linear system
Σ with the input, state, and output spaces indicated. This can be shown using the
general theory of well-posed boundary control systems as developed in Salamon [28].
This well-posedness result, formulated in a different terminology (and for a different
but closely related system) is due to Rodriguez-Bernal and Zuazua [24].

The above system is studied in detail in Avalos and Weiss [5], which contains also
the proofs of all the other claims that we make in this example. An important fact is
that Σ is conservative. This means that for every τ > 0,

‖z(τ)‖2 +
∫ τ

0

‖y(t)‖2 dt = ‖z(0)‖2 +
∫ τ

0

‖u(t)‖2 dt,(7.8)

and a similar equality holds for the dual system. We may think of u as the “incoming
wave” (which brings energy into the system) and of y as the “outgoing wave.”

We now introduce several spaces and operators, mainly following Triggiani [32].
More related information can be found in Rodriguez-Bernal and Zuazua [24]. We
define the self-adjoint and positive Λ : D(Λ) ⊂ L2(Ω)→L2(Ω) by

Λw = −∆w, D(Λ) =

{
w ∈ H2(Ω)

∣∣∣∣ w|Γ0 = 0 ,
∂

∂ν
w|Γ1 = 0

}
.

Then Λ is boundedly invertible and D(Λ
1
2 ) = H1

Γ0
(Ω). From Green’s theorem and

continuous extension we have the middle equality in

‖w‖2H1
Γ0

(Ω) =

∫
Ω

|∇w|2dx =
∥∥∥Λ 1

2w
∥∥∥2
L2(Ω)

= ‖w‖2
D(Λ

1
2 )

.

The other two equalities above hold by definition. We denote by H−1
Γ0

(Ω) the dual of

H1
Γ0

with respect to the pivot space L2(Ω). Then Λ has an extension to a bounded

operator Λ : H1
Γ0
(Ω)→H−1

Γ0
(Ω).

We define the Neumann map N : L2(Γ1)→L2(Ω) by Nf = g if and only if

∆g = 0 , g|Γ0 = 0 ,
∂

∂ν
g|Γ1 = f .

By elliptic theory we have that N ∈ L(L2(Γ1), H
1
Γ0
(Ω)).

The Dirichlet trace γ0 satisfies for any continuous function f on Ω

γ0f = f |Γ1 .

After continuous extension we have that γ0 ∈ L(H1(Ω), H
1
2 (Γ1)).
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The Neumann trace γ1 satisfies for any C1 function f on Ω

γ1f =
∂

∂ν
f |Γ1 .

Thus, γ1 is the outward normal derivative restricted to Γ1. We extend γ1 to the space
of all functions w ∈ H1

Γ0
(Ω) which satisfy ∆w ∈ L2(Ω), and then γ1w ∈ H− 1

2 (Γ1).

By Green’s theorem and by continuous extension, we have that for all w ∈ D(Λ
1
2 ),

N∗Λw = w|Γ1 = γ0w.(7.9)

We define A : D(A) ⊂ X→X by

A =

[
0 I
−Λ −ΛNN∗Λ

]
,

D(A) =


[

w1

w2

]
∈

D(Λ
1
2 )
×

D(Λ
1
2 )

∣∣∣∣∣∣ w1 +NN∗Λw2 ∈ D(Λ)

 .

Note that we have the equivalent characterization

A

[
w1

w2

]
=

[
w2

∆w1

]
,(7.10)

D(A) =


[

w1

w2

]
∈

H1
Γ0×

H1
Γ0

∣∣∣∣∣∣
∆w1 ∈ L2(Ω)

γ1w1 + γ0w2 = 0

 .(7.11)

Then A generates a strongly continuous semigroup of contractions on X, which we
denote by T. The resolvent of A is compact and σ(A) is in the open left half-plane.
All these facts about A are proved in [32] and in [24], which also contain relevant
earlier references. This A is the semigroup generator of the system Σ.

The control operator B and the observation operator C of Σ are given by

B =

[
0

ΛN

]
and C =

1√
2

[
γ1 − γ0

]
.

This is proved in Avalos and Weiss [5]. It follows from (7.9) and (7.11) that C can be
rewritten in the form C =

[
0 − 2N∗Λ

]
.

The system Σ is regular and its feedthrough operator is D = 0. Hence, the
transfer function of Σ is G(s) = CΛ(sI − A)−1B, which is analytic with values in
L(U). The fact that Σ is conservative implies that G ∈ H∞ and moreover, G(iω) is
a unitary operator for each ω ∈ R. In particular, it is easy to check that G(0) = I.

It is not difficult to see that every conservative system is exactly observable if and
only if it is exponentially stable. It is shown in [5] that our system Σ is isomorphic to
its dual. Thus, Σ is exactly controllable if and only if it is exactly observable if and
only if it is exponentially stable. These properties all hold if Γ1 is sufficiently large, in
an appropriate sense. A sharp characterization of such sets Γ1 was given in Bardos,
Lebeau, and Rauch [7]. Earlier, sufficient conditions for Γ1 to be large enough (in the
above sense) were given, for example, in Lasiecka and Triggiani [17].
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If the active boundary Γ1 is “too small,” then Σ is not exponentially stable.
However, it remains input-output stable (G ∈ H∞) regardless of Γ1. Then it follows
from Remark 4 that the system is not dynamically stabilizable. Thus, the wave
equation with the control and observation as in (7.5) is either exponentially stable to
begin with, or it is not stabilizable by any controller.
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Abstract. In this paper an approximation scheme is developed for the solution of the linear
quadratic Gaussian (LQG) control on a finite time interval for hereditary systems with multiple
noncommensurate delays and distributed delay. The solution here proposed is achieved by means
of two approximating subspaces: the first one to approximate the Riccati equation for control and
the second one to approximate the filtering equations. Since the approximating subspaces have
finite dimension, the resulting equations can be implemented. The convergence of the approximated
control law to the optimal one is proved. Simulation results are reported on a wind tunnel model,
showing the high performance of the method.

Key words. hereditary systems, linear quadratic Gaussian regulator, infinite dimensional sys-
tems, Galerkin spline approximation
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1. Introduction. It is well known that the solution of the linear quadratic regu-
lation problem and of the optimal Gaussian filtering problem for linear delay systems
is found in terms of infinite dimensional operators [7, 8, 9, 10, 11, 12, 13, 17, 23, 31,
36, 37, 39]. On the other hand, implementation of a control/filtering scheme in this
case requires a finite dimensional approximation of such operators.

Although much attention has been devoted to separately developing an approxi-
mation theory for the linear quadratic (LQ) regulation [4, 11, 12, 16, 24, 26, 27, 30,
33, 40] and the optimal Gaussian filtering [14, 20] of delay systems, the approxima-
tion problem of the overall linear quadratic Gaussian (LQG) regulator has not been
conveniently treated in the literature.

The averaging approximation scheme has been used in [24], for both the finite and
infinite horizon LQ problem of delay systems, and convergence results are obtained by
considering a conjecture, later proved to be true [41], that is the question of whether
the sequence of approximating systems gives uniformly exponentially stable systems
for sufficiently large indexes if the underlying retarded functional differential equation
is stable.

The spline approximation scheme developed in [3] has been applied to the LQ
problem of delay systems in [4]. Although numerical simulations show better per-
formance than the averaging scheme, no theoretical convergence results are so far
available. In [6], it is proved that the adjoint of the approximate semigroup governing
the system does not converge in a strong way to the adjoint of such semigroup. As
a consequence, the main hypothesis which guarantees the convergence results in [24]
cannot be satisfied, and therefore this spline approximation scheme cannot be safely
applied.

A new spline approximation scheme has been developed in [27], for the LQ prob-
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lem of delay systems with any number of pure delay terms, assuming the absolute
continuity of the kernel in the distributed delay integral. Theoretical convergence
results are obtained in the finite horizon case, as this approximation scheme does not
guarantee the uniform exponential stability of the approximate semigroups. However,
it is proved in [28, 29] that, in the case of commensurate delays and without dis-
tributed delay, a weaker condition is sufficient to obtain the strong convergence of the
approximated LQ algebraic Riccati equation solution. The authors call this condition
uniform output stability. It is proved that the spline approximation scheme developed
in [27] does satisfy this condition, so that the above convergence result is available
for the infinite horizon case. But, as pointed out by Morris on page 9 of paper [36],
the convergence properties of this approximation scheme are not sufficient to ensure
convergence of the closed loop response.

In [40], a piecewise linear approximation theory has been developed for the finite
and infinite horizon LQ of general delay systems. Theoretical convergence results are
obtained both in the finite and infinite horizon cases, as the condition of uniform
exponential stability is verified.

In [32] error estimates are established for the approximation of delay systems by
means of the averaging scheme. In [26] a scheme using first order splines is developed
satisfying the uniform exponential stability condition, and error estimates are estab-
lished too, as is done in [32] for the averaging scheme. Such a scheme uses the classic
averaging subspace of piecewise constant functions to define the approximated sys-
tem equation, but defines the approximated infinitesimal generator in that subspace
not in the usual averaging methodology but by using an inverse projector from such
subspace to the subspace built up using splines. Such a scheme, which is a mixed
averaging spline one, is used in [26] for the infinite horizon LQ problem of general
hereditary systems.

The matter of uniform exponential stability for spline approximation schemes
has been investigated in [15], in the scalar open loop case. There the real eigenvalue
(unique if the coefficient on delay term is positive, in the hereditary equation) of the in-
finitesimal generator of the semigroup governing the system is used, in order to define
a particular inner product, by which Galerkin spline approximations [3] preserve the
uniform exponential stability of the approximated semigroups. How this can be ap-
plied to optimal multivariables regulator problems is an open and interesting question.

In the synthesis of approximate optimal controllers developed by all above approx-
imation schemes [4, 24, 26, 27, 40] it is assumed that the system state is completely
accessible. Moreover, the approximated control input is generated by a finite rank
feedback operator applied to the true state in the delay time interval. From an engi-
neering point of view, the resulting controller is still infinite dimensional and therefore
not directly implementable.

The synthesis of finite dimensional dynamic output feedback compensators for
hereditary systems in a deterministic setting is considered in paper [25, section 4.2].
The proposed controller is composed of an observer and of a feedback control law from
the observed state. Both the gains, for the finite dimensional observer and control,
are obtained by approximating the solutions of two algebraic Riccati equations. The
resulting controller resembles the solution of an LQG problem, although no reference
to an optimal stochastic control problem is made in the paper. The main tool is the
use of the averaging approximation scheme [2, 24] and the main result is the stability
of the overall closed loop system.

In [35] the same problem is investigated with reference to a general class of de-
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terministic distributed systems.
An approximation theory that provides an implementable scheme for the filtering

problem of systems evolving on Hilbert spaces has been studied in [14, 18, 20, 22].
This theory has been successfully applied to delay systems.

In the literature the case with one pure delay term is usually completely reported
[2, 24, 28, 29, 40] and the general case with multiple noncommensurate delays is
usually just briefly indicated. However, the extension of all results to the general case
is not straightforward [2, 3, 24, 40] or even unfeasible [28, 29].

As a final point of this bibliographic review, we must stress the existence of a
large amount of spline approximation schemes [3, 4, 26, 27, 40] for the deterministic
optimal quadratic state regulator (LQ problem), where the control gain operator is
approximated by approximating the relevant Riccati equation. In principle, the same
approximation schemes could be adapted for approximating the covariance operator
defined by the solution of the dual Riccati equation, and the Kalman filter equation
that solves the LQG problem in the stochastic setting. On the other hand, the
applicability of such schemes to the case of stochastic delay systems with partial
noisy state observations is not a trivial question and it has not been investigated up
to now, and the main problem of proving the convergence remains unsolved.

The control problem with partial state observation has been treated in literature
employing the averaging scheme in a deterministic setting [25]. On the other hand,
a known result [4] is the superiority of spline approximation schemes with respect to
averaging ones, with respect to numerical convergence rate.

On the basis of these considerations the aim of this paper is to define a finite di-
mensional scheme that approximates the solution of the finite horizon linear quadratic
Gaussian control problem for stochastic delay systems with partial observations. The
resulting implementable scheme has the following features:

(i) the optimal closed loop response of the LQG problem can be approximated
with arbitrarily small error;

(ii) the scheme can be applied also in the LQ problem;
(iii) the approximation method is based on splines and not on averaging;
(iv) the matrices that implement the approximation of the optimal filter-controller

scheme are easily parametrized as a function of the approximation order and
can be easily computed;

(v) the scheme allows one to deal with general hereditary systems, that is, with
multiple noncommensurate delays and distributed delay;

(vi) simultaneous approximation of a semigroup and of its adjoint is not required,
so that problems arising from nondensity of the intersection of the respective
generator domains are avoided;

(vii) the scheme allows a quite natural extension to be used for the solution of the
infinite horizon LQG problem;

(viii) the scheme has nice numerical properties, in that it shows good performances
even with a low finite dimensional approximation order;

(ix) the scheme allows one to get a faster convergence of the approximation by
increasing the order of the spline degree.

Of course for most of the above-mentioned points, the scientific literature offers
effective algorithms. Nevertheless, the problem of considering all these issues at the
same time remains an interesting point.

The paper is organized as follows. In section 2 stochastic hereditary systems
are written in state-space form and the infinitesimal generator of the adjoint of the
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semigroup that governs the system is studied. It is proved that such an operator has
a deeply different structure if a weighted inner product is used instead of the usual
one. In section 3 the finite horizon LQG is presented, and theorems for a suitable ap-
proximation scheme are proved. In section 4 an approximation scheme which satisfies
hypotheses of section 3 is described for the general case. In section 5 matrices which
represent finite dimensional linear operators are calculated to implement the method.
In section 6 the infinite horizon case is addressed. In section 7 simulation results are
reported, showing the effectiveness of the proposed method. Section 8 contains the
conclusions.

2. Stochastic delay systems. In this paper we deal with the class of those
dynamical systems that in technical literature are generally known as linear delay
systems, sometimes also called hereditary systems. When state and observation noise
are present, these are described, for t ≥ 0, by stochastic equations of the type

ż(t) = A0z(t) +

δ∑
h=1

Ahz(t− rh)(2.1)

+

∫ 0

−r
A01(ϑ)z(t+ ϑ)dϑ+ B0u(t) + F 0ω(t),

y(t) = C0z(t) + Gω(t)

with z(t) ∈ R
N , u(t) ∈ R

p, y(t) ∈ R
q, ω(t) ∈ R

s, rδ = r > rδ−1 > · · · r1 > r0 = 0,
Ah ∈ R

N×N , A01 ∈ L2([−r, 0];RN×N ), B0 ∈ R
N×p, C0 ∈ R

q×N , G ∈ R
q×s, F 0 ∈

R
N×s.

The noise ω belongs to the Hilbert space L2([0, tf ];R
s) equipped with the stan-

dard Gaussian cylinder measure (this corresponds to model ω as a white-noise process
[1]). Independence of state and observation noises is assumed, that is, F 0G

T = 0
and, without loss of generality, GGT = Iq, where Iq denotes the identity matrix in
R
q×q.

The variable z in the interval [−r, 0] is assumed to be generated as follows:

z(ϑ) = z̄(ϑ) +

∫ 0

−r
k(ϑ, τ)ω̄(τ)dτ, ϑ ∈ [−r, 0],(2.2)

where z̄ is absolutely continuous with derivative in L2([−r, 0];RN ) and the process
ω̄, independent of ω, belongs to the Hilbert space L2([−r, 0];Rs̄) equipped with the
standard Gaussian cylinder measure, and the kernel k(ϑ, τ) is integrable for τ ∈
[−r, 0].

As is well known, system (2.1) can be rewritten in state-space form in the Hilbert
space M2 = R

N×L2([−r, 0];RN ), endowed with the following weighted inner product
[3]: ([

x0

x1

]
,

[
y0

y1

])
M 2

= xT
0 y0 +

∫ 0

−r
xT

1 (ϑ)y1(ϑ)g(ϑ)dϑ,(2.3)

where g(ϑ) is the piecewise constant nondecreasing function defined as

g(ϑ) = χ[−rδ,−rδ−1](ϑ) +

δ−1∑
j=1

(δ − j + 1)χ(−rj ,−rj−1](ϑ),(2.4)

where χS denotes the characteristic function of the interval S.
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Here and in the following the standard assumption is made that summations
vanish when the upper limit is smaller than the lower one (e.g., δ = 1 in (2.4)).

In this paper, for the sake of brevity and whenever it does not cause confusion,
the space L2([−r, 0];RN ) will be simply indicated as L2. In the same way Ck will
denote the space Ck([−r, 0];RN ) of functions with values in R

N that have continuous
derivatives until order k, while the symbol W 1,2 will indicate the space of absolutely
continuous functions from [−r, 0] in R

N , with derivative in L2.
In M2 the system (2.1), (2.2) assumes the form

ẋ(t) = Ax(t) + Bu(t) + Fω(t), x(0) =

[
z̄(0)

z̄

]
+

[
L0

L1

]
ω̄,(2.5)

y(t) = Cx(t) + Gω(t),(2.6)

where A : D(A) �→M2 is defined as

A

[
x0

x1

]
=

 A0x0 +

δ∑
h=1

Ahx1(−rh) +

∫ 0

−r
A01(ϑ)x1(ϑ)dϑ

d

dϑ
x1

(2.7)

with domain

D(A) =

{[
x0

x1

] ∣∣∣ x0 ∈ R
N

x1 ∈W 1,2
x0 = x1(0)

}
,(2.8)

and the linear operators B,C,F are defined as

B : R
p �→M2, Bu(t) =

[
B0u(t)

0

]
,(2.9)

C : M2 �→ R
q, C

[
x0

x1

]
= C0x0,(2.10)

F : R
s �→M2, Fω(t) =

[
F 0 ω(t)

0

]
.(2.11)

The Hilbert–Schmidt operator L =
[L0

L1

]
, which defines the stochastic initial state

x(0), derives from definition (2.2) and is defined as follows:

L0 : L2([−r, 0];Rs̄) �→ R
N ; L0ω =

∫ 0

−r
k(0, τ)ω̄(τ)dτ,

L1 : L2([−r, 0];Rs̄) �→W 1,2; L1ω(ϑ) =

∫ 0

−r
k(ϑ, τ)ω̄(τ)dτ.

(2.12)

The mean value and nuclear covariance of the initial state x0 are as follows:

x̄0 =

[
z̄(0)

z̄

]
, P 0 = LL∗.(2.13)
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Remark 2.1. Note that the weighted scalar product (2.3), (2.4) assures that there
exist real α such that A−αI has the nice property to be dissipative [3]. This property
is used in the paper to prove the convergence of the approximation scheme.

For the reader’s convenience, the definitions of some operators related to the
system (2.5), (2.6) that will be extensively used in the paper are reported below.

Proposition 2.2. The operators B∗, C∗, F ∗, BB∗, C∗C, FF ∗, and A∗ are
as follows:

B∗ : M2 �→ R
p, B∗

[
x0

x1

]
= BT

0 x0;(2.14)

C∗ : R
q �→M2, C∗y =

[
CT

0 y
0

]
;(2.15)

F ∗ : M2 �→ R
s, F ∗

[
x0

x1

]
=

[
F T

0 x0

0

]
;(2.16)

BB∗ : M2 �→M2, BB∗
[

x0

x1

]
=

[
B0B

T
0 x0

0

]
;(2.17)

C∗C : M2 �→M2, C∗C
[

x0

x1

]
=

[
CT

0 C0x0

0

]
;(2.18)

FF ∗ : M2 �→M2, FF ∗
[

x0

x1

]
=

[
F 0F

T
0 x0

0

]
;(2.19)

A∗ : D(A∗) �→M2,

A∗
[

y0

y1

]
=


δ y1(0) + AT

0 y0

1

g
AT

01y0 −
d

dϑ

y1 −
δ−1∑
j=1

kj(y0,y1)χ[−r,−rj ]


 ,(2.20)

with dense domain

D(A∗) =


y0

y1

 ∣∣∣
y0 ∈ R

N , AT
δ y0 = y1(−r),y1 −

δ−1∑
j=1

kj(y0,y1)χ[−r,−rj ]

 ∈W 1,2

 ,(2.21)

where

kj(y0,y1) =
y1(−rj)−AT

j y0

δ − j + 1
, j = 1, . . . , δ − 1.(2.22)

The proof that the operator defined by (2.20), (2.21), (2.22) is in fact the adjoint
of operator A is reported in appendix.

Remark 2.3. The difference between the case of just one pure delay and of
multiple pure delays is given by summations in (2.20), (2.21), which vanish in the
first case and complicate the analysis very much in the second one.
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3. The finite horizon LQG for delay systems. In this section the problem
of defining a feedback control law for the stochastic delay system (2.1), (2.2) is con-
sidered. In particular we are interested in the problem of synthesizing the control law
that minimizes the cost functional

Jf (u) =

∫ tf

0

E[zT(t)Q0z(t) + uT(t)u(t)]dt,(3.1)

with 0 < tf < ∞, where matrix Q0 is symmetric nonnegative definite. It can be
readily recognized that the functional (3.1) admits the following representation in
M2:

Jf (u) =

∫ tf

0

E[
(
Qx(t),x(t)

)
+ uT(t)u(t)]dt,(3.2)

where Q : M2 �→M2 is defined as

Q

[
x0

x1

]
=

[
Q0x0

0

]
(3.3)

and x(t) satisfies system equations (2.5), (2.6). The solution of this problem, as is
well known, is the classical LQG controller given by the following equations [1]:

u(t) = −B∗R(tf − t)x̂(t),(3.4)

R(t) =

∫ t

0

T ∗(t− τ)[Q−R(τ)BB∗R(τ)]T (t− τ)dτ,(3.5)

x̂(t) = T (t)x̂0 +

∫ t

0

T (t− τ) [P (τ)C∗[y(τ)−Cx̂(τ)] + Bu(τ)] dτ,(3.6)

P (t) = T (t)P 0T
∗(t) +

∫ t

0

T (t− τ)[FF ∗ − P (τ)C∗CP (τ)]T ∗(t− τ)dτ,(3.7)

where T (t) is the semigroup governing the system, that is, the semigroup generated
by the operator A in (2.7), (2.8), and x̂0 and P 0 are the expected value and the
covariance operator of the initial state x(0) in M2, respectively. The solution given
by these equations is a very important result only from a theoretical point of view.
For our purposes we need to recall that the solutions of the Riccati equations (3.5),
(3.7) evolve in the Hilbert space of Hilbert–Schmidt operators and moreover, for every
tf <∞, there exist constants KP and KR such that [20]

sup
t∈[0,tf ]

‖P (t)‖H.S. = KP <∞,

sup
t∈[0,tf ]

‖R(t)‖H.S. = KR <∞,
(3.8)

where, as usual, ‖ · ‖H.S. denotes the Hilbert–Schmidt norm [1].
In engineering applications, due to its infinite dimensional nature, such a solution

is not directly implementable. Therefore it becomes important to investigate when
such a solution admits a finite dimensional approximation.

Throughout the paper, given a Hilbert space X and a closed subspace S ⊂ X ,
the orthogonal projection operator from X to S will be denoted as ΠS .
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In the next lemma, the linear space of bounded operators on a Hilbert space H
is denoted L(H).

Lemma 3.1. Let H1, H2 be separable Hilbert spaces. Let {Gm(t), t ∈ [0, tf ]}
be a sequence of strongly continuous L(H2) valued functions, strongly convergent to
{G(t), t ∈ [0, tf ]}, uniformly on [0, tf ]. Let K be a compact subset in the Hilbert space
of Hilbert–Schmidt operators mapping H1 to H2.

Then ‖Gm(t)N −G(t)N‖H.S. converges to zero, uniformly with respect to N ∈ K
and t ∈ [0, tf ].

Proof. See [20].
Lemma 3.2. Let H1 and H2 be separable Hilbert spaces. Let G(t) be a semi-

group on H2 and Gn(t) a sequence of semigroups on H2 strongly convergent to G(t)
uniformly with respect to t ∈ [0, tf ]. For 0 ≤ τ ≤ t, let Γ(t, τ) be the mild evolution
operator

Γ(t, τ) = G(t− τ) +

∫ t

τ

G(t− ϑ)Op(ϑ)Γ(ϑ, τ)dϑ,(3.9)

where Op ∈ C ([0, tf ];L(H2)) and let Γn(t, τ) be the sequence of mild evolution oper-
ators

Γn(t, τ) = Gn(t− τ) +

∫ t

τ

Gn(t− ϑ)Opn(ϑ)Γn(ϑ, τ)dϑ,(3.10)

where Opn ∈ C ([0, tf ];L(H2)) converges pointwise strongly to Op, uniformly in [0, tf ].
Let K be a compact subset in the Hilbert space of Hilbert–Schmidt operators mapping
H1 to H2.

Then ‖Γ(t, τ)N−Γn(t, τ)N‖H.S. converges to zero, uniformly with respect to N ∈
K and 0 ≤ τ ≤ t ≤ tf .

Proof. It is

‖Γ(t, τ)N − Γn(t, τ)N‖H.S. ≤ ‖G(t− τ)N −Gn(t− τ)N‖H.S.

+

∫ t

τ

‖G(t− ϑ)Op(ϑ)‖ · ‖Γ(ϑ, τ)N − Γn(ϑ, τ)N‖H.S.dϑ

+

∫ t

τ

‖G(t− ϑ)Op(ϑ)−Gn(t− ϑ)Opn(ϑ)‖

·‖Γn(ϑ, τ)N − Γ(ϑ, τ)N‖H.S.dϑ

+

∫ t

τ

‖(G(t− ϑ)Op(ϑ)−Gn(t− ϑ)Opn(ϑ))Γ(ϑ, τ)N‖H.S.dϑ.

(3.11)

Let M be a positive real such that

M ≥ sup
(t,ϑ)∈[0,tf ]×[0,tf ]

‖G(t)‖‖Op(ϑ)‖,

M ≥ sup
(t,ϑ,n)∈[0,tf ]×[0,tf ]×Z+

‖Gn(t)‖‖Opn(ϑ)‖.
(3.12)
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Then

‖Γ(t, τ)N −Γn(t, τ)N‖H.S. ≤ ‖G(t− τ)N −Gn(t− τ)N‖H.S.

+

∫ t

τ

‖(G(t− ϑ)Op(ϑ)−Gn(t− ϑ)Opn(ϑ))Γ(ϑ, τ)N‖H.S.dϑ

+3M

∫ t

τ

‖(Γn(ϑ, τ)− Γ(ϑ, τ)
)
N‖H.S.dϑ.

(3.13)

Applying the Gronwall’s inequality,

‖Γ(t, τ)N −Γn(t, τ)N‖H.S. ≤ e3Mtf
(
‖G(t− τ)N −Gn(t− τ)N‖H.S.

+

∫ t

τ

∥∥(G(t− ϑ)Op(ϑ)−Gn(t− ϑ)Opn(ϑ)
)
Γ(ϑ, τ)N

∥∥
H.S.

dϑ
)

≤ e3Mtf
(
‖G(t− τ)N −Gn(t− τ)N‖H.S.

+

∫ t

τ

∥∥(G(t− ϑ)−Gn(t− ϑ)
)
Op(ϑ)Γ(ϑ, τ)N

∥∥
H.S.

dϑ

+

∫ t

τ

M
∥∥(Op(ϑ)−Opn(ϑ)

)
Γ(ϑ, τ)N

∥∥
H.S.

dϑ
)
.

(3.14)

Since the set of operators {Op(ϑ)Γ(t, τ)N,ϑ ∈ [0, tf ], 0 ≤ τ ≤ t ≤ tf} and the set
{Γ(t, τ)N, 0 ≤ τ ≤ t ≤ tf} are compact in the Hilbert space of Hilbert–Schmidt op-
erators mapping H1 to H2, by Lemma 3.1 the right-hand side of inequality (3.14)
tends to zero for n→∞, and the lemma is proved.

Theorem 3.3. Let Ψn and Ψ′
n be sequences of finite dimensional subspaces of

M2 contained in D(A) and in D(A∗), respectively. Let ΠΨn : M2 �→ Ψn and ΠΨ′
n
:

M2 �→ Ψ′
n be the sequences of orthoprojection operators in Ψn and Ψ′

n, respectively.
Let T Ψn(t) be the semigroup generated by the operator ΠΨnAΠΨn : M2 �→ Ψn and
T ∗

Ψ′
n
(t) the semigroup generated by the operator ΠΨ′

n
A∗ΠΨ′

n
: M2 �→ Ψ′

n. Let P n(t)
and Rn(t) be the solutions of the finite dimensional differential Riccati equations

Ṗ n(t) = ΠΨnAΠΨnP n(t) + P n(t)(ΠΨnAΠΨn)
∗

−P n(t)ΠΨnC∗CΠΨnP n(t) +ΠΨnFF ∗ΠΨn ,

P n(0) = ΠΨnP 0ΠΨn ,

(3.15)

Ṙn(t) = ΠΨ′
n
A∗ΠΨ′

n
Rn(t) + Rn(t)(ΠΨ′

n
A∗ΠΨ′

n
)∗

−Rn(t)ΠΨ′
n
BB∗ΠΨ′

n
Rn(t) +ΠΨ′

n
QΠΨ′

n
,

Rn(0) = 0.

(3.16)

Assume the following hypotheses are satisfied:

(Hp1) ΠΨn converges strongly to the identity operator;

(Hp2) ΠΨ′
n
converges strongly to the identity operator;

(Hp3) T Ψn(t) converges strongly to T (t) uniformly in [0, tf ];

(Hp4) T ∗
Ψ′
n
(t) converges strongly to T ∗(t) uniformly in [0, tf ].
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Then

‖P n(t)−ΠΨnP (t)ΠΨn‖H.S. → 0,
uniformly in [0, tf ].‖Rn(t)−ΠΨ′

n
R(t)ΠΨ′

n
‖H.S. → 0,

(3.17)

Proof. See the proof of Theorem 3 in [20].
Remark 3.4. Note that, with the given definitions, in general the semigroup

T ∗
Ψ′
n
(t) generated by the operatorΠΨ′

n
A∗ΠΨ′

n
is different from the semigroup T ∗

Ψn(t),
the adjoint of the semigroup generated by ΠΨnAΠΨn .

Lemma 3.5. Let Ψn and Ψ′
n be sequences of finite dimensional subspaces of

M2 contained in D(A) and in D(A∗), respectively. Let ΠΨn : M2 �→ Ψn and
ΠΨ′

n
: M2 �→ Ψ′

n be the corresponding sequences of orthoprojection operators. Let
H = M2 ×M2 and Hn = M2 ×Ψn. Consider the following operators:

A =

[
A 0
0 A

]
: D(A)×D(A) �→ H,(3.18)

An =

[
A 0
0 ΠΨnAΠΨn

]
: D(A)×M2 �→ Hn,(3.19)

D(t) =

[
0 −BB∗R(tf − t)

P (t)C∗C −BB∗R(tf − t)− P (t)C∗C

]
: H �→ H,(3.20)

Dn(t) =

[
0 −BB∗Rn(tf − t)ΠΨ′

n

P n(t)ΠΨnC∗C −ΠΨnBB∗Rn(tf − t)ΠΨ′
n
− P n(t)ΠΨnC∗CΠΨn

]
:

H �→ Hn,(3.21)

O(t) =

[
F

P (t)C∗G

]
: R
s �→ H,(3.22)

On(t) =

[
F

P n(t)ΠΨnC∗G

]
: R
s �→ Hn.(3.23)

Let S(t) and Sn(t) be the semigroups generated by operators A and An, respectively.
Let ΠHn be the following sequence of orthoprojection operators, strongly converg-

ing to identity,

ΠHn =

[
I 0
0 ΠΨn

]
: H �→ Hn(3.24)

Assume that assumptions Hp1–Hp4 of Theorem 3.3 are satisfied.
Then

(Th1) Sn(t)converges strongly to S(t) uniformly in [0, tf ];

(Th2) ‖ΠHnO(t)−On(t)‖H.S. → 0 uniformly in [0, tf ];

(Th3) ‖ΠHnD(t)−Dn(t)‖H.S. → 0 uniformly in [0, tf ].

Proof. Thesis Th1 is an immediate consequence of hypothesis Hp3.
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As far as Th2 is concerned, we have

‖ΠHn
O(t)−On(t)‖H.S. = ‖ΠΨnP (t)C∗G− P n(t)ΠΨnC∗G‖H.S.
≤

∥∥∥ΠΨnP (t)C∗G−ΠΨnP (t)ΠΨnC∗G

+ΠΨnP (t)ΠΨnC∗G− P n(t)ΠΨnC∗G‖H.S.
≤ ‖ΠΨn‖‖P (t)‖H.S.‖C∗G−ΠΨnC∗G‖H.S.

+‖ΠΨnP (t)ΠΨn − P n(t)‖H.S.‖ΠΨn‖‖C∗G‖.

(3.25)

From (3.25) it follows that ‖ΠHnO(t) − On(t)‖H.S. → 0 uniformly with respect to
t ∈ [0, tf ] because of the boundedness of ‖P (t)‖H.S and the uniform convergence of
P n(t) stated in Theorem 3.3.

As for thesis Th3, it is

ΠHn
D(t)−Dn(t) =

[
0 Opn1,2(t)

Opn2,1(t) Opn2,2(t)

]
,(3.26)

where

Opn1,2(t) = BB∗Rn(tf − t)ΠΨ′
n
−BB∗R(tf − t);

Opn2,1(t) = ΠΨnP (t)C∗C − P n(t)ΠΨnC∗C;

Opn2,2(t) = ΠΨnBB∗Rn(tf − t)ΠΨ′
n

+ P n(t)ΠΨnC∗CΠΨn −ΠΨnBB∗R(tf − t)−ΠΨnP (t)C∗C.(3.27)

To prove Th3 it is sufficient to prove that the three operators in (3.27) converge
uniformly to zero in the H.S. norm. Let us start with operator Opn1,2(t). We have

‖Opn1,2(t)‖ ≤ ‖BB∗‖∥∥Rn(tf − t)−ΠΨ′
n
R(tf − t)ΠΨ′

n

∥∥
H.S.
‖ΠΨ′

n
‖

+‖BB∗‖∥∥ΠΨ′
n
R(tf − t)ΠΨ′

n
−R(tf − t)

∥∥
H.S.

.
(3.28)

Moreover, from the uniform convergence of Rn(t) stated in Theorem 3.3, R being
self-adjoint, and for Lemma 3.1, by

‖ΠΨ′
n
R(tf − t)ΠΨ′

n
−R(tf − t)‖H.S.

≤ ‖ΠΨ′
n
R(tf − t)ΠΨ′

n
−R(tf − t)ΠΨ′

n
+ R(tf − t)ΠΨ′

n
−R(tf − t)‖H.S.

≤ 2‖ΠΨ′
n
R(tf − t)−R(tf − t)‖,

(3.29)

it follows that ‖Opn1,2(t)‖H.S. → 0 uniformly in [0, tf ]. Consider now the term Opn2,1(t).
Its Hilbert–Schmidt norm satisfies

‖Opn2,1(t)‖H.S.
≤ ∥∥ΠΨnP (t)−ΠΨnP (t)ΠΨn +ΠΨnP (t)ΠΨn − P n(t)ΠΨn

∥∥
H.S.
‖C∗C‖

≤
(
‖P (t)− P (t)ΠΨn‖H.S. + ‖(ΠΨnP (t)ΠΨn − P n(t))ΠΨn‖H.S.

)
‖C∗C‖.

(3.30)
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Since, by Lemma 3.1, ‖ΠΨnP (t) − P (t)‖H.S. → 0 uniformly and ‖(ΠΨnP (t)ΠΨn −
P n(t))ΠΨn‖H.S. → 0 by Theorem 3.3, it follows that the norm of Opn2,1(t) tends to
zero uniformly in [0, tf ].

It remains to prove that ‖Opn2,2(t)‖H.S. → 0 uniformly.

‖Opn2,2(t)‖H.S. ≤ ‖ΠΨn‖
∥∥BB∗R(tf − t)−BB∗Rn(tf − t)ΠΨ′

n

∥∥
H.S.

+
∥∥ΠΨnP (t)C∗C − P n(t)ΠΨnC∗CΠΨn

∥∥
H.S.

(3.31)

Uniform convergence to zero of ‖BB∗R(tf−t)−BB∗Rn(tf−t)ΠΨ′
n
‖H.S. has already

been proved. Moreover,

‖ΠΨnP (t)C∗C − P n(t)ΠΨnC∗CΠΨn‖H.S.
≤ ‖ΠΨn‖‖P (t)C∗C − P (t)ΠΨnC∗CΠΨn‖H.S.

+
∥∥(ΠΨnP (t)ΠΨn − P n(t)

)
ΠΨnC∗C

∥∥
H.S.
‖ΠΨn‖.(3.32)

Again, as proved in [20], the term ‖(ΠΨnP (t)ΠΨn −P n(t))ΠΨn‖H.S. → 0 uniformly
and thanks to Lemma 3.1 also ‖C∗CP (t)−ΠΨnC∗CΠΨnP (t)‖H.S. → 0 uniformly.
From (3.32) it follows that ‖ΠΨnP (t)C∗C−P n(t)ΠΨnC∗CΠΨn‖H.S. → 0 uniformly,
so that ‖Opn2,2(t)‖H.S. → 0 uniformly in [0, tf ], and the lemma is proved.

Lemma 3.6. Let U(t, τ), 0 ≤ τ ≤ t, be the mild evolution operator

U(t, τ) = S(t− τ) +

∫ t

τ

S(t− ϑ)D(ϑ)U(ϑ, τ)dϑ.(3.33)

Let {Un(t, τ)} be the sequence of mild evolution operators

Un(t, τ) = Sn(t− τ) +

∫ t

τ

Sn(t− ϑ)Dn(ϑ)Un(ϑ, τ)dϑ.(3.34)

Then {Un(t, τ)} converges strongly to U(t, τ) uniformly in 0 ≤ τ ≤ t ≤ tf , that is,
given any X ∈ H,

lim
n→∞ sup

0≤τ≤t≤tf
‖Un(t, τ)X −U(t, τ)X‖ = 0.(3.35)

Proof. Let us denote by g(t, τ) and gn(t, τ) the quantities

g(t, τ) = U(t, τ)X,(3.36)

gn(t, τ) = Un(t, τ)X,(3.37)

from which, denoting the approximation error by en(t, τ)

en(t, τ) = g(t, τ)− gn(t, τ),(3.38)

we have

en(t, τ) = S(t− τ)X +

∫ t

τ

S(t− ϑ)D(ϑ)g(ϑ, τ)dϑ

−Sn(t− τ)X −
∫ t

τ

Sn(t− ϑ)Dn(ϑ)gn(ϑ, τ)dϑ,

(3.39)
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and therefore

en(t, τ) = (S(t− τ)− Sn(t− τ))X

+

∫ t

τ

(
S(t− ϑ)D(ϑ)g(ϑ, τ)− Sn(t− ϑ)Dn(ϑ)gn(ϑ, τ)

)
dϑ

(3.40)

from which

‖en(t, τ)‖ ≤ ‖(S(t− τ)− Sn(t− τ))X‖

+

∫ t

τ

‖S(t− ϑ)D(ϑ)− Sn(t− ϑ)D(ϑ)‖‖g(ϑ, τ)‖dϑ

+

∫ t

τ

‖Sn(t− ϑ)‖‖ΠHnD(ϑ)−Dn(ϑ)‖‖g(ϑ, τ)‖dϑ

+

∫ t

τ

‖Sn(t− ϑ)Dn(ϑ)‖‖en(ϑ, τ)‖dϑ.

(3.41)

Now, given ε > 0, by Lemma 3.1 there exists an integer νε,X such that, for all n > νε,X ,
we have

‖en(t, τ)‖ ≤ ε+ S̄D̄

∫ t

τ

‖en(ϑ, τ)‖dϑ,(3.42)

where

S = sup
n,t∈[0,tf ]

‖Sn(t)‖,

D = sup
n,t∈[0,tf ]

‖Dn(t)‖.
(3.43)

By Gronwall’s lemma,

‖en(t, τ)‖ ≤ εeS̄D̄(t−τ),(3.44)

and therefore

sup
0≤τ≤t≤tf

‖en(t, τ)‖ ≤ εeS̄D̄tf .(3.45)

This concludes the proof.
Now, the main theorem can be given.
Theorem 3.7. Using the same hypotheses of Theorem 3.3, let un(t) be the input

obtained by the following finite dimensional equations:

˙̂xn(t) = ΠΨnAΠΨn x̂n(t) +ΠΨnBun(t) + P n(t)ΠΨnC∗(y(t)−CΠΨn x̂n(t)
)
,

x̂n(0) = ΠΨn x̂(0),

(3.46)

un(t) = −B∗Rn(tf − t)ΠΨ′
n
x̂n(t),(3.47)

where P n and Rn are given by (3.15) and (3.16). Let u(t) be the optimal input, x̂(t)
the optimal estimated state, xn(t) and x(t) the actual state evolving when un(t) and
u(t) are applied to system (2.1), (2.2), respectively.
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Then

lim
n→∞E‖xn − x‖2

L2([0,tf ];M 2)
= 0,(3.48)

lim
n→∞E‖x̂n − x̂‖2

L2([0,tf ];M 2)
= 0,(3.49)

lim
n→∞E‖un − u‖2L2([0,tf ];Rp)

= 0,(3.50)

lim
n→∞ |Jf (un)− Jf (u)| = 0.(3.51)

Proof. Let X =
[
x
x̂

]
and Xn =

[
xn
x̂n

]
. It is

Ẋ(t) = AX(t) + D(t)X(t) + O(t)ω(t),

Ẋn(t) = AnXn(t) + Dn(t)Xn(t) + On(t)ω(t),

X(0) =

[
x(0)
x̂(0)

]
, Xn(0) =

[
x(0)

ΠΨn x̂(0)

]
,

(3.52)

where A,An,D(t),Dn(t),O(t),On(t) have been defined in Lemma 3.5.
Let S(t), Sn(t), U(t, τ), Un(t, τ) be as in Lemmas 3.5, 3.6. We have

X(t) = S(t)X(0) +

∫ t

0

S(t− τ)
(
D(τ)X(τ) + O(τ)ω(τ)

)
dτ,(3.53)

Xn(t) = Sn(t)Xn(0) +

∫ t

0

Sn(t− τ)
(
Dn(τ)Xn(τ) + On(τ)ω(τ)

)
dτ,(3.54)

which can be rewritten as

X(t) = U(t, 0)X(0) +

∫ t

0

U(t, τ)O(τ)ω(τ)dτ,(3.55)

Xn(t) = Un(t, 0)Xn(0) +

∫ t

0

Un(t, τ)On(τ)ω(τ)dτ.(3.56)

Let us introduce the Hilbert spaces

W X,t = L2([0, t];H), W ω,t = L2([0, t];R
s),(3.57)

and define the operators

Lt : W ω,t �→W X,t,

f = Lt g, f(τ) =

∫ τ

0

U(τ, ϑ)O(ϑ)g(ϑ)dϑ,(3.58)

Lt,n : W ω,t �→W X,t,

f = Lt,n g, f(τ) =

∫ τ

0

Un(τ, ϑ)On(ϑ)g(ϑ)dϑ,(3.59)

and the functions

X0 : X0(τ) = U(τ, 0)X(0),(3.60)

X0,n : X0,n(τ)= Un(τ, 0)Xn(0).(3.61)
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In the space W X,t, (3.55), (3.56) can be expressed as

X = X0 + Ltω,(3.62)

Xn = X0,n + Lt,nω,(3.63)

so that

E‖X −Xn‖2W X,t
= E‖X0 −X0,n + (Lt −Lt,n)ω‖2W X,t

≤ 2E‖X0 −X0,n‖2W X,t
+ 2E‖(Lt −Lt,n)ω‖2W X,t

.
(3.64)

The first term in the right-hand side goes to zero thanks to Lemma 3.6.
For the second term we have

E‖(Lt −Lt,n)ω‖2W (X,t)
= ‖Lt −Lt,n‖2H.S.

=

∫ t

0

∫ τ

0

∥∥U(τ, ϑ)O(ϑ)−Un(τ, ϑ)On(ϑ)
∥∥2

H.S.
dϑdτ

≤ 2

∫ t

0

∫ τ

0

∥∥∥(U(τ, ϑ)−Un(τ, ϑ)
)
O(ϑ)

∥∥∥2

H.S.
dϑdτ

+ 2

∫ t

0

∫ τ

0

∥∥∥Un(τ, ϑ)
(
O(ϑ)−On(ϑ)

)∥∥∥2

H.S.
dϑdτ

≤ sup
0≤ϑ≤τ≤t

sup
M∈{O(ϑ),ϑ∈[0,t]}

∥∥∥(U(τ, ϑ)−Un(τ, ϑ)
)
M

∥∥∥2

H.S.
t2

+ sup
0≤ϑ≤τ≤t, n∈Z+

‖Un(τ, ϑ)‖t2 sup
ϑ∈[0,t]

‖O(ϑ)−On(ϑ)‖2H.S.

(3.65)

which goes to zero by using Lemmas 3.1, 3.5, and 3.6. This concludes the proof.

4. The approximation scheme. In this section, we will derive the approxima-
tion scheme for the LQG controller (3.4)–(3.7). The first step is the definition of the
sequences Ψn and Ψ′

n of subspaces approximating D(A) and D(A∗). This is made
by a suitable definition of basis vectors for subspaces Ψn ⊂ D(A) and Ψ′

n ⊂ D(A∗).
In order to avoid confusion with the general settings in section 3, the forthcoming
choice for Ψn and Ψ′

n will be denoted by Φn and Φ′
n respectively. In [3] the dynamics

of linear delay systems is approximated using classical first order splines uniformly
distributed over the interval [−r, 0]. With this choice the computation of matrix rep-
resentation of the approximated operators is quite complex due to the fact that in
general, for a given number n of subintervals of [−r, 0], the delay instants −rj do not
coincide with knots of splines.

It is useful to define a multi-index s = (n1, . . . , nδ) that characterizes the partition
of each interval [−ri,−ri−1], for i = 1, . . . , δ, into ni subintervals of length (ri −
ri−1)/ni, in which ni + 1 classical first order splines are considered (see Figure 1),
numbered from 0 to ni.

Definition 4.1. A sequence {sn} of multi-indexes, defined for n = 1, 2, . . .,
where n is the lowest of indexes nj of the multi-index (i.e., n = min{sn}), is denoted
a test sequence if there exists a constant c̄ such that for each n it is max{sn}/n ≤ c̄.

Let tij = −ri−1 − (ri − ri−1)j/ni, for j = 0, 1, . . . , ni, i = 1, . . . , δ. Let splineij be

the spline j of interval i, that is, the spline with knot in tij . Let φk, k = 1, 2, . . . , N,

be the canonical base in R
N .



1248 A. GERMANI, C. MANES, AND P. PEPE

-r 0

1

r− i

0spline i

r− i-1t i
j

............. ..............

spline ispline i
jni

-r 0

1

spline'ri

d - i
d - i +1

r−

Fig. 1. First order splines used for the approximation schemes.

The approximating subspace Φn and Φ′
n are defined as follows.

Definition 4.2. For any given multi-index sn of a test sequence let Φn be the
subspace of linear combinations of vectors vih, vrik defined as follows:

(4.1) v1
k =

[
φk

φkspline
1
0

]
, k = 1, . . . , N,

(4.2) vijN+k =

[
0

φkspline
i
j

]
, k = 1, . . . , N, j = 1, . . . , ni − 1,

(4.3) vδnδN+k =

[
0

φkspline
δ
nδ

]
, k = 1, . . . , N,

(4.4) vrik =

[
0

φksplineri

]
,

i = 1, . . . , δ − 1,

k = 1, . . . , N,
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where

(4.5) splineri = splineini · χ(−ri,−ri−1] + splinei+1
0 , i = 1, . . . , δ − 1.

Definition 4.3. For any given multi-index sn of a test sequence let Φ′
n be the

subspace of linear combinations of vectors wih, wrik , w′
k defined as follows:

w1
k =

[
0

φkspline
1
0

]
, k = 1, . . . , N,(4.6)

wijN+k = vijN+k, k = 1, . . . , N,
i = 1, . . . , δ,

j = 1, . . . , ni − 1,
(4.7)

w
rj
k =

[
0

φkspline
′
rj

]
, j = 1, . . . , δ − 1, k = 1, . . . , N,(4.8)

where

spline′rj =
(δ − j)

(δ − j + 1)
splinejnj · χ(−rj ,−rj−1] + splinej+1

0 ,(4.9)

spline′′rj = splinejnj · χ(−rj ,−rj−1], j = 1, . . . , δ − 1,(4.10)

w′
k =

[
φk

aδkspline
δ
nδ

+
∑δ−1
j=1

1
(δ−j+1)ajkspline

′′
rj

]
, k = 1, . . . , N,(4.11)

where ajk is the k column of matrix AT
j for j = 1, . . . , δ.

Theorem 4.4. For each multi-index sn of a test sequence, it is Φn ⊂ D(A) and
Φ′
n ⊂ D(A∗).
Proof. It is immediate to verify that Φn ⊂ D(A). A more detailed proof is

required to show that Φ′
n ⊂ D(A∗). To this aim it is sufficient to verify that each

vector w belongs to it. It is easy to check that vectors wijN+k, for i = 1, . . . , δ,

k = 1, . . . , N , j = 1, . . . , ni − 1, and vectors w1
k, for k = 1, . . . , N , belong to D(A∗).

Let us consider now the vectors wrik , for i = 1, . . . , δ − 1, k = 1, . . . , N (as usual, we
shall indicate the part in R

N by using the subscript 0 and the part in L2 by using the
subscript 1).

From the definition, for each k it is

(wrik )0 = 0,

(wrik )1 (−rj) = 0, i, j = 1, . . . , δ − 1, i �= j,(4.12)

(wrik )1 (−r) = 0, i = 1, . . . , δ − 1,

so that for k = 1, . . . , N, i = 1, . . . , δ − 1,

(wrik )1 (−r) = AT
δ (w

ri
k )0(4.13)

and

δ−1∑
j=1

kj ((w
ri
k )0, (w

ri
k )1)χ[−r,−rj ] =

δ−1∑
j=1

(wrik )1 (−rj)−AT
j (w

ri
k )0

δ − j + 1
χ[−r,−rj ]

=
(wrik )1 (−ri)

δ − i+ 1
χ[−r,−ri].

(4.14)
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So it is only to be verified that for i = 1, . . . , δ − 1, k = 1, . . . , N ,

(wrik )1 −
1

(δ − i+ 1)
(wrik )1 (−ri)χ[−r,−ri] ∈W 1,2.(4.15)

Since

spline′ri(−ri)− 1

δ − i+ 1
=

δ − i

δ − i+ 1
= lim
ϑ→−r+

i

spline′ri(ϑ),(4.16)

(4.15) is clearly true.
For vectors w′

k defined in (4.11), for k = 1, . . . , N , it is

(w′
k)1(−r) = aδk = AT

δ φk = AT
δ (w

′
k)0.(4.17)

It is also

(w′
k)1(−ri) = 0, i = 1, . . . , δ − 1,(4.18)

and therefore

δ−1∑
j=1

kj ((w
′
k)0, (w

′
k)1)χ[−r,−rj ] =

δ−1∑
j=1

(w′
k)1 (−rj)−AT

j (w
′
k)0

δ − j + 1
χ[−r,−rj ]

=

δ−1∑
j=1

−AT
j (w

′
k)0

(δ − j + 1)
χ[−r,−rj ] =

δ−1∑
j=1

−ajk
(δ − j + 1)

χ[−r,−rj ].

(4.19)

From

lim
ϑ�→−r+

j

(w′
k)1 (ϑ) =

ajk
δ − j + 1

(4.20)

it follows, for i = 1, . . . , δ − 1,(w′
k)1 +

δ−1∑
j=1

ajk
(δ − j + 1)

χ[−r,−rj ]

 (−ri) = (w′
k)1(−ri) +

i∑
j=1

ajk
(δ − j + 1)

=

i∑
j=1

ajk
δ − j + 1

=
aik

δ − i+ 1
+
i−1∑
j=1

ajk
δ − j + 1

= lim
ϑ�→−r+

i

(w′
k)1 (ϑ) + lim

ϑ�→−r+
i

δ−1∑
j=1

ajk
δ − j + 1

χ[−r,−rj ](ϑ),

(4.21)

and so (w′
k)1 +

δ−1∑
j=1

ajk
δ − j + 1

χ[−r,−rj ]

 ∈W 1,2,(4.22)

(4.17) and (4.22) prove that vectors w′
k, k = 1, . . . , N , belong to D(A∗).

Remark 4.5. Note that a key idea for the previous theorem is the choice of a type
of not uniformly distributed splines.
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Remark 4.6. In the case of just one pure delay, vectors generating subspaces Φn
and Φ′

n become, respectively,

vjN+k =

[
0

φksplinej

]
, k = 1, . . . , N, j = 1, 2, . . . , n,(4.23)

vk =

[
φk

φkspline0

]
, k = 1, . . . , N(4.24)

for Φn, and

w1
k =

[
0

φkspline0

]
, k = 1, . . . , N,(4.25)

wjN+k = vjN+k k = 1, . . . , N, j = 1, 2, . . . , n− 1,(4.26)

w′
k =

[
φk

a1ksplinen

]
, k = 1, . . . , N(4.27)

for Φ′
n. As can be seen, a great simplification is obtained with respect to the general

case. Vectors v are just the ones in [3], and vectors w differ just for the fact that the
nonzero term in R

N is taken from the first N vectors to the last ones, and the L2 part
of these last N vectors is multiplied for the columns of matrix AT

1 . This simplification
with respect to the general case is due to the much simpler domain (2.21).

Consider now a test sequence of multi-indexes {sn}, and consider the associated
sequence of orthoprojection operators ΠΦn : M2 �→ Φn and ΠΦ′

n
: M2 �→ Φ′

n. For
brevity, from now on the following notation is used:

Πn = ΠΦn , Π′
n = ΠΦ′

n
.(4.28)

Recall that operators Πn and Π′
n, being orthogonal projectors, have the following

properties:

∀y ∈M2, ‖Πny − y‖ ≤ ‖x− y‖ ∀x ∈ Φn,(4.29)

∀y ∈M2, ‖Π′
ny − y‖ ≤ ‖x− y‖ ∀x ∈ Φ′

n.(4.30)

The following results can be given on the convergence of the sequences of projec-
torsΠn, Π

′
n, and of the sequence of semigroups generated byΠnAΠn andΠ′

nA
∗Π′

n.
Theorem 4.7. The sequence of orthoprojection operators Πn : M2 �→ Φn con-

verges strongly to the identity operator.
Proof. Let D = {[y0

y1

] ∈ M2|y0 = y1(0),y1 ∈ C2([−r, 0];RN )}. Such set D is

dense in M2 (see the proof of Lemma 2.2 and Remark 3.2 in [3]). Let x =
[
x0

x1

] ∈ D
and let

xn =

[
xn0
xn1

]
=

N∑
k=1

(x1(−r)Tφk)v
δ
nδN+k +

N∑
k=1

δ−1∑
i=1

(x1(−ri)
Tφk)v

ri
k

+

δ∑
i=1

N∑
k=1

ni−1∑
j=1

(x1(t
i
j)

Tφk)v
i
jN+k +

N∑
k=1

(x1(0)
Tφk)v

1
k.

(4.31)

By Theorem 2.5 in [42] it is ‖xn1 − x1‖ → 0, and the thesis follows by

‖xn − x‖M 2
= ‖xn1 − x1‖L2

(4.32)



1252 A. GERMANI, C. MANES, AND P. PEPE

and by property (4.29).
Theorem 4.8. The sequence of semigroups T Φn generated by the operators

ΠnAΠn converges strongly to the semigroup governing the system (2.5), (2.6).
Proof. Let D be the set in the proof of the previous theorem. There exists λ > 0

such that (A−λI)D is dense in M2 (see Lemma 2.2 in [3]). There exists α such that
(A−αI) e (ΠnAΠn−αI) are dissipative (see Lemma 2.3 and proof of Theorem 3.1

in [3]). Let x =
[
x0

x1

] ∈ D. Let Πnx =
[
(Πnx)0
(Πnx)1

]
. From

(Πnx)1(−ri) = (Πnx)1(−ri−1)−
∫ −ri−1

−ri

d(Πnx)1(ϑ)

dϑ
dϑ(4.33)

and as ‖d(x1−(Πnx)1)
dϑ ‖ → 0, (see Theorem 4.1 in [3], and Theorems 1.5, 2.5 in [42]), it

follows that ‖AΠnx −Ax‖ → 0. Take into account that (Πnx)1(0) = (Πnx)0 and
that ‖(Πnx)0 − x0‖ → 0.

Thus the Trotter–Kato theorem hypotheses are satisfied ([38], Lemma 3.1
in [3]).

As can be seen, the proofs of the above two theorems follow the same lines of the
proofs in [3], developed for the case of first order splines uniformly distributed in the
interval [−r, 0].

Lemma 4.9. The subspace

U =

{[
y0

y1

] ∣∣∣ y0 ∈ R
N , y1(0) = y0,

y1 ∈W 1,2 y1(−rj) = AT
j y0, j = 1, . . . , δ

}
(4.34)

is dense in M2.
Proof. As usual, let us prove density in R

N × W 1,2. Let y =
[
y0
y1

] ∈ R
N ×

W 1,2. Let us define the following sequence of functions fn : [−r, 0] → R
N , n >

supi=1,2,...,δ
r

ri−ri−1
,

fn(ϑ) =

(
y0 −

n

r
ϑ

(
y1

(−r

n

)
− y0

))
χ[−rn ,0]

+
(
AT
δ y0 +

n

r
(ϑ+ r)

(
y1

(
−r +

r

n

)
−AT

δ y0

))
χ[−r,−r+ r

n ]

(4.35)

+

δ∑
i=1

(
AT
i y0 +

n

r
(ϑ+ ri)

(
y1

(
−ri +

r

n

)
−AT

i y0

))
χ[−ri,−ri+ r

n ]

+
(
AT
i y0 −

n

r
(ϑ+ ri)

(
y1

(
−ri − r

n

)
−AT

i y0

))
χ[−ri− r

n ,−ri).

Consider the sequence of elements in U ,

yn =

[
y0

fn +
∑δ
i=1 y1χ(−ri+ r

n ,−ri−1− r
n )

]
.(4.36)

As y1 is bounded, fn is bounded too, uniformly on n. It follows that

‖yn − y‖2 ≤
(
sup
ϑ,n
‖y1(ϑ)− fn(ϑ)‖2

)
2δr

n
.(4.37)
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Remark 4.10. The previous lemma proves that the intersection between the
domain of A and the domain of A∗ is dense in M2 if the weighted inner product is
used. See that the subspace U is contained in both the domains. It is a standard
result that such an intersection is in general not dense if the usual inner product is
used [11, 14, 24, 27, 43].

Theorem 4.11. The sequence of orthoprojection operators Π′
n : M2 �→ Φ′

n

converges strongly to the identity operator.
Proof. It is sufficient to prove strong convergence in a dense subspace of M2.

Therefore, consider the subspace U in (4.34).
It is shown below that for any y =

[
y0
y1

] ∈ U there exists a sequence of approxima-

tions yn ∈ Φ′
n such that limn→∞ ‖yn − y‖M 2

= 0. Consider the following definition
of yn ∈ Φ′

n:

yn =

N∑
k=1

(yT
0 φk)w

′
k +

N∑
k=1

δ−1∑
i=1

(y1(−ri)
Tφk)w

ri
k ,

(4.38)

+

δ∑
i=1

N∑
k=1

ni−1∑
j=1

(y1(t
i
j)

Tφk)w
i
jN+k +

N∑
k=1

(y1(0)
Tφk)w

1
k.

It is, by substituting expressions of vectors generating the subspace Φ′
n (4.6), (4.7),

(4.8), (4.11),

yn =

[
yn0
yn1

]
=

 y0
N∑
k=1

(y1(−r)Tφk)φkspline
δ
nδ



+

 0
N∑
k=1

δ−1∑
j=1

(
(yT

0 φk)ajk
δ − j + 1

spline′′rj + (y1(−rj)
Tφk)φkspline

′
rj

)

+

 0
δ∑
i=1

N∑
k=1

ni−1∑
j=1

(y1(t
i
j)

Tφk)φkspline
i
j

+

 0
N∑
k=1

(y1(0)
Tφk)φkspline

1
0

 .

(4.39)

Moreover, it is readily recognized that

N∑
k=1

(yT
0 φk)aAK = AT

j y0 =

N∑
k=1

(y1(−rj)
Tφk)φk, j = 1, . . . , δ,(4.40)

1

δ − j + 1
spline′′rj + spline′rj = splinerj , j = 1, . . . , δ − 1,(4.41)

so that

‖yn − y‖M 2
=

∥∥∥ N∑
k=1

(y1(−r)Tφk)φkspline
δ
nδ

+

δ−1∑
j=1

AT
j y0

( 1

δ − j + 1
spline′′rj + spline′rj

)
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+

δ∑
i=1

N∑
k=1

ni−1∑
j=1

(y1(t
i
j)

Tφk)φkspline
i
j

+

N∑
k=1

(y1(0)
Tφk)φkspline

1
0 − y1

∥∥∥
L2

=
∥∥∥ N∑
k=1

(y1(−r)Tφk)φkspline
δ
nδ

+

δ−1∑
j=1

y1(−rj)splinerj(4.42)

+

δ∑
i=1

N∑
k=1

ni−1∑
j=1

(y1(t
i
j)

Tφk)φkspline
i
j

+

N∑
k=1

(y1(0)
Tφk)φkspline

1
0 − y1

∥∥∥
L2

=
∥∥∥ δ∑
i=1

N∑
k=1

ni∑
j=0

(y1(t
i
j)

Tφk)φkspline
i
j − y1

∥∥∥
L2

=

δ∑
i=1

∥∥∥ N∑
k=1

ni∑
j=0

(y1(t
i
j)

Tφk)φkspline
i
j − y1 · χ[−ri,−ri−1]

∥∥∥
L2

,

which gives the norm of the error between a function y1 ∈W 1,2 and its approximation
with first order splines in which the value at each spline knot (the instants tij) is exactly

the value of the function at time tij . It is a standard result that the error tends to
zero in L2 norm for n → ∞ (Theorem 2.4 in [42]) and therefore limn→∞ ‖yn −
y‖M 2

= 0. This implies, by property (4.30), the strong convergence to identity of

operator Π′
n.

Lemma 4.12. There exists a real constant α such that the operator A∗ −αI and
operators Π′

nA
∗Π′

n − αI are dissipative.
Proof. In [3] it has been proved that there exists α such that operator A −

αI is dissipative and therefore generates a semigroup which is a contraction one.
This implies that the adjoint semigroup is a contraction one too and therefore its
infinitesimal generator A∗ − αI is dissipative [1]. Dissipativity of A∗ − αI implies
that for any n the operator Π′

nA
∗Π′

n − αI is dissipative. This happens because for
any x ∈M2(

(Π′
nA

∗Π′
n − αI)x,x

)
= (A∗Π′

nx,Π′
nx)− α(x,x)

≤ (A∗Π′
nx,Π′

nx)− α(Π′
nx,Π′

nx)

=
(
(A∗ − αI)Π′

nx,Π′
nx

) ≤ 0.(4.43)

Lemma 4.13. Let D be the dense subspace of M2 defined as

D =


y0

y1

 ∣∣∣
y0 ∈ R

N , AT
δ y0 = y1(−r),y1 −

δ−1∑
j=1

kj(y0,y1)χ[−r,−rj ]

 ∈ C2

 .(4.44)

Then there exists λ > 0 such that (A∗ − λI)D is dense in M2.
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Proof. Let us at first assume the following additional property on the term A01

in the definition of operator A∗:

(Hp0) :
1

g
AT

01 is a matrix of functions in C1([−r, 0];R),

where g is the weighting function in the inner product (2.4).
Hypothesis (Hp0) will be removed at the end of the proof.
First, it will be shown that under assumption (Hp0) there exists a sufficiently

large λ and matrices P j0 (λ) ∈ R
N×N and P j1 (λ) ∈ R

N×δN , j = 1, 2, . . . , δ − 1, such
that for any z =

[
z0

z1

] ∈ R
N × C1([−r, 0];RN ) there exists y ∈D such that

(A∗ − λI)y =

[
z0

z̃1(z;λ)

]
,

where z̃1(z;λ) = z1 +

δ−1∑
j=1

(
P j0 (λ)z0 + P j1 (λ)Fλ(z1)

)
χ[−r,−rj ],

(4.45)

in which the linear functional Fλ(z1) : C
1([−r, 0];RN ) �→ R

Nδ is defined as follows:

Fλ(z1) =



∫ 0

−r
eλτz1(τ)dτ∫ −r1

−r
e−λ(−r1−τ)z1(τ)dτ

...∫ −rδ−1

−r
e−λ(−rδ−1−τ)z1(τ)dτ


.(4.46)

Next, it will be shown that there exists a sufficiently large λ such that for any given
x =

[
x0

x1

] ∈M2 and for any ε > 0 there exists z =
[
z0

z1

] ∈ R
N × C1([−r, 0];RN ) such

that ∥∥∥ [
x0

x1

]
−

[
z0

z̃1(z;λ)

] ∥∥∥
M 2

≤ ε(4.47)

and therefore, from (4.45),

∀x ∈M2, ∀ε > 0, ∃y ∈D :
∥∥x− (A∗ − λI)y

∥∥
M 2
≤ ε,(4.48)

that is, the density of (A∗ − λI)D in M2.
In order to prove (4.45) as a first step it is shown how to find a function Y 1(y0,z1)

such that for any y0 ∈ R
N and z1 ∈ C1([−r, 0];RN ) it is

[ y0

Y 1(y0,z1)

] ∈ D. Next, it

is shown how to define a function Y0(z0,z1) : R
N × C1([−r, 0];RN )→ R

N such that
the composed function Y1(z0,z1) = Y 1(Y0(z0,z1),z1) has the property

(A∗ − λI)

[
Y0(z0,z1)
Y1(z0,z1)

]
=

[
z0

z̃1(z1;λ)

]
.(4.49)

For any given pair y0 ∈ R
N and z1 ∈ C1([−r, 0];RN ) let us consider the differ-

ential equation in C2([−r, 0];RN ),

d

dϑ
f(ϑ) + λf(ϑ) = −

(
z1(ϑ)− 1

g(ϑ)
AT

01(ϑ)y0

)
,(4.50)
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whose solution is

f(ϑ) = e−λ(ϑ+r)f(−r)−
∫ ϑ

−r
e−λ(ϑ−τ)

(
z1(τ)− 1

g(τ)
AT

01(τ)y0

)
dτ.(4.51)

By Lemma A.1 in the appendix, there exists a unique left-continuous function y1 that
satisfies condition (A.1), with f given by (4.51). Such y1 is given by expression (A.6),
and its values at the delay instants are such that

(I(δ−1)N −Hδ,2)

 y1(−r1)
...

y1(−rδ−1)

 =

 f(−r1)
...

f(−rδ−1)

−Hδ,2

 AT
1
...

AT
δ−1

y0,(4.52)

where Hδ,2 is defined in (A.4), Lemma A.1, in the appendix.
In order to guarantee that y =

[
y0
y1

] ∈D, y1 must satisfy the additional condition

y1(−r) = AT
δ y0.(4.53)

By substituting (4.53) in (A.1) one has

f(−r) = AT
δ y0 −

δ−1∑
j=1

y1(−rj)−AT
j y0

δ − j + 1
,(4.54)

which can be rewritten as

f(−r) = hδ,1

 y1(−r1)
...

y1(−rδ−1)

− hδ,2

 AT
1
...

AT
δ−1

y0,(4.55)

where

hδ,1 =

[
1

δ
IN · · · 1

2
IN IN

]
,

hδ,2 =

[
1

δ
IN · · · 1

2
IN

]
.

(4.56)

By (4.51) the values of function f at the delay instants are as follows: f(−r1)
...

f(−rδ−1)

 =

 INe−λ(r−r1)
...

INe−λ(r−rδ−1)


f(−r) − [

0(δ−1)N×N I(δ−1)N

]
Fλ

(
z1 − 1

g
AT

01y0

)
.

(4.57)

By substituting (4.52) and (4.55) into (4.57) and rearranging we have

(4.58)

Hp(λ)

 y1(−r1)
...

y1(−rδ−1)

 = Hq(λ)

 AT
1
...

AT
δ−1


y0 −

[
0(δ−1)N×N I(δ−1)N

](
Fλ(z1)− Fλ

(
1

g
AT

01

)
y0

)
,
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in which matrices Hp and Hq are defined as

Hp(λ) = I(δ−1)N −Hδ,2 +

 INe−λ(r−r1)
...

INe−λ(r−rδ−1)

hδ,2,(4.59)

Hq(λ) =

 INe−λ(r−r1)
...

INe−λ(r−rδ−1)

hδ,1 −
[

Hδ,2
0N×δN

]
.(4.60)

Because Hp is nonsingular (Lemma A.3 in the appendix), by (4.58) it results that y1(−r1)
...

y1(−rδ−1)

 =

H−1
p (λ)Hq(λ)

 AT
1
...

AT
δ−1

+
[
0(δ−1)N×N H−1

p (λ)
]
Fλ

(
1

g
AT

01

)y0

− [
0(δ−1)N×N H−1

p (λ)
]
Fλ(z1).

(4.61)

From (4.61) and (4.53), recalling that rδ = r, matrices Nj(λ) and Mj(λ), j = 1, . . . , δ
are defined such that

y1(−rj) = Nj(λ)y0 +Mj(λ)Fλ(z1).(4.62)

The left-continuous function y1 = Y 1(y0,z1) we were looking for is given by

y1(ϑ) =


y1(−ri), ϑ = −ri,

i = 1, . . . , δ − 1,

f(ϑ) +

δ−1∑
j=1

y1(−rj)−AT
j y0

δ − j + 1
χ[−r,−rj ](ϑ), ϑ �= −ri,

(4.63)

in which f(ϑ) is given by (4.51). This is such that
[
y0
y1

] ∈ D. Let (A∗ − λI)y =[
[(A∗−λI)y]0
[(A∗−λI)y]1

]
. It is

[(A∗ − λI)y]1 =
1

g
AT

01y0 −
d

dϑ

y1 −
δ−1∑
j=1

y1(−rj)−AT
j y0

δ − j + 1
χ[−r,−rj ]

− λy1

=
1

g
AT

01y0 −
d

dϑ
f − λf − λ

δ−1∑
j=1

y1(−rj)−AT
j y0

δ − j + 1
χ[−r,−rj ].

(4.64)

Finally, recalling the definition (4.50) of function f , it is

[(A∗ − λI)y]1 = z1 − λ

δ−1∑
j=1

(
Nj(λ)−AT

j

)
y0 +Mj(λ)Fλ(z1)

δ − j + 1
χ[−r,−rj ].(4.65)

Until now we have showed that, for any y0 ∈ R
N and for any z1 ∈ C1([−r, 0];RN ) it

is possible to find y1 such that y =
[
y0
y1

] ∈D and satisfies (4.65).
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Now, using the computed y1 = Y 1(y0,z1), we are ready to prove that there exists
a positive λ such that for any z0 ∈ R

N and z1 ∈ C1([−r, 0];RN ), a y0 can be found
such that y =

[
y0
y1

] ∈ D and satisfies (4.45). The application of operator (A∗ − λI)

gives, for the part in R
N ,

[(A∗ − λI)y]0 = δ y1(0) + AT
0 y0 − λy0.(4.66)

Note that from (4.63) y1(0) = f(0) and evaluation of f(0) according to (4.51), in
which expression (4.54) of f(−r) is substituted, gives

[(A∗ − λI)y]0 = Q0(λ)y0 +Q1(λ)Fλ(z1),(4.67)

in which

Q0(λ) = δe−λrAT
δ − δe−λr

δ−1∑
j=1

Nj(λ)−AT
j

(δ − j + 1)
+ δ

∫ 0

−r
eλτ

1

g
AT

01dτ + AT
0 − λIN ,

(4.68)

Q1(λ) = −δ [ IN×N0N×N(δ−1) ]−
δ−1∑
j=1

δe−λr

δ − j + 1
Mj(λ).

It is clear that there exists a sufficiently large λ such that Q0(λ) is nonsingular, due
to the presence of the term −λIN (the other terms are all bounded functions of λ).
Therefore, given z0 ∈ R

N and z1 ∈ C1([−r, 0];RN ), the function Y0(z0,z1) = y0 ∈
R
N such that [(A∗ − λI)y]0 = z0, thanks to (4.67), is given by

y0 = Y0(z0,z1) = Q−1
0 (λ)(z0 −Q1(λ)Fλ(z1)).(4.69)

Substitution of (4.69) in the expression (4.65) for [(A∗ − λI)y]1 gives

[(A∗ − λI)y]1 = z1 − λ

δ−1∑
j=1

(
Nj(λ)−AT

j

)
Q−1

0 (λ)z0

(δ − j + 1)
χ[−r,−rj ]

− λ

δ−1∑
j=1

(
Nj(λ)−AT

j

)
Q−1

0 (λ)Q1(λ)Fλ(z1) +Mj(λ)Fλ(z1)

(δ − j + 1)
χ[−r,−rj ].

(4.70)

This expression allows one to define the matrices P j0 (λ) and P j1 (λ) used in (4.45) as

P j0 = −λ

(
Nj(λ)−AT

j

)
Q−1

0 (λ)

(δ − j + 1)
,

(4.71)

P j1 = −λ

(
Nj(λ)−AT

j

)
Q−1

0 (λ)Q1(λ) +Mj(λ)

(δ − j + 1)
.

Composition of functions Y 1(y0,z1) and Y0(z0,z1) gives the announced function
Y1(z0,z1). This concludes the proof that, for λ sufficiently large, for any

[
z0

z1

] ∈
R
N × C1([−r, 0];RN ) there exists

[
y0
y1

] ∈D such that (4.45) holds.

Consider now the continuous linear function Φλ defined as follows:

Φ(λ) : L2([−r, 0];RN ) �→ L2([−r, 0];RN ),

Φ(λ)(g) = g +

δ−1∑
j=1

P j1 (λ)Fλ(g)χ[−r,−rj ].
(4.72)
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Let us define the following subspace of L2([−r, 0];RN ):

R = Φ(λ)(C1([−r, 0];RN )).(4.73)

The proof of the lemma is obtained if the setR is proved to be dense in L2([−r, 0];RN ).
This is true because it can be readily shown that density of R is sufficient to conclude
that ∀x ∈M2, for any ε > 0, there exists a y ∈D such that ‖x−(A∗−λI)y‖M 2

≤ ε

(i.e., density of (A∗ − λI)D).
Given a x =

[
x0

x1

] ∈M2, take yA ∈ D as follows: yA,0 = Y0(x0, 0) = Q−1
0 (λ)x0

and yA,1 = Y1(x0, 0). It is, by construction,

(A∗ − λI)yA =

[
x0∑δ−1

j=1 P j0 (λ)x0χ[−r,−rj ]

]
.(4.74)

From the density of R, there exists zB,1 ∈ C1([−r, 0];RN ) such that the function

z̃B,1 = zB,1 +

δ−1∑
j=1

P j1 (λ)Fλ(zB,1)χ[−r,−rj ](4.75)

satisfies ∥∥∥ δ−1∑
j=1

P j0 (λ)x0χ[−r,−rj ] − z̃B,1

∥∥∥
L2

≤ ε

2
,(4.76)

and from result (4.45) there exists yB ∈D such that (A∗ − λI)yB =
[

0
z̃B,1

]
.

Exploiting again the density of R there exists zC,1 ∈ C1([−r, 0];RN ) such that
the function

z̃C,1 = zC,1 +

δ−1∑
j=1

P j1 (λ)Fλ(zC,1)χ[−r,−rj ](4.77)

satisfies ∥∥∥x1 − z̃C,1

∥∥∥
L2

≤ ε

2
.(4.78)

Again, from result (4.45) there exists yC ∈ D such that (A∗ − λI)yC =
[

0
z̃C,1

]
. It is

now an easy matter to show that vector y = yA − yB + yC is such that

‖x− (A∗ − λI)y‖M2 = ‖x− (A∗ − λI)(yA − yB + yC)‖M 2

≤
∥∥∥ [

0
x1 − [(A∗ − λI)yA]1 + z̃B,1 − z̃C,1

] ∥∥∥
M 2

(4.79)

≤ ∥∥x1 − z̃C,1
∥∥
L2

+
∥∥∥ δ−1∑
j=1

P j0 (λ)x0χ[−r,−rj ] − z̃B,1

∥∥∥
L2

≤ ε.

It remains to prove that R is dense for sufficiently large λ. We will show that if
for any f ∈ L2([−r, 0];RN ) there exists a vector α ∈ R

Nδ such that

Fλ(f)− Fλ

δ−1∑
j=1

P j1αχ[−r,−rj ]

− α = 0,(4.80)
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then for any f ∈ L2([−r, 0];RN ) a sequence {fk}, fk ∈ R ∀k ≥ 0 can be found
such that ‖f − fk‖L2 → 0. Existence of α in (4.80) for any f is ensured by the
nonsingularity of matrix

Γ(λ) = INδ×Nδ +
δ−1∑
j=1

Fλ
(
P j1 (λ)χ[−r,−rj ]

)
(4.81)

for sufficiently large λ, and this is a sufficient condition for density of R.
To this purpose consider a f ∈ L2, let α be the solution of (4.80), and define the

function

f = f −
δ−1∑
j=1

P j1αχ[−r,−rj ].(4.82)

It is such that Φ(λ)(f) = f . Let {gk} be a sequence of functions in C1([−r, 0];RN )
such that ‖f − gk‖L2

→ 0. From the continuity of function Φ(λ) it is ‖Φ(λ)(f) −
Φ(λ)(gk)‖L2 → 0. Defining functions fk = Φ(λ)(gk) ∈ R, the sequence {fk} converges
to Φ(λ)(f), that is, f and density of R, under nonsingularity of Γ(λ), is proved.

It remains to prove the nonsingularity of the δN × δN matrix Γ(λ) defined in
(4.81) for a sufficiently large λ. Such a proof is reported in [39] and is worked out by
showing that det

(
Γ(λ)

)
is a continuous function of λ and that there exists the limit

matrix Γ = limλ→+∞ Γ(λ). Such a matrix can be easily proved to be nonsingular,
because it is block triangular (each block is N × N), in which the diagonal consists
of the following nonsingular δ blocks: block 1 is IN , block j, for j = 2, . . . , δ, is
I + 1

δ−j+1IN . It follows that limλ→+∞ det
(
Γ(λ)

)
= det

(
Γ
) �= 0, and therefore there

exists λ0 such that for every λ > λ0 matrix Γ(λ) is nonsingular.
So, chosen λ such that Γ(λ) and Q0(λ) are both nonsingular, the proof of this

lemma is completed in the case of hypothesis Hp0.
To remove such a hypothesis it is sufficient to consider a sequence Ak01 in the

space L2([−r, 0];RN×N ), which converges to A01 and satisfies hypothesis Hp0. Let
A∗
k be the corresponding sequence of operators. Let Dk ∈ L(M2) be defined as

Dk

[
y0

y1

]
=

[
0

1
g (A

k
01 −A01)

Ty0

]
.

Thus A∗
k = A∗ + Dk and ‖Dk‖L(M 2)

≤ ‖Ak01 − A01‖L2([−r,0];RN×N) . From Propo-

sition 2.3 in [5, page 28], and Theorem 1.1 in [38, page 76], it follows that any λ
with Re(λ) > ω0 + supk ‖Dk‖ belongs to the resolvent set of A∗ and A∗

k, for every k,
where ω0 is such that ‖T (t)‖ ≤ eω0t, T (t) being the semigroup generated by A (see
Lemma 2.3 in [3]). Let us choose a λ in the resolvent sets of A∗ and A∗

k, such that
(A∗
k − λI)D is dense in M2 for every k. It is sufficient that corresponding matrices

Γk(λ) in (4.81) and Qk0(λ) in (4.68) are nonsingular. Thus, given x ∈M2, given ε > 0,
a sequence yk can be found such that

‖(A∗
k − λI)yk − x‖ <

ε

2
.(4.83)

From

‖(A∗ − λI)yk − x‖ ≤ ‖(A∗
k − λI)yk − x‖+ ‖Dk‖‖yk‖(4.84)
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it follows that there exist k0 such that ‖(A∗ − λI)yk0 − x‖ < ε, provided yk is
uniformly bounded. It is sufficient that ‖Dk0‖ < ε

2 supk ‖yk‖ . It remains to prove

uniform boundedness of yk. Let vk = (A∗
k − λI)yk − x. From (4.83) it is ‖vk‖ < ε

2
for every k. From

(A∗
k − λI)−1 = (A∗ +Dk − λI)−1 = [I − (λI −A∗)−1Dk]

−1(A∗ − λI)−1(4.85)

it follows that

‖(A∗
k − λI)−1‖ ≤ ‖[I − (λI −A∗)−1Dk]

−1‖‖(A∗ − λI)−1‖.(4.86)

If k is sufficiently large such that ‖(λI −A∗)−1Dk‖ ≤ d < 1, the following inequality
holds:

‖[I − (λI −A∗)−1Dk]
−1‖ ≤

∞∑
l=0

‖(λI −A∗)−1Dk‖l ≤ 1

1− d
,(4.87)

which proves the uniform boundedness of ‖(A∗
k − λI)−1‖. The uniform boundedness

of yk follows by

yk = (A∗
k − λI)−1(vk − x).(4.88)

Such a device to prove the density of (A∗−λI)D in M2 when hypothesis Hp0 is not
satisfied has been introduced in [24, Theorem 7.2] for the one delay case.

Lemma 4.14. The operator Π′
nA

∗Π′
n converges strongly to the operator A∗ in

the subspace D defined in Lemma 4.13.
Proof. Since it is

‖Π′
nA

∗Π′
nx−A∗x‖M2 ≤ ‖Π′

n(A
∗Π′

n −A∗)x‖M2 + ‖Π′
nA

∗x−A∗x‖M2 ,(4.89)

and limn→∞ ‖Π′
ny − y‖M2

= 0, ∀y ∈M2 (strong convergence), the lemma is proved
if for any x ∈D

‖A∗Π′
nx−A∗x‖ → 0.(4.90)

It is

‖A∗Π′
nx−A∗x‖2 = ‖δx1(0) + AT

0 x0 − δ(Π′
nx)1(0)−AT

0 (Π
′
nx)0‖2

+
∥∥∥1
g
A01x0 − 1

g
A01(Π

′
nx)0 −

d

dϑ

x1 −
δ−1∑
j=1

kj(x0,x1)χ[−r,−rj ]


+

d

dϑ

(Π′
nx)1 −

δ−1∑
j=1

kj((Π
′
nx)0, (Π

′
nx)1)χ[−r,−rj ]

∥∥∥2

L2

≤ δ2‖x1(0)− (Π′
nx)1(0)‖2 +

(
‖AT

0 ‖+ 2
∥∥∥1
g
AT

01

∥∥∥
L2

)
·
∥∥∥x0 − (Π′

nx)0
∥∥2

+ 2S2
n(x),

(4.91)
where

Sn(x) =
∥∥∥ d

dϑ

x1 −
δ−1∑
j=1

kj(x0,x1)χ[−r,−rj ]


− d

dϑ

(Π′
nx)1 −

δ−1∑
j=1

kj((Π
′
nx)0, (Π

′
nx)1)χ[−r,−rj ]

∥∥∥
L2

.

(4.92)
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Strong convergence of Π′
n ensures that for n→∞ the second term in the right-hand

side of (4.91) goes to zero.
To prove that the term Sn(x) goes to zero too, let

x =

[
x0

x1

]
=

N∑
k=1

x0(k)w
′
k +

δ−1∑
i=1

N∑
k=1

(x1(−ri)
Tφk)w

ri
k

+

δ∑
i=1

ni∑
j=1

N∑
k=1

(x1(t
i
j)

Tφk)w
i
jN+k +

N∑
k=1

(x1(0)
Tφk)w

1
k.

(4.93)

It is such that x0 = x0, so that ‖x− x‖M 2
= ‖x1 − x1‖L2 and therefore

‖x−Π′
nx‖M 2

≤ ‖x1 − x1‖L2
.(4.94)

Considering that the function
∑δ−1
j=1 kj(·, ·)χ[−r,−rj ] is piecewise constant it is

Sn(x) =
∥∥∥ d

dϑ
x1 − d

dϑ
(Π′
nx)1

∥∥∥
L2

(4.95)

and

Sn(x) ≤
∥∥∥ d

dϑ
x1 − d

dϑ
x1

∥∥∥
L2

+
∥∥∥ d

dϑ
x1 − d

dϑ
(Π′
nx)1

∥∥∥
L2

.(4.96)

As for the first term at the right-hand side of inequality (4.96), since it is

∥∥∥ d

dϑ
x1 − d

dϑ
x1

∥∥∥
L2

=

(
δ∑
i=1

∥∥∥ d

dϑ
x1χ[−ri,−ri−1] −

d

dϑ
x1χ[−ri,−ri−1]

∥∥∥2

L2

) 1
2

,(4.97)

by standard results of spline analysis (see Theorem 2.5 in [42]), each term in the
summation goes to zero for n→∞.

As for the second term, from definition of vectors w that generate V ′
n, it is, by

applying the Schmidt inequality (see Theorem 1.5 in [42]),

∥∥∥ d

dϑ
x1 − d

dϑ
(Π′
nx)1

∥∥∥
L2

=

(
δ∑
i=1

∥∥∥ d

dϑ
x1χ[−ri,−ri−1] −

d

dϑ
(Π′
nx)1χ[−ri,−ri−1]

∥∥∥2

L2

) 1
2

≤
(
δ∑
i=1

(√
12

ni
ri − ri−1

∥∥(x1 − (Π′
nx)1

)
χ[−ri,−ri−1]

∥∥
L2

)2
) 1

2

.

For each term in the summation it is∥∥(x1 − (Π′
nx)1

)
χ[−ri,−ri−1]

∥∥
L2
≤ ∥∥x1 − (Π′

nx)1
∥∥
L2

≤ ∥∥x1 − x1

∥∥
L2

+
∥∥x1 − (Π′

nx)1
∥∥
L2
≤ 2‖x1 − x1‖

≤
(
δ∑
i=1

(∥∥(x1 − x1

)
χ[−ri,−ri−1]

∥∥
L2

)2
) 1

2

.

(4.98)

Again, by standard results on spline approximation (Theorem 2.5 in [42]), each term
in the summation goes to zero for n → ∞. This proves that Sn(x) goes to zero for
n→∞.
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It remains to prove that the term δ‖x1(0) − (Π′
nx)1(0)‖2 in the right-hand side

of (4.91) goes to zero for n→∞.
First, note that being x ∈ D(A∗) it is such that for i = 1, . . . , δ − 1

x1(−r+
i )−

i−1∑
j=1

kj(x0,x1) = x1(−ri)−
i∑
j=1

kj(x0,x1),(4.99)

where x1(−r+
i ) denotes the limit of x1(ϑ) for ϑ approaching −ri from the right

(note that in general x1(−r+
i ) �= x1(−ri)). Simple computations, taking into account

definition (2.22) of kj , give

x1(−r+
i ) =

δ − i+ 2

δ − i+ 1
x1(−ri)− 1

δ − i+ 1
AT
i x0.(4.100)

Since also Π′
nx ∈ D(A∗), it is such that

(Π′
nx)1(−r+

i ) =
δ − i+ 2

δ − i+ 1
(Π′
nx)1(−ri)− 1

δ − i+ 1
AT
i (Π

′
nx)0.(4.101)

At point −r it is

x1(−r) = AT
δ x0, (Π′

nx)1(−r) = AT
δ (Π

′
nx)0.(4.102)

Since it has been proved that limn→∞ ‖x0 − (Π′
nx)0‖ = 0, from (4.102) it follows

lim
n→∞ ‖x1(−r)− (Π′

nx)1(−r)‖ = 0.(4.103)

Starting from (4.103), the proof that ‖x1(0)− (Π′
nx)1(0)‖ goes to zero is obtained if

we prove the following recursive implication:

lim
n→∞ ‖x1(−ri)− (Π′

nx)1(−ri)‖ = 0,(4.104)

⇓
lim
n→∞ ‖x1(−ri−1)− (Π′

nx)1(−ri−1)‖ = 0.(4.105)

First note that if (4.104) is true, then comparing (4.100) and (4.101), recalling that
‖x0 − (Π′

nx)0‖ → 0, it follows

lim
n→∞ ‖x1(−r+

i )− (Π′
nx)1(−r+

i )‖ = 0.(4.106)

From (4.106), since it has been proved that in any interval [−ri,−ri−1]

lim
n→∞

∥∥∥(
d

dϑ
x1 − d

dϑ
(Π′
nx)1

)
χ[−ri,−ri−1]

∥∥∥
L2

= 0,(4.107)

implication (4.105) is easily obtained. This completes the proof of the Lemma.
Theorem 4.15. The sequence of semigroups T ∗

Φ′
n
generated by the operators

Π′
nA

∗Π′
n converges strongly to T ∗, the adjoint of the semigroup generated by A.

Proof. The results in Lemmas 4.12, 4.13, and 4.14 imply that the hypotheses of
the Trotter–Kato theorem, as stated in [38] and reported also in Lemma 3.1 in [3],
are satisfied, and this proves the convergence of T ∗

Φ′
n
to T ∗.
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Now the main result of the paper can be given, that is, the theorem on the
convergence of the proposed finite dimensional approximation scheme of the LQG
controller for hereditary systems.

Theorem 4.16. Let Φn and Φ′
n be the sequences of finite dimension subspaces

of M2 in Definitions 4.2, 4.3. Let un(t) be the input function obtained by

un(t) = −B∗Rn(tf − t)Π′
nx̂n(t),(4.108)

where

˙̂xn(t) = ΠnAΠnx̂n(t) +ΠnBun(t) + P n(t)ΠnC
∗(y(t)−CΠnx̂n(t)

)
,

(4.109)
x̂n(0) = Πnx̂(0)

in which P n and Rn are the finite dimensional solutions of the Riccati equations
(3.15) and (3.16) in which the projectors Πn and Π′

n are considered. Let u(t) be
the optimal input, x̂(t) the optimal estimated state, xn(t) and x(t) the actual state
evolving when un(t) and u(t) are applied to system (2.1), (2.2), respectively.

Then

lim
n→∞E‖xn − x‖2

L2([0,tf ];M 2)
= 0,(4.110)

lim
n→∞E‖x̂n − x̂‖2

L2([0,tf ];M 2)
= 0,(4.111)

lim
n→∞E‖un − u‖2L2([0,tf ];Rp)

= 0,(4.112)

lim
n→∞ |Jf (un)− Jf (u)| = 0.(4.113)

Proof. The proof comes from Theorem 3.7, whose assumptions (from Hp1 to Hp4)
are satisfied thanks to Theorems 4.7, 4.8, 4.11, and 4.15.

5. Implementation of the method. In this section the numerical implementa-
tion of the approximation scheme described in the previous section, and which satisfies
all properties listed in the introduction, is reported.

Consider two Hilbert spaces U and V and two finite dimensional subspaces Un ⊂ U
and Vm ⊂ V of dimension n and m, respectively. Let (u1, . . . ,un) be a basis of Un
and (v1, . . . ,vm) a basis of Vm. Consider the nonsingular matrices T n ∈ R

n×n and
Zm ∈ R

m×m, whose components are defined as

Tn(i, j) = (ui,uj)U , i, j = 1, . . . , n,
(5.1)

Zm(h, k) = (vi,vj)V , i, j = 1, . . . ,m.

Recall that the orthoprojection operator from U to Un performs the following opera-
tion on a vector x ∈ U :

Π(x;Un) =

n∑
i=1

αiui with

 α1
...

αn

 = T−1
n

 (x,u1)U
...

(x,un)U

 ,(5.2)

and the orthoprojection operator from V to Vm performs the following operation on
a vector y ∈ H2:

Π(y;Vm) =

m∑
i=1

βivi with

 β1
...

βm

 = Z−1
m

 (y,v1)V
...

(y,vm)V

 .(5.3)
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Let us denote as ξn the isomorphism that associates to a vector x ∈ Un its coordinate
representation

ξn : Un �→ R
n; ξn(x) = T−1

n

 (x,u1)U
...

(x,un)U

(5.4)

and as ξm the isomorphism

ξm : Vm �→ R
m; ξm(y) = Z−1

m

 (y,v1)V
...

(y,vm)V

 .(5.5)

Consider now the algebra S of linear operators from Un to Vm. It is

S ∈ S, ξm(S(ui)) = Z−1
m

 (S(ui),v1)V
...

(S(ui),vm)V

 .(5.6)

The following isomorphism ηmn is induced between S and the algebra of matrices
m× n:

S ∈ S, ηmn (S) = Z−1
m S, S ∈ R

m×n, Si,j = (S(uj),vi)V ,(5.7)

that is, such that

ξm(S(x)) = ηmn (S) ξn(x), x ∈ Un.(5.8)

Isomorphisms between points of finite dimensional spaces and their coordinate
representations and between linear operators on finite dimensional spaces and their
matrix representations allow us to write the approximated Riccati equations for con-
trol (3.16) and for filtering (3.15) as

˙̃
P n(t) = ÃnW

−1
n P̃ n(t) + P̃ n(t)W

−1
n Ã

T

n + Λ̃nb− P̃ n(t)W
−1
n Σ̃nW

−1
n P̃ n(t),

(5.9)
˙̃
Rn(t) = ÃnVVV −1

n R̃n(t) + R̃n(t)VVV
−1
n ÃT

n + L̃n − R̃n(t)VVV
−1
n S̃nVVV

−1R̃n(t)

and the approximated filter equation (3.46) and control equation (3.47) in the form

˙̂xn,C(t) = W−1
n ([Ãn − P̃ n(t)Σ̃n]x̂n,C(t) + P̃ n(t)W

−1
n Γny(t)− T̃ n(tf − t)x̂n,C(t)),

un(t) = −
[
0 BT0

]
VVV −1

n R̃n(tf − t)VVV −1
n T̃ n,2x̂n,C(t),

ẑn(t) = [ IN×N 0N×nN ] x̂n,C(t).

(5.10)

In (5.9) and (5.10) x̂n,C is the coordinate expression of vector x̂n in the basis of

Φn, ẑn(t) is the approximation of the optimal estimate of z(t), P̃ n(t) and R̃n(t)

are square matrices whose components are defined as {P̃ n(t)}i,j = (P n(t)vj ,vi) and

{R̃n(t)}i,j = (Rn(t)wj ,wi). Matrices Λ̃n, Σ̃n, Γn, W n, Ãn, T̃ n,1, VVV n, T̃ n,2(t),
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Ãn, L̃n, S̃n are numerical matrices computed by simple scalar products of elements
in finite dimensional subspaces as follows:

Λ̃n(i, j) = (FF ∗vj ,vi) ,

Σ̃n(i, j) = (C∗Cvj ,vi) ,

Γn(i, j) = (C∗φj ,vi) ,

W n(i, j) = (vi,vj),

Ãn(i, j) = (Avj ,vi),

T̃ n,1(i, j) = (BB∗wj ,vi) ,

VVV n(i, j) = (wi,wj),

T̃ n,2(i, j) = (vj ,wi),

Ãn(i, j) = (A∗wj ,wi) ,

L̃n(i, j) = (Qwj ,wi),

S̃n(i, j) = (BB∗wj ,wi).

(5.11)

Finally, it is T̃ n(t) = T̃ n,1VVV
−1
n R̃n(t)VVV

−1
n T̃ n,2.

Thus, denoting by

Sc(n, t) = W−1
n (Ãn − P̃ n(t)W

−1
n Σ̃n − T̃ n,1VVV

−1
n R̃n(tf − t)VVV −1

n T̃ n,2),

Pc(n, t) = W−1
n P̃ n(t)W

−1
n Γn,

Qc(n, t) = − [ 0 BT
0 ]VVV −1

n R̃n(tf − t)VVV −1
n T̃ n,2

(5.12)

with P̃ n(t) and R̃n(t) solutions of the matrix differential equations (Riccati) in (5.9),
the approximate LQG controller can be written as follows:

˙̂xn,C(t) = Sc(n, t)x̂n,C(t) + Pc(n, t)y(t),

un(t) = Qc(n, t)x̂n,C(t).
(5.13)

The vector x̂n,C(t) ∈ R
(n1+1+

∑δ

i=2
ni)N .

Remark 5.1. It is important to stress the fact that matrices in (5.11) have a
fixed structure and, in the case of hereditary systems without distributed delay, such
matrices depend only on the multiindex sn and on the matrices Aj (j = 0, 1, . . . , δ),
B0, C0, F 0, G that describe the system and on the weight matrix Q0 that defines
the cost functional. This property follows from the fact that splines are not uniformly
distributed over the interval [−r, 0]: each interval [−ri,−ri−1] has an independent
spline distribution.

The numerical computation of matrices (5.11) is a straightforward function of
the multi-index sn and of the system matrices. As an example, the expressions of
matrices in (5.11) are reported for systems with two pure delay terms (multi-index
sn = (n1, n2) with n = inf(n1, n2)) and no distributed delay.

W n =

[
W n,a W n,b

0n2N×n1N W n,c

]
,(5.14)
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W n,a =

(
r1

n1

)


n1

r1
+ 2/3 1/3 0 . . . 0

1/3 4/3 1/3
. . .

...

0 1/3
. . .

. . . 0
...

. . .
. . . 4/3 1/3

0 · 0 1/3 2/3 + n1

r1
r−r1
3n2


(n1+1)×(n1+1)

⊗ IN×N ,

W n,b =

[
0 . . . . . . 0

r−r1
6n2

IN×N 0 . . . 0

]
(n1+1)N×n2N

,

W n,c =

(
r − r1

n2

)
1/6 2/3 1/6 0 . . .

0 1/6
. . .

. . . 0
...

. . .
. . . 2/3 1/6

0 · 0 1/6 1/3


n2×(n2+1)

⊗ IN×N .

(5.15) Ãn = Ãn,1 + Ãn,2,

Ãn,1 =

[
A0 0 . . . 0 A1 0 . . . 0 A2

0 . . . . . . . . . . . . . . . . . . . . . 0

]
,

Ãn,2 =

[
Ãn,2,a Ãn,2,b

0n2N×n1N Ãn,2,c

]
,

Ãn,2,a =



1 −1 0 . . . 0

1 0 −1 . . .
...

0 1
. . .

. . . 0
...

. . .
. . . 0 −1

0
... 0 1 −1/2


n1+1×(n1+1)

⊗ IN×N ,

Ãn,2,b =

[
0n1N×n2N

[−1/2IN×N 0 . . . 0 ]

]
,

Ãn,2,c =


1/2 0 −1/2 0 . . .

0 1/2
. . .

. . . 0
...

. . .
. . . 0 −1/2

0
... 0 1/2 −1/2


n2×(n2+1)

⊗ IN×N .

(5.16) VVV n =

[
VVV n,a VVV n,b
VVV T

n,b VVV n,c

]
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with

VVV n,a =
r1

n1



2/3 1/3 0 . . . 0

1/3 4/3 1/3
. . .

...

0 1/3
. . .

. . . 0
...

. . .
. . . 4/3 1/3

0 · 0 1/3 4/3


n1×n1

⊗ IN×N ,

VVV n,b =

[
0(n1−1)N×(n2+1)N

[ r16n1
IN×N 0 . . . 0 r1

6n1
AT

1 ]

]
n1N×(n2+1)N

,

VVV n,c = VVV n,c,1 + VVV n,c,2,

VVV n,c,1 =

(
r − r1

n2

)


1/3 1/6 0 . . . 0

1/6 2/3 1/6
. . .

...

0 1/6
. . .

. . . 0
...

. . .
. . . 2/3 1/6AT

2

0 · 0 1/6A2 0


(n2+1)×(n2+1)

⊗ IN×N ,

VVV n,c,2 =

 r1
6n1

IN×N 0 . . . 0 r1
6n1

AT
1

0 . . . . . . . . . 0
r1
6n1

A1 0 . . . 0 I + r1
6n1

A1A
T
1 + r−r1

3n2
A2A

T
2

 .

(5.17) T̃ n,2 =


T̃ n,2,a T̃ n,2,b
T̃ n,2,c T̃ n,2,d
T̃ n,2,e T̃ n,2,f
T̃ n,2,g T̃ n,2,h


(n1+n2+1)N×(n1+n2+1)N

,

T̃ n,2,a =

(
r1

n1

)




2/3 1/3 0 . . . 0

1/3 4/3 1/3
. . .

...

0 1/3
. . .

. . . 0
...

. . .
. . . 4/3 1/3

0 · 0 1/3 4/3


n1×n1

⊗ IN×N

[
0

1
3IN×N

]

n1N×(n1+1)N

,

T̃ n,2,b = 0n1N×n2N ,

T̃ n,2,c = [ 0 . . . 0 r1
6n1

IN×N r−r1
3n2

IN×N + r1
3n1

IN×N ]N×(n1+1)N ,

T̃ n,2,d = [ r−r16n2
IN×N0 . . . 0 ]N×n2N

,
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T̃ n,2,e =

[
0 . . . 0 r−r1

6n2
IN×N

0 . . . . . . 0

]
(n2−1)N×(n1+1)N

,

T̃ n,2,f =

(
r − r1

n2

)

2/3 1/6 0 . . .

1/6
. . .

. . . 0

0
. . . 2/3 1/6

. . . 0 1/6 2/3


(n2−1)×n2

⊗ IN×N

[
0

1
6IN×N

]
(n2−1)N×(n2−1)N

,

T̃ n,2,g = [ IN×N 0 r1
6n1

A1
r1
3n1

A1 ]N×(n1+1)N ,

T̃ n,2,h = [0 . . . 0 r−r1
6n2

A2
r−r1
3n2

A2 ]N×n2N
.

(5.18) Ãn = Ãn,1 + Ãn,2,

Ãn,1 =

[
0 . . . . . . . . . 0

2IN×N 0 . . . 0 AT
0

]
(n1+n2+1)N×(n1+n2+1)N

,

Ãn,2 =

[ Ãn,2,a Ãn,2,b
Ãn,2,c Ãn,2,d

]
(n1+n2+1)N×(n1+n2+1)N

,

Ãn,2,a =



−1 1 0 . . . 0

−1 0 1
. . .

...

0 −1 . . .
. . . 0

...
. . .

. . . 0 1

0
... 0 −1 0


n1×n1

⊗ IN×N ,

Ãn,2,b =
[

0 . . . . . . . . . 0
1/2IN×N 0 . . . 0 1/2AT

1

]
n1N×(n2+1)N

,

Ãn,2,c =

 0 . . . 0 −1/2IN×N
...

...
... 0

0 . . . 0 −1/2A1


(n2+1)N×n1N

,

Ãn,2,d =





−1/4 1/2 0 . . . 0

−1/2 0 1/2
. . .

...

0 −1/2 . . .
. . . 0

...
. . .

. . . 0 1/2

0
... 0 −1/2 0


n2×n2

⊗ IN×N
∣∣∣

1/4AT
1

0
...
0

1
2AT

2

1/4A1 0 . . . 0 − 1
2A2

∣∣ 1
4A1A

T
1 + 1/2A2A

T
2


.
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Remark 5.2. In the case of just one pure delay, matrices in (5.11) are much
simpler, due to the fact that vectors v and w are much simpler. Matrices which
involve v vectors have been computed in [3]. Here, just to have an idea of such a

simplification, matrix Ãn in (5.18) is reported in the case of one pure delay term.

(5.19) Ãn = Ãn,1 + Ãn,2,

Ãn,1 =

[
0 0 0

IN×N 0 AT
0

]
,

Ãn,2 =





−1/2 1/2 0 . . . 0

−1/2 0 1/2
. . .

...

0 −1/2 . . .
. . . 0

...
. . .

. . . 0 1/2

0
... 0 −1/2 0


n×n

⊗ IN×N
∣∣∣ 0

1
2AT

1

0 − 1
2A1

∣∣ 1
2A1A

T
1


.

If there is the distributed delay too, then the following matrix must be added in the
right-hand side of (5.19):

Ãn,3 =


0 (D′n

0 )T

...
...

0 (D′n
n−1)

T

0 A1(D
′n
n )

T

 ,

where

D′n
j =

∫ 0

−r
A01(s)splinej(s)ds j = 0, 1, . . . , n.

6. Remarks on the infinite horizon case. The methodology here presented
for LQG control of hereditary systems over a finite time-horizon can be applied also
for LQG control over infinite time-horizon. The basis is the paper [14] in which,
under suitable conditions, the convergence of the solution of an approximate Riccati
differential equation, evaluated in a sufficiently large time, to the solution of the cor-
responding infinite dimensional algebraic Riccati equation is proved. The hypotheses
required in [14] for such a convergence are satisfied by hereditary systems and by
the approximation scheme here presented. Such hypotheses are the Hilbert–Schmidt
property of operators Q and FF ∗, the convergence of the sequence of projection
operators involved, and the convergence of the semigroups approximating the semi-
group generated by the operator which, in the algebraic Riccati equation, multiplies
on the left the unknown Riccati operator. Structural properties are requested in
paper [14] of approximate controllability of pairs (A,F ) and (A∗,Q). In that pa-
per the approximate solution of an algebraic Riccati equation is found by exploiting
the approximability of the corresponding dynamical Riccati equation and its time
convergence toward the steady state, and finding a large enough time-horizon T to
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approximate the steady-state solution. Such a solving method, which requires only
convergence of one approximating semigroup, does not allow for a uniform conver-
gence of the approximate solution toward the actual one (see Theorem 3.2 of [14],
relationship among ε, T , and n). On the other hand, such a solving method does not
require the uniform exponential stability of the approximating semigroups nor the
convergence of the adjoint approximate semigroups.

Using the approximate solutions of the Riccati algebraic equations, by using the
above paper, the infinite horizon LQG controller can be built. The problem of guaran-
teeing the convergence of the approximation schemes in infinite horizon case continues
to be worthy of attention.

Nevertheless, when the state is fully available, the approximation scheme here
presented has the nice property to guarantee convergence also in the infinite horizon
case, as stated in the following theorem.

Theorem 6.1. Consider system (2.5), with fully available state, that is,

(6.1) y(t) = x(t)

and the following cost functional

(6.2) JI(u) = lim
tf→∞

1

tf

∫ tf

0

E[(Qx(t),x(t)) + uT(t)u(t)]dt,

with Q : M2 �→ M2 as in (3.2). Let the pair (A,B) be stabilizable and the pair
(A,Q) be detectable. Let

(6.3) un(t) = −B-Rn(T )Π
′
nxn(t),

where Rn(T ) is the approximate solution of the algebraic Riccati equation for control

(6.4) A-R + RA−RBB-R + Q = 0

obtained [14] by evaluating the approximate dynamic Riccati equation (3.16) in a suit-
able time T , and xn(t) is the corresponding evolving state. Let x(t) be the state
evolving when the optimal infinite horizon LQG control law is applied to the system.
Then, for every ε > 0, there exists a Tε, such that for every T > Tε there exists an nT ,
such that for every n > nT the semigroup which governs the closed loop system, that
is, the one generated by A−BB-Rn(T )Π

′
n, is exponentially stable and, moreover,

(6.5) E‖xn(t)− x(t)‖ < ε ∀t ∈ [0,∞).

Proof. First let us prove that E‖x(t)‖ is uniformly bounded. Let S(t) be the
semigroup generated by the optimal closed loop infinitesimal generator A−BB-R,
with R the solution of the algebraic Riccati control equation. There exist positive
constants M and σ such that ‖S(t)‖ ≤Me−σt. It is

(6.6)

E‖x(t)‖ ≤ E‖S(t)x(0)‖+ E‖
∫ t

0

S(t− τ)Fω(τ)dτ‖

≤Me−σt
√

E(‖x(0)‖)2 +
(∫ t

0

M2e−2σ(t−τ)‖F ‖2H.S.
) 1

2

≤M
√
Tr(P 0) +

M√
2σ
‖F ‖H.S.
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Consider now the equation

(6.7) ξ̇n,T (t) = (A−BB-Rn(T )Π
′
n)ξn,T (t).

It is

(6.8) ξn,T (t) = S(t)ξn,T (0) +

∫ t

0

S(t− τ)BB-(R−Rn(T )Π
′
n)ξn,T (τ)dτ

by which it follows that

(6.9)

‖ξn,T (t)‖ ≤Me−σt‖ξn,T (0)‖ +

∫ t

0

Me−σ(t−τ)‖BB-(R−Rn(T )Π
′
n)‖H.S.ξn,T (τ)dτ

and by the Gronwall inequality

(6.10) ‖ξn,T (t)‖ ≤Me(−σ+M‖BB�
(R−Rn(T )Π′

n)‖H.S.t)ξn,T (0).

Now let ε > 0. By Theorem 3.2 in [14] and by the inequality

(6.11) ‖R−Rn(T )Π
′
n‖H.S. ≤ ‖Π′

nRΠ′
n −Rn(T )Π

′
n‖H.S. + ‖R−Π′

nRΠ′
n‖H.S.,

it follows that there exists Tε such that for every T > Tε there exists nT such that for
every n > nT

(6.12) ‖R−Rn(T )Π
′
n‖H.S. < min

{
σ

2M‖BB-‖ ,
εσ

2M‖BB-‖ supτ∈[−r,∞) E‖x(τ)‖

}

and so

(6.13) ‖ξn,T (t)‖ ≤Me
−σ
2 tξn,T (0),

which implies the exponential stability of the closed loop semigroup.
As far as the second part of the thesis is concerned, let

en(t) = x(t)− xn(t).

It is

(6.14) ėn(t) = (A−BB-Rn(T )Π
′
n)en(t) + BB-(Rn(T )Π

′
n −R)x(t)

by which, taking into account (6.12),

(6.15)
E‖en(t)‖ ≤

∫ t

0

Me(−σ+M‖BB�
(R−Rn(T )Π′

n)‖H.S.)(t−τ)

·‖BB-(R−Rn(T )Π
′
n)‖H.S.E‖x(τ)‖dτ < ε.

7. Examples. Simulations reported in this section have been performed by
MATLAB on a PC using the 3rd order Runge–Kutta integration algorithm.1

1Simulation programs are available upon request.
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Example 1. Consider the following unstable hereditary system:

(7.1)

d2z(t)

dt2
=

dz(t)

dt
+ z(t) +

dz(t− r1)

dt
+ z(t− r1)

+
dz(t− r2)

dt
+ z(t− r2) + u(t) + ω1(t),

y(t) = z(t) + ω2(t),

where z(t), u(t), y(t) ∈ R, ω1(t), ω2(t) ∈ R are independent white Gaussian standard
noises.

By denoting Z(t) =
[ z(t)
dz(t)
dt

]
, and ω(t) =

[
ω1(t)
ω2(t)

]
, the system (7.1) can be rewritten

as follows:

(7.2)

Ż(t) =

[
0 1
1 1

]
Z(t) +

[
0 0
1 1

]
Z(t− r1)

+

[
0 0
1 1

]
Z(t− r2) +

[
0
1

]
u(t) +

[
0 0
1 0

]
ω(t)

y(t) = [ 1 0 ]Z(t) + [ 0 1 ]ω(t).

The weight matrix in the functional (3.1) has been chosen as

(7.3) Q0 =

[
1000 0
0 0

]
.

The time tf has been chosen equal to 10, and the delays have been chosen as r1 = 1.2
and r2 = 2.5. The initial value of Z(ϑ), ϑ ∈ [−r2, 0], has been chosen as follows:

Z(ϑ) =

[
e−ϑ

cos(10ϑ)

]
,

while the initial estimate Ẑ(ϑ) has been set to 0 in the same interval. The covariance
operator P 0 of the initial state in M2 has been chosen as follows:

P 0x = (x, φ)φ,

where x, φ ∈M2, φ =
[
φ0

φ1

]
, φ0 = φ1(ϑ) =

[
1
1

]
, ϑ ∈ [−r2, 0].

The integration step has been chosen equal to 0.0025.
Figures 2–5 report the first component of the actual Z(t) evolving when the ap-

proximated input is applied to the system and of the estimated Ẑ(t) for different values
of n1 and n2. Figures 6–9 report the second component of Z(t) and Ẑ(t). In Figures
10–13 the first component and the second one of Z(t) and Ẑ(t), the approximated
control input and the noisy output, are reported for n1 = n2 = 6.

Example 2. Consider now the well-known National Transonic Facility [4, 27,
40], the liquid nitrogen wind tunnel at NASA Langley Research Center in Hampton,
VA. Here only one of the state variables is measured, the guide vane angle, while no
measurement of the mach number nor of the guide vane angle derivative is available.
Moreover, we suppose an additive Gaussian noise corrupts the dynamics of the system
and the above measure. A simplified model of such a system is given by (see [4] for the
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Fig. 2. The case of n1 = n2 = 2: true and estimated Z1(t).
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Fig. 3. The case of n1 = 3, n2 = 2: true and estimated Z1(t).
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Fig. 4. The case of n1 = 3, n2 = 3: true and estimated Z1(t).
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Fig. 5. The case of n1 = 4, n2 = 3: true and estimated Z1(t).
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Fig. 6. The case of n1 = n2 = 2: true and estimated Z2(t).
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Fig. 7. The case of n1 = 3, n2 = 2: true and estimated Z2(t).
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Fig. 8. The case of n1 = 3, n2 = 3: true and estimated Z2(t).
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Fig. 9. The case of n1 = 4, n2 = 3: true and estimated Z2(t).
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Fig. 10. The case of n1 = n2 = 6: true and estimated Z1(t).
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Fig. 11. The case of n1 = n2 = 6: true and estimated Z2(t).
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Fig. 12. The case of n1 = n2 = 6: the input u(t).
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Fig. 13. The case of n1 = n2 = 6:: the noisy output y(t).
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deterministic model)

(7.4)

ż(t) =

−a 0 0
0 0 1
0 −ω̄2 −2ξω̄

 z(t) +

 0 ka 0
0 0 0
0 0 0

 z(t− 0.33)

+

 0
0
−ω̄2

u(t) + F0ω1(t)

y(t) = [ 0 1 0) ] z(t) +G0ω2(t)

with (1/a) = 1.964, k = −0.0117, ξ = 0.8, ω̄ = 6.0, and ω1(t), ω2(t) ∈ R independent
white Gaussian standard noises. As in the LQ problem developed in [4, 27, 40], the
matrix Q0 in the functional (3.1) has been chosen as follows:

(7.5) Q0 =

 10000 0 0
0 0 0
0 0 0

 .

In simulations we have supposed to know exactly the initial state

z(τ) =

 −0.18.547
0

 , τ ∈ [−0.33, 0],

and we have used

F 0 =

 0
0
10

 , G = 1.

Figures 14–17 show the three components of the state and the input for n = 2.
Computed values of the functional

(7.6) J10 =

∫ 10

0

[zT(t)Q0z(t) + u2(t)]dt

for different n and the same noise realization are reported in Table 1. The integration
step has been chosen equal to dT = 0.001, the integral J10 has been computed as

dT
∑10/dT
k=0 zT(kdT )Q0z(kdT ) + u2(kdT ).

We have considered also the infinite horizon LQ problem: this means that we
have considered only the Riccati equation for control and evaluated the dynamic ap-
proximated Riccati operator in a sufficiently large time. We have stopped integration
when the norm of the difference between the Riccati matrix operators evaluated in
time kdT and (k + 1)dT was less than 10−10.

Tables 2–5 report the values of matrices Πn0 and of matrices of functions Πn1 (ϑ)
[4, 27, 40] of the approximated, not yet implementable, LQ control law

(7.7) un(t) = Πn0 z(t) +

∫ 0

−r
Πn1 (θ)z(t+ θ)dθ.
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Fig. 14. Finite horizon LQG for the wind tunnel. The case of n = 2: true and estimated z1(t)
(almost coincident).
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Fig. 15. Finite horizon LQG for the wind tunnel. The case of n = 2: true and estimated z2(t)
(almost coincident).
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Fig. 16. Finite horizon LQG for the wind tunnel. The case of n = 2: true and estimated z3(t)
(almost coincident).
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Fig. 17. Finite horizon LQG for the wind tunnel. The case of n = 2: the input u(t).
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Table 1
Values of J10 computed for different values of n.

n J10

2 136.41324
4 136.41311
8 136.41310

Table 2
Values of matrix Πn

0 for different values of n.

n = 2

[
8676.5662 −9.8145 −0.9479
−9.8145 0.0182 0.0018
−0.9479 0.0018 0.0002

]

n = 4

[
8676.9112 −9.8149 −0.9477
−9.8149 0.0184 0.0018
−0.9477 0.0018 0.0002

]

n = 8

[
8676.9959 −9.8150 −0.9477
−9.8150 0.0185 0.0018
−0.9477 0.0018 0.0002

]

n = 16

[
8677.0170 −9.8150 −0.9477
−9.8150 0.0185 0.0018
−0.9477 0.0018 0.0002

]

Table 3
Values of Πn

1 (1, 2) for different values of n.

j Π21(−jr/16) Π41(−jr/16) Π81(−jr/16) Π161 (−jr/16)
0 −41.3798 −41.3931 −41.3962 −41.3970

1 — — — −42.0024

2 — — −42.6103 −42.6140

3 — — — −43.2288

4 — −43.8343 −43.8491 −43.8499

5 — — — −44.4742

6 — — −45.1014 −45.1051

7 — — — −45.7393

8 −46.3182 −46.3773 −46.3796 −46.3802

9 — — — −47.0246

10 — — −47.6721 −47.6757

11 — — — −48.3306

12 — −48.9777 −48.9920 −48.9923

13 — — — −49.6579

14 — — −50.3271 −50.3306

15 — — — −51.0071

16 −51.6883 −51.6904 −51.6909 −51.6910
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Table 4
Values of Πn

1 (2, 2) for different values of n.

j Π21(−jr/16) Π41(−jr/16) Π81(−jr/16) Π161 (−jr/16)
0 0.0684 0.0690 0.0691 0.0692

1 — — — 0.0685

2 — — 0.0678 0.0677

3 — — — 0.0670

4 — 0.0665 0.0663 0.0663

5 — — — 0.0656

6 — — 0.0650 0.0649

7 — — — 0.0643

8 0.0646 0.0635 0.0636 0.0636

9 — — — 0.0629

10 — — 0.0623 0.0623

11 — — — 0.0616

12 — 0.0613 0.0610 0.0610

13 — — — 0.0604

14 — — 0.0598 0.0597

15 — — — 0.0591

16 0.0585 0.0585 0.0585 0.0585

Table 5
Values of Πn

1 (3, 2) for different values of n.

j Π21(−jr/16) Π41(−jr/16) Π81(−jr/16) Π161 (−jr/16)
0 0.0067 0.0067 0.0067 0.0067

1 — — — 0.0066

2 — — 0.0065 0.0065

3 — — — 0.0065

4 — 0.0064 0.0064 0.0064

5 — — — 0.0063

6 — — 0.0063 0.0063

7 — — — 0.0062

8 0.0062 0.0061 0.0061 0.0061

9 — — — 0.0061

10 — — 0.0060 0.0060

11 — — — 0.0060

12 — 0.0059 0.0059 0.0059

13 — — — 0.0058

14 — — 0.0058 0.0058

15 — — — 0.0057

16 0.0056 0.0056 0.0056 0.0056

In Tables 3–5 the values of the second column, the only one not zero, of matri-
ces Πn1 of continuous functions are reported, just in instants −jr/n, j = 0, 1, . . . , n
(between such points the continuous function in consideration is a one degree poly-
nomial).

In the wind tunnel example, and in all other examples we have simulated, no
oscillations appear for Πn1 (ϑ), which was an important problem arising while consid-
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Table 6
Values of Π80 for different approximation schemes.

[2, 24]

[
8671.3161 −9.8336 −0.9500
−9.8336 0.0179 0.0018
−0.9500 0.0018 0.0002

]

[4]

[
8676.9829 −9.8154 −0.9477
−9.8154 0.0185 0.0019
−0.9477 0.0019 0.0002

]

[27]

[
8677.02698 −9.81505 −0.94768
−9.81505 0.01851 0.00186
−0.94768 0.00186 0.00019

]

[40]

[
8677.02502 −9.81503 −0.94768
−9.81503 0.01851 0.00186
−0.94768 0.00186 0.00019

]

[this paper]

[
8676.99592 −9.81502 −0.94769
−9.81502 0.01850 0.00186
−0.94769 0.00186 0.00019

]

Π0

[
8677.02405 −9.81505 −0.94768
−9.81505 0.01851 0.00186
−0.94768 0.00186 0.00019

]

Table 7
Values of J(un) for different schemes and n = 8.

[2, 24] [4] [27] [40] [This paper] Theor. value [27]

136.7361 136.7354 136.40094 136.4490 136.4131 136.40490

ering the approximation scheme [4]. In that approximation scheme Πn1 is increasingly
oscillatory with increasing n, while in our scheme, as in [27, 40], each function in Πn1
is monotone. This property becomes very important if one wants to implement the
approximating feedback law in a real system [27].

In Table 6 the approximations of order n = 8 of matrix Π0, denoted Π8
0, are

reported, computed with approximation schemes in [2, 24, 4, 27, 40] and with the
method presented in this paper. Also the exact optimal Π0 is reported, as computed
in [27].

Table 7 reports the values of the functional

(7.8)

∫ ∞

0

[zT(t)Q0z(t) + u2(t)]dt

computed using the same approximation schemes for n = 8.
The value computed with the method proposed in this paper is obtained by

numerical integration of (7.6). The value computed with tf = 20 is quite the same
(for n = 2 it is J20 = 136.4133).
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Table 8
Numerical values of J10 computed for different values of n.

n J10
2 136.41325
4 136.41312
8 136.41311

0 1 2 3 4 5 6 7 8 9 10
-0.12

-0 .1

-0.08

-0.06

-0.04

-0.02

0

Fig. 18. Infinite horizon LQG for the wind tunnel. The case of n = 2: true and estimated
z1(t) (almost coincident).

To conclude, the infinite horizon LQG control is considered: the solutions of
the approximate algebraic Riccati equations for control and filtering are used in the
control scheme. The resulting controller is a dynamic finite dimensional stationary

system driven by the noisy output. The values of the index
∫ 10

0
[zT(t)Q0z(t)+u2(t)]dt,

computed for different n and for the same noise realization, are reported in Table 8.
All approximation schemes give, within numerical errors, practically the same

value of the cost functional. It is indeed remarkable that the proposed approxima-
tion scheme is able to reach such value of the functional starting from noisy output
measurements and not, as the other schemes do, starting from noiseless full state
information (in a delay interval).

In Figures 18–20 the three components of the state are reported in the infinite
horizon case, for n = 2. The plots of the input and of the output are reported in
Figures 21 and 22.

Comparison with the methods presented in [25, 26] cannot be reported because
such papers do not contain numerical results.
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Fig. 19. Infinite horizon LQG for the wind tunnel. The case of n = 2: true and estimated
z2(t) (almost coincident).
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Fig. 20. Infinite horizon LQG for the wind tunnel. The case of n = 2: true and estimated
z3(t) (almost coincident).
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0 1 2 3 4 5 6 7 8 9 10
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1

Fig. 21. Infinite horizon LQG for the wind tunnel. The case of n = 2: the input u(t).
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Fig. 22. Infinite horizon LQG for the wind tunnel. The case of n = 2: the noisy output y(t).
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8. Conclusions. In this paper a new spline approximation scheme has been
developed for the finite horizon LQG control of general hereditary systems. The
approximated LQG controller is a finite dimensional linear system driven by the noisy
output. It has been proved that the approximated implementable feedback input and
the corresponding state converge to the optimal ones. The approximation scheme
makes use of first order splines, introduced by [3] for hereditary systems, suitably
adapted to the LQG problem which involves three differential equations, that is,
the filter equation and the two Riccati equations required for the computation of
the optimal stochastic control. Generally in the literature one of these equations is
considered, that is the Riccati equation for the deterministic state feedback optimal
control [4, 24, 26, 27, 40]. A methodology with two approximating subspaces has
been necessary to apply such spline functions to obtain convergence of the overall
LQG problem.

The main feature of the proposed scheme is from a numerical point of view. Indeed
our proposal of an implementable LQG controller gives practically the same results of
the well-known LQ controller, with a complete knowledge of the infinite dimensional
state in a deterministic setting, with reference to an important widely studied case as
the NASA National Transonic Facility. The choice of spline environment instead of
averaging one is motivated in [4], where its numerical advantages are stressed.

Moreover, the proposed method for choosing splines has the important degree of
freedom regarding the possibility of approximating separately the semigroup governing
the system and its adjoint. This allows us to use splines of any order [3]. This is very
promising for obtaining very good performances in the future.

Future work will involve the infinite horizon LQG problem, which in this paper
has been only sketched. For such a problem, the approximation scheme developed
here can be used, and convergence of the type in paper [14] can be obtained. As a
final remark, we would like to stress that the methodology presented in this paper
can involve more than one type of approximation for the three equations governing
the LQG stochastic control in order to get the best combination of theoretical and
numerical convergences of approximation schemes developed until now [2, 3, 24, 26,
27, 40].

Appendix.
LEMMA A.1. For any y0 ∈ R

N and for any function f ∈ C0([−r, 0];RN ), there
exists a unique left-continuous function y1 : [−r, 0] �→ R

N such that

(A.1) y1 −
δ−1∑
j=1

kj(y0,y1)χ[−r,−rj ] = f ,

where kj are functions defined in (2.22).
Proof. In the case δ = 1 the summation vanishes and the lemma is trivially true.

In the case δ > 1, consider (A.1) in time instants −rk

(A.2) y1(−rk)−
k∑
j=1

y1(−rj)−AT
j y0

δ − j + 1
= f(−rk), k = 1, . . . , δ − 1,

which can be put in matrix form as

(A.3)

 y1(−r1)
...

y1(−rδ−1)

 =

 f(−r1)
...

f(−rδ−1)

+Hδ,2

 y1(−r1)
...

y1(−rδ−1)

−Hδ,2

 AT
1
...

AT
δ−1

y0,
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where matrix Hδ,2 is defined as follows (IN is the N ×N identity matrix):

(A.4) Hδ,2 =


1
δIN 0 · · · 0 0
1
δIN

1
δ−1IN · · · 0 0

...
...

. . .
...

...
1
δIN

1
δ−1IN · · · 1

3IN 0
1
δIN

1
δ−1IN · · · 1

3IN
1
2IN

 .

Now, let us define a vector η ∈ R
(δ−1)N as

(A.5) η =

 η1
...

ηδ−1

 = (I(δ−1)N −Hδ,2)
−1


 f(−r1)

...
f(−rδ−1)

−Hδ,2

 AT
1
...

AT
δ−1

y0


and the left-continuous function

(A.6) ȳ1(ϑ) =


ηi, ϑ = −ri,

f(ϑ) +

δ−1∑
j=1

ηj −AT
j y0

δ − j + 1
χ[−r,−rj ](ϑ), ϑ �= −ri,

in which i = 1, . . . , δ − 1. It is readily verified that ȳ1 satisfies (A.1).
Uniqueness is proved by recognizing that any other function ỹ1 satisfying (A.1)

verifies also (A.3), and therefore ỹ1(−rk) = ȳ1(−rk), k = 1, . . . , δ− 1. The difference
between expression (A.1) with y1 = ȳ1 and the same expression in which y1 = ỹ1 is
used gives ȳ1 − ỹ1 = 0. This concludes the proof of uniqueness.

Proof of Proposition 2.2. Only (2.20) and (2.21) require a little mathematics.
The case δ = 1 (summations in (2.20) and (2.21) vanish) is a standard result [24, 43].
For the case δ > 1, let L : D(L) �→M2 be the operator defined as (see (2.20), (2.21))

L : D(L) �→M2,

L

[
y0

y1

]
=


δ y1(0) + AT

0 y0

1

g
AT

01y0 −
d

dϑ

y1 −
δ−1∑
j=1

kj(y0,y1)χ[−r,−rj ]


 ,

D(L) =


y0

y1

 ∣∣∣
y0 ∈ R

N , AT
δ y0 = y1(−r),y1 −

δ−1∑
j=1

kj(y0,y1)χ[−r,−rj ]

 ∈W 1,2

 .

We will show that
(a) for every x ∈ D(A) and every y ∈ D(L), it is (y,Ax)− (Ly,x) = 0;
(b) the set D(L) is dense in M2.
These two items together state that L is the adjoint of A, that is, A∗ as defined

in (2.20), (2.21).
Let us prove item (a). Take x ∈ D(A) and y ∈ D(L), let us show that (y,Ax)−

(Ly,x) = 0:
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(A.7)

(y,Ax)− (Ly,x) = yT
0

∑δ
j=1 Ajx1(−rj)− δ yT

1 (0)x0

+
∫ 0

−r g(ϑ)
[
yT

1 (ϑ)
d
dϑx1(ϑ) +

d
dϑ

(
y1 −

∑δ−1
j=1 kj(y0,y1)χ[−r,−rj ]

)T

x1(ϑ)

]
dϑ.

y1−
∑δ−1
j=1 kj(y0,y1)χ[−r,−rj ] being absolutely continuous, the integral term in (A.7)

can be rewritten as

(A.8)

δ∑
i=1

∫ −ri−1

−ri
(δ − i+ 1)

d

dϑ


y1 −

δ−1∑
j=1

kj(y0,y1)χ[−r,−rj ]

T

x1(ϑ)

 dϑ

+
δ∑
i=1

∫ −ri−1

−ri
(δ − i+ 1)

δ−1∑
j=1

kj(y0,y1)χ[−r,−rj ]

T

d

dϑ
x1(ϑ)dϑ

and after a simple computation

(A.9)

δ∑
i=1

(δ − i+ 1)


y1 −

δ−1∑
j=1

kj(y0,y1)χ[−r,−rj ]

T

x1


−ri−1

−ri

+

δ∑
i=2

(δ − i+ 1)

(
i−1∑
h=1

kh(y0,y1)

)T

[x1(−ri−1)− x1(−ri)]

= δyT
1 (0)x1(0)− yT

1 (−r)x1(−r)−
δ−1∑
i=1

yT
0 Aix1(−ri).

Now, replacing the integral term in (A.7) with the above expression and taking into
account that x1(0) = x0 and y1(−r) = AT

δ y0, it follows that (y,Ax)− (Ly,x) = 0.
Let us now prove item (b). It is sufficient to prove thatD(L) is dense in R

N×W 1,2.
Let y0 ∈ R

N , y1 ∈ W 1,2. Consider the following sequence of functions y1,k ∈ W 1,2,

defined for integers k > 1
r−rδ−1

:

(A.10)

y1,k(ϑ) =

{
y1(ϑ), ϑ ∈ [−r + 1

k , 0],

(1− k(ϑ+ r))AT
δ y0 + k(ϑ+ r)y1(−r + 1

k ), ϑ ∈ [−r,−r + 1
k ).

Being that −r + 1/k < −rδ−1, it is y1,k(−rj) = y1(−rj) for j = 1, . . . , δ − 1. As y1

is uniformly bounded in [−r, 0], given any positive ε there exists kε such that

(A.11) ‖y1 − y1,k‖L2 <
ε

2
for k > kε.

Note that, since y1,k(−r) = AT
d y0, if δ = 1, then

[
y0

y1,k

] ∈ D(A∗), and the density of

D(A∗) in R
N ×W 1,2 and hence in M2 is proved.

If δ > 1 in general
[

y0
y1,k

] �∈ D(A∗). For any integer n > supj=1,2,...,d
1

rj−rj−1
it is

convenient to define δ functions in W 1,2 as follows:

(A.12) χnj (ϑ) =

{
χ[−r,−rj ](ϑ), ϑ �∈ (−rj ,−rj +

1
n ),

−n(ϑ+ rj − 1
n ), ϑ ∈ (−rj ,−rj +

1
n ),

for j = 1, . . . , δ − 1,
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are such that

(A.13) ‖χnj − χ[−r,−rj ]‖L2 =
1√
3n

, for j = 1, . . . , δ − 1.

By Lemma A.1, for any n > supj=1,2,...,d
1

rj−rj−1
, there exists a function y1,k,n such

that

(A.14) y1,k,n −
δ−1∑
j=1

kj(y0,y1,k,n)χ[−r,−rj ] = y1,k −
δ−1∑
j=1

kj(y0,y1,k)χ
n
j

(note that the right-hand side term is in C0 and therefore Lemma A.1 can be applied).
It can be shown that y1,k,n(−rj) = y1,k(−rj), j = 1, . . . , δ, so that

[
y0

y1,k,n

] ∈
D(A∗).

Moreover,

(A.15)

∥∥∥ [
y0

y1,k

]
−

[
y0

y1,k,n

] ∥∥∥
M 2

=
∥∥∥ δ−1∑
j=1

kj(y0,y1)(χ
n
j − χ[−r,−rj ])

∥∥∥
L2

≤
δ−1∑
j=1

∥∥∥kj(y0,y1)
∥∥∥ 1√

3n
,

where formula (A.13) is used.
Thus, there exists an integer nε such that for n > nε it is

(A.16)
∥∥∥ [

y0

y1,k

]
−
[

y0

y1,k,n

] ∥∥∥
M 2

<
ε

2
.

Finally, for any pair k, n such that k > kε and n > nε it is

(A.17)
∥∥∥ [

y0

y1

]
−

[
y0

y1,k,n

] ∥∥∥
M 2

< ε,

which proves the density of D(L) in M2.
Remark A.2 The proof of this proposition concerning the adjoint operator A-

can also be done by methodology shown in [15]. Using standard Lax–Milgram-type
representation theorems, a relationship follows between equivalent inner products,
so that an adjoint operator in a given inner product can be found by another one
obtained in an equivalent inner product (see [15] and references therein).

LEMMA A.3. For any nonnegative λ the matrix Hp(λ) defined in (4.59) is non-
singular.

Proof. The expression of Hp(λ) is here reported for the reader’s convenience:

(A.18) Hp(λ) = I(δ−1)N −Hδ,2 +

 INe−λ(r−r1)
...

INe−λ(r−rδ−1)

hδ,2.

As a first step, nonsingularity of matrix IN(δ−1)−Hδ,2 is proved. By the definition
of Hδ,2 in (A.4) it is
(A.19)

IN(δ−1) −Hδ,2 =


IN − 1

δIN 0 · · · 0 0
− 1
δIN IN − 1

δ−1IN · · · 0 0
...

...
. . .

...
...

− 1
δIN − 1

δ−1IN · · · IN − 1
3IN 0

− 1
δIN − 1

δ−1IN · · · −1
3IN IN − 1

2IN

 .
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A direct computation shows that the inverse of IN(δ−1) −Hδ,2 is

(A.20) (IN(δ−1) −Hδ,2)
−1 = IN(δ−1) +Hδ,2,

where matrix Hδ,2 is defined as

(A.21) Hδ,2 =


1
δ−1IN 0 · · · 0 0
1
δ−2IN

1
δ−2IN · · · 0 0

...
...

. . .
...

...
1
2IN

1
2IN · · · 1

2IN 0
IN IN · · · IN IN

 .

The verification can be made writing the following expression for the kth column
block of matrix IN(δ−1) −Hδ,2 as

(A.22)


0
...

IN
...
0

−


0
...

1
δ−(k−1)IN

...
1

δ−(k−1)IN


(the first k − 1 blocks are zero) and the following expression for the jth row block of

matrix
(
IN(δ−1) −Hδ,2

)−1
as

(A.23) [ 0 · · · 0 IN 0 · · · 0 ] + [
1
δ−j IN . . . 1

δ−j IN 0 · · · 0
]

(the first j blocks are nonzero). The product when j < k is a sum of zeroes and is
trivially zero. It can also be verified that when j > k, the product gives zero, and when
j = k, the product gives IN . This verifies the expression (A.20) for (IN(δ−1)−Hδ,2)

−1.
Given the invertible matrix IN(δ−1) − Hδ,2, the determinant of Hp(λ) can be

written as follows:
(A.24)

det(IN(δ−1) −Hδ,2) · det

I(δ−1)N + (IN(δ−1) −Hδ,2)
−1

 INe−λ(r−r1)
...

INe−λ(r−rδ−1)

hδ,2

 .

Since for any pair of matrices A ∈ R
n×m and B ∈ R

m×n

(A.25) det(In +A ·B) = det(Im +B ·A),

the determinant of Hp(λ) can also be written as
(A.26)

det(IN(δ−1) −Hδ,2) det

I(δ−1)B + hδ,2(IN(δ−1) −Hδ,2)
−1

 INe−λ(r−r1)
...

INe−λ(r−rδ−1)


 .

Recalling the expression of hδ,2 defined in (4.56) it follows that

(A.27) hδ,2
(
IN(δ−1) −Hδ,2

)−1

 INe−λ(r−r1)
...

INe−λ(r−rδ−1)

 = c(λ)IN ,
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where c(λ) is the sum of positive terms that are functions of λ. Therefore it is

(A.28) det(Hp(λ)) = det(IN(δ−1) −Hδ,2) det((1 + c(λ))IN ) =
1

δN
(1 + c(λ))N ,

and this proves the nonsingularity of Hp(λ) for any nonnegative λ.
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Abstract. This paper studies the H∞ control problem for a nonlinear, unbounded, infinite
dimensional system with state constraints. We characterize the solvability of the problem by means
of a Hamilton–Jacobi–Isaacs (HJI) equation, proving that the H∞ problem can be solved if and only
if the HJI equation has a positive definite viscosity supersolution, vanishing and continuous at the
origin. In order to do so, the standard definition of the H∞ problem has to be relaxed by using the
theory of differential games. We apply our results to the one phase Stefan problem.
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1. Introduction. We study the infinite dimensional, controlled dynamical sys-
tem subject to unknown deterministic disturbances with full state information{

y′(t) +Ay(t) � f(y(t)) +Bu(t) + Cw(t) for t ≥ 0,
y(0) = x ∈ D(A).(1.1)

The state space H, the control set U , and the disturbance set W are real Hilbert
spaces; A : D(A) ⊂ H → H is a maximal monotone operator in H, possibly nonlinear
and multivalued, with 0 ∈ D(A). We will assume that

B : U → H, C : W → H are bounded and linear operators,(1.2)

f : D(A)→ H is Lipschitz continuous.(1.3)

For x ∈ D(A), disturbance w ∈ L2
loc(0,+∞;W ), and control u ∈ L2

loc(0,+∞;U),
it is well known that with the previous assumptions system (1.1) admits a unique
trajectory solution y(·) ≡ y(·, x, u, w) ∈ C([0,∞);H) in themild sense. For the general
theory of nonlinear semigroups and its applications to partial differential equations
the reader can consult, for instance, the books by Brézis [8], Barbu [2], [3], Deimling
[11], Vrabie [32], and Evans [14]. Since the operators B,C are linear and bounded,
our state equation does not apply to systems modeling boundary control problems.
However, we put ourselves under assumptions that include large classes of distributed
parameter systems, such as, for instance, parabolic variational inequalities describing
free boundary parabolic problems. Such systems, in order to be modeled as abstract
evolution equations, require the use of a nonlinear, unbounded, and multivalued A.
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For explicit examples, the reader can check Barbu [3], Vrabie [32], and [17]. Moreover,
in section 2 we recall the abstract setting for the one phase Stefan problem, the
prototype of free boundary parabolic problems and well-known model for the melting
of ice, and apply our results to that example. We do not seek the most general
assumptions on the right-hand side of the differential equation in (1.1) under which
our techniques work, in order to reduce some technicalities that might obscure some
of the delicate steps of the arguments. For instance, every result could be formulated
in the generality of [17].

Our goal is to extend to nonlinear, infinite dimensional systems the equivalence
between solvability of the H∞ suboptimal control problem for (1.1) and the existence
of a nonnegative (positive definite) (super)solution of the corresponding Hamilton–
Jacobi–Isaacs (HJI) equation. More precisely, we define the problem as follows. Given
γ > 0 (the disturbance attenuation level) and

g : D(A)→ [0,+∞] lower semicontinuous, g(0) = 0,(1.4)

we are concerned with existence of a family of strategies for the controller {αx[w]}x∈D(A)
,

i.e., causal functionals of the disturbance w, which guarantee that the undisturbed
system (w ≡ 0 in (1.1)) is locally (or locally asymptotically) Lyapunov stable at the
origin and such that the following L2-gain condition is satisfied:∫ T

0

(
g(y(t)) + ‖αx[w](t)‖2

)
dt ≤ γ2

∫ T

0

‖w(t)‖2dt+K(x)
for all T > 0, w ∈ L2

loc(0,∞;W ).
(1.5)

In (1.5) we wantK : D(A)→ [0,+∞], dom(K) ≡ {x : K(x) is finite} = dom(g) =: K,
and we require that K(0) = 0. The terminology strategy comes from the theory of
differential games, in particular from Elliott–Kalton [13] and the references therein.
We will denote by ∆ the set of strategies, that is, functionals α : L2

loc(0,+∞;W ) →
L2

loc(0,+∞;U) characterized by causality, i.e., such that
w1 = w2 almost everywhere (a.e.) in [0, T ], T > 0, implies

α[w1] = α[w2] a.e. in [0, T ].

We note that one can give an equivalent formulation of (1.5) which involves only
w ∈ L2(0,∞;W ). This is an easy exercise that we leave to the reader. A discontinuous
running cost g is often useful in practice, and allowing g to be extended real valued
is motivated by state constraints, as we discuss at the beginning of the next section.

The reader will recognize that our definition of the H∞ suboptimal problem is
nonstandard. The classical one requires that the family of strategies {αx} can be
constructed with a feedback control. We need to relax the definition in order to pursue
the equivalence between the solvability of the problem and of the HJI equation which
is

〈Ax,DVγ〉+H(x,DVγ) = g(x) in D(A)(1.6)

with Hamiltonian (note that the so-called Isaacs condition holds)

H(x, p) = inf
w∈W

sup
u∈U

{−〈f(x) +Bu+ Cw, p〉 − ‖u‖2 + γ2‖w‖2}
= sup

u∈U
inf
w∈W

{−〈f(x) +Bu+ Cw, p〉 − ‖u‖2 + γ2‖w‖2}
= −〈f(x), p〉+ 1

4
‖B∗p‖2 − 1

4γ2
‖C∗p‖2.

(1.7)
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In general, equations like (1.6) do not have smooth (super)solutions, and this is the
main problem that arises when studying nonlinear systems. One therefore first needs
to interpret solutions of (1.6) in an appropriate weak sense, and we will use the
Crandall–Lions theory of viscosity solutions (see [9]). Moreover, nonsmooth solutions
make it very difficult to implement the standard recipe for the feedback solution of
the H∞ problem for affine systems, in this case, u(x) = − 1

2B
∗DV (x). In fact, a

continuous feedback solution may not exist in general for a nonlinear system, even
though (1.6) has a (nonsmooth) viscosity solution and the H∞ problem could be
solvable in our weaker sense. This fact gives us the reason for relaxing the definition
of theH∞ problem. Note that solving the problem in our sense is a necessary condition
in order to be able to design a feedback solution; see the statement of Theorem 2.5
below. How far we can go in improving the solution that we characterize in this paper
in the quest for a feedback solution of the problem is still an open and intriguing
question; see, however, Theorem 2.5 and Corollary 2.6 for possible results in this
direction.

In order to achieve our goal, we proceed as follows. We show that checking the gain
condition (1.5) is equivalent to checking whether the value function of a differential
game

Vγ(x) = inf
α∈∆

sup
w∈L2

loc
(0,+∞;W )

sup
T≥0

∫ T

0

(
g(y(t)) + ‖α[w](t)‖2 − γ2‖w(t)‖2) dt(1.8)

is finite for all x ∈ dom(g) and vanishes at the origin. Note that in our assumptions
Vγ will be discontinuous in general. Note also that since g ≥ 0, choosing w(·) ≡
0 ∈ L2(0,∞;W ) shows that Vγ ≥ 0; thus Vγ : D(A) → [0,+∞]. Checking when
Vγ is finite is the crucial step of the problem. When the gain condition is obtained,
the existence of a solution of the H∞ problem is a rather easy consequence of the
continuity of Vγ at the origin. Following the ideas of the dynamic programming
approach for differential games, the value function Vγ is expected to solve the HJI
equation (1.6). (The use of strategies here is essential to implement this approach
without smoothness of Vγ .) This fact allows us to characterize the finiteness of the
value function Vγ by means of a partial differential equation. We will show that indeed
Vγ is a viscosity solution of the HJI equation and it is, in fact, the minimal nonnegative
lower semicontinuous supersolution. These facts bear the following consequences: (1)
(Theorem 2.3) the L2-gain condition (1.5) is equivalent to the existence of a finite
nonnegative (super)solution, vanishing at the origin, of the HJI equation (1.6); (2)
(Theorem 2.4) the existence of a solution of the H∞ problem is equivalent to the
existence of a positive definite (super)solution of (1.6), vanishing and continuous at
the origin.

Our results generalize well-known statements holding in the finite dimensional
case and for linear systems although, as far as we know, this is the first paper intro-
ducing state constraints in the problem; see the beginning of section 2. We extend
the current literature even for a linear A in that we never suppose the term g to be
continuous. To give a flavor of the difficulties involved, note that solutions of (1.6)
are never unique, so classical ideas of viscosity solutions do not apply directly. In
general, (1.6) might even have multiple solutions vanishing at the origin. We will use
instead versions of the so-called optimality principles for solutions of HJI equations
without uniqueness that we develop here in an infinite dimensional differential games
framework for the first time. Our proofs follow the lines of those in Soravia [23] and
[25], where analogous results were proved in the finite dimensional case, but with sev-
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eral additional difficulties, due to the infinite dimensional setting and the unbounded
term in the dynamics. Some ideas to deal with state constraints in the infinite dimen-
sional setting were developed in [17] for control systems. In [18] we already studied
dissipative systems and the way they are related to the H∞ problem. That case turns
out to be technically much easier and corresponds to checking the L2-gain condition
(1.5) with a given predetermined Lipschitz continuous feedback u = u(x) in (1.1).
Those results can apply here only when (1.6) has a smooth supersolution, and, as a
result, the differential games framework is never needed. In general, one should first
determine whether the problem is solvable in our sense by solving (1.6) in the vis-
cosity sense, and next try to improve the result and build a (possibly discontinuous)
feedback solution.

We recall that the infinite dimensional case of the H∞-control problem was previ-
ously studied for linear systems with distributed parameters by Van Keulen–Peters–
Curtain [29] and Van Keulen [30], in the full information and partial information
settings, respectively. Linear abstract systems under assumptions containing bound-
ary control problems were considered by Barbu [5]. The case of nonlinear systems,
but with a linear unbounded operator A, was studied by Barbu [4], [6]. The H∞
problem in finite dimensions traces back to Zames [33] for linear systems; see also
[15], [22], and [12]. For nonlinear-affine systems and smooth solutions of the HJI
equation the problem was studied by van der Schaft [28] and Ball–Helton–Walker [1].
For general nonlinear systems and the approach using differential games and viscosity
solutions, we refer the reader to the papers by one of the authors [24] and [23]. A
general reference to the differential games approach is the book by Basar–Bernhard
[7]. The theory of viscosity solutions for HJI equations with nonlinear unbounded
terms, see section 2 for the definition, has been developed in works by Tataru [26],
[27], Crandall–Lions [10], and Kocan–Soravia [17]. We do emphasize that this theory
is quite recent, and to us it seems interesting by itself that the details of a technically
complicated problem, such as the H∞ suboptimal control problem, can be carried
through.

The plan of the paper is as follows. In section 2 we present the main statements
and a motivating example. The rest of the paper is devoted to the proofs. In section 3
we study the regularity of the value function Vγ and its relation with the HJI equation
(1.6). Section 4 contains technical steps needed in the other proofs: we describe a
change of variables for (1.6) which is implemented through an auxiliary problem.
Eventually, in section 5 we complete the proofs of the main results.

In this paper (S(·))t≥0 indicates the nonlinear semigroup generated by −A. We
denote by Lip(Ω) the space of all Lipschitz continuous functions on Ω, and, for ψ ∈
Lip(Ω), L(ψ) will denote its best Lipschitz constant. If L is a Lipschitz constant for
ψ, we say that ψ is L-Lipschitz continuous. We also indicate with P the projection
of H onto D(A) and, for any normed space X, BXr (x) stands for the closed ball in X
of radius r centered at x. USC(X) and LSC(X) will stand for the upper and lower
semicontinuous extended real-valued functions on X, respectively.

2. Main results, viscosity solutions. We start this section discussing the role
of a lower semicontinuous and extended real-valued cost function g. This generality
allows us the possibility of introducing state constraints to the system. Note for this
purpose that when the left-hand side of (1.5) is finite, then necessarily g(y(t)) is finite
for a.e. t ≥ 0, and then

y(t) ∈ K = dom(g) for all t ≥ 0.



1300 MACIEJ KOCAN AND PIERPAOLO SORAVIA

Therefore, dom(g) acts as a state constraint on the system. This fact is particularly
helpful in the applications, especially in the infinite dimensional setting, where it is
even useful to allow K to have an empty interior relative to D(A); see the examples
in the paper by the authors [17].

Now we discuss the main assumption on the system. We will impose the following
rather natural stability assumption on (1.1).

If un ⇀ u weakly in L
2(0, T ;U) for some T > 0, then for every x ∈ D(A),

t ∈ [0, T ] and w ∈ L2(0, t;W ), y(t, x, un, w)→ y(t, x, u, w) in H.

(2.1)

Remark 1. Condition (2.1), which is the strongest, although natural, assumption
that we make on the system, is discussed in detail in Kocan–Soravia [17], and we refer
the reader to that paper for additional references. For instance, it turns out that if
−A generates a compact semigroup and (1.2) and (1.3) hold, then (2.1) is satisfied;
see Proposition 2.7 in [17]. All the statements we prove can also be shown by similar
arguments if we assume the following condition instead of (2.1).{

If un ⇀ u weakly in L
2(0, T ;U) for some T > 0, then for all x, xn ∈ D(A),

xn ⇀ x, t ∈ [0, T ] and w ∈ L2(0, t;W ), y(t, xn, un, w)⇀ y(t, x, u, w) in H.

In this case the function g should be also assumed to be weakly lower semicontinuous,
and then the weak lower semicontinuity of the value function can be achieved in the
statements below. If −A is the linear generator of a semigroup and f ≡ 0, then it
is well known that the system (1.1) satisfies such a condition. We will not explicitly
include this part in the statements for better clarity of the exposition.

We now recall the concept of stability that we require on our system.
Definition 2.1. We say that the undisturbed system

y′ +Ay � f(y) +Bu
is locally Lyapunov stable at 0, if for every open neighborhood U of 0 in H we can
find δ > 0 such that for ‖x‖ ≤ δ, x ∈ D(A), there is u ∈ L2

loc(0,+∞;U) such that
y(t, x, u, 0) ∈ D(A) ∩ U for all t ≥ 0. If, in addition,

lim
t→+∞ y(t, x, u, 0) = 0,

then we say that the system is locally asymptotically stable at 0.
We will also use the following definition below.
Definition 2.2. We say that a function U : D(A) → [0,+∞] is locally positive

definite at 0 if U(0) = 0 and there is σ > 0 and a continuous, nondecreasing function
ω : [0,+∞)→ [0,+∞) such that U(x) ≥ ω(‖x‖) for x ∈ D(A), ‖x‖ ≤ σ, and ω(r) = 0
if and only if r = 0.

We now state our main results. The precise notion of viscosity solution that we
use will be explained at the end of the section. Note that we allow solutions to be
extended real valued.

Theorem 2.3 (characterization of L2-gain). Assume that (1.2), (1.3), (1.4) and
(2.1) hold. Then there is a family of strategies {αx : x ∈ D(A)} and a function
K : D(A) → [0,+∞] satisfying (1.5), K(0) = 0, and dom(g) ⊂ dom(K) if and only
if the HJI equation (1.6), where H is given in (1.7), has a viscosity supersolution
U : D(A) → [0,+∞] satisfying dom(U) ⊃ dom(g) and U(0) = 0. In this case, a
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function with these properties is Vγ , defined in (1.8), and the choice K = Vγ also
gives the best possible estimate in (1.5) when choosing a family of optimal strategies
for Vγ .

If, moreover, there is M > 0 such that

Vγ(x), g(x) ≤M(1 + ‖x‖2), x ∈ D(A),

then Vγ
∗ is also a viscosity subsolution of the HJI equation (1.6) in {x ∈ D(A) : Vγ∗(x)

> 0}.
The notation Vγ

∗ in the statement above refers to the upper semicontinuous
envelope of Vγ which is recalled below in (2.8). We recall that Vγ

∗ = Vγ when the
latter is upper semicontinuous.

Theorem 2.4 (characterization of the H∞ suboptimal problem). Assume that
(1.2), (1.3), (1.4), and (2.1) hold. If there is a nonnegative viscosity supersolution
U : D(A) → [0,+∞] of (1.6), locally positive definite at 0 and continuous at 0, then
there exist a family of strategies {αx} and a function K : D(A) → [0,+∞] contin-
uous at 0, K(0) = 0, satisfying (1.5) and such that the family of controls {αx[0]}
provides local Lyapunov stability of the undisturbed system at the origin. The system
is, moreover, locally asymptotically stable at 0 if g is locally positive definite at 0.

If Vγ is locally positive definite at 0, the previous condition is also necessary.
Sometimes one can really construct smooth supersolutions of the HJI equation

(1.6). Then the sufficiency part of Theorem 2.4 can be used to construct in the
usual way a feedback solution of the H∞ suboptimal control problem. Below we
give a specific example where it can be applied. Suppose that U : D(A) → R is a
C1 function, meaning that U is continuously Fréchet differentiable on some open set
Ω ⊂ H containing D(A). As usual, we think of DU(x)—the Fréchet differential of U
at x—as an element of H, thus identifying H with its dual. We will say that such U
is a classical supersolution of (1.6) if for every (x, y) ∈ A, i.e., y ∈ Ax, we have

〈y,DU(x)〉+H(x,DU(x)) ≥ g(x).
Classical supersolutions are viscosity supersolutions; see Proposition 6.3 in [19]. Define
the feedback control u(x) : = − 1

2B
∗DU(x), and consider the closed loop system

y′(t) +Ay(t) � f(y(t))− 1
2
BB∗DU(y(t)) + Cw(t), y(0) = x.(2.2)

Below we will denote by y(·) = y(·, x, w) its mild solution.
Theorem 2.5 (feedback solution). Assume that (1.2), (1.3), and (1.4) hold.

Suppose that U : D(A) → R is a C1, nonnegative, and locally positive definite at 0
classical supersolution of (1.6) and that DU(·) is Lipschitz continuous. Then u = u(x),
as above, is a feedback solution of the H∞ suboptimal problem and the family of
strategies defined by the position

αx[w](t) = u(y(t, x, w)), t ≥ 0,(2.3)

solves the H∞ suboptimal problem in the sense of the definition in the introduction.
The proof of Theorem 2.5 can be obtained in a straightforward way by observing

that U in the statement is a classical supersolution of

〈Ax,DU(x)〉+ infw∈W
{−〈f(x) + Cw −Bu(x), DU(x)〉+ γ2‖w‖2}

≥ ‖u(x)‖2 + g(x) in D(A),
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and by using Theorem 2.4 in the case where the control set U is a singleton. We will
leave the easy details to the reader.

We pause a little to discuss an example where our framework applies.
Example 1. We consider a simplified version of the one phase Stefan problem,

the well-known model for melting ice, see, e.g., Barbu [3]. Let Ω ⊂ R
N be a bounded,

open, and smooth set, N ≥ 2. We want to study the H∞ suboptimal problem for the
following system, (t, x) ∈ (0,+∞)× Ω,

yt(t, x)−∆y(t, x) ≥ f(y(t, x)) +Bu(t) + Cw(t),
yt(t, x)−∆y(t, x) = f(y(t, x)) +Bu(t) + Cw(t) if y(t, x) > 0,
y(t, x) ≥ 0, (t, x) ∈ (0,+∞)× Ω,
αy(t, x) + β ∂y∂n (t, x) = 0, (t, x) ∈ (0,+∞)× ∂Ω,
y(0, x) = y0(x), x ∈ Ω,

(2.4)

where α, β ≥ 0 and α + β > 0. Here we choose as state space H = L2(Ω). We can
model −∆ and the boundary conditions with a linear, bounded operator Ã ∈ L(V, V ′),
where V = H1(Ω) (or V = H1

0 (Ω) if β = 0) which, at least in the case β �= 0, is

〈Ãy, z〉 =
∫

Ω

Dy ·Dz dx+ α
β

∫
∂Ω

y · z dσ.

To model the variational inequality

min{yt −∆y − f(y)−Bu− Cw, y} = 0,
which is equivalent to (2.4) except for the boundary conditions, let ϕ : H → R∪{+∞}
be the indicator function of the set {y ∈ V : y ≥ 0}, i.e.,

ϕ(y) =

{
0, y ∈ V, y ≥ 0,
+∞, elsewhere.

Then define A = (Ã + ∂ϕ) ∩ (H × H), where ∂ϕ is the subgradient of the convex
function ϕ in the sense of convex analysis; see Rockafellar [31]. It is well known (see
Barbu [3]) that then A = ∂Φ, where

Φ(y) =

{
1
2 〈Ãy, y〉, y ∈ V, y ≥ 0,
+∞, elsewhere.

Note that Φ is convex with nontrivial domain, and therefore A is maximal monotone,
nonlinear, and multivalued. Moreover, it can be shown that Φ is of compact type,
and hence −A generates a compact semigroup. In particular, the assumption (2.1) is
satisfied by our results in [17]. System (2.4) is now written in the form (1.1).

For the system modeled in the previous example, let us now consider the running
cost g with at most quadratic growth, i.e., g(x) ≤ M‖x‖2 for x ∈ H and some
M > 0. (We do not add extra state constraints and will only apply Theorem 2.5 for
simplicity.) We will suppose that f(0) = 0 and show that, at least for sufficiently
large values of the disturbance attenuation level γ, (1.6) has a classical supersolution
of the form V (x) = K‖x‖2, with a suitable constant K > 0. Since A is monotone
and (0, 0) ∈ A, we have 〈y, x〉 ≥ 0 for every (x, y) ∈ A, and thus to verify that V is a
classical supersolution of (1.6) it is sufficient to prove the pointwise relation

−〈f(x), DV (x)〉+ 1

4
‖B∗DV (x)‖2 − 1

4γ2
‖C∗DV (x)‖2 ≥ g(x)
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for x ∈ D(A). Easy computations, using the fact that f is L-Lipschitz continuous
and f(0) = 0, show that it is enough to find K > 0 satisfying

K2

(
inf
{‖B∗x‖2 : ‖x‖ = 1}− 1

γ2
‖C∗‖2

)
− 2LK −M ≥ 0.

It is clear that we will succeed for any choice of γ such that

γ inf {‖B∗x‖ : ‖x‖ = 1} > ‖C∗‖.(2.5)

By applying Theorem 2.5 we then get the following result.
Corollary 2.6. Assume that (1.2), (1.3), and (1.4) hold, and that f(0) = 0.

Let g have at most quadratic growth. If inf{‖B∗x‖ : ‖x‖ = 1} > 0, then for any
disturbance attenuation level γ satisfying (2.5) we can find a constant K > 0 (which
can be explicitly obtained from the computations above) such that the linear feedback
law u(x) = −KB∗x solves the H∞ suboptimal problem for the nonlinear system (2.4).

We resume to say what our plan is for the proof of the main statements. Theo-
rems 2.3 and 2.4 are eventually proved in section 5 and will be achieved through the
following series of statements that also have independent interest. The first one refers
to the regularity of the value function Vγ . It is proved in section 3.

Proposition 2.7. Assume that (1.2), (1.3), (1.4), and (2.1) hold. Then the value
function Vγ in (1.8) has optimal strategies at any point. In particular, (1.5) holds at

x ∈ dom(g) for some α ∈ ∆ and K(x) < +∞ if and only if Vγ(x) < +∞. Thus, the
L2-gain condition (1.5) with K(0) = 0 can be satisfied if and only if Vγ is finite on

dom(g) and Vγ(0) = 0. Moreover, Vγ is lower semicontinuous.
The next statement concerns the relationships between Vγ and (1.6). It is proved

at the end of section 3.
Proposition 2.8. Assume that (1.2), (1.3), (1.4), and (2.1) hold. Then Vγ is a

viscosity supersolution of (1.6). If, moreover, there is M ≥ 0 such that
Vγ(x), g(x) ≤M(1 + ‖x‖2) for all x ∈ D(A),(2.6)

then Vγ
∗ is a viscosity subsolution of (1.6) in {x ∈ D(A) : Vγ∗(x) > 0}.

The next proposition states a representation formula for viscosity solutions (op-
timality principle). This is the main step of the proof and is proved in section 5.

Proposition 2.9. Assume that (1.2), (1.3), (1.4), and (2.1) hold and suppose
that the function U : D(A) → R ∪ {+∞} is a lower semicontinuous, bounded-from-
below viscosity supersolution of (1.6). Then for every x ∈ dom(U) we have

U(x) = inf
α∈∆

sup
w∈L2

loc
(0,+∞;W )

sup
T≥0

{∫ T

0

(
g(y(t)) + ‖α[w](t)‖2) dt

−
∫ T

0

γ2‖w(t)‖2dt+ U(y(T ))
}
,

(2.7)

where y(·) = y(·, x, α[w], w). In particular, if U is nonnegative, then U ≥ Vγ on
D(A).

We conclude this section with the definition of viscosity solution for first order,
nonlinear Hamilton–Jacobi equations with unbounded, nonlinear terms. For a func-
tion Φ: D(A)→ R and x̂ ∈ D(A), let

D−
AΦ(x̂) = lim inf

x→x̂
h↓0

Φ(x)− Φ (S(h)x)
h

, D+
AΦ(x̂) = lim sup

x→x̂
h↓0

Φ(x)− Φ (S(h)x)
h

.
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We refer the reader to [10] and [19] for the basic properties of such operators. Given
an extended real-valued function u on D(A), we denote by u∗ and u∗ its upper and
lower semicontinuous envelopes, respectively, i.e., for x ∈ D(A)

u∗(x) = lim sup
D(A)
y→x

u(y), u∗(x) = lim inf
D(A)
y→x

u(y).(2.8)

Next, we introduce the test functions used to define viscosity solutions.

Definition 2.10. We will say that Φ = ϕ + ψ ∈ C1(H) + Lip(H) is a subtest
(supertest, resp.) function if

ϕ(Px) ≤ (≥, resp.) ϕ(x) and ψ(Px) ≤ (≥) ψ(x) for x ∈ H.

We are now ready to define solutions of the equation (1.6).

Definition 2.11. Assume that (1.2), (1.3), and (1.4) hold. A possibly extended
real-valued function U ∈ USC(D(A)) (U ∈ LSC(D(A)), resp.) is a viscosity sub-
solution (resp., supersolution) of (1.6) if for every subtest (resp., supertest) function
Φ = ϕ+ ψ ∈ C1(H) + Lip(H) and local maximum (resp., minimum) x̂ ∈ dom(U) of
U − Φ relative to D(A) we have

D−
AΦ(x̂) + inf

w∈W
sup
u∈U
{−〈f(x̂) +Bu+ Cw,Dϕ(x̂)〉

−L(ψ)(‖f(x̂)‖+ ‖Bu‖+ ‖Cw‖)− ‖u‖2 + γ2‖w‖2} ≤ g∗(x̂)(
D+
AΦ(x̂) + inf

w∈W
sup
u∈U
{−〈f(x̂) +Bu+ Cw,Dϕ(x̂)〉

+L(ψ)(‖f(x̂)‖+ ‖Bu‖+ ‖Cw‖)− ‖u‖2 + γ2‖w‖2} ≥ g(x̂), resp.
)

A function U (not necessarily continuous) defined on D(A) is a solution of (1.6) if
U∗ is a subsolution and U∗ is a supersolution of (1.6).

We refer the reader to [10] and to [17] for some more details and discussion of the
notion of viscosity solution. Just recall after [17] that without loss of generality one
can assume that the test function Φ (equivalently, ϕ) appearing in Definition 2.11 is
globally Lipschitz continuous: Φ ∈ Lip(H).

3. Value function and the dynamic programming equation. In this sec-
tion we study the value function in (1.8) and prove its relations with the HJI equation
(1.6).

First of all, we will obtain some useful estimates concerning the trajectories of
the system. Gronwall’s inequality immediately shows that for all x, z ∈ D(A), u ∈
L1

loc(0,∞;U), and w ∈ L1
loc(0,∞;W ) we have

‖y(t, x, u, w)− y(t, z, u, w)‖ ≤ ‖x− z‖eL(f) t for all t ≥ 0.(3.1)

From (1.2), (1.3), and Hölder’s inequality, for all t ≥ 0 we also have

‖y(t)− x‖ ≤ ‖S(t)x− x‖+
∫ t

0

‖f(y(s)) +Bu(s) + Cw(s)‖ds
≤ ‖S(t)x− x‖+ t‖f(x)‖
+K

(√
t‖u‖L2(0,t;U) +

√
t‖w‖L2(0,t;W ) +

∫ t

0

‖y(s)− x‖ds
)(3.2)
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with a constant K = K(f,B,C). Then by Gronwall’s inequality, for all t ≥ 0 we
obtain

‖y(t)− x‖ ≤ K
(
t‖f(x)‖+ sup

0≤s≤t
‖S(s)x− x‖

+
√
t‖u‖L2(0,t;U) +

√
t‖w‖L2(0,t;W )

)
eKt,

(3.3)

with a possibly new constant K. In particular, we conclude that for every x ∈ D(A)
y(t, x, u, w)→ x as t ↓ 0, uniformly for u and w bounded in
L2(0, t;U) and L2(0, t;W ), respectively.

(3.4)

Computations similar to those in (3.2) show that, if f is L-Lipschitz continuous, then
for every t ≥ 0

‖y(t)− S(t)x‖ ≤
((
L sup

0≤s≤t
‖S(s)x− x‖+ ‖f(x)‖

)
t

+‖B‖
∫ t

0

‖u‖+ ‖C‖
∫ t

0

‖w‖
)
eLt,

(3.5)

where y(·) = y(·, x, u, w).
We can now turn to study the value function. The next statement is the super-

optimality part of the dynamic programming principle whose proof is standard. (For
the suboptimality part, see the final statement in the proof of Proposition 2.8.) In
the following for t > 0, x ∈ D(A), u ∈ L2(0, t;U), and w ∈ L2(0, t;W ), we put

J(t, x, u, w) =

∫ t

0

(
g(y(s, x, u, w)) + ‖u(s)‖2 − γ2‖w(s)‖2) ds.

Proposition 3.1. For any x ∈ D(A) and t ≥ 0
Vγ(x) ≥ inf

α∈∆
sup

w∈L2(0,t;W )

{J(t, x, α[w], w) + Vγ(y(t, x, α[w], w))} .(3.6)

Corollary 3.2. Assume (1.2), (1.3), and (1.4), and suppose that Vγ(x) < +∞
and t ≥ 0. Then for every w∗ ∈W and M >

√
Vγ(x)

Vγ(x) ≥ inf
{
J(t, x, u, w∗) + Vγ(y(t, x, u, w∗)) : u ∈ BL2(0,t;U)

M+γ
√
t‖w∗‖(0)

}
.

Proof. Fix x ∈ D(A), w∗ ∈ W , t > 0, and let M be as above. From Proposition
3.1

Vγ(x) ≥ inf
α∈∆
{J(t, x, α[w∗], w∗) + Vγ(y(t, x, α[w∗], w∗))}

≥ inf
u∈L2(0,t;U)

{J(t, x, u, w∗) + Vγ(y(t, x, u, w∗))} .

Suppose that ‖u‖L2(0,t;U) > γ
√
t‖w∗‖+M . Since Vγ , g ≥ 0, then

J(t, x, u, w∗) + Vγ(y(t, x, u, w∗)) ≥
∫ t

0

‖u(s)‖2 ds− γ2t‖w∗‖2 > M2,

and hence the infimum of the left-hand side over all ‖u‖L2(0,t;U) > γ
√
t‖w∗‖ +M is

at least M2 > Vγ(x).
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To prove that the value function is lower semicontinuous, we will use the following
general lemma that constructs optimal strategies in a variety of situations.

Lemma 3.3. Suppose that g, gn, ϕ, ϕn ∈ LSC(D(A)), (ϕn)n, (gn)n are nonde-
creasing sequences, supn ϕn = ϕ and supn gn = g. If (2.1) holds and

M ≡ sup
n≥1

inf
α∈∆

sup
w∈L2

loc

sup
t≥0

{∫ t

0

(
gn(y(s)) + ‖α[w](s)‖2 − γ2‖w(s)‖2

)
ds+ ϕn(y(t))

}
,

where x ∈ D(A) is fixed and y(·) = y(·, x, α[w], w), then there exists α# ∈ ∆ such
that

M = sup
w∈L2

loc

sup
t≥0

{∫ t

0

(
g(y(s, x, α#[w], w)) + ‖α#[w](s)‖2) ds

−γ2
∫ t

0

‖w(s)‖2ds+ ϕ(y(t, x, α#[w], w))

}
.

(3.7)

Proof. (1) It is clear that M is not bigger than the right-hand side of (3.7) for
any choice of α#. To prove the reverse inequality, we may assume that M < +∞.
For every n there exists αn ∈ ∆ such that for every t ≥ 0 and w ∈ L2

loc(0,∞;W )
denoting yn(·) ≡ y(·, x, αn[w], w), we have

M + 1
n ≥

∫ t

0

(
gn(yn(s)) + ‖αn[w](s)‖2 − γ2‖w(s)‖2

)
ds+ ϕn(yn(t))

≥
∫ t

0

(‖αn[w](s)‖2 − γ2‖w(s)‖2) ds.
Hence for all w ∈ L2

loc and t ≥ 0 we have
‖αn[w]‖2L2(0,t;U) ≤M + 1 + γ2‖w‖2L2(0,t;W ).(3.8)

(2) For T > 0, every α ∈ ∆ can be viewed as an element of the product space(
L2(0, T ;U)

)L2(0,T ;W )
.

From (3.8) we have that, up to an obvious identification, αn ∈ ΠT for all T , n, where
ΠT = {α : L2(0, T ;W )→ L2(0, T ;U) : ‖α[w]‖2L2(0,T ;U) ≤M + 1 + γ2‖w‖2L2(0,T ;W )}.
Since bounded closed balls in L2(0, T ;U) are weakly compact, it follows that ΠT
equipped with the product topology is compact. Therefore, for T = 1, there is a
subnet {α1

λ}λ∈Λ1 of {αn} converging to some α1 ∈ Π1. Given a positive integer k and
a subnet {αkλ}λ∈Λk of {αn} converging to αk ∈ Πk, there exists a subnet {αk+1

λ }λ∈Λk+1

of {αkλ}λ∈Λk converging to α
k+1 ∈ Πk+1. Define α

# : L2
loc(0,∞;W ) → L2

loc(0,∞;U)
according to the rule

α#[w](t) = αk+1[w](t), k ≤ t < k + 1.
It is not difficult to see that nonanticipating strategies form a closed subset of any
ΠT , and therefore α

# ∈ ∆.
(3) We will finally show that α# has the desired property. Let w ∈ L2

loc(0,∞;W )
and t > 0. By construction there is a subsequence nk (possibly depending on w and
t) such that

αnk [w]⇀ α
#[w], weakly in L2(0, t;U), as k →∞.(3.9)
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By the stability assumption (2.1) the trajectories ynk(·) converge pointwise to y#(·) ≡
y(·, x, α#[w], w). Using the lower semicontinuity of ϕn’s, gn’s, and the norm, from
Fatou’s lemma, we deduce

lim inf
k→∞

∫ t

0

(
gnk(ynk(s)) + ‖αnk [w](s)‖2 − γ2‖w(s)‖2

)
ds+ ϕnk(ynk(t))

≥
∫ t

0

(
g(y#(s)) + ‖α#[w](s)‖2 − γ2‖w(s)‖2) ds+ ϕ(y#(t)).

Therefore,

M ≥
∫ t

0

(
g(y#(s)) + ‖α#[w](s)‖2 − γ2‖w(s)‖2) ds+ ϕ(y#(t))

for every t ≥ 0 and w ∈ L2
loc(0,∞;W ), and hence the conclusion.

Proof of Proposition 2.7. To prove that for all x ∈ D(A) there are optimal
strategies for the value function Vγ(x), we need just to apply Lemma 3.3 with gn ≡ g
and ϕn ≡ 0. The statements concerning the L2-gain condition then follow trivially.
En-passant we note that, using the equivalent definition of Vγ with L

2 disturbances
instead of L2

loc, one could simplify this part of the proof by working directly with
L2(0,∞;W ) and L2(0,∞;U), which avoids the diagonal argument in the proof of
Lemma 3.3.

In order to prove that the value function Vγ is lower semicontinuous, let xn → x,
xn, x ∈ D(A). Without loss of generality we may assume that Vγ(xn) converges to a
finite limit, say, L. Let αn ∈ ∆ be an optimal strategy for Vγ(xn), i.e., for every t ≥ 0
and w ∈ L2(0, t;W )

Vγ(xn) ≥
∫ t

0

(
g(y(s, xn, αn[w], w)) + ‖αn[w](s)‖2 − γ2‖w(s)‖2

)
ds.(3.10)

It follows that, if n is sufficiently big, for any t ≥ 0 and w ∈ L2(0, t;W )

‖αn[w]‖2L2(0,t;U) ≤ L+ 1 + γ2‖w‖2L2(0,t;W ).

Arguing as in the proof of Lemma 3.3, there exists α# ∈ ∆ satisfying (3.9). Taking
lim inf in (3.10) as n→∞ as in Lemma 3.3 gives

L ≥
∫ t

0

(
g(y(s, x, α#[w], w)) + ‖α#[w](s)‖2 − γ2‖w(s)‖2) ds

for every t ≥ 0 and w ∈ L2(0, t;W ), which yields L ≥ Vγ(x), completing the proof of
Proposition 2.7.

We end this section by proving that Vγ solves the HJI equation.
Proof of Proposition 2.8. We start by proving that Vγ is a viscosity supersolution.

Recall that, by Proposition 2.7, Vγ is lower semicontinuous. Let Φ = ϕ + ψ be
a Lipschitz continuous supertest function, and assume that Vγ − Φ attains a local
minimum at x̂ ∈ dom(Vγ). Note that it is conceivable that g(x̂) = +∞. If D+

AΦ(x̂) =
+∞, there is nothing to prove. Otherwise, we argue by contradiction. Suppose that
there are θ > 0 and w∗ ∈W such that for every u ∈ U

D+
AΦ(x̂)− 〈f(x̂) +Bu+ Cw∗, Dϕ(x̂)〉+ L(ψ)(‖f(x̂)‖+ ‖Bu‖+ ‖Cw∗‖)

−‖u‖2 + γ2‖w∗‖2 < g(x̂)− 2θ.

(3.11)
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First, we will show that

D+
AΦ(x̂) > −∞.(3.12)

For t > 0 choose in the dynamic programming principle, Proposition 3.1, any t-optimal
strategy αt and denote ut = αt[0]. Since g ≥ 0, it follows that

Vγ(x̂) + t ≥
∫ t

0

‖ut(s)‖2ds+ Vγ(y(t)),(3.13)

where y(·) = y(·, x̂, ut, 0). Since Vγ ≥ 0, (3.13) yields a uniform bound on ‖ut‖L2(0,t;U)

and by (3.4) the assumption on Φ gives Vγ(x̂) − Vγ(y(t)) ≤ Φ(x̂) − Φ(y(t)) for all
sufficiently small t. From (3.13) and (3.5), for small t we then get

Φ(S(t)x̂)− Φ(x̂) ≤ t−
∫ t

0

‖ut‖2 +Φ(S(t)x̂)− Φ(y(t))

≤ t+ L(Φ)‖y(t)− S(t)x̂‖ −
∫ t

0

‖ut‖2 ≤ Kt,

where the last inequality also uses the Hölder inequality and an appropriate constant
K. Hence Φ(S(t)x̂)− Φ(x̂) ≤ O(t) as t ↓ 0, which yields (3.12).

Let M =
√
Vγ(x̂) + 1. Suppose that ‖u‖L2(0,t;U) ≤ M , t > 0, and for s ∈ [0, t]

put y(s) = y(s, x̂, u, w∗). From (3.4), (3.11), the coercivity in u of the left-hand side
of (3.11), and the lower semicontinuity of g, it follows that, if t is sufficiently small,
then for all s ∈ [0, t]

D+
AΦ(x̂)− 〈v(s), Dϕ(y(s))〉+ L(ψ)‖v(s)‖ − ‖u(s)‖2 + γ2‖w∗‖2 < g(y(s))− θ,

where we denoted v(s) = f(y(s)) + Bu(s) + Cw∗. Integrating from 0 to t and using
Tataru’s result (see [27] and Corollary 4.8 in [19]) yields (note that it works just like
formally except for the term o(t))

tθ ≤
∫ t

0

(
g(y(s)) + ‖u(s)‖2 − γ2‖w∗‖2) ds+Φ(y(t))− Φ(x̂) + o(t),

as t→ 0, uniformly for all ‖u‖L2(0,t;U) ≤M . By the local minimum property of Φ we
obtain

tθ ≤
∫ t

0

(
g(y(s)) + ‖u(s)‖2 − γ2‖w∗‖2) ds+ Vγ(y(t))− Vγ(x̂) + o(t)

for all ‖u‖L2(0,t;U) ≤ M . Then, from Corollary 3.2 (recall the choice of M), we get
tθ ≤ o(t) and a contradiction when choosing t sufficiently small.

To prove that, under the additional assumption (2.6), the function Vγ
∗ is a subso-

lution of (1.6) in {x ∈ D(A) : Vγ∗(x) > 0}, we can argue in a similar way as in section
4, where we prove the corresponding result for an auxiliary value function, which is
needed in the most delicate step of the proof of Theorem 2.3. Specifically, the subop-
timality part of the dynamic programming principle we need follows along the lines
of the proof of Proposition 4.6, although adapting this proof requires the assumption
(2.6). The fact that Vγ

∗ solves the equation can then be adapted from the argument
of the proof of Proposition 4.7; see also Proposition 2.4 in [17] for discontinuous value
functions. We will therefore omit the details of this part.
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4. The auxiliary problem. Since our problem has unbounded controls and
possibly a singular value function, we need to construct a suitable, more regular,
auxiliary problem and then use the ideas of the theory of viscosity solutions to compare
supersolutions of HJI equations and the corresponding value function. We start by
introducing a change of variables. Define ρ : R∪{+∞} → (0, π] as ρ(t) = π

2+tan
−1(t),

ρ(+∞) = π. Note that ρ is strictly increasing and 1-Lipschitz continuous on R. Also,
ρ−1 : (0, π]→ R ∪ {+∞} is given by ρ−1(s) = − cot(s), s ∈ (0, π).

Let (1.2) and (1.3) hold and let g : D(A) → [0,∞) be continuous. Suppose that
U ∈ LSC(D(A)) is a bounded-from-below supersolution (in the sense of Definition
2.11) of (1.6). Define W : D(A)× R→ (0, π] according to

W (x, r) = ρ(U(x) + r).(4.1)

Note that U(x) = +∞ if and only if W (x, r) = π. Formal computations suggest that
W ought to be a supersolution of

〈Ax,DxW 〉 + inf
w∈W

sup
u∈U
{−〈f(x) +Bu+ Cw,DxW 〉

+
(
γ2‖w‖2 − ‖u‖2 − g(x))DrW} = 0.(4.2)

This is indeed the case if the solutions of (4.2) are meant in an appropriate viscos-
ity sense, modeled on the one introduced in [16] and [21] (equations with separated
variables) adapted to differential games in the spirit of Definition 2.11; see also [17].
Note that the Hamiltonian in (4.2) is not necessarily real valued unless DrW > 0.

Definition 4.1. Let Ω ⊆ D(A) × R. A possibly extended real-valued function
W ∈ USC(D(A) × R) is a viscosity subsolution of (4.2) on Ω if for every subtest
function Φ as in Definition 2.10, η ∈ C1(R), and local maximum (x̂, r̂) ∈ Ω∩dom(W )
of W (x, r)− Φ(x)− η(r) relative to Ω, we have

D−
AΦ(x̂) + inf

w∈W
sup
u∈U
{−〈f(x̂) +Bu+ Cw,Dϕ(x̂)〉

−L(ψ)(‖f(x̂)‖+ ‖Bu‖+ ‖Cw‖) + (γ2‖w‖2 − ‖u‖2 − g(x)) η′(r̂)} ≤ 0.(4.3)

Supersolutions and solutions are defined similarly, following Definition 2.11.
The precise result on the change of variables is the following. Its proof parallels

that of Lemmas 3.8 and 3.9 in Kocan–Soravia [17], and we skip it.
Proposition 4.2. Let g : D(A) → [0,∞) be bounded and continuous. Suppose

that the function U : D(A) → (−∞,+∞] is a bounded-from-below supersolution (in
the sense of Definition 2.11) of (1.6). Define W : D(A) × R → (0, π] according to
(4.1). Then W is a supersolution of (4.2) on D(A) × R in the sense of Definition
4.1.

At this point we study the auxiliary differential game that corresponds to the
change of variables we introduced. Suppose that g : D(A)→ R and W : D(A)×R→
(0,∞) are bounded. For λ > 0 we will consider an auxiliary value function

(V λg,W ≡)V λ(x, r) = infα∈∆ supw∈L2
loc

(0,∞;W )

supt≥0 e
−λk(t,α[w],w)W (y(t, x, α[w], w), r + r(t, x, α[w], w)) ,

(4.4)

where (x, r) ∈ D(A)× R and

k(t, u, w) =

∫ t

0

(1 + ‖u‖2 + ‖w‖2),

r(t, x, u, w) =

∫ t

0

(
g(y(s, x, u, w)) + ‖u(s)‖2 − γ2‖w(s)‖2) ds.
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Choosing t = 0 in the definition (4.4) shows that V λ ≥ W > 0. Moreover, if
U : D(A) → R and W is as in (4.1), then 0 < V λ ≤ π. Note that for fixed
u ∈ L2

loc(0,∞;U) and w ∈ L2
loc(0,∞;W ), the function k(·, u, w) is strictly increasing

from [0,+∞) to [0,+∞) and t ≤ k(t, u, w) for all u,w. We will denote by t = t(·, u, w)
its inverse function, so, in particular, k(t(τ, u, w), u, w) = τ , t(k(t, u, w), u, w) = t and
t(τ, u, w) ≤ τ ; therefore, t(τ, u, w)→ 0 as τ → 0, uniformly in u ∈ L2

loc and w ∈ L2
loc.

We will need to reparametrize the trajectories with the new parameter τ = τ(t, u, w),
which depends upon the trajectory, in order to get estimates which are uniform on
the controls.

We start showing some estimates and regularity of the auxiliary value function.
Lemma 4.3. Suppose that g : D(A) → [0,∞) and U : D(A) → R are bounded

and let W be as in (4.1). Then V λ = V λg,W satisfies

lim
r→−∞V

λ(x, r) = 0, uniformly for all x ∈ D(A).(4.5)

Moreover, for every M > 0, sup{V λ(x, r) : x ∈ D(A), r ≤M} < π.
Proof. Fix any u∗ ∈ U . By definition (4.4), choosing α ≡ u∗, we have

V λ(x, r) ≤ sup
t≥0
e−λtρ

(‖U‖L∞ + r + t(‖g‖L∞ + ‖u∗‖2)) ,(4.6)

and evoking the elementary Lemma 4.4 below, this shows (4.5). If r < M , then from
(4.6), V λ(x, r) ≤ ρ (‖U‖L∞ +M + ‖g‖L∞ + ‖u∗‖2) ∨ πe−λ < π.

Lemma 4.4. Let K,λ > 0. For r ∈ R define h(r) = supt≥0 e
−λtρ(Kt+ r). Then

limr→−∞ h(r) = 0.
Proof. Clearly, h ≥ 0. Let µ = λ

K > 0; by changing variables it follows that h(r) =
eµr supt≥r e

−µtρ(t). Denoting f(t) = e−µtρ(t), we have f ′(t) = e−µt(ρ′(t) − µρ(t)),
and since limt→−∞

ρ′(t)
ρ(t) = 0, there is t0 such that f

′ < 0 on (−∞, t0). Thus

h(r) ≤ eµr
(
f(r) ∨ sup

t≥t0
f(t)

)
≤ eµr(e−µrρ(r) ∨ πe−µt0)

≤ ρ(r) ∨ πeµ(r−t0) → 0 as r → −∞.

Lemma 4.5. Suppose that g : D(A) → [0,∞) and U : D(A) → R are bounded
and Lipschitz continuous, let W be as in (4.1) and let V λ = V λg,W .

(1) Suppose that (xi, ri) ∈ D(A)×R, i = 1, 2, and V λ(x1, r1) > V
λ(x2, r2) > δ >

0. Then there exists M =M(g, U, f, λ, δ) > 0 such that

V λ(x1, r1)− V λ(x2, r2) ≤M‖x1 − x2‖+ r1 − r2.
(2) V λ is Lipschitz continuous in a neighborhood of every point.
(3) Suppose that (x̂, r̂) ∈ D(A) × R is such that V λ(x̂, r̂) > δ > 0 and r̂ < 1/δ.

Then

lim inf
h↓0

V λ(x̂, r̂ + h)− V λ(x̂, r̂)
h

≥ β > 0,

where β = β(g, U, λ, δ).
Proof. (1) By definition, for every σ > 0 there exists ασ ∈ ∆ such that for all

t ≥ 0 and w ∈ L2(0, t;W ) we have

e−λk(t,ασ [w],w)W (y(t, x2, ασ[w], w), r2 + r(t, x2, ασ[w], w)) < V
λ(x2, r2) + σ.
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Given ασ, there are also tσ ≥ 0 and wσ ∈ L2(0, tσ;W ) such that

e−λk(tσ,ασ [wσ ],wσ)W (y(tσ, x1, ασ[wσ], wσ), r1 + r(tσ, x1, ασ[wσ], wσ))
> V λ(x1, r1)− σ.

Since ρ is bounded, it follows that for every σ < δ/2 we have k(tσ, ασ[wσ], wσ) ≤
T = T (λ, δ). If for i = 1, 2 we denote yi(·) = y(·, xi, ασ[wσ], wσ) and ri(·) = ri +
r(·, xi, ασ[wσ], wσ), we also have

V λ(x1, r1)− V λ(x2, r2)− 2σ
< e−λk(tσ,ασ [wσ ],wσ) (W (y1(tσ), r1(tσ))−W (y2(tσ), r2(tσ))) .(4.7)

If σ is sufficiently small, then the left-hand side in (4.7) is positive, and then, since ρ
is increasing and 1-Lipschitz continuous, the right-hand side is at most U(y1(tσ)) +
r1(tσ)− U(y2(tσ))− r2(tσ). Therefore, using (3.1), we compute

V λ(x1, r1)− V λ(x2, r2) ≤ L(U)‖x1 − x2‖eL(f)T + r1 − r2
+L(g)

∫ tσ

0

‖y1(s)− y2(s)‖ds+ 2σ
≤ (L(U) + L(g)T ) eL(f)T ‖x1 − x2‖+ r1 − r2 + 2σ,

uniformly for σ sufficiently small. Letting σ ↓ 0 gives the result.
(2) This follows immediately from (1) since V λ ≥W > 0 and W is continuous.
(3) To prove the lower bound on the derivative of the value function V λ in the

last variable we proceed as in the first part of the proof of (1). Let x̂, r̂ be given and
V λ(x̂, r̂) ≥ δ > 0. We fix ε > 0 and for σ = εh, r1 = r̂, r2 = r̂+h, h > 0, x1 = x2 = x̂,
we find ασ, wσ, tσ such that, putting y(·) ≡ y1(·) ≡ y2(·) and r(·) = r(·, x̂, ασ[wσ], wσ),
we have an analogue of (4.7), namely,

V λ(x̂, r̂ + h) −V λ(x̂, r̂) + 2hε > e−λk(tσ,ασ [wσ ],wσ)(W (y(tσ), r̂ + h+ r(tσ))
−W (y(tσ), r̂ + r(tσ))).(4.8)

Note that, by construction, ‖ασ[wσ]‖2L2(0,tσ) ≤ k(tσ, ασ[wσ], wσ) ≤ T = T (λ, δ) for all
σ ≤ δ/2. This implies

U(y(tσ)) + r̂ + h+ r(tσ) ≤ ‖U‖∞ + r̂ + 1 + (1 + ‖g‖∞)T
for h small enough. Moreover, since for σ < δ/2

0 < δ/2 ≤ V λ(x̂, r̂)− σ < e−λk(tσ,ασ [wσ ],wσ)W (y(tσ), r̂ + r(tσ)) ≤W (y(tσ), r̂ + r(tσ)),
we also get

U(y(tσ)) + r̂ + r(tσ) ≥ ρ−1(δ/2).

Then there is R = R(g, U, λ, δ) > 0 such that for all h sufficiently small we have

U(y(tσ)) + r̂ + h+ r(tσ) ∈ [−R,R].
Observe that the right-hand side of (4.8) is positive, since ρ is increasing and

h > 0, and we can now conclude by the mean value theorem that

V λ(x̂, r̂ + h)− V λ(x̂, r̂) + 2hε
> e−λT (ρ(U(y(tσ)) + r̂ + h+ r(tσ))− ρ(U(y(tσ)) + r̂ + r(tσ))) ≥ Kh,
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where K = e−λT /(1 +R2). Dividing then by h and letting h→ 0, we finally obtain

lim inf
h→0

V λ(x̂, r̂ + h)− V λ(x̂, r̂)
h

≥ K − 2ε,

and the proof is completed by choosing ε sufficiently small.
We will now obtain a dynamic programming principle for the auxiliary value

function.
Proposition 4.6. Suppose that g : D(A) → [0,∞) and U : D(A) → R are

continuous and bounded and let W be as in (4.1). Denote V λ = V λg,W and let u∗ ∈ U .
If (V λ)∗(x̂, r̂) > W (x̂, r̂), then there is ε > 0 such that if ‖x− x̂‖, |r − r̂|, |V λ(x, r)−
(V λ)∗(x̂, r̂)| < ε, t ∈ (0, ε) and τ ∈ (0, ε), then

V λ(x, r) ≤ e−λτ sup
w∈L2

loc
(0,∞;W )

V λ (y(t(τ, u∗, w), x, u∗, w), r + r(t(τ, u∗, w), x, u∗, w)) ,
(4.9)

V λ(x, r) ≤ sup{e−λk(t,u∗,w)V λ (y(t, x, u∗, w), r + r(t, x, u∗, w)) : ‖w‖L2(0,t;W ) ≤M}.

Proof. (1) To prove (4.9) we argue by contradiction. Suppose that xn → x̂,
rn → r̂, τn ↓ 0, V λ(xn, rn)→ (V λ)∗(x̂, r̂), and εn > 0 are such that

V λ(xn, rn)− εn > sup
w∈L2

loc

e−λτnV λ (yn(tn), rn(tn)) ,(4.10)

where yn(·) = y(·, xn, u∗, w), rn(·) = rn + r(·, xn, u∗, w), and tn = t(τn, u∗, w).
For a fixed n, first suppose that

e−λsW (yn(t(s, u∗, w)), rn(t(s, u∗, w))) ≤ V λ(xn, rn)− εn(4.11)

for all s ∈ [0, τn), w ∈ L2(0, t(s, u∗, w);W ). By definition, for every α ∈ ∆ there exists
wα ∈ L2

loc such that

V λ(xn, rn)− εn
2
< sup

t≥0
e−λk(t,α[wα],wα)W (y(t, xn, α[wα], wα), rn + r(t, xn, α[wα], wα)) .

Combining this with (4.11), it follows that for every α ∈ ∆ with the property that
α[w](t) = u∗ for all w ∈ L2

loc and t ∈ [0, t(τn, u∗, w)), there exists wα ∈ L2
loc such that

V λ(xn, rn) − εn
2 < sup

t≥t(τn,u∗,wα)

e−λk(t,α[wα],wα)W (y(t, xn, α[wα], wα), rn

+r(t, xn, α[wα], wα)).
(4.12)

By definition, for every x ∈ D(A), r ∈ R, there exists α = α(x, r, n) ∈ ∆ such that

V λ(x, r) +
εn
2
> sup

w∈L2
loc

sup
t≥0
e−λk(t,α[w],w)W (y(t, x, α[w], w), r + r(t, x, α[w], w)) .

Consider a strategy ᾱ defined by

ᾱ[w](t) =

{
u∗ if 0 ≤ t < tn = t(τn, u∗, w),
αn[w(· − tn)](t− tn) for t ≥ tn,
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where αn = α(y(tn, xn, u
∗, w), rn + r(tn, xn, u∗, w), n). Observe that ᾱ is nonantic-

ipating (see Remark 4.2 in Soravia [23]), so ᾱ ∈ ∆. There is w̄ = wᾱ ∈ L2
loc as in

(4.12), and then by the definition of αn

V λ(xn, rn)− εn
2
< e−λk(tn,ᾱ[w̄],w̄)

(
V λ (y(tn, xn, u

∗, w̄), rn + r(tn, xn, u∗, w̄)) +
εn
2

)
,

which contradicts (4.10).

Hence (4.11) must fail and thus for every n we can find sn ∈ [0, τn) and a distur-
bance wn ∈ L2(0, t(sn, u

∗, wn);W ) such that

V λ(xn, rn)− εn < e−λsnW (y(t(sn, u∗, wn), xn, u∗, wn), rn
+ r(t(sn, u

∗, wn), xn, u∗, wn)).
(4.13)

Since (V λ)∗(x̂, r̂) > W (x̂, r̂) ≥ 0, without loss of generality we may assume that there
is δ > 0 such that V λ(xn, rn)− εn > δ for all n. From (4.13), since ρ is increasing and
t(sn, u

∗, wn) ≤ sn, we get

0 < δ < ρ

(
‖U‖L∞ + rn + sn(‖g‖L∞ + ‖u∗‖2)− γ2

∫ t(sn,u
∗,wn)

0

‖wn‖2
)
,

and it follows that there is M > 0 such that
∫ t(sn,u∗,wn)

0
‖wn‖2 ≤ M for all n. Then

from (3.3) we obtain y(t(sn, u
∗, wn), xn, u∗, wn) → x̂ as n → ∞ and, taking lim sup

as n→∞ in (4.13), we conclude

(V λ)∗(x̂, r̂)
≤ lim supn→∞ ρ

(
U(y(t(sn, u

∗, wn), xn, u∗, wn)) + rn + sn(‖g‖L∞ + ‖u∗‖2))
= ρ(U(x̂) + r̂) =W (x̂, r̂),

and we have again a contradiction, completing the proof.

(2) To complete the proof of Proposition 4.6, we first argue as in the proof of (4.9)
and show that there is ε > 0 such that if ‖x− x̂‖, |r− r̂|, |V λ(x, r)− (V λ)∗(x̂, r̂)| < ε,
and t ∈ (0, ε) then

V λ(x, r) ≤ sup
w∈L2(0,t;W )

e−λk(t,u
∗,w)V λ (y(t, x, u∗, w), r + r(t, x, u∗, w)) .(4.14)

Next, since (V λ)∗(x̂, r̂) > W (x̂, r̂) ≥ 0, we may assume that ε is so small that the
left-hand side in (4.14) is always bigger than δ for some fixed δ > 0. Therefore, in the
supremum in (4.14) only w ∈ L2(0, t;W ) satisfying

V λ (y(t, x, u∗, w), r + r(t, x, u∗, w)) > δ

are relevant. From Lemma 4.3 there is N ∈ R such that for every such w we have
r + r(t, x, u∗, w) > N , and hence

γ2
∫ t

0

‖w‖2 < r + t(‖g‖L∞ + ‖u∗‖2)−N

≤ r̂ + ε(1 + ‖g‖L∞ + ‖u∗‖2)−N.
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Proposition 4.6 enables us to show that the value function V λ in (4.4) is a sub-
solution of the quasi-variational inequality

min
{
V λ −W, λV λ + 〈Ax,DxV λ〉+ sup

u∈U
inf
w∈W{− 〈f(x) +Bu+ Cw,DxV λ〉+ (γ2‖w‖2 − ‖u‖2 − g(x))DrV λ}} = 0

(4.15)

on D(A)×R. Subsolutions and supersolutions of the equation in separated variables
(4.15) are defined by modifying Definition 4.1 in an obvious way. Note that the
Hamiltonian in (4.15) may not be real valued unless DrV

λ > 0, which by Lemma 4.5
holds in the viscosity sense. The following is a delicate step in our method.

Proposition 4.7. Suppose that g : D(A) → [0,∞) and U : D(A) → R are
bounded and Lipschitz continuous; let W be as in (4.1) and denote V λ = V λg,W . Then

V λ is a subsolution of (4.15).
Proof. First, observe that, by Lemma 4.5, the value function V λ is continuous

and that by definition V λ ≥ W . Let Φ = ϕ + ψ be a subtest function, which we
may assume to be Lipschitz continuous; let η ∈ C1(R) and V λ − Φ − η have a local
maximum equal to 0 at (x̂, r̂) ∈ D(A) × R, where V λ(x̂, r̂) > W (x̂, r̂). Note that by
Lemma 4.5 (3) we have η′(r̂) > 0, since V λ(x̂, ·)− η(·) has a local maximum point at
r̂. By modifying η off a small open interval containing r̂, without loss of generality
we may assume that there is σ > 0 such that

η′(r) > σ for all r ∈ R.(4.16)

By definition of viscosity subsolution, we need to show that

λV λ(x̂, r̂) +D−
AΦ(x̂) + sup

u∈U
inf
w∈W
{−〈f(x̂) +Bu+ Cw,Dϕ(x̂)〉

−L(ψ)(‖f(x̂)‖+ ‖Bu‖+ ‖Cw‖) + (γ2‖w‖2 − ‖u‖2 − g(x̂)) η′(r̂)} ≤ 0.(4.17)

(1) If D−
AΦ(x̂) = −∞, there is nothing to do. First, we will prove that

D−
AΦ(x̂) < +∞.(4.18)

Choose any u∗ ∈ U . From Proposition 4.6 there are M > 0 and ε > 0 such that for
all t ∈ (0, ε)

V λ(x̂, r̂) ≤ sup{e−λk(t,u∗,w)V λ(y(t), r(t)) : ‖w‖L2(0,t;W ) ≤M},(4.19)

where for given w we wrote y(·) = y(·, x̂, u∗, w) and r(·) = r̂ + r(·, x̂, u∗, w). Making
ε smaller if necessary, we can assume that ‖S(t)x̂ − x̂‖ < 1 and V λ(S(t)x̂, r̂) >
V λ(x̂, r̂)/2 for every t ∈ (0, ε). Suppose that

t ∈ (0, ε), ‖w‖L2(0,t;W ) ≤M, and V λ(x̂, r̂)/2 ≤ V λ(y(t), r(t)).(4.20)

Then, from Lemma 4.5, either V λ(y(t), r(t)) ≤ V λ(S(t)x̂, r̂) or

V λ(y(t), r(t))− V λ(S(t)x̂, r̂) ≤ K‖y(t)− S(t)x̂‖+ r(t)− r̂
≤ K‖y(t)− S(t)x̂‖+ t(‖g‖L∞ + ‖u∗‖2)− γ2

∫ t

0

‖w‖2,
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with K depending only on V λ(x̂, r̂) and λ. From this, (3.5), and the Hölder inequality
we obtain that always

V λ(y(t), r(t)) ≤ V λ(S(t)x̂, r̂) + Ct as t ↓ 0,
with a constant C uniform for all t and w. Then from (4.19) it follows that V λ(x̂, r̂) ≤
V λ(S(t)x̂, r̂) + Ct, and, consequently, Φ(x̂) − Φ(S(t)x̂) ≤ Ct as t ↓ 0, and we obtain
(4.18).

(2) In this step, arguing by contradiction, we will show that

λV λ(x̂, r̂) + sup
u∈U

inf
w∈W
{[D−

AΦ(x̂)− 〈f(x̂) +Bu+ Cw,Dϕ(x̂)〉
−L(ψ)(‖f(x̂)‖+ ‖Bu‖+ ‖Cw‖)
+
(
γ2‖w‖2 − ‖u‖2 − g(x̂)) η′(r̂)]/(1 + ‖u‖2 + ‖w‖2)} ≤ 0.(4.21)

Suppose then that there are u∗ ∈ U and θ > 0 such that for every w ∈W

λ(Φ(x̂) +η(r̂))
(
1 + ‖u∗‖2 + ‖w‖2)+D−

AΦ(x̂)− 〈f(x̂) +Bu∗ + Cw,Dϕ(x̂)〉
−L(ψ)(‖f(x̂)‖+ ‖Bu∗‖+ ‖Cw‖)
+
(
γ2‖w‖2 − ‖u∗‖2 − g(x̂)) η′(r̂) > 2θ(1 + ‖u∗‖2 + ‖w‖2).

(4.22)

Fix τ > 0 and let w ∈ L2
loc(0,∞;W ). Denote y(·) = y(·, x̂, u∗, w) and r(·) = r̂ +

r(·, x̂, u∗, w). Note that
t(τ, u∗, w) + ‖w‖2L2(0,t(τ,u∗,w);W ) ≤ k(t(τ, u∗, w), u∗, w) = τ.(4.23)

Therefore, from (4.22), (4.16), and (3.4) it follows that if τ is sufficiently small, then
for all s ∈ [0, t(τ, u∗, w)] (we may suppose θ < σγ2)

D−
AΦ(x̂) +λ (Φ(y(s)) + η(r(s)))

(
1 + ‖u∗‖2 + ‖w(s)‖2)− 〈v(s), Dϕ(y(s))〉

−L(ψ)‖v(s)‖+ (γ2‖w(s)‖2 − ‖u∗‖2 − g(y(s))) η′(r(s))
> θ(1 + ‖u∗‖2 + ‖w(s)‖2),

(4.24)

with v(s) = f(y(s)) + Bu∗ + Cw(s). Multiplying by e−λk(s,u
∗,w), integrating from 0

to t(τ, u∗, w), and using a version of Tataru’s result (see Corollaries 4.8 and 4.9 in the
paper by the authors and Świe↪ch [19]) as in the proof of Proposition 2.8, we obtain

Φ(x̂) + η(r̂)− e−λτ [Φ(y(t(τ, u∗, w))) + η(r(t(τ, u∗, w)))]
≥ (1− e−λτ ) θλ − o(t(τ, u∗, w)) ≥ (1− e−λτ ) θλ − o(τ),

(4.25)

as τ → 0, uniformly for all w ∈ L2
loc. Using (4.23), (3.4), and the maximum property

of Φ + η, we have

sup
{
e−λτV λ(y(t(τ, u∗, w)), r(t(τ, u∗, w))) : w ∈ L2(0, t;W )

}
≤ V λ(x̂, r̂)− (1− e−λτ ) θλ + o(τ).

Hence by Proposition 4.6, for a sufficiently small τ > 0, this gives (1−e−λτ )θ/λ ≤ o(τ)
and a contradiction when τ ↓ 0. Thus (4.21) is proved.

(3) Let ε > 0. From (4.21) for every u ∈ U there is wu ∈W such that

λV λ(x̂, r̂) (1 + ‖u‖2 + ‖wu‖2) +D−
AΦ(x̂)− 〈f(x̂) +Bu+ Cwu, Dϕ(x̂)〉

−L(ψ)(‖f(x̂)‖+ ‖Bu‖+ ‖Cwu‖)
+
(
γ2‖wu‖2 − ‖u‖2 − g(x̂)

)
η′(r̂) ≤ ε(1 + ‖u‖2 + ‖wu‖2),

(4.26)
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and therefore

‖u‖2 (
λV λ(x̂, r̂)− η′(r̂)− ε)− 〈Bu,Dϕ(x̂)〉 − L(ψ)‖Bu‖
≤ ε−D−

AΦ(x̂)− λV λ(x̂, r̂) + 〈f(x̂), Dϕ(x̂)〉+ L(ψ)‖f(x̂)‖+ g(x̂)η′(r̂)
+‖wu‖2

(
ε− λV λ(x̂, r̂)− γ2η′(r̂))+ 〈Cwu, D gf(x̂)〉+ L(ψ)‖Cwu‖.

(4.27)

If ε < σγ2, then the coefficient of ‖wu‖2 on the right-hand side in (4.27) is negative
and hence the supremum over all wu ∈ W is finite. Then taking the supremum over
all u ∈ U on the left-hand side shows that λV λ(x̂, r̂) − η′(r̂) − ε ≤ 0 for every small
enough ε > 0, i.e.,

λV λ(x̂, r̂) ≤ η′(r̂).

(4) Using (4.16), it is easy to see that there is R > 0 such that in the supremum
(4.17) it is not restrictive to take ‖u‖ ≤ R. Now if ε < γ2σ, then taking the infimum
over all ‖u‖ ≤ R in (4.27) shows that there is K = K(R) > 0 independent of ε small
enough such that ‖wu‖ ≤ K for every ‖u‖ ≤ R. From (4.26) we then have

λV λ(x̂, r̂) +D−
AΦ(x̂) + sup

u∈U
inf
w∈W
{−〈f(x̂) +Bu+ Cw,Dϕ(x̂)〉

−L(ψ)(‖f(x̂)‖+ ‖Bu‖+ ‖Cw‖) + (γ2‖w‖2 − ‖u‖2 − g(x̂)) η′(r̂)}
≤ ε(1 +K2 +R2),

and (4.17) follows, as ε is arbitrary.

5. Proofs of the main results. In this section we put everything together
to obtain proofs of the main statements. We first deal with the key point of the
sufficiency part of our theorems.

Proof of Proposition 2.9. Suppose that U ∈ LSC(D(A)) bounded from below is
a supersolution of (1.6). Note that we need only to show that U is bigger than the
right-hand side of (2.7), by choosing t = 0. (1) As explained in [17], we can construct
two nondecreasing sequences (gn)n, gn ≥ 0, and (Un)n of bounded, globally Lipschitz
functions defined on H such that on D(A) g = supn gn and U = supn Un. For every
n, put Wn(x, r) = ρ(Un(x) + r), so that Wn : H ×R→ (0, π) and Wn ∈ Lip(H ×R).
Observe that W ≥ Wn for every n. By Proposition 4.2, for every n and λ > 0,
W (x, r) = ρ(U(x) + r) is a supersolution of (4.2) on D(A)× R.

(2) Denoting Vn = V
λ
gn,Wn

, by Proposition 4.7 and Lemma 4.5 we know that Vn
is a continuous subsolution of

min
{
Vn −Wn, λVn + 〈Ax,DxVn〉+ sup

u∈U
inf
w∈W{− 〈f(x) +Bu+ Cw,DxVn〉+ (γ2‖w‖2 − ‖u‖2 − g(x))DrVn}} = 0

(5.1)

on D(A)× R. We will show that

Vn ≤W on D(A)× R.(5.2)

The proof of (5.2) is adapted from a similar argument of Lemma 5.5 in [17]. We argue
by contradiction and suppose that Vn(ẑ, t̂) −W (ẑ, t̂) ≡ 3τ > 0 for some ẑ ∈ D(A)
and t̂ ∈ R. For the sake of simplicity we will assume that (0, 0) ∈ A; see step 3 in
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the proof of Lemma 5.5 in [17] for the small technical modifications necessary in the
general case. For α, δ, β, κ > 0 and x, y ∈ D(A) and r, s ∈ R let

Φ(x, y, r, s) = Vn(x, r)−W (y, s)− α
2
‖x− y‖2 − β

2
(r − s)2 − δ(‖x‖2 + ‖y‖2)− κ(r2 + s2).

If δ, κ are sufficiently small, then

supΦ ≥ Vn(ẑ, t̂)−W (ẑ, t̂)− 2δ‖ẑ‖2 − 2κt̂2 ≥ 2τ.
By the perturbed optimization result of the first author and Świe↪ch [20], for every ε >

0 one can find x̂, ŷ ∈ D(A), r̂, ŝ ∈ R and a, b ∈ R such that |a|, |b| < ε, Φ(x̂, ŷ, r̂, ŝ) ≥
supΦ− ε and the map

Φ(x, y, r, s)− εd(x, x̂)− εd(y, ŷ)− ar − bs
has a strict global maximum at (x̂, ŷ, r̂, ŝ). The function d that we are using above is
the so-called Tataru distance

d(x, y) = inf
t≥0
{t+ ‖x− S(t)x‖}.

For its properties, besides those mentioned in [20], we refer the reader to [26], [27], [10].
Note that Φ(x̂, ŷ, r̂, ŝ) ≥ supΦ− ε ≥ 2τ − ε ≥ τ for all sufficiently small ε, and then

Vn(x̂, r̂) ≥W (ŷ, ŝ) + α
2
‖x̂− ŷ‖2 + β

2
|r̂ − ŝ|2

+ δ
(‖x̂‖2 + ‖ŷ‖2)+ κ (|r̂|2 + |ŝ|2)+ τ.(5.3)

In particular, ŷ ∈ dom(U). Consider two cases. If Vn(x̂, r̂) > Wn(x̂, r̂), then we use
(4.2) and (5.1), and from the doubling Theorem 3.1 in Crandall–Lions [10] (see also
[16] or [21]; note that our notions of viscosity subsolutions and supersolutions slightly
differ from those employed in [10], yet the proof of the doubling theorem can be easily
adapted to our setting) we obtain

λVn(x̂, r̂) ≤ sup
u∈U

inf
w∈W
{−〈f(ŷ) +Bu+ Cw,α(x̂− ŷ)− 2δŷ〉

+ε (‖f(ŷ)‖+ ‖Bu‖+ ‖Cw‖) + (γ2‖w‖2 − ‖u‖2 − gn(ŷ)) (β(r̂ − ŝ)− 2κŝ− b)}
− sup
u∈U

inf
w∈W
{−〈f(x̂) +Bu+ Cw,α(x̂− ŷ) + 2δx̂〉

−ε (‖f(x̂)‖+ ‖Bu‖+ ‖Cw‖) + (γ2‖w‖2 − ‖u‖2 − gn(x̂)) (β(r̂ − ŝ) + 2κr̂ + a)}+ 2ε.

(5.4)

From (5.3) we obtain that Vn(x̂, r̂) ≥ τ and W (ŷ, ŝ) ≤ π − τ , and Lemma 4.3 and
the properties of U and ρ, respectively, give that r̂ is bounded from below and ŝ is
bounded from above, uniformly in all parameters. Also, from (5.3), β|r̂ − ŝ|2 ≤ 2π,
and therefore for any fixed β, r̂ and ŝ are bounded, uniformly in all other parameters.
Now Lemma 4.5 (3) together with the fact that Vn(x̂, r)− β

2 (r− ŝ)2 − κr2 − ar has a
maximum at r = r̂ yield that

β(r̂ − ŝ) + 2κr̂ + a ≥ ν = ν(β) > 0.(5.5)

From (5.3)

κ|r̂|, κ|ŝ| ≤ √κπ, δ‖x̂‖, δ‖ŷ‖ ≤
√
δπ.(5.6)
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Also recall that, by standard arguments, see, e.g., Lemma 3.5 in [10], we have

lim sup
β→∞

lim sup
α→∞

lim sup
δ↓0

lim sup
κ↓0

lim sup
ε↓0

(
α‖x̂− ŷ‖2 + δ(‖x̂‖2 + ‖ŷ‖2)) = 0.(5.7)

Equation (5.3) also gives that for α, β fixed, α(x̂− ŷ) and β(r̂ − ŝ) remain bounded,
uniformly in other parameters. Hence taking the limit as ε ↓ 0 in (5.4), using (5.5),
(5.6), and (5.3) and the estimate on the Hamiltonian as in Lemma 5.4 in [17], we have

λτ ≤ lim sup
ε↓0

{Hn(ŷ, α(x̂− ŷ)− 2δŷ, β(r̂ − ŝ)− 2κŝ)
−Hn(x̂, α(x̂− ŷ) + 2δx̂, β(r̂ − ŝ) + 2κr̂)},

(5.8)

where for (x, p, v) ∈ D(A)×H × (0,+∞) we wrote
Hn(x, p, v) = sup

u∈U
inf
w∈W
{−〈f(x) +Bu+ Cw, p〉

+
(
γ2‖w‖2 − ‖u‖2 − gn(x)

)
v}

= −〈f(x), p〉 − gn(x)v + 1
4v‖B∗p‖2 − 1

4vγ2 ‖C∗p‖2.

Note that Hn is uniformly continuous on bounded closed subsets of D(A) × H ×
(0,+∞), and thus using (5.5) and (5.6) while taking the limits gives

λτ ≤ lim sup
κ↓0

lim sup
δ↓0

lim sup
ε↓0

(βL(gn)|r̂ − ŝ|‖x̂− ŷ‖
+α‖f(x̂)− f(ŷ)‖‖x̂− ŷ‖+ 2δ (|〈f(x̂), x̂〉|+ |〈f(ŷ), ŷ〉|))

and then (1.3) and (5.7) yield a contradiction.
The second case applies if Vn(x̂, r̂) =Wn(x̂, r̂). Therefore by (5.3) we have

τ ≤ Vn(x̂, r̂)−W (ŷ, ŝ) ≤Wn(x̂, r̂)−Wn(ŷ, ŝ),(5.9)

and then the fact that Wn ∈ Lip(H × R) and (5.3) also yield a contradiction as
α, β →∞, and thus (5.2) is proved.

(3) So far we proved that for every λ > 0 and n ≥ 1
W (x, r) ≥ inf

α∈∆
sup

w∈L2
loc

sup
t≥0
e−λk(t,α[w],w)Wn(y(t, x, α[w], w), r + r(t, x, α[w], w))

= inf
α∈∆

sup
w∈L2

loc

sup
τ≥0
e−λτWn(y(t(τ, α[w], w)), r + r(t(τ, α[w], w)))

(5.10)

for x ∈ D(A), U(x) < +∞, and r ∈ R. Fix x ∈ D(A), U(x) < +∞. Letting λ ↓ 0 in
(5.10), we obtain for every fixed T > 0

W (x, r) = ρ(U(x) + r) ≥ inf
α∈∆

sup
w∈L2

loc
(0,∞;W )

sup
τ∈[0,T ]

{Wn(y(t(τ, α[w], w)), r + r(t(τ, α[w], w)))} = ρ
(
inf
α∈∆

sup
w∈L2

loc

sup
τ∈[0,T ]{∫ t(τ,α[w],w)

0

(
gn(y(s)) + ‖α[w](s)‖2 − γ2‖w(s)‖2

)
ds+ r + Un(y(t(τ, α[w], w)))

})
,
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which implies, since ρ is increasing, for all n ≥ 1 and T > 0

U(x) ≥ inf
α∈∆

sup
w∈L2

loc

sup
τ∈[0,T ]{∫ t(τ,α[w],w)

0

(gn(y(s)) + ‖α[w](s)‖2 − γ2‖w(s)‖2)ds+ Un(y(t(τ, α[w], w)))
}
.

(5.11)

We can pass to the limit as n→∞ in (5.11), with an argument similar to the one in
Lemma 3.3. Since by definition, for all α ∈ ∆ and w ∈ L2

loc(0,∞;W ), we have
‖α[w]‖2L2(0,t(T,α[w],w)) ≤ T and t(T, α[w], w) ≤ T , in (5.11), we can always limit
ourselves to using strategies verifying ‖α[w]‖2L2(0,∞) ≤ T for all w ∈ L2

loc. Similarly,

we can think here that disturbances w ∈ L2
loc satisfy ‖w‖L2(0,∞) ≤ T . We can then

construct a limit strategy α# as in Lemma 3.3, part (2), starting with a family of
strategies {αn}, where αn is 1/n-optimal in (5.11), i.e., satisfies

U(x) +
1

n
≥
∫ t(τ,αn[w],w)

0

(gn(y(s)) + ‖αn[w](s)‖2 − γ2‖w(s)‖2)ds
+ Un(y(t(τ, αn[w], w))),

(5.12)

for all w(·) and τ ∈ [0, T ]. Moreover, the fact that the sequence Un is uniformly
bounded from below (with no loss of generality) gives

U(x) +
1

n
+M ≥

∫ t(τ,αn[w],w)

0

(‖αn[w](s)‖2 − γ2‖w(s)‖2)ds;

hence, in particular, for τ = T and allowing only disturbances such that ‖w‖22 ≤ C,

t(T, αn[w], w) + U(x) +
1

n
+M + (γ2 + 1)C ≥ T.

Thus tn = t(T, αn[w], w) ≥ 1 for T ≥ T (U, x,C) large enough. From now on we then
fix T ≥ T (U, x,C). Given τ ∈ [0, T ], we set

τn = k(t(τ, α
#, w), αn, w).

Note that τn ≤ k(τ, αn[w], w) ≤ k(1, αn[w], w) ≤ T for τ ∈ [0, 1] if tn ≥ 1, and
therefore we can replace τ by τn in (5.12) and get

U(x) +
1

n
≥
∫ t(τ,α#[w],w)

0

(
gn(y(s)) + ‖αn[w](s)‖2 − γ2‖w(s)‖2

)
ds

+ Un(y(t(τ, α
#[w], w)))

for all w(·), ‖w‖22 ≤ C, and τ ∈ [0, 1]. Using the assumption (2.1) as in Lemma 3.3,
part (3), to pass to the limit as n→ +∞ we get that for every x ∈ D(A) and C > 0

U(x) ≥ inf
α∈∆

sup
w∈L2

loc
,‖w‖2

2≤C
sup
τ∈[0,1]{∫ t(τ,α[w],w)

0

(
g(y(s)) + ‖α[w](s)‖2 − γ2‖w(s)‖2) ds+ U(y(t(τ, α[w], w)))} .

(5.13)
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A further diagonal argument, again using the machinery of Lemma 3.3 in a similar
fashion, is then needed to remove in (5.13) the restriction on the L2 norm of the
disturbances (letting C → +∞), but we skip the details. In order to take the horizon
to ∞ in (5.13) (but with C = +∞), we proceed as follows. For a given ε > 0 and
w ∈ L2

loc(0,∞;W ), we apply (5.13) and find α0 ∈ ∆ (as a matter of fact (5.13) has
optimal strategies, and we can even choose α0 as a function of x) such that, for x0 = x
and w0 = w,

U(x0) +
ε
2 ≥

∫ t(τ,α0[w0],w0)

0

(
g(y(s, x, α0[w0], w0)) + ‖α0[w0](s)‖2 − γ2‖w0(s)‖2

)
ds

+U(y(t(τ, α0[w0], w0)))

for τ ∈ [0, 1]. Then we apply (5.13) with C = +∞ again at x1 = y(1, x, α0[w0], w0)
and find α1 ∈ ∆ such that, for w1(·) = w0(·+ 1),

U(x1) +
ε
22 ≥

∫ t(τ,α1[w1],w1)

0

(
g(y(s, x1, α1[w1], w1)) + ‖α1[w1](s)‖2 − γ2‖w1(s)‖2

)
ds

+U(y(t(τ, α1[w1], w1), x1, α1[w1], w1))

for τ ∈ [0, 1], and so forth. We proceed recursively and define the strategy α by the
position α[w] = u, where u is the control defined by setting

u(s) =


α0[w0](s), s ∈ [0, t(1, α0[w0], w0)),
α1[w1](s− t(1, α0[w0], w0)), s ∈ I1,
. . . .

I1 = [t(1, α0[w0], w0), t(1, α0[w0], w0) + t(1, α1[w1], w1)). The strategy α is a causal
functional by construction, since t(τ, u, w) is a causal functional of the controls for
any fixed τ > 0, and, moreover,

t(1, α0[w0], w0) + t(1, α1[w1], w1) = t(2, α[w], w),

and so forth (see Remark 4.2 in [23] for both statements). Then α satisfies

U(x) + ε ≥
∫ t(τ,α[w],w)

0

(
g(y(s, x, α[w], w)) + ‖α[w](s)‖2 − γ2‖w(s)‖2) ds

+U(y(t(τ, α[w], w), x, α[w], w))

for all τ ≥ 0 and w ∈ L2
loc(0,∞;W ); therefore, in particular, α[w] ∈ L2

loc(0,∞;U)
for all w ∈ L2

loc(0,∞;W ), since g and U are nonnegative and t(τ, u, w) → +∞ as

τ → +∞. Hence, since ε is arbitrary, we obtain for all x ∈ D(A)

U(x) ≥ inf
α∈∆

sup
w∈L2

loc
(0,∞;W )

sup
t≥0

{∫ t

0

(g(y(s)) + ‖α[w](s)‖2 − γ2‖w(s)‖2)ds+ U(y(t))
}
,

which concludes the proof since the opposite inequality follows immediately by choos-
ing t = 0 in the right-hand side.

Proof of Theorem 2.4. To prove the Lyapunov stability at 0 of the undisturbed
system, let U : D(A)→ [0,+∞], dom(U) ⊃ dom(g), be a lower semicontinuous super-
solution of the HJI equation (1.6), vanishing and continuous at the origin. Suppose
that U is locally positive definite at 0 and that σ, ω(·) are as in Definition 2.2. From
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Proposition 2.9, (2.7) holds, and, moreover, the right-hand side of (2.7) has opti-
mal strategies, as it follows applying Lemma 3.3 with gn ≡ g and ϕn ≡ U . For all
x ∈ dom(U) we can then find αx ∈ ∆ such that

U(x) ≥
∫ T

0

(
g(y(t)) + ‖αx[w](t)‖2 − γ2‖w(t)‖2

)
dt+ U(y(T ))(5.14)

for all T ≥ 0 and w ∈ L2
loc(0,+∞;W ). Then (1.5) is satisfied by {αx}x and K = U .

By choosing w ≡ 0 we then get
U(x) ≥ U(y(T, x, αx[0], 0))

for all T ≥ 0, so, in particular, the sublevel sets Vδ = {x ∈ D(A) : U(x) < δ} of U
are invariant for the undisturbed system. Moreover, since U is continuous at 0 and
U(0) = 0, every Vδ is a neighborhood (relative to D(A)) of 0.

Now suppose that U = BHε (0)∩D(A), where 0 < ε ≤ σ. Consider V = U ∩Vω(ε),
a relative neighborhood of 0. If x ∈ V and ‖y(t, x, αx[0], 0)‖ = ε for some t > 0,
then U(y(t, x, αx[0], 0)) ≥ ω(ε), contradicting the invariance of Vω(ε). It follows that
if x ∈ V, then y(t, x, αx[0], 0) ∈ V ⊂ U for all t ≥ 0, and the stability at 0 of the
undisturbed system follows.

The above argument in fact shows that the family of sets Uε = {x ∈ D(A) : ‖x‖ <
ε, U(x) < ω(ε)}, 0 < ε ≤ σ, is invariant for the undisturbed system and, moreover, is
a base of neighborhoods (relative to D(A)) of 0.

To prove asymptotic stability at 0 when g is locally positive definite at 0, we need
a further argument. Let σ, ω(·) be as in Definition 2.2; it is not restrictive to assume
they are the same as above. For 0 < ε ≤ σ put

ρ(ε) = inf{g(x) : x ∈ BHσ ∩D(A) \ Uε} > 0.
Choosing w ≡ 0 in (5.14), we get

U(x) ≥
∫ T

0

g(y(t, x, αx[0], 0)) dt

for all T ≥ 0. Suppose that x ∈ Uσ. If 0 < ε < σ and y(t, x, αx[0], 0) /∈ Uε for
t ∈ [0, T ], then T ≤ U(x)/ρ(ε). Thus y(t, x, αx[0], 0) ∈ Uε for some t ≥ 0, and we
conclude by the invariance of Uε.
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Abstract. Value functions propagated from initial or terminal costs and constraints by way of a
differential inclusion, or more broadly through a Lagrangian that may take on ∞, are studied in the
case where convexity persists in the state argument. Such value functions, themselves taking on ∞,
are shown to satisfy a subgradient form of the Hamilton–Jacobi equation which strongly supports
properties of local Lipschitz continuity, semidifferentiability and Clarke regularity. An extended
“method of characteristics” is developed which determines them from the Hamiltonian dynamics
underlying the given Lagrangian. Close relations with a dual value function are revealed.
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1. Introduction. Fundamental to optimal control and the calculus of variations
are value functions V : [0,∞)× R

n → R := [−∞,∞] of the type

V (τ, ξ) := inf

{
g
(
x(0)

)
+

∫ τ

0

L
(
x(t), ẋ(t)

)
dt
∣∣∣x(τ) = ξ

}
, V (0, ξ) = g(ξ),(1.1)

which propagate an initial cost function g : R
n → R forward from time 0 in a manner

dictated by a Lagrangian function L : R
n × R

n → R. The possible extended-real-
valuedness of g and L serves in the modeling of the constraints and dynamics involved
in this propagation, such as restrictions on x(0) and on ẋ(t) relative to x(t). The
minimization takes place over the arc space A1

n[0, τ ], in the general notation that
Apn[τ0, τ1] consists of all absolutely continuous x(·) : [τ0, τ1] → R

n with derivative
ẋ(·) ∈ Lpn[τ0, τ1].

Value functions of the “cost-to-go” type, which propagate a terminal cost function
backward from a time T , are covered by (1.1) through time reversal; this is the usual
setting in optimal control. The fact that problems in optimal control can be treated
in terms of an integral functional as in (1.1) for a choice of an extended-real-valued
Lagrangian L has been recognized since [1] and has long been the subject of develop-
ments in nonsmooth optimization; for more on how control fits in, see, e.g., [2], [3], [4].
This is parallel to, and subsumes, the notion that differential equations with controls
can be treated in terms of differential inclusions with the controls suppressed. Value
functions are of interest in optimal control especially because of potential connections
with feedback rules.
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An important issue in Hamilton–Jacobi theory is the extent to which V can be
characterized in terms of the Hamiltonian function H : R

n×R
n → R associated with

L, as defined through the Legendre–Fenchel transform by

H(x, y) := supv

{
〈v, y〉 − L(x, v)

}
.(1.2)

Under the properties of this transform, H(x, y) is sure to be convex in y. When L(x, v)
is convex, proper, and lower semicontinuous in v, as is natural for the existence of
optimal arcs in (1.1), the reciprocal formula holds that

L(x, v) = supy

{
〈v, y〉 −H(x, y)

}
,(1.3)

so L and H are completely dual to each other.

It is well recognized that a function V given by (1.1) can fail to be smooth
despite any degree of smoothness of g and L, or for that matter, H. Much of modern
Hamilton–Jacobi theory has revolved around this fact, especially in coming up with
generalizations of the Hamilton–Jacobi PDE that might pin down V , which of course
was the historical motivation for that equation. Except for the case in which H
is independent of x, little attention has been paid to ascertaining circumstances in
which V (τ, ξ) is convex in ξ for each τ ≥ 0, and to exploring the consequences of such
convexity. The convex case merits study for several reasons, however.

Convexity is a crucial marker in classifying optimization problems, and it’s often
accompanied by interesting phenomena of duality. It can provide powerful support
in matters of computation and approximation. Moreover, it has a prospect here of
enabling V to be characterized via H in other ways, complementary to the Hamilton–
Jacobi PDE, such as versions of the method of characteristics in which convex analysis
can be brought to bear. Efforts in the convex case could therefore shed light on topics
in nonsmooth Hamilton–Jacobi theory that so far have been overshadowed by PDE
extensions.

The convexity of V (τ, ξ) in ξ entails, for τ = 0, the convexity of the initial function
g, but what does it need from the Lagrangian L? The simplest, and in a certain sense
the only robust assumption for this is the joint convexity of L(x, v) in x and v, which
corresponds under (1.2) and (1.3) to pairing the natural convexity of H(x, y) in y with
the concavity of H(x, y) in x. This is what we work with, along with mild conditions
of semicontinuity and growth that can readily be dualized.

In optimal control, problems of convex type have roughly the same status within
general control theory that linear differential equations have in the general theory of
differential equations. They form the backbone for many control applications, covering
traditional linear-quadratic control and its modifications to incorporate constraints
and penalties (cf. [5]), but also numerous problem models in areas such as economics
and operations research.

From the technical standpoint, our convexity assumptions ensure that the opti-
mization problem appearing in (1.1) fits the theory of generalized problems of Bolza
of convex type as developed in Rockafellar [1], [6], [7], [8]. That duality theory, dating
from the early 1970s and based entirely on convex analysis [6], hasn’t previously been
utilized in the Hamilton–Jacobi setting. It had to wait for advances toward handling
robustly, by means of subgradients, not only the convexity of V (τ, ξ) in ξ but also
its nonconvexity in (τ, ξ). Such advances have since been made through the labor of
many researchers, and the time is therefore ripe for investigating the Hamilton–Jacobi
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aspects of convexity and duality beyond the very special Hopf–Lax case treated in
the past, where L and H don’t depend on the x argument.

Relying on the background of variational analysis in [10], we make progress in
several ways. We demonstrate the existence of a dual value function Ṽ , propagated by
a dual Lagrangian L̃, such that the convex functions V (τ, ·) and Ṽ (τ, ·) are conjugate
to each other under the Legendre–Fenchel transform for every τ . We use this in
particular to derive a subgradient Hamilton–Jacobi equation satisfied directly by V ,
and a dual one for Ṽ , despite the unboundedness of these functions and their pervasive
∞ values. At the same time we establish a new subgradient form of the “method of
characteristics” for determining these functions from the Hamiltonian H.

Central to our approach is a generalized Hamiltonian ODE associated with H,
which is actually a differential inclusion in terms of subgradients instead of gradients.
By focusing on Vτ = V (τ, ·) as a convex function on R

n that varies with τ , we bring
to light the remarkable fact that the graph of the subgradient mapping ∂Vτ evolves
through nothing more nor less than its “drift” in the (set-valued) flow in R

n × R
n

induced by this generalized Hamiltonian dynamical system.
Our treatment of V , although limited to the convex case, contrasts with other

work in Hamilton–Jacobi theory which, in coping with∞ values, has required H(x, y)
to be a special kind of globally Lipschitz continuous, convex function of y for each x;
see Frankowska [11], [12] and Clarke et al. [13], where∞ is admitted directly, or Bardi
and Capuzzo-Dolcetta [14, Chapter V, section 5], where ∞ is suppressed by nonlin-
ear rescaling (a maneuver incompatible with maintaining convexity). These authors
take H(x, y) to be positively homogeneous in y, but a standard trick (passing from
Lipschitzian running costs to a Mayer formulation) allows extension to a somewhat
broader class of Hamiltonians (of unknown characterization).

While the interior of the set of points where V <∞ could be empty, we prove that
if it isn’t, then properties of semidifferentiability, Clarke regularity, and local Lipschitz
continuity hold for V on that open set under our assumptions. Also, we identify
through duality the situations in which coercivity or global finiteness is preserved for
all τ > 0.

For simplicity and to illuminate clearly the new features stemming from convexity,
we keep to the case of a time-independent Lagrangian L, although extensions of the
results to accommodate time dependence ought to be possible.

2. Hypotheses and main results. In formulating the conditions that will be
invoked throughout this paper, we abbreviate lower semicontinuous by “lsc” and refer
to an extended-real-valued function as proper when it’s not the constant function ∞
yet nowhere takes on −∞. Thus, a function f : R

n → R is proper if and only if its
effective domain dom f :=

{
v
∣∣ f(v) < ∞} is nonempty and, on this set, f is finite.

Equivalently, f is proper if and only if its epigraph, the set epi f :=
{
(v, s)

∣∣ s ∈
R, f(v) ≤ s

}
, is nonempty and contains no (entire) vertical lines. Convexity of f

corresponds to the convexity of epi f , while lower semicontinuity of f corresponds
to the closedness of epi f . Convexity of f implies convexity of dom f , but lower
semicontinuity of f need not entail closedness of dom f (as for instance when f(v)
approaches ∞ as v approaches the boundary of dom f from within).

We denote the Euclidean norm by | · | and call f coercive when it is bounded
from below and has f(v)/|v| → ∞ as |v| → ∞. Coercivity of a proper nondecreasing
function θ on [0,∞) means that θ(s)/s→∞ as s→∞. For a proper convex function
f on R

n, coercivity is equivalent to the finiteness of the conjugate convex function f∗

on R
n under the Legendre–Fenchel transform, f∗(y) := supv{〈v, y〉 − f(v)

}
.
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Basic assumptions (A).
(A0) The initial function g is convex, proper, and lsc on R

n.
(A1) The Lagrangian function L is convex, proper, and lsc on R

n × R
n.

(A2) The set F (x) := domL(x, ·) is nonempty for all x, and there is a constant ρ
such that dist(0, F (x)) ≤ ρ

(
1 + |x|) for all x.

(A3) There are constants α and β and a coercive, proper, nondecreasing function
θ on [0,∞) such that L(x, v) ≥ θ

(
max

{
0, |v| − α|x|})− β|x| for all x and v.

The joint convexity of L with respect to x and v in (A1) contrasts with the more
common assumption of convexity merely with respect to v. It is vital to our duality-
based methodology. In combination with the convexity in (A0), it ensures that the
functional

Jτ
(
x(·)) := g

(
x(0)

)
+

∫ τ

0

L
(
(x(t), ẋ(t)

)
dt(2.1)

is convex on A1
n[0, τ ]. It also, as a side benefit, guarantees that Jτ is well defined. That

follows because L(x(t), ẋ(t)) is measurable in t when L is lsc, whereas L majorizes at
least one affine function on R

n×R
n through its convexity and properness. Then there

exist (w, y) ∈ R
n × R

n and c ∈ R with L(x(t), ẋ(t)) ≥ 〈x(t), w〉 + 〈ẋ(t), y〉 − c, the
expression on the right being summable in t. The integral thus has an unambiguous
value in (−∞,∞], and so then does Jτ (x(·)).

In (A2), the mapping F gives the differential inclusion that’s implicit in the
Lagrangian L. Obviously Jτ (x(·)) =∞ unless the arc x(·) satisfies the constraints

ẋ(t) ∈ F (x(t)) almost everywhere (a.e.) t, with x(0) ∈ D := dom g.(2.2)

Note that the graph of F , which is the set domL ⊂ R
n × R

n, is convex by (A1),
although not necessarily closed. Similarly, the initial setD in these implicit constraints
is convex by (A0), but need not be closed. Of course, in the special case where L is
finite everywhere, the graph of F is all of R

n × R
n and the condition ẋ(t) ∈ F (x(t))

trivializes; likewise, if g is finite everywhere, the condition x(0) ∈ D trivializes.
The nonempty-valuedness of F in (A2) means that there are no state constraints

implicitly imposed by L. State constraints are definitely of interest in some applica-
tions, but in order to handle them we would have to pass from our duality framework
of absolutely continuous trajectories to one in which dual trajectories or perhaps even
primal trajectories might have to be merely of bounded variation; cf. [15], [16], [17].
That could be possible, but the technical complications would be more formidable
and additional groundwork might have to be laid, so we forgo such an extension for
now.

The growth condition in (A2) will be seen to imply that the differential inclusion
in (2.2) has no “forced escape time”: from any point it provides at least one trajectory
over the infinite time interval [0,∞). The nonemptiness of F (x) didn’t really have to
be mentioned separately from this growth condition, inasmuch as the distance to ∅ is
∞.

The function L(x, ·) on R
n, which for each x is convex by (A1) and proper by

(A2), is coercive under the growth condition in (A3). Note that this growth condition
is much weaker than the commonly imposed Tonelli-type condition in which L(x, v) ≥
θ(|v|) for a coercive, proper, nondecreasing function θ. For instance, it covers the case
of L(x, v) = L0(v − Ax) + L1(x) for coercive L0 and a function L1 that does not go
down to −∞ at more than a linear rate, whereas the Tonelli-type condition would
not do that unless A = 0 and L1 is bounded from below.
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The following consequence of our assumptions sets the stage for our analysis of
the value function V as giving a “continuously moving” convex function on R

n.
Theorem 2.1 (value function convexity and epi-continuity). Under (A), the

function Vτ = V (τ, ·) is proper, lsc, and convex on R
n for each τ ∈ [0,∞). Moreover,

Vτ depends epi-continuously on τ . In particular, V is proper and lsc as a function on
[0,∞)× R

n, and Vτ epi-converges to g as τ ↘0.
This theorem will be proved in section 5. The epi-continuity in its statement

refers to the continuity of the set-valued mapping τ �→ epiVτ with respect to Painlevé–
Kuratowski set convergence. It amounts to the following assertion (here, as elsewhere
in this paper, we consistently use superscript ν = 1, 2, . . . → ∞ in describing se-
quences):

whenever τν → τ with τν ≥ 0, one has{
lim infν V (τν , ξν) ≥ V (τ, ξ) for every sequence ξν → ξ,
lim supνV (τν , ξν) ≤ V (τ, ξ) for some sequence ξν → ξ,

(2.3)

where the first limit property is the lower semicontinuity of V on [0,∞) × R
n. An

exposition of the theory of epi-convergence of functions on R
n is available in Chapter

7 of [10].
Observe that the epi-convergence in Theorem 2.1 answers the question of how the

initial condition V0 = g should be coordinated with the behavior of V when τ > 0.
Pointwise convergence of Vτ to V0 as τ ↘0 isn’t a suitable property for a context of
semicontinuity and extended-real-valuedness.

Epi-convergence has implications also for the subgradients of the functions Vτ .
Recall that for a proper convex function f : R

n → R and a point x, a vector y ∈ R
n

is a subgradient in the sense of convex analysis if

f(x′) ≥ f(x) + 〈y, x′ − x〉 for all x′ ∈ R
n.(2.4)

The set of such subgradients is denoted by ∂f(x). (This is, in particular, empty when
x /∈ dom f but nonempty when x ∈ ri dom f , the relative interior of the convex set
dom f ; see [9], [10].) The subgradient mapping ∂f : x �→ ∂f(x) has graph

gph ∂f :=
{
(x, y)

∣∣ y ∈ ∂f(x)} ⊂ R
n × R

n.(2.5)

When f is lsc as well as proper and convex, ∂f is a maximal monotone mapping, and
gph ∂f is therefore a globally Lipschitzian manifold of dimension n in R

n×R
n; see [10,

Chapter 12]. Furthermore, epi-convergence of functions corresponds in this picture
to graphical convergence of their subgradient mappings, i.e., Painlevé–Kuratowski set
convergence of their graphs; [10, 12.35].

Corollary 2.2 (subgradient manifolds). Under (A), the graph of the subgradi-
ent mapping ∂Vτ is, for each τ ∈ [0,∞), a globally Lipschitzian manifold of dimension
n in R

n × R
n. Moreover this set gph ∂Vτ depends continuously on τ .

The epigraphical continuity in the motion of Vτ in Theorem 2.1 thus corresponds
to continuity graphically in the motion of ∂Vτ . Not just “continuous” aspects of this
motion, but “differential” aspects need to be understood, however. For that purpose
the Hamiltonian function H in (1.2) is an indispensable tool.

A better grasp of the nature of H under our assumptions is essential. Because
L(x, ·) is lsc, proper, and convex under (A1) and (A2), the reciprocal formula in (1.3)
does hold, and every property of L must accordingly have some exact counterpart for
H. The following fact will be verified in section 3. It describes the class of functions
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H such that, when L is defined from H by (1.3), L will be the unique Lagrangian
for which (A1), (A2), and (A3) hold, and for which H is the associated Hamiltonian
expressed by (1.2).

Theorem 2.3 (identification of the Hamiltonian class). A function H : R
n ×

R
n → R is the Hamiltonian for a Lagrangian L satisfying (A1), (A2), and (A3) if
and only if H(x, y) is everywhere finite, concave in x, convex in y, and the following
growth conditions hold, where (a) corresponds to (A3), and (b) corresponds to (A2):

(a) There are constants α and β and a finite, convex function ϕ such that

H(x, y) ≤ ϕ(y) + (α|y|+ β)|x| for all x, y.

(b) There are constants γ and δ and a finite, concave function ψ such that

H(x, y) ≥ ψ(x)− (γ|x|+ δ)|y| for all x, y.

The finite concavity-convexity in Theorem 2.3 implies that H is locally Lipschitz
continuous; cf. [9, section 35].

Concave-convex Hamiltonian functions first surfaced as a significant class in con-
nection with generalized problems of Bolza and Lagrange of convex type; cf. [6]. In
the study of such problems, a subgradient form of Hamiltonian dynamics turned out
to be crucial in characterizing optimality. Only subgradients of convex analysis are
needed in expressing such dynamics. The generalized Hamiltonian system is

ẋ(t) ∈ ∂yH(x(t), y(t)), −ẏ(t) ∈ ∂̃xH(x(t), y(t)),(2.6)

with ∂yH(x, y) the usual set of “lower” subgradients of the convex function H(x, ·) at
y, but ∂̃xH(x, y) the analogously defined set of “upper” subgradients of the concave
function H(·, y) at x. A Hamiltonian trajectory over [τ0, τ1] is an arc (x(·), y(·)) ∈
A1

2n[τ0, τ1] that satisfies (2.6) for almost every t. The associated Hamiltonian flow is
the one-parameter family of (generally) set-valued mappings Sτ for τ ≥ 0 defined by

Sτ (ξ0, η0) :=
{
(ξ, η)

∣∣ ∃ Hamiltonian trajectory over [0, τ ] from (ξ0, η0) to (ξ, η)
}
.

(2.7)
Details and alternative expressions of the dynamics in (2.6) will be worked out

in section 6. Appropriate extensions to nonsmooth Hamiltonians H(x, y) that aren’t
concave in x, and thus correspond to Lagrangians L(x, v) that aren’t jointly convex in
x and v, can be found in [3], [18], [19], and [20]. Hamiltonian trajectories are featured
as necessary conditions in these works, but as will be recalled in Theorem 4.1 below,
our assumptions yield symmetric relationships between the x and y elements. Here, we
confine ourselves to stating how, under our assumptions, the graph of the subgradient
mapping ∂Vτ , namely

gph ∂Vτ :=
{
(ξ, η)

∣∣ η ∈ ∂Vτ (ξ)} ⊂ R
n × R

n,(2.8)

evolves through such dynamics from the graph of the subgradient mapping ∂V0 = ∂g.
Theorem 2.4 (Hamiltonian evolution of subgradients). Under (A), one has

η ∈ ∂Vτ (ξ) if and only if, for some η0 ∈ ∂g(ξ0), there is a Hamiltonian trajectory
(x(·), y(·)) over [0, τ ] with (x(0), y(0)) = (ξ0, η0) and (x(τ), y(τ)) = (ξ, η). Thus, the
graph of ∂Vτ is the image of the graph of ∂g under the flow mapping Sτ :

gph ∂Vτ = Sτ (gph ∂g) for all τ ≥ 0.(2.9)
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It will be shown in Theorem 6.3 that in the circumstances of Theorem 2.4, x(·)
is an optimal trajectory for the minimization problem defining V (τ, ξ) in (1.1). At
the same time, y(·) is optimal for a certain dual problem, and such optimality of x(·)
and y(·) is actually equivalent to the condition in Theorem 2.4.

Theorem 2.4 is the basis for a generalized method of characteristics for determin-
ing V uniquely from g and H. It will be proved in section 6, where the method will
be laid out in full. Especially noteworthy is the global nature of the complete de-
scription in Theorem 2.4, which is a by-product of convexity and underscores why the
convex case deserves special attention. The classical method of characteristics (which
requires the continuous differentiability of g and H) gives an equivalent description
of V satisfying the Hamilton–Jacobi equation, but is valid only locally.

Subbotin [21] pioneered a global characteristic method for quite general nonlin-
ear problems by introducing a (nonunique) characteristic inclusion, the weak invari-
ance (viability) of which he used to define the concept of a minimax solution to the
Hamilton–Jacobi equation. In such a general situation, one solution of the differential
inclusion plays the role of a characteristic trajectory, whereas under our convexity as-
sumptions, every solution of (2.6) plays such a role. Further recent work in generalized
characteristics for nonlinear first order PDEs can be found in [22] and [23].

To go from the characterization in Theorem 2.4 to a description of the motion of
Vτ in terms of a generalized Hamilton–Jacobi PDE, we need to bring in subgradients
beyond those of convex analysis. The notation and terminology of the book [10] will
be adopted.

Consider any function f : R
n → R and let x be any point at which f(x) is finite.

A vector y ∈ R
n is a regular subgradient of f at x, written y ∈ ∂̂f(x), if

f(x′) ≥ f(x) + 〈y, x′ − x〉+ o(|x′ − x|).(2.10)

It is a (general) subgradient of f at x, written y ∈ ∂f(x), if there is a sequence of

points xν → x with f(xν) → f(x) for which regular subgradients yν ∈ ∂̂f(xν) exist
with yν → y.

These definitions refer to “lower” subgradients, which are usually all that we
need. To keep the notation uncluttered, we take “lower” for granted, and in the few
situations where “upper” subgradient sets (analogously defined) are called for, we
express them by

∂̃f(x) = −∂[−f ](x), ˜̂
∂f(x) = −∂̂[−f ](x).(2.11)

For a convex function f , ∂̂f(x) and ∂f(x) reduce to the subgradient set defined
earlier through (2.4). In the case of the value function V , the “partial subgradient”
notation

∂ξV (τ, ξ) =
{
η
∣∣ η ∈ ∂Vτ (ξ)} for Vτ = V (τ, ·)

can thus, through Theorem 2.1, be interpreted equally in any of the senses above.
Theorem 2.5 (generalized Hamilton–Jacobi equation). Under (A), the subgra-

dients of V on (0, τ)× R
n have the property that

(σ, η) ∈ ∂V (τ, ξ) ⇐⇒ (σ, η) ∈ ∂̂V (τ, ξ)

⇐⇒ η ∈ ∂ξV (τ, ξ), σ = −H(ξ, η).
(2.12)

In particular, therefore, V satisfies the generalized Hamilton–Jacobi equation

σ +H(ξ, η) = 0 for all (σ, η) ∈ ∂V (τ, ξ) when τ > 0.(2.13)
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This theorem will be proved in section 7. By the first equivalence in (2.12), the

equation in (2.13) could be stated with ∂̂V (τ, ξ) in place of ∂V (τ, ξ) (or in terms of
the proximal subgradients emphasized in the book of Clarke, Ledyaev, Stern, and
Wolenski [24]), but we prefer the ∂V version because general subgradients dominate

in the variational analysis and subdifferential calculus in [10]. The ∂̂V version would
effectively turn (2.13) into the one-sided “viscosity” form of Hamilton–Jacobi equation
used for lsc functions by Barron and Jensen [25] and Frankowska [12], in distinction to
earlier forms for continuous functions that rested on pairs of inequalities; cf. Crandall,
Evans, and Lions [26]. The book of Bardi and Capuzzo-Dolcetta [14] gives a broad
view of viscosity theory in its current state, including the relationships between such
different forms. A Hamilton–Jacobi equation is called a Hamilton–Jacobi–Bellman
equation when H is expressed by the max in (1.2).

The extent to which (2.13) (or its viscosity version) and the initial condition on
V0 might suffice to determine V uniquely isn’t fully understood yet in the framework
of lsc solutions that can take on ∞ when τ > 0. So far, the strongest result directly
available in such a framework is the one obtained by Frankowska [12]; for problems
satisfying our convexity assumptions, it covers only the case where L(x, v) is the
indicator δC(v−Ax) corresponding to a differential inclusion ẋ(t) ∈ Ax(t)+C for some
matrix A and nonempty, compact, convex set C. Through a Mayer reformulation,
her result could be made to cover the case where a finite, convex function of (x, v) is
added to this indicator. How far one could go by such reformulation—and nonlinear
rescaling to get rid of ∞—with the results presented by Bardi and Capuzzo-Dolcetta
[14, Chapter V, section 5] is unclear.

The arcs y(·) that are paired with the arcs x(·) in the Hamiltonian dynamics are
related to the forward propagation of the conjugate initial function g∗, satisfying

g∗(y) := supx

{
〈x, y〉 − g(x)

}
, g(x) := supy

{
〈x, y〉 − g∗(y)

}
,(2.14)

with respect to the dual Lagrangian L̃, satisfying

L̃(y, w) = L∗(w, y) = supx,v

{
〈x,w〉+ 〈v, y〉 − L(x, v)

}
,

L(x, v) = L̃∗(v, x) = supy,w

{
〈x,w〉+ 〈v, y〉 − L̃(y, w)

}
.

(2.15)

The reciprocal formulas here follow from (A0) and (A1). We’ll prove in section 5 that
the value function Ṽ defined as in (1.1), but with g∗ and L̃ in place of g and L, has
Ṽτ conjugate to Vτ for every τ . This duality will be a workhorse in our analysis of
other basic properties.

An advantage of our assumptions (A) is that they carry over symmetrically to the
dual setting. Alternative assumptions could fail in that respect. To put this another
way, the class of Hamiltonians that we work with, as described in Theorem 2.3, is no
accident, but carefully tuned to obtaining the broadest possible results of duality in
Hamilton–Jacobi theory (here in the time-independent case).

3. Elaboration of the convexity and growth conditions. Conditions (A1),
(A2), and (A3) can be viewed from several different angles, and a better understanding
of them is required before we can proceed. Their Hamiltonian translation in Theorem
2.3 has to be verified, but also they will be useful as applied to functions other than
L, so a broader, not merely Lagrangian, perspective on them must be attained.
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We’ll draw on some basic concepts of variational analysis, and convex analysis in
particular. For any nonempty subset C ⊂ R

n, the horizon cone is the closed cone

C
∞

:= lim sup
λ↘ 0

λC =
{
w ∈ R

n
∣∣ ∃xν ∈ C, λν ↘0, with λνxν → w

}
.

When C is convex, C∞ is convex and, for any x̄ ∈ riC (the relative interior of C)
it consists simply of the vectors w such that x̄ + λw ∈ C for all λ > 0. When C is
convex and closed, C∞ coincides with the “recession cone” of C. See [9, section 6],
[10, Chapter 3].

For any function f : R
n → R, f �≡ ∞, the horizon function f∞ is the function

having as its epigraph the set (epi f)∞, where epi f is the epigraph of f itself. This
function is always lsc and positively homogeneous. When f is convex, f∞ is convex
as well and, for any x̄ ∈ ri(dom f), is given by f∞(w) = limλ→∞ f(x̄+ λw)/λ. When
f is convex and lsc, f∞ is the “recession function” of f in convex analysis. Again, see
[9, section 6], [10, Chapter 3].

It will be important in the context of conditions (A1), (A2), and (A3) to view
L not just as a function on R

n × R
n but in terms of the associated function-valued

mapping x �→ L(x, ·) that assigns to each x ∈ R
n the function L(x, ·) : R

n → R. A
function-valued mapping is a “bifunction” in the terminology of [9].

Definition 3.1 (regular convex bifunctions). A function-valued mapping from
R
n to the space of extended-real-valued functions on R

n, as specified in the form
x �→ Λ(x, ·) by a function Λ : R

n × R
n → R, is called a regular convex bifunction if

(a1) Λ is proper, lsc, and convex as a function on R
n × R

n;

(a2) for each w ∈ R
n there is a z ∈ R

n with (w, z) ∈ (domΛ)∞;

(a3) there is no z �= 0 with (0, z) ∈ cl(domΛ∞).

Proposition 3.2 (bifunction duality). For Λ : R
n × R

n → R, suppose that the
mapping x �→ Λ(x, ·) is a regular convex bifunction. Then for the conjugate function
Λ∗ : R

n × R
n → R, the mapping y �→ Λ∗(·, y) is a regular convex bifunction.

Indeed, conditions (a2) and (a3) of Definition 3.1 are dual to each other in the
sense that, under (a1), Λ satisfies (a2) if and only if Λ∗ satisfies (a3), whereas Λ
satisfies (a3) if and only if Λ∗ satisfies (a2).

Proof. This was shown as part of Theorem 4 of [8]; for the duality between (a2)
and (a3), see the proof of that theorem.

Lemma 3.3 (domain selections). For a function Λ : R
n × R

n → R satisfying
condition (a1) of Definition 3.1, condition (a2) is equivalent to the existence of a
matrix A ∈ R

n×n and vectors a ∈ R
n and b ∈ R

n such that(
x, Ax+ |x|a+ b

) ∈ ri(domΛ) for all x ∈ R
n.(3.1)

Proof. See the first half of the proof of Theorem 5 of [8] for the necessity. The
sufficiency is clear because (3.1) implies

(
x, Ax + |x|a) ∈ (domΛ)∞ for all

x ∈ R
n.

Proposition 3.4 (Lagrangian growth characterization). A function L : R
n ×

R
n → R satisfies (A1), (A2), and (A3) if and only if the mapping x �→ L(x, ·) is a
regular convex bifunction. Specifically in the context of Definition 3.1 with Λ = L,
(A1) corresponds to (a1), and then one has the equivalence of (A2) with (a2) and that
of (A3) with (a3).

Proof. When Λ = L, (A1) is identical to (a1). Assuming this property now, we
argue the other equivalences.
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(A2) ⇒ (a2). For any w ∈ R
n and any integer ν > 0 there exists by (A2)

some vν ∈ F (νw) with |vν | ≤ ρ(1 + ν|w|). Let xν = νw and λν = 1/ν. We have
(xν , vν) ∈ domL = domΛ and λν(xν , vν) = (w, (1/ν)vν) with (1/ν)|vν | ≤ ρ(1 + |w|).
The sequence of pairs λν(xν , vν) is therefore bounded in R

n × R
n and has a cluster

point, which necessarily is of the form (w, z) for some z ∈ R
n. Furthermore (w, z) ∈

(domΛ)∞ by definition. Thus, (a2) is fulfilled.
(a2)⇒ (A2). Applying Lemma 3.3, we get the existence of a matrix A and vectors

a and b such that Ax+|x|a+b ∈ F (x) for all x. Then dist(0, F (x)) ≤ |A||x|+|x||a|+|b|,
so we can get the bound in (A2) by taking ρ ≥ max{|b|, |A|+ |a|}.

(A3) ⇒ (a3). Let (x̄, v̄) ∈ ri(domL) = ri(domΛ). For any (w, z) we have
Λ∞(w, z) = limλ→∞ Λ(x̄ + λw, v̄ + λz)/λ. On the basis of (A3) this yields, in the
notation [s]+ = max{0, s},

Λ
∞
(w, z) ≥ lim

λ→∞
λ−1

[
θ
(
[|v̄ + λz| − α|x̄+ λw|]+

)− β|x̄+ λw|]
= lim
λ→∞

[
λ−1θ

(
λ[|λ−1v̄ + z| − α|λ−1x̄+ w|]+

)]− β|λ−1x̄+ w|]
=

{−β|w| if [|z| − α|w|]+ = 0,
∞ if [|z| − α|w|]+ > 0.

Hence domΛ∞ ⊂ {(w, z) ∣∣ |z| ≤ α|w|}. Any (0, z) ∈ cl(domΛ∞) then has |z| ≤ α|0|,
hence z = 0, so (a3) holds.

(a3) ⇒ (A3). According to Proposition 3.2, condition (a3) on the mapping x �→
Λ(x, ·) is equivalent to condition (a2) on the mapping y �→ Λ∗(·, y). By Lemma 3.3,
the latter provides the existence of a matrix A and vectors a and b such that

(Ay + |y|a+ b, y) ∈ ri(domΛ∗) for all y ∈ R
n.

Any convex function is continuous over the relative interior of its effective domain, so
the function y �→ Λ∗(Ay + |y|a+ b, y) is (finite and) continuous on R

n (although not
necessarily convex). Define the function ψ on [0,∞) by ψ(r) = max

{
Λ∗(Ay + |y|a+

b, y)
∣∣ |y| ≤ r

}
. Then ψ is finite, continuous, and nondecreasing. Because

Λ(x, v) = Λ∗∗(x, v) = supz,y

{
〈x, z〉+ 〈v, y〉 − Λ∗(z, y)

}
under (a1), we have

Λ(x, v) ≥ supy

{
〈x, Ay + |y|a+ b〉+ 〈v, y〉 − Λ∗(Ay + |y|a+ b, y)

}
≥ supy

{
− |x|(|A||y|+ |y||a|+ |b|) + 〈v, y〉 − ψ(|y|)

}
= supy

{
− |x||y|(|A|+ |a|)− |x||b|+ |v||y| − ψ(|y|)

}
= −|x||b|+ supr≥0

{
r
[ |v| − (|A|+ |a|)|x| ]− ψ(r)}

= ψ∗([ |v| − (|A|+ |a|)|x| ]+
)− |b||x|,

where again [s]+ := max{0, s}. Let α = |A|+ |a|, β = |b|, and θ = ψ∗ on [0,∞). Then
the inequality in (A3) holds for L = Λ. The function θ has θ(0) = −ψ(0) (finite) and
is the pointwise supremum of a collection of affine functions of the form s �→ rs−ψ(r)
with r ≥ 0 and ψ(r) always finite. Hence θ is convex, proper, nondecreasing and in
addition has lims→∞ θ(s)/s ≥ r for all r ≥ 0, which implies coercivity.
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Proposition 3.5 (Lagrangian dualization). If the Lagrangian L : R
n×R

n → R

satisfies (A1), (A2), and (A3), then so too does the dual Lagrangian L̃ : R
n×R

n → R

in (2.15). Indeed, (A1) for L yields (A1) for L̃ and the reciprocal formula in (2.15),
and then (A2) for L corresponds to (A3) for L̃, whereas (A3) for L corresponds to
(A2) for L̃. Furthermore, the dual Hamiltonian

H̃(y, x) := supw

{
〈x,w〉 − L̃(y, w)

}
(3.2)

associated with L̃ is then related to the Hamiltonian H for L by

H̃(y, x) = −H(x, y).(3.3)

Proof. Combine Proposition 3.4 with Proposition 3.2 to get the dualization of
(A1), (A2), and (A3) to L̃. Note next that since L(x, ·) is by (A1), (A2), and (A3)
a proper, lsc, convex, and coercive function on R

n, its conjugate function, which is
H(x, ·), is finite on R

n. The joint convexity of L(x, v) in x and v corresponds to
H(x, y) being not just convex in y, as always, but also concave in x; see [9, 33.3] or
[10, 11.48]. For the Hamiltonian relationship in (3.3), observe through (2.15) and the
formula (1.2) for H that

L̃(y, w) = supx,v

{
〈x,w〉+ 〈v, z〉 − L(x, v)

}
= supx

{
〈x,w〉+H(x, y)

}
.(3.4)

Fix any y and let h(·) = −H(·, y), noting that h(·) is a finite convex function on R
n.

According to (3.4), we have L̃(y, ·) = h∗(·), and from (3.3) we then have h∗∗(·) =
H̃(y, ·). The finiteness and convexity of h ensures that h∗∗ = h, so that H̃(y, ·) =
−H(·, y) as claimed in (3.3).

Proof of Theorem 2.3. Finite convex functions correspond under the Legendre–
Fenchel transform to the proper convex functions that are coercive. Having H(x, ·)
be a finite convex function on R

n for each x ∈ R
n is equivalent therefore to having H

be the Hamiltonian associated by (1.2) with a Lagrangian L such that L(x, ·) is, for
each x ∈ R

n, a proper, convex function that is coercive; the function L is recovered
from H by (1.3). Concavity of H(x, y) in x corresponds then to joint convexity of
L(x, v) in x and v, as already pointed out in the proof of Proposition 3.5; see [9, 33.3]
or [10, 11.48].

Thus in particular, any finite, concave-convex function H is the Hamiltonian for
some Lagrangian L satisfying (A1), while on the other hand, if L satisfies (A3) along
with (A1) (and therefore has L(x, ·) always coercive), its Hamiltonian H is finite
concave-convex.

It will be demonstrated next that in the case of a Lagrangian L satisfying (A1),
condition (A3) is equivalent to the growth condition in (a). This will yield through the
duality in Proposition 3.5 the equivalence (A2) with the growth condition in (b), and
all claims will thereby be justified. Starting with (a), define ψ(r) = max

{
ϕ(y)

∣∣ |y| ≤
r
}
to get a finite, nondecreasing, convex function ψ on [0,∞). The inequality in (a)

yields H(x, y) ≤ ψ(|y|) + (α|y|+ β)|x| and consequently through (1.3) that

L(x, v) ≥ supy

{
〈v, y〉 − ψ(|y|)− (α|y|+ β)|x|

}
= sup

r≥0
sup
|y|≤r

{
〈v, y〉 − ψ(|y|)− (α|y|+ β)|x|

}
= supr≥0

{
|v|r − ψ(r)− (αr + β)|x|

}
= ψ∗([ |v| − α|x| ]+)− β|x|,
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where ψ∗ is coercive, proper, and nondecreasing on [0,∞). Taking θ = ψ∗, we get
(A3).

Conversely from (A3), where it can be assumed without loss of generality that
α ≥ 0, we can retrace this pattern by estimating through (1.2) that

H(x, y) ≤ supv

{
〈v, y〉 − θ([|v| − α|x|]

+

)
+ β|x|

}
= sup

s≥0
sup
|v|≤s

{
〈v, y〉 − θ([ |v| − α|x| ]+)+ β|x|

}
= sups≥0

{
s|y| − θ([s− α|x| ]+)+ β|x|

}
,

and on changing to the variable r = s− α|x| obtain

H(x, y) ≤ sup
r≥−α|x|

{
(r + α|x|)|y| − θ([r]+)+ β|x|

}
= supr≥0

{
r|y| − θ(r)

}
+ (α|y|+ β)|x| = θ∗(|y|) + (α|y|+ β)|x|,

where θ∗ is finite, convex and nondecreasing. The function ϕ(y) = θ∗(|y|) is then
convex on R

n (see [9, 15.3] or [10, 11.21]). Thus, we have the growth condition in
(a).

4. Consequences for Bolza problem duality. The properties we have put in
place for L andH lead to stronger results about duality for the generalized problems of
Bolza of convex type. These improvements, which we lay out next, will be a platform
for our investigation of value function duality in section 5.

The duality theory in [1] and [7], as expressed over a fixed interval [0, τ ], centers
(in the autonomous case) on a problem of the form
(P)

minimize J
(
x(·)) := ∫ τ

0

L
(
x(t), ẋ(t)

)
dt+ l

(
x(0), x(τ)

)
over x(·) ∈ A1

n[0, τ ],

where the endpoint function l : R
n × R

n → R is proper, lsc, and convex, and on the
corresponding dual problem

(P̃) minimize J̃
(
y(·)) := ∫ τ

0

L̃
(
y(t), ẏ(t)

)
dt+ l̃

(
y(0), y(τ)

)
over y(·) ∈ A1

n[0, τ ],

where the dual endpoint function l̃ : R
n × R

n → R is generated through conjugacy:

l̃(η, η′) = l∗(η,−η′) = supξ′,ξ

{
〈η, ξ′〉 − 〈η′, ξ〉 − l(ξ′, ξ)

}
,

l(ξ′, ξ) = l̃∗(ξ′,−ξ) = supη,η′
{
〈η, ξ′〉 − 〈η′, ξ〉 − l̃(η′, ξ)}.(4.1)

A major role in characterizing optimality in the generalized Bolza problems (P)
and (P̃) is played by the generalized Euler–Lagrange condition

(ẏ(t), y(t)) ∈ ∂L(x(t), ẋ(t)) for a.e. t,(4.2)

which can also be written in the dual form (ẋ(t), x(t)) ∈ ∂L̃(y(t), ẏ(t)) for a.e. t.
The Euler–Lagrange conditions are known to be equivalent in turn to the generalized
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Hamiltonian condition (2.6) being satisfied over the time interval [0, τ ]; cf. [6]. They
act in combination with the generalized transversality condition

(y(0),−y(τ)) ∈ ∂l(x(0), x(τ)),(4.3)

which likewise has an equivalent dual form, (x(0),−x(τ)) ∈ ∂l̃(y(0), y(τ)). The basic
facts about optimality are the following.

Theorem 4.1 ([1], [6] optimality conditions). For any functions L and l that are
proper, lsc, and convex on R

n×R
n, the optimal values in (P) and (P̃) satisfy inf(P) ≤

− inf(P̃). Moreover, for arcs x(·) and y(·) in A1
n[0, τ ], the following properties are

equivalent:
(a) (x(·), y(·)) is a Hamiltonian trajectory satisfying the transversality condition;
(b) x(·) solves (P), y(·) solves (P̃), and inf(P) = − inf(P̃).
Proof. Basically this is Theorem 5 of [1], but we’ve used Theorem 1 of [6] to

translate the Euler–Lagrange condition to the Hamiltonian condition.
Theorem 4.1 gives us the sufficiency of the Hamiltonian condition and transver-

sality condition for optimality of arcs in (P) and (P̃) but not the necessity. We can
get that to the extent that we are able to establish that optimal arcs do exist for these
problems, and inf(P) = − inf(P̃). Criteria for that have been furnished in [7] in terms
of certain “constraint qualifications,” but this is where we can make improvements
now in consequence of our working assumptions.

The issue concerns the fundamental kernel E : [0,∞)×R
n ×R

n → R defined for
the Lagrangian L by

E(τ, ξ′, ξ) := inf

{∫ τ

0

L
(
x(t), ẋ(t)

)
dt
∣∣∣x(0) = ξ′, x(τ) = ξ

}
,

E(0, ξ′, ξ) :=
{
0 if ξ′ = ξ,
∞ if ξ′ �= ξ,

(4.4)

where the minimization is over all arcs x(·) ∈ A1
n[0, τ ] satisfying the initial and termi-

nal conditions. At the same time it concerns the dual fundamental kernel associated
with the dual Lagrangian L̃, namely the function Ẽ : [0,∞)× R

n × R
n → R defined

by

Ẽ(τ, η′, η) := inf

{∫ τ

0

L̃
(
y(t), ẏ(t)

)
dt
∣∣∣ y(0) = η′, y(τ) = η

}
,

Ẽ(0, η′, η) :=
{
0 if η′ = η,
∞ if η′ �= η,

(4.5)

with the minimization taking place over y(·) ∈ A1
n[0, τ ]. The constraint qualifications

in [7] are stated in terms of the sets

Cτ :=
{
(ξ′, ξ)

∣∣E(τ, ξ′, ξ) <∞}, C̃τ :=
{
(η′, η)

∣∣ Ẽ(τ, η′, η) <∞}.(4.6)

They revolve around the overlap between these sets and the sets dom l and dom l̃. In
this respect the next result provides vital information.

Proposition 4.2 (growth of the fundamental kernel). Suppose (A1), (A2), and
(A3) hold. Then the following properties of E(τ, ·, ·) hold for all τ ≥ 0 and guarantee
that for all ξ and ξ′ the functions E(τ, ξ′, ·) and E(τ, ·, ξ) are proper, lsc, convex, and
coercive:

(a) E(τ, ·, ·) is proper, lsc, and convex on R
n × R

n.
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(b) There is a constant ρ(τ) ∈ (0,∞) such that

dist
(
0,domE(τ, ξ′, ·)) ≤ ρ(τ)(1 + |ξ′|) for all ξ′ ∈ R

n,

dist
(
0,domE(τ, ·, ξ)) ≤ ρ(τ)(1 + |ξ|) for all ξ ∈ R

n.

(c) There are constants α(τ), β(τ), and a coercive, proper, nondecreasing function
θ(τ, ·) on [0,∞) such that

E(τ, ξ′, ξ) ≥ θ
(
τ, [ |ξ| − α(τ)|ξ′| ]+

)− β(τ)|ξ′|
E(τ, ξ′, ξ) ≥ θ

(
τ, [ |ξ′| − α(τ)|ξ| ]+

)− β(τ)|ξ|
}
for all ξ′, ξ ∈ R

n.

Proof. When the mapping x �→ L(x, ·) is a regular convex bifunction, both of the
mappings ξ′ �→ E(τ, ξ′, ·) and ξ �→ E(τ, ·, ξ) are regular convex bifunctions as well,
for all τ ≥ 0. For τ > 0, this was proved as part of Theorem 5 of [8]. For τ = 0,
it is obvious from formula (4.5). On this basis we can appeal to Proposition 3.2 for
each of the three function-valued mappings. In the conditions in (a) and (b), we get
separate constants to work for E(τ, ξ′, ·) and E(τ, ·, ξ), but then by taking a max
we can get constants that work simultaneously for both, so as to simplify the state-
ments.

Corollary 4.3 (growth of the dual fundamental kernel). When L satisfies (A1),
(A2), and (A3), the function Ẽ likewise has the properties in Proposition 4.2.

Proof. Apply Proposition 4.2 to L̃ instead of L, using the fact from Proposition
3.5 that L̃, like L, satisfies (A1), (A2), and (A3).

Corollary 4.4 (reachable endpoint pairs). Under (A1), (A2), and (A3), the
sets Cτ and C̃τ in (4.6) have the following property for every τ > 0:

(a) The image of Cτ under the projection (ξ′, ξ) �→ ξ′ is all of R
n. Likewise, the

image of Cτ under the projection (ξ′, ξ) �→ ξ is all of R
n.

(b) The image of C̃τ under the projection (η′, η) �→ η′ is all of R
n. Likewise, the

image of C̃τ under the projection (η′, η) �→ η is all of R
n.

Proof. We get (a) from the property in Proposition 4.2(b). We get (b) then out
of the preceding corollary.

Some generalizations of the conditions in Proposition 4.2 to the case of functions
E coming from Lagrangians L that are not fully convex are available in [27].

Theorem 4.5 (strengthened duality for Bolza problems). Consider (P) and (P̃)
under the assumption that the Lagrangian L satisfies (A1), (A2), and (A3), whereas
the endpoint function l is proper, lsc, and convex.

(a) If there exists ξ such that l(·, ξ) is finite, or there exists ξ′ such that l(ξ′, ·) is
finite, then inf(P) = − inf(P̃). This value is not ∞, and if it also is not −∞, there
is an optimal arc y(·) ∈ A1

n[0, τ ] for (P̃). In particular the latter holds if an optimal
arc x(·) ∈ A1

n[0, τ ] exists for (P), and in that case both x(·) and y(·) must actually
belong to A∞

n [0, τ ].
(b) If there exists η such that l̃(η, ·) is finite, or there exists η′ such that l̃(·, η′) is

finite, then inf(P) = − inf(P̃). This value is not −∞, and if it also is not ∞, there
is an optimal arc x(·) ∈ A1

n[0, τ ] for (P). In particular the latter holds if an optimal
arc y(·) ∈ A1

n[0, τ ] exists for (P̃), and in that case both x(·) and y(·) must actually
belong to A∞

n [0, τ ].
Proof. Theorem 1 of [7] will be our vehicle. The conditions referred to as (C0) and

(D0) in the statement of that result are fulfilled in the case of a finite, time-independent
Hamiltonian (cf. p. 11 of [7]), which we have here via Theorem 2.3 (already proved in
section 3).
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If l satisfies one of the conditions in (a), it is impossible in the face of Corol-
lary 4.4(a) for there to exist a hyperplane that separates the convex sets dom l and
domE(τ, ·, ·). By separation theory (cf. [9, section 11]), this is equivalent to having
riCτ ∩ri dom l �= ∅ and aff Cτ ∪dom l = R

n×R
n, where “ri” is relative interior as ear-

lier and “aff” denotes affine hull. According to part (b) of Theorem 1 of [7], this pair of
conditions guarantees that inf(P) and − inf(P̃) have a common value which is not∞,
and that if this value is also not −∞, then (P̃) has a solution y(·) ∈ A1

n[0, τ ]. We know
on the other hand that whenever inf(P) <∞ and (P) has a solution x(·) ∈ A1

n[0, τ ],
we have J(x(·)) finite in (P) (because neither l nor the integral functional in (2.1)
can take on −∞), so that inf(P) is finite. It follows then from Theorem 4.1 that x(·)
and y(·) satisfy the generalized Hamiltonian condition, i.e., (2.6). Because H is finite
everywhere, this implies by Theorem 2 of [6] that these arcs belong to A∞

n [0, τ ]. This
proves (a). The claims in (b) are justified in parallel by way of Corollary 4.4(b) and
part (a) of Theorem 1 of [7].

Corollary 4.6 (best-case Bolza duality). Consider (P) and (P̃) under the
assumption that L satisfies (A1), (A2), and (A3), whereas l is proper, lsc, and convex.
Suppose l has one of the finiteness properties in Theorem 4.5(a), while l̃ has one of
the finiteness properties in Theorem 4.5(b). Then −∞ < inf(P) = − inf(P̃) < ∞,
and optimal arcs x(·) and y(·) exist for (P) and (P̃). Moreover, any such arcs must
belong to A∞

n [0, τ ].
Proof. This simply combines the conclusions in parts (a) and (b) of Theorem

4.5.

5. Value function duality. The topic we treat next is the relationship between
V and the dual value function Ṽ generated by L̃ and g∗:

Ṽ (τ, η) := inf

{
g∗
(
y(0)

)
+

∫ τ

0

L̃
(
y(t), ẏ(t)

)
dt
∣∣∣ y(τ) = η

}
, Ṽ (0, η) = g∗(η),(5.1)

where the minimum is taken over all arcs y(·) ∈ A1
n[0, τ ]. Henceforth we assume

(A0), (A1), (A2), and (A3) without further mention. Because L̃ and g∗ inherit these
properties from L and g, everything we prove about V automatically holds in parallel
form for Ṽ .

It will be helpful for our endeavor to note that V can be expressed in terms of E.
Indeed, from the definitions of V and E in (1.1) and (4.4) it’s easy to deduce the rule
that

V (τ, ξ) = infξ′
{
V (τ ′, ξ′) + E(τ − τ ′, ξ′, ξ)

}
for 0 ≤ τ ′ ≤ τ.(5.2)

By the same token we also have, through (5.1) and (4.5), that

Ṽ (τ, η) = infη′
{
Ṽ (τ ′, η′) + Ẽ(τ − τ ′, η′, η)

}
for 0 ≤ τ ′ ≤ τ.(5.3)

Theorem 5.1 (conjugacy). For each τ ≥ 0, the functions Vτ := V (τ, ·) and
Ṽτ := Ṽ (τ, ·) are proper and conjugate to each other under the Legendre–Fenchel
transform

Ṽτ (η) = supξ

{
〈ξ, η〉 − Vτ (ξ)

}
, Vτ (ξ) = supη

{
〈ξ, η〉 − Ṽτ (η)

}
.(5.4)

Hence in particular, the subgradients of these convex functions are related by

η ∈ ∂Vτ (ξ) ⇐⇒ ξ ∈ ∂Ṽτ (η) ⇐⇒ Vτ (ξ) + Ṽτ (η) = 〈ξ, η〉.(5.5)
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Proof. Fix τ > 0 and any vector η̄ ∈ R
n. Let l(ξ′, ξ) = g(ξ′) − 〈ξ, η̄〉. The

corresponding dual endpoint function l̃ has l̃(η′, η) = g∗(η′) when η = η̄, but l̃(η′, η) =
∞ when η �= η̄. In the Bolza problems we then have

− inf(P) = supξ
{〈ξ, η̄〉 − V (τ, ξ)

}
, inf(P̃) = Ṽ (τ, η̄).(5.6)

Because dom l has the form C×R
n for a nonempty convex set C, namely C = dom g,

the constraint qualification of Theorem 4.5(a) is satisfied, and we may conclude that
− inf(P̃) = inf(P) > −∞. This yields the first equation in (5.4)—in the case of
η = η̄—and ensures that Vτ �≡ ∞ and Ṽτ > −∞ everywhere. By the symmetry
between (L̃, g∗) and (L, g), we get the second equation in (5.4) along with Ṽτ �≡ ∞
and Vτ > −∞ everywhere.

The subgradient relation translates to this context a property that is known for
subgradients of conjugate convex functions in general; cf. [9, 11.3].

Proof of Theorem 2.1. Through the conjugacy in Theorem 5.1, we see at once
that Vτ is convex and lsc, and of course the same for Ṽτ . The remaining task is to
demonstrate the epi-continuity property (2.3) of V . It will be expedient to tackle the
corresponding property of Ṽ at the same time and appeal to the duality between V
and Ṽ in simplifying the arguments. By this approach and by passing to subsequences
that tend to τ either from above or from below, we can reduce the challenge to proving
that

(a) whenever τ ≥ 0 and τν ↘ τ, one has{
lim supνV (τν , ξν) ≤ V (τ, ξ) for some sequence ξν → ξ,
lim infν Ṽ (τν , ην) ≥ Ṽ (τ, η) for every sequence ην → η;

(b) whenever τ > 0 and τν ↗ τ, one has{
lim supνV (τν , ξν) ≤ V (τ, ξ) for some sequence ξν → ξ,
lim infν Ṽ (τν , ην) ≥ Ṽ (τ, η) for every sequence ην → η,

(5.7)

since these “subproperties” yield by duality the corresponding ones with V and Ṽ
reversed.

Argument for (a) of (5.7): Fix any τ̄ ≥ 0 and ξ̄ ∈ domVτ̄ . We’ll verify that the
first limit in (a) holds for (τ̄ , ξ̄). Take any τ̂ > τ̄ . By Corollary 4.4(a), the image of the
set Cτ̂−τ̄ = domE(τ̂− τ̄ , ·, ·) under the projection (ξ′, ξ) �→ ξ′ contains ξ̄. Hence there

exists ξ̂ such that E(τ̂ − τ̄ , ξ̄, ξ̂) < ∞. Equivalently, there is an arc x(·) ∈ A1
n[τ̄ , τ̂ ]

such that
∫ τ̂
τ̄
L(x(t), ẋ(t))dt < ∞ with x(τ̄) = ξ̄ and x(τ̂) = ξ̂. Then too for every

τ ∈ (τ̄ , τ̂) we have E(τ − τ̄ , ξ̄, x(τ)) ≤ ∫ τ
τ̄
L(x(t), ẋ(t))dt < ∞ and therefore by (5.2)

that

V (τ, x(τ)) ≤ V (τ̄ , ξ̄) + α(τ) for α(τ) :=

∫ τ

τ̄

L(x(t), ẋ(t))dt.

Consider any sequence τν ↘ τ̄ in (τ̄ , τ̂). Let ξν = x(τν). Then ξν → ξ̄ and we obtain

lim supν V (τν , ξν) ≤ lim supν
{
V (τ̄ , ξ̄) + α(τν)

}
= V (τ̄ , ξ̄),

as desired. To establish the second limit in (a) as a consequence of this, we note now
that the conjugacy in Theorem 5.1 gives Ṽ (τν , ·) ≥ 〈ξν , ·〉 − V (τν , ξν). For any η̄ and
sequence ην → η̄ this yields

lim infν Ṽ (τν , ην) ≥ lim infν
{〈ξν , ην〉 − V (τν , ξν)

} ≥ 〈ξ̄, η̄〉 − V (τ̄ , ξ̄).(5.8)
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But ξ̄ was an arbitrary point in domV (τ̄ , ·), so we get the rest of what is needed in
(a):

lim infν Ṽ (τν , ην) ≥ supξ
{〈ξ, η̄〉 − V (τ̄ , ξ)

}
= Ṽ (τ̄ , η̄).(5.9)

Argument for (b) of (5.7): Fix any τ̄ > 0 and ξ̄ ∈ domVτ̄ . We’ll verify that
the first limit in (a) holds for (τ̄ , ξ̄). Let ε > 0. Because V (τ̄ , ξ̄) < ∞, there exists

x(·) ∈ A1
n[0, τ̄ ] with x(τ̄) = ξ̄ and g(x(0))+

∫ τ̄
0
L(x(t), ẋ(t))dt < V (τ̄ , ξ̄)+ ε. Then for

all τ ∈ (0, τ̄),

V (τ, x(τ)) ≤ g(x(0)) +

∫ τ

0

L(x(t), ẋ(t))dt

≤ V (τ̄ , ξ̄) + ε− α(τ) for α(τ) =

∫ τ̄

τ

L(x(t), ẋ(t))dt.

Consider any sequence τν ↗ τ̄ in (0, τ̄). Let ξν = x(τν). Then ξν → ξ̄ and we have

lim supν V (τν , ξν) ≤ lim supν
{
V (τ̄ , ξ̄) + ε− α(τν)} ≤ V (τ̄ , ξ̄) + ε.

We’ve constructed a sequence with ξν → ξ̄ with this property for arbitrary ε, so by
diagonalization we can get a sequence ξν → ξ̄ with lim supν V (τν , ξν) ≤ V (τ̄ , ξ̄), as
required. Fixing such a sequence and returning to the inequality Ṽ (τν , ·) ≥ 〈ξν , ·〉 −
V (τν , ξν), we obtain now for every sequence ην → η̄ that (5.8) holds, and hence by
the arbitrary choice of ξ̄ ∈ domVτ̄ that (5.9) holds as well.

The duality theory for the Bolza problems in this setting also provides insights
into the properties of the optimal arcs associated with V .

Theorem 5.2 (optimal arcs). In the minimization problem defining Vτ (ξ) =
V (τ, ξ), an optimal arc x(·) ∈ A1

n[0, τ ] exists for any ξ ∈ domVτ . Every such arc x(·)
must actually belong to A∞

n [0, τ ] when ξ is such that ∂Vτ (ξ) �= ∅, hence, in particular
if ξ ∈ ri domVτ .

Proof. Although the theorem is stated in terms of V alone, its proof will rest on
the duality between V and Ṽ . We’ll focus actually on proving the Ṽ version, since
that ties in better with the foundation already laid in the proof of Theorem 5.1.

Returning to the problems (P) and (P̃ ) of that proof, we make further use of Theo-
rem 4.5. We showed that our choice of the function l implied inf(P̃) = − inf(P) > −∞
in (5.6), but we didn’t point out then that it also guarantees through Theorem 4.5(a)
that an optimal arc y(·) exists for (P̃) if, in addition, inf(P̃ ) <∞. Thus, an optimal
arc exists for the problem defining Ṽ (τ, η̄) as long as Ṽ (τ, η̄) <∞. Likewise then, an
optimal arc exists for the problem defining V (τ, ξ̄) for any ξ̄ such that V (τ, ξ̄) <∞.

Next we use the fact that a vector ξ̄ belongs to ∂Ṽτ (η̄) if and only if η̄ ∈ dom Ṽτ
and ξ̄ furnishes the maximum in the expression for − inf(P) in (5.6). (This is true
by (5.4) and (5.5) of Theorem 5.1.) For such a vector ξ̄, V (τ, ξ̄) has to be finite,
so that there exists, by the argument already furnished, an optimal arc x(·) for the
minimizing problem that defined V (τ, ξ̄). That arc x(·) must then be optimal for (P).
Theorem 4.5(a) tells us in that case that x(·) and the optimal arc y(·) for (P̃) are in
A∞
n [0, τ ].

To finish up, we merely need to recall that a proper convex function ϕ has sub-
gradients at every point of ri domϕ, in particular.
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6. Hamiltonian dynamics and method of characteristics. The generalized
Hamiltonian ODE in (2.6) now enters the discussion. This dynamical system can be
written in the form

(ẋ(t), ẏ(t)) ∈ G(x(t), y(t)) for a.e. t(6.1)

for the set-valued mapping

G : (x, y) �→ ∂yH(x, y)×−∂̃xH(x, y),(6.2)

which derives from the subgradient mapping (x, y) �→ ∂̃xH(x, y) × ∂yH(x, y). The
latter has traditionally been associated in convex analysis with H as a concave-convex
function on R

n×R
n. It is known to be nonempty-compact-convex-valued and locally

bounded with closed graph (since H is also finite; see [9, section 35]). Hence the same
holds for G.

Through these properties of G, the theory of differential inclusions [28] ensures
the local existence of a Hamiltonian trajectory through every point. The local bound-
edness of G makes any trajectory (x(·), y(·)) over a time interval [τ0, τ1] be Lipschitz
continuous, i.e., belong to A∞

n [τ0, τ1]. Another aspect of the Hamiltonian dynamics in
(2.6), or (6.1)–(6.2), is that H(x(t), y(t)) is constant along any trajectory (x(·), y(·)).
This was proved in [6].

Nowadays there are other concepts of subgradient, beyond those of convex analy-
sis, that can be applied to H without separating it into its concave and convex argu-
ments. The general definition in section 2 directly assigns a subset ∂H(x, y) ⊂ R

n×R
n

to each point (x, y) ∈ R
n×R

n. An earlier definition for this purpose, which was used
by Clarke in his work on Hamiltonian conditions for optimality in nonconvex problems
of Bolza (see [29] and its references), relied on H being locally Lipschitz continuous
and utilized what we now recognize as the set con ∂H(x, y) in such circumstances.
(Here “con” designates the convex hull of a set.) A more subtle form of “partial con-
vexification” of ∂H(x, y), involving only the x argument in a special way, has been
featured in more recent work on Hamiltonians in nonconvex problems of Bolza; cf.
[18], [19], and [20].

As a preliminary to our further analysis of the Hamiltonian dynamics, we provide
a clarification of the relationships between these concepts.

Proposition 6.1 (subgradients of the Hamiltonian). On the basis of H(x, y)
being finite, concave in x, and convex in y, one has

con ∂H(x, y) = ∂̃xH(x, y)× ∂yH(x, y),(6.3)

this set being nonempty and compact. In terms of the set D consisting of the points
(x, y) where H is differentiable (the complement of which is of measure zero), one has

con ∂H(x, y) = ∂H(x, y) = {∇H(x, y)} for all (x, y) ∈ D.(6.4)

The gradient mapping ∇H is continuous relative to D, so that H is strictly differen-
tiable on D. Elsewhere,

con ∂H(x, y) = con
{
(w, v)

∣∣∣ ∃ (xν , yν)→ (x, y) with ∇H(xν , yν)→ (w, v)
}
.(6.5)

Proof. Formula (6.5) is well known to hold for the subgradients of any locally
Lipschitz continuous function; cf. [10, 9.61]. The special property coming out of the
concavity-convexity of H is that the set-valued mapping

TH : (x, y) �→ [−∂̃xH(x, y)]× ∂yH(x, y) = ∂x[−H](x, y)× ∂yH(x, y)(6.6)
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is maximal monotone; cf. [10, 12.27]. The points (x, y) where TH is single-valued are
the ones where ∂̃xH(x, y) and ∂Hy(x, y) both reduce to singletons, a property which
corresponds to H(·, y) being differentiable at x while H(x, ·) is differentiable at y;
then actually H is differentiable (jointly in the two arguments) at (x, y); cf. [9, 35.6].
Thus, the subset of R

n × R
n on which TH is single-valued is D, and on this set we

have TH(x, y) = (−∇xH(x, y),∇yH(x, y)). Then by maximal monotonicity, TH is
continuous on D with

TH(x, y) = con
{
(−w, v)

∣∣∣ ∃ (xν , yν)→ (x, y) with ∇H(xν , yν)→ (w, v)
}
;

see [10, 12.63, 12.67]. We thereby obtain (6.3) from (6.5) and at the same time have
(6.4), from which H must be strictly differentiable on D by [10, 9.18].

Corollary 6.2 (single-valuedness in the Hamiltonian system). The mapping G
in the differential inclusion (6.1)–(6.2) has the form

G(x, y) =
{
(v,−w) ∣∣ (w, v) ∈ con ∂H(x, y)

}
(6.7)

and is single-valued a.e. Indeed, G(x, y) =
{
(∇yH(x, y),−∇xH(x, y))

}
at all points

where the Hamiltonian H is differentiable, whereas in general,

G(x, y) = con
{
(v,−w)

∣∣∣ ∃ (xν , yν)→ (x, y) with

(∇yH(xν , yν),−∇xH(xν , yν))→ (v,−w)
}
.

(6.8)

Despite the typical single-valuedness of G, situations exist in which there can be
more than one Hamiltonian trajectory from a given starting point. The flow mappings
Sτ for this system, as defined in (2.7), can well have values that are not singleton sets,
and indeed, can even be nonconvex sets consisting of more than finitely many points.
It’s rather surprising, then, that they nonetheless capture with precision the behavior
of the Lipschitzian manifolds gph ∂Vτ in Corollary 2.2. We’re prepared now to prove
this fact.

Proof of Theorem 2.4. Fix τ > 0 along with any ξ̄ and η̄. The relation η̄ ∈ ∂Vτ (ξ̄)
is equivalent by Theorem 5.1 to ξ̄ ∈ ∂Ṽτ (η̄), or to having ξ̄ ∈ argmaxξ

{〈ξ, η̄〉−Vτ (ξ)}.
We saw in the proof of Theorem 5.2 that this corresponded further, in terms of the
special Bolza problems (P) and (P̃) introduced in the proof of Theorem 5.1, to the
existence of optimal arcs x(·) for (P) and y(·) for (P̃) such that x(τ) = ξ̄.

On the other hand, because − inf(P) = (P̃) for these problems, we know from
Theorem 4.1 that arcs x(·) and y(·) solve these problems, respectively, if and only if
(x(·), y(·)) is a Hamiltonian trajectory over [0, τ ] satisfying the generalized transver-
sality condition (y(0),−y(τ)) ∈ ∂l(x(0), ξ̄). Since l(ξ′, ξ) = g(ξ′)− 〈ξ, η̄〉 by definition
in this case, the transversality condition comes down to the relations y(0) ∈ ∂g(x(0))
and y(τ) = η̄.

In summary, we have η̄ ∈ ∂Vτ (ξ̄) if and only if there is a trajectory (x(·), y(·))
over [0, τ ] such that x(τ) = η̄, y(0) ∈ ∂g(x(0)), and y(τ) = η̄.

Further details about the evolution of the subgradient mappings ∂Vτ = ∂ξV (τ, ·)
can now be recorded. The equivalence in the next theorem came out in the preceding
proof.

Theorem 6.3 (optimality in subgradient evolution). A pair of arcs x(·) and y(·)
gives a Hamiltonian trajectory over [0, τ ] that starts in gph ∂g and ends at a point
(ξ, η) ∈ gph ∂Vτ if and only if
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(a) x(·) is optimal in the minimization problem in (1.1) that defines V (τ, ξ), and
(b) y(·) is optimal in the minimization problem in (5.1) that defines Ṽ (τ, η).
Corollary 6.4 (persistence of subgradient relations). When a Hamiltonian

trajectory (x(·), y(·)) over [0, τ ] has y(0) ∈ ∂g(x(0)), it has y(t) ∈ ∂ξV (t, x(t)) for all
t ∈ [0, τ ].

We turn now, however, to the task of broadening Theorem 2.4 to cover not only
the evolution of subgradients but also that of function values. For this, the graph of
∂Vτ in R

n × R
n has to be replaced by an associated subset of R

n × R
n × R.

Proposition 6.5 (characteristic manifolds for convex functions). Let f : R
n →

R be convex, proper, and lsc, and let

M =
{
(x, y, z)

∣∣ y ∈ ∂f(x), z = f(x)
} ⊂ R

n × R
n × R.(6.9)

Then M is an n-dimensional Lipschitzian manifold in the following terms. There is
a one-to-one, locally Lipschitz continuous mapping

F : R
n →M, F (u) = (P (u), Q(u), R(u)),

whose range is all of M and whose inverse is Lipschitz continuous as well, in fact
with

F−1(x, y, z) = x+ y for (x, y, z) ∈M.

The components of F are given by

P (u) = argminx

{
f(x) + 1

2 |x− u|2
}
, Q = I − P, R = f◦P,(6.10)

where P and Q, like F−1, are globally Lipschitz continuous with constant 1, and R is
Lipschitz continuous with constant r on the ball

{
u
∣∣ |u| ≤ r

}
for each r > 0.

Proof. The mapping u �→ (P (u), Q(u)) is well known to parameterize the graph of
∂f in the manner described; cf. [10, 12.15]. With this parameterization, the compo-
nent z = R(u) must be f(P (u)), so the additional issue is just the claimed Lipschitz
property of this expression. According to the formulas for P and Q in (6.10) we have

R(u) = p(u)− 1
2 |Q(u)|2 for p(u) := minx

{
f(x) + 1

2 |x− u|2
}
.(6.11)

The function p is smooth with gradient ∇p(u) = Q(u); see [10, 2.26]. Hence R is
locally Lipschitz continuous, but what can be said about its Lipschitz modulus? Be-
cause P and Q are Lipschitz continuous with constant 1 and satisfy P + Q = I,
they are differentiable at almost every point u, their Jacobian matrices satisfying
∇P (u) + ∇Q(u) = I and having norms at most 1. At any such point u, R is
differentiable as well, with ∇R(u) = Q(u) − ∇Q(u)Q(u) = ∇P (u)Q(u), so that
|∇R(u)| ≤ |∇P (u)||Q(u)| ≤ |Q(u)| ≤ |u|. Thus, |∇R(u)| ≤ r on the ball

{
u
∣∣ |u| ≤ r

}
,

and consequently R is Lipschitz continuous with constant r on that ball.
The set M in (6.9) will be called the (first-order) characteristic manifold for f ,

and the mapping F its canonical parameterization.
Proposition 6.6 (recovery of a function from its manifold). Let M be the char-

acteristic manifold of a convex, proper, lsc function f . Then M uniquely determines
f as follows:

(a) The image C of M under the projection (x, y, z) �→ x, namely C = dom ∂f ,
satisfies ri dom f ⊂ C ⊂ cl dom f and thus has riC = ri dom f and clC = cl dom f .
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(b) For every x in C, the vectors (x, y, z) ∈M all have the same z, which equals
f(x).

(c) For every x ∈ clC \ C and any a ∈ riC, one has x + ε(a − x) ∈ riC for all
ε ∈ (0, 1] and f(x+ ε(a− x))→ f(x) as ε↘0.

(c) For every x /∈ clC, f(x) =∞.
Proof. These facts are evident from the definition of M , the well-known existence

of subgradients at points of ri dom f , and the way that f can be recovered fully from
its values on ri dom f ; see [9, section 7, section 23].

Proposition 6.7 (convergence of characteristic manifolds). A sequence of con-
vex, proper, lsc functions fν on R

n epi-converges to another such function f if and
only if the associated sequence of characteristic manifoldsMν in R

n×R
n×R converges

(in the Painlevé–Kuratowski sense) to the characteristic manifold M for f .
Proof. Attouch’s theorem on convex functions (cf. [10, 12.35]) says that fν epi-

converges to f if and only if gph ∂fν converges to gph ∂f and, for at least one
sequence of points (xν , yν) ∈ gph ∂fν converging to a point (x, y) ∈ gph ∂f , one
has fν(xν) → f(x). On the other hand, epi-convergence of convex functions entails
the latter holding for every such sequence of points (xν , yν). The convergence of
the characteristic manifolds is thus hardly more than a restatement of these facts of
convex analysis.

Our goal in these terms is to describe how the characteristic manifold for Vτ
evolves from that of g. We introduce the following extension of the Hamiltonian
system (6.1)–(6.2), which we speak of as the characteristic system associated with H:

(ẋ(t), ẏ(t), ż(t)) ∈ Ḡ(x(t), y(t)) for a.e. t(6.12)

for the set-valued mapping Ḡ defined by

Ḡ(x, y) :=
{
(v, w, u)

∣∣ (v, w) ∈ G(x, y), u = 〈v, y〉 −H(x, y)
}
.(6.13)

The trajectories (x(·), y(·), z(·)) of this system will be called characteristic trajectories.
Like G itself, Ḡ is nonempty-closed-convex-valued and locally bounded with closed
graph, so a characteristic trajectory exists, at least locally, through every point of
R
n × R

n × R. The corresponding flow mapping for each τ ∈ [0,∞) will be denoted
by S̄τ :

S̄τ : (ξ0, η0, ζ0) �→{
(ξ, η, ζ)

∣∣∣ ∃ characteristic trajectory (x(·), y(·), z(·)) over [0, τ ] with

(x(0), y(0), z(0)) = (ξ0, η0, ζ0), (x(τ), y(τ), z(τ)) = (ξ, η, ζ)
} .(6.14)

Theorem 6.8 (subgradient method of characteristics). Let Mτ be the charac-
teristic manifold for Vτ = V (τ, ·), with M0 the characteristic manifold for g = V0.
Then

Mτ = S̄τ (M0) for all τ ≥ 0.(6.15)

Moreover Mτ , as a closed subset of R
n × R

n × R, depends continuously on τ .
Proof. The continuity of the mapping τ �→ Mτ is immediate from Proposition

6.7 and the epi-continuity in Theorem 2.1. The evolution of ∂Vτ through the drift of
its graph in the underlying system (6.1)–(6.2) has already been verified in Theorem
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2.4, so the only issue here is what happens when the z component is added as in
(6.12)–(6.13). We have

ż(t) = 〈ẋ(t), y(t)〉 −H(x(t), y(t)) = L(x(t), ẋ(t))(6.16)

when (ẋ(t), ẏ(t)) ∈ G(x(t), y(t)), since that relation entails ẋ(t) ∈ ∂yH(x(t), y(t)),
which is equivalent to the second equation in (6.16) because the convex functions
H(x(t), ·) and L(x(t), ·) are conjugate to each other. The arc x(·) is optimal for the
minimization problem that defines V (τ, ξ), so that

V (τ, ξ) = g(x(0)) +

∫ τ

0

L(x(t), ẋ(t))dt = z(0) +

∫ τ

0

ż(t)dt = z(τ).

The trajectory (x(·), y(·), z(·)) does, therefore, carry the point (x(0), y(0), z(0)) ∈M0

to the point (x(τ), y(τ), z(τ)) ∈ Mτ . Conversely, of course, (6.16) is essential for
that.

Theorem 6.8 provides a remarkably global version of the method of characteris-
tics, made possible by convexity. It relies on the one-to-one correspondence between
lsc, proper, convex functions and their characteristic manifolds in Proposition 6.5 and
on the preservation of such function properties over time, as in Theorem 2.1. By
transforming the evolution of functions into the evolution of the associated manifolds,
one is able to reduce the function evolution to the drift of those manifolds in the char-
acteristic dynamical system associated with the given Hamiltonian H, or Lagrangian
L.

In contrast, the classical method of characteristics requires differentiability at
every turn and, in adopting the implicit (or inverse) function theorem as the main
tool, is ordinarily limited to local validity. The characteristic manifold M0 associated
with g has to be a smooth manifold, and g must therefore be C2. The Hamiltonian H
has to be C2 as well, so that the mappings S̄τ are single-valued and smooth. But even
these assumptions are not enough to guarantee that the characteristic dynamics will
carry M0 into smooth manifolds Mτ . The trouble is that the functions Vτ are defined
by minimization, and that operation, in its inherent failure to preserve differentiability,
simply does not fit well in the framework of classical analysis.

A generalized “method of characteristics” for value functions has also been de-
veloped by Subbotin [30], [21], but in a different framework from ours, namely one
focused on bounded control dynamics and not convexity, and not revolving around
the Hamiltonian function H and its dynamical system. This is also the case in [22]
and [23].

7. Hamilton–Jacobi equation and regularity. The time has come to move
beyond subgradients of convex analysis and establish properties of the subgradient
mapping ∂V as a whole.

Proof of Theorem 2.5. Our first goal is to prove the equivalence of the conditions
η ∈ ∂ξV (τ, ξ) and σ = −H(ξ, η) with having (σ, η) ∈ ∂̂V (τ, ξ) when τ > 0. Here

∂ξV (τ, ξ) is the same as ∂̂ξV (τ, ξ), since the function V (τ, ·) = Vτ is convex.

Let η̄ ∈ ∂ξV (τ̄ , ξ̄) with τ̄ > 0. We need to show that (−H(ξ̄, η̄), η̄) ∈ ∂̂V (τ̄ , ξ̄), or
in other words that

V (τ, ξ)− V (τ̄ , ξ̄) + (τ − τ̄)H(ξ̄, η̄)− 〈ξ − ξ̄, η̄〉 ≥ o
(|(τ, ξ)− (τ̄ , ξ̄)|).(7.1)

By Theorem 2.4 there is a Hamiltonian trajectory (x(·), y(·)) over [0, τ̄ ] that starts in
gph ∂g and goes to (ξ̄, η̄). Through the local existence property of the Hamiltonian
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system, this trajectory can be extended to a larger interval [0, τ̄ + ε], in which case
y(τ) ∈ ∂ξV (τ, x(τ)) for all τ ∈ [0, τ̄ + ε] by Corollary 6.4, so that

V (τ, ξ) ≥ V (τ, x(τ)) + 〈ξ − x(τ), y(τ)〉 for all ξ ∈ R
n when τ ∈ [0, τ̄ + ε].(7.2)

We have V (τ, x(τ)) = g(x(0)) +
∫ τ
0

[〈ẋ(t), y(t)〉 − H(x(t), y(t))
]
dt by Theorem 6.8,

where H(x(t), y(t)) ≡ H(x(τ̄), y(τ̄)) because H is constant along Hamiltonian trajec-
tories. Hence

V (τ, x(τ)) = V (τ̄ , ξ̄)− (τ − τ̄)H(ξ̄, η̄) +

∫ τ

τ̄

〈ẋ(t), y(t)〉dt when τ ∈ [0, τ̄ + ε].(7.3)

Also
∫ τ
τ̄
〈ẋ(t), y(t)〉dt = 〈x(τ), y(τ)〉 − 〈x(τ̄), y(τ̄)〉 − ∫ τ

τ̄
〈x(t), ẏ(t)〉dt, so in combining

(7.3) with (7.2), we see that the left side of (7.1) is bounded below by the expression

−〈ξ − ξ̄, η̄〉+ 〈ξ − x(τ), y(τ)〉+ 〈x(τ), y(τ)〉 − 〈x(τ̄), y(τ̄)〉 −
∫ τ

τ̄

〈x(t), ẏ(t)〉dt

= 〈ξ − ξ̄, y(τ)− η̄〉+ 〈ξ̄, y(τ)− η̄〉 −
∫ τ

τ̄

〈x(t), ẏ(t)〉dt

= 〈ξ − ξ̄, y(τ)− y(τ̄)〉 −
∫ τ

τ̄

〈x(t)− x(τ̄), ẏ(t)〉dt.

This expression is of type o
(|(τ, ξ)− (τ̄ , ξ̄)|) because x(·) and y(·) are continuous and

ẏ(·) is essentially bounded on [0, τ̄ + ε]. Thus, (−H(ξ̄, η̄), η̄) ∈ ∂̂V (τ̄ , ξ̄), as claimed.

To argue the converse implication, we consider now any pair (σ̄, η̄) ∈ ∂̂V (τ̄ , ξ̄).
Such a pair satisfies

V (τ, ξ) ≥ V (τ̄ , ξ̄) + (τ − τ̄)σ̄ + 〈ξ − ξ̄, η̄〉+ o
(|(τ, ξ)− (τ̄ , ξ̄)|).(7.4)

In particular, η̄ ∈ ∂̂ξV (τ̄ , ξ̄) = ∂ξV (τ̄ , ξ̄), and we therefore have, as just explained, the
existence of a Hamiltonian trajectory (x(·), y(·)) for which (7.3) holds. Specializing
(7.4) to ξ = x(τ) and using the expression in (7.3) for V (τ, x(τ)), we obtain

V (τ̄ , ξ̄)−(τ − τ̄)H(ξ̄, η̄) +

∫ τ

τ̄

〈ẋ(t), y(t)〉dt
≥ V (τ̄ , ξ̄) + (τ − τ̄)σ̄ + 〈x(τ)− x(τ̄), η̄〉+ o

(|(τ, x(τ))− (τ̄ , x(τ̄))|),
where the final term is of type o(|τ − τ̄ |) because x(·) is locally Lipschitz continuous.
Then

(τ − τ̄)(σ̄ +H(ξ̄, η̄)) ≤
∫ τ

τ̄

〈ẋ(t), y(t)− y(τ̄)〉dt+ o(|τ − τ̄ |),

with the integral term likewise being of type o(|τ−τ̄ |). Necessarily, then, σ̄+H(ξ̄, η̄) =
0.

We turn now to showing that ∂V (τ, ξ) = ∂̂V (τ, ξ) for all ξ when τ > 0. Since

∂̂V (τ, ξ) ⊂ ∂V (τ, ξ) in general, only the opposite inclusion has to be checked. Suppose
(σ, η) ∈ ∂V (τ, ξ). By definition, there are sequences (τν , ξν)→ (τ, ξ) and (σν , ην)→
(σ, ν) with V (τν , ξν) → V (τ, ξ) and (σν , ην) ∈ ∂̂V (τν , ξν). We have seen that the
latter means σν = −H(ξν , ην) and ην ∈ ∂ξV (τν , ξν). Then σ = −H(ξ, η) by the
continuity of H.
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On the other hand, the sets Cν = gph ∂ξV (τν , ·) converge to C = gph ∂ξV (τ, ·)
by Corollary 2.2. Hence from having ην ∈ ∂ξV (τν , ξν) we get η ∈ ∂ξV (τ, ξ). The
pair (σ, η) thus satisfies the conditions we have identified as describing the elements

of ∂̂V (τ, ξ).

Through the duality in Theorem 5.1, the statements in Theorem 2.5 are valid
equally for the dual value function Ṽ . From this we obtain the following.

Theorem 7.1 (dual Hamilton–Jacobi equation). The dual value function Ṽ
satisfies

σ −H(ξ, η) = 0 for all (σ, ξ) ∈ ∂Ṽ (τ, η) when τ > 0.(7.5)

Indeed, for τ > 0 one has (σ, ξ) ∈ ∂Ṽ (τ, η) if and only if (−σ, η) ∈ ∂V (τ, ξ).

Proof. In translating Theorem 2.5 to the context of Ṽ , as justified by Theorem
5.1, we bring into the scene the dual Hamiltonian H̃(y, x) = −H(x, y) corresponding
(in Proposition 3.5) to the dual Lagrangian L̃. The vectors (σ, ξ) ∈ ∂Ṽ (τ, η) are
characterized by ξ ∈ ∂ηṼ (τ, η) and σ = −H̃(η, ξ) = H(ξ, η). Invoking the conjugacy

between V (τ, ·) and Ṽ (τ, ·) in Theorem 5.1, specifically the relation (5.5), we get the
subgradient equivalence. Then (7.5) is immediate from the Hamilton–Jacobi equation
already in Theorem 2.5.

We take up next the issue of what additional properties of continuity, differen-
tiability, etc. the value function V is guaranteed to have beyond the convexity and
epi-continuity in Theorem 2.1. We begin with a characterization of the interior of the
set

domV =
{
(τ, ξ) ∈ [0,∞)× R

n
∣∣V (τ, ξ) <∞}.

Proposition 7.2 (domain interiors). In terms of Vτ = V (τ, ·), one has that

(τ, ξ) ∈ int domV ⇐⇒ τ > 0, ξ ∈ int domVτ .

Proof. It’s evident that “⇒” holds. We focus therefore on “⇐.” Consider τ̄ > 0
and ξ̄ ∈ int domVτ̄ . The epi-convergence of Vτ to Vτ̄ as τ → τ̄ in Theorem 2.1 entails
through the convexity of these functions that Vτ converges pointwise to Vτ̄ uniformly
on all compact subsets of int domVτ̄ ; cf. [10, 7.17]. In particular, this convergence
holds on some open neighborhood U of x̄ in domVτ̄ , so for some open interval I
around τ̄ we have U ⊂ domVτ for all τ ∈ I. Then I ×O is an open subset of domV
containing (τ̄ , ξ̄), and we conclude that (τ̄ , ξ̄) ∈ int domV .

The argument just given shows further that V is continuous on the interior of
domV , but we’re headed toward showing that V is in fact locally Lipschitz continuous
there. The agreement between ∂V (τ, ξ) and ∂̂V (τ, ξ) in Theorem 2.5 will have a part
in this, and it will yield other strong properties besides.

Recall that a locally Lipschitz continuous function is subdifferentially regular (in
the sense of Clarke regularity of its epigraph) when all its subgradients are regular
subgradients, or equivalently, its subderivatives and regular subderivatives coincide
everywhere; for background, see [10, Chapters 8 and 9]. The subderivative function
for V at a point (τ, ξ) is defined in general by

dV (τ, ξ) : (τ ′, ξ′) �→ dV (τ, ξ)(τ ′, ξ′) := lim inf
ε↘ 0

(τ ′′,ξ′′)→(τ ′,ξ′)

V (τ + ετ ′′, ξ + εξ′′)− V (τ, ξ)

ε
.
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To say that V is semidifferentiable at (τ, ξ) is to say that, for all (τ ′, ξ′), this lower
limit exists actually as the full limit

lim
ε↘ 0

(τ ′′,ξ′′)→(τ ′,ξ′)

V (τ + ετ ′′, ξ + εξ′′)− V (τ, ξ)

ε
.

Then dV (τ, ξ)(τ ′, ξ′) must be finite and continuous as a function of (τ ′, ξ′); cf. [10,
7.21].

Theorem 7.3 (regularity consequences). On int domV , the subgradient mapping
∂V is nonempty-compact-convex-valued and locally bounded, and V itself is locally
Lipschitz continuous and subdifferentially regular, moreover, semidifferentiable with

dV (τ, ξ)(τ ′, ξ′) = max
{
〈ξ′, η〉 − τ ′H(ξ, η)

∣∣∣ η ∈ ∂ξV (τ, ξ)
}
.(7.6)

Indeed, V is strictly differentiable wherever it is differentiable, which is at almost
every point of int domV , and relative to such points the gradient mapping ∇V is
continuous.

Proof. The points (τ, ξ) ∈ int domV have been identified in Proposition 7.2 as
the ones with τ > 0 and ξ ∈ int domV (τ, ·). Because V (τ, ·) is convex, the mapping
∂ξV (τ, ·) is nonempty-compact-valued and locally bounded on int domV (τ, ·), as al-
ready known through convex analysis; cf. [6, section 24]. These properties carry over
to the behavior of ∂ξV on int domV because of the epi-continuous dependence of
V (τ, ·) on τ in Theorem 2.1; see [6, section 24] again. The local boundedness of ∂ξV ,
when joined with the formula σ = −H(ξ, η) in Theorem 5.1 and the continuity of H,
gives us the nonempty-compact-valuedness and local boundedness of ∂V .

The local boundedness of ∂V on int domV implies that V is Lipschitz continu-
ous there locally; cf. [10, 9.13]. Then from having ∂̂V (τ, ξ) = ∂V (τ, ξ) in Theorem
2.5 we get the subdifferential regularity of V on int domV and the convexity of
∂V (τ, ξ) (because ∂̂V (τ, ξ) is always convex). Local Lipschitz continuity and subdif-
ferential regularity yield semidifferentiability by [10, 9.16]. Formula (7.6) specializes
the semiderivative formula in that result to V by way of the description of ∂V (τ, ξ)
in Theorem 2.5.

By virtue of being locally Lipschitz continuous, V is differentiable a.e. on int domV .
In the presence of subdifferential regularity, the differentiability is strict and the gra-
dient mapping has the stated continuity property; see [10, 9.20].

Elementary examples illustrate the possible nondifferentiability of V . The sim-
plest is to let H = 0, in which case V (τ, ξ) = g(ξ), and thus any nondifferentiability
in g is propagated forward for all time. A similar effect is provided in the one-
dimensional case (n=1) by H(x, y) = −y, which yields V (τ, ξ) = g(τ + ξ). If g is
nondifferentiable at some point ξ̄, then V is likewise nondifferentiable at every (τ, ξ)
on the line τ + ξ = ξ̄.

To see the trouble from another angle, let H(x, y) = ψ(x), where ψ is any finite
concave function. Then, no matter what the choice of convex g, one has V (τ, xi) =
g(ξ)− τψ(ξ). When g is finite, so too is V , but even when g is differentiable, V need
not be unless ψ is differentiable. This example underscores that singularities may
appear in V even with smooth initial data.

As a complement to Theorem 7.3, we develop further information about int domV ,
utilizing Proposition 7.2 to translate the issue into an investigation of when int domVτ
�= ∅. It will be convenient to work with the calculus of relative interiors and the fact
that, for a convex set C in a space R

d, one has intC �= ∅ if and only if aff C = R
d



1348 R. TYRRELL ROCKAFELLAR AND PETER R. WOLENSKI

(i.e., C isn’t included in any hyperplane in R
d), in which case intC = riC (cf. [10,

Chapter 2]).
Additional motivation for the following result, besides facilitating use of Theorem

7.3, comes from the fact that the set domVτ =
{
ξ
∣∣V (τ, ξ) <∞} is the reachable set

at time τ , giving the points ξ = x(τ) reached by arcs x(·) ∈ A1
n[0, τ ] that start in

dom g and have finite running cost
∫ τ
0
L(x(t), ẋ(t))dt.

Proposition 7.4 (relative interiors of reachable sets). For every τ ∈ [0,∞) one
has

∅ �= ri domVτ =
{
ξ
∣∣ ri dom g ∩ ri domE(τ, ·, ξ) �= ∅}.(7.7)

Here ri domVτ reduces to int domVτ if and only if there exists ξ ∈ domVτ such
that dom g ∪ domE(τ, ·, ξ) does not lie in a hyperplane, that being true then for all
ξ ∈ domVτ .

Proof. LetDτ = domVτ soD0 = dom g. ClearlyDτ is the image under (ξ′, ξ) �→ ξ
of C := domE(τ, ·, ·) ∩ [D0 × R

n], all these sets being convex and nonempty. Then,
under the same projection mapping, riDτ is the image of riC; cf. [10, 2.44]. For
each ξ the convex set domE(τ, ·, ξ) is nonempty by Corollary 4.4; likewise for each ξ′

the convex set domE(τ, ξ′, ·) is nonempty. The rule for relative interiors in product
spaces (cf. [10, 2.43]) says then that

ri domE(τ, ·, ·) = {(ξ′, ξ) ∣∣ ξ′ ∈ ri domE(τ, ·, ξ)} =
{
(ξ′, ξ)

∣∣ ξ ∈ ri domE(τ, ξ′, ·)}.
(7.8)
This relative interior meets the set ri[D0×R

n] = riD0×R
n, as seen from the second

of the expressions in (7.8) by taking any ξ′ ∈ riD0 and then any ξ ∈ ri domE(τ, ξ′, ·).
The rule for relative interiors of intersections (cf. [10, 2.42]) then yields

riC = [ri domE(τ, ·, ·)] ∩ [riD0 × R
n].

Returning to the observation that Dτ is the projection of riC, and utilizing the first
of the expressions in (7.8), we get (7.7).

For the claim about interiors, we have to show that the stated condition on a
point ξ ∈ Dτ is equivalent to the nonexistence of a hyperplane M ⊃ Dτ . Fix any
ξ̄ ∈ Dτ and any ξ̄′ ∈ D0 with (ξ̄′, ξ̄) ∈ domE(τ, ·, ·). A vector ζ gives a hyperplane
M =

{
ξ
∣∣ 〈ξ, ζ〉 = α

}
that includes Dτ if and only if ζ �= 0 and ±ζ ∈ NDτ (ξ̄),

this being the normal cone to Dτ at ξ̄. Likewise, a vector ζ ′ gives a hyperplane
M ′ =

{
ξ′
∣∣ 〈ξ′, ζ ′〉 = α′} that includes both D0 and domE(τ, ·, ξ̄) if and only if ζ ′ �= 0

and both ±ζ ′ ∈ ND0(ξ̄
′) and ±ζ ′ ∈ NdomE(τ,·,ξ̄)(ξ̄′). (Here we appeal to the fact that

ξ̄′ belongs to both D0 and domE(τ, ·, ξ̄).) From the calculus of normals to convex
sets (cf. [9, section 23], [10, Chapter 6]), the cone NdomE(τ,·,ξ̄)(ξ̄′) is the projection of

the cone NdomE(τ,·,·)(ξ̄′, ξ̄):

±ζ ′ ∈ NdomE(τ,·,ξ̄)(ξ̄
′) ⇐⇒ ∃ ζ with ± (ζ ′, ζ) ∈ NdomE(τ,·,·)(ξ̄

′, ξ̄);

this relies on the nonemptiness of domE(τ, ·, ξ) for all ξ ∈ R
n (cf. Corollary 4.4),

which in turn ensures that ζ ′ must be nonzero in this formula when ζ �= 0. Further
calculus, utilizing the set relations that were developed above in determining riDτ ,
reveals that ±ζ ∈ NDτ (ξ̄) if and only if (0,±ζ) ∈ NC(ξ̄

′, ξ̄), and on the other hand
that

NC(ξ̄
′, ξ̄) = NdomE(τ,·,·)(ξ̄

′, ξ̄)+ND0×R
n(ξ̄′, ξ̄),

where ND0×Rn(ξ̄
′, ξ̄) = ND0

(ξ̄′)× {0}.
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Thus, having a ζ �= 0 such that ±ζ ∈ NDτ (ξ̄) corresponds to having a ζ ′ �= 0 such
that ±ζ ′ ∈ ND0(ξ̄

′) and ±(ζ ′, ζ) ∈ NdomE(τ,·,·)(ξ̄′, ξ̄). This yields the claimed equi-
valence.

Corollary 7.5 (interiors of reachable sets). If int dom g �= ∅, then for every
τ ∈ [0,∞),

∅ �= int domVτ =
{
ξ
∣∣ int dom g ∩ domE(τ, ·, ξ) �= ∅}.

Proof. For convex sets C1 and C2 with intC2 �= ∅, one has riC1 ∩ riC2 �= ∅ if
and only if C1 ∩ intC2 �= ∅. Then too, C1 ∪ C2 cannot lie in a hyperplane.

Corollary 7.6 (propagation of finiteness).
(a) If g is finite on R

n, then V is finite on [0,∞)× R
n.

(b) If L is finite on R
n × R

n, then V is finite on (0,∞)× R
n.

Proof. We get (a) immediately from Corollary 7.5 as the case where int dom g =
R
n. We get (b) by observing that, for τ > 0, domE(τ, ·, ·) is all of R

n × R
n when L

is finite.
Corollary 7.7 (propagation of coercivity).
(a) If g is coercive, then Vτ is coercive for every τ ∈ [0,∞).
(b) If L is coercive, then Vτ is coercive for every τ ∈ (0,∞).
Proof. We rely on the fact that a proper convex function is coercive if and only if

its conjugate is finite [10, 11.5]. The claims are justified then by the duality between
Vτ and Ṽ in Theorem 5.1 and that between L and L̃ in (2.15).
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Abstract. Upper and lower envelope representations are developed for value functions associated
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1. Introduction. A major goal of Hamilton–Jacobi theory is the characteriza-
tion of value functions that arise from problems of optimal control and the calcu-
lus of variations in which endpoints are treated as parameters. The value function
V : [0,∞)×R

n → R := [−∞,∞] is defined from a Lagrangian L : R
n ×R

n → R and
an function g : R

n → R by

V (τ, ξ) := inf

{
g
(
x(0)

)
+

∫ τ

0

L
(
x(t), ẋ(t)

)
dt
∣∣∣x(τ) = ξ

}
for τ > 0,

V (0, ξ) := g(ξ),

(1.1)

with the minimization taking place over all the arcs (i.e., absolutely continuous func-
tions) x(·) : [0, τ ]→ R

n that reach ξ at time τ . Here V (τ, ·) is viewed as an evolving
function on R

n which starts as g and describes how g is propagated forward to any
time τ in a manner dictated by L.

Similarly, value functions can be considered that describe how g is propagated
backward from a future time T , and such a “cost-to-go” formulation is common in
optimal control. From a theoretical perspective, of course, backward models are equiv-
alent to forward models through time reversal and do not require separate treatment
in basic theory. The expression of control problems in terms of a Lagrangian L in
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which control parameters do not appear is parallel to the expression of control dy-
namics in terms of differential inclusions and has generated a substantial literature in
nonsmooth optimization, going back to around 1970. More about that can be found
in our companion paper [1], which is the springboard for the efforts here.

In the classical context of the calculus of variations, g and L would be smooth
(i.e., continuously differentiable). For applications such as in control, however, it
is important to allow g and L to be nonsmooth and even to take on ∞ because
infinite penalties can systematically be used in incorporating constraints. Under the
assumption that g and L are lower semicontinuous (lsc) and proper (i.e., not identically
∞, and nowhere having the value −∞), the integrand t �→ L(x(t), ẋ(t)) is measurable,
and the functional J [x(·)] being minimized is well defined. (The usual convention of
“inf addition” is followed, in which ∞ dominates in any conflict with −∞.) Then
J [x(·)] =∞ unless the arc x(·) satisfies the constraints

x(0) ∈ D, where D :=
{
x
∣∣ g(x) <∞},

ẋ(t) ∈ F (x(t)) almost everywhere (a.e.) t, where F (x) :=
{
v
∣∣L(x, v) <∞}.(1.2)

The customary tool for characterizing value functions is the Hamilton–Jacobi
PDE in one form or another. It revolves around the Hamiltonian function H associ-
ated with L, which is defined through the Legendre–Fenchel transform by

H(x, y) := supv

{
〈v, y〉 − L(x, v)

}
.(1.3)

Because V typically lacks smoothness, even when g and L are smooth, various gen-
eralizations of the classical PDE have been devised, the foremost being “viscosity”
versions. The recent book of Bardi and Capuzzo-Dolcetta [2], with its helpful refer-
ences, provides broad access to that subject. Viscosity theory is able to characterize V
in situations far from classical, and sometimes even when V takes on ∞, but unique-
ness results are still lacking in many situations of interest for us here, due to the
failure of V to satisfy the continuity, boundedness, or growth conditions that current
results demand.

In this paper, instead of working with a generalized Hamilton–Jacobi PDE for V ,
we develop basic “envelope representations,” which characterize V as the pointwise
inf or sup of a family of more elementary functions. In cases where a description of V
as a unique Hamilton–Jacobi solution of some sort can indeed be furnished, now or
in the future, these formulas become PDE solution formulas. For state-independent
Hamiltonians, H(x, y) ≡ H0(y), they reduce to Hopf–Lax formulas. We aim at con-
tributing to Hamilton–Jacobi theory by opening a way for such classical formulas
to be extended to state-dependent Hamiltonians, while exploring representations of
value functions in their own right, especially as a potential means of determining value
functions and their subgradients through optimization without having to deal with a
separate Hamilton–Jacobi equation for each choice of the cost function g.

We look at two kinds of envelope formulas: upper and lower. Both kinds have long
been known in the Hopf–Lax setting but haven’t systematically been sought outside
of that. Upper envelope formulas, involving pointwise minimization, are elementary
and easy to obtain very generally. However, in order for them to express V on (0,∞)
as the envelope of a family of finite functions, not to speak of smooth or subsmooth
functions, significant restrictions are necessary. Lower envelope formulas, involving
pointwise maximization, arise by dualization and therefore thrive only in the presence
of convexity, as with the original Hopf formula itself. In compensation for assumptions
of convexity, though, they offer a number of unusual and attractive features.
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Our focus will primarily be on lower envelope formulas, because of their special
potential, but we will also investigate properties enjoyed by upper envelope formulas
under the convexity assumptions we impose.

Convex analysis [3] will be heavily used, but mostly through the results obtained
in our preceding paper [1]. To the extent that broader variational analysis is required,
we rely on the book [4].

After introducing the duality scheme and deriving the basic envelope formulas
in section 2 in terms of the “fundamental kernel” and the “dualizing kernel,” we
concentrate in section 3 on the dualizing kernel and its characterization by a double
Hamilton–Jacobi equation. The lower envelope formula for V in terms of the dualizing
kernel and the properties of that kernel developed in section 3 and also in section 4,
where connections with subgradients of V are brought out, constitute the paper’s main
results. To complete the picture, relationships with standard Hopf–Lax formulas are
discussed in section 5,

2. Envelopes and convexity. Upper envelope formulas rely on the “double”
value function E : [0,∞) × R

n × R
n → R that corresponds to two-endpoint, i.e.,

Lagrangian, minimization problems for L:

E(τ, ξ′, ξ) := inf

{∫ τ

0

L
(
x(t), ẋ(t)

)
dt
∣∣∣x(0) = ξ′, x(τ) = ξ

}
for τ > 0,

E(0, ξ′, ξ) :=

{
0 if ξ = ξ′,
∞ otherwise,

(2.1)

where the minimization is over all the arcs x(·) that go from ξ′ at time 0 to ξ at time
τ .

Theorem 2.1 (upper envelope representation). The value function V is ex-
pressed in terms of E by the formula

V (τ, ξ) = infξ′
{
g(ξ′) + E(τ, ξ′, ξ)

}
for τ ≥ 0.(2.2)

Moreover, when τ > 0, an arc x(·) achieves the minimum in the problem defin-
ing V (τ, ξ) in (1.1) if and only if it achieves the minimum in the problem defining
E(τ, ξ′, ξ) in (2.1) for some choice of ξ′ yielding the minimum in (2.2).

Proof. Elementary and evident.
We will call E the fundamental kernel associated with L. The “kernel” term comes

from the far-reaching analogy between minimizing a sum of functions and integrating
a product of functions. Formula (2.2) gives a transform whereby g is converted to
V (τ, ·) for τ > 0. It is an “upper envelope” formula because it expresses V as the
pointwise infimum of a certain family of functions on [0,∞)×R

n, namely the functions
eξ′ : (τ, ξ) �→ g(ξ′) + E(τ, ξ′, ξ) indexed by ξ′ ∈ D, where D is the effective domain of
g as in (1.2). In some situations E may be finite or even smooth on (0,∞)×R

n×R
n,

and the same then holds for these functions eξ′ .
Often E takes on ∞, though, and the upper envelope representation may be

difficult to exploit directly. Clearly, E(τ, ξ′, ξ) can’t be finite unless there is an arc x(·)
that conforms to the differential inclusion in (1.2) and carries ξ′ to ξ. Thus, extended-
real-valuedness of E is inevitable in applications where the implicit constraints in (1.2)
can seriously come into play.

This motivates a search for alternative envelope representations in which trouble-
some infinite values can be bypassed. Such representations will be generated by way



1354 R. TYRRELL ROCKAFELLAR AND PETER R. WOLENSKI

of the function K : [0,∞)× R
n × R

n → R with

K(τ, ξ, η) := inf

{
〈x(0), η〉+

∫ τ

0

L
(
x(t), ẋ(t)

)
dt
∣∣∣x(τ) = ξ

}
,

K(0, ξ, η) := 〈ξ, η〉,
(2.3)

which we introduce now as the dualizing kernel associated with L. The minimization
takes place over all arcs x(·) : [0,∞)→ R

n that reach ξ at time τ .
For fixed η, K(·, ·, η) is the value function obtained as in (1.1) but with the linear

function 〈·, η〉 in place of g. As a consequence of Theorem 2.1, therefore, we have

K(τ, ξ, η) = infξ′
{
〈ξ′, η〉+ E(τ, ξ′, ξ)

}
,(2.4)

and indeed, this could serve as well as (2.3) in defining K.
Observe that (2.4) dualizes E by employing a variant of the Legendre–Fenchel

transform: −K(τ, ξ, η) is calculated by taking the function conjugate to E(τ, ·, ξ)
under that transform and evaluating it at −η. When E(τ, ·, ξ) is lsc, proper, and
convex, it can be recovered by the reciprocal formula

E(τ, ξ′, ξ) = supη

{
K(τ, ξ, η)− 〈ξ′, η〉

}
.(2.5)

Our strategy is to use such duality between E and K, along with convexity of g, to
translate the upper envelope representation in Theorem 2.1 into a lower one involving
K and the function g∗ conjugate to g. A prerequisite for this, however, is placing
assumptions on L that will ensure that E has the properties needed for (2.5) to be
valid.

Such assumptions have been identified in our paper [1]. In stating them, we call
a function f : R

n → R coercive if f is bounded from below and has f(v)/|v| → ∞ as
|v| → ∞ (where | · | is the Euclidean norm). When applied to a proper, nondecreasing
function θ on [0,∞), coercivity means having θ(s)/s→∞ as s→∞.

Basic Assumptions (A).
(A0) The initial function g is convex, proper, and lsc on R

n.
(A1) The Lagrangian function L is convex, proper, and lsc on R

n × R
n.

(A2) The mapping F underlying L in (1.2) is nonempty-valued everywhere, and
there is a constant ρ such that dist(0, F (x)) ≤ ρ

(
1 + |x|) for all x.

(A3) There are constants α and β and a coercive, proper, nondecreasing function
θ on [0,∞) such that L(x, v) ≥ θ

(
max

{
0, |v| − α|x|})− β|x| for all x and v.

The meaning of these assumptions has thoroughly been elucidated in [1], so for
present purposes we need only to record some key facts and examples.

An immediate consequence of L(x, v) being, by (A1) and (A2), a convex, proper,
lsc function of v for each x is that L can be recovered from H by

L(x, v) = supy

{
〈v, y〉 −H(x, y)

}
.(2.6)

The correspondence between Lagrangians and Hamiltonians is thus one-to-one under
our conditions. For each H of a certain class, the associated L is uniquely determined
by (2.6). The Hamiltonian class is described as follows.

Proposition 2.2 (Hamiltonian conditions). The Hamiltonians for the Lagrangians
L satisfying (A1), (A2), and (A3) are the functions H : R

n × R
n → R such that
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(a) H(x, y) is finite, concave in x, and convex in y (hence locally Lipschitz con-
tinuous).

(b) There are constants α and β and a finite, convex function ϕ such that

H(x, y) ≤ ϕ(y) + (α|y|+ β)|x| for all x, y.

(c) There are constants γ and δ and a finite, concave function ψ such that

H(x, y) ≥ ψ(x)− (γ|x|+ δ)|y| for all x, y.

Proof. This comes from Theorem 2.3 of [1]. Finite concave-convex functions are
locally Lipschitz continuous by [3, 35.1].

Example 2.3 (subseparable Lagrangians). Let the Lagrangian have the form

L(x, v) = G(x) + L0(v −Ax)(2.7)

for A ∈ R
n×n, a finite convex function G on R

n, and a proper convex function L0 on
R
n that is lsc and coercive. Then L satisfies (A1), (A2), and (A3), and its Hamiltonian

is

H(x, y) = 〈Ax, y〉 −G(x) + H0(y),(2.8)

where H0 is a finite convex function on R
n, namely H0 = L∗

0. Conversely, if H has
the form (2.8) for finite convex functions G and H0, then L has the form (2.7) with
L0 = H∗

0 and falls in the category described.

Detail. This is evident from Proposition 2.2 and the conjugacy between finite
convex functions (always continuous) and proper convex functions that are lsc and
coercive.

Subseparable Lagrangians illustrate also, in a relatively simple case, the way that
our framework of Lagrangians and Hamiltonians connects with control theory. An
optimal control problem with linear dynamics ẋ(t) = Ax(t) +Bu(t) and running cost
integral ∫ T

0

{
G(x(t)) + F (u(t))

}
dt,

with F convex, proper, lsc, and coercive (but possibly taking on ∞) corresponds to
the Lagrangian L in (2.7) for

L0(z) = min
{
F (u)

∣∣Bu = z
}
,

and then the Hamiltonian H in (2.8) has H0(y) = F ∗(B∗y), where B∗ is the trans-
pose of B and F ∗ is the convex function conjugate to F , this function being finite
because of the coercivity of F . Control constraints are incorporated here through the
specification of the set where F is finite. Control formats much more general than
this, yet still fully convex and (as may be shown) still fitting with our assumptions,
can be found in [5], [6].

Note that if the coercivity condition in (A3) were replaced by a simpler condition
like L(x, v) ≥ θ(|v|), Lagrangians of the type in Example 2.3 would have to have
A = 0, and G would have to be bounded from below.
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Of course, there are many more Lagrangians satisfying (A1), (A2), and (A3)
than the ones in Example 2.3. An illustration is L(x, v) = 1

p max
{|x|p, |v|p} with

p ∈ (1,∞), which for q determined by (1/p) + (1/q) = 1 has

H(x, y) =

{
1
q |y|q when |y| ≥ |x|p−1,

|x||y| − 1
p |x|p when |y| ≤ |x|p−1.

(2.9)

Proposition 2.4 ([1] convexity of the fundamental kernel). Under (A1), (A2),
and (A3), E(τ, ξ′, ξ) is a convex, proper, lsc function of (ξ′, ξ) for each τ ≥ 0. In fact,
E(τ, ·, ξ) is proper and coercive for every ξ, and E(τ, ξ′, ·) is proper and coercive for
every ξ′.

Proof. This is extracted from Proposition 4.2 and Corollary 4.4 of [1].
On the basis of this result we do have the reciprocal formula in (2.5) along with

the one in (2.4), and E and K are entirely dual to each other. We are able then to
convert the envelope formula in (1.1) into one for functions that are likely to be better
behaved. The technique is to apply Fenchel’s duality theorem to the minimization
problem in (1.1) in order to recast it as a maximization problem.

In the next theorem, and henceforth in this paper, we take assumptions (A) for
granted, unless otherwise mentioned.

Theorem 2.5 (lower envelope representation). The dualizing kernel K(τ, ξ, η) is
everywhere finite, convex in ξ, and concave in η. The value function V is expressed
in terms of K by the formula

V (τ, ξ) = supη

{
K(τ, ξ, η)− g∗(η)

}
.(2.10)

Proof. For any (τ, ξ) ∈ [0,∞) × R
n, the function f = E(τ, ·, ξ) is lsc, proper,

convex, and coercive by Proposition 2.4, so its conjugate f∗ is finite. We have
−f∗(−η) = K(τ, ξ, η) by (2.4), hence K(τ, ξ, η) is finite and concave in η. On the
other hand, the convexity of E(τ, ξ′, ξ) in (ξ′, ξ) in Proposition 2.4 implies the convex-
ity of K(τ, ·, η) by the general principle that when the Legendre–Fenchel transform is
applied to one argument of a convex function of two arguments, the result is concave
in the residual argument; see [3, 33.3] or [4, 11.48]. (The concavity becomes convexity
under the changes of sign.)

To obtain the lower envelope representation, we fix ξ along with τ and view the
upper envelope representation in (2.2) as expressing V (τ, ξ) as the optimal value in
the problem of minimizing g(ξ′) + f(ξ′) for f = E(τ, ·, ξ) as above. By Fenchel’s
duality theorem (cf. [3, 31.1] or [4, 11.41]), one has

infξ′
{
g(ξ′) + f(ξ′)

}
= supη

{
− f∗(−η)− g∗(η)

}
(2.11)

if the relative interiors of the convex sets
{
η
∣∣−f∗(−η) > −∞} and

{
η
∣∣ g∗(η) < +∞}

have a point in common. That criterion is met through the finiteness of f∗, which
makes the first set be all of R

n. Since the inf in (2.11) gives the left side of (2.10) and
the sup in (2.11) gives the right side, the equation in (2.10) is confirmed.

For τ = 0, the lower envelope representation in (2.10) reduces to the Legendre–
Fenchel envelope formula

g(ξ) = supη

{
〈ξ, η〉 − g∗(η)

}
,(2.12)

which expresses the proper, lsc, convex function g as the pointwise supremum of all the
affine functions majorized by g. For τ > 0, it can be viewed as extending this formula
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forward in time through a Hamilton–Jacobi propagation of those affine functions into
a different family of functions.

In employing the Fenchel duality rule (2.11) as the tool for passing between upper
and lower envelope representations, we are in effect invoking a “minimax principle”
in a manner reminiscent in Hamilton–Jacobi theory of the duality seen in classical
Hopf–Lax formulas (which will be taken up in section 5). Indeed, our formulas can
be recast as follows.

Theorem 2.6 (envelope formulas in minimax mode). In terms of the dualizing
kernel K, the value function V always has the representation

V (τ, ξ) = infξ′ supη

{
g(ξ′)− 〈ξ′, η〉+ K(τ, ξ, η)

}
,(2.13)

and this even holds for an arbitrary choice of g : R
n → R. When g is convex, proper,

and lsc, however, V also has the representation

V (τ, ξ) = supη infξ′
{
g(ξ′)− 〈ξ′, η〉+ K(τ, ξ, η)

}
.(2.14)

Proof. We get (2.13) by combining the elementary formula (2.2) for V in terms of
E with the reciprocal formula (2.5) for E in terms of K, which is valid by Proposition
2.4 under our assumptions. We get (2.14) by combining the representation (2.10) of
V in terms of K and g∗ with the definition of g∗ in terms of g.

All of duality theory in convex optimization, a very highly developed subject,
has the character of a “minimax principle” of course, but there is no single minimax
theorem to invoke that would fit all cases. Everything revolves around the precise
conditions under which “inf” and “sup” can legitimately be interchanged when the
simplest compactness and continuity properties may be absent, as here. Duality of a
much deeper kind than in the proof of Theorem 2.5 will be crucial later, for instance,
in ascertaining the circumstances in which the supremum in (2.10) is attained and how
this can be used in determining the subgradients of V from those of K (cf. Theorem
4.2 and Corollary 4.4 below). Observe that this brings out an important advantage
of expressing lower envelope representations as in (2.10) instead of as in (2.14).

The appearance of g∗ instead of g in (2.10) shouldn’t be regarded as much of a
drawback. In many situations g∗ can explicitly be determined from g (see [3] and
[4, Chapter 11] for the calculus of conjugates), but even if not, there is much that
might be made of this formula. Depending on the particular structure of g (in terms
of operations like addition and composition), it’s common for g∗(η) to be expressible
as the optimal value in a minimization problem with respect to some other vector,
let’s call it ζ, in which η is a parameter. When such an expression is substituted into
(2.10), one gets a representation of V (τ, ξ) as the optimal value in a maximization
problem involving both η and ζ.

Anyway, as a practical matter, optimization formulas for V (τ, ξ), whether directly
as in (2.10) or with some expansion of the g∗(η) term, are generally more favorable
for computation than integration formulas, which become intractable numerically in
more than a few dimensions. Furthermore, for applications such as to feedback in
optimal control the subgradients of V are at least as important as its values. The
lower representation in (2.10) affords a much better grip on those than does the
upper representation in (2.2), because K is typically far better behaved than E, as
will emerge from the results that follow. These better properties suggest that K may
be easier to generate than V in a Hamilton–Jacobi context, after which the lower
envelope representation in Theorem 2.5 might be used to compute aspects of V as
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needed, for instance in feedback. Moreover, the same K would be able to serve for
every V that relies on the Lagrangian L, no matter what the choice of the initial cost
function g.

3. Characterization of the dualizing kernel. Turning now to the develop-
ment of properties of K that underpin the lower envelope representation in Theorem
2.5, we begin with a special kind of Hamilton–Jacobi characterization. Only subgra-
dients in the sense of convex analysis are needed in this characterization, but other
subgradients will soon enter the discussion too, so we go straight to a review of the
full definitions. For background, see [4].

Consider any function f : R
n → R and let x be any point at which f(x) is finite.

A vector y ∈ R
n is a regular subgradient of f at x, written y ∈ ∂̂f(x), if

f(x′) ≥ f(x) + 〈y, x′ − x〉+ o(|x′ − x|).(3.1)

It is a (general) subgradient of f at x, written y ∈ ∂f(x), if there is a sequence of

points xν → x with f(xν) → f(x) for which regular subgradients yν ∈ ∂̂f(xν) exist
with yν → y. (We consistently use superscript ν for sequences; ν → ∞.) When f is

convex, the sets ∂̂f(x) and ∂f(x) are the same and agree with the subgradient set of
convex analysis, defined by (3.1) without the “o” term.

These of course are “lower” subgradients, the corresponding regular and general
“upper” subgradient sets, defined with the opposite inequality in (3.1) and will be

denoted here by
˜̂
∂f(x) and ∂̃f(x); thus

∂̃f = −∂[−f ].(3.2)

This notation is expedient because most situations can be couched in terms of lower
subgradients alone, cf. [4], although just now we’ll have something of an exception.

Regular subgradients have been the mainstay in viscosity theory, but general
subgradients are the vehicle for many of the strongest results in variational analysis
[4].

In the following theorem, ∂ξK(τ, ξ, η) refers to subgradients of the convex function

K(τ, ·, η), whereas ∂̃ηK(τ, ξ, η) refers to subgradients of the concave function K(τ, ξ, ·).
Theorem 3.1 (double Hamilton–Jacobi equation). The kernel K(τ, ξ, η) is con-

tinuously differentiable with respect to τ and satisfies, for τ ≥ 0,

−∂K

∂τ
(τ, ξ, η) =

{
H(ξ, η′) for all η′ ∈ ∂ξK(τ, ξ, η),

H(ξ′, η) for all ξ′ ∈ ∂̃ηK(τ, ξ, η),

K(0, ξ, η) =
〈
ξ, η
〉
,

(3.3)

where ∂K/∂τ is interpreted as the right partial derivative when τ = 0. Moreover, K
is the only such function with K(τ, ξ, η) convex in ξ and concave in η.

The proof of Theorem 3.1 will be furnished later in this section, after some ad-
ditional developments. The continuous differentiability refers to (∂K/∂τ)(τ, ξ, η) de-
pending continuously on (τ, ξ, η) ∈ [0,∞)× R

n × R
n.

The double Hamilton–Jacobi equation in (3.3) has been placed in the elementary
picture of subgradients of convex and concave functions and partial derivatives in time,
because that seems most conducive to possible uses of the result. What comparison,
though, can be made with viscosity versions of Hamilton–Jacobi equations? And why
use two equations instead of one?
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The double aspect of the characterization comes from the fact that, through
duality, K has an alternative expression in which the roles of ξ and η are interchanged.

Proposition 3.2 (alternative formula for the dualizing kernel). In minimizing
over arcs y(·) : [0, τ ]→ R

n, one has

−K(τ,−ξ, η) = inf
{
〈ξ, y(0)〉+

∫ τ

0

L∗
(
y(t), ẏ(t)

)
dt
∣∣∣ y(τ) = η

}
,(3.4)

where L∗(y, w) = L∗(−w, y). Moreover L∗, like L, satisfies (A1), (A2), and (A3),
and its Hamiltonian H∗ is given by

H∗(y, x) = supw

{
〈w, x〉 − L∗(y, w)

}
= −H(−x, y).(3.5)

Proof. The duality theory for convex problems of Bolza [7] will be applied in the
form distilled in [1, section 4]. The minimization problem that defines K(τ, ξ, η) in
(2.3) is

(P) minimize

∫ τ

0

L(x(t), ẋ(t))dt + l(x(0), x(τ)) over arcs x(·) : [0, τ ]→ R
n,

where l(a, b) = 〈a, η〉 if b = ξ but l(a, b) = ∞ if b �= ξ. The duality theory pairs this
with

(P̃) minimize

∫ τ

0

L̃(y(t), ẏ(t))dt + l̃(y(0), y(τ)) over arcs y(·) : [0, τ ]→ R
n,

where L̃(y, w) = L∗(w, y) and l̃(c, d) = l∗(c,−d); the latter comes out here as l̃(c, d) =
−〈ξ, d〉 if c = η but l̃(c, d) =∞ if c �= η. Because l(·, b) is finite on R

n for a certain b,
and l̃(c, ·) is finite on R

n for a certain c, the optimal values in the two problems are
related by inf(P) = − inf(P̃); this holds by [1, Corollary 4.6]. Thus,

−K(τ, ξ, η) = inf

{∫ τ

0

L̃
(
y(t), ẏ(t)

)
dt− 〈ξ, y(τ)〉

∣∣∣ y(0) = η

}
.

By rewriting in terms of z(t) = y(τ − t), we can convert this to

−K(τ, ξ, η) = inf

{∫ τ

0

L̃
(
z(t),−ż(t)

)
dt− 〈ξ, z(0)〉

∣∣∣ z(τ) = η

}
.

It remains only to replace ξ by −ξ and the z notation by y again to obtain (3.4).
The fact that L∗ again satisfies (A1), (A2), and (A3) comes from the fact that

L̃ inherits these properties from L, as demonstrated in [1, Proposition 3.5]. The
expression for the Hamiltonian H∗ in terms of H arises similarly from that result,
which asserts that the Hamiltonian H̃ for L̃ has H̃(y, x) = −H(x, y).

Through results in [1], the value function formulas for K in (2.3) and (3.4) lead
to major conclusions about the subgradients of K and in particular to a viscosity
version of the double Hamilton–Jacobi equation in Theorem 3.1. This time we use
∂τ,ξK(τ, ξ, η) to denote subgradients of the function K(·, ·, ξ) on [0,∞)× R

n, and so
forth.

Theorem 3.3 (subgradients of the dualizing kernel). For τ > 0, one has

(σ, η′) ∈ ∂τ,ξK(τ, ξ, η) ⇐⇒ (σ, η′) ∈ ∂̂τ,ξK(τ, ξ, η)

⇐⇒ η′ ∈ ∂ξK(τ, ξ, η), σ = −H(ξ, η′),
(3.6)
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and on the other hand

(σ, ξ′) ∈ ∂̃τ,ηK(τ, ξ, η) ⇐⇒ (σ, ξ′) ∈ ˜̂
∂τ,ηK(τ, ξ, η)

⇐⇒ ξ′ ∈ ∂̃ηK(τ, ξ, η), σ = −H(ξ′, η).
(3.7)

Proof. We simply apply [1, Theorem 2.5] first to K(·, ·, η), which is the value
function that propagates 〈·, η〉 under L as in (2.3), and second to −K(·,−ξ, ·), which
by Proposition 3.2 is the value function that propagates 〈ξ, ·〉 under L∗.

Corollary 3.4 (double viscosity equation). For τ > 0, one has{
σ + H(ξ, η′) = 0 for all (σ, η′) ∈ ∂̂τ,ξK(τ, ξ, η),

σ + H(ξ′, η) = 0 for all (σ, ξ′) ∈ ˜̂
∂τ,ηK(τ, ξ, η).

(3.8)

It will be established in the next theorem that K is locally Lipschitz continuous.
In view of this, the first of the subgradient equations in (3.8) is equivalent, as shown
by Frankowska [8], to K(·, ·, η) being a Hamilton–Jacobi viscosity solution in the sense
of satisfying the upper and lower inequalities of Crandall, Evans, and Lions [9], with
initial K(0, ·, η) = 〈·, η〉. The second equation has a similar viscosity interpretation
relative to a switch in the roles of the ξ and η arguments.

It might be hoped that either of these subgradient equations, by itself, would be
enough to determine K uniquely. That could be true, but unfortunately the existing
results on uniqueness of viscosity solutions are not fully up to the task. The trouble
is that H and K need not satisfy the kinds of growth or boundedness conditions
assumed in such results. Because of the initial condition K(τ, ξ, η) is certainly neither
globally bounded from above nor globally bounded from below, even for fixed ξ or η.
One or the other kind of boundedness would be needed to apply the latest uniqueness
theorem of Ishii [10], for example. Anyway, the Hamiltonian can grow at rates like
those in (2.9), and this can be problematical as well.

Theorem 3.5 (Lipschitz continuity of the dualizing kernel). The function K is
locally Lipschitz continuous on [0,∞)× R

n × R
n.

Proof. By [1, Theorem 2.1] the functions K(·, ·, η) are lsc on [0,∞)×R
n as value

functions in the mode of (2.3). Similarly by this result, as applied in the context of
Proposition 3.2, the functions −K(·,−ξ, ·) are lsc on [0,∞)×R

n. Hence the functions
K(·, ξ, ·) are usc on [0,∞)×R

n, and it follows in particular that K(τ, ξ, η) is continuous
in τ ∈ [0,∞) for each (ξ, η). Thus, K(τ, ·, ·) converges pointwise to K(τ̄ , ·, ·) whenever
τ → τ̄ in [0,∞). The functions K(τ, ·, ·) are finite and convex-concave by Theorem 2.5,
and pointwise convergence of such functions on R

n×R
n implies uniform convergence

on bounded sets (see [3, 35.4]). In consequence, K is continuous on [0,∞)×R
n×R

n.
Furthermore, the convergence implies that the mapping

S : (τ, ξ, η) �→ {
(η′, ξ′)

∣∣ η′ ∈ ∂ξK(τ, ξ, η), ξ′ ∈ ∂̃ηK(τ, ξ, η)
}

(3.9)

is locally bounded on [0,∞)× R
n × R

n and has closed graph (see [3, 35.7]).

This yields through the continuity of H (in Proposition 2.2) the closed graph
property and local boundedness on [0,∞)× R

n of the mappings

(τ, ξ) �→ {
(σ, η′)

∣∣ η′ ∈ ∂ξK(τ, ξ, η), σ = −H(ξ, η′)
}
,

(τ, η) �→ {
(σ, η′)

∣∣ η′ ∈ ∂̃ηK(τ, ξ, η), σ = −H(ξ′, η)
}
.

(3.10)
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In general, a function f that is finite and lsc on an open set O in a space R
d is

Lipschitz continuous with constant κ on any set X ⊂ O such that |y| ≤ κ for all
y ∈ ∂f(x) when x ∈ X; this holds by [4, 9.2, 9.13]. We invoke this now for K(·, ·, η)
on (0,∞) × R

n. From the subgradient characterization in (3.6) of Theorem 3.3 and
the local boundedness of the first mapping in (3.10), on [0,∞)×R

n rather than just
(0,∞)×R

n, we get that K(·, ·, η) is locally Lipschitz continuous on (0,∞)×R
n, and

moreover that the Lipschitz constants don’t blow up as τ ↘0. Since K(·, ·, η) is anyway
continuous on [0,∞) × R

n, we conclude it must actually be Lipschitz continuous on
[0,∞)× R

n.
A parallel argument utilizing the dual formula in Proposition 3.2 shows that the

functions K(·, ξ, ·) are Lipschitz continuous on [0,∞) × R
n. The two properties of

Lipschitz continuity combine to give the Lipschitz continuity of K itself on [0,∞) ×
R
n × R

n.
The subgradient result in Theorem 3.3 will be complemented now by one about

subderivatives. These are defined as follows; see [4] for background. For f : R
n → R

and a point x where f(x) is finite, the subderivative of f at x for a vector w is

df(x)(w) := lim inf
ε↘ 0
w′→w

f(x + εw′)− f(x)

ε
.(3.11)

If this “liminf” coincides with the associated “limsup” and thus exists as a full limit, f
is said to be semidifferentiable at x for w, or simply semidifferentiable at x if true for
all w ∈ R

n. Semidifferentiability at x corresponds to the difference quotient functions
∆εf(x) : w �→ [f(x + εw)− f(x)]/ε converging uniformly on bounded subsets of R

n,
as ε↘0, to a continuous function of w [4, 7.21]. Differentiability is the case where, in
addition, the limit function df(x) is linear.

Theorem 3.6 (subderivatives of the dualizing kernel). On (0,∞)×R
n×R

n, K
is semidifferentiable everywhere, and its subderivative formula is as follows. For any
(τ, ξ, η), the quantities H(ξ, η′) for η′ ∈ ∂ξK(τ, ξ, η) and H(ξ′, η) for ξ′ ∈ ∂̃ηK(τ, ξ, η)
all have the same value, and in denoting it by k(τ, ξ, η) one has

dK(τ, ξ, η)(θ, ω, ζ) = − θk(τ, ξ, η)

+ max
{〈

η′, ω
〉 ∣∣ η′ ∈ ∂ξK(τ, ξ, η)

}
+ min

{〈
ξ′, ζ

〉 ∣∣ ξ′ ∈ ∂ηK(τ, ξ, η)
}
.

(3.12)

Proof. The first part of the proof, devoted to the existence of the common value
k(τ, ξ, η), will be the basis later for knowing that K is continuously differentiable in
τ as claimed in Theorem 3.1 but not yet justified.

Let Kη = K(·, ·, η). Since Kη is the value function that propagates a finite convex
function under L, namely 〈·, η〉, it is semidifferentiable on (0,∞)×R

n by [1, Theorem
7.3] with the formula

dKη(τ, ξ)(θ, ω) = max
{〈ω, η′〉 − θH(ξ, η′)

∣∣ η′ ∈ ∂ξKη(τ, ξ)
}
.(3.13)

Likewise for Kξ = −K(·,−ξ, ·) in the context of Proposition 3.2, Kξ is the value
function that propagates 〈ξ, ·〉 under L∗ and thus is semidifferentiable on (0,∞)×R

n

with formula

dKξ(τ, η)(θ, ζ) = max
{〈ξ′, ζ〉 − θH∗(η, ξ′)

∣∣ ξ′ ∈ ∂ηK
ξ(τ, η)

}
,
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where H∗(η, ξ′) = −H(−ξ′, η). In terms of K̃ξ = K(·, ξ, ·) the latter can be rewritten
as

dK̃ξ(τ, η)(θ, ζ) = min
{〈ξ′, ζ〉 − θH(ξ′, η)

∣∣ ξ′ ∈ ∂̃ηK̃ξ(τ, η)
}
.(3.14)

In particular, K has right and left partial derivatives in τ ,

(∂+K/∂τ)(τ, ξ, η) = dKη(τ, ξ)(1, 0) = dK̃ξ(τ, η)(1, 0),

(∂−K/∂τ)(τ, ξ, η) = −dKη(τ, ξ)(−1, 0) = −dK̃ξ(τ, η)(−1, 0),

which by (3.13) must satisfy

(∂−K/∂τ)(τ, ξ, η) = min
{−H(ξ, η′)

∣∣ η′ ∈ ∂ξK(τ, ξ, η)
}
,

(∂+K/∂τ)(τ, ξ, η) = max
{−H(ξ, η′)

∣∣ η′ ∈ ∂ξK(τ, ξ, η)
}
,

(3.15)

and on the other hand, by (3.14), must satisfy

(∂−K/∂τ)(τ, ξ, η) = max
{−H(ξ′, η)

∣∣ ξ′ ∈ ∂̃ηK(τ, ξ, η)
}
,

(∂+K/∂τ)(τ, ξ, η) = min
{−H(ξ′, η)

∣∣ ξ′ ∈ ∂̃ηK(τ, ξ, η)
}
.

(3.16)

We get (∂−K/∂τ)(τ, ξ, η) ≤ (∂+K/∂τ)(τ, ξ, η) from (3.15) but the opposite inequality
from (3.16). The partial derivative (∂K/∂τ)(τ, ξ, η) therefore exists and is given by
all four expressions on the right in (3.15) and (3.16). In particular, the quantities
H(ξ, η′) and H(ξ′, η) involved in these expressions must have the same value.

In denoting this common value by k(τ, ξ, η), we have a function that is continuous
not only on (0,∞)×R

n×R
n but has a continuous extension to [0,∞)×R

n×R
n. That

follows from the closed graph property and local boundedness on [0,∞) × R
n × R

n

of the mappings in (3.10), as demonstrated in the proof of Theorem 3.5. Hence
(∂K/∂τ)(τ, ξ, η) exists even at τ = 0, when interpreted there as the right partial
derivative, and it depends continuously on (τ, ξ, η) ∈ [0,∞)× R

n × R
n.

Henceforth in proceeding with the proof of Theorem 3.6, we argue solely on
the basis of K(τ, ξ, η) being continuously differentiable in τ while convex in ξ and
concave in η. This will help with something needed eventually in the proof of Theorem
3.1, although a price must be paid in overlaps with arguments already furnished for
Theorem 3.5.

Each of the functions K(τ, ·, ·), being finite and convex-concave, is locally Lip-
schitz continuous on R

n × R
n by [3, 35.1]. The differentiability of K(τ, ξ, η) with

respect to τ entails continuity in τ . Therefore, whenever τ → τ̄ in [0,∞) the func-
tions K(τ, ·, ·) converge pointwise on R

n × R
n to K(τ̄ , ·, ·). We have already seen in

the proof of Theorem 3.6 how this convergence implies that the mapping S in (3.9)
is locally bounded on [0,∞)× R

n × R
n with closed graph. This guarantees that the

local Lipschitz continuity of the functions K(τ, ·, ·) is uniform locally with respect to τ
(by virtue of [3, 24.7] as applied in the convex and concave arguments separately). In
taking this together with the continuity of ∂K/∂τ , which ensures the local Lipschitz
continuity of K(τ, ξ, η) in τ , we deduce that K is locally Lipschitz continuous as a
function of (τ, ξ, η) ∈ [0,∞)× R

n × R
n.

We work next with the difference quotient functions concerned in generating the
subderivatives of K:

∆εK(τ, ξ, η)(θ, ω, ζ) =
K(τ + εθ, ξ + εω, η + εζ)−K(τ, ξ + εω, η + εζ)

ε

+
K(τ, ξ + εω, η + εζ)−K(τ, ξ, η)

ε
.

(3.17)
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When ε↘0, the first expression in the sum in (3.17), as a function of (θ, ω, ζ), con-
verges uniformly over bounded sets to the function

(θ, ω, ζ) �→ (∂K/∂τ)(τ, ξ, η)θ

because of the continuity of ∂K/∂τ (through a classical argument using the mean
value theorem). The second expression in the sum in (3.17), as a function of (ω, ζ)
that is convex-concave, is known from convex analysis [3, 35.6] to converge pointwise
to the function

(ω, ζ) �→ max
η′∈∂ξK(τ,ξ,η)

〈
η′, ω

〉
+ min
ξ′∈∂ηK(τ,ξ,η)

〈
ξ′, ζ

〉
.

The convergence must then be uniform over bounded subsets of R
n×R

n (by [3, 35.4]).
Thus, as ε↘0, the functions ∆εK(τ, ξ, η) do converge uniformly on bounded sets to
the function described by the right side of (3.12) with k = (∂K/∂τ). Hence K is
semidifferentiable with this as its formula.

Proof of Theorem 3.1. The continuous differentiability of K(τ, ξ, η) has been
demonstrated in the first part of the proof of Theorem 3.6 along with the double
formula for (∂K/∂τ) in (3.3), the common value on the right side of (3.3) being the
expression k(τ, ξ, η) introduced in the statement of Theorem 3.6. The remaining task
is to show the uniqueness in this characterization. Let J(τ, ξ, η) on [0,∞)×R

n ×R
n

be convex in ξ, concave in η, and continuously differentiable in τ , satisfying (3.3). We
have to prove that J = K.

As a tool in this endeavor, we can use the fact that J , like K, has the subderivative
properties in Theorem 3.6, since those properties depend only on the facts now being
assumed; see the remark in the middle of the proof of Theorem 3.6 (in the paragraph
starting with “Henceforth”). Thus

dJ(τ, ξ, η)(θ, ω, ζ) = θ (∂J/∂τ)(τ, ξ, η)

+ max
{〈

η′, ω
〉 ∣∣ η′ ∈ ∂ξJ(τ, ξ, η)

}
+ min

{〈
ξ′, ζ

〉 ∣∣ ξ′ ∈ ∂ηJ(τ, ξ, η)
}
.

(3.18)

In addition we can take J to be locally Lipschitz continuous, because that property
was likewise seen there to be a consequence of the current assumptions.

Fix (τ, ξ, η). Certainly J(τ, ξ, η) = K(τ, ξ, η) when τ = 0, so suppose τ > 0. The
infimum in the definition (2.3) of K(·, ·, η) as the value function propagating 〈ξ, ·〉 is
attained by an arc x(·) on [0, τ ] which moreover is Lipschitz continuous; this holds
by [1, Theorem 5.2], which under our assumptions (A) applies to value functions at
interior points (τ, ξ) of their domains. Then too, for any τ ′ ∈ (0, τ) and the point
ξ′ = x(τ ′), the restriction of x(·) to [0, τ ′] is optimal for the minimization problem
defining K(τ ′, ξ′, η) (by the “principle of optimality”). Thus

K(τ ′, x(τ ′), η) = 〈x(0), η〉+

∫ τ ′

0

L
(
x(s), ẋ(s)

)
dt for 0 ≤ τ ′ ≤ τ.(3.19)

In terms of the functions ϕ : [0, τ ]→ R and ψ : [0, τ ]→ R defined by

ϕ(t) := K(t, x(t), η), ψ(t) := J(t, x(t), η),

we have ϕ(0) = K(0, x(0), η) = J(0, x(0), η) = ψ(0), whereas ϕ(τ) = K(τ, ξ, η) and
ψ(τ) = J(τ, ξ, η). Furthermore, ϕ is Lipschitz continuous on [0, τ ], because x(·) has
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this property and K is locally Lipschitz continuous on [0,∞) × R
n × R

n. Likewise
ψ is Lipschitz continuous on [0, τ ]. It follows that ϕ and ψ are the integrals of their
derivatives, which exist a.e. Hence

K(τ, ξ, η)− J(τ, ξ, η) =

∫ τ

0

ϕ′(t)dt−
∫ τ

0

ψ′(t)dt.(3.20)

On the basis of (3.19), we have

ϕ′(t) = L
(
x(t), ẋ(t)

)
for a.e. t.(3.21)

On the other hand, the semidifferentiability of J in (3.18) yields

ψ′(t) = (∂J/∂τ)(t, x(t), η) + max
{〈η′, ẋ(t)〉 ∣∣ η′ ∈ ∂ξJ(t, x(t), η)

}
.

For each t let y(t) be a vector ξ′ attaining this maximum. Because J satisfies the
Hamilton–Jacobi equations in (3.3), we have (∂J/∂τ)(t, x(t), η) = −H(x(t), y(t)), so
that

ψ′(t) = −H(x(t), y(t)) + 〈y(t), ẋ(t)〉.(3.22)

Since L(x(t), ·) and H(x(t), ·) are conjugate convex functions, we know from the recip-
rocal Legendre–Fenchel formula in (2.6) that 〈y(t), ẋ(t)〉−H(x(t), y(t)) ≤ L(x(t), ẋ(t)).
Therefore ψ′(t) ≤ ϕ′(t) by (3.22) and (3.21). When this inequality is combined with
(3.20), we arrive at the conclusion that J(τ, ξ, η) ≤ K(τ, ξ, η).

So far, we have established that J ≤ K. To get the opposite inequality, it suffices
to show that −J(τ,−ξ, η) ≤ −K(τ,−ξ, η) for all (τ, ξ, η). But for this we need only
to appeal to the alternative value function formula for K in Proposition 3.2 and in
such terms reapply the argument just given.

4. Additional kernel properties and subgradient formulas. Other facts
about the kernels K and E will now be developed, with emphasis on subgradients
and regularity. Connections between subgradients of the value function V and those
of the dualizing kernel K are featured because of their possible use in applications to
feedback in optimal control.

An important role in bringing out such connections is played by the generalized
Hamiltonian dynamical system associated with H, which has the form

ẋ(t) ∈ ∂yH(x(t), y(t)), −ẏ(t) ∈ ∂̃xH(x(t), y(t)).(4.1)

This dynamical system is the key to characterizing optimality in the theory of gen-
eralized problems of Bolza for the Lagrangian L, where it originated in [11]. More
on its properties and history can be found in [1] and its references. A Hamiltonian
trajectory over [0, τ ] is a pair of arcs x(·) and y(·) satisfying (4.1) for almost every t.

Theorem 4.1 (kernel subgradients and Hamiltonian dynamics). The following
properties are equivalent for any τ ≥ 0:

(a) η′ ∈ ∂ξK(τ, ξ, η) and ξ′ ∈ ∂̃ηK(τ, ξ, η);
(b) (−η, η′) ∈ ∂ξ′,ξE(τ, ξ′, ξ);
(c) there is a Hamiltonian trajectory (x(·), y(·)) over [0, τ ] from (ξ′, η) to (ξ, η′).
Proof. The equivalence between (a) and (b) reflects a general principle about how

subgradients behave when partial conjugates are taken, as in the passage between E
and K in (2.4) and (2.5); cf. [4, 11.48].
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The equivalence between (a) and (c) will come out of a result in [1, Theorem 2.4]
about the subgradients of value functions V ; more generally, one has η′ ∈ ∂ξV (τ, ξ)
if and only if there is a Hamiltonian trajectory (x(·), y(·)) over [0, τ ] that starts
with y(0) ∈ ∂g(x(0)) and ends at (ξ, η′). Since K(·, ·, η) is the value function that
propagates 〈·, η〉, a function with constant subgradient (gradient) η, we deduce that
η′ ∈ ∂ξK(τ, ξ, η) if and only if there is a Hamiltonian trajectory (x(·), y(·)) over [0, τ ]
that starts with y(0) = η (any x(0)) and ends at (ξ, η′).

For the remainder, we argue in terms of the dual expression in Proposition 3.2,
where −K(·,−ξ, ·) is the value function that propagates 〈ξ, ·〉 under L∗, a Lagrangian
with Hamiltonian H∗ given by (3.5). Invoking the same theorem from [1] in this
setting, we obtain, after the ± signs settle down and the trajectories are reversed in
time, the fact that ξ′ ∈ ∂̃ηK(τ, ξ, η) if and only if there is a Hamiltonian trajectory
over [0, τ ] that starts at (ξ′, η) and ends with x(τ) = ξ (any y(τ)). In putting this
together with the earlier statement, we arrive at the description in (c).

Theorem 4.2 (determination of value function subgradients). For every τ > 0,
one has

∂V (τ,ξ) =
⋃{

∂τ,ξK(τ, ξ, η)
∣∣∣ η ∈M(τ, ξ)

}
,

where M(τ, ξ) := argmaxη

{
K(τ, ξ, η)− g∗(η)

}
.

(4.2)

Therefore, subgradients of V can be determined from those of K by carrying out the
maximization in the lower envelope formula with

(σ, η′) ∈ ∂V (τ, ξ) ⇐⇒ ∃ η ∈M(τ, ξ) with

{
η′ ∈ ∂ξK(τ, ξ, η),
σ = −H(ξ, η′).(4.3)

Proof. Recall from Theorem 3.3 that the subgradients in ∂τ,ξK(τ, ξ, η) are of the
form (−H(ξ, η′), η′) for η′ ∈ ∂ξK(τ, ξ, η). A similar result was obtained in [1, Theorem
2.5] for V ; its subgradients have the form (−H(ξ, η′), η′) for η′ ∈ ∂ξV (τ, ξ). Further,
as already noted in the proof of Theorem 4.1, it was demonstrated in [1, Theorem 2.4]
that η′ ∈ ∂ξV (τ, ξ) if and only if there is a Hamiltonian trajectory (x(·), y(·)) that
starts with y(0) ∈ ∂g(x(0)) and ends at (ξ, η′).

On the other hand, the condition for η to belong to M(τ, ξ), i.e., to maximize
K(τ, ξ, η)−g∗(η), can be expressed in subgradient terms as 0 ∈ ∂̃ηK(τ, ξ, η)−∂g∗(η).
(This is both necessary and sufficient for optimality because g∗ is a convex function
while K(τ, ξ, ·) is a finite concave function; see [3, section 31].) Equivalently, there
exists some ξ′ ∈ ∂̃ηK(τ, ξ, η) ∩ ∂g∗(η). But for conjugate convex functions we have
ξ′ ∈ ∂g∗(η) if and only if η ∈ ∂g(ξ′). In view of Theorem 4.1, then, we have η ∈
M(τ, ξ) if and only if there is a Hamiltonian trajectory (x(·), y(·)) that starts with
y(0) ∈ ∂g(x(0)) and ends at (ξ, η′). This is the same as the condition derived in terms
of V , so we conclude that the subgradient formula in the theorem is correct.

Theorem 4.2 puts the spotlight on the maximizing set M(τ, ξ) in the lower en-
velope formula (1.5) and raises questions about the nature of this subproblem of
maximization, in particular whether the maximum is actually attained. We address
these questions next.

Theorem 4.3 (compactness and attainment in the lower envelope formula). For
any τ > 0 and ξ, the following properties in the lower envelope formula are equivalent:

(a) the set M(τ, ξ) = argmaxη
{
K(τ, ξ, η)− g∗(η)

}
is nonempty and compact;

(b) for every β ∈ R, the upper level set
{
η
∣∣K(τ, ξ, η)− g∗(η) ≥ β

}
is compact;
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(c) ξ ∈ intD(τ) for the set D(τ) =
{
ξ
∣∣V (τ, ξ) <∞}.

Proof. We return to the proof of Theorem 2.5 and the framework of Fenchel
duality in which it was placed, with f = E(τ, ·, ξ) and −f∗(−η) = K(τ, ξ, η). It is
well known in that theory, in terms of the convex sets dom f and dom g (where f and
g are finite), that argminη

{
f∗(−η) + g∗(η)

}
is nonempty and bounded if and only if

0 ∈ int(dom f−dom g) and the infimum is finite (see, for instance, [4, 11.41, 11.39(b)].)
That is in turn equivalent to having ri dom g ∩ ri dom f �= ∅ with dom g ∪ dom f not
lying in a hyperplane (cf. [4, 2.45]). In [1, Proposition 7.4] this property has been
identified with (c). Thus, (a) is equivalent to (c).

The equivalence between (a) and (b), on the other hand, results from
the fact that the function being maximized is concave and upper semicontinuous; cf.
[4, 3.27].

Corollary 4.4 (finite value functions). When V is finite on (0,∞) × R
n, the

maximizing set M(τ, ξ) is nonempty and compact for every (τ, ξ) ∈ (0,∞) × R
n. In

particular this is the case when g is finite on R
n or on the other hand when L is finite

on R
n × R

n.

Proof. The first assertion is justified through condition (c) in Theorem 4.3. The
rest cites elementary circumstances in which V is know from [1, Corollary 7.6] to be
finite.

We look further now at the fundamental kernel E, first demonstrating a property
of epi-continuity. Epi-continuity, which refers to epigraphs depending continuously on
a parameter in the sense of Painléve–Kuratowski set convergence, was established in
[1, Theorem 2.1] for the dependence of V (τ, ·) on τ ∈ [0,∞). We’ll apply that result
to the functions E(τ, ·, ·) by way of a reformulation trick.

Proposition 4.5 (fundamental epi-continuity). The function E(τ, ·, ·) : R
n ×

R
n → R depends epi-continuously on τ ∈ [0,∞): whenever τν → τ with τν ≥ 0 one

has{
lim infν E(τν , ξ′ ν , ξν) ≥ E(τ, ξ′, ξ) for every sequence (ξ′ ν , ξν)→ (ξ′, ξ),
lim supν E(τν , ξ′ ν , ξν) ≤ E(τ, ξ′, ξ) for some sequence (ξ′ ν , ξν)→ (ξ′, ξ).

Proof. Although E seems to fit a different pattern than V , in being generated
as a value function in terms of a variable pair (ξ′, ξ) of initial and terminal points,
instead of an initial function g and a terminal point ξ, we can nonetheless obtain
results about E from those for V by an adaptation. The trick is to view E as the
value function VE : [0,∞)× R

2n → R that is generated from the Lagrangian LE and
initial function gE defined as follows:

LE(x′, x, v′, v) :=

{
L(x, v) if v′ = 0,
∞ if v′ �= 0,

gE(x′, x) :=

{
0 if x′ = x,
∞ if x′ �= x.

(4.4)

Indeed, under these definitions VE(τ, ξ′, ξ) is the infimum of
∫ τ
0
L(x(t), ẋ(t))dt over

all arcs (x′(·), x(·)) ∈ A1
2n[0, τ ] such that x′(0) = x(0), ẋ′(t) = 0 a.e., and x′(τ) = ξ′.

The latter conditions obviously force x(0) to be ξ′. Note that gE and LE satisfy our
blanket assumptions (A) (in higher-dimensional interpretation) because L satisfies
(A1)–(A3). By this route, we get justification of our claims through epi-continuity
results for value functions in [1, Theorem 2.1].
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In our next result, we record a basic relationship between certain effective do-
mains, which although convex, could in general have empty interior, namely

domE(τ, ·, ·) =
{

(ξ′, ξ)
∣∣E(τ, ξ′, ξ) <∞},

domE =
{

(τ, ξ′, ξ)
∣∣ τ > 0, E(τ, ξ′, ξ) <∞}.(4.5)

Proposition 4.6 (domain interior). The following properties are equivalent:
(a) τ > 0 and (ξ′, ξ) ∈ int domE(τ, ·, ·);
(b) (τ, ξ′, ξ) ∈ int domE.
Proof. This is [1, Proposition 7.2] as applied to the value function VE in the

reformulation in the proof of Proposition 4.5.
In the following theorem, subdifferential regularity is a property that a function

has when its epigraph is closed and Clarke regular; see [4].
Theorem 4.7 (regularity of the fundamental kernel). On int domE, the sub-

gradient mapping ∂E is nonempty-compact-convex-valued and locally bounded, and E
itself is locally Lipschitz continuous and subdifferentially regular, moreover semidif-
ferentiable with

dE(τ, ξ′, ξ)(τ ′, ω′, ω) = max
{
〈ω, η′〉−〈ω′, η〉−τ ′H(ξ, η′)

∣∣∣ (−η, η′) ∈ ∂ξ′,ξE(τ, ξ′, ξ)
}
,

where H(ξ, η′) could be replaced by H(ξ′, η). Indeed, E is strictly differentiable wher-
ever it is differentiable, which is at almost every point of int domE, and with respect
to such points the gradient mapping ∇E is continuous.

Proof. We apply [1, Theorem 7.3], a result for value functions V in general under
our assumptions, to VE in the pattern of the proof of Proposition 4.6 above.

Theorem 4.8 (Hamilton–Jacobi equations for the fundamental kernel). The
subgradients of E on (0, τ)× R

n × R
n have the property that

(σ,−η, η′) ∈ ∂E(τ, ξ′, ξ) ⇐⇒ (σ,−η, η′) ∈ ∂̂E(τ, ξ′, ξ)

⇐⇒ (−η, η′) ∈ ∂ξ′,ξE(τ, ξ′, ξ), σ = −H(ξ, η′),

⇐⇒ (−η, η′) ∈ ∂ξ′,ξE(τ, ξ′, ξ), σ = −H(ξ′, η).

(4.6)

In particular, E is a solution to the generalized double Hamilton–Jacobi equation:

σ + H(ξ, η′) = 0

σ + H(ξ′, η) = 0

}
for all (σ,−η, η′) ∈ ∂E(τ, ξ′, ξ) when τ > 0.(4.7)

Proof. We get the equivalence of the first three conditions by applying [1, The-
orem 2.5] to VE , once again following the pattern of reformulation in the proof of
Proposition 4.5, but for that purpose it is necessary to know the Hamiltonian HE for
the Lagrangian LE in (4.4). This calculates out simply to HE(x′, x, y′, y) = H(x, y).
To add the fourth condition in (4.6), we utilize the subgradient description in The-
orem 4.1. Along any Hamiltonian trajectory, H is constant (as proved in [11]), so if
the trajectory goes from (ξ′, η) to (ξ, η′) we must have H(ξ, η′) = H(ξ′, η).

The double Hamilton–Jacobi equation for E isn’t surprising in view of the one
for K in Theorem 3.1. Indeed, each double equation is essentially equivalent to
the other by virtue of the relations in Theorem 4.1. It follows that E is uniquely
determined by (4.7) and the initial condition in its definition (2.1). An earlier viscosity
version of the double equation for E in simpler cases where E is finite can be seen
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in the book of Lions [12]. In general cases where E can be discontinuous and take
on ∞, however, the Hamilton–Jacobi characterization of K has a major advantage
over the one for E in Theorem 4.8, due to the assured finiteness and local Lipschitz
continuity of K(τ, ξ, η) (Theorem 3.5), its smoothness in τ (Theorem 3.1), and its
semidifferentiability everywhere with respect to all arguments jointly (Theorem 3.6).

5. Application to Hopf–Lax formulas and their generalization. Upper
and lower envelope representations of value functions as solutions to Hamilton–Jacobi
equations first appeared in works of Hopf [13] and Lax [14] in very particular situations
where the Hamiltonian H(x, y) is independent actually of x. We inspect the state-
independent case as an example within our framework and then go on to describe how
our results cover an extension of the Hopf–Lax formulas beyond that case. The aim
is to provide further perspective on how our formulas for value functions tie in with
Hamilton–Jacobi theory.

Example 5.1 (formulas of classical Hopf–Lax type). Suppose that L(x, v) =
L0(v) for a coercive, proper, lsc, convex function L0 : R

n → R, or that H(x, y) =
H0(y) for a finite convex function H0 : R

n → R, these assumptions being equivalent
through the conjugacy relations H0 = L∗

0, L0 = H∗
0 . Then the dualizing kernel is

given by

K(τ, ξ, η) = 〈ξ, η〉 − τH0(η),(5.1)

whereas the fundamental kernel is given by

E(τ, ξ′, ξ) =

 τL0

(
τ−1[ξ − ξ′]

)
if τ > 0,

0 if τ = 0, ξ − ξ′ = 0,
∞ if τ = 0, ξ − ξ′ �= 0.

(5.2)

Thus, for any initial function g : R
n → R one has the upper envelope formula

V (τ, ξ) = infξ′
{
g(ξ′) + τL0

(
τ−1[ξ − ξ′]

)}
,(5.3)

while if g is convex, proper, and lsc, one also has the lower envelope formula

V (τ, ξ) = supη

{
〈ξ, η〉 − τH0(η)− g∗(η)

}
.(5.4)

Proof. Conditions (A1), (A2), and (A3) are fulfilled, since this amounts to Ex-
ample 2.3 with A = 0 and G ≡ 0. The formula for K in (5.1) follows at once from
the second half of the double Hamilton–Jacobi equation in Theorem 3.1, according
to which (∂K/∂τ)(τ, ξ, η) = −H0(η). The formula for E in (5.2) then follows from
the general one for E in terms of K in (2.5). Finally, we get the upper envelope rep-
resentation from Theorem 2.1 and the lower envelope representation from Theorem
2.5.

The duality between the upper and lower envelope representations in this example
can also be seen from the angle that (5.4) can be written as

V (τ, ·) = (g∗ + τH0)∗,(5.5)

whereas the right side of (5.3) gives the well known formula of convex analysis for such
a conjugate function in terms of the functions g∗∗ = g and H∗

0 = L0 (see [4, section
11], for instance). In the traditions of Hamilton–Jacobi theory going back to Hopf
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[13], g∗ and H∗
0 don’t appear and the formulas for these functions are substituted

instead. The upper representation comes out then as

V (τ, ξ) = infξ′ supη

{
g(ξ′) + 〈ξ − ξ′, η〉 − τH0(η)

}
,(5.6)

while the lower representation becomes

V (τ, ξ) = supη infξ′
{
g(ξ′) + 〈ξ − ξ′, η〉 − τH0(η)

}
.(5.7)

Nowadays, though, with the Legendre–Fenchel transform so well understood, there’s
no reason not to simplify these expressions by writing them with conjugate functions.
The equality between the “inf sup” in (5.6) and the “sup inf” in (5.7) falls into
the pattern of minimax representations of primal and dual optimization problems
of convex type for which there is, by now, an enormous literature; see [3] and [4,
Chapter 11]. Generally speaking, such an equality is deeply involved with convexity
and requires other qualifications besides. Such qualifications are met here because of
our assumptions (A).

Although both (5.6) and (5.7) were proposed by Hopf [13] as possible formulas
for solutions to a generalized Hamilton–Jacobi PDE in the mode of

ut(t, x) + H0(ux(t, x)) = 0, u(0, x) = g(x),

the first of these is often called the Lax formula because of its appearance in a special
case in the earlier paper of Lax [14] on hyperbolic conservation laws.

In work since Hopf, the lecture notes of Lions [12] and Evans [15] have provided
further treatment of Hopf–Lax formulas. The paper of Bardi and Evans [16] deserves
particular mention. Those authors proved that the upper formula in (5.6), or equiv-
alently (5.3), gives the unique viscosity solution to the Hamilton–Jacobi equation in
the case of a finite convex function H0 and a possibly nonconvex function g that is
globally Lipschitz continuous; alternatively by Evans [15], g can be merely continuous
if H0 is coercive. (Coercivity of H0 corresponds in convex analysis to finiteness of L0.)
In Example 5.1, this formula has been seen to give the value function V regardless of
such extra conditions on g or H0.

Bardi and Evans [16] also showed that the lower formula (5.4), or equivalently
(5.7), gives the unique viscosity solution as long as g is convex and globally Lipschitz
continuous (which is known in convex analysis to correspond to the effective domain
of g∗ being bounded). Recently Alvarez, Barron, and Ishii [17] have removed these
restrictions: the assertion holds true for all lsc, proper, convex functions g. In the
context of Example 5.1, therefore, it follows that the value function V is the unique
viscosity solution—in the sense of Barron and Jensen [18] or Frankowska [8], [19] (who
employs a subgradient equation in place of a pair of inequalities involving upper as
well as lower subgradients).

In the case of the lower envelope formula, Bardi and Evans [16] don’t actually
assume that H0 is convex but just that it is continuous, and they still are able then
to identify the unique viscosity solution under their strong assumptions on g. Our
framework doesn’t cover that feature, because the case is not one of optimization and
there is no value function V of type (1.1) as a solution candidate.

We demonstrate now that the formulas in Example 5.1 can be extended to a
significantly larger class of situations connected with optimal control (in the manner
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explained after Example 2.3), where the Lagrangian and Hamiltonian aren’t state-
independent, while maintaining their relatively explicit character. Again we empha-
size that in the absence of a uniqueness theorem in Hamilton–Jacobi theory capable of
handling all the Hamiltonians and value functions in our framework, these formulas,
although they uniquely describe value functions, can’t yet be claimed to give unique
Hamilton–Jacobi solutions.

Example 5.2 (extended Hopf–Lax formulas with linear state dependence). Sup-
pose that L(x, v) = L0(v−Ax) for a coercive, proper, lsc, convex function L0 : R

n →
R, or that H(x, y) = 〈Ax, y〉+H0(y) for a finite convex function H0 : R

n → R, these
assumptions being equivalent through the conjugacy relations H0 = L∗

0, L0 = H∗
0 . Here

A is any n× n matrix. Let A∗ be the transpose of A and define Ψ : [0,∞)×R
n → R

by

Ψ(τ, η) :=

∫ τ

0

H0

(
e−tA

∗
η
)
dt,(5.8)

this expression being finite and convex in η. Then the dualizing kernel is given by

K(τ, ξ, η) = 〈e−τAξ, η〉(5.9)

and the fundamental kernel is given by

E(τ, ξ′, ξ) = Φ(τ, e−τAξ − ξ′),(5.10)

where Φ(τ, ζ) = supη
{〈ζ, η〉 −Ψ(τ, η)

}
, or in other words, Φ(τ, ·) is the convex func-

tion conjugate to Ψ(τ, ·). Thus, for any initial function g : R
n → R one has the upper

envelope representation

V (τ, ξ) = infξ′
{
g(ξ′) + Φ(τ, e−τAξ − ξ′)

}
= infξ′ supη

{
g(ξ′) + 〈e−τAξ − ξ′, η〉 −Ψ(τ, η)

}
,

(5.11)

while if g is convex, proper, and lsc, one also has the lower envelope representation

V (τ, ξ) = supη

{
〈e−τAξ, η〉 −Ψ(τ, η)− g∗(η)

}
= supη infξ′

{
g(ξ′) + 〈e−τAξ − ξ′, η〉 −Ψ(τ, η)

}
.

(5.12)

Proof. Fix (τ, ξ, η) and let k(t) := K(t, ξ, y(t)) for y(t) := e(t−τ)A
∗
η. From

Theorem 3.5, k is Lipschitz continuous on [0, τ ]. We have k(τ) = K(τ, ξ, η) and

k(0) = K(0, ξ, y(0)) = 〈ξ, y(0)〉 = 〈ξ, e−τA∗
η〉 = 〈e−τAξ, η〉.(5.13)

Furthermore, from the semidifferentiability of K in Theorem 3.6 and its differentia-
bility with respect to τ we have (a.e.)

k̇(t) = (∂K/∂τ)(τ, ξ, y(t)) + min
{〈ξ′, ẏ(t)〉 ∣∣ ξ′ ∈ ∂̃ηK(t, ξ, y(t))

}
,(5.14)

where ẏ(t) = A∗y(t). For each t ∈ [0, τ ] let x(t) denote some vector ξ′ for which the
minimum in (5.14) is attained. Then

k̇(t) =(∂K/∂τ)(τ, ξ, y(t)) + 〈x(t), ẏ(t)〉,
where 〈x(t), ẏ(t)〉 = 〈x(t), A∗y(t)〉 = 〈Ax(t), y(t)〉.(5.15)
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The second of the Hamilton–Jacobi equations in Theorem 3.1 gives us

(∂K/∂τ)(τ, ξ, y(t)) = −H(x(t), y(t)) = −〈Ax(t), y(t)〉 −H0(y(t)).(5.16)

In combining (5.15) and (5.16) we get k̇(t) = −H0(y(t)) = −H0(e(t−τ)A
∗
η), hence

k(τ) = k(0)−
∫ τ

0

H0

(
e(t−τ)A

∗
η
)
dt,

with the integral equaling Ψ(τ, η) (as seen through time reversal). The desired formula
for K in (5.9) comes out now from (5.13) and the fact that k(τ) = K(τ, ξ, η).

The corresponding formula for E in (5.10) is immediate then from (2.5), and the
envelope representations are valid on the basis of Theorems 2.1 and 2.5.

Example 5.2 may be compared to a recent result of Arisawa and Tourin in [20],
extending the upper envelope formula (5.3) to a very special case of state-dependent
Hamiltonians of concave-convex type. Those authors take R

n to be R
m × R

m and
treat

H(x, y) = H(x1, x2; y1, y2) = 〈x2, y1〉+ h(y2)

with h a finite coercive convex function on R
m having minh = h(0) = 0. For that

case they work out a more detailed expression for the fundamental kernel than the
one in (5.10).

The formulas in Example 5.2 reduce to the familiar ones in Example 5.1 when
A = 0, of course. The big difference is that with A �= 0 they can be applied to optimal
control problems with dynamics ẋ = Ax + Bu through the connection laid out in
section 2 after Example 2.3. Then H0(y) = F ∗(B∗y) for a finite convex conjugate
function F ∗, hence

Ψ(τ, η) :=

∫ τ

0

F ∗(B∗e−tA
∗
η) dt.

In many situations it could well be possible to generate the values and even subgradi-
ents of Ψ numerically. The lower envelope representation of V in (4.12) could then, in
light of Theorems 4.2 and 4.3, furnish an effective way of generating subgradients (or
approximate subgradients) of V for potential use in feedback rules, through solving
real-time optimization subproblems in R

n.
The case in Example 5.2 is still relatively special within our framework. What

might be said about value functions that come from state-dependent Hamiltonians
more generally under our basic assumptions, as translated through Proposition 2.2?
Everything really goes back to Theorem 2.6. The extent to which the basic formulas
(2.13) and (2.14) in Theorem 2.6 can be regarded as “explicit” analogs of the classical
Hopf–Lax formulas (5.6) and (5.7) hinges on how far one can go in obtaining an
“explicit” formula for the dualizing kernel K that we have introduced. This requires
an exploration of favorable cases in which the Hamilton–Jacobi characterization of K
in Theorem 3.1 can be made to yield an “explicit” expression for K.

Here we have shown that the classical case in Example 5.1, where K is given by
(5.1), can be extended with essentially no loss to the case in Example 5.2, where K is
given by (5.9). Further research might yield other attractive cases. In the end, though,
it must be borne in mind that the notion of what is an explicit expression for a function
has evolved considerably in mathematics, and now is more a matter of whether a
formula supports insightful analysis tied to modern computational methodology.
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[3] R.T. Rockafellar, Convex Analysis, Princeton University Press, Princeton, NJ, 1970.
[4] R.T. Rockafellar and R.J-B Wets, Variational Analysis, Springer-Verlag, New York, 1997.
[5] R.T. Rockafellar, Linear-quadratic programming and optimal control, SIAM J. Control Op-

tim., 25 (1987), pp. 781–814.
[6] R.T. Rockafellar, Hamiltonian trajectories and duality in the optimal control of linear sys-

tems with convex costs, SIAM J. Control Optim., 27 (1989), pp. 1007–1025.
[7] R.T. Rockafellar, Existence theorems for general control problems of Bolza and Lagrange,

Adv. Math., 15 (1975), pp. 315–333.
[8] H. Frankowska, Hamilton-Jacobi equations: Viscosity solutions and generalized gradients, J.

Math. Anal. Appl., 141 (1989), pp. 21–26.
[9] M.G. Crandall, L.C. Evans, and P.-L. Lions, Some properties of viscosity solutions of

Hamilton-Jacobi equations, Trans. Amer. Math. Soc., 282 (1984), pp. 478–502.
[10] H. Ishii, A Comparison Result for Hamilton-Jacobi Equations Without Growth Condition on

Solutions from Above, preprint, 1998.
[11] R.T. Rockafellar, Generalized Hamiltonian equations for convex problems of Lagrange, Pa-

cific J. Math., 33 (1970), pp. 411–428.
[12] P.-L. Lions, Generalized Solutions of Hamilton-Jacobi Equations, Res. Notes Math. 69, Pit-

man, Boston, 1982.
[13] E. Hopf, Generalized solutions of non-linear equations of first order, J. Math. Mech., 14 (1965),

pp. 201–230.
[14] P.D. Lax, Hyperbolic Systems of Conservation Laws II, Comm. Pure Appl. Math., 10 (1957),

pp. 537–566.
[15] L.C. Evans, Partial Differential Equations, Berkeley Mathematics Lecture Notes, Vols. 3A and

3B, University of California at Berkeley, 1993.
[16] M. Bardi and L.C. Evans, On Hopf’s formulas for solutions of Hamilton-Jacobi equations,

Nonlinear Anal., 8 (1984), pp. 1373–1381.
[17] O. Alvarez, E.N. Barron, and H. Ishii, Hopf-Lax formulas for semicontinuous data, Indiana

Univ. Math. J., 48 (1999), pp. 993–1035.
[18] E.N. Barron and R. Jensen, Semicontinuous viscosity solutions for Hamilton-Jacobi equa-

tions with convex Hamiltonians, Comm. Partial Differential Equations, 15 (1990), pp.
1713–1742.

[19] H. Frankowska, Lower semicontinuous solutions of Hamilton-Jacobi-Bellman equations,
SIAM J. Control. Optim., 31 (1993), pp. 257–272.

[20] M. Arisawa and A. Tourin, Regularizing effects for a class of first-order Hamilton-Jacobi
equations, Nonlinear Anal., 29 (1997), pp. 1405–1419.



QUADRATIC CONTROLLABILITY, STRONG CONTROLLABILITY,
AND A RELATED OUTPUT FEEDBACK PROPERTY∗

SHAN-MIN SWEI† , TETSUYA IWASAKI‡ , AND MARTIN CORLESS§

SIAM J. CONTROL OPTIM. c© 2000 Society for Industrial and Applied Mathematics
Vol. 39, No. 5, pp. 1373–1390

Abstract. Quadratic controllability and strong controllability are the two system properties to
be discussed for a special class of norm bounded uncertain linear systems. The main contribution of
this paper is twofold. First we show that it is possible to reduce the problem of checking quadratic
controllability or strong controllability of a given uncertain system to the same problem for a reduced
order subsystem, which we call the essential subsystem. Then we use this result to examine a related
output feedback property. Specifically, for a given uncertain system, we will answer the following
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1. Introduction. The problem of quadratic stabilization of uncertain linear sys-
tems has attracted a number of researchers in the past and the results on this subject
are abundant; see, for example, [1, 4, 6, 12, 13, 14, 15, 16, 19, 28], just to name a few.
In the references [13, 14, 15, 28], the attention was paid to a special class of uncertain
linear systems, namely, the systems with (unstructured) norm bounded uncertainties.
One important feature of this class of uncertain systems is that the quadratic sta-
bilization problem can be posed as the H∞ control problem [8, 17]. Consequently,
any standard tool for H∞ control (e.g. [2, 3, 7, 22, 23]) can be directly applied to
find a quadratically stabilizing controller. Thus, the quadratic stabilization problem
has been solved completely for the case of systems with unstructured norm bounded
uncertainties.

While the H∞ control theory provides a tool for quadratic stabilization, one may
lose the insight of the problem by blindly applying such a tool for control design.
In this regard, the reference [25] has thoroughly studied the quadratic stabilization
problem from a very different perspective in that it exploits the structure of the under-
lying system. An order reduction process which is similar to the back-stepping [9] was
introduced for singular systems and was shown to preserve the quadratic stabilizabil-
ity property. By repeating the reduction process, the original quadratic stabilization
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problem is equivalently transformed to that for a reduced order subsystem, which is
much simpler.

In light of this equivalence between the original system and its reduced order sub-
system, the notion of quadratic controllability was then introduced in [18]. Quadratic
controllability was defined as quadratic stabilizability with an arbitrary rate of con-
vergence. The conditions under which the norm bounded uncertain systems possess
such a property were first presented in [24] for a class of scalar input systems and
in [18] for more general multi-input systems. Moreover, the equivalence was estab-
lished [18] in the sense of quadratic controllability between the original system and
its reduced order subsystem.

The strong controllability is another important system property which was stud-
ied in relation to the (almost) disturbance decoupling problem for linear time-invariant
systems, see [5, 10, 11, 20, 21, 22, 23, 26]. This property was defined geometrically in
terms of invariant subspaces. The notion of strongly controllable subspace was used
in [22, 23] to derive a solution to the singular H∞ control problem, by reducing it
to the almost disturbance decoupling problem. Roughly speaking, the almost distur-
bance decoupling problem is solvable if the image of the matrix, through which the
disturbance enters the system, is contained in the strongly controllable subspace.

In this paper, we study the quadratic controllability and strong controllability
properties through a system reduction process which is similar to but more concise
than the one discussed in [18, 25]. Specifically, we give a necessary and sufficient
condition for an uncertain linear system to be quadratically controllable or strongly
controllable in terms of a reduced order subsystem, and show that strong controlla-
bility is stronger than quadratic controllability in general. In the latter half of the pa-
per, we extend the notion of quadratic controllability to the dynamic output feedback
case and provide a complete characterization in terms of reduced order subsystems.
The matrix inequality solution to the H∞ control problem and its connection to the
quadratic stabilization will be frequently used in developing many of our results. The
essence is briefly outlined as follows.

Let the control input matrix be denoted by B and the direct feedthrough matrix
by D. A system order reduction process will be defined when the matrix B(I−D+D)
neither has full row rank nor equals zero, where superscript + denotes the Moore–
Penrose inverse. The reduction process is repeated until the matrix “B(I −D+D)”
in the reduced order system becomes either a full rank matrix or a zero matrix. We
call this resulting reduced order system the essential subsystem. Our contribution is
to show that the original system is quadratically controllable or strongly controllable
if and only if its essential subsystem is so.

A related output feedback property is then discussed for a class of uncertain linear
systems. We first define the notion of quadratic feedback minimality of an uncertain
system by the existence of a dynamic output feedback controller which quadratically
stabilizes the system with any given exponential convergent rate. For systems without
uncertainty, this notion can be translated into the property of simultaneous control-
lability and observability, i.e., the minimality. From this observation, it is tempting
to conjecture that an uncertain system is quadratically feedback minimal if both the
state feedback problem and its dual problem are quadratically controllable. We show
that this conjecture is false. However, it will be shown that an additional orthogo-
nality condition which relates these two problems is needed to make the statement
valid.

This paper is organized as follows. In section 2 we review the notions of quadratic
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controllability and strong controllability, and some important preliminary results are
presented for the case where the matrix B(I −D+D) either has full row rank or is a
zero matrix. When the matrix B(I −D+D) is neither, an order reduction procedure
is proposed in section 3 to obtain the reduced order essential subsystem for which the
matrix B(I − D+D) either has full row rank or is a zero matrix. The equivalence
in the sense of quadratic controllability or strong controllability is then established
between the original system and its essential subsystem. In section 4 our main result
shows a necessary and sufficient condition under which the uncertain system possesses
the aforementioned quadratic feedback minimality property. We conclude this paper
with some remarks in section 5.

We use the following standard notation in this paper. For a matrix A, At denotes
its (complex conjugate) transpose. A left annihilator of A, denoted by A⊥, is a matrix
whose rows form a basis for the null space of At. The image and the spectral norm of
A are respectively denoted by Im(A) and ‖A‖, and Re(·) means the real part of the
argument.

2. Quadratic controllability and strong controllability. Consider an un-
certain system described by

ẋ(t) = A∆x(t) +B∆u(t),(2.1)

where x(t) ∈ Rn is the state, u(t) ∈ Rm is the control input. The matrices A∆ and
B∆ are defined by

A∆ := A+G∆C, B∆ := B +G∆D,

where ∆ = ∆(t, x) ∈ Rk×� is a matrix-valued function which may depend on the
time and/or the states, and the matrices A,B,G,C, and D are real and known with
compatible dimensions. Throughout the paper, we assume that the value of ∆ is
uncertain but is Lebesgue measurable with respect to the time and continuous with
respect to the states. Furthermore, it is assumed that ∆ belongs to a norm bounded
set ∆ defined by

∆ := { ∆ ∈ Rk×� : ‖∆‖ ≤ 1 }.(2.2)

We call the uncertain system described by (2.1) and (2.2) with ∆ ∈∆ a norm bounded
uncertain system.

Definition 2.1. The uncertain system given in (2.1) is called regular if the
matrix B(I −D+D) = 0 and is called simple if the matrix B(I −D+D) has full row
rank.

The physical implication of Definition 2.1 is that if the control input u is orthog-
onally decoupled into two parts, namely,[

u1

u2

]
:=

[
I −D+D
D+D

]
u,

then with this input description, we will have

B∆u = Bu1 + (B +G∆D)u2,(2.3)

which indicates that u1 is the part of the control input that affects the system with-
out direct influence of the uncertainty ∆, whereas u2 enters the system through the
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uncertainty-dependent matrix B∆. If a system is regular, then only u2 is effective,
while a simple system receives full control authority through u1.

Another important observation from Definition 2.1 is that the uncertain system
(2.1) is regular if and only if Im(Bt) ⊆ Im(Dt), since D(I −D+D) = 0. On the other
hand, (2.1) is simple if and only if B has full row rank and Im(Dt) ∩ Im(Bt) = {0}.

Definition 2.2. The uncertain system described in (2.1) is said to be quadrat-
ically controllable (QC) if, for each α > 0, there exist a positive definite symmetric
matrix P ∈ Rn×n and a state feedback gain K ∈ Rm×n such that

P (A∆ +B∆K + αI) + (A∆ +B∆K + αI)tP < 0 ,

for all ∆ ∈∆.
The notion of quadratic controllability was first introduced in [18]. Basically,

it defines that an uncertain system is QC if, for each α > 0, it is quadratically
stabilizable with the convergent rate α. In other words, it is QC if there exists a state
feedback gain K such that the resulting closed-loop system admits a single quadratic
Lyapunov function (independent of ∆) which proves stability with rate of convergence
α against all possible ∆ ∈ ∆. For systems without uncertainty, i.e., ẋ(t) = Ax(t) +
Bu(t), the notion of quadratic controllability means the assignability of the closed-
loop eigenvalues with arbitrarily large negative real parts, i.e., the controllability of
the pair (A,B).

It is important to note that the uncertain system given in (2.1) can be alternatively
described as the feedback connection of a nominal system with an uncertain block,
which is given by

Σ :


ẋ(t) = Ax(t) +Bu(t) +Gw(t),
z(t) = Cx(t) +Du(t),
w(t) = ∆z(t),

(2.4)

where the two new variables, w(t) ∈ Rk and z(t) ∈ R�, denote a fictitious disturbance
input and a fictitious controlled output, respectively.

The following lemma characterizes QC systems in terms of matrix inequalities.
Lemma 2.3. Consider the uncertain system Σ described in (2.4). The following

statements are equivalent.
(i) The uncertain system Σ is QC.
(ii) For each α > 0, there exists Xt = X > 0 such that[

B
D

]⊥ [
(A+ αI)X +X(A+ αI)t +GGt XCt

CX −I
] [

B
D

]⊥t
< 0.(2.5)

(iii) For each α > 0, there exists Xt = X > 0 such that

E⊥[(Ã+ αI)X +X(Ã+ αI)t +XC̃X − B̃]E⊥t < 0,(2.6)

where

Ã := A−BD+C, B̃ := B(DtD)+Bt −GGt,
C̃ := Ct(I −DD+)C, E := B(I −D+D).

(2.7)

Proof. The equivalence of (i) and (ii) simply follows from the quadratic stabiliz-
ability result [8] and the state feedback H∞ synthesis result [7]. The equivalence of
(ii) and (iii) can be verified by noting that[

B
D

]⊥
=

[
E
D

]⊥ [
I −BD+

0 I

]
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and [
E
D

]⊥
=

([
E
D

] [
E
D

]t)⊥
=

[
EEt 0
0 DDt

]⊥
=

[
E⊥ 0
0 D⊥

]
and using the Schur complement.

Recall that the matrix E in Lemma 2.3 is the uncertainty-free input matrix
through which the control input u1 enters the system as shown in (2.3). If Σ is
regular, then E⊥ = I and (2.6) becomes a standard Riccati inequality. On the other
hand, if Σ is simple, then E⊥ becomes trivial; hence (2.6) is trivially satisfied. An
immediate consequence of this is that the system Σ in (2.4) is QC if it is simple.

The following lemma shows when an uncertain system is QC. A similar result was
obtained in [18, 24]. For completeness, a proof is included.

Lemma 2.4. Consider the uncertain system Σ described in (2.4). The following
statements hold true.

(a) If Σ is simple, then it is QC.
(b) If Σ is regular, then it is QC if and only if

B̃ ≥ 0 and (Ã, B̃) controllable,(2.8)

where Ã and B̃ are defined in (2.7).
Proof. Statement (a) is obvious as noted above, and we need only to prove (b).
By the regularity assumption, Lemma 2.3 implies that the uncertain system is

QC if and only if, for each α > 0, there exists Xt = X > 0 such that

(Ã+ αI)X +X(Ã+ αI)t +XC̃X − B̃ < 0(2.9)

where Ã, B̃, and C̃ ≥ 0 are defined in (2.7).
Suppose Σ is QC. Then, from Lemma 5.1 in the appendix, we have B̃ ≥ 0.

Suppose (Ã,B̃) is not controllable, then there exist a complex number λ and a nonzero
vector v such that

vt(Ã− λI) = 0, vtB̃ = 0.

Fix such λ and v, and pre- and postmultiply (2.9) by vt and v, respectively, and we
obtain that for each α > 0, there exists Xt = X > 0 satisfying

2[α+Re(λ)]vtXv + vtXC̃Xv < 0 .(2.10)

If we choose α > 0 to be sufficiently large such that α+Re(λ) ≥ 0, then (2.10) implies
that vtXC̃Xv < 0, which contradicts that C̃ ≥ 0. Hence, (Ã,B̃) must be controllable.

Conversely, suppose B̃ ≥ 0 and (Ã,B̃) is controllable. Then, for each α > 0, there
exist a gain matrix K such that Ã+ B̃K+αI is Hurwitz and a P t = P > 0 satisfying
the following Lyapunov inequality:

P (Ã+ B̃K + αI) + (Ã+ B̃K + αI)tP +KtB̃K + C̃ < 0.

Completing the square with respect to K, we obtain

P (Ã+ αI) + (Ã+ αI)tP + C̃ − PB̃P < −(P +K)tB̃(P +K) ≤ 0.

Now, it is straightforward to verify that X := P−1 satisfies (2.9). Thus the system is
QC.
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It is easy to derive, under the regularity assumption on Σ, that the first condition
in (2.8) is equivalent to the existence of a matrix M , such that

G = BM and ‖DM‖ ≤ 1,

which is precisely the matching condition obtained in [18]. Intuitively, this condition
implies that it is possible to completely compensate the effect of the uncertainty ∆
entering the system through G by using the control input through B.

Next we introduce the notion of strong controllability.
Definition 2.5. The strongly controllable subspace of the uncertain system (2.1)

is the smallest subspace S of Rn for which there exists a matrix K such that

(A+KC)S ⊂ S, Im(B +KD) ⊂ S.

The system is said to be strongly controllable (SC) if its strongly controllable subspace
is equal to the whole state space.

The notion of strong controllability was introduced and studied in the references
[5, 10, 11, 20]. It was considered in the context of invariant properties of linear
systems, rather than in the robustness analysis context which is our main focus in
this paper. It was shown in [26] for the case where D = 0 that if Σ is SC, then the
problem of almost disturbance decoupling with an arbitrary degree of stability (or
rate of convergence) for Σ is solvable. Therefore, the notion of strong controllability
is stronger than that of quadratic controllability when D = 0.

The following lemma [5, 20] characterizes the strong controllability property in
terms of a rank condition.

Lemma 2.6. The uncertain system Σ is SC if and only if

rank

[
A− sIn B
C D

]
= n+ rank

[
C D

]
(2.11)

holds for all s ∈ C.
The characterization of strong controllability given in Lemma 2.6 implies that the

system Σ has no finite invariant zeros. If there is no uncertainty in the system, i.e.,
when C = 0 and D = 0, then the condition (2.11) reduces to

rank
[
A− sIn B

]
= n ∀ s ∈ C ,(2.12)

which is the Popov–Belevitch–Hautus (PBH) rank test for the controllability of the
pair (A,B). In this case, strong controllability is equivalent to quadratic controllabil-
ity and the SC subspace given in Definition 2.5 reduces to the smallest A-invariant
subspace containing Im(B), which is precisely the controllability subspace defined in
[27].

The following lemma shows some implications of the uncertain system Σ being
simple or regular in relation to the notion of strong controllability.

Lemma 2.7. Consider the uncertain system Σ described in (2.4). The following
statements hold true.

(a) If Σ is simple, then it is SC.
(b) If Σ is regular, then it is not SC.
Proof. First we prove (a). Since B(I −D+D) has full row rank n,

rank

[
A− sIn B
C D

]
= rank

([
A− sIn B
C D

] [
I 0 0
0 D+D I −D+D

])
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= rank

[
A− sIn BD+D B(I −D+D)
C D 0

]
= n+ rank

[
C D

]
.

To prove (b), we note that since B = BD+D, we have

rank

[
A− sIn B
C D

]
= rank

([
I −BD+

0 I

] [
A− sIn BD+D
C D

])
= rank

[
A−BD+C − sIn 0

C D

]
≤ rank(A−BD+C − sIn) + rank

[
C D

]
< n+ rank

[
C D

]
,

where the last strict inequality holds when s ∈ C is chosen to be an eigenvalue of
A−BD+C.

Note that Lemmas 2.4 and 2.7 completely characterize the QC and SC properties
of an uncertain system when it is either simple or regular. However, these results shed
little light on uncertain systems which are neither simple nor regular. In the next
section, we will introduce the notion of essential subsystem, which plays a central role
in considering such general cases.

3. Characterization of quadratic controllability and strong controlla-
bility via the essential subsystem. Suppose the uncertain system Σ in (2.4) is
neither simple nor regular. In what follows, we will define a reduced order subsys-
tem of Σ which is obtained through state and control input transformations, followed
by state truncations. The main features of this subsystem are as follows: (a) it has
smaller dimension than the original system, (b) it is either simple or regular, and
(c) quadratic controllability or strong controllability of the original system can be
verified by checking quadratic controllability or strong controllability of this reduced
order subsystem. We call this subsystem of Σ the essential subsystem.

3.1. The essential subsystem. Suppose the system Σ is neither simple nor
regular. Let N0 and R0 be matrices whose columns form orthonormal bases for the
left null space and the range space of B(I −D+D), respectively. Using the following
state and input transformations,[

ξn
ξr

]
:=

[
N t

0

Rt0

]
x,

[
u1

u2

]
:=

[
I −D+D
D+D

]
u,

the nominal part of Σ in (2.4) will have the following form:
ξ̇n = Annξn +Anrξr +Bnu2 +Gnw,

ξ̇r = Arnξn +Arrξr + B̂ru1 +Bru2 +Grw,
z = Cnξn + Crξr +D u2,

where [
Ann Anr
Arn Arr

]
:=

[
N t

0

Rt0

]
A
[
N0 R0

]
,[

0 Bn
B̂r Br

]
:=

[
N t

0

Rt0

]
B
[
I −D+D D+D

]
,[

Gn
Gr

]
:=

[
N t

0

Rt0

]
G,

[
Cn Cr

]
:= C

[
N0 R0

]
.



1380 SHAN-MIN SWEI, TETSUYA IWASAKI, AND MARTIN CORLESS

Moreover, B̂r is a full row rank matrix. It should be noted from the second equation
that ξr can be fully controlled as desired through u1, and therefore it can be regarded
as part of control input in the first equation. This motivates us to consider the
following reduced order subsystem of Σ:

Σ1 :

 ζ̇(t) = A1ζ(t) +B1v(t) +G1w(t),
z(t) = C1ζ(t) +D1v(t),
w(t) = ∆z(t),

(3.1)

where ζ := ξn is the state and v :=
[
ξr
u2

]
is the control input, and[

A1 B1 G1

C1 D1 0

]
:=

[
Ann Anr Bn Gn
Cn Cr D 0

]
=

[
N t

0 0
0 I

] [
A B G
C D 0

] N0 R0 0 0
0 0 I 0
0 0 0 I

 .

It is worth noting that Bn = N t
0BD

+D = N t
0B, since N t

0B(I −D+D) = 0. Clearly,
the order of Σ1 is lower than that of Σ, and it could be either simple or regular.
If Σ1 is neither, the reduction procedure can be applied again to obtain a reduced
order subsystem of Σ1. We may repeat this procedure to generate a sequence of
subsystems Σ1, . . . ,Σq until Σq becomes either simple or regular. We call Σq the
essential subsystem of Σ. In the subsequent sections, we show that the quadratic
controllability and strong controllability properties are preserved in the reduction
process and hence Σ is QC and/or SC if and only if Σq is also.

The procedure to obtain Σq can be formalized as follows.
Algorithm 1

Given the system Σ, define its essential subsystem Σq from the following iteration
steps.
Step 0. Let i = 0 and set the initial system Σ0 := Σ, i.e.,[

A0 B0 G0

C0 D0 0

]
:=

[
A B G
C D 0

]
.

Step 1. If Σi is either simple or regular, then go to Step 3; otherwise define the
subsystem Σi+1 by

[
Ai+1 Bi+1 Gi+1

Ci+1 Di+1 0

]
:=

[
N t
i 0
0 I

] [
Ai Bi Gi
Ci Di 0

] Ni Ri 0 0
0 0 I 0
0 0 0 I

 ,
where Ni and Ri are matrices whose columns form orthonormal bases for the
left null space and the range space of Bi(I −D+

i Di), respectively.
Step 2. Set i = i+ 1 and go to Step 1.
Step 3. Let q := i and Σq := Σi.

Writing down the above iterative process in the closed form, we see that the
essential subsystem can be characterized as

[
Aq Bq Gq
Cq Dq 0

]
:=

[
N t 0
0 I

] [
A B G
C D 0

] N ∗ 0
0 ∗ 0
0 0 I

 ,
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where ∗ denotes a known entry and

N :=

{
I if q = 0,
N0N1 · · ·Nq−1 if q ≥ 1.

(3.2)

Thus, it can be seen that the essential subsystem Σq is obtained through the projection
of the original system Σ onto Im(N). Define a matrix N by

N :=

{
N if Σq is regular,
0 if Σq is simple.

(3.3)

The importance of matrix N will become eminent when we discuss an output feedback
property in section 4.

3.2. Characterization of QC. The following is the main result of this subsec-
tion.

Theorem 3.1. Consider the uncertain system Σ described in (2.4). Define the
essential subsystem Σq by Algorithm 1. Then Σ is QC if and only if Σq is QC.

Before we proceed further, some remarks are in order. If Σq is simple, then it
follows from Lemma 2.4 that Σq is QC. On the other hand, if Σq is regular, then the
matching condition in Lemma 2.4 is necessary (and sufficient) for Σq to be QC.

The following lemma is instrumental to the proof of Theorem 3.1, and it shows
that the proposed order reduction process preserves the QC property.

Lemma 3.2. Consider the uncertain system Σ described in (2.4) and its reduced
order subsystem Σ1 defined in (3.1). The system Σ is QC if and only if its subsystem
Σ1 is QC. Moreover, if for each α > 0, there exists Xt = X > 0 satisfying inequality
(2.6) for the original system Σ, then X1 := N t

0XN0 satisfies the same inequality for
the subsystem Σ1.

Proof. Note that U0 := [ N0 R0 ] is an orthogonal matrix and E⊥ = N t
0. Define

(3.4a)

[
Ãnn Ãnr
Ãrn Ãrr

]
:= U t0ÃU0,

[
Xnn Xnr
Xt
nr Xrr

]
:= U t0XU0,

(3.4b)

[
Bn
Br

]
:= U t0B,

[
Gn
Gr

]
:= U t0G,

[
Cn Cr

]
:= CU0.

Then, after some algebraic manipulations, (2.6) can be rewritten as

Φ := (ÃnnXnn + ÃnrX
t
nr) + (ÃnnXnn + ÃnrX

t
nr)

t +GnG
t
n −Bn(DtD)+Btn

+2αXnn + (CnXnn + CrX
t
nr)

t(I −DD+)(CnXnn + CrX
t
nr) < 0.(3.5)

Moreover, (3.5) holds if and only if there exists a K such that

Φ + (BnD
+ +KDD+)(BnD

+ +KDD+)t < 0.

It is straightforward to verify that the above inequality can be equivalently written
as

(
AnnXnn +

[
Anr BnD+

] [ Xt
nr

K̃t

])
+

(
AnnXnn +

[
Anr BnD+

] [ Xt
nr

K̃t

])t

+GnGt
n

+2αXnn +

(
CnXnn +

[
Cr DD+

] [ Xt
nr

K̃t

])t (
CnXnn +

[
Cr DD+

] [ Xt
nr

K̃t

])
< 0 ,

(3.6)
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where Ann and Anr are defined similarly to Ãnn and Ãnr in that A replaces Ã, and

K̃ := K −XnnCtn −XnrCtr.
Taking the Schur complement of (3.6), we obtain

[
AnnXnn + XnnA

t
nn + 2αXnn + GnG

t
n XnnC

t
n

CnXnn −I

]
+

[
Anr BnD

+

Cr DD+

][
Xt

nr

K̃t

] [
I 0

]
+

[
I
0

] [
Xnr K̃

] [ Anr BnD
+

Cr DD+

]t
< 0.

(3.7)

It then follows from the projection lemma presented in [3, 7] that there exist Xnr and
K̃ which satisfy the above inequality if and only if[
Anr BnD+

Cr DD+

]⊥ [
AnnXnn +XnnAt

nn + 2αXnn +GnGt
n XnnCt

n
CnXnn −I

] [
Anr BnD+

Cr DD+

]⊥t

< 0.

Finally, since

Im

[
Bn
D

]
= Im

[
BnD

+D
DD+D

]
= Im

[
BnD

+

DD+

]
,

we obtain that [
Anr BnD

+

Cr DD+

]⊥
=

[
Anr Bn
Cr D

]⊥
.

Hence the above inequality is precisely the condition for the subsystem Σ1 to be
QC.

We now prove Theorem 3.1.
Proof. In view of Lemma 3.2, the quadratic controllability property is invariant

under the proposed order reduction process. Hence the uncertain system Σ is QC if
and only if its essential subsystem Σq is QC.

3.3. Characterization of strong controllability. Consider the uncertain sys-
tem Σ given in (2.4) and its essential subsystem Σq. In this subsection, we will es-
tablish the equivalence between Σ and Σq in the sense of strong controllability. To
show this, we rely on the characterization of strong controllability which was given
by the rank condition in Lemma 2.6. First, we will examine the strong controllability
property of Σ in terms of Σ1.

Lemma 3.3. Consider the uncertain system Σ described in (2.4) and its reduced
order subsystem Σ1 defined in (3.1). The rank condition

rank

[
A− sIn B
C D

]
− n = rank

[
A1 − sIn1 B1

C1 D1

]
− n1(3.8)

holds for all s ∈ C, where n1 denotes the dimension of Σ1.
Proof. Let r be the rank of B(I −D+D). Since n = n1 + r, we obtain

rank

[
A− sIn B

C D

]
= rank

([
N t
0 0

0 I
Rt
0 0

][
A− sIn B

C D

][
N0 R0 0 0
0 0 I I −D+D

])
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= rank

[
A1 − sIn1 B1 0

C1 D1 0
∗ ∗ Rt

0B(I −D+D)

]

= rank

[
A1 − sIn1 B1

C1 D1

]
+ n− n1,

where the last equality follows from the fact that the matrix Rt0B(I −D+D) has full
row rank (n− n1).

It follows readily from the above lemma that s ∈ C is an invariant zero for the
original system Σ if and only if it is an invariant zero for the reduced order subsystem
Σ1. Thus, the invariant zeros of the original system are preserved under the order
reduction process and they are the invariant zeros of the essential subsystem Σq.
Furthermore, by definition, for Σq to be SC it must not have finite invariant zeros.
This observation is elaborated in the next theorem, which is the main result of this
subsection.

Theorem 3.4. Consider the uncertain system Σ in (2.4) and its essential sub-
system Σq defined by Algorithm 1. Then Σ is SC if and only if Σq is SC.

Proof. If Σ is SC, then it follows from Lemma 2.6 that the rank condition (2.11)
holds for all s ∈ C. Moreover, from Lemma 3.3, we note that the order reduction
process preserves the quantities

rank

[
Ai − sIni Bi

Ci Di

]
− ni and rank

[
Ci Di

]
,(3.9)

where ni denotes the dimension of subsystem Σi. Hence

rank

[
Ai − sIni Bi

Ci Di

]
= ni + rank

[
Ci Di

] ∀ s ∈ C ,(3.10)

holds for all i = 1, . . . , q. Thus, from Lemma 2.6, we see that the essential subsystem
Σq is SC. Conversely, if Σq is SC, then it satisfies the rank condition in (3.10) with
i = q. Again, the quantities in (3.9) are preserved for each i < q and hence Σ must
be SC.

In light of Lemma 2.7 and the fact that Σq is either simple or regular, we note that
Σq is SC if and only if it is simple. It can be inferred from Theorems 3.1 and 3.4 that
strong controllability generally implies quadratic controllability, but not vice versa,
since an uncertain system can be QC even if its essential subsystem is not simple.

4. A related output feedback property. We have considered the quadratic
controllability property for a class of uncertain linear systems described in (2.1),
provided that all the states are available for linear feedback design. This section,
however, is concerned with the uncertain systems in which only the measured states
are available for feedback, and in addition, they are contaminated by the uncertainties.
For this class of uncertain systems, our objective is to determine a necessary and
sufficient condition under which there exists a dynamic output feedback controller that
will render the closed-loop system which is quadratically stable with any prescribed
rate of convergence. We call an uncertain system with such property quadratically
feedback minimal.

4.1. Notion of quadratic feedback minimality. Consider the uncertain sys-
tem described in (2.1) with measured output{

ẋ(t) = A∆x(t) +B∆u(t),
y(t) = M∆x(t) + J∆u(t),

(4.1)
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where y(t) ∈ Rp denotes the measured output, and M∆ and J∆ are defined by

M∆ :=M + J∆C , J∆ := J∆D ,

where the matrices M and J are real and known with compatible dimensions, and ∆
belongs to ∆. This uncertain system is to be controlled by a linear, time-invariant,
dynamic, output feedback controller of the form{

ẋc(t) = Acxc(t) +Bcy(t),
u(t) = Ccxc(t),

(4.2)

where xc(t) ∈ Rnc is the state of the controller, and Ac, Bc, and Cc are real matrices
with compatible dimensions. The closed-loop system, which consists of the plant (4.1)
and the controller (4.2), is given by ẋc� = A∆xc� with

xc� :=

[
x
xc

]
, A∆ :=

[
A∆ B∆Cc

BcM∆ Ac +BcJ∆Cc

]
.

Definition 4.1. The uncertain system described in (4.1) is said to be quadrati-
cally feedback minimal (QFM) if for any given α > 0, there exist a dynamic controller

of the form (4.2) and a positive-definite symmetric matrix P ∈ R(n+nc)×(n+nc) such
that

P (A∆ + αI) + (A∆ + αI)tP < 0(4.3)

for all ∆ ∈∆.
For linear, time-invariant, certain systems (i.e., when ∆ is fixed and known), the

notion given in Definition 4.1 is equivalent to the assignability (using dynamic output
feedback controllers) of the closed-loop eigenvalues with arbitrarily large negative real
parts. As is well known, the class of certain systems having such a property coincides
with the class of systems that are controllable and observable, i.e., minimal; hence
the term QFM. In view of this fact, it is tempting to conjecture that the class of
uncertain systems having such a property can also be characterized as the class of
systems whose state feedback part is QC and its dual part is also QC. However, our
result will show that an additional orthogonality condition has to be satisfied.

In view of the uncertain system Σ given in (2.4), we note that the uncertain
system (4.1) can be equivalently described by

Σof :


ẋ(t) = Ax(t) +Bu(t) + Gw(t),
y(t) = Mx(t) + Jw(t),
z(t) = Cx(t) +Du(t),
w(t) = ∆z(t).

(4.4)

Given the system Σof , we define two auxiliary systems as follows:

Σ :


ẋ(t) = Ax(t) +Bu(t) +Gw(t),
z(t) = Cx(t) +Du(t),
w(t) = ∆z(t)

(4.5)

and

Σ̂ :


˙̂x(t) = Âx̂(t) + B̂û(t) + Ĝŵ(t),

ẑ(t) = Ĉx̂(t) + D̂û(t),

ŵ(t) = ∆̂ẑ(t),

(4.6)
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where (Â, B̂, Ĝ, Ĉ, D̂) := (At,M t, Ct, Gt, J t) and ∆̂ := ∆t. The system Σ in (4.5)
is precisely the system considered in the previous sections, which defines a state
feedback problem, whereas the system Σ̂ defines another state feedback problem which
is the dual of the state estimation problem for Σof . These two systems will play
essential roles in developing the main result of this section. In order to facilitate our
presentation, we make use of the following notions. For system Σ̂, we can also apply
Algorithm 1 to attain its essential subsystem. Assume that the essential subsystem
Σ̂q̂ is obtained at i = q̂.

4.2. QFM systems. The main result of this section is contained in the following
theorem.

Theorem 4.2. Consider the uncertain system Σof described in (4.4). Let the

auxiliary systems Σ and Σ̂ be given by (4.5) and (4.6). Define a matrix N for Σ
as described in (3.3), and similarly a matrix N̂ for Σ̂. Then, Σof is quadratically
feedback minimal if and only if the following conditions hold.

(a) Σ is QC ,
(b) Σ̂ is QC , and
(c) N̂ tN = 0 .
We will prove this theorem in the next subsection. For now, let us elaborate on

the result. For systems without uncertainties, it is well known that Σof is QFM if and
only if both (A,B) and (At,Ct) are controllable. For uncertain systems, in view of
Theorem 4.2, these conditions are replaced by the quadratic controllability properties
of Σ and Σ̂ as in (a) and (b), and in addition, we have the orthogonality condition
(c).

In order to verify the conditions in Theorem 4.2, we need to go through the order
reduction process to obtain the essential subsystems for both Σ and Σ̂, namely, Σq
and Σ̂q̂. Depending on whether each of these essential subsystems is simple or regular,
we may have to examine four different cases, as shown in Table 4.1, to determine if
the system Σof is QFM.

Table 4.1
Four cases resulted from the reduction process.

Σq \ Σ̂q̂ Simple Regular

simple Case 1 Case 2
regular Case 3 Case 4

Case 1: Both essential subsystems are simple, and therefore both Σ and Σ̂ are
QC. Moreover, it was defined previously that N = 0 and N̂ = 0, and hence condition
(c) in Theorem 4.2 is trivially satisfied. Thus, in this case the system Σof is always
QFM. Furthermore, it follows from Theorem 3.4 and Lemma 2.7(a) that both Σ and
Σ̂ are SC, and from Lemma 2.6, for all s ∈ C, we have

rank

[
sI −A B
C D

]
= n+ rank

[
C D

]
,

rank

[
sI −A G
M J

]
= n+ rank

[
G
J

]
.

(4.7)

Cases 2 and 3: We consider Case 2 only; Case 3 can be treated similarly. Since
the essential subsystem Σq is simple, Σ is QC and N = 0. Hence conditions (a) and
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(c) always hold, and Σof is QFM if and only if condition (b) holds. Since the essential

subsystem Σ̂q̂ is regular, Σ̂ is QC if and only if Σ̂q̂ satisfies the matching condition
described in Lemma 2.4. In this case, the second equality in (4.7) is replaced with
strict inequality (<).

Case 4: Both essential subsystems are regular. Conditions (a) and (b) can be
checked by utilizing Lemma 2.4. Condition (c) can be verified by direct calculation.
In this case, both equalities in (4.7) are replaced with strict inequalities. Finally, it is
important to note that Σof cannot be QFM if Σ and Σ̂ are both regular, since in this

case N = N̂ = I and thus condition (c) can never hold.

4.3. Proof of the main theorem. First, we define two matrix-valued mappings
as follows:

Fα(Σ, X) :=

[
B
D

]⊥ [
(A+ αI)X +X(A+ αI)t +GGt XCt

CX −I
] [

B
D

]⊥t
,

S(X,Y, Z) :=

[
X Zt

Z Y

]
,

where Σ is the system described in (4.5).
The next lemma is essential for proving Theorem 4.2.
Lemma 4.3. Consider the uncertain system Σof described in (4.4). The following

statements are equivalent.
(i) The uncertain system Σof is QFM.
(ii) For each α > 0, there exist positive definite symmetric matrices X and Y ,

such that

Fα(Σ, X) < 0, Fα(Σ̂, Y ) < 0, S(X,Y, I) > 0.

Proof. The equivalence follows from the quadratic stabilizability result [8] and
the H∞ synthesis result [3, 7].

In view of Lemma 3.2, next we present a condition which is similar to statement
(ii) of Lemma 4.3, but is given in terms of Σ̂ and a reduced order subsystem of Σ.

Lemma 4.4. Consider the uncertain system Σof in (4.4) and define Σ and Σ̂ as
in (4.5) and (4.6). Suppose that Σ is neither simple nor regular. Then statement (ii)
of Lemma 4.3 holds if and only if the following condition is satisfied.

(i) For each α > 0, there exist symmetric matrices X1 and Y such that

Fα(Σ1, X1) < 0, Fα(Σ̂, Y ) < 0, S(X1, Y,N0) > 0,

where Σ1 is the reduced order subsystem of Σ defined in (3.1) and N0 is an
orthonormal basis for the left null space of B(I −D+D).

Proof. Suppose statement (ii) of Lemma 4.3 holds. From Lemma 3.2, we see
that Fα(Σ, X) < 0 implies that Fα(Σ1, X1) < 0, where X1 := N t

0XN0. Note that
S(X,Y, I) > 0 is equivalent to

[
U t0 0
0 I

]
S(X,Y, I)

[
U0 0
0 I

]
=

 Xnn Xnr N t
0

Xt
nr Xrr Rt0
N0 R0 Y

 > 0,

where U0 and other matrices are defined in the proof of Lemma 3.2. This implies
S(X1, Y,N0) > 0 and thus the necessity is proved.
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Conversely, suppose statement (i) of Lemma 4.4 holds. With Xnn := X1, there
exists Xnr satisfying (3.7) for some K̃ (its existence is guaranteed by Fα(Σ1, X1) < 0).
Then X defined by

X := U0

[
Xnn Xnr
Xt
nr Xrr

]
U t0

satisfies Fα(Σ, X) < 0 for any choice of Xrr. Moreover, by choosing Xrr := γI with
sufficiently large γ > 0, condition S(X,Y, I) > 0 can be met. Thus statement (ii) of
Lemma 4.3 holds.

Applying Lemma 4.4 recursively, a necessary and sufficient condition for the un-
certain system Σof to be QFM can be given in terms of the essential subsystems of

Σ and Σ̂.

Lemma 4.5. Consider the uncertain system Σof and its auxiliary systems Σ and

Σ̂ as given in (4.5) and (4.6). Let Σq and Σ̂q̂ be the essential subsystems of Σ and Σ̂,
respectively. Then, the following statements are equivalent.

(i) The uncertain system Σof is QFM.
(ii) For each α > 0, there exist Xt

q = Xq > 0 and Y tq̂ = Yq̂ > 0 such that

Fα(Σq, Xq) < 0, Fα(Σ̂q̂, Yq̂) < 0, S(Xq, Yq̂, N̂
tN) > 0 ,

where N is defined in (3.2) for Σ and N̂ is similarly defined for Σ̂.

Proof. Recursively applying Lemma 4.4, we see that statement (i) holds if and
only if, for each α > 0, there exist Xt

q = Xq > 0 and Y t = Y > 0 such that

Fα(Σq, Xq) < 0, Fα(Σ̂, Y ) < 0, S(Xq, Y,N) > 0.

The same argument as described in Lemma 4.4 can be applied for the dual part Σ̂,
leading to the condition in statement (ii).

Now, we can prove Theorem 4.2.

Proof. We consider the conditions given in Lemma 4.5 for the four cases defined
in Table 4.1.

Case 1: Since Σq and Σ̂q̂ are both simple, then it follows from Lemma 2.4(a) that

Fα(Σq, Xq) < 0 and Fα(Σ̂q̂, Yq̂) < 0 are trivially satisfied for any positive definite
symmetric Xq and Yq̂. Choosing Xq := γI and Yq̂ := γI with sufficiently large γ > 0,
the third condition in statement (ii) of Lemma 4.5 can be satisfied. Thus Σof is QFM.

Cases 2 and 3: Consider Case 2; Case 3 can be shown similarly. Since Σq is
simple, Fα(Σq, Xq) < 0 holds for any choice of Xt

q = Xq > 0. Choosing sufficiently

large Xq, the condition S(Xq, Yq̂, N̂
tN) > 0 can be met. Thus the system Σof is QFM

if and only if, for each α > 0, there exists Yq̂ > 0 such that Fα(Σ̂q̂, Yq̂) < 0. This is

exactly the condition for Σ̂ to be QC.

Case 4: Since both Σq and Σ̂q̂ are regular, we have N̂ tN = N̂ tN . Moreover,
it follows from Lemma 5.1 in the appendix that the solutions Xq(α) and Yq̂(α) to

Fα(Σq, Xq) < 0 and Fα(Σ̂q̂, Yq̂) < 0 approach zero when α approaches infinity. Hence,

S(Xq, Yq̂, N̂
tN) > 0 holds for sufficiently large α > 0 only if N̂ tN = 0. Conversely, if

this is true, condition S(Xq, Yq̂, 0) > 0 holds for any positive definite Xq and Yq̂, and

hence we are left with requirements for Σq and Σ̂q̂ to be QC.
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5. Conclusion. In this paper, we have given complete characterizations of quad-
ratic controllability and strong controllability for a class of norm bounded uncertain
linear systems in terms of the essential subsystem. Although the problem of quadratic
controllability was already discussed in [18], our approach presented here is straight-
forward and aimed to include the notion of strong controllability and the case with
dynamic output feedback, which are entirely new. The equivalence from the view
point of quadratic controllability and strong controllability for the original system
and its essential subsystem was derived. A closely related output feedback property
was also discussed. Specifically, the necessary and sufficient condition was presented
for the existence of a dynamic output feedback controller that quadratically stabilizes
the closed-loop system with an arbitrary rate of convergence. However, the geomet-
rical and physical implication of the orthogonal condition given in Theorem 4.2 still
needs further investigation.

Appendix: A useful lemma. The following algebraic result is instrumental
for proving the main theorems of the paper. A similar result was first used in [24].

Lemma 5.1. Let matrices A, B = Bt, and C = Ct ≥ 0 be given. Suppose, for
each α > 0, there exists Xt(α) = X(α) > 0 such that

(A+ αI)X(α) +X(α)(A+ αI)t +X(α)CX(α)−B < 0.(5.1)

Then,

lim
α→∞X(α) = 0 and B ≥ 0 .

Proof. It follows readily from (5.1) that, since C = Ct ≥ 0, we have

(A+ αI)X(α) +X(α)(A+ αI)t −B < 0 .(5.2)

Suppose α∗ > 0 is chosen such that −(A + αI) is Hurwitz for all α ≥ α∗. Then, for
each α ≥ α∗, there exists a unique symmetric solution Y (α) to the following Lyapunov
equation:

−(A+ αI)Y (α)− Y (α)(A+ αI)t +B = 0 .(5.3)

Substituting (5.3) into (5.2), we obtain

−(A+ αI)[Y (α)−X(α)]− [Y (α)−X(α)](A+ αI)t < 0

for all α ≥ α∗. Since the matrix −(A+ αI) is Hurwitz for all α ≥ α∗, it follows from
the Lyapunov stability theory that

Y (α)−X(α) > 0 ∀α ≥ α∗ ,(5.4)

and this also implies that Y (α) > 0 for all α ≥ α∗. Moreover, we note that Y (α) is
monotonically decreasing as α increases. This can be shown by utilizing the fact that
Y (α) is analytic in the interval [α∗, ∞) and by taking the derivative of (5.3) with
respect to α to obtain

−(A+ αI)Y
′
(α)− Y ′

(α)(A+ αI)t − 2Y (α) = 0 .(5.5)

Since Y (α) > 0, (5.5) implies that Y
′
(α) := dY (α)

dα < 0 for α ≥ α∗. This shows that
Y (α) is a monotonically decreasing function; hence limα→∞ Y (α) exists. Moreover,
if we rewrite (5.3) as

−2αY (α) = AY (α) + Y (α)At −B ,(5.6)
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then we observe that since the right-hand side of the above equation has a limit, so
must the term on the left-hand side. That is,

Π∞ := lim
α→∞αY (α)

exists, and this in turn implies that

lim
α→∞Y (α) = 0 and Π∞ ≥ 0 .(5.7)

Now, it can be readily deduced from (5.4) that

lim
α→∞X(α) = 0.

Furthermore, by taking the limit on both sides of (5.6) and utilizing (5.7), we obtain
that −2Π∞ = −B, which implies B ≥ 0. This completes the proof.
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Abstract. We consider control problems governed by semilinear parabolic equations in the
presence of pointwise mixed control-state constraints. We obtain optimality conditions with finitely
additive measures as multipliers associated to the mixed constraints. We study the regularity of the
multipliers for different problems. In particular, when a monotonicity or a separation condition is
satisfied, we prove that multipliers are bounded measurable functions.
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1. Introduction. This paper deals with control problems governed by parabolic
equations in the presence of pointwise constraints on the control and the state vari-
ables. We are interested in optimality conditions for these problems, and in regularity
properties of Lagrange multipliers associated with mixed control-state constraints.
For optimization problems in Banach spaces the regularity of the multipliers is, in
general, deduced from the following heuristic statement.

(HS) The Lagrange multiplier associated with a constraint belongs to
the dual space of the space in which the constraint set has a nonempty
interior (or a finite codimension).

For bounded controls, pointwise mixed control-state constraints are well posed in
an L∞-space. Thus, according to (HS), the corresponding Lagrange multiplier must
belong to a dual space of the form (L∞)′.

In some situations this heuristic statement does not give the best regularity result
for the Lagrange multipliers. Let us give an example. The multiplier corresponding
to pointwise state constraints is, in general, a bounded Radon measure [7], [10], [15],
[12]. Indeed, pointwise state constraints are well posed in the space of continuous
functions. For problems considered in [7], [15], the multiplier associated with a state
constraint of the form y ≥ 0 is a Radon measure. If the previous state constraint is
slightly perturbed and is replaced by the control-state constraint y + εv ≥ 0 (with
ε > 0 and v ≥ 0), then the multiplier may be a bounded measurable function (see
Corollary 5.6). This is clearly a better regularity result than the one derived from
(HS).

This kind of result is known since 1962 for the control of ordinary differential
equations, and is stated in [14]. The case of ordinary differential equations is very
specific since it is often assumed that optimal controls are piecewise continuous [14],
[11]. Even under the assumption of piecewise continuous controls, the “informal”
Theorem 4.1 in [11] has not, to the authors’ knowledge, been proved fully in the
literature (see [11, p. 185]).
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The situation is more complicated for partial differential equations. Indeed, in
this case, it is not realistic to assume that optimal controls are piecewise continuous.
Very recently, using a duality method, Bergounioux and Tröltzsch [5] have proved the
existence of regular Lagrange multipliers for a linear control problem with constraints
of bottleneck type. An extension to the case of semilinear equations is obtained in
[6]. The case of integral control-state constraints is studied in [8].

To our knowledge, there are no general optimality conditions for control prob-
lems governed by partial differential equations in the presence of pointwise mixed
control-state constraints. In this paper we first prove optimality conditions for con-
trol problems with constraints of the form

g(y, v) ∈ C ⊂ (L∞)� (mixed control-state constraints)

(in this setting g = (g1, . . . , g�) is a vector valued function). In section 3, we do not
make any particular assumption on mixed state-control constraints, and the corre-
sponding multiplier belongs to a space of the type ((L∞)�)′ (Theorem 3.1). In sections
4 and 5, we prove the existence of regular Lagrange multipliers in the following cases:

• 	 = 1 and (g′v(y, v))−1 belongs to L∞ (Theorem 4.1),
• mixed control-state constraints of the form

gi(y, v) ≤ 0 for i = 1, . . . , 	 (Theorems 5.2, 5.5, 5.7).

Let us denote by ζ̄i the multiplier of the constraint gi(y, v) ≤ 0 corresponding to a so-
lution (ȳ, v̄) of problem (P). (The control problem (P) is defined in section 1.1.) With
optimality conditions and the Hahn–Banach extension theorem, we first establish that
the sum Σ�i=1g

′
iv(ȳ, v̄)ζ̄i has the same regularity as the adjoint state.

In section 5.1 we study the case when 	 = 2 and when (g1, g2) satisfies a separation
condition of the form g1(ȳ, v̄) + g2(ȳ, v̄) ≤ −ε < 0. We are able to prove that the
supports of ζ̄1 and ζ̄2 are disjoints. We deduce that each multiplier has the same
regularity as the adjoint state, and we use a bootstrap argument to obtain the best
regularity result (Theorem 5.2).

In section 5.2 we suppose that g satisfies a monotonicity condition of the form
g′iv(y, v) ≤ 0 for i = 1, . . . , 	 . We prove that, for i = 1, . . . , 	, the additive measures
g′iv(ȳ, v̄)ζ̄i are nonnegative. With a decomposition theorem for nonnegative additive
measures, we prove that each term g′iv(ȳ, v̄)ζ̄i has the same regularity as the adjoint
state, and we can conclude with a bootstrap argument (Theorem 5.5).

In section 5.3 we study a problem in which the separation and monotonicity
conditions are coupled (Theorem 5.7). These results are applied to examples for which
the regularity of multipliers cannot be deduced from results known in the literature.

The separation condition seems to be new (see Remark 5.1). The monotonicity
condition is similar to regularity conditions stated for the control of ordinary differ-
ential equations (condition (b) in [4]).

For clarity, we consider only the case of a boundary control, but our method can
be extended to problems with distributed and boundary controls. Our method is
general and may be extended to other problems.

1.1. Setting of the control problem. Consider the semilinear parabolic equa-
tion

∂y

∂t
+Ay +Φ(·, y) = 0 in Q,

∂y

∂nA
+Ψ(·, y, v) = 0 on Σ, y(0) = yo in Ω,(1.1)
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where Ω is a bounded domain in R
N , Q = Ω×]0, T [, Σ = Γ×]0, T [, Γ is the boundary

of Ω, T > 0, v ∈ L∞(Σ) is a boundary control, A is a second order elliptic operator,
Φ and Ψ are Carathéodory functions (assumptions are specified in section 1.2), and
yo is a fixed function in C(Ω). Constraints of the form

g(·, y(·), v(·)) ∈ C(1.2)

are imposed on the pair (y, v), where g is a continuous mapping from Σ×R
2 into R

�,
and C is a closed convex subset of (L∞(Σ))� with a nonempty interior in (L∞(Σ))�.
The paper is concerned with the control problem

(P) inf{J(y, v) | (y, v) ∈ C(Q)× L∞(Σ), (y, v) satisfies (1.1) and (1.2)},
where the cost functional is given by

J(y, v) =

∫
Q

F (x, t, y) dx dt+

∫
Σ

G(s, t, y, v) ds dt+

∫
Ω

L(x, y(T )) dx.

Let us give a simple example for which results of the paper may be applied. Consider
the state equation

∂y

∂t
−∆y = 0 in Q, ∂y

∂n
+ |y|3y = v on Σ, y(0) = yo in Ω,

with yo ≥ 0, v ≥ 0, and the functional J(y, v) =
∫
Ω
a(x)|y(x, T ) − yd(x)|2dx +∫

Σ
y4(s, t) dsdt. The nonnegative function a plays the role of a weight, yd is a desired

profile of temperature, and the term
∫
Σ
y4(s, t) dsdt may be interpreted as a term

penalizing a too-high temperature on the boundary. In the above radiation boundary
condition, the control v corresponds to y4ext, where yext is the exterior temperature. In
industrial processes it may be important that the difference y4ext−y4 be bounded from
above. Thus a constraint of the form 0 ≤ v ≤ y4+ c on Σ, with c > 0, is meaningful.
Setting g1(y, v) = v − |y|3y − c, g2(y, v) = −v, the above constraint is equivalent to
g(y, v) = (g1(y, v), g2(y, v)) ∈ C, where C = {z ∈ (L∞(Σ))2 | z ≤ 0} (z ≤ 0 must be
understood componentwise). The existence of solutions for the corresponding problem
(P) can be obtained by standard arguments. In Corollary 5.3 we obtain optimality
conditions for a class of problems including this example, with multipliers belonging
to L∞(Σ). In our knowledge, the existence of bounded measurable multipliers for
this example cannot be deduced from known results in the literature. Examples
of constraints for which we obtain the same results are given in section 5. Other
examples of equations and functionals satisfying the assumptions of the paper are
given in [15].

1.2. Assumptions and notation. We suppose that Ω is of class C2 (the bound-
ary Γ of Ω is an (N − 1)-dimensional manifold of class C2 such that Ω lies locally on
one side of Γ). The operator A is of the form

Ay(x) = −
N∑

i,j=1

Di(aij(x)Djy(x))

(Di denotes the partial derivative with respect to xi), with coefficient aij belonging
to C1(Ω) and satisfying the conditions

aij(x) = aji(x) for all i, j ∈ {1, . . . , N}, m0|ξ|2 ≤
N∑

i,j=1

aij(x)ξiξj



1394 N. ARADA AND J.-P. RAYMOND

for every ξ ∈ R
N and every x ∈ Ω, with m0 > 0. The conormal derivate of y with

respect to A is denoted by ∂y
∂nA

, that is

∂y

∂nA
(s, t) =

∑
i,j

aij(s)Djy(s, t)ni(s),

where n = (n1, . . . , nN ) is the unit normal to Γ outward Ω.
To prove the existence of multipliers in (Lk(Σ))� we need some regularity assump-

tions on the data. They are specified below. Some of them depend on k. Observe
that k = ∞ is allowed (see (A3)–(A5) below). Throughout the text, the exponent k
denotes a given fixed exponent belonging to ]1,∞].

(A1) Φ is a Carathéodory function from Q×R into R. For almost every (x, t) ∈ Q,
Φ(x, t, ·) is of class C1. The following estimates hold:

|Φ(x, t, 0)| ≤ η(|y|), Co ≤ Φ′
y(x, t, y) ≤ η(|y|),

where Co ∈ R and η is a nondecreasing function from R
+ into R

+.
(A2) Ψ is a Carathéodory function from Σ×R

2 into R. For almost every (s, t) ∈ Σ,
Ψ(s, t, ·) is of class C1, and it satisfies

|Ψ(s, t, 0, v)|+ |Ψ′
v(s, t, y, v)| ≤ η(|y|) η(|v|),

Co ≤ Ψ′
y(s, t, y, v) ≤ η(|y|) η(|v|).

(A3) F is a Carathéodory function from Q× R into R. For almost all (x, t) ∈ Q,
F (x, t, ·) is of class C1. The following estimates hold:

|F (x, t, y)| ≤ F1(x, t)η(|y|), |F ′
y(x, t, y)| ≤ F2(x, t)η(|y|),

where F1 ∈ L1(Q), F2 ∈ Lk1(Q), with k1 > (N+2)k
N+1+2k if k < ∞, and k1 > N

2 + 1 if
k =∞.

(A4) G is a Carathéodory function from Σ×R
2 into R. For almost all (s, t) ∈ Σ,

G(s, t, ·) is of class C1. The following estimates hold:

|G(s, t, y, v)| ≤ G1(s, t)η(|y|)η(|v|), |G′
v(s, t, y, v)| ≤ G2(s, t)η(|y|)η(|v|),

|G′
y(s, t, y, v)| ≤ G3(s, t)η(|y|)η(|v|),

where G1 ∈ L1(Σ), G2 ∈ Lk(Σ), with 1 < k ≤ ∞, G3 ∈ Lk2(Σ) with k2 > (N+1)k
N+1+k if

k <∞, and k2 > N + 1 if k =∞.
(A5) L is a Carathéodory function from Ω × R into R. For almost all x ∈ Ω,

L(x, ·) is of class C1, and

|L(x, y)| ≤ L1(x)η(|y|), |L′
y(x, y)| ≤ L2(x)η(|y|),

where L1 ∈ L1(Ω), L2 ∈ Lk3(Ω), with k3 > Nk
N+1 if k <∞, and k3 =∞ if k =∞.

(A6) g is a function from Σ×R
2 into R

�. For every (s, t) ∈ Σ, g(s, t, ·) is of class
C1, and for every y ∈ R, g(·, y) is bounded measurable on Σ. The functions g, g′y,
and g′v are bounded on compact subsets of Σ× R

2.
For simplicity, we often write g(y, v) in place of g(s, t, y, v). We set Ω0 = Ω×{0},

ΩT = Ω × {T}, ΓT = Γ × {T}. For every 1 ≤ r ≤ ∞, the usual norms in the spaces
Lr(Ω), Lr(Q), Lr(Σ) will be denoted by || · ||r,Ω, || · ||r,Q, || · ||r,Σ. The Hilbert space



CONTROL PROBLEMS WITH MIXED CONSTRAINTS 1395

W (0, T ;H1(Ω), (H1(Ω))′) = {y ∈ L2(0, T ;H1(Ω)) | dydt ∈ L2(0, T ; (H1(Ω))′)} will be
denoted by W (0, T ). Throughout what follows, we denote by C a generic constant. If
O is a locally compact subset of RN+1, Cb(O) denotes the space of bounded continuous
functions on O, and C0(O) denotes the space of continuous functions vanishing at
infinity. The dual space of C0(O) will be denoted by Mb(O) (the space of bounded
Radon measures on O). If µ belongs to Mb(O) and y belongs to Cb(O), we set
〈µ, y〉b,O =

∫
Oy dµ. For σ > 1, k ∧ σ stands for min(k, σ). For simplicity, 〈·, ·〉∗,Σ

stands for the duality pairing between the spaces ((L∞(Σ))�)′ and (L∞(Σ))�.

2. State and adjoint equations. We begin this section by recalling some ex-
istence, uniqueness, and regularity results concerning the state equation (1.1).

Definition 2.1. A function y ∈ L2(0, T ;H1(Ω)) ∩ C([0, T ];L2(Ω)) is a weak
solution of (1.1) if and only if Φ(·, y(·)) ∈ L1(Q), Ψ(·, y(·), v(·)) ∈ L1(Σ), and

∫
Q

−y ∂z
∂t
+

N∑
i,j=1

aijDiyDjz +Φ(·, y)z
 dx dt− ∫

Ω

yoz(0) dx

= −
∫

Σ

Ψ(·, y, v)z ds dt for all z ∈ C1(Q) such that z(T ) = 0.

Theorem 2.2 (see [16, Theorem 3.1]). Let us suppose that (A1)–(A2) are satis-
fied. Equation (1.1) admits a unique weak solution yv ∈W (0, T ) ∩ C(Q) satisfying

‖yv‖C(Q) ≤ C(‖v‖∞,Σ + ‖yo‖C(Ω) + 1).

Now, let us recall some existence, uniqueness, and regularity results for the adjoint
equation. Let (a, b) be in L∞(Q)×L∞(Σ), and consider the terminal boundary value
problem

∂p

∂t
+Ap+ ap = µQ in Q,

∂p

∂nA
+ bp = µΣ on Σ, p(T ) = µΩT

on Ω,(2.1)

where µ = µQ+µΣ+µΩT
is a bounded Radon measure on Q\Ω0, µQ is the restriction

of µ to Q, µΣ is the restriction of µ to Σ, and µΩT
is the restriction of µ to ΩT .

Definition 2.3. A function p ∈ L1(0, T ;W 1,1(Ω)) is a weak solution of (2.1) if
and only if

∫
Q

p∂z
∂t
+

N∑
i,j=1

aijDjpDiz + azp

 dxdt+ ∫
Σ

bpz dsdt = 〈µ, z〉b,Q\Ω0

for all z ∈ C1(Q) satisfying z(0) = 0 on Ω.
We recall an existence theorem for parabolic equations with measures as data.
Theorem 2.4 (see [15, Theorem 4.1]). Let (a, b) be in L∞(Q)×L∞(Σ), and let

µ be in Mb(Q \Ω0). Equation (2.1) admits a unique solution p in L1(0, T ;W 1,1(Ω)).
For every (δ, d, β) satisfying δ ≥ 1, d ≥ 1, β ≥ 0, and N

2d +
1
δ >

N
2 +

β
2 , p belongs to

Lδ(0, T ;W β,d(Ω)) and

||p||Lδ(0,T ;Wβ,d(Ω)) ≤ C||µ||Mb(Q\Ω0)
,
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where C ≡ C(Ω, T, δ, d,M) is a positive constant independent of a and b, and M is
an upper bound for ||a||∞,Q + ||b||∞,Σ. In particular, the trace of p on Σ satisfies

||p|Σ||Lσ(Σ) ≤ C||µ||Mb(Q\Ω0)
for every 1 ≤ σ < N + 1

N
.

Moreover, there exists a function in L1(Ω), denoted by p(0), such that∫
Q

(
∂z

∂t
+Az + az

)
p dx dt+

∫
Σ

(
∂z

∂nA
+ bz

)
p ds dt+

∫
Ω

z(0)p(0) dx

= 〈µ, z〉b,Q\Ω0
for all z ∈ Y,

where Y = {y ∈W (0, T ) | ∂y∂t +Ay ∈ Lq(Q), ∂y
∂nA

∈ L∞(Σ), y(0) ∈ C(Ω)}.
Proposition 2.5. Set Λ(µQ, µΣ, µΩT

) = p|Σ, where p is the solution of (2.1)
corresponding to (µQ, µΣ, µΩT

). The mapping µQ �→ Λ(µQ, 0, 0) is continuous from

Lβ1(Q) into Lβ(Σ), with β1 >
(N+2)β
N+1+2β if 1 ≤ β <∞, and β1 >

N
2 +1 if β =∞. The

mapping µΣ �→ Λ(0, µΣ, 0) is continuous from Lβ2(Σ) into Lβ(Σ), with β2 >
(N+1)β
N+1+β

if 1 ≤ β <∞, and β2 > N + 1 if β =∞.
The mapping µΩT

�→ Λ(0, 0, µΩT
) is continuous from Lβ3(Ω) into Lβ(Σ), with

β3 >
Nβ
N+1 if 1 ≤ β <∞, and β3 =∞ if β =∞.

In particular, p|Σ belongs to Lk(Σ) if (µQ, µΣ, µΩT
) belongs to Lk1(Q)×Lk2(Σ)×

Lk3(Ω), where k, k1, k2, and k3 are the exponents in assumptions (A3)–(A5).
Proof. The proof may be performed by using estimates on the analytic semigroup

as in [17], Propositions 3.1 and 3.2.

3. Main results. Define the Hamiltonian function H : Σ× R
4 −→ R by

H(s, t, y, v, p, α) = α G(s, t, y, v) + p Ψ(s, t, y, v).
We shall say that (ȳ, v̄) is regular if there exists v̂ ∈ L∞(Σ) such that

g(ȳ, v̄) + g′y(ȳ, v̄)(zv̂ − zv̄) + g′v(ȳ, v̄)(v̂ − v̄) ∈ int C,(3.1)

where zv (with v = v̂ or v = v̄) is the solution of
∂z

∂t
+Az +Φ′

y(·, ȳ)z = 0 in Q,

∂z

∂nA
+Ψ′

y(·, ȳ, v̄)z = −Ψ′
v(·, ȳ, v̄) v on Σ, z(0) = 0 in Ω.

(3.2)

In (3.1) “int” denotes the interior for the topology of (L∞(Σ))�. The qualification
condition (3.1) is of Mangasarian–Fromowitz type. It appears in [19, (3.6), p. 20].

Theorem 3.1. Suppose that (A1)–(A6) are fulfilled. If (ȳ, v̄) is a solution of (P),
then there exist ᾱ ∈ [0, 1], ζ̄ ∈ ((L∞(Σ))�)′, and p̄ ∈ L1(0, T ;W 1,1(Ω)), such that the
following conditions hold.

• Nontriviality condition :

(ᾱ, ζ̄) �= 0.(3.3)

• Complementarity condition:

〈ζ̄, z − g(ȳ, v̄)〉∗,Σ ≤ 0 for all z ∈ C.(3.4)
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• Adjoint equation:
−∂p̄
∂t
+Ap̄+Φ′

y(·, ȳ)p̄ = −ᾱF ′
y(·, ȳ) in Q,

∂p̄

∂nA
+Ψ′

y(·, ȳ, v̄)p̄ = −ᾱ G′
y(·, ȳ, v̄)− [g′y(ȳ, v̄)∗ζ̄]|Σ on Σ,

p̄(T ) = −ᾱL′
y(·, ȳ(T ))− [g′y(ȳ, v̄)∗ζ̄]|Γ×{T} on Ω,

(3.5)

where [g′y(ȳ, v̄)
∗ζ̄]|Σ is the restriction of g′y(ȳ, v̄)

∗ζ̄ to Σ, [g′y(ȳ, v̄)
∗ζ̄]|Γ×{T} is the re-

striction of g′y(ȳ, v̄)
∗ζ̄ to Γ × {T}, and g′y(ȳ, v̄)

∗ζ̄ is the bounded Radon measure on
Σ ∪ (Γ× {T}) defined by

〈g′y(ȳ, v̄)∗ζ̄, z〉b,Σ∪Γ×{T} = 〈ζ̄, g′y(ȳ, v̄)z〉∗,Σ for all z ∈ C0(Σ ∪ (Γ× {T})).
• Optimality condition for v̄:∫

Σ

H′
v(s, t, ȳ, v̄, p̄, ᾱ)χds dt+ 〈ζ̄, g′v(ȳ, v̄) χ〉∗,Σ = 0 for all χ ∈ L∞(Σ).(3.6)

Moreover, if there exists v̂ satisfying (3.1), then we can take ᾱ = 1.
Remark 3.2. Here g′y(ȳ, v̄) is a linear continuous operator from C0(Σ∪ (Γ×{T}))

into (L∞(Σ))�, and g′y(ȳ, v̄)
∗ denotes the corresponding adjoint operator.

Proof. Let us set

A = {(z, λ) ∈ (L∞(Σ))� × R | z = g(ȳ, v̄) + g′y(ȳ, v̄)(zv − zv̄) + g′v(ȳ, v̄)(v − v̄),
λ = J ′y(ȳ, v̄) (zv − zv̄) + J ′v(ȳ, v̄)(v − v̄) for some v ∈ L∞(Σ)},

B = int C×]−∞, 0[,
where zv̄ (respectively, zv) is the solution of (3.2) corresponding to v̄ (respectively, v).
The sets A and B are convex, and B is open. Let us prove that A∩B = ∅. Argue by
contradiction, and suppose that there exists vo ∈ L∞(Σ) such that

g(ȳ, v̄) + g′y(ȳ, v̄)(zvo − zv̄) + g′v(ȳ, v̄)(vo − v̄) ∈ int C,(3.7)

λo = J
′
y(ȳ, v̄) (zvo − zv̄) + J ′v(ȳ, v̄)(vo − v̄) < 0.(3.8)

Set vρ = v̄ + ρ(vo − v̄). Let yρ be the solution of (1.1) corresponding to vρ, and set
gρ = g(ȳ, v̄) +

1
ρ (g(yρ, vρ) − g(ȳ, v̄)). Due to (3.7) and (3.8), there exists 0 < ρo < 1

such that

gρ ∈ int C and
J(yρ, vρ)− J(ȳ, v̄)

ρ
< 0 for all 0 < ρ ≤ ρo < 1.

Therefore, for every 0 < ρ ≤ ρo < 1, we have
g(yρ, vρ) = ρ gρ + (1− ρ) g(ȳ, v̄) ∈ int C and J(yρ, vρ) < J(ȳ, v̄) = inf(P).
The pair (yρ, vρ) is admissible for (P) and we have a contradiction. Thus,

A ∩ B = ∅. From a geometric version of the Hahn–Banach theorem (the Eidelheit
theorem [18]), there exists (ᾱ, ζ̄) ∈ R × ((L∞(Σ))�)′, such that

ᾱ λ1 + 〈ζ̄, z1〉∗,Σ > ᾱ λ2 + 〈ζ̄, z2〉∗,Σ for all (z1, λ1, z2, λ2) ∈ A× B,(3.9)
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ᾱ λ1 + 〈ζ̄, z1〉∗,Σ ≥ ᾱ λ2 + 〈ζ̄, z2〉∗,Σ for all (z1, λ1, z2, λ2) ∈ A× B.(3.10)

• Due to (3.9), (ᾱ, ζ̄) �= 0. We easily see that ᾱ is nonnegative. Indeed if ᾱ < 0,
setting z1 = g(ȳ, v̄), λ1 = 0, and letting λ2 tend to −∞, we obtain a contradiction.
Thus ᾱ is nonnegative. For z fixed in C, by setting z1 = g(ȳ, v̄), z2 = z, λ1 = λ2 = 0
in (3.10), we establish (3.4).

• Let v ∈ L∞(Σ). By setting z1 = g(ȳ, v̄) + g′y(ȳ, v̄)(zv − zv̄) + g′v(ȳ, v̄)(v − v̄),
λ1 = J

′
y(ȳ, v̄) (zv − zv̄) + J ′v(ȳ, v̄)(v− v̄), z2 = g(ȳ, v̄), and λ2 = 0 in (3.10), we obtain

ᾱJ ′y(ȳ, v̄) (zv − zv̄) + 〈g′y(ȳ, v̄)∗ζ̄, zv − zv̄〉b,Σ∪ΓT

+ ᾱJ ′v(ȳ, v̄)(v − v̄) + 〈ζ̄, g′v(ȳ, v̄)(v − v̄)〉∗,Σ ≥ 0 for all v ∈ L∞(Σ).
(3.11)

Since the above inequality is satisfied for all v ∈ L∞(Σ), the inequality can be
replaced by an equality. Let p̄ be the weak solution of (3.5). With the Green formula
of Theorem 2.4, we have∫

Q

ᾱ F ′
y(x, t, ȳ) (zv − zv̄) dx dt+

∫
Ω

ᾱ L′
y(x, ȳ(T )) (zv − zv̄)(T ) dx

+

∫
Σ

ᾱ G′
y(s, t, ȳ, v̄) (zv − zv̄) ds dt+ 〈g′y(ȳ, v̄)∗ζ̄, zv − zv̄〉b,Σ∪ΓT

=

∫
Σ

p̄ Ψ′
v(s, t, ȳ, v̄) (v − v̄) ds dt for all v ∈ L∞(Σ).

This equality together with (3.11) gives (3.6).
• Finally, if there exists v̂ ∈ L∞(Σ) such that (3.1) is satisfied, then by set-

ting z1 = z2 = g(ȳ, v̄) + g
′
y(ȳ, v̄)(zv̂ − zv̄) + g′v(ȳ, v̄)(v̂ − v̄) in (3.9), we prove that

ᾱ �= 0.
4. Regularity of multipliers for purely mixed constraints. Throughout

what follows, (ȳ, ū) stands for an optimal solution to (P). In the following two sections,
we want to prove that the multiplier ζ̄ may be identified with η̄ dsdt, where η̄ belongs
to (Lk(Σ))�. In this case, (3.3)–(3.6) are rewritten in the form

(ᾱ, η̄) �= 0,
∫

Σ

η̄ (z − g(ȳ, v̄)) ds dt ≤ 0 for all z ∈ C,(4.1)


−∂p̄
∂t
+Ap̄+Φ′

y(·, ȳ)p̄ = −ᾱF ′
y(·, ȳ) in Q,

∂p̄

∂nA
+Ψ′

y(·, ȳ, v̄)p̄ = −ᾱG′
y(·, ȳ, v̄)− g′y(ȳ, v̄)∗η̄ on Σ,

p̄(T ) = −ᾱL′
y(·, ȳ(T )) on Ω,

(4.2)

H′
v(s, t, ȳ(s, t), v̄(s, t), p̄(s, t), ᾱ) = −g′v(ȳ, v̄)∗η̄(s, t) for almost all (s, t) ∈ Σ.(4.3)

In this section, we consider the control problem (P) when 	 = 1 and when the following
regularity condition is satisfied.

(A7) 	 = 1 and the function (g′v(ȳ(·), v̄(·)))−1 belongs to L∞(Σ).
Theorem 4.1. Let (ȳ, v̄) be a solution to (P). Suppose that (A1)–(A7) are

fulfilled. There exist ᾱ ∈ [0, 1], η̄ ∈ Lk(Σ) (k is the exponent in assumption (A3)),
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and p̄ ∈ L1(0, T ;W 1,1(Ω)), such that (4.1)–(4.3) hold. Moreover, if (3.1) is satisfied,
then we can take ᾱ = 1.

Proof. Step 1. Due to Theorem 3.1, there exist ᾱ ∈ [0, 1], ζ̄ ∈ (L∞(Σ))′, and
p̄ ∈ L1(0, T ;W 1,1(Ω)), such that (3.3)–(3.6) hold. From Proposition 2.5, we know
that

p̄|Σ ∈ Lσ(Σ) for all σ <
N + 1

N
.(4.4)

Let σ be such that σ < N+1
N . From (4.4), with assumptions (A2) and (A4), we can

easily see that H′
v(·, ȳ, v̄, p̄, ᾱ) belongs to Lk∧σ(Σ). Consider the continuous linear

operators S : L(k∧σ)′(Σ) �→ R ((k ∧ σ)′ is the exponent conjugate to k ∧ σ) and
K : L∞(Σ) �→ R, defined by

S(ϕ) = −
∫

Σ

H′
v(s, t, ȳ, v̄, p̄, ᾱ) ϕds dt for all ϕ ∈ L(k∧σ)′(Σ),

K(χ) = 〈ζ̄, g′v(ȳ, v̄) χ〉∗,Σ for all χ ∈ L∞(Σ).

The optimality condition (3.6) can be rewritten as S(χ) = K(χ) for all χ ∈ L∞(Σ).
Due to the Hahn–Banach extension theorem, there exists µ̄ ∈ Lk∧σ(Σ) such that∫

Σ

µ̄ χ ds dt = 〈ζ̄, g′v(ȳ, v̄) χ〉∗,Σ for all χ ∈ L∞(Σ).(4.5)

Moreover, we have∫
Σ

µ̄ ϕ ds dt = S(ϕ) for all ϕ ∈ L(k∧σ)′(Σ).

If we set η̄ = g′v(ȳ, v̄)
−1 µ̄, due to assumption (A7), η̄ belongs to Lk∧σ(Σ), and (4.5)

is equivalent to the following equation:∫
Σ

η̄χ ds dt = 〈ζ̄, χ〉∗,Σ for all χ ∈ L∞(Σ).(4.6)

The complementarity condition, the adjoint equation, and the optimality condition
for v̄ follow from (3.4), (3.5), (3.6), and (4.6). Let us prove the nontriviality condition.
If ᾱ �= 0, the proof is complete. If ᾱ = 0, then due to (3.3) we have ζ̄ �= 0, and from
(4.6) it follows that η̄ �= 0.

Step 2. Let us prove that η̄ belongs to Lk(Σ). Let σ1 be such that 1 < σ1 <
N+1
N .

Due to step 1 and assumption (A6) the function g′y(ȳ, v̄)η̄ belongs to L
k∧σ1(Σ).

From Assumptions (A3)–(A5) and from Proposition 2.5, it follows that p̄|Σ belongs
to Lσ2(Σ) for all σ2 satisfying

σ1 < σ2 and
N + 1

2σ1
<
N + 1

2σ2
+
1

2
.(4.7)

Let σ2 satisfy (4.7). From the regularity of p|Σ, we deduce that H′
v(·, ȳ, v̄, p̄, ᾱ) belongs

to Lk∧σ2(Σ). From (4.3), it follows that g′v(ȳ, v̄)η̄ belongs to L
k∧σ2(Σ). With (A7), we

deduce that η̄ belongs to Lk∧σ2(Σ), and with (A6) that g′y(ȳ, v̄)η̄ belongs to L
k∧σ2(Σ)

for all σ2 satisfying (4.7). After a finite number of iterations, we can prove that η̄
belongs to Lk(Σ). The proof is complete.



1400 N. ARADA AND J.-P. RAYMOND

Remark 4.2. Let us observe that (3.1) can be easily verified when C = {z ∈
L∞(Σ) | z ≤ 0}, and Ψ is of the form Ψ(·, y, v) = ψ(·, y) − v. For ε > 0, let us set
wε = v̄ − εg′v(ȳ, v̄)−1 + g′v(ȳ, v̄)

−1g′y(ȳ, v̄)zv̄. Let ξε be the solution to the equation

∂ξ

∂t
+Aξ +Φ′

y(·, ȳ)ξ = 0 in Q,

∂ξ

∂nA
+ ψ′

y(·, ȳ)ξ + g′v(ȳ, v̄)−1g′y(ȳ, v̄)ξ = wε on Σ, ξ(0) = 0 in Ω.

It is clear that ξε is the solution of (3.2) corresponding to v̂ = v̄ − εg′v(ȳ, v̄)−1 −
g′v(ȳ, v̄)

−1g′y(ȳ, v̄)(ξε − zv̄), which yields to

g(ȳ, v̄) + g′y(ȳ, v̄)(zv̂ − zv̄) + g′v(ȳ, v̄)−1(v̂ − v̄) = −ε+ g(ȳ, v̄) ≤ −ε.

Therefore, the pair (v̂, zv̂) satisfies the condition (3.1). In this case, we can set
ᾱ = 1 in the statement of Theorem 4.1.

5. Other regularity results. In this section, we are concerned with problem
(P) when C = ({z ∈ L∞(Σ) | z ≤ 0})�. In this case, (4.1) is equivalent to

(ᾱ, η̄) �= 0, η̄ ≥ 0,

∫
Σ

η̄ g(ȳ, v̄) ds dt = 0.(5.1)

In section 5.1, we suppose that 	 = 2 and g satisfies the following separation condition.
(A8) There exists ε > 0 such that g1(ȳ, v̄) + ε ≤ −g2(ȳ, v̄) almost everywhere

(a.e.) on Σ. Moreover, we suppose that, for i = 1, 2, (g′iv(ȳ(·), v̄(·)))−1 belongs to
L∞(Σ).

Remark 5.1. In examples studied in section 5 (Corollary 5.3 and examples in
section 5.3), we are able to verify the qualification condition (3.1) by using both the
separation condition and the properties of the state equation. But the separation
condition is of a different nature since it gives the regularity of the multipliers (which
is not the case of condition (3.1)), and in general it does not give optimality conditions
in qualified form (which is the case of condition (3.1)).

With (A8) we are able to prove that the supports of the multipliers associated
with the two constraints are disjoint. To prove such a result, we use the isomorphism
between (L∞(Σ))′ and the space of bounded Radon measures on Σ#, where Σ# is a
compact Hausdorff space [9].

In section 5.2, we suppose that g satisfies a monotonicity condition of the following
form.

(A9) For i = 1, . . . , 	, g′iv(ȳ, v̄) ≥ 0 a.e. on Σ, and (g′iv(ȳ(·), v̄(·)))−1 belongs to
L∞(Σ).

In this case, the regularity of multipliers follows from properties of nonnegative
additive measures, and from the Radon–Nikodym theorem.

In section 5.3, we study a problem where the above separation and monotonicity
conditions are coupled.

5.1. Regularity of multipliers with a separation assumption.
Theorem 5.2. Let (ȳ, v̄) be a solution to (P). Suppose that (A1)–(A6) and (A8)

are fulfilled. Then, there exist ᾱ ∈ [0, 1], η̄ ∈ (Lk(Σ))2, and p̄ ∈ L1(0, T ;W 1,1(Ω))
satisfying (4.2), (4.3), and (5.1). If, in addition, v̂ satisfies (3.1), then we can take
ᾱ = 1.
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Recall that k is the exponent introduced in the introduction. It is known that
(L∞(Σ))′ can be identified with the space of bounded finitely additive measures van-
ishing on zero-measure sets [20, Theorem 2.3]. Below we identify (L∞(Σ))′ with
M(Σ#), the space of Radon measures on Σ#, where Σ# is a compact Hausdorff space.
This identification is useful to characterize the supports of elements of (L∞(Σ))′.

Proof. Step 1. Due to Theorem 3.1, there exist ᾱ ∈ [0, 1], ζ̄ = (ζ̄1, ζ̄2) ∈
((L∞(Σ))′)2, and p̄ ∈ L1(0, T ;W 1,1(Ω)) such that (3.3)–(3.6) hold. Condition (3.4)
may be rewritten as

ζ̄i ≥ 0 and 〈ζ̄i, gi(ȳ, v̄)〉∗,Σ = max {〈ζ̄i, z〉∗,Σ | z ∈ C} = 0 for i = 1, 2.(5.2)

Step 2. Let us denote by So the closed unit sphere of (L
∞(Σ))′ (for the weak-star

topology), and let us set

Σ# = {q ∈ So | q �= 0, 〈q, h〉∗,Σ = 〈q, f〉∗,Σ 〈q, g〉∗,Σ if h = g f a.e. on Σ}.

It is well known [9, Theorem 11, p. 445] that Σ# is a compact Hausdorff space.
Moreover, there exists an isometric homomorphism τ from L∞(Σ) onto C(Σ#). The
isomorphism τ maps nonnegative functions into nonnegative functions and is an alge-
braic isomorphism in the sense that if χ = χ1 χ2 a.e. on Σ, then τ(χ) = τ(χ1)τ(χ2). If
f is an arbitrary real continuous function, and χ is in L∞(Σ), then τ(f(χ)) = f(τ(χ)).
Hence, for i = 1, 2, the measure ζ̄i ∈ (L∞(Σ))′ can be identified with ̂̄ζi ∈ M(Σ#)
(the space of Radon measures on Σ#), via the formula

〈 ̂̄ζi, ψ〉Σ# = 〈ζ̄i, τ−1(ψ)〉∗,Σ for all ψ ∈ C(Σ#),

where 〈·, ·〉Σ# denotes the duality pairing between M(Σ#) and C(Σ#), and where
τ−1 is the inverse mapping of τ . (For more details see [2].)

Let us prove that under the separation condition (A8), the supports of ̂̄ζ1 and ̂̄ζ2
(denoted by supp ̂̄ζi) are disjoint. The condition (5.2) is rewritten as

̂̄ζi ≥ 0 and 〈̂̄ζi, τ(gi(ȳ, v̄))〉Σ# = 0 for i = 1, 2.

Let us set Σi = {q ∈ Σ# | τ(gi(ȳ, v̄))(q) = 〈 q, gi(ȳ, v̄) 〉∗,Σ = 0}. Since the mapping
q �→ τ(gi(ȳ, v̄))(q) is continuous for the weak-star topology of (L

∞(Σ))′, Σi is closed
for this topology. Therefore we have

supp̂̄ζi ⊂ Σi.(5.3)

On the other hand, due to the positivity property of τ and due to (A8), we have

τ(g1(ȳ, v̄)) (q)− ε = τ(g1(ȳ, v̄)− ε) (q) ≤ τ(g2(ȳ, v̄)) (q) for all q ∈ Σ#.(5.4)

From (5.3) and (5.4), we deduce that supp ̂̄ζ1 ∩ supp ̂̄ζ2 = ∅.
Step 3. Now, let us establish the regularity of g′v(ȳ, v̄)

∗ζ̄. First, notice that (3.6)
can be stated in the form∫

Σ

H′
v(·, ȳ, v̄, p̄, ᾱ)χds dt+ 〈 ̂̄ζ1, τ(g′1v(ȳ, v̄)) τ(χ)〉Σ# + 〈 ̂̄ζ2, τ(g′2v(ȳ, v̄)) τ(χ)〉Σ# = 0
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for all χ ∈ L∞(Σ). Consider the linear operators S : L(k∧σ)′(Σ) �→ R and K :
L∞(Σ) �→ R defined by

S(ϕ) = −
∫

Σ

H′
v(·, ȳ, v̄, p̄, ᾱ) ϕds dt for all ϕ ∈ L(k∧σ)′(Σ),

K(χ) = 〈 ̂̄ζ1, τ(g′1v(ȳ, v̄)) τ(χ)〉Σ# + 〈 ̂̄ζ2, τ(g′2v(ȳ, v̄)) τ(χ)〉Σ# for all χ ∈ L∞(Σ).

With arguments similar to those of Theorem 4.1, we can prove the existence of a
function µ ∈ Lk∧σ(Σ) satisfying

〈 ̂̄ζ1, τ(g′1v(ȳ, v̄)) τ(χ)〉Σ# + 〈 ̂̄ζ2, τ(g′2v(ȳ, v̄)) τ(χ)〉Σ# =

∫
Σ

µ χds dt(5.5)

for all χ ∈ L∞(Σ). Since supp ̂̄ζ1 and supp ̂̄ζ2 are two disjoint compact subsets of
Σ#, there exists ψo ∈ C(Σ#), such that

0 ≤ ψo ≤ 1, ψo ≡ 1 on supp ̂̄ζ1, and ψo ≡ 0 on supp ̂̄ζ2.
Letting χ̃ be in L∞(Σ) and setting χ1 = τ

−1(ψo) χ̃ and χ2 = (1−ψo) χ̃ in (5.5), we
obtain

〈ζ̄i, g′iv(ȳ, v̄)χ̃〉∗,Σ = 〈 ̂̄ζi, τ(g′iv(ȳ, v̄)) τ(χ̃)〉Σ# =

∫
Σ

µ̄i χ̃ ds dt(5.6)

for i = 1, 2, with µ̄1 = µ τ−1(ψo) and µ̄2 = µ τ−1(1 − ψo). It is clear that
µ̄1 and µ̄2 belong to L

k∧σ(Σ) for all σ < N+1
N . Let us set η̄i = (g′iv(ȳ, v̄))

−1µ̄i
for i = 1, 2. We have proved that (4.2), (4.3), and (5.1) are satisfied with η̄ =
(η̄1, η̄2) ∈ Lk∧σ(Σ). We conclude with a bootstrap process as in step 2 of the proof of
Theorem 4.1.

Consider the following example:

(P1) inf {J(y, v) | v ∈ L∞(Σ), (y, v) satisfies (1.1) and 0 ≤ v ≤ γ(y) + c},

where Ψ is of the form Ψ(·, y, v) = ψ(·, y)−v. It is a particular case of (P) correspond-
ing to g1(s, t, y, v) = v−γ(s, t, y)−c(s, t) and g2(y, v) = −v. We suppose that c belongs
to L∞(Σ), and γ is defined either by γ(s, t, y) = b(s, t)y, or by γ(s, t, y) = φ(y), where
b belongs to L∞(Σ), b ≥ 0, and φ is a nondecreasing function of class C1.

Corollary 5.3. Let (ȳ, v̄) be a solution of (P1), and suppose that (A1)–(A5)
are fulfilled. Suppose in addition that there exists ε > 0 such that

γ(ȳ) + c ≥ ε a.e. on Σ.(5.7)

Then, there exist η̄ ∈ (Lk(Σ))2 and p̄ ∈ L1(0, T ;W 1,1(Ω)), such that (4.2), (4.3), and
(5.1) are satisfied with ᾱ = 1.

Remark 5.4. Observe that if yo ≥ 0, then ȳ ≥ 0. If φ is nonnegative on R
+ and

if c ≥ ε, then condition (5.7) is satisfied. The case when γ(s, t, y) = b(s, t)y is studied
in [6]. The proof in [6] is based on duality techniques. Here it is a direct consequence
of Theorem 5.2.

Proof. The separation condition (A8) is nothing else than (5.7). Therefore, due
to Theorem 5.2, we can state optimality conditions in nonqualified form. To prove
the corollary, we have only to check that there exists v̂ ∈ L∞(Σ) such that (3.1) is



CONTROL PROBLEMS WITH MIXED CONSTRAINTS 1403

satisfied. If γ(s, t, y) = b(s, t)y, we set β = b, and if γ(s, t, y) = φ(y), we set β = φ′(ȳ).
Therefore β ≥ 0. For λ > 0, we set wλ = v̄ − λε− βzv̄. Let ξλ be the solution to

∂ξ

∂t
+Aξ + Φ̄′

y ξ = 0 in Q,
∂ξ

∂nA
+ ψ̄′

y ξ − βξ = wλ on Σ, ξ(0) = 0 in Ω,

where Φ̄′
y = Φ

′
y(·, ȳ) and ψ̄′

y = ψ
′
y(·, ȳ). Observe that ξλ = zṽλ is the solution of (3.2)

for ṽλ = v̄ − λε+ β(ξλ − zv̄), and

−β(zṽλ − zv̄) + ṽλ − v̄ = −λε.(5.8)

By making the difference between the equation satisfied by zv̄ and the equation sat-
isfied by ξλ, we can prove that

ξλ = zṽλ ≤ zv̄ and ||zṽλ − zv̄||C(Q) ≤ Cλε.(5.9)

By combining (5.9) and (5.8), we prove that there exists a constant C̄ > 0 such that

||ṽλ − v̄||∞,Σ ≤ C̄ λε.(5.10)

Set Σ0 = {(s, t) ∈ Σ | v̄ = 0}, Σλ = {(s, t) ∈ Σ | 0 < v̄ ≤ 2C̄λε}, and let χλ
(respectively, χ0) be the characteristic function of Σλ (respectively, Σ0). Set v̂λ =
λεχ0 + (v̄ + λε)χλ + ṽλ(1− χ0 − χλ). We claim that the pair (zv̂λ , v̂λ) satisfies (3.1)
for λ small enough.

• On Σ0 ∪ Σλ, we have v̂λ ≥ λε > 0. Due to (5.10), on Σ \ (Σ0 ∪ Σλ) we have
v̂λ = ṽλ ≥ v̄ − |ṽλ − v̄| ≥ C̄λε. Thus we have v̂λ ≥ min(λε, C̄λε).

• With (5.10) we obtain

||zv̂λ − zṽλ ||C(Q) ≤ C||(v̄ − ṽλ + λε)(χλ + χ0)||∞,Σ ≤ Cλε.

Now, from (5.9) we deduce ||zv̂λ−zv̄||C(Q) ≤ ||zv̂λ−zṽλ ||C(Q)+ ||zṽλ−zv̄||C(Q) ≤ Cλε.
Due to (5.7), we have

v̄ − γ(ȳ)− c− β(zv̂λ − zv̄) + (v̂λ − v̄) ≤ 2C̄λε− ε− β(zv̂λ − zv̄) + λε on Σ0 ∪ Σλ.

Therefore, we can choose λ > 0 small enough to have

v̄ − γ(ȳ)− c− β(zv̂λ − zv̄) + (v̂λ − v̄) ≤ −ε
2

on Σ0 ∪ Σλ.

Since ṽλ = −λε + β(zṽλ − zv̄) < 0 on Σ0 (because of (5.9)), we have v̂λ − ṽλ ≥ 0 on
Σ \Σλ. Hence if ζλ is the solution to (3.2) for v = (v̂λ − ṽλ)χλ = (v̄+ λε− ṽλ)χλ, we
have zv̂λ − zṽλ ≥ ζλ, and ||ζλ||C(Q) ≤ C||(v̄ + λε − ṽλ)χλ||r,Σ ≤ Cλε LN (Σλ) 1

r , with

r > N + 1, and LN (Σλ) is the Lebesgue measure of Σλ. With (5.8) and the bound
for ζλ, we have the following estimate on Σ \ (Σ0 ∪ Σλ):

v̄ − γ(ȳ)− c− β(zv̂λ − zv̄) + (v̂λ − v̄) ≤ −β(zṽλ − zv̄) + (ṽλ − v̄)− β(zv̂λ − zṽλ)
≤ −λε+ ||β||∞,Σ ||ζλ||∞,Σ ≤ −λε+ Cλε LN (Σλ) 1

r .

Since −λε + Cλε LN (Σλ) 1
r < − 1

2λε for λ > 0 small enough, the proof is
complete.
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5.2. Regularity of multipliers with a monotonicity assumption.
Theorem 5.5. Let (ȳ, v̄) be a solution of (P). Suppose that (A1)–(A6) and (A9)

are fulfilled. Then, there exist ᾱ ∈ [0, 1], η̄ ∈ (Lk(Σ))�, and p̄ ∈ L1(0, T ;W 1,1(Ω)),
such that conditions (4.2), (4.3), and (5.1) are satisfied.

Proof. Due to Theorem 3.1, there exist ᾱ ∈ [0, 1], ζ̄ = (ζ̄1, . . . , ζ̄�) ∈ ((L∞(Σ))�)′,
and p̄ ∈ L1(0, T ;W 1,1(Ω)) such that (3.3)–(3.6) hold. With arguments similar to
those of the proof of Theorem 5.2, we show that

ζ̄i ≥ 0, 〈ζ̄i, gi(ȳ, v̄)〉∗,Σ = 0 for all i = 1, . . . , 	.(5.11)

Moreover, as in the proof of Theorem 4.1, with the Hahn–Banach extension theorem,
we can establish the existence of a multiplier µ̄ belonging to Lk∧σ(Σ) for all σ < N+1

N ,
such that

〈g′v(ȳ, v̄)∗ζ̄, χ〉∗,Σ =
∫

Σ

µ̄ χ ds dt for all χ ∈ L∞(Σ).

Due to (A9), for i = 1, . . . , 	, the additive measures g′iv(ȳ, v̄)
∗ζ̄i are nonnegative. From

a decomposition theorem for nonnegative finitely additive measures [9, Theorem 8, p.
163], we deduce that g′iv(ȳ, v̄)

∗ζ̄i admits a unique decomposition

g′iv(ȳ, v̄)
∗ζ̄i = µ̄i + ν̄i,

where µ̄i are nonnegative countably additive measures, and ν̄i are nonnegative purely
finitely additive set functions in (L∞(Σ))′. It follows that

g′v(ȳ, v̄)
∗ζ̄ =

�∑
i=1

µ̄i +

�∑
i=1

ν̄i = µ̄ ds dt.

Thus, the pair (Σ�i=1µ̄i,Σ
�
i=1ν̄i) is a decomposition of µ̄ dsdt in a nonnegative count-

ably additive measure and a nonnegative purely finitely additive set function. From
the uniqueness of this decomposition, we deduce that ν̄i = 0. Since µ̄i ≥ 0 for
i = 1, . . . , 	, Σ�i=1µ̄i = µ̄ dsdt, and µ̄ belongs to L

k∧σ(Σ) for all σ < N+1
N , there exist

nonnegative functions ξi ∈ Lk∧σ(Σ) such that µ̄i = ξi ds dt (it is a consequence of the
Radon–Nikodym theorem). We set η̄i = (g

′
iv(ȳ, ū))

−1ξi. We have

〈g′iv(ȳ, v̄)∗ζ̄i, χ〉∗,Σ =
∫

Σ

ξi χds dt =

∫
Σ

g′iv(ȳ, v̄)η̄i χds dt

for all χ ∈ L∞(Σ). Thus, (4.2), (4.3), and (5.1) are satisfied with η̄ = (η̄1, . . . , η̄�) ∈
(Lk∧σ(Σ))�. We finish with a bootstrap argument as in the proof of Theorem
4.1.

Consider the following example.

(P2) inf {J(y, v) | v ∈ L∞(Σ), (y, v) satisfies (1.1), v ≤ γi(y)+ ci for i = 1, . . . , 	},
where Ψ is of the form Ψ(·, y, v) = ψ(·, y) − v. It is a particular case of (P) corre-
sponding to gi(y, v) = v − γi(y) − ci for i = 1, . . . , 	. We suppose that ci belongs
to L∞(Σ), and γi is defined either by γi(s, t, y) = bi(s, t)y, or by γi(s, t, y) = φi(y),
where bi belongs to L

∞(Σ), and φi is of class C1.
Corollary 5.6. Let (ȳ, v̄) be a solution of (P2). Suppose that (A1)–(A5) are

fulfilled. Then there exist η̄ ∈ (Lk(Σ))� and p̄ ∈ L1(0, T ;W 1,1(Ω)), such that (4.2),
(4.3), and (5.1) are satisfied with ᾱ = 1.
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Proof. The assumptions of Theorem 5.5 are clearly satisfied. We have only to
check that we can take ᾱ = 1. If γi(s, t, y) = bi(s, t)y, we set βi = bi, and if γi(s, t, y) =
φi(y), we set βi = φ

′
i(ȳ). For λ > 0 and i = 1, . . . , 	, we set wiλ = v̄ − λε− βizv̄. Let

ξλ be the solution to

∂ξ

∂t
+Aξ +Φ′

y(·, ȳ)ξ = 0 in Q,

∂ξ

∂nA
+ ψ′

y(·, ȳ)ξ = min
i=1,...,�

(wiλ + βiξ) on Σ, ξ(0) = 0 in Ω.

(5.12)

Since the function “min” is Lipschitz with respect to its arguments, the existence of a
solution to (5.12) may be proved as in [16] (see also [6] where the same trick is used).
Observe that ξλ is the solution of (3.2) corresponding to ṽλ = mini=1,...,�(wiλ + βiξ),
that is, ξλ = zṽλ . Moreover,

v̄ − γi(ȳ)− ci + (ṽλ − v̄)− βi(zṽλ − zv̄) ≤ (ṽλ − v̄)− βi(zṽλ − zv̄) ≤ −λε

for i = 1, . . . , 	. Thus (3.1) is satisfied by (ṽλ, zṽλ).

5.3. Coupling separation and monotonicity conditions. In this section we
study a problem for which the monotonicity and separation conditions are coupled.
We suppose that 	 = 3 and that g = (g1, g2, g3) satisfies the assumption below.

(A10) There exists ε > 0 such that g1(ȳ, v̄) + ε ≤ −g2(ȳ, v̄) and g3(ȳ, v̄) + ε ≤
−g2(ȳ, v̄) a.e. on Σ. The pair (g1(ȳ, v̄), g3(ȳ, v̄)) satisfies the monotonicity condition
stated in (A9). The function (g′2v(ȳ(·), v̄(·)))−1 belongs to L∞(Σ).

The case of bottleneck type constraints studied in [5], [6] falls into this setting (see
Remark 5.8). We prove the existence of regular multipliers when (A10) is fulfilled.
At the end of the section we give two examples for which optimality conditions are
obtained in qualified form (that is, ᾱ = 1). The existence of regular multipliers for
these examples cannot be deduced from [6].

Theorem 5.7. Let (ȳ, ū) be a solution to (P ). Suppose that (A1)–(A6) and (A10)
are fulfilled. Then, there exist ᾱ ∈ [0, 1], η̄ ∈ (Lk(Σ))3, and p̄ ∈ L1(0, T ;W 1,1(Ω)),
such that (4.2), (4.3), and (5.1) are satisfied. If, in addition, v̂ satisfies (3.1), then we
can take ᾱ = 1.

Proof. Due to Theorem 3.1, there exist ᾱ ∈ [0, 1], ζ̄ ∈ ((L∞(Σ))3)′, and p̄ ∈
L1(0, T ;W 1,1(Ω)) such that (3.3)–(3.6) are satisfied. In particular, the condition
(3.4) is equivalent to

ζ̄i ≥ 0 and 〈ζ̄i, gi(ȳ, v̄)〉∗,Σ = 0(5.13)

for i = 1, 2, 3. As in the proof of Theorem 5.2, we identify the additive measures ζ̄i

with measures ̂̄ζi belonging toM(Σ#) (the space of Radon measures on Σ#), and the
optimality condition (3.6) is

∫
Σ

H′
v(·, ȳ, v̄, p̄, ᾱ)χds dt+

3∑
i=1

〈 ̂̄ζi, τ(g′iv(ȳ, v̄)) τ(χ)〉Σ# = 0

for all χ ∈ L∞(Σ). (τ is the isometric homomorphism used in the proof of Theorem
5.2, and 〈·, ·〉Σ# denotes the duality pairing between M(Σ#) and C(Σ#).) With
the Hahn–Banach theorem, there exists a function µ belonging to Lk∧σ(Σ) for all
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1 < σ < N+1
N , such that

3∑
i=1

〈 ̂̄ζi, τ(g′iv(ȳ, v̄)) τ(χ)〉Σ# =

∫
Σ

µ χds dt for all χ ∈ L∞(Σ).

By using (5.13), and since (g1(ȳ, v̄), g2(ȳ, v̄)) and (g2(ȳ, v̄), g3(ȳ, v̄)) satisfy the
separation condition stated in (A10), we can prove that

supp ̂̄ζ1 ∩ supp ̂̄ζ2 = supp ̂̄ζ2 ∩ supp ̂̄ζ3 = ∅.(5.14)

Since (supp ̂̄ζ1 ∪ supp ̂̄ζ3) and supp ̂̄ζ2 are two disjoint compact subsets of Σ#, by
using the same method as in the proof of Theorem 5.2 we deduce that there exist µ̄1

and µ̄2 belonging to L
k∧σ(Σ) for all 1 < σ < N+1

N , such that

〈ζ̄1, g′1v(ȳ, v̄)χ〉∗,Σ + 〈ζ̄3, g′3v(ȳ, v̄)χ〉∗,Σ =
∫

Σ

µ̄1 χds dt for all χ ∈ L∞(Σ),(5.15)

〈ζ̄2, g′2v(ȳ, v̄)χ〉∗,Σ =
∫

Σ

µ̄2 χds dt for all χ ∈ L∞(Σ).(5.16)

Let us set η̄2 = (g′2v(ȳ, v̄))
−1µ̄2. The function η̄2 belongs to L

k∧σ(Σ) for all 1 <
σ < N+1

N . Since g′1v(ȳ, v̄) and g
′
3v(ȳ, v̄) satisfy (A9) with (5.13) and (5.15), as in the

proof of Theorem 5.5, we can establish the existence of two nonnegative functions
ξ̄1 ∈ Lk∧σ(Σ) and ξ̄3 ∈ Lk∧σ(Σ) such that

〈g′1v(ȳ, v̄)ζ̄, χ〉∗,Σ =
∫

Σ

ξ̄1χds dt, 〈g′3v(ȳ, v̄)ζ̄3, χ〉∗,Σ =
∫

Σ

ξ̄3 χds dt(5.17)

for all χ ∈ L∞(Σ). We set η̄1 = (g′1v(ȳ, v̄))
−1ξ̄1 and η̄3 = (g′3v(ȳ, v̄))

−1ξ̄3. The
conditions (4.2), (4.3), and (5.1) are satisfied with η̄ ∈ (Lk∧σ(Σ))3. We can conclude
with a bootstrap argument as in the proof of Theorem 4.1. It is clear that if, in
addition, v̂ satisfies (3.1), then we can take ᾱ = 1. The proof is complete.

Finally, consider two examples for which the assumptions of Theorem 5.7 are
satisfied.

Example 1. Set g1(y, v) = v − β1y − c1, g3(y, v) = v − β3y − c3, g2(y, v) =
−v, where β1, β3, c1 and c3 belong to L

∞(Σ), β1 ≥ 0, β3 ≥ 0. Suppose that
Ψ is of the form Ψ(·, y, v) = ψ(·, y) − v. Suppose that there exists ε > 0 such
that min(β1ȳ + c1, β3ȳ + c3) ≥ ε. The pairs (g1(ȳ, v̄), g2(ȳ, v̄)) and (g2(ȳ, v̄), g3(ȳ, v̄))
satisfy the separation condition stated in (A10). The pair (g1(ȳ, v̄), g3(ȳ, v̄)) satisfies
the monotonicity condition stated in (A9). Thus (A10) is satisfied and Theorem 5.7
can be applied. Moreover, by combining the arguments of the proofs of Corollaries
5.3 and 5.6, we can prove the existence of v̂ obeying (3.1). Thus we can take ᾱ = 1.

Remark 5.8. If we set β3 = 0 in the above example, we recover the case of
constraints considered in [6].

Example 2. We replace g1 and g3 in the above example by g1(y, v) = v−φ1(y)−c1,
g3(y, v) = v − φ3(y) − c3, where φ1 and φ3 are nondecreasing functions of class C

1.
Suppose that there exists ε > 0 such that min(φ1(ȳ)+c1, φ3(ȳ)+c3) ≥ ε. Thus (A10)
is satisfied and Theorem 5.7 can be applied. As above, we can take ᾱ = 1.
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BOUNDEDNESS PROPERTIES FOR TIME-VARYING
NONLINEAR SYSTEMS∗
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Abstract. A Liapunov theorem guaranteeing uniform boundedness and uniform ultimate
boundedness for a time-varying nonlinear system ẋ(t) = f(x(t), t) has been established. The study
of uniform boundedness and uniform ultimate boundedness of particular classes of time-varying non-
linear systems ẋ(t) = f(x(t), t) is reduced to the study of the corresponding time-invariant frozen
systems ẋ(t) = f(x(t), σ) for all σ ∈ R. This approach is illustrated for time-varying homogeneous
systems with a positive order, for particular classes of time-varying nonhomogeneous systems and
for time-varying Lotka–Volterra equations.

Key words. nonlinear systems, homogeneous systems, uniform boundedness, uniform ultimate
boundedness
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1. Introduction. The stability analysis of time-varying systems ẋ(t) = f(x(t), t)
is, in general, more difficult than the stability analysis of time-invariant systems. For
this reason, several approaches have been proposed in the literature to reduce the
stability analysis of time-varying systems to the stability analysis of related time-
invariant systems.

Averaging is the most popular of these techniques. Exponential stability of the
(time-invariant) averaged system ẋ(t) = f̄(x(t)) implies exponential stability of the
original (time-varying) system provided that the time-variation of the original system
is sufficiently fast [1, 2, 8]. In contrast, when the time-variation is sufficiently slow,
other results have been proposed based on the stability analysis of the familiy of
the frozen systems ẋ(t) = f(x(t), σ) (where σ is treated as a constant parameter)
[3, 8, 12, 13, 14, 15].

In the recent paper [11], it has been observed that the fast time-variation hypoth-
esis necessary for averaging results can be replaced by a homogeneity assumption on
the vector field f(x, t). Because the homogeneity property affects state but not time,
the time-variation of a homogeneous vector field f(x, t) of positive order τ > 0 is
inherently fast for ‖x‖ small and slow for ‖x‖ large. This fast and slow variation of
the vector field is, of course, to be understood relatively to the time-variation of the
solutions.

Based on this observation, the main result in [11] concludes local uniform asymp-
totic stability of the equilibrium point x = 0 of the time-varying homogeneous system
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from asymptotic stability of the averaged system. This result exploits the inherently
fast character of homogeneous systems with a positive order near the origin.

In the present paper, we exploit the inherently slow character of such systems
far from the origin. We develop a freezing result for homogeneous systems with
a positive order: we show that asymptotic stability of each frozen system implies
uniform boundedness and uniform ultimate boundedness of the original time-varying
system. Boundedness properties rather than asymptotic stability of the equilibrium
point follows from the fact that the time-variation is not slow near the origin.

Our result is further extended to systems that are not necessarily homogeneous
but that possess a homogeneous approximation for ‖x‖ sufficiently large. This ro-
bustness result is dual to the robustness of local asymptotic stability with respect to
higher order perturbations [6, 10].

The paper is organized as follows. In section 2, we formulate a Liapunov re-
sult guaranteeing uniform boundedness and uniform ultimate boundedness of a time-
varying system ẋ(t) = f(x(t), t). We also explain how a Liapunov function can be
constructed satisfying the conditions of this Liapunov result. This approach is used
in section 3 to prove uniform boundedness and uniform ultimate boundedness of a
time-varying homogeneous system with a positive order τ > 0. In section 4, we show
that the approach presented in sections 2 and 3 is not restricted to the class of ho-
mogeneous systems. In section 5, we illustrate the results by means of a time-varying
Lotka–Volterra system defined in the first closed orthant of R

n.

2. Boundedness properties and the freezing technique. We first specify
the class of systems under study in the present paper.

Consider

ẋ(t) = f(x(t), t)(2.1)

with f : R
n×R→ R

n. We assume that conditions are imposed on (2.1) such that the
existence and uniqueness of its solutions are secured for all initial conditions x0 ∈ R

n

and for all initial times t0. The solution of (2.1) at t with initial condition x0 at t0 is
denoted as x(t, t0, x0). These existence and uniqueness conditions are imposed on all
the differential equations mentioned in the present paper.

We now introduce the notions of uniform boundedness and uniform ultimate
boundedness (see [16, pp. 36–37]).

Definition 2.1. The system (2.1) is uniformly bounded when1 for all R1 > 0,
there exists an R2(R1) > 0 such that for all x0 ∈ R

n, for all t0, and for all t ≥ t0

‖x0‖ ≤ R1 ⇒ ‖x(t, t0, x0)‖ ≤ R2(R1).(2.2)

Definition 2.2. The system (2.1) is uniformly ultimately bounded when there
exists an R > 0 such that for all R1 > 0, there exists a T (R1) > 0 such that for all
x0 ∈ R

n, for all t0, and for all t ≥ t0 + T (R1)

‖x0‖ ≤ R1 ⇒ ‖x(t, t0, x0)‖ ≤ R.(2.3)

The classical theorem of Liapunov proves uniform asymptotic stability of the equi-
librium point x = 0 of a dynamical system ẋ(t) = f(x(t), t) when there exists a
positive definite and decrescent Liapunov function V (x, t) whose derivative V̇ (x, t)

1In the present paper, we always use—without loss of generality—the Euclidean norm.
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along the solutions of the system is negative definite. When there exists an RV > 0
such that the derivative V̇ (x, t) along the solutions of the system is negative for x with
‖x‖ > RV > 0, the following proposition proves uniform boundedness and uniform
ultimate boundedness.

Consider the system (2.1). Consider a continuously differentiable function V :
R
n × R→ R.
Proposition 2.3. Assume that for all t ∈ R and for all x ∈ R

n

α(‖x‖) ≤ V (x, t) ≤ β(‖x‖).(2.4)

The functions α(·) : R
+ → R and β(·) : R

+ → R are class-K∞ functions.2

If there exist a class-K function γ(·) : R
+ → R and an RV > 0 such that for all

t ∈ R and for all x ∈ R
n with ‖x‖ > RV

∂V

∂t
(x, t) +

∂V

∂x
(x, t)f(x, t) ≤ −γ(‖x‖),(2.5)

then (2.1) is uniformly bounded and uniformly ultimately bounded.
Proof. The result of the present proposition has been formulated in [16, pp. 39–

42]. For completeness, the proof has been included in the appendix.
The study of uniform boundedness and uniform ultimate boundedness of a time-

varying nonlinear system, by means of Proposition 2.3, is, in general, highly nontrivial.
Reducing the problem to the study of time-invariant systems may be an important
simplification.

Consider the time-varying system (2.1). For each σ ∈ R, define the time-invariant
system

ẋ(t) = f(x(t), σ).(2.6)

We call the system (2.6) the frozen system of (2.1) at σ. Consider for each σ ∈ R

a continuously differentiable function Vσ : R
n → R. Define V : R

n × R → R as
V (x, σ) := Vσ(x) for each σ ∈ R and each x ∈ R

n.
Theorem 2.4. Assume that for all σ ∈ R and for all x ∈ R

n

W1(x) ≤ V (x, σ) ≤W2(x).(2.7)

The functions W1 : R
n → R and W2 : R

n → R are positive definite and radially
unbounded.3

If there exist an RV > 0 and positive definite functions W3 : R
n → R, W4 : R

n →
R, and W5 : R

n → R such that for all σ ∈ R and for all x ∈ R
n with ‖x‖ > RV∣∣∣∣∂V∂σ (x, σ)

∣∣∣∣ ≤W3(x),(2.8)

∂V

∂x
(x, σ)f(x, σ) ≤ −W4(x),(2.9)

2A continuous function η : [0, a) → [0,∞) is said to be a class-K function if it is strictly increasing
and η(0) = 0. It is said to be a class-K∞ function if a = ∞ and η(r) → ∞ as r → ∞.

3A function W : R
n → R is positive definite when W is continuous, W (0) = 0, and W (x) > 0

for all x ∈ R
n \ {0}. In the case when W (x) → +∞ as ‖x‖ → +∞, the positive definite function W

is radially unbounded.
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W3(x)−W4(x) ≤ −W5(x),(2.10)

then (2.1) is uniformly bounded and uniformly ultimately bounded.
Proof. The proof of the present theorem is based on Proposition 2.3. For each

t ∈ R and for each x ∈ R
n, define

V (x, t) := V (x, σ)
∣∣∣
σ=t

.(2.11)

By (2.7) and [8, pp. 138–139], (2.4) is satisfied. By (2.8) and (2.9), it is clear that for
all t ∈ R and for all x ∈ R

n with ‖x‖ > RV

∂V

∂t
(x, t) +

∂V

∂x
(x, t)f(x, t) ≤W3(x)−W4(x) ≤ −W5(x) < 0.(2.12)

By [8, pp. 138–139], (2.5) is satisfied, and by Proposition 2.3 this implies uniform
boundedness and uniform ultimate boundedness for the original time-varying system
(2.1).

Remark 1. It is obvious that the statement of Theorem 2.4 can be relaxed by
replacing (2.8) and (2.9) by ∂V

∂σ (x, σ) +
∂V
∂x (x, σ)f(x, σ) ≤ −W5(x). However, for the

purpose we have in mind (see section 3), the present formulation of Theorem 2.4 will
be applied.

3. Homogeneous systems. In the present section, we specialize the result of
the previous sections to the class of homogeneous systems.

Given an n-tuple r = (r1, . . . , rn) (for all i ∈ {1, . . . , n} : ri > 0), we define the
dilation δ to be the map

δ : R
+ × R

n → R
n : (s, x)→ δ(s, x) = (sr1x1, . . . , srnxn),(3.1)

where x = (x1, . . . , xn).
A continuous function h : R

n → R is r-homogeneous of degree m ≥ 0 if and only
if

∀x ∈ R
n,∀s ∈ R

+ : h(δ(s, x)) = smh(x).(3.2)

A continuous function fH : R
n×R→ R

n is r-homogeneous of order τ ≥ 0 if and only
if

∀x ∈ R
n,∀t ∈ R,∀s ∈ R

+ : fH(δ(s, x), t) = sτδ(s, fH(x, t)).(3.3)

When fH is r-homogeneous of order τ ≥ 0, then for all p > 0, fH is r′-homogeneous
of order τ ′ ≥ 0 with r′ = ( r1p , . . . , rnp ) and τ ′ = τ

p . When h is r-homogeneous

of degree m ≥ 0, then for all p > 0, h is r′-homogeneous of degree m′ ≥ 0 with
r′ = ( r1p , . . . , rnp ) and m′ = m

p . For this reason, taking 0 < ri < 1 for all i ∈ {1, . . . , n}
is not a restriction in the definition of homogeneity. In what follows, we always take
0 < ri < 1 for all i ∈ {1, . . . , n}.

An r-homogeneous norm ρ is a continuous function ρ : R
n → R which is positive

definite and r-homogeneous of degree 1 (0 < ri < 1: for all i ∈ {1, . . . , n}).
In the present paper, we will use the r-homogeneous norm

ρ(x) =

n∑
i=1

|xi|
1
ri .(3.4)
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This homogeneous norm is continuously differentiable in R
n and for all i ∈ {1, . . . , n},

∂ρ

∂xi
(δ(s, x)) = s1−ri ∂ρ

∂xi
(x) .(3.5)

Lemma 3.1. The time-invariant r-homogeneous system ẋ(t) = fH(x(t)) of order
τ > 0 is asymptotically stable if and only if there exists a k > 1 such that for all
x0 ∈ R

n and for all t ≥ 0

ρ(x(t, 0, x0)) ≤ kρ(x0)

(1 + tρ(x0)τ )
1
τ

.(3.6)

Proof. The proof is omitted. The reader is referred to [4, pp. 278–284] for a proof
when the dilation is the standard dilation.

3.1. Main result. Consider the r-homogeneous system

ẋ(t) = fH(x(t), t)(3.7)

with order τ > 0. Consider for each σ ∈ R the frozen system

ẋ(t) = fH(x(t), σ).(3.8)

The solution of (3.7) at t with initial condition x0 ∈ R at t0 is denoted as xH(t, t0, x0),
and the solution of (3.8) is denoted as xHσ(t, t0, x0).

Theorem 3.2. Assume the following.
• The equilibrium point x = 0 of each frozen system (3.8) is asymptotically

stable, and the estimate (3.6) is uniform, i.e., there exists a k > 1 independent
of σ such that for all σ ∈ R, for all x0 ∈ R

n, and for all t ≥ 0

ρ(xHσ(t, 0, x0)) ≤ kρ(x0)

(1 + tρ(x0)τ )
1
τ

.(3.9)

• fH(x, σ) is continuously differentiable with respect to x and σ.
• There exists a cf > 0 such that for all σ ∈ R, for all y ∈ R

n with ρ(y) = 1,
and for all i, k ∈ {1, . . . , n}

|fHi(y, σ)| ≤ cf and

∣∣∣∣∂fHi∂xk
(y, σ)

∣∣∣∣ ≤ cf and

∣∣∣∣∂fHi∂σ
(y, σ)

∣∣∣∣ ≤ cf ;(3.10)

then the time-varying system (3.7) is uniformly bounded and uniformly ultimately
bounded.

Proof. The proof is based on Theorem 2.4. Define for all x ∈ R
n and for all σ ∈ R

V (x, σ) :=

∫ ∞

0

ρ(xHσ(t, 0, x))
mτdt,(3.11)

where m will be chosen later on in the proof.
By (3.3), (3.10), and [4, pp. 278–284], there exists a k′ > 0 such that for all σ ∈ R,

for all x ∈ R
n, and for all t ≥ 0

ρ(xHσ(t, 0, x)) ≥ k′ρ(x)

(1 + tρ(x)τ )
1
τ

.(3.12)

We now prove (2.7), (2.8), and (2.9).
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I. By (3.9) and (3.12), there exist a c1 > 0 and a c2 > 0 such that for all x ∈ R
n

and for all σ ∈ R

c1ρ(x)
(m−1)τ ≤ V (x, σ) ≤ c2ρ(x)

(m−1)τ .(3.13)

This implies that (2.7) is satisfied when m > 1.
II. In order to verify (2.8), we calculate ∂V

∂σ (x, σ). Notice that

(3.14)

∂V

∂σ
(x, σ) = mτ

∫ ∞

0

ρ(xHσ(t, 0, x))
mτ−1 ∂

∂σ
(ρ(xHσ(t, 0, x))) dt

= mτ

∫ ∞

0

ρ(xHσ(t, 0, x))
mτ−1

(
n∑
i=1

∂ρ

∂xi
(xHσ(t, 0, x))

∂xHσi
∂σ

(t, 0, x)

)
dt.

Here, we assume that m > 1
τ . For all i ∈ {1, . . . , n},

∂ρ

∂xi
(xHσ(t, 0, x))(3.15)

=
∂ρ

∂xi

(
δ(ρ(xHσ(t, 0, x))

−1, xHσ(t, 0, x))
)
ρ(xHσ(t, 0, x))

1−ri .

The continuity of ∂ρ
∂xi

on the compact set {y : y ∈ R
n, ρ(y) = 1} implies the existence

of a cρ > 0 such that | ∂ρ∂xi (y)| ≤ cρ for all i ∈ {1, . . . , n} and for all y ∈ R
n with

ρ(y) = 1. It is clear that4

∣∣∣∣∂V∂σ (x, σ)

∣∣∣∣ ≤ mτ

∫ ∞

0

ρ(xHσ(t, 0, x))
mτ−1cρ

(
n∑
i=1

ρ(xHσ(t, 0, x))
1−ri

∣∣∣∣∂xHσi∂σ
(t, 0, x)

∣∣∣∣
)

dt.

(3.16)

In order to obtain an upper bound for the right-hand side of (3.16), we first calculate
an appropriate upper bound for

n∑
i=1

ρ(xHσ(t, 0, x))
1−ri

∣∣∣∣∂xHσi∂σ
(t, 0, x)

∣∣∣∣ .(3.17)

By integrating (3.8), one obtains that for all x ∈ R
n and for all t ≥ 0,

xHσ(t, 0, x) = x+

∫ t

0

fH(xHσ(s, 0, x), σ)ds(3.18)

and

∂xHσi
∂σ

(t, 0, x) =

∫ t

0

n∑
k=1

∂fHi
∂xk

(xHσ(s, 0, x), σ)
∂xHσk

∂σ
(s, 0, x)(3.19)

+
∂fHi
∂σ

(xHσ(s, 0, x), σ)ds.

4Since fH(x, σ) is continuously differentiable with respect to x and σ, the solution xHσ(t, t0, x0)
is continuously differentiable with respect to σ [5, Theorem 3.3, p. 21].
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By multiplying (3.19) with ρ(xHσ(t, 0, x))
1−ri and invoking the triangle inequality,

one obtains that the expression (3.17) is less than or equal to

n∑
i=1

ρ(xHσ(t, 0, x))
1−ri

∫ t

0

n∑
k=1

∣∣∣∣∂fHi∂xk
(xHσ(s, 0, x), σ)

∣∣∣∣ ∣∣∣∣∂xHσk∂σ
(s, 0, x)

∣∣∣∣
+

∣∣∣∣∂fHi∂σ
(xHσ(s, 0, x), σ)

∣∣∣∣ ds.
(3.20)

Notice that

∂fHi
∂xk

(xHσ(s, 0, x), σ)

= ρ(xHσ(s, 0, x))
τ+ri−rk ∂fHi

∂xk

(
δ(ρ(xHσ(s, 0, x))

−1, xHσ(s, 0, x)), σ
)(3.21)

and

∂fHi
∂σ

(xHσ(s, 0, x), σ)

= ρ(xHσ(s, 0, x))
τ+ri

∂fHi
∂σ

(
δ(ρ(xHσ(s, 0, x))

−1, xHσ(s, 0, x)), σ
)
.

(3.22)

By (3.10) and (3.20), the expression (3.17) is less than or equal to

cf

n∑
i=1

ρ(xHσ(t, 0, x))
1−ri

∫ t

0

n∑
k=1

ρ(xHσ(s, 0, x))
τ+ri−rk

∣∣∣∣∂xHσk∂σ
(s, 0, x)

∣∣∣∣
+ ρ(xHσ(s, 0, x))

τ+rids.

(3.23)

By (3.9), ρ(xHσ(τ, 0, x0)) ≤ kρ(x0) for all x0 ∈ R
n and for all τ ≥ 0. By setting

x0 = xHσ(s, 0, x) and τ = t − s, one obtains that for all s ∈ [0, t]: ρ(xHσ(t −
s, 0, xHσ(s, 0, x))) ≤ kρ(xHσ(s, 0, x)) such that ρ(xHσ(t, 0, x)) ≤ kρ(xHσ(s, 0, x)).
This implies by (3.23) that the expression (3.17) is less than or equal to

cf

n∑
i=1

k1−ri
∫ t

0

ρ(xHσ(s, 0, x))
1−ri

(
n∑
k=1

ρ(xHσ(s, 0, x))
τ+ri−rk

∣∣∣∣∂xHσk∂σ
(s, 0, x)

∣∣∣∣
+ ρ(xHσ(s, 0, x))

τ+ri

)
ds.

(3.24)

By (3.9), there exists a c3 > 0 such that for all x ∈ R
n and for all t ≥ 0,∫ t

0

ρ(xHσ(s, 0, x))
1+τds ≤ c3ρ(x).(3.25)

This implies the existence of a c4 > 0 and a c5 > 0 such that the expression (3.17) is
less than or equal to

c4ρ(x) + c5

∫ t

0

ρ(xHσ(s, 0, x))
τ

(
n∑
k=1

ρ(xHσ(s, 0, x))
1−rk

∣∣∣∣∂xHσk∂σ
(s, 0, x)

∣∣∣∣
)

ds.

(3.26)
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By the Gronwall–Bellman lemma, it is clear that
n∑
i=1

ρ(xHσ(t, 0, x))
1−ri

∣∣∣∣∂xHσi∂σ
(t, 0, x)

∣∣∣∣ ≤ c4ρ(x)e
c5
∫ t
0
ρ(xHσ(s,0,x))τds.(3.27)

By (3.9), there exists a c6 > 0 such that for all x ∈ R
n and for all t ≥ 0,

c5

∫ t

0

ρ(xHσ(s, 0, x))
τds ≤ c6 ln (1 + tρ(x)τ ) ,(3.28)

and therefore
n∑
i=1

ρ(xHσ(t, 0, x))
1−ri

∣∣∣∣∂xHσi∂σ
(t, 0, x)

∣∣∣∣ ≤ c4ρ(x) (1 + tρ(x)τ )
c6 .(3.29)

This implies by (3.16) and (3.9) the existence of a c7 > 0 such that∣∣∣∣∂V∂σ (x, σ)

∣∣∣∣ ≤ c7ρ(x)
mτ

∫ ∞

0

(1 + tρ(x)τ )
c6+

1
τ−m dt.(3.30)

Take m > c6+
1
τ +1. There exists a c8 > 0 such that for all σ ∈ R and for all x ∈ R

n,∣∣∣∣∂V∂σ (x, σ)

∣∣∣∣ ≤ c8ρ(x)
(m−1)τ .(3.31)

III. From the definition (3.11), one obtains that the derivative of V (x, σ) along
the solutions of (3.8) equals V̇ (x, σ) = −ρ(x)mτ . This implies that

∂V

∂x
(x, σ)fH(x, σ) = V̇ (x, σ) = −ρ(x)mτ .(3.32)

IV. By (3.31) and (3.32), (2.8) and (2.9) are satisfied with W3(x) = c8ρ(x)
(m−1)τ

and W4(x) = ρ(x)mτ . Since W3(x)−W4(x) is a continuous function of x that tends to
−∞ as ‖x‖ tends to +∞, there exist an RV > 0 and a positive definite W5 : R

n → R

such that for all x with ‖x‖ > RV , W3(x) −W4(x) ≤ −W5(x). Theorem 2.4 implies
uniform boundedness and uniform ultimate boundedness of the system (3.7).

Remark 2. By taking V (x, σ) as defined by (3.11) and by setting V (x, t) =
V (x, σ)|σ=t as in the proof of Theorem 2.4, we not only prove uniform boundedness
and uniform ultimate boundedness of (3.7). We also obtain the estimate

ρ(xH(t, t0, x0)) ≤ kρ(x0)

(1 + (t− t0)ρ(x0)τ )
1
τ

(3.33)

when ‖xH(τ, t0, x0)‖ is sufficiently large for all τ ∈ [t0, t]. Indeed, by (3.31) and (3.32),
the derivative of V (x, t) along the trajectories of (3.7) satisfies the inequality

V̇ (xH(t, t0, x0), t) ≤ c8ρ(xH(t, t0, x0))
(m−1)τ − ρ(xH(t, t0, x0))

mτ .(3.34)

There exists an RV 2 > 0 sufficiently large such that for all xH(t, t0, x0)
with ‖xH(t, t0, x0)‖ > RV 2, V̇ (xH(t, t0, x0), t) ≤ −0.5ρ(xH(t, t0, x0))

mτ . By (3.13),
there exist positive constants c10 and c11 such that

V̇ (xH(t, t0, x0), t) ≤ −c10V (xH(t, t0, x0), t)
m
m−1(3.35)

and by integration

V (xH(t, t0, x0), t)
1

1−m ≥ V (x0, t0)
1

1−m + c11(t− t0).(3.36)

By (3.13), there exists a k > 1 such that for all t0 and for all t ≥ t0 (3.33) is satisfied
when ‖xH(τ, t0, x0)‖ > RV 2 for all τ ∈ [t0, t].
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3.2. Time-periodicity. For the time-periodic case, the conditions mentioned in
Theorem 3.2 can be simplified. When the r-homogeneous system ẋ(t) = fH(x(t), t)
with order τ > 0 is time-periodic, it is possible to reformulate the first condition of
Theorem 3.2 by simply requiring asymptotic stability for each frozen system ẋ(t) =
fH(x(t), σ).

Theorem 3.3. Consider the system ẋ(t) = fH(x(t), t), where fH(x, t) is assumed
to be time-periodic with period Tf . When fH(x, σ) is continuously differentiable with
respect to x and σ and each frozen system ẋ(t) = fH(x(t), σ) is assumed to be asymp-
totically stable, i.e., for each σ ∈ R there exists a k(σ) > 1 such that for all x0 ∈ R

n

and for all t ≥ 0

ρ(xHσ(t, 0, x0)) ≤ k(σ)ρ(x0)

(1 + tρ(x0)τ )
1
τ

,(3.37)

then the time-varying system ẋ(t) = fH(x(t), t) is uniformly bounded and uniformly
ultimately bounded.

Proof. The proof is based on Theorem 3.2.
I. First we show that (3.9) is satisfied.
Since fH(x, σ) is continuously differentiable with respect to x and σ, xHσ(T, 0, x)

is continuously differentiable with respect to σ for all T > 0, for all x ∈ R
n, and for

all σ ∈ [0, Tf ] [5, Theorem 3.3, p. 21]. This implies that for all T > 0, for all x ∈ R
n,

and for all σ ∈ [0, Tf ]

limσ′→σ xHσ′(T, 0, x) = xHσ(T, 0, x) and

limσ′→σ ρ(xHσ′(T, 0, x)) = ρ(xHσ(T, 0, x)).
(3.38)

Take an arbitrary σ ∈ [0, Tf ]. k(σ) in (3.37) is not unique, but for each fixed σ, the
set of the possible k(σ) has an infimum kinf(σ). We will now prove that kinf(σ) is a
continuous function of σ. The continuity of kinf(σ) as a function of σ on a compact
interval implies the existence of a bounded maximum k̄inf on [0, Tf ]. By taking an
arbitrary ε > 0 and setting k = k̄inf + ε, (3.37) implies that (3.9) is satisfied.

Suppose kinf(σ) as a function of σ has a discontinuity at σ′, i.e., there exists an
ε′ > 0 such that for each δ′ > 0 there is a σ′′ ∈]σ′ − δ′, σ′ + δ′[ for which |kinf(σ

′) −
kinf(σ

′′)| > ε′. This means that kinf(σ
′′) < kinf(σ

′)− ε′ or that kinf(σ
′′) > kinf(σ

′)+ ε′.
First, suppose that kinf(σ

′′) < kinf(σ
′) − ε′. For this fixed σ′, kinf(σ

′) is the
infimum of all possible k(σ′). By (3.37), there exist a T ′ > 0 and an x′ ∈ R

n such
that

ρ(xHσ′(T ′, 0, x′)) >
(kinf(σ

′)− ε′
4 )ρ(x

′)

(1 + T ′ρ(x′)τ )
1
τ

.(3.39)

But by (3.37)

ρ(xHσ′′(T ′, 0, x′)) ≤ (kinf(σ
′′) + ε′

4 )ρ(x
′)

(1 + T ′ρ(x′)τ )
1
τ

≤ (kinf(σ
′)− 3ε′

4 )ρ(x′)

(1 + T ′ρ(x′)τ )
1
τ

(3.40)

such that

ρ(xHσ′(T ′, 0, x′))− ρ(xHσ′′(T ′, 0, x′)) >
ε′

2

ρ(x′)

(1 + T ′ρ(x′)τ )
1
τ

(3.41)
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for all δ′ > 0 with σ′′ ∈]σ′ − δ′, σ′ + δ′[. Since (3.41) contradicts with (3.38), the
assumption that kinf(σ

′′) < kinf(σ
′)− ε′ is false.

Suppose that kinf(σ
′′) > kinf(σ

′) + ε′. For this fixed σ′′, kinf(σ
′′) is the infimum

of all possible k(σ′′). There exist a T ′′ > 0 and an x′′ ∈ R
n such that

ρ(xHσ′′(T ′′, 0, x′′)) >
(kinf(σ

′′)− ε′
4 )ρ(x

′′)

(1 + T ′′ρ(x′′)τ )
1
τ

.(3.42)

But by (3.37),

ρ(xHσ′(T ′′, 0, x′′)) ≤ (kinf(σ
′) + ε′

4 )ρ(x
′′)

(1 + T ′′ρ(x′′)τ )
1
τ

≤ (kinf(σ
′′)− 3ε′

4 )ρ(x′′)

(1 + T ′′ρ(x′′)τ )
1
τ

(3.43)

such that

ρ(xHσ′′(T ′′, 0, x′′))− ρ(xHσ′(T ′′, 0, x′′)) >
ε′

2

ρ(x′′)

(1 + T ′′ρ(x′′)τ )
1
τ

(3.44)

for all δ′ > 0 with σ′′ ∈]σ′ − δ′, σ′ + δ′[. Since (3.44) contradicts with (3.38), the
assumption that kinf(σ

′′) > kinf(σ
′) + ε′ is false.

Since the discontinuity assumptions lead to contradictions, kinf(σ) is a continuous
function of σ. Therefore, kinf(σ) has a bounded maximum k̄inf on [0, Tf ]. By taking
an arbitrary ε > 0 and setting k = k̄inf + ε, (3.37) implies that (3.9) is satisfied.

II. Since fH(x, σ) is periodic in the second variable and since fH(x, σ) is contin-
uously differentiable with respect to x and σ, (3.10) is satisfied.

III. Theorem 3.2 implies uniform boundedness and uniform ultimate boundedness
of the homogeneous system ẋ(t) = fH(x(t), t) with order τ > 0.

4. Homogeneous approximations far from the origin. In the present sec-
tion, we generalize the results of section 3. We consider systems that have a dom-
inant homogeneous approximation at infinity, i.e., systems represented as ẋ(t) =
fH(x(t), t) + g(x(t), t). Here fH : R

n × R → R
n is homogeneous with a positive

order τ and g : R
n × R→ R

n is a perturbation of fH when ‖x‖ is sufficiently large.
Consider g : R

n×R→ R
n. There exist an Rg > 0 and a continuous nonincreasing

function F : R
+ → R with lims→∞ F (s) = 0 such that for all x ∈ R

n with ρ(x) > Rg
and for all t ∈ R

‖δ(ρ(x)−1, g(x, t))‖ ≤ ρ(x)τF (ρ(x)).(4.1)

A typical example is the case where g(x, t) is the sum of a finite number of homogen-
eous terms with the same dilation as fH(x, t) and with orders smaller than τ . For x
with ‖x‖ sufficiently large, g(x, t) can be seen as a perturbation which does not affect
the uniform boundedness and the uniform ultimately boundedness property.

Consider the system

ẋ(t) = fH(x(t), t) + g(x(t), t)(4.2)

and the frozen systems

ẋ(t) = fH(x(t), σ) + g(x(t), σ).(4.3)

The solution of ẋ(t) = fH(x(t), t) at t with initial condition x0 ∈ R at t0 is denoted
as xH(t, t0, x0), the solution of ẋ(t) = fH(x(t), σ) is denoted as xHσ(t, t0, x0), the
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solution of (4.2) is denoted as x(t, t0, x0), and the solution of (4.3) is denoted as
xσ(t, t0, x0).

Theorem 4.1. Assume that all the conditions of Theorem 3.2 are satisfied;
then the time-varying system ẋ(t) = fH(x(t), t) + g(x(t), t) is uniformly bounded and
uniformly ultimately bounded.

Proof. In order to prove the boundedness properties, consider the Liapunov func-
tion V (x, σ), defined by (3.11), which satisfies (3.13), (3.31), and (3.32).

I. By making calculations similar to the calculations in part II in the proof of
Theorem 3.2 leading to (3.31), one obtains ∂V

∂xj
(x, σ) for all j ∈ {1, . . . , n} and for all

x ∈ R
n. There exists a c9 > 0 such that for all j ∈ {1, . . . , n} and for all x ∈ R

n∣∣∣∣ ∂V∂xj
(x, σ)

∣∣∣∣ ≤ c9ρ(x)
(m−1)τ−rj(4.4)

when m > c6 +
1
τ + 1.

II. By (4.1), for all x ∈ R
n with ρ(x) > Rg, for all t ∈ R, and for all j ∈ {1, . . . , n}
|gj(x, t)| ≤ ρ(x)rj+τF (ρ(x)).(4.5)

From (3.32), (4.4), and (4.5),

n∑
j=1

∂V

∂xj
(x, σ)(fHj(x, σ) + gj(x, σ)) ≤ −ρ(x)mτ (1− nc9F (ρ(x)))(4.6)

when ρ(x) > Rg. Since lims→∞ F (s) = 0, there exists a ρF > Rg such that for all
x ∈ R

n with ρ(x) > ρF , F (ρ(x)) < 1
2nc9

. This implies that for all x ∈ R
n with

ρ(x) > ρF

∂V

∂x
(x, σ)(fH(x, σ) + g(x, σ)) < −1

2
ρ(x)mτ .(4.7)

III. By (3.31) and (4.7), (2.8) and (2.9) are satisfied with W3(x) = c8ρ(x)
(m−1)τ

and W4(x) = 1
2ρ(x)

mτ . Since W3(x) − W4(x) is a continuous function of x that
tends to −∞ as ‖x‖ tends to +∞, there exist an RV > 0 and a positive definite
W5 : R

n → R such that for all x ∈ R
n with ‖x‖ > RV , W3(x) −W4(x) ≤ −W5(x).

Theorem 2.4 implies uniform boundedness and uniform ultimate boundedness of the
system (4.2).

The boundedness results of Theorem 4.1 do not require time-periodicity of the
system ẋ(t) = fH(x(t), t). In Theorem 4.2, we consider the time-periodic case which
allows a simplification of the conditions.

Theorem 4.2. Consider the system ẋ(t) = fH(x(t), t) with order τ > 0. Here,
fH(x, t) is assumed to be time-periodic with period Tf . When fH(x, σ) is continuously
differentiable with respect to x and σ and each frozen system ẋ(t) = fH(x(t), σ) is
assumed to be asymptotically stable, then the time-varying system ẋ(t) = fH(x(t), t)+
g(x(t), t) is uniformly bounded and uniformly ultimately bounded.

Proof. All the conditions imposed by Theorem 3.3 are satisfied. The proof of
Theorem 3.3 implies that the conditions imposed by Theorem 4.1 (and, equivalently,
by Theorem 3.2) are satisfied. This implies uniform boundedness and uniform ultimate
boundedness of the time-varying system ẋ(t) = fH(x(t), t) + g(x(t), t).

The condition that each frozen system ẋ(t) = fH(x(t), σ) is asymptotically stable
in order to ensure boundedness properties cannot, in general, be relaxed to a stability
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condition for some frozen systems. This is illustrated by means of a scalar example.
Consider the case where fH(x, t) = s(t)x5 with s(t) = 0 when t ∈ [0, 1) and s(t) = −1
when t ∈ [1, 2) with s(t) = s(t + 2) for all t ∈ R. When g(x, t) = x3, the system
ẋ(t) = s(t)x5+x3 is not bounded. (The system has a finite escape time since s(t) = 0
when t ∈ [0, 1).)

If we specialize the result of Theorem 4.2 to the case where fH(x, t) = fH(x)
is time-invariant, Theorem 4.2 shows that asymptotic stability of ẋ(t) = fH(x(t))
implies uniform boundedness and uniform ultimate boundedness of

ẋ(t) = fH(x(t)) + g(x(t), t).(4.8)

The boundedness properties are determined by fH(x) and not by g(x, t). By (4.1),
for x with ‖x‖ sufficiently large, g(x, t) is a perturbation which does not affect the
uniform boundedness and the uniform ultimate boundedness property.

On the other hand, for ‖x‖ sufficiently small, the local asymptotic stability prop-
erties of (4.8) are determined by g(x, t) and not by fH(x, t). By (4.1), fH(x, t)
does not affect the local stability properties. For example, when fH(x) = −x3 and
g(x, t) = x, the system ẋ(t) = −x3(t) + x(t) is uniformly bounded and uniformly
ultimately bounded, but the origin is not stable.

There is a duality between these boundedness results and the results proved by
Hermes [6, Theorem 3.3], the results proved by Morin and Samson ([10, Proposition
2], and the linearization technique [8, pp. 127–132 and pp. 147–148]. Hermes [6]
proves that asymptotic stability of ẋ(t) = fH(x(t)) implies local asymptotic stability
of ẋ(t) = fH(x(t)) + g(x(t)) in the case when g(x) is the sum of a finite number
of homogeneous terms with the same dilation as fH(x) and with orders larger than
τ . This result is valid since for x with ‖x‖ sufficiently small g(x) can be seen as a
perturbation which does not affect the local asymptotic stability property.

5. Example: Lotka–Volterra equations. Theorem 4.2 proves uniform bound-
edness and uniform ultimate boundedness for systems arising as ẋ(t) = fH(x(t), t) +
g(x(t), t) when all the frozen systems ẋ(t) = fH(x(t), σ) of order τ > 0 have an
asymptotically stable equilibrium point x = 0. The verification of this asymptotic
stability property is crucial in the application of Theorem 4.2. It is obvious that the
verification of this asymptotic stability property becomes much easier when the frozen
systems ẋ(t) = fH(x(t), σ) belong to a class of systems whose stability properties have
been studied in the literature. We illustrate this by means of an example.

Consider the time-varying Lotka–Volterra system

ẋi(t) = xi(t) ((A(t)x)i + ri(t)) ,(5.1)

where x = (x1, . . . , xn)
T . Here, A : R→ R

n×n is periodic with period TA and for all
i ∈ {1, . . . , n}, ri : R→ R.

The time-varying Lotka–Volterra equation (5.1) is a positive system. A system
is positive if its state-components are nonnegative, i.e., the first closed orthant of R

n

is positively invariant. Examples of these systems are found in a variety of applied
areas such as biology, chemistry, and sociology [9, 7].

Although the results in the previous sections are formulated for systems defined
in R

n, they also allow the study of positive systems defined in the first closed orthant
of R

n.
Indeed, if ẋ(t) = fH(x(t), t) is defined in the first orthant of R

n with the additional
condition that this first closed orthant is positively invariant for the original time-
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varying system and for all the time-invariant frozen systems ẋ(t) = fH(x(t), σ), the
results of Theorems 3.2 and 3.3 remain valid.

Suppose that ẋ(t) = fH(x(t), t)+g(x(t), t) is defined in the first orthant of R
n with

the additional condition that this first closed orthant is positively invariant for the
time-varying systems ẋ(t) = fH(x(t), t) + g(x(t), t) and ẋ(t) = fH(x(t), t). Suppose
also that the first closed orthant of R

n is positively invariant for all the time-invariant
frozen systems ẋ(t) = fH(x(t), σ)+ g(x(t), σ) and ẋ(t) = fH(x(t), σ); then the results
of Theorems 4.1 and 4.2 remain valid.

Example 1. Assume the following.
• Whenever

xi (A(σ)x)i = λ(σ)xi, i = 1, . . . , n,(5.2)

holds for some σ and for some x �= 0 with xi ≥ 0 for all i ∈ {1, . . . , n}, then
λ(σ) < 0.
• A(σ) is continuously differentiable. There exists a cA > 0 such that for all

σ ∈ R

‖A(σ)‖ ≤ cA and ‖Ȧ(σ)‖ ≤ cA.(5.3)

• There exists a cr > 0 such that for all σ ∈ R and for all i ∈ {1, . . . , n}

|ri(σ)| ≤ cr;(5.4)

then the time-varying system (5.1) is uniformly bounded and uniformly ultimately
bounded.

Proof. By [7, pp. 185–187], all the systems

ẋi(t) = xi(t)(A(σ)x(t))i(5.5)

are asymptotically stable. Take an arbitrary r ∈]0, 1[. All the systems (5.5) are
homogeneous with respect to the dilation (r, . . . , r) with order τ = r > 0. Take
fH(x, t) = (fH1(x, t), . . . , fHn(x, t))

T with fHi(x, t) = xi(A(t)x)i, and take gi(x, t) =

ri(t)xi for all x and for all t. By setting F (s) =
√
ncr
sr , (4.1) is satisfied. By the

asymptotic stability property of (5.5), by setting Tf = TA, and by (5.3), the conditions
required by Theorems 3.3 and 4.2 are satisfied. By Theorem 4.2, we obtain uniform
boundedness and uniform ultimate boundedness for the time-varying positive system
(5.1).

6. Conclusions. In the present paper, we have reduced the study of uniform
boundedness and uniform ultimate boundedness of a time-varying system to the study
of the time-invariant frozen systems.

Appendix A. The appendix contains the proof of Proposition 2.3.
Proof. Take an arbitrayR1 > 0. DefineR2(R1) := max{α−1(β(RV )), α

−1(β(R1))}.
Take an arbitrary x0 ∈ R

n with ‖x0‖ ≤ R1. In order to prove (2.2), suppose that
for some t1 > t0, ‖x(t1, t0, x0)‖ > R2(R1). Because of continuity of solutions and
since R2(R1) ≥ max{R1, RV }, there exists a t′1 ∈ [t0, t1[ such that ‖x(t′1, t0, x0)‖ =
max{R1, RV } and ‖x(t, t0, x0)‖ > max{R1, RV } for all t ∈]t′1, t1]. Since

V (x(t1, t0, x0)) = V (x(t′1, t0, x0)) +

∫ t1

t′1

V̇ (x(t, t0, x0), t)dt(A.1)
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and by (2.5) V̇ (x(t, t0, x0)) ≤ −γ(‖x(t, t0, x0)‖) for all t ∈]t′1, t1], it is clear that

V (x(t1, t0, x0)) ≤ V (x(t′1, t0, x0)) ≤ β(max{R1, RV }).(A.2)

By (A.2) and (2.4), ‖x(t1, t0, x0)‖ ≤ max{α−1(β(RV )), α
−1(β(R1))} = R2(R1). This

contradicts the assumption that ‖x(t1, t0, x0)‖ > R2(R1). Therefore, ‖x(t, t0, x0)‖ ≤
R2(R1) for all t ≥ t0 and (2.2) follows.

In order to prove (2.3), take R = α−1(β(RV )). Take an arbitrary R1 > 0. Take an
arbitrary t0 and x0 ∈ R

n with ‖x0‖ ≤ R1. The solution x(t, t0, x0) exists for all t ≥ t0
since by the first part of the proof ‖x(t, t0, x0)‖ ≤ max{α−1(β(RV )), α

−1(β(R1))}.
Define

T (R1) = max

{
0,

β(R1)− α(β−1(α(R)))

γ(RV )

}
.(A.3)

Assume that for all t1 ∈ [t0, t0 + T (R1)], ‖x(t1, t0, x0)‖ > β−1(α(R)) = RV such that
‖x(t, t0, x0)‖ > β−1(α(R)) = RV for all t ∈ [t0, t1] and by (2.5), V̇ (x(t, t0, x0), t) ≤
−γ(RV ) for all t ∈ [t0, t1]. Since for all t1 ∈ [t0, t0 + T (R1)],

V (x(t1, t0, x0), t1) = V (x0, t0) +

∫ t1

t0

V̇ (x(t, t0, x0), t)dt ≤ V (x0, t0)

− (t1 − t0)γ(RV ),

(A.4)

we also have

V (x(t0 + T (R1), t0, x0), t0 + T (R1))

≤ β(R1)− T (R1)γ(RV ) ≤ α(β−1(α(R))).
(A.5)

This implies by (2.4) that ‖x(t0 +T (R1), t0, x0)‖ ≤ β−1(α(R)), which contradicts the
assumption that ‖x(t1, t0, x0)‖ > β−1(α(R)) for all t1 ∈ [t0, t0+T (R1)]. Consequently,
there exists a t1 ∈ [t0, t0 + T (R1)] such that ‖x(t1)‖ ≤ β−1(α(R)). By the first part
of the proof, ‖x(t)‖ ≤ R when t ≥ t1 and (2.3) follows.
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Abstract. A robust stability theorem of non-Kharitonov type for parametric uncertainty is
formulated and proved: A closed loop system depending on a connected set of parameters whose
maximum frequency response is bounded is either stable for all the parameters or for none. Realistic
illustrative examples are provided.

Key words. robust stability, process control, H-infinity, closed loop frequency response, Mp-
tuning, parametric uncertainty, root locus
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1. Introduction. In this investigation we formulate and prove a frequency do-
main robust stability theorem for infinite dimensional systems with parametric uncer-
tainty which is not of Kharitonov [7] type. That is, we are not restricted to polynomial
functions or to interval parameter uncertainty. We formulate our result in terms of
sufficiently regular meromorphic functions and rather arbitrary parameter sets. Al-
though we state and prove our main result for scalar-valued transfer functions, it can
be extended to the matrix-valued case without too much modification. Ours is a para-
metric approach and differs from the gap metric approach introduced by Zames and
El-Sakkary [13]. In the context of frequency response measurements, Vinnicombe [10]
has proved some sharp gap metric robust stability results.

The importance of our result is that it justifies a relatively simple computational
procedure for the design and tuning of control systems for stable or unstable, finite
or infinite dimensional processes with uncertain parameters. The tuning procedure,
which we call Mp-tuning, adjusts controller parameters to achieve a specified maxi-
mum peak of the frequency response of a closed loop transfer function over all pro-
cesses in the uncertainty set. If the maximum magnitude of the closed loop frequency
response is finite over all uncertain processes, our robust stability theorem then en-
sures that the resulting control system is stable for all processes in the uncertainty
set provided it is stable for any one process in the uncertainty set; conversely, if the
control system is unstable for any one process in the uncertainty set, then the control
system is unstable for all processes in the uncertainty set.

Examples are provided to illustrate the use of our theorem for stable and unstable
processes, infinite dimensional systems, and to emphasize the key role played by the
requirement that the transfer function of the closed loop control system be a suitable
meromorphic function, a condition which is usually easy to assess in practice.
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Fig. 1. A simple feedback system.

2. Definitions, notation, and hypotheses.

2.1. Transfer functions. An (open loop) transfer function is a complex-valued
function (s, p) �→ h (s, p) of a complex variable s and a parameter p.1 To the open
loop transfer function h we associate the (closed loop) transfer function H given by

h �→ H =
h

1 + h
.(1)

The feedback system is shown in Figure 1.
A parameter p is an n-dimensional real-valued vector lying in a subset Π of R

n,
Euclidean n-space, called the parameter set or the uncertainty set. If the complex
variable s lies on the imaginary axis, we write s = iω and call the real number ω the
frequency. By the closed loop frequency response (for the parameter p) we mean the
complex-valued function of a real variable given by

ω �→ H (iω, p) =
h (iω, p)

1 + h (iω, p)
.(2)

To a distinct pair of open loop transfer functions, h and h̃, we associate a transfer
function H̃ of the form (

h, h̃
)
�→ H̃ =

h̃

1 + h
.(3)

The corresponding closed loop frequency response is ω �−→ H̃(iω, p).

2.2. Complex notation and meromorphic functions. The symbol s always
denotes a complex number. Complex numbers are represented as points s = α+ iω in
the complex plane, C, or as points on the complex projective sphere (Riemann sphere),
P. The complex points at infinity, s = ∞, and at zero, s = 0, are identified with the
north and south poles of the projective sphere, P. If s �=∞ is in P, we still write s =
α+ iω for some real pair (α, ω). The open complex half-plane C

+ = {s : � (s) > 0} ⊂
C corresponds to an open hemisphere of P, denoted by P

+. C+ denotes the closed

1In this context, for each p, the function s �→ h (s, p) may be construed as the Laplace transform
of some real-valued function depending on the parameter p.
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complex half-plane C+ = {s : � (s) ≥ 0} ⊂ C. P+ denotes the closure, in P, of the
open hemisphere P

+. The real number line, (−∞,+∞) , is denoted by R, and the
extended real number line, [−∞,+∞] , is denoted by R. The topologies of P and C

are the same provided we identify the neighborhood of infinity {s : |s| > M} ⊂ C with
the north polar cap of P.

A map (s, p)→ f (s, p) on a region in C×C
n is a holomorphic function whenever

(s, (p1, p2, . . . , pn)) → f (s, (p1, p2, . . . , pn)) is holomorphic separately in each of the
variables s, p1, p2, . . . , pn. A map (s, p) → f (s, p) on a region in C×C

n is a mero-
morphic function if, on every neighborhood, Ui, in the region, it is the ratio of two
relatively prime holomorphic functions, say, ni and mi; that is, mi (s, p) f (s, p) =
ni (s, p) on Ui. The m’s and the n’s must agree on overlapping neighborhoods in the
sense that nimj = njmi on Ui∩Uj . Regarding the value, f (s0, p0) , of a meromorphic
function f at a point (s0, p0) we have the following important definition.

The values of a meromorphic function.

f (s0, p0) =


0 if ni (s0, p0) = 0,mi (s0, p0) �= 0 (zero),

ni(s0,p0)
mi(s0,p0)

if ni (s0, p0) �= 0,mi (s0, p0) �= 0,

∞ if ni (s0, p0) �= 0,mi (s0, p0) = 0 (pole),
undefined if ni (s0, p0) = 0,mi (s0, p0) = 0.

(4)

In the first three cases f has a definite value in P at (s0, p0), denoted by f(s0, p0);
in the last case, the value of f must remain undefined since there is no consistent way
to assign a value at such a point.2 Indeed, for any complex number c, there is a point
(s, p), arbitrarily close to (s0, p0), at which f (s, p) = c.

2.3. Hypotheses on the parameter set and the closed loop transfer
function. Regarding the parameter set Π, we always assume the following:

(P) The parameter set Π is an open connected subset of R
n.

Since Π is connected, for any two points p̂ and q̂ in Π, there is a path σ in Π from
p̂ to q̂ ; that is, there is a continuous function σ : [0, 1] → Π such that σ (0) = p̂ and
σ (1) = q̂.

In the following hypotheses, h is a function defined on P+ × Π with values in P;
that is, h has a value at every point in C+ ×Π and at the points {∞} ×Π.

(M) There is a connected open set Π̂ in C
n such that Π̂ ∩R

n = Π and the

function (s, p) �→ h (s, p) has a meromorphic extension to C
+ × Π̂, also denoted by h.

(In particular, h has a value at every point in C
+×Π in the sense of the definition of

the values of a meromorphic function (4).3)
(S) For each parameter p ∈ Π, the function s �→ h (s, p) is not constant on C

+.
(R) For each parameter p ∈ Π, the function s �→ h (s, p) is real-valued or ∞ on

the positive real axis {s : � (s) > 0,� (s) = 0}.
(C) The function (s, p) �→ h (s, p) is (jointly) continuous as a function from P+×Π

into P.4

2See, for example, Hörmander [6, Theorem 6.2.3].
3If (s, p) �→ h (s, p) is “meromorphic for real parameters p” in the sense of convergent power series

expansions, this extension is always possible.
4If h, regarded as a map from P+×Π̂ into P, satisfies (M), then (s, p) �→ h (s, p) is always (jointly)

continuous at points in P
+ × Π (since h is meromorphic and has a value at every point in P

+ × Π̂).

Since h has a value at every point in P+×Π, the condition (C) amounts to the additional assumption

that h be (jointly) continuous at boundary points of the form (iω, p) ∈ P+ ×Π for ω ∈ R or (∞, p) ∈
P+ × Π.
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The hypotheses (M), (S), and (R) are essentially regularity or consistency con-
ditions on h. However, the connectivity of the parameter set, hypothesis (P), and
the continuity of h, hypothesis (C), especially at points on the imaginary axis, are
structurally necessary for our results to hold. (See Example 4.1.)

If h satisfies any of the hypotheses (M), (S), (R), or (C), so does the function
1 + h. Furthermore, if h satisfies the hypothesis (M), so does the function H defined
by (1) since we can assign H values in a manner consistent with the definition of the
values of a meromorphic function (4). If, in addition to (M), h satisfies hypotheses
(R) and/or (C), so does H.

We will be concerned with either a single open loop transfer function h and
its associated closed loop transfer function H or a distinct pair of open loop transfer
functions h and h̃ together with the associated closed loop transfer function H̃ defined
by (3). In general, if h and h̃ each satisfy hypotheses (M) and/or (C), it does not

follow that H̃ satisfies (M) and/or (C), for it may not be possible to assign values to H̃
consistent with definition of the values of a meromorphic function (4) at every point

where h and h̃ have values. In such a case we must add the following compatibility
hypothesis.

(D) The open loop transfer functions h and h̃ are compatible in the sense that

each satisfies hypotheses (M) and (C) and the function H̃ = h̃
1+h also satisfies hy-

potheses (M) and (C). Clearly, h is always compatible with itself.
For a given open loop transfer function h, the maximum magnitude of the closed

loop frequency response over all parameters or, succinctly, the maximum magnitude,
we mean the extended-real-valued function H : [−∞,+∞]→ [0,+∞] defined by

ω �→ H (ω) = sup
p∈Π
|H (iω, p)| = sup

p∈Π

∣∣∣∣ h (iω, p)

1 + h (iω, p)

∣∣∣∣ .(5)

Whenever hypothesis (C) holds, H is well defined on the extended real line R.
By an extended-real-valued function, we mean that the supremum in the definition of
H can be infinite at a given frequency, say, ω̃, in which case we write H (ω̃) = +∞;
in particular H (ω̃) = +∞ whenever h (iω̃, p̃) + 1 = 0 for some frequency ω̃ and some
parameter p̃. If hypotheses (M), (C), and (R) hold, h (s, p) = h (s, p) on P+ × Π,
since h (s, p) is real-valued or ∞ on the positive real axis {s : � (s) > 0,� (s) = 0}.
In particular, h (−iω, p) = h (iω, p) for all ω ∈ R and each p ∈ Π.5 In this case,
the maximum magnitude is an (extended-real-valued) even function of the frequency;
hence, it is completely determined by its values for ω ∈ [0,∞]. Definition (5) and
the assertions above remain meaningful and valid mutatis mutandis when we have
a distinct pair of compatible transfer functions h and h̃, in which case we write H̃
instead of H.

For a single open loop transfer function h, and a parameter p0, the corresponding
closed loop system is said to be stable at the parameter p0 whenever the function

s �→ H (s, p0) = h(s,p0)
1+h(s,p0)

has no pole (�=∞) in the closed hemisphere P+. This

condition is equivalent to the assertion that the function s �→ 1 + h (s, p0) has no
zero in the closed hemisphere P+. The closed loop system is said to be unstable at the

parameter p0 if it is not stable at p0; that is, s �→ H (s, p0) = h(s,p0)
1+h(s,p0)

has at least

one pole in the closed hemisphere P+.

5This is a consequence of the reflection principle. Note that h (∞, p) is real-valued or ∞ for every
parameter p.
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For a pair of distinct compatible open loop transfer functions h and h̃, we also
say that the corresponding closed loop system is stable at the parameter p0 whenever

the transfer function s �→ H̃ (s, p0) = h̃(s,p0)
1+h(s,p0)

has no pole (�=∞) in the closed

hemisphere P+. The closed loop system is again said to be unstable at the parameter

p0 if it is not stable at p0; that is, s �→ H̃ (s, p0) = h̃(s,p0)
1+h(s,p0)

has at least one pole

in the closed hemisphere P+. In the case of distinct compatible open loop transfer
functions, stability at parameter p0 is not equivalent to the assertion that the function
s �→ 1 + h (s, p0) has no zero in the closed hemisphere P+. Indeed, 1 + h (s, p0) could

be nonzero at a point where h̃ (s, p0) has a pole.

3. Main results and proofs. We now state our main result—the robust stability
theorem (RST)—for a single open loop transfer function.

Theorem 3.1 (RST: single transfer function). Assume that the open loop transfer
function satisfies hypotheses (P), (M), (S), (R), and (C). Let the maximum magnitude
of the closed loop frequency response over all parameters be bounded. Then, if the
closed loop system is stable for at least one parameter in the parameter set Π, the
closed loop system is stable for all parameters in the parameter set Π.

Proof (outline of the proof). Suppose Theorem 3.1 was false under the stated
hypotheses. Then there is a parameter q0 for which the system is stable and another
parameter p0 for which the system is unstable. The parameter set Π is assumed
open and connected, so we can choose a path from p0 to q0 lying entirely inside the
parameter set Π. Since the system is unstable for p0, there is at least one point, say,
s0, in P+ such that 1+h (s0, p0) = 0; and, since the system is stable for q0, there is no
such point corresponding to q0. We then use a “root locus” or “continuity” argument
to conclude that there is a parameter p̂ ∈ Π and a frequency ω̂ ∈ [0,∞] such that
1+h (iω̂, p̂) = 0, and, hence, H (ω̂) = +∞. The maximum magnitude is not bounded,
which contradicts our hypothesis.

In order to develop the root locus argument and complete the proof of Theorem
3.1, we establish some preliminary definitions and results. It will be convenient to
write g for the function h+1. The hypotheses (M), (R), (S), and (C) hold for g if and
only if they hold for h. If, for some parameter p0, s �−→ g (s, p0) has no zero in P+,
we say that g is stable at p0. We say g is unstable at p0 if it is not stable at p0.

We will first be concerned with the zeros of g in the set P
+ × Π; that is, those

points (s0, p0) ∈ P
+×Π such that g (s0, p0) = 0. Fix such a zero, (s0, p0). Henceforth,

suppose (M) and (S) hold.6 Then there is a positive integer k0 and neighborhood in

P
+ × Π̂ of (s0, p0) on which g is holomorphic and satisfies

g (s, p0) = (s− s0)
k0 f (s, p0)(6)

for some function s �→ f(s, p0), holomorphic near s0, such that f (s0, p0) �= 0. We call
k0 the multiplicity of the zero (s0, p0). We need the following immediate consequence
of the Weierstrass preparation theorem (WPT).7

Theorem 3.2 (WPT). Let g satisfy (M) and (S). Suppose g (s0, p0) = 0 at

(s0, p0) ∈ P
+ × Π. Then there is a neighborhood U0 in P

+ × Π̂ of the zero (s0, p0)
and k0 functions p �→ λk (p) , λk(p0) = 0, k = 0, 1, 2, 3, . . . , (k0 − 1), holomorphic on

some common neighborhood W0 in Π̂ of p0, such that the function (s, p) �→ g (s, p)

6Hypothesis (S) guarantees that the function s �→ g (s, p0) is not identically zero near s0.
7For a complete statement and proof of the Weierstrass preparation theorem, see Hörmander [6].
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and the function

(s, p) �→ (s− s0)
k0 +

k0−1∑
j=0

λj (p) (s− s0)
j

(7)

have the same set of zeros on U0. This function is called the Weierstrass polynomial
associated with g at the point (s0, p0) .

Let p0 and q0 be distinct parameters in Π, and let σ be a path in Π from p0

to q0. Let (s0, p0) be a zero of g such that s0 ∈ P
+. For each t ∈ [0, 1] define a set

Lσ0 (t) ⊂ C
+ by

Lσ0 (t) =

ŝ ∈ P
+ : ∃ς : [0, t]

cont−→ P
+,


ς (0) = s0

ς (t) = ŝ
∀τ ∈ [0, t] , g (ς (τ) , σ (τ)) = 0


 .(8)

In other words, Lσ0 (t) is the set of those zeros, ŝ, of s → g (s, σ (t)) in P
+ for which

there is a continuous path τ �→ (ς (τ) , σ (τ)) on [0, t] into P
+ ×Π, consisting entirely

of zeros of g, connecting the zero (s0, p0) to the zero (ŝ, σ (t)) . We call Lσ0 (t) the root
locus, at t, emanating from s0 induced by σ or, simply, the root locus emanating from
s0.

The following three properties of the root locus are implicit in its definition:
(L1) Lσ0 (0) = {s0} ,
(L2) s ∈ Lσ0 (t)⇒ g (s, σ (t)) = 0,8

(L3) Lσ0 (t) �= ∅ ⇒ ∀τ ∈ [0, t), Lσ0 (τ) �= ∅.
Thus far, there is no guarantee that Lσ0 (τ) �= ∅ for any τ > 0. The next property

of the root locus asserts that there are such τ ’s.
(L4) There is an ε ∈ (0, 1] such that ∀τ ∈ [0, ε), Lσ0 (τ) �= ∅.
This is an immediate consequence of the following lemma, which asserts that the

local behavior of the root locus is entirely determined by the Weierstrass polynomial.
Lemma 3.1 (local root locus lemma). Let g satisfy (P), (M), and (S). Fix τ̂ ∈

[0, 1] . Let (ŝ, σ (τ̂)) ∈ P
+ × Π be a zero of g; that is, g (ŝ, σ (τ̂)) = 0. Suppose this

zero has multiplicity k̂. Then, for some ε > 0, there are k̂ continuous functions τ �→
ζl (τ) , l = 1, 2, 3, . . . , k̂, defined on a common subinterval of [0, 1] of the form [τ̂ , τ̂ + ε)
or (τ̂ − ε, τ̂ ] , depending on whether τ̂ ∈ [0, 1) or τ̂ ∈ (0, 1], with values in P

+, each
of which satisfies g (ζl (τ) , σ (τ)) = 0 for all τ in the common interval of definition.
We say that τ �→ (ζl (τ) , σ (τ)) is a forward or backward path of zeros of g induced

by σ emanating from (ŝ, σ (τ̂)). Of course, if τ̂ ∈ (0, 1), there are k̂ forward and k̂
backward paths of zeros induced by σ emanating from (ŝ, σ (τ̂)) and, hence, as many

as k̂2 continuous paths of zeros of g on (τ̂ − ε, τ̂ + ε) containing (ŝ, σ (τ̂)).
Proof. The proof is given for the case τ̂ = 0, which yields property (L4). The

other cases are similarly proved. Let U0 and W0 be the neighborhoods described in
the WPT associated with (ŝ, σ (τ̂)) = (s0, p0). Choose ε ∈ (0, 1) so that σ (τ) ∈ W0

whenever τ ∈ [0, ε). This is clearly possible. For each τ ∈ [0, ε), consider the roots of
the Weierstrass polynomial associated with g at the given zero:

(s− s0)
k̂

+

k̂−1∑
k=0

λk (σ (τ)) (s− s0)
k
.(9)

8In general, the converse assertion g (s, σ (t)) = 0 ⇒ s ∈ L (t) is false.
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By the WPT the roots of this polynomial are precisely those of s �→ g (s, σ (τ)),

provided that (s, σ (τ)) ∈ U0. (Note that the k̂ coefficient functions τ �→ λk(σ(τ)),

k = 0, 1, 2, 3, . . . , (k̂ − 1), are each continuous and satisfy λk (σ (0)) = λk(p0) =

0.) It follows that there are k̂ continuous complex-valued functions τ �→ ζl (τ) , l =

1, 2, 3, . . . , k̂, on [0, ε) such that each ζl (0) = s0 and

(ζl (τ)− s0)
k̂

+

k̂−1∑
k=0

λk (σ (τ)) (ζl (τ)− s0)
k

= 0.(10)

The functions τ �→ (ζl (τ) , σ (τ)) are paths of zeros of g induced by σ emanating

from (ŝ, σ (τ̂)) = (s0, p0). Any one of the k̂ functions τ �→ ζl (τ) can serve as a
path, or a segment of a path, in the definition of Lσ0 . In particular, Lσ0 (τ) �= ∅ for
τ ∈ [0, ε).

There is a maximal interval of the form [0, ε0) ⊆ [0, 1) such that τ ∈ [0, ε0) ⇒
Lσ0 (τ) �= ∅. Indeed, the maximal interval [0, ε0) can be realized by

[0, ε0) =
⋃
{[0, ε) ⊆ [0, 1) : ∀τ ∈ [0, ε), Lσ0 (τ) �= ∅} .(11)

Consider the Ω-limit set, Ω(σ), of the root locus t �→ Lσ0 (t) on the maximal
interval [0, ε0). The set Ω (σ) is defined by9

Ω (σ) =
⋂

τ∈[0,ε0)

cl

 ⋃
t∈[τ,ε0)

Lσ0 (t)

 .(12)

By its construction, Ω (σ) is a nonempty, compact subset of P+. We call Ω (σ) the
Ω-limit set (for g) induced by σ emanating from s0.

We can now state and prove the following lemma.
Lemma 3.2 (Ω-limit set). Assume that g satisfies (P), (M), and (S). Let p0 and

q0 be parameters in Π such that g is stable at q0 and unstable at p0. For the unstable
parameter p0, let there be a point s0 ∈ P

+ such that g (s0, p0) = 0. Fix a path σ in Π
from p0 to q0. Let Ω (σ) be the Ω-limit set for g induced by σ emanating from s0. Then
Ω (ε0, σ)

⋂
P

+ = ∅. Equivalently, the Ω-limit set, Ω (σ) , regarded as a subset of P+, is
a nonempty, compact subset of the extended imaginary axis {s : � (s) = 0} ∪ {∞} .10

Proof. Consider the root locus t �→ Lσ0 (t) of g induced by σ emanating from
s0 and its Ω-limit set Ω (ε0, σ). Observe that Lσ0 (1) = ∅, since g is stable at q0.
Suppose Ω (σ)

⋂
P

+ �= ∅. Let ŝ ∈ Ω (σ)
⋂

P
+. Then there is an increasing sequence

tn ↑ ε0 and a sequence sn ∈ P
+ such that sn → ŝ and g (sn, σ (tn)) = 0. Now g

must be holomorphic in some neighborhood of (ŝ, σ (ε0)) in P
+× Π̂, since it is defined

at (ŝ, σ (ε0)); moreover, it vanishes at points arbitrarily close to (ŝ, σ (ε0)). Since g
is jointly continuous at (ŝ, σ (ε0)), it follows that g (ŝ, σ (ε0)) = 0. It turns out that
ŝ ∈ Lσ0 (ε0), so Lσ0 (ε0) �= ∅. To see this, apply the local root locus Lemma 3.1 at the
point (ŝ, σ (ε0)) . For N sufficiently large there must be a subsequence snk , nk ≥ N ,
which lies entirely on one of the paths of zeros of g induced by σ emanating backward
from (ŝ, σ (ε0)) as described in the local root locus Lemma 3.1. This follows since all
the zeros of s �→ g(s, σ(ε0)) close to ŝ are determined by the corresponding Weierstrass

9The function cl ( ) denotes topological closure in the complex plane C or on the projective
sphere P.

10The extended imaginary axis, {s : � (s) = 0}⋃ {∞}, should be construed as a great circle on P.
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polynomial. For any corresponding tnk , we have snk ∈ Lσ0 (tnk). This implies that
ŝ ∈ Lσ0 (ε0) . Since Lσ0 (1) = ∅, we must have ε0 < 1. But then the interval [0, ε0) is not
maximal. Indeed, since ŝ ∈ Lσ0 (ε0) , we can apply the local root locus Lemma (3.1)
forward at (ŝ, σ (ε0)) , as we did at (s0, σ (0)) . Hence, there must be an ε1, 1 ≥ ε1 > ε0
such that Lσ0 (t) �= ∅ for t ∈ [ε0, ε1). The proof is complete.

Finally, we can prove Theorem (3.1).
Proof (details of the proof). Suppose Theorem 3.1 to be false. If, for the unstable

parameter p0, there is a frequency ω̂ ∈ [0,∞] such that 1 + h (iω̂, p0) = 0, then
H (ω̂) = ∞. This is an immediate contradiction, and the RST follows. Suppose that
for the unstable parameter p0 there is no such point; that is, 1 + h (iω, p0) �= 0 for
all ω ∈ [0,∞]. Then there is at least one point s0 ∈ P

+ such that g (s0, p0) =
1 +h (s0, p0) = 0. Fix a path σ in Π from p0 to q0. By the Ω-limit set Lemma 3.2, the
Ω-limit set Ω (σ) for g induced by σ emanating from s0 is a subset of the extended
imaginary axis {s : � (s) = 0}⋃ {∞} . Let ŝ ∈ Ω (σ) . Either ŝ = iω̂, for some ω̂ ∈ R,
or ŝ =∞. In either case, there is a sequence tn ↑ ε0 and a sequence of points sn ∈ P

+

such that sn → ŝ and g (sn, σ (tn)) = 0. By the joint continuity assumption (C),
we must have g (ŝ, p̂) = 0, where p̂ = σ (ε0) . This means that H (ω̂) = +∞ or
H (∞) = +∞; that is, the maximum magnitude of the closed loop frequency response
over all parameters is unbounded, which contradicts our hypothesis. The theorem is
proved.

The RST also holds for a pair of distinct compatible open loop transfer functions.
However, the proof requires a bit more care.

Theorem 3.3 (RST: distinct compatible transfer functions). Assume that the
distinct pair of open loop transfer functions satisfy hypotheses (P), (M), (S), (R), and
(C), and are compatible. Let the maximum magnitude of the closed loop frequency
response over all parameters be bounded. Then, if the closed loop system is stable for
at least one parameter in the parameter set Π, the closed loop system is stable for all
parameters in the parameter set Π.

Proof. The details of the proof are essentially the same as those for Theorem 3.1
once the following observations are made.

If s �−→ H̃ (s, r0) has a pole at s0, then H̃ has a pole at (s0, r0) . In this case,

H̃ can be represented in a neighborhood of (s0, r0) as a ratio of a pair of relatively

prime holomorphic functions, say, m̃ and ñ (H̃ = ñ
m̃ ), such that ñ (s0, r0) �= 0 and

m̃ (s0, r0) = 0. The two lemmas (Lemmas 3.1 and 3.2) and the proof of the theorem
remain essentially unchanged, except that we use the m̃’s locally in place of g. In this
case we refer to Ω (σ) as the Ω-limit set (for H̃) induced by σ emanating from s0.

Suppose Theorem 3.3 to be false. If, for the unstable parameter p0, there is
a frequency ω̂ ∈ [0,∞] such that H̃ (iω̂, p0) = ∞, then H̃ (ω̂) = ∞. This is an
immediate contradiction, and the robust stability Theorem 3.3 follows. Suppose that
for the unstable parameter p0 there is no such point; that is, H̃ (iω, p0) �= ∞ for all

ω ∈ [0,∞]. Then there is at least one point s0 ∈ P
+ such that H̃ (s0, p0) = ∞. Fix

a path σ in Π from p0 to q0. By the root locus Lemma 3.1, the Ω-limit set Ω (σ) for

H̃ induced by σ emanating from s0 is a nonempty, compact subset of the extended
imaginary axis {s : � (s) = 0}⋃ {∞} . Let ŝ ∈ Ω (σ) . Either ŝ = iω̂, for some ω̂ ∈ R,
or ŝ =∞. In either case, there is a sequence tn ↑ ε0 and a sequence of points sn ∈ P

+

such that sn → ŝ and H̃ (sn, σ (tn)) = ∞. By the joint continuity assumption (C),

we must have H̃ (ŝ, p̂) = ∞, where p̂ = σ (ε0) . This means that H̃ (ω̂) = +∞ or

H̃ (∞) = +∞; that is, the maximum magnitude of the closed loop frequency response
over all parameters is unbounded, which contradicts our hypothesis. The theorem is
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proved.

4. Examples. We provide three useful examples. The first, Example 4.1, illus-
trates the key role played by hypotheses (S) and (C). The second two, Examples 4.2
and 4.3, deal with unstable uncertain processes and illustrate the use of our robust
stability Theorem 3.3, for a pair of distinct transfer functions. To deal with such
processes, we will use two degree of freedom control structures shown in Figures 2
and 3. Since the configuration of Figure 3 is internally unstable for unstable processes
(Morari and Zafiriou [8]), we will use Figure 3 only for design purposes. Actual control
system implementation must be by Figure 2, or by algorithms proposed by Berber
and Brosilow [1, 2] and Cheng and Brosilow [4], which yield the same input-output
transfer functions as in Figure 3 but which are internally stable.

Example 4.1 (the role of hypotheses (P) and (C)). This example11 illustrates the
role of hypotheses (P) and (C) and why they are necessary for our result to hold.

Suppose h is given by

h (s, a) =
a (a− s)

a (1− a) + s (1 + a)
,(13)

where the parameter set is the open interval Π = {a : −1 < a < 1} . In this case the
closed loop transfer function is

h (s, a)

1 + h (s, a)
= a

(a− s)

a + s
,(14)

and the maximum magnitude function, H, is

H (ω) = sup
−1<a<1

∣∣∣∣ h (s, iω)

1 + h (s, iω)

∣∣∣∣ = 1.(15)

Clearly H is bounded. On the other hand, for a < 0 the system is unstable, while
for a > 0, the system is stable. This seems to violate the conclusion of our RST! To
see that this compelling example is not a counterexample to Theorem 3.1, examine
the hypotheses. The parameter set, Π, is just an interval, so it is connected. From the
formula above, h is well defined as a meromorphic function for all parameters a ∈ Π
and s ∈ C

+; moreover, h is real-valued for a ∈ Π and s ∈ {s : � (s) = 0,� (s) > 0} .
Hence, hypotheses (P), (M), and (R) are satisfied. However, hypothesis (S) requires
that, for any a ∈ Π, the function s → h (s, a) not be constant in C

+. However, at
a = 0, s→ h (s, 0) = 0 for s ∈ C

+. More importantly, hypothesis (C) requires that h
be well defined on the extended imaginary axis for all parameters a ∈ Π in such a way
that it is jointly continuous there. But h cannot be defined at (s0, a0) = (0, 0) in such
a way that it is jointly continuous at that point. In fact, the defining expression (13)
for h represents a meromorphic function for all complex s and a which has no value
at s = a = 0 in the sense of the definition of the values of a meromorphic function
(4). An obvious way to avoid violating hypotheses (S) and/or (C) is to exclude a = 0
from the parameter set. However, since Π is an interval, this would disconnect the
parameter set, violating hypothesis (P).

11The authors are indebted to Professor Sebastian Engell, Chemietechnik, Universität Dortmund,
for suggesting this example.
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Fig. 2. Standard feedback two degree of freedom control system.

Fig. 3. IMC form of two degree of freedom control system.

Example 4.2 (an undamped two-mass spring system). This example presents the
solution for an unstable “benchmark” control problem proposed by Wie and Bern-
stein [11, 12]. It consists of an undamped two-mass spring system modeled by

y(s) = p(s)u(s) + pd(s)d(s),(16)

where

p(s) =
1
2

s2
(

1
2ks

2 + 1
) ,(17)

pd(s) =
1
2

(
1
ks

2 + 1
)

s2
(

1
2ks

2 + 1
) ,(18)

and where
k =process spring constant (0.5 ≤ k ≤ 2),
u =control effort,
y =position of second mass.

The control objective is to design a robust controller to suppress impulse disturbances
for all the plants in the uncertainty set. Further, the “nominal” process is to have a
settling time of 15 seconds.

Referring to Figures 2 and 3, the closed transfer functions between the set points
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and the disturbances and the process are

y(s) =
cpfc(s)p(s)r(s) + pd(s)d(s)

(1 + c(s)p(s))
(19)

for Figure 2 and

y(s) =
q(s, εr)p(s)r(s) + (1− p̃(s)qqd(s, ε)) pd(s)d(s)

(1 + (p(s)− p̃(s)) qqd(s, ε))
(20)

for Figure 3.
The transfer functions given by (19) and (20) are equivalent (in terms of input-

output transfer functions) if cpf (s) and c(s) are chosen as

cpf (s) = q(s, εr) (qqd(s, ε))
−1

(21)

and

c(s) =
qqd(s, ε)

(1− p̃(s)qqd(s, ε))
.(22)

To design the controller c(s) in (22) we select the controller, qqd(s, ε), so that the
zeros of (1− p̃(s)qqd(s, ε)) cancel the poles of p̃d(s). An easy way of accomplishing
this task is to take the controller qqd(s, ε) to be the product of two terms, q(s, ε) and
qd(s, ε):

qqd(s, ε) = q(s, ε)qd(s, ε).(23)

The term q(s, ε) is taken as the inverse of the model process as given below:

q(s, ε) =
s2
(

1
2k̃

s2 + 1
)

1
2 (εs + 1)

4 ,(24)

where
k̃=model spring constant,
ε=adjustable controller filter time constant.

The above choice for q(s, ε) reduces the problem to that of choosing qd(s, ε) so that the

zeros of (1− qd(s, ε)) / (εs + 1)
4

cancel the poles of p̃d(s). This requires that qd(s, ε)
be at least of third order as given by

qd(s) =
τ3s

3 + τ2s
2 + τ1s + 1

(εs + 1)
3 .(25)

The constants τ1, τ2, and τ3 in (25) are chosen so that the numerator of (1− qd(s, ε))

/ (εs + 1)
4

has zeros at s = 0 and at s = ±i
√

2k̃. There is automatically an additional
zero at s = 0 by virtue of the fact that qd(0, ε) is one. Equating the coefficients of the
requisite polynomials yields

τ1 = 7ε,(26)

τ2 = 21ε2 − 70k̃ε4 + 28k̃2ε6,(27)

τ3 = 35ε3 − 42k̃ε5 + 4k̃2ε7.(28)
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These constants depend on the value of the filter time constant, ε, and the model
parameter k̃. The filter time constant, ε, is selected to be ε = 1 so that the nominal
plant with k̃ = 1 has the desired settling time of about 15 seconds as required in the
benchmark problem specifications (Wie and Bernstein [11, 12]). Having thus chosen
ε, our only remaining task is to find an optimal value for k̃.

We will choose that value of k̃ that minimizes the maximum peak of y(iω)/d(iω)
from (20). By exploring values of the model spring constant, k̃, between 0.5 and 2, we
determined that this minimum peak is obtained by using the model spring constant
k̃ = 0.7. The controller for this spring constant is given by

C1(s) =
10.8

(
s3 − 1.88s2 + 0.93s + 0.13

)
s3 + 7s2 + 19.6s + 25.2

.(29)

Values for k̃ near 0.5 and 2 yield unstable control systems which are indicated by very
large peaks of the maximum of y(iω)/d(iω).

Braatz and Morari [3] solved the above control problem using the D-K iteration
method (Doyle [5]) obtaining the following “µ-optimal” controller:

Cµ(s) =
0.443 (9.402s + 1) (−2.697s + 1) (0.4789s + 1)

(0.216s2 + 0.861s + 1) (0.118s2 + 0.369s + 1)
.(30)

For the hypotheses of the robust stability Theorem 3.3, the pair of distinct transfer
functions h, h̃, and the associated H̃ are constructed through

h(s) = (p(s)− p̃(s))qqd(s),(31)

h̃(s) = (1− p̃(s)qqd(s)),(32)

and, recalling (3),

H̃(s) =
(1− p̃(s)qqd(s))

1 + (p(s)− p̃(s))qqd(s)
.(33)

Compare the transfer functions H̃(s) in (33) and y(s) in (20).
Figure 4 shows that the maximum value of the sensitivity function is bounded

for both control systems. Since a separate Nyquist analysis of the control systems
for a process with a spring constant of k = 0.8 shows that each control system is
stable for that value of the spring constant, we conclude from our robust stability
Theorem 3.3 that the control system is stable for all values of the spring constant in
the uncertainty set. Further, since the maximum of the sensitivity function over all
frequencies is smaller for controller C1(s) than for controller Cµ(s), we expect that the
time responses for the control system using C1(s) are likely to be less oscillatory than
those for Cµ(s), at least for some values of the spring constant. The time responses
in Figures 5 and 6 confirm this expectation.

Example 4.3 (unstable first-order lag plus deadtime process). This example
demonstrates the application of our robust stability Theorem 3.3 to an infinite di-
mensional system. It also points out the need to check the stability of one process
which is not equal to the model in order to draw correct conclusions regarding the
stability of all processes in the set of uncertain processes. The process is

p(s) =
Ke−s

(−s + 1)
, 0.9 ≤ K ≤ 1.1.(34)
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Fig. 4. Maximum magnitude of the sensitivity function using controllers C1(s) and Cµ(s).

Fig. 5. Response of body 2 position, y(t), to an impulse disturbance for different spring constant
values using controller C1(s).

This process is one that is not easy to control, in spite of the relatively small range
of uncertain gains, because of the large magnitude of the deadtime to time constant
ratio.

The process model is taken as

p̃(s) =
e−s

(−s + 1)
.(35)
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Fig. 6. Response of body 2 position, y(t), to an impulse disturbance for different spring constant
values using controller Cµ(s).

Selecting a filter time constant, ε, of 0.5 gives

qqd(s, 0.5) =
(−s + 1)(5.116s + 1)

(0.5s + 1)2
.(36)

Substituting (34), (35), and (36) into (20) and computing the sensitivity function
yields Figure 7. For the hypotheses of the robust stability Theorem 3.3, the pair
of distinct transfer functions h, h̃, and the associated H̃ are constructed, as in the
previous example, through (31), (32), and (33).

Figure 7 indicates that the sensitivity function is finite over all positive frequen-
cies. However, to conclude from this that the control system is stable over all uncertain
processes, we must also see if the control system is stable for any single process gain,
K, in the range 0.9 to 1.1, but not equal to 1.0. Since the control system given by
Figure 3 is internally unstable, a common alternative is to use the control system of
Figure 2 with the controller, C(s), given by (22). A Nyquist analysis of this controller
with qqd(s) given by (36) shows that the controller has six right half-plane poles.
Further, a Nyquist analysis of the sensitivity function given by (19), using the same
controller, shows that the disturbance response is unstable for a process gain of 1.1.
Thus, from our robust stability Theorem 3.3, we can conclude that the control system
is unstable for all process gains in the uncertainty range.

If the controller filter time constant, ε, is increased to 2.8, then the two degree of
freedom IMC controller becomes

qqd(s, 2.8) =
(−s + 1)(38.25s + 1)

(2.8s + 1)2
.(37)

A Nyquist analysis of the controller found by substituting (37) into (22) shows that
the denominator has one right half-plane zero, but this zero is exactly at 1, and so is
cancelled by the numerator zero at 1. This cancellation must be enforced so that the
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Fig. 7. Upper bound of sensitivity function when ε = 0.5.

Fig. 8. Upper bound of sensitivity function when ε = 2.8.

controller that is actually implemented is stable, except of course for the pole at the
origin. The upper bound of the sensitivity function for the control system associated
with (37) is shown in Figure 8.

From Figure 8, and our robust stability Theorem 3.3, we conclude that the control
system is stable for all process gains between 0.9 and 1.1 because a Nyquist analysis
for a gain of 1.1 shows that this control system is stable. The time response for a unit
step disturbance and a unit step set point change for the control system with ε = 2.8
and εr = 2.8 are shown in Figures 9 and 10.
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Fig. 9. Disturbance step response when εr = 3 and ε = 2.8.

Fig. 10. Set point step response when εr = 3 and ε = 2.8.

It is instructive to compare the responses of Figures 9 and 10 with those of an
internally stable control system such as that proposed by Berber and Brosilow [1, 2].
These responses are given in Figures 11 and 12 for the same process (i.e., K = 0.9).
Based on the height and position of the peaks in Figures 7 and 8, one would expect
the time responses associated with Figure 7 to be faster and less oscillatory than those
associated with Figure 8. As can be seen from Figures 11 and 12, this is indeed the
case.

5. Computational considerations. From a practical point of view, implemen-
tation of our results depends upon our ability to compute efficiently the maximum
magnitude function, H, in (5). In Examples 4.2 and 4.3, we used our robust sta-
bility results to establish the stability or instability of closed loop systems, and, in
Example 4.2, to select an optimal model parameter. This was done with the aid of
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Fig. 11. Disturbance step response when εr = 1.3 and ε = 0.5.

Fig. 12. Set point step response when εr = 1.3 and ε = 0.5.

MATLAB-based software developed by Strycezk [9].12 This software uses the follow-
ing approach to keep the computations tractable. Starting at a very high frequency,13

the algorithm seeks the maximum magnitude of the specified closed loop transfer func-
tion over frequency and all uncertain parameters. The result of this optimization is
the highest frequency local (possibly global) maximum. The algorithm then searches
for all local maxima between the frequency just found and a frequency below which

12This software is available free of charge at the web site http://cheme.cwru.edu/People/
Faculty/brosilow/brosilow.htm#brosilow. It requires MATLAB 5.3, or higher, as well as the Control
System and Optimization Toolboxes. The user interface makes data input quite comfortable and
online help is available. Results of the computations are presented as both graphs and tables. Since
URLs tend to change over time, a relatively sure method of arriving at the site containing this soft-
ware is first to access the home page of Case Western Reserve University (http://www.cwru.edu),
and from there proceed to the home page of the Chemical Engineering Department, and finally to
the home page of C. Brosilow.

13In this case, 1000/ the smallest model, uncertain process, or controller time constant.



1440 COLEMAN BROSILOW AND MARSHALL J. LEITMAN

the magnitude of the closed loop frequency response is constant (e.g., 1 for integral
control systems). The results of these calculations are presented in a graph of mag-
nitude versus frequency. Unstable control systems usually show magnitudes higher
than 108. However, for practical purposes, closed loop magnitudes higher than 100
times the closed loop gain can be taken as evidence of an effectively unstable control
system.

The optimization algorithm used in the above calculation is the constrained opti-
mization algorithm provided by the MATLAB Optimization Toolbox. The optimiza-
tion algorithm has worked well with less than six uncertain parameters, and we have
experience with such processes. The algorithm should also work well with many more
than six uncertain parameters, but we do not yet have experience with such problems.

Acknowledgments. One of the authors (M.J.L.) is indebted to his colleagues
Professors Alejandro de Acosta, Michael Hurley, Thomas Ivey, and Arthur Obrock,
all of Case Western Reserve University, for their valuable comments.
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Abstract. In this paper we study nonlinear programming problems with equality, inequality,
and abstract constraints where some of the functions are Fréchet differentiable at the optimal solu-
tion, some of the functions are Lipschitz near the optimal solution, and the abstract constraint set
may be nonconvex. We derive Fritz John type and Karush–Kuhn–Tucker (KKT) type first order
necessary optimality conditions for the above problem where Fréchet derivatives are used for the
differentiable functions and subdifferentials are used for the Lipschitz continuous functions. Con-
straint qualifications for the KKT type first order necessary optimality conditions to hold include
the generalized Mangasarian–Fromovitz constraint qualification, the no nonzero abnormal multiplier
constraint qualification, the metric regularity of the constraint region, and the calmness constraint
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1. Introduction. The classical multiplier rule usually requires that the objective
function and the inequality constraints be differentiable, the equality constraints be
continuously differentiable at the optimal solution, and the abstract constraint set
be convex with nonempty interior (e.g., see Bazaraa, Sherali, and Shetty [1] and
Mangasarian [14]).

Over the last three decades, the classical multiplier rule was extended under two
different assumptions: differentiability and Lipschitz continuity.

On the one hand, the classical multiplier rule was extended in the direction of
eliminating the smoothness assumption while keeping the differentiability assumption.
In the case where there is no abstract constraint, based on a correction theorem, Halkin
[9] proved that the classical multiplier rule holds under the weaker assumption which
requires only that the equality constraints be Fréchet differentiable at the optimal
solution and continuous in a neighborhood of the optimal solution. Based on a multi-
dimensional intermediate value theorem, Di [7] derived some first order and second
order multiplier rules for nonlinear programming problems with equality, inequality,
and abstract constraints where all functions are Fréchet differentiable at the optimal
solution and continuous in a neighborhood of the optimal solution and the abstract
constraint set is convex.

On the other hand, in nonsmooth analysis the classical multiplier rule was gen-
eralized in the direction of replacing the differentiability assumption by the Lipschitz
continuity assumption. Under the assumption that all functions are Lipschitz near the
optimal solution and the abstract constraint set is closed, Clarke [3] derived a gener-
alized multiplier rule involving the Clarke generalized gradient and the Clarke normal
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cone. The Clarke generalized gradient of a function would reduce to the usual deriva-
tive only when the function is strictly differentiable (for example, when the function
is continuously differentiable). Hence, when all functions involved are continuously
differentiable and the abstract constraint set is convex, the generalized multiplier rule
of Clarke would recover the classical multiplier rule. However, the Clarke generalized
gradient of a Lipschitz continuous function may be strictly larger than the set which
consists of the usual derivative when the function is Fréchet differentiable but not
strictly differentiable. In the case when the abstract set is convex, Ioffe [11] showed
that the Clarke generalized multiplier rule can be sharpened by replacing the Clarke
generalized gradient by the Michel–Penot subdifferential which coincides with the
usual derivative when the function is Gâteaux differentiable. Other results in this di-
rection also include Mordukhovich’s combined multiplier rule [16] and the Treiman’s
multiplier rule [19].

In this paper we study first order necessary optimality conditions for nonlinear
programming problems with equality, inequality, and abstract constraints where some
of the functions are Fréchet differentiable at the optimal solution, some of the func-
tions are Lipschitz near the optimal solution, and the abstract constraint set may be
nonconvex. For the above nonlinear programming problem with mixed assumptions
on differentiability and Lipschitz continuity, since a differentiable function may not
be Lipschitz continuous, the only applicable necessary optimality conditions in the
literature are fuzzy multiplier rules (see, e.g., Borwein and Zhu [2]). Although in a
finite dimensional space the fuzzy multiplier rule reduces to an exact multiplier rule,
it involves the singular subdifferential of the non-Lipschitz functions. Our purpose is
to derive exact (i.e., nonfuzzy) first order multipler rules which do not involve any
singular subdifferentials for the above problem where Fréchet derivatives are used for
the differentiable functions and subdifferentials are used for the Lipschitz continuous
functions.

To be more precise, we consider the following optimization problem:

(P) minimize f(x)

subject to gi(x) ≤ 0, i = 1, 2, . . . , I,

hj(x) = 0, j = 1, 2, . . . , J,

φk(x) ≤ 0, k = 1, 2, . . . ,K,

ψl(x) = 0, l = 1, 2, . . . , L,

x ∈ Ω,
where f, gi(i = 1, 2, . . . , I), hi(j = 1, 2, . . . , J), φk(k = 1, 2, . . . ,K), ψl(l = 1, 2, . . . , L)
are the objective function and the constraint functions from a Banach space X to
R. Ω is a closed subset of X and I, J,K,L are given integers. Generally one has
I ≥ 1, J ≥ 1,K ≥ 1, L ≥ 1, but we allow I, J,K, or L = 0 to signify the case in which
there are no explicit constraints of the type.

Let x̄ be a local optimal solution to (P). Denote by I(x̄) := {i : gi(x̄) = 0} and
K(x̄) := {k : φk(x̄) = 0} the index sets of the binding constraints. We always make
the following basic assumptions on the constraint functions.

(A) gi(i ∈ I(x̄)), hj(j = 1, 2, . . . , J) are Fréchet differentiable at x̄ and gi(i �∈ I(x̄))
are continuous at x̄. φk(k ∈ K(x̄)), ψl(l = 1, 2, . . . , L) are Lipschitz near x̄
and φk(k �∈ K(x̄)) are continuous at x̄.

Our main results include the following multiplier rules.
Theorem 1.1 (Fritz John necessary optimality conditions for the case L = 0).
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Let x̄ be a local optimal solution of (P) with L = 0. Suppose that f is either Fréchet dif-
ferentiable at x̄ or Lipschitz near x̄, in addition to assumption (A), hj(j = 1, 2, . . . , J)
are continuous in a neighborhood of x̄, and there exists a vector that is hypertangent
(see Definition 2.4) to the abstract constraint set Ω at x̄. Then there exist scalars
λ ≥ 0, αi ≥ 0(i ∈ I(x̄)), βj(j = 1, 2, . . . , J), γk ≥ 0(k ∈ K(x̄)) not all zero such that

0 ∈ λ∂✸f(x̄) +
∑
i∈I(x̄)

αi∇gi(x̄) +
J∑
j=1

βj∇hj(x̄) +
∑

k∈K(x̄)

γk∂
✸φk(x̄) +N(x̄,Ω),

where ∂✸ denotes the Michel–Penot subdifferential, ∇ denotes the Fréchet derivative,
and N(x̄,Ω) denotes the Clarke normal cone to Ω at x̄.

Remark 1. Note that in the case where f is Fréchet differentiable at x̄, ∂✸f(x̄) =
{∇f(x̄)} in the above multiplier rule. As it was shown by Fernandez [8], the continuity
assumption of the equality constraints hj in Theorem 1.1 cannot be removed.

Theorem 1.2 (Fritz John necessary optimality conditions for the case I = J =
0). Let x̄ be a local optimal solution of (P) with I = J = 0. Suppose that the
objective function f is Fréchet differentiable at x̄, φk(k ∈ K(x̄)), ψl(l = 1, 2, . . . , L)
are Lipschitz near x̄ and φk(k �∈ K(x̄)) are continuous at x̄. Then there exist scalars
λ ≥ 0, γk ≥ 0(k ∈ K(x̄)), ηl(l = 1, 2, . . . , L) not all zero such that

0 ∈ λ∇f(x̄) +
∑

k∈K(x̄)

γk∂φk(x̄) +

L∑
l=1

ηl∂ψl(x̄) +N(x̄,Ω),

where ∂ denotes the Clarke generalized gradient and N(x,Ω) denotes the Clarke nor-
mal cone to Ω at x̄. Moreover, if X is an Asplund space which is a Banach space whose
separable subspaces have separable duals (as is the case for reflexive spaces), under
the above assumptions, there exist scalars λ ≥ 0, γk ≥ 0(k ∈ K(x̄)), ηl(l = 1, 2, . . . , L)
not all zero such that

0 ∈ λ∇f(x̄) +
∑

k∈K(x̄)

γk∂̂φk(x̄) + ∂̂

(
L∑
l=1

ηlψl

)
(x̄) + N̂(x̄,Ω),

where ∂̂ denotes the limiting subdifferential and N̂(x̄,Ω) denotes the limiting normal
cone to Ω at x̄.

As in smooth and Lipschitz optimization we also give constraint qualifications
under which the scalar λ in the above theorems is nonzero such as the generalized
Mangasarian–Fromovitz constraint qualification (GMFCQ), the no nonzero abnormal
multiplier constraint qualification (NNAMCQ), the metric regularity of the constraint
region (metric regularity CQ), and the calmness constraint qualification (calmness
CQ).

We organize the paper as follows. In the next section we provide preliminaries
that will be used in the paper. In section 3, we prove Theorem 1.1, the Fritz John type
necessary optimality condition for the case where there are no Lipschitz continuous
equality constraints. In section 4, we introduce constraint qualifications, discuss the
relationship between the (GMFCQ) and (NNAMCQ), and prove that under constraint
qualifications such as the (NNAMCQ), the metric regularity CQ and the calmness
CQ, λ in Theorems 1.1 can be taken as 1. An example is given to show that when
the objective function is not Lipschitz but only Fréchet differentiable, the metric
regularity CQ may not imply the calmness CQ. Hence the well-known relationships
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between these constraint qualifications may not hold when some of the functions
are not Lipschitz but Fréchet differentiable. However, it turns out that the Karush–
Kuhn–Tucker (KKT) conditions can usually be derived directly. We prove that unlike
the Fritz John type condition (Theorem 1.1), under the metric regularity CQ and
the calmness CQ the KKT condition holds even in the case where L �= 0, and the
continuity assumption of the Fréchet differentiable equality constraints is not needed.
In section 5, we derive KKT type necessary optimality conditions for the case where
all constraint functions are Lipschitz continuous and the objective function is Fréchet
differentiable under the constraint qualification (NNAMCQ), the metric regularity
CQ, and the calmness CQ. Theorem 1.2, the Fritz John type necessary optimality
condition, then follows as an easy consequence.

2. Preliminaries. This section contains some background material on non-
smooth analysis which will be used throughout the paper. We give only concise defini-
tions that will be needed in the paper. For more detailed information on the subject,
our references are Clarke [4], Clarke, Ledyaev, Stern, and Wolenski [5], Loewen [13],
and Mordukhovich and Shao [17].

We first give the following notations that will be used throughout the paper. For
a vector v ∈ Rn, vi is the ith components of v. For any Banach space X we denote its
norm by ‖ · ‖ and consider the dual space X∗ equipped with the weak-star topology
w∗, where 〈·, ·〉 means the canonic pairing. As usual, B and B∗ stand for the open unit
balls in the space and the dual space in question. Note that intΩ, clΩ, and coΩ mean,
respectively, the interior, the closure, and the convex hull of an arbitrary nonempty
set Ω ⊂ X, while the notation cl∗ is used for the weak-star topological closure in X∗.

For a set-valued map Φ : X ⇒ X∗, we denote by

lim sup
x→x̄

Φ(x)

the sequential Kuratowski–Painlevé upper limit with respect to the norm topology in
X and the weak-star topology in X∗, i.e.,

lim sup
x→x̄

Φ(x) := {x∗ ∈ X∗|∃ sequences xk → x̄, x∗k
w∗
→ x∗,

with x∗k ∈ Φ(xk)∀k = 1, 2, . . .}.

We now give some concepts for various normal cones.
Definition 2.1. Let Ω be a nonempty subset of a Banach space X and let ε ≥ 0.
(i) Given x ∈ clΩ, the set

NF
ε (x,Ω) :=

{
x∗ ∈ X∗| lim sup

x′→x,x′∈Ω

〈x∗, x′ − x〉
‖x′ − x‖ ≤ ε

}
(2.1)

is called the set of Fréchet ε-normals to Ω at x. When ε = 0, the set (2.1) is
a cone which is called the Fréchet normal cone to Ω at x and is denoted by
NF (x,Ω).

(ii) Let x̄ ∈ clΩ. The nonempty cone

N̂(x̄,Ω) := lim sup
x→x̄,ε↓0

NF
ε (x,Ω)(2.2)

is called the limiting normal cone to Ω at x̄.
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Using the definitions for normal cones, we now give definitions for corresponding
subdifferentials of a single-valued map.

Definition 2.2. Let X be a Banach space and ϕ : X → R ∪ {+∞} be l.s.c.
(lower semicontinuous) and finite at x ∈ X. The sets

∂Fε ϕ(x) := {x∗ ∈ X∗|(x∗,−1) ∈ NF
ε ((x, ϕ(x)), epiϕ)},(2.3)

∂̂ϕ(x) := {x∗ ∈ X∗|(x∗,−1) ∈ N̂((x, ϕ(x)), epiϕ)},

where epiϕ := {(x, v) : v ≥ ϕ(x)} denotes the epigraph of ϕ, are called, respectively,
the Fréchet ε-subdifferential and the limiting subdifferential of ϕ at x. When ε = 0,
the set (2.3) is called the Fréchet subdifferential of ϕ at x and is denoted by ∂Fϕ(x).
It is known that the Fréchet subdifferential has the following analytic expression:

∂Fϕ(x) =

{
x∗ ∈ X∗| lim inf

x′→x

ϕ(x′)− ϕ(x)− 〈x∗, x′ − x〉
‖x′ − x‖ ≥ 0

}
.(2.4)

Let X be any Banach space, x̄ ∈ X, and ϕ : X → R be any continuous func-
tion. Then the Michel–Penot directional derivative of ϕ at x̄ in the direction v ∈ X
introduced in [15] is given by

ϕ✷(x̄; v) := sup
w∈X

lim sup
t↓0

ϕ(x̄+ t(v + w))− ϕ(x̄+ tw)

t

and the Michel–Penot subdifferential of ϕ at x̄ is given by the set

∂✸ϕ(x̄) := {x∗ ∈ X∗|〈x∗, v〉 ≤ ϕ✷(x̄; v) ∀v ∈ X}.

It is known (see [15, Proposition 1.3]) that when a function ϕ is Gâteaux differentiable
at x̄, ∂✸ϕ(x̄) = {∇ϕ(x̄)}.

The following properties of the Michel–Penot directional derivatives and the
Michel–Penot subdifferentials will be useful.

Proposition 2.3 (see [15, 11]). Let X be a Banach space, x ∈ X, and f be
Lipschitz near x with constant Lf . Then

(i) The function v → f✷(x; v) is finite, positively homogeneous, and subadditive
on X.

(ii) As a function of v, f✷(x; v) is Lipschitz continuous with constant Lf on X.
(iii) ∂✸f(x) is a nonempty, convex, weak∗-compact subset of X∗ and ‖x∗‖ ≤ Lf

for every x∗ ∈ ∂✸f(x).
Let X be any Banach space, x̄ ∈ X, and ϕ : X → R be Lipschitz near x̄. Then

the Clarke generalized derivative of ϕ at x̄ in the direction v ∈ X is given by

ϕ0(x̄; v) := lim sup
x→x̄,t↓0

ϕ(x+ tv)− ϕ(x)
t

and the Clarke generalized gradient of ϕ at x̄ is given by the set

∂ϕ(x̄) := {x∗ ∈ X∗|〈x∗, v〉 ≤ ϕ0(x̄; v) ∀v ∈ X}.

Let Ω be a nonempty subset of a Banach space X and consider its distance
function, that is, the function dΩ(·) : X → R defined by

dΩ(x) = inf{‖x− c‖ : c ∈ Ω}.
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The Clarke tangent cone to Ω at x̄ is defined by

T (x̄,Ω) := {v ∈ X| d0
Ω(x̄; v) = 0}

and the Clarke normal cone to Ω at x̄ is defined by polarity with T (x̄,Ω):

N(x̄,Ω) := {x∗ ∈ X∗|〈x∗, v〉 ≤ 0 ∀v ∈ T (x̄,Ω)}.
Definition 2.4 (hypertangent). Let X be a Banach space. A vector v in X is

said to be hypertangent to the set Ω ⊆ X at the point x ∈ Ω if for some ε > 0,

y + tw ∈ Ω ∀y ∈ (x+ εB) ∩ Ω, w ∈ v + εB, t ∈ (0, ε).
It follows easily that any vector v hypertangent to Ω at x belongs to T (x,Ω). It is

possible to have no hypertangents at all. However, it is clear that when Ω is a convex
set with nonempty interior, then any vector x∗− x with x∗ ∈ intΩ is hypertangent to
Ω at x.

It is known that in any Banach space X and for any ε ≥ 0

NF
ε (x̄,Ω) ⊆ N̂(x̄,Ω) ⊆ N(x̄,Ω),

∂Fε ϕ(x̄) ⊆ ∂̂ϕ(x̄) ⊆ ∂✸ϕ(x̄) ⊆ ∂ϕ(x̄)
and in any Asplund space, the following precise relationships hold [17, Theorems 2.9
and 8.11]:

(i) For any closed set Ω ⊆ X and x̄ ∈ Ω one has

N̂(x̄,Ω) = lim sup
x→x̄

NF (x,Ω),

N(x̄; Ω) = cl∗coN̂(x̄,Ω).

(ii) For any function ϕ : X → R which is Lipschitz near x̄ ∈ X, one has

∂̂ϕ(x̄) = lim sup
x→x̄

∂Fϕ(x),

∂ϕ(x̄) = cl∗co∂̂ϕ(x̄).

We now summarize the sum rules and chain rules for the various subdifferentials
in the literature. For convenience, we do not intend to quote the results under the
most general assumptions. Instead, we provide the results under the assumptions
we need in our paper. For example, since when Y is finite dimensional, a function
ϕ : X → Y is Lipschitz near x̄ ∈ X is strictly Lipschitzian at x̄ in the sense of [17];
Propositions 2.5(ii) and 2.6(ii) are special cases of the results in [17].

Proposition 2.5 (sum rules).
(i) (See, e.g., the proof of [6, Lemma 2.2].) Let X be a Banach space and x̄ ∈ X.

Let ϕ1 : X → R be Fréchet differentiable at x̄ and ϕ2 → R ∪ {+∞} be finite
and l.s.c. at x̄. Then

∂F (ϕ1 + ϕ2)(x̄) = ∇ϕ1(x̄) + ∂Fϕ2(x̄).

(ii) (See [17, Proposition 2.5 and Theorem 4.1].) Let X be an Asplund space and
x̄ ∈ X. Let ϕi : X → R ∪ {+∞}, i = 1, 2, be l.s.c. at x̄ and one of these
functions is Lipschitz near x̄. Then one has

∂̂(ϕ1 + ϕ2)(x̄) ⊆ ∂̂ϕ1(x̄) + ∂̂ϕ2(x̄).



MULTIPLIER RULES UNDER MIXED ASSUMPTIONS 1447

(iii) (See [4, Proposition 2.3.3].) Let X be a Banach space and x̄ ∈ X. Let
ϕi : X → R, i = 1, 2, be Lipschitz near x̄. Then one has

∂(ϕ1 + ϕ2)(x̄) ⊆ ∂ϕ1(x̄) + ∂ϕ2(x̄).

Proposition 2.6 (chain rules).
(i) (See [5, Theorem 2.5].) Let X be a Banach space and x̄ ∈ X. Suppose that

ϕ : X → Rn is Lipschitz near x̄ and f : Rn → R is Lipschitz near ϕ(x̄).
Then

∂(f ◦ ϕ)(x̄) ⊆ cl∗co ∪y∗∈∂f(ϕ(x̄)) ∂〈y∗, ϕ〉(x̄).
(ii) (See [17, Proposition 2.5 and Corollary 6.3].) Moreover, if X is an Asplund

space, then

∂̂(f ◦ ϕ)(x̄) ⊆ ∪y∗∈∂̂f(ϕ(x̄))∂̂〈y∗, ϕ〉(x̄).

The following exact penalty results given by Clarke in [4, Proposition 2.4.3] will
often be used in the paper.

Proposition 2.7. Let C be a closed subset of X. Assume that f attains a
minimum over C at x̄ ∈ C and f is Lipschitz near x̄ with constant Lf > 0. Then for
all K ≥ Lf , the function g(y) = f(y) +KdC(y) also attains a minimum over X at
x̄.

3. Proof of Theorem 1.1. We need only to prove the theorem under the as-
sumption that there do not exist scalars αi ≥ 0(i ∈ I(x̄)), βj(j = 1, 2, . . . , J), γk ≥
0(k ∈ K(x̄)) not all zero such that

0 ∈
∑
i∈I(x̄)

αi∇gi(x̄) +
J∑
j=1

βj∇hj(x̄) +
∑

k∈K(x̄)

γk∂
�φk(x̄) +N(x̄,Ω).(3.1)

Indeed, if (3.1) is satisfied by some scalars αi ≥ 0(i ∈ I(x̄)), βj(j = 1, 2, . . . , J), γk ≥
0(k ∈ K(x̄)) that are not all zero, then by taking λ = 0 we obtain the Fritz John
condition.

Case 1, J �= 0.
Since ∇hj(x̄)(j = 1, 2, . . . , J) are linearly independent by assumption (3.1), by

the correction theorem of Halkin [9, Theorem F], there exist a neighborhood U of x̄
and a continuous mapping ζ from U into X such that ζ(x̄) = 0,∇ζ(x̄) = 0 and

hj(x+ ζ(x)) = 〈∇hj(x̄), x− x̄〉 ∀x ∈ U, j = 1, 2, . . . , J.(3.2)

We shall now prove that there is no v ∈ intT (x̄,Ω) such that

f✷(x̄; v) < 0,(3.3)

〈∇gi(x̄), v〉 < 0, i ∈ I(x̄),(3.4)

〈∇hj(x̄), v〉 = 0, j = 1, 2, . . . , J,(3.5)

φ✷
k (x̄; v) < 0, k ∈ K(x̄).(3.6)

By contradiction, we assume that there exists v∗ ∈ intT (x̄,Ω) such that (3.3)–
(3.6) hold. Let

θ(t) = x̄+ tv∗ + ζ(x̄+ tv∗) ∀t ∈ [0, 1].
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Then by virtue of (3.2) and (3.5), for all τ ∈ (0, 1] small enough, hj(θ(τ)) = 0 for all
j = 1, 2, . . . , J . Since θ(0) = x̄,∇θ(0) = v∗, by the chain rule,

lim
t→0+

gi(θ(t))− gi(θ(0))
t

= 〈∇gi(x̄), v∗〉 ∀i ∈ I(x̄).

Consequently, by virtue of (3.4),

lim
t→0+

gi(θ(t))− gi(θ(0))
t

< 0 ∀i ∈ I(x̄).

That is, for all τ ∈ (0, 1] small enough,
gi(θ(τ)) < 0 ∀i ∈ I(x̄).

Since φk is Lipschitz near x̄,

φ✷
k (x̄; v

∗) = sup
w∈X

lim sup
v′→v∗,t↓0

φk(x̄+ t(v′ + w))− φk(x̄+ tw)

t
∀k ∈ K(x̄).

Consequently, by virtue of (3.6), we have for all τ ∈ (0, 1] small enough,
φk(x̄+ τv∗ + ζ(x̄+ τv∗))− φk(x̄)

τ
< 0 ∀k ∈ K(x̄).

That is, for all τ ∈ (0, 1] small enough,
φk(θ(τ)) < 0 ∀k ∈ K(x̄).

Similarly since f✷(x̄, v) = 〈∇f(x̄), v〉 when f is Fréchet differentiable, for all τ ∈
(0, 1] small enough, f(θ(τ)) < f(x̄) by virtue of (3.3). By assumption, there exists
a hypertangent to Ω at x̄. By Rockafellar (see [4, Theorem 2.4.8]), the set of all
hypertangents to Ω at x̄ coincides with the interior of the Clarke tangent cone to Ω
at x̄. So for all τ ∈ (0, 1] small enough,

x̄+ tv∗ + ζ(x̄+ τv∗) = x̄+ τ

[
v∗ +

ζ(x̄+ τv∗)
τ

]
∈ Ω.

By the continuity assumptions at x̄ for gi(i �∈ I(x̄)), φk(k �∈ K(x̄)), for all τ ∈ (0, 1]
small enough,

gi(θ(τ)) < 0 ∀i �∈ I(x̄),
φk(θ(τ)) < 0 ∀k �∈ K(x̄).

Hence there exists τ ∈ (0, 1] such that

f(θ(τ)) < f(x̄),

gi(θ(τ)) < 0, i = 1, 2, . . . , I,

hj(θ(τ)) = 0, j = 1, 2, . . . , J,

φk(θ(τ)) < 0, k = 1, 2, . . . ,K,

θ(τ) ∈ Ω,
which contradicts the fact that x̄ is a local optimal solution of (P).
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Since T (x̄,Ω) is a closed convex cone and f✷(x̄; v), φ✷
k (x̄; v) are continuous in v

(see Proposition 2.3), by virtue of nonexistence of v ∈ intT (x̄,Ω) satisfying (3.3)–
(3.6), the nonemptyness of intT (x̄,Ω), and Proposition 4.4, v = 0 is a solution to the
following problem:

min f✷(x̄; v)

s.t. 〈∇gi(x̄), v〉 ≤ 0, i ∈ I(x̄),
〈∇hj(x̄), v〉 = 0, j = 1, 2, . . . , J,

φ✷
k (x̄; v) ≤ 0, k ∈ K(x̄),

v ∈ T (x̄,Ω).
Applying the generalized multiplier rule of Clarke [4, Theorem 6.1.1], there exist
scalars λ ≥ 0, αi ≥ 0(i ∈ I(x̄)), βj(j = 1, 2, . . . , J), γk ≥ 0(k ∈ K(x̄)) not all zero such
that

0 ∈ λ∂vf✷(x̄; 0) +
∑
i∈I(x̄)

αi∇gi(x̄) +
J∑
j=1

βj∇hj(x̄)

+
∑

k∈K(x̄)

γk∂vφ
✷
k (x̄; 0) +N(0, T (x̄,Ω)),

where ∂v denotes the generalized gradient with respect to v.
By definition, ξ ∈ ∂✸f(x̄) if and only if

〈ξ, v〉 ≤ f✷(x̄; v) ∀v ∈ X.(3.7)

Since f✷(x̄; v) is a convex function of v (see Proposition 2.3) and obviously f✷(x̄; 0) =
0, (3.7) holds if and only if ξ ∈ ∂vf✷(x̄; 0). Hence, ∂vf

✷(x̄; 0) = ∂✸f(x̄). Similarly,
∂vφ

✷
k (x̄; 0) = ∂✸φk(x̄). Since ξ ∈ N(x̄,Ω) if and only if 〈ξ, v〉 ≤ 0 for all v ∈ T (x̄,Ω),

N(0, T (x̄,Ω)) = N(x̄,Ω).

Hence the Fritz John condition holds in this case.
Case 2, J = 0, I �= 0.
We shall now prove that there is no v ∈ intTΩ(x̄) such that

f✷(x̄; v) < 0,(3.8)

〈∇gi(x̄), v〉 < 0, i ∈ I(x̄),(3.9)

φ✷
k (x̄; v) < 0, k ∈ K(x̄).(3.10)

By contradiction, we assume that there exists v∗ ∈ intT (x̄,Ω) such that (3.8)–(3.10)
hold. Since gi, i ∈ I(x̄) are differentiable at x̄, for t > 0 small enough,

gi(x̄+ tv∗) = gi(x̄) + t〈∇gi(x̄), v∗〉+ αi(x̄, tv
∗)t‖v∗‖ ∀i ∈ I(x̄),

where limt→0 αi(x̄, tv
∗) = 0 for i ∈ I(x̄).

By virtue of (3.9), for τ > 0 small enough,

〈∇gi(x̄), v∗〉+ αi(x̄, τv
∗)‖v∗‖ < 0

and hence for τ > 0 small enough,

gi(x̄+ τv∗) < 0, i = 1, 2, . . . , I.
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By virtue of (3.10), we have for all τ ∈ (0, 1] small enough,
φk(x̄+ τv∗)− φk(x̄)

τ
< 0 ∀k ∈ K(x̄).

That is, for all τ ∈ (0, 1] small enough,

φk(x̄+ τv∗) < 0, k = 1, 2, . . . ,K.

Similarly, we can prove that for all τ small enough,

f(x̄+ τv∗) < f(x̄).

Since v∗ is a hypertangent to Ω at x̄, x̄ + τv∗ ∈ Ω for τ > 0 small enough. Hence
there exists τ > 0 such that

f(x̄+ τv∗) < f(x̄),

gi(x̄+ τv∗) < 0, i = 1, 2, . . . , I,

φk(x̄+ τv∗) < 0, k = 1, 2, . . . ,K,

x̄+ τv∗ ∈ Ω,

which contradicts the fact that x̄ is a local optimal solution of (P).
The remaining proof is similar to Case 1.

4. Constraint qualifications and the KKT conditions. In this section we
introduce four constraint qualifications which ensure the KKT conditions hold and
discuss the relationships among them.

The first constraint qualification for the case L = 0 follows naturally from the
Fritz John necessary optimality condition as in the following proposition.

Theorem 4.1 (KKT condition for the case L = 0 under the (NNAMCQ)). In
addition to the assumptions of Theorem 1.1, assume that there is no nonzero abnormal
multiplier, i.e.,

0 ∈
∑
i∈I(x̄)

αi∇gi(x̄) +
J∑
j=1

βj∇hj(x̄) +
∑

k∈K(x̄)

γk∂
✸φk(x̄) +N(x̄,Ω),(4.1)

αi ≥ 0, i ∈ I(x̄),

implies that αi = 0 for all i ∈ I(x̄), βj = 0 for all j = 1, 2, . . . , J, γk = 0 for all k ∈
K(x̄). Then λ > 0 in the conclusion of Theorem 1.1.

Proof. By Theorem 1.1, there exist scalars λ ≥ 0, αi ≥ 0(i ∈ I(x̄)), βj(j =
1, 2, . . . , J), γk ≥ 0(k ∈ K(x̄)) not all zero such that

0 ∈ λ∂✸f(x̄) +
∑
i∈I(x̄)

αi∇gi(x̄) +
J∑
j=1

βj∇hj(x̄) +
∑

k∈K(x̄)

γk∂
✸φk(x̄) +N(x̄,Ω).(4.2)

The case λ = 0 is impossible. Indeed, if λ = 0 in the above condition, then the
inclusion (4.2) coincides with inclusion (4.1). The assumption then rules out this
possibility.

Motivated by the above KKT condition we define the following constraint quali-
fication for the general problem (P).
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Definition 4.2. We say that (P) satisfies the (NNAMCQ) if

0 ∈
∑
i∈I(x̄)

αi∇gi(x̄) +
J∑
j=1

βj∇hj(x̄) +
∑

k∈K(x̄)

γk∂
✸φk(x̄) +

L∑
l=1

ηl∂
✸ψl(x̄) +N(x̄,Ω),

αi ≥ 0, i ∈ I(x̄), γk ≥ 0, k ∈ K(x̄),

implies that αi = 0 for all i ∈ I(x̄), βj = 0 for all j = 1, 2, . . . , J, γk = 0 for all k ∈
K(x̄), ηl = 0 for all l = 1, 2, . . . , L.

We now prove that the (NNAMCQ) is closely related to but weaker than the
(GMFCQ) defined as follows.

Definition 4.3. We say that (P) satisfies the (GMFCQ) at x̄ if there exists
d0 ∈ intT (x̄,Ω) such that

(i) 〈∇gi(x̄), d0〉 < 0, φ✷
k (x̄; d0) < 0 ∀i ∈ I(x̄), k ∈ K(x̄),

(ii) 〈∇hj(x̄), d0〉 = 0, ψ✷
l (x̄; d0) = 0, i = 1, 2, . . . , J, l = 1, 2, . . . , L,

(iii) for any ξl ∈ ∂✸ψl(x̄), l = 1, . . . , L, {∇h1(x̄), . . . ,∇hJ(x̄), ξ1, . . . , ξL} are lin-
early independent.

Proposition 4.4. The (GMFCQ) implies (NNAMCQ). Under the assumption
that intT (x̄,Ω) �= ∅, the (GMFCQ) and (NNAMCQ) are equivalent.

Proof. Since the proof of (GMFCQ) implying (NNAMCQ) is exactly similar to
the proof in the case I = J = 0 [12, Proposition 4.3], we omit the proof.

We now prove the reverse statement under the assumption that intT (x̄,Ω) �=
∅. Suppose that the (NNAMCQ) holds but not the (GMFCQ). If for some ξl ∈
∂✸ψl(x̄), l = 1, 2, . . . , L, {∇h1(x̄), . . . ,∇hJ(x̄), ξ1, . . . , ξL} are linearly dependent, then
there exist scalars βj(j = 1, 2, . . . , J), ηl(l = 1, 2, . . . , L) not all zero such that

0 ∈
J∑
j=1

βj∇hj(x̄) +
L∑
l=1

ηl∂
✸ψl(x̄)

⊆
J∑
j=1

βj∇hj(x̄) +
L∑
l=1

ηl∂
✸ψl(x̄) +N(x̄,Ω),

which contradicts the fact that there is no nonzero abnormal multiplier for (P). If
there is no d0 ∈ intT (x̄,Ω) satisfying items (i) and (ii), then in the case I �= 0, d = 0
must be an optimal solution to the following problem:

min 〈∇gī(x̄), d〉
s.t. 〈∇gi(x̄), d〉 ≤ 0, i ∈ I(x̄)\{̄i},

〈∇hj(x̄), d〉 = 0, j = 1, . . . , J,

φ✷
k (x̄; d) ≤ 0, k ∈ K(x̄),

ψ✷
l (x̄; d) = 0, l = 1, . . . , L,

d ∈ T (x̄,Ω),
where ī ∈ I(x̄) and in the case where I = 0 but K �= 0, d = 0 must be an optimal
solution to the following problem:

min φ✷
k̄ (x̄; d)

s.t. 〈∇hj(x̄), d〉 = 0, j = 1, . . . , J,

φ✷
k (x̄; d) ≤ 0, k ∈ K(x̄)\{k̄},
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ψ✷
l (x̄; d) = 0, l = 1, . . . , L,

d ∈ T (x̄,Ω),

where k̄ ∈ K(x̄). Applying the generalized multiplier rule of Clarke completes the
proof.

In Lipschitz optimization, it is well known that the calmness condition is the weak-
est constraint qualification. We now extend the definition of the calmness condition
[4] to our setting.

Definition 4.5 (calmness). Let x̄ be a solution of (P). (P) is calm at x̄ provided
that there exist ε > 0 and µ > 0 such that for all (p, q, u, v) ∈ εBI+J+K+L and all
x ∈ x̄+ εB satisfying

g(x) + p ≤ 0, h(x) + q = 0, φ(x) + u ≤ 0, ψ(x) + v = 0, x ∈ Ω(4.3)

one has

f(x̄) ≤ f(x) + µ‖(p, q, u, v)‖,

where Bn denotes the open unit ball in Rn, g(x) := (g1(x), g2(x), . . . , gI(x))
t and

h(x), φ(x), ψ(x) are the vector-valued mappings defined similarly.
We now prove that the calmness condition is also a constraint qualification in our

setting. It is interesting to note that unlike the Fritz John type condition (Theorem
1.1) the KKT conditions under either the calmness condition (Theorem 4.2) or the
one under the metric regularity condition (Theorems 4.8 and 4.10) hold even for
problem (P) with L �= 0. Moreover, under either the calmness condition or the metric
regularity condition, the Fréchet differentiable equality constraints do not need to be
continuous near the optimal solution.

Theorem 4.6 (KKT condition under calmness CQ). Let x̄ be a solution of (P).
Suppose that the objective function f is either Fréchet differentiable at x̄ or Lipschitz
near x̄, the constraint functions satisfy assumption (A), and there exists a vector that
is hypertangent to Ω at x̄. If (P) is calm at x̄, then there exist αi ≥ 0(i ∈ I(x̄)), βj(j =
1, 2, . . . , J), γk ≥ 0(k ∈ K(x̄)), ηl(l = 1, 2, . . . , L) such that

0 ∈ ∂✸f(x̄) +
∑
i∈I(x̄)

αi∇gi(x̄) +
J∑
j=1

βj∇hj(x̄) +
∑

k∈K(x̄)

γk∂
✸φk(x̄)

+

L∑
l=1

ηl∂
✸ψl(x̄) +N(x̄,Ω).

Proof. By the definition of calmness, (x, p, u) = (x̄, 0, 0) is a local solution to

min f(x) + µ(‖(p, u)‖+
J∑
j=1

|hj(x)|+
L∑
l=1

|ψl(x)|)

s.t. g(x) + p ≤ 0,

φ(x) + u ≤ 0,

x ∈ Ω.

For a function gi(x), denote by g
+
i (x) := max{gi(x), 0)}. Since g(x)−g+(x) ≤ 0,φ(x)−

φ+(x) ≤ 0 and g(x̄)− g+(x̄) = 0, φ(x̄)− φ+(x̄) = 0, taking p = −g+(x), u = −φ+(x),
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by the calmness condition x̄ is also a local solution of the following problem:

min f(x) + µ

(√
I +Kmax{g1(x), . . . , gI(x), φ1(x), . . . , φK(x), 0}

+
J∑
j=1

|hj(x)|+
L∑
l=1

|ψl(x)|
)

s.t. x ∈ Ω.
That is, (x, r, s, t) = (x̄, 0, 0, 0) is a local solution of the following problem:

min f(x) + µ

√I +Kr +

J∑
j=1

sj +

L∑
l=1

tl


s.t. r ≥ gi(x), i = 1, 2, . . . , I,

r ≥ φk(x), k = 1, 2, . . . ,K,

r ≥ 0,

sj ≥ hj(x), j = 1, 2, . . . , J,

sj ≥ −hj(x), j = 1, 2, . . . , J,

tl ≥ ψl(x), l = 1, 2, . . . , L,

tl ≥ −ψl(x), l = 1, 2, . . . , L,

x ∈ Ω.
It is straightforward to verify that the (NNAMCQ) for the above problem is

satisfied and the Lagrange multiplier rule with λ = 1 for the original problem follows
from applying Theorem 4.1 to the above problem.

We also extend the notion of metric regularity in smooth and Lipschitz optimiza-
tion to our setting.

Definition 4.7. Let C denote the constraint region of (P) and x̄ ∈ C. C is
said to be metrically regular at x̄ if there exist positive constants µ, ε such that for all
(p, q, u, v) ∈ εB and all x ∈ x̄+ εB satisfying (4.3), one has

dC(x) ≤ µ‖(p, q, u, v)‖.
As in smooth and Lipschitz optimization, the metric regularity is stronger than

the calmness condition in our setting when the objective function is Lipschitz contin-
uous.

Theorem 4.8 (KKT condition under the metric regularity assumption when
the objective function is Lipschitz). Let x̄ be a solution of (P). Assume that the
objective function f is Lipschitz near x̄, the constraint functions satisfy assumption
(A), and there exists a vector that is hypertangent to Ω at x̄. If the constraint region is
metrically regular at x̄, then the KKT condition as stated in the conclusion of Theorem
4.6 also holds.

Proof. Since the objective function f is Lipschitz near x̄, by virtue of Proposition
2.7, x̄ is a local solution to the following problem:

min f(x) + LfdC(x),

where Lf denotes the Lipschitz constant of f near x̄ and C is the constraint region
of (P). By the metric regularity, (x, p, q, u, v) = (x̄, 0, 0, 0, 0) is a local solution to the
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following problem:

min f(x) + Lfµ‖(p, q, u, v)‖
s.t. g(x) + p ≤ 0, h(x) + q ≤ 0, φ(x) + u ≤ 0, ψ(x) + v = 0, x ∈ Ω.

That is, the calmness CQ is satisfied at x̄ and hence the conclusion of Theorem 4.6
also holds.

Unlike the case where the objective function is Lipschitz continuous, when the
objective function is only differentiable, the metric regularity of a constraint region
may not imply the calmness as illustrated by the following example.

Example. Consider the following optimization problem:

min f(x)

s.t. x = 0,

where

f(x) :=

{
x2 sin 1

x2 if x �= 0,
0 if x = 0.

It is clear that f is differentiable everywhere with

f ′(x) :=
{
2x sin 1

x2 − 2
x cos

1
x2 if x �= 0,

0 if x = 0.

Hence f is differentiable at the optimal solution x̄ = 0 but not Lipschitz near x̄ = 0.
The constraint region {x : x = 0} is metrically regular since the constraint function
is linear. However, the problem is not calm at x̄ = 0 since x̄ = 0 is not a solution to
the perturbed problem

min f(x) + µ‖x‖
for any µ > 0.

However, although the metric regularity is not stronger than the calmness condi-
tion when the objective function is not Lipschitz, it turns out that the metric regularity
is still a constraint qualification when the objective function is Fréchet differentiable.
In the remainder of this section, we would like to prove the KKT condition under the
metric regularity assumption when the objective function is Fréchet differentiable.
First we prove the following formula for the Fréchet normal cone to the feasible re-
gion C and then we use the result to derive the multiplier rules.

Lemma 4.9. Let x̄ be a feasible solution of (P). Assume that the constraint
functions satisfy assumption (A) and there exists a vector that is hypertangent to Ω
at x̄. If C, the feasible region of (P), is metrically regular at x̄, then

NF (x̄, C) ⊂
{ ∑
i∈I(x̄)

αi∇gi(x̄) +
J∑
j=1

βj∇hj(x̄) +
∑

k∈K(x̄)

γk∂
✸φk(x̄)

+

L∑
l=1

ηl∂
✸ψl(x̄) +N(x̄,Ω) : αi ≥ 0, γk ≥ 0, i ∈ I(x̄), k ∈ K(x̄)

}
.

Proof. Let ξ be any element in NF
C (x̄). Then for any λ ↓ 0 there exists δ > 0 such

that

〈ξ, x′ − x̄〉 ≤ λ‖x′ − x̄‖ ∀x′ ∈ C ∩ (x̄+ δB).
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That is, x̄ is a local solution to the following problem:

min −〈ξ, x′〉+ λ‖x′ − x̄‖
s.t. x′ ∈ C.

Since the objective function of the above problem is Lipschitz continuous, by
virtue of Proposition 2.7, x̄ is a local solution to the following problem:

min −〈ξ, x′〉+ λ‖x′ − x̄‖+ LdC(x
′),

where L ≥ ‖ξ‖+ λ for all λ > 0. By the metric regularity, x̄ is a local solution to the
following problem:

(P′) min −〈ξ, x′〉+ λ‖x′ − x̄‖
+Lµ(

√
I +Kmax{g1(x′), . . . , gI(x′), φ1(x

′), . . . , φK(x′), 0}
+‖h(x′)‖+ ‖ψ(x′)‖)

s.t. x′ ∈ Ω.
Or equivalently, (x′, r, s, t) = (x̄, 0, 0, 0) is a local solution to the following problem:

min −〈ξ, x′〉+ λ‖x′ − x̄‖+M

r + J∑
j=1

sj +

L∑
l=1

tl


s.t. r ≥ gi(x′), i = 1, 2, . . . , I,

r ≥ φk(x′), k = 1, 2, . . . ,K,

r ≥ 0,

sj ≥ hj(x′), j = 1, 2, . . . , J,

sj ≥ −hj(x′), j = 1, 2, . . . , J,

tl ≥ ψl(x′), l = 1, 2, . . . , L,

tl ≥ −ψl(x′), l = 1, 2, . . . , L,

x′ ∈ Ω,
withM = Lµ

√
I +K. One can easily verify that the (NNAMCQ) for the above prob-

lem is satisfied. Applying Theorem 4.1, there exist αλi (i ∈ I(x̄)), βλj (j = 1, 2, . . . , J),

γλk (k ∈ K(x̄)), ηλl (l = 1, 2, . . . , L), such that

0 ∈ −ξ + λB∗ +
∑
i∈I(x̄)

αλi∇gi(x̄) +
L∑
j=1

βλj∇hj(x̄)

+
∑

k∈K(x̄)

γλk∂
✸φk(x̄) +

L∑
l=1

ηλl ∂
✸ψl(x̄) +N(x̄,Ω).

Since the (NNAMCQ) holds for problem (P ′), {(αλ, βλ, γλ, ηλ)}must be bounded.
Without loss of generality, we may assume that {(αλ, βλ, γλ, ηλ)} converges. The
proof of the lemma is completed after taking limits as λ→ 0, by virtue of the weak∗

compactness of the Michel–Penot subdifferentials (see Proposition 2.3).
Theorem 4.10 (KKT condition under the metric regularity CQ when the ob-

jective function is Fréchet differentiable). Let x̄ be a local optimal solution of (P).
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Assume that f is Fréchet differentiable at x̄, the constraint functions satisfy assump-
tion (A) , and there exists a vector that is hypertangent to Ω at x̄. If C is metrically
regular at x̄, then there exist scalars αi ≥ 0(i ∈ I(x̄)), βj(j = 1, . . . , J), γk ≥ 0(k ∈
K(x̄)), ηl(l = 1, 2, . . . , L) such that

0 ∈ ∇f(x̄) +
∑
i∈I(x̄)

αi∇gi(x̄) +
L∑
j=1

βj∇hj(x̄)

+
∑

k∈K(x̄)

γk∂
✸φk(x̄) +

L∑
l=1

ηl∂
✸ψl(x̄) +N(x̄,Ω).

Proof. Since f is Fréchet differentiable at x̄, we have

lim
x→x̄

f(x)− f(x̄)− 〈∇f(x̄), x− x̄〉
‖x− x̄‖ = 0.

Since x̄ is a local solution to (P), one has

lim sup
x→x̄,x∈C

−〈∇f(x̄), x− x̄〉
‖x− x̄‖ ≤ lim sup

x→x̄,x∈C
f(x)− f(x̄)− 〈∇f(x̄), x− x̄〉

‖x− x̄‖

≤ lim
x→x̄

f(x)− f(x̄)− 〈∇f(x̄), x− x̄〉
‖x− x̄‖

= 0.

That is, −∇f(x̄) ∈ NF (x̄, C). The proof of the theorem follows by applying Lemma
4.9, the expression of the Fréchet normal cone to the constraint region.

5. Multiplier rules for the case I = J = 0. In this section we consider
problem (P) in the case where all constraint functions are Lipschitz and the objective
function f is Fréchet differentiable. Under this assumption, we derive multiplier rules
without requiring the existence of a hypertangent to the abstract constraint set Ω.
Note that in Asplund space, the results are sharper since the limiting subdifferentials
and the limiting normal cones instead of the Clarke generalized gradients and the
Clarke normal cones are used.

First we prove the following formula for the Fréchet normal cone to the feasible
region with I = J = 0 and then we use the result to derive the multiplier rules.

Lemma 5.1. Let x̄ be a feasible solution of (P) with I = J = 0. Assume
that φk(k ∈ K(x̄)), ψl(l = 1, 2, . . . , L) are Lipschitz near x̄ and φk(k �∈ K(x̄)) are
continuous at x̄. If C is metrically regular at x̄, then

NF (x̄, C) ⊂
 ∑
k∈K(x̄)

γk∂φk(x̄) +

L∑
l=1

ηl∂ψk(x̄) +N(x̄,Ω) : γk ≥ 0, k ∈ K(x̄)

 ,

where C denotes the feasible region of (P) with I = J = 0.
Moreover, if X is an Asplund space, then

NF (x̄, C) ⊂
{

K∑
k=1

γk∂̂φk(x̄) + ∂̂〈η, ψ〉(x̄) + N̂(x̄,Ω) : γk ≥ 0, k ∈ K(x̄)

}
.
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Proof. Let ξ be any element in NF
C (x̄). Then for any λν ↓ 0, there exists δ > 0

such that

〈ξ, x′ − x̄〉 ≤ λν‖x′ − x̄‖ ∀x′ ∈ C ∩ (x̄+ δB).

That is, x̄ is a local solution to the following problem:

min −〈ξ, x′〉+ λν‖x′ − x̄‖
s.t. x′ ∈ C.

Since the objective function of the above problem is Lipschitz continuous, by
virtue of Proposition 2.7, x̄ is a local solution to the following problem:

min −〈ξ, x′〉+ λν‖x′ − x̄‖+ LdC(x
′),

where L ≥ ‖ξ‖ + λν for all ν = 1, 2, . . .. By metrical regularity, x̄ is a local solution
to the following problem:

min −〈ξ, x′〉+ λν‖x′ − x̄‖+ Lµ

(√
K max

k∈K(x̄)
{φk(x′), 0}+ ‖ψ(x′)‖

)
s.t. x′ ∈ Ω.

Or equivalently, x̄ is a local solution to the following problem:

min−〈ξ, x′〉+ λν‖x′ − x̄‖+M

(
max
k∈K(x̄)

{φk(x′), 0}+ ‖ψ(x′)‖
)
+ L̃dΩ(x

′),

with M = Lµ
√
K and L̃ being the Lipschitz constant of the objective function of the

previous optimization problem.
IfX is an Asplund space, then by the sum rule for limiting subdifferentials (Propo-

sition 2.5(ii)),

0 ∈ −ξ + λνB
∗ +M∂̂ϕ ◦ (φ, ψ)(x̄) + N̂(x̄,Ω),

where ϕ(u, v) = maxk∈K(x̄){uk, 0}+ ‖v‖. By the chain rule,

ξ ∈ λνB∗ +M ∪(γ,η)∈∂̂ϕ(φ(x̄),ψ(x̄)) ∂̂〈(γ, η), (φ, ψ)〉(x̄) + N̂(x̄,Ω).

That is, there exists (γν , ην) ∈ ∂̂ϕ(φ(x̄), ψ(x̄)) such that

ξ ∈ λνB∗ +M∂̂〈(γν , ην), (φ, ψ)〉(x̄) + N̂(x̄,Ω).

Since ϕ is Lipschitz, by virtue of Proposition 2.3, (γν , ην) is a bounded sequence in

RK+L and one can assume that (γν , ην)→(γ, η) for some (γ, η) ∈ ∂̂ϕ(φ(x̄), ψ(x̄)).
Hence,

ξ ∈ λνB∗ +M∂̂〈(γν , ην), (φ, ψ)〉(x̄) + N̂(x̄,Ω)

⊆ λνB∗ +M [∂̂〈(γ, η), (φ, ψ)〉(x̄) + ∂̂〈(γν , ην)− (γ, η), (φ, ψ)〉(x̄)] + N̂(x̄,Ω)

⊆ λνB∗ +M∂̂〈(γ, η), (φ, ψ)〉(x̄) +M‖(γν , ην)− (γ, η)‖L(φ,ψ)B
∗ + N̂(x̄,Ω).

Taking limits as ν → ∞, by virtue of the weak∗ sequential closedness of limiting
subdifferentials, one has

ξ ∈M∂̂〈(γ, η), (φ, ψ)〉(x̄) + N̂(x̄,Ω)
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for some

(γ, η) ∈ ∂̂ϕ(φ(x̄), ψ(x̄))

=

(γ, η) : ∑
k∈K(x̄)

γk = 1, γk ≥ 0k ∈ K(x̄), η ∈ BL

 .

The case where X is a general Banach space can be proved similarly.
Theorem 5.2 (KKT condition when I = I = 0 under the metric regularity

CQ). Let x̄ be a local optimal solution of (P) with I = J = 0. Assume that f is
Fréchet differentiable at x̄, φk(k ∈ K(x̄)), ψl(l = 1, 2, . . . , L) are Lipschitz near x̄ and
φk(k �∈ K(x̄)) are continuous at x̄. If C is metrically regular at x̄, then there exist
γk ≥ 0(k ∈ K(x̄)), ηl(l = 1, 2, . . . , L) such that

0 ∈ ∇f(x̄) +
∑

k∈K(x̄)

γk∂φk(x̄) +

L∑
l=1

ηl∂ψl(x̄) +N(x̄,Ω).

Moreover, if X is a Asplund space and C is metrically regular at x̄, then there
exist γk ≥ 0(k ∈ K(x̄)), ηl ∈ R(l = 1, 2, . . . , L) such that

0 ∈ ∇f(x̄) +
∑

k∈K(x̄)

γk∂̂φk(x̄) + ∂̂〈η, ψ〉(x̄) + N̂(x̄,Ω).

Proof. Since f is Fréchet differentiable at x̄, as in the proof of Theorem 4.10,

−∇f(x̄) ∈ NF (x̄, C).

The proof of the theorem follows by applying Lemma 5.1, the expression of the Fréchet
normal cone to the constraint region.

Remark 2. Sufficient conditions for metrical regularity in the case I = J = 0
include the following:

(i) (see [10, Theorem 3].) The constraint region is defined by a system of linear
equalities and inequalities, i.e.,

C := {x ∈ X : 〈x∗k, x〉 = 0, k = 1, . . . ,K, 〈y∗l , x〉 ≤ 0l = 1, . . . , L}
for some x∗k ∈ X∗(k = 1, . . . ,K), y∗l ∈ X∗(l = 1, . . . , L).

(ii) In Banach space [4, Theorem 6.6.1], the (NNAMCQ) in the Clarke generalized
gradient form is satisfied, i.e.,

0 ∈
∑

k∈K(x̄)

γk∂φk(x̄) +

L∑
l=1

ηl∂ψk(x̄) +N(x̄,Ω),

γk ≥ 0 ∀k ∈ K(x̄)

implies that γk = 0, k ∈ K(x̄), ηl = 0, l = 1, 2, . . . , L. In Asplund space
[18, Corollary 6.2], the (NNAMCQ) in the limiting subdifferential form is
satisfied, i.e.,

0 ∈
∑

k∈K(x̄)

γk∂̂φk(x̄) + ∂̂〈η, ψ〉(x̄) + N̂(x̄,Ω),

γk ≥ 0 ∀k ∈ K(x̄)

implies that γk = 0, k ∈ K(x̄), ηl = 0, l = 1, 2, . . . , L.
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Theorem 5.3 (KKT condition when I = J = 0 under the calmness CQ). Let x̄ be
a local optimal solution of (P) with I = J = 0. Assume that f is Fréchet differentiable
at x̄, φk(k ∈ K(x̄)), ψl(l = 1, 2, . . . , L) are Lipschitz near x̄ and φk(k �∈ K(x̄)) are
continuous at x̄. If (P) is calm at x̄, then the conclusions of Theorem 5.2 hold.

Proof. By the definition of calmness, (x, u) = (x̄, 0) is a local solution to

min f(x) + µ(‖u‖+ ‖ψ(x)‖)
s.t. φ(x) + u ≤ 0,

x ∈ Ω.
Since φ(x)−φ+(x) ≤ 0 and φ(x̄)−φ+(x̄) = 0, x̄ is also a local solution of the following
problem:

min f(x) + µ
(√

Kmax{φ1(x), . . . , φK(x), 0}+ ‖ψ(x)‖
)

s.t. x ∈ Ω.
Case 1. X is a general Banach space. It is easy to see that (x, r, s) = (x̄, 0, 0) is

a local solution to the following problem:

min f(x) + µ

(√
Kr +

L∑
l=1

sl

)
s.t. r ≥ φk(x), k = 1, . . . ,K,

r ≥ 0,

sl ≥ ψl(x), l = 1, 2, . . . , L,

sl ≥ −ψl(x), l = 1, 2, . . . , L,

x ∈ Ω.
It is straightforward to verify that the (NNAMCQ) for the above problem is satisfied
and the KKT condition follows from Theorem 5.2 and in Remark 2(ii).

Case 2. X is an Asplund space. Equivalently, x̄ is a local solution to the following
problem:

min f(x) + µ

(√
K max

k∈K(x̄)
{φk(x), 0}+ ‖ψ(x)‖

)
+ δΩ(x),

where δΩ(x) is the indicator function of a set Ω defined by

δΩ(x) :=

{
0 if x ∈ Ω,
+∞ if x �∈ Ω.

Since f is Fréchet differentiable andG(x) := µ(
√
Kmaxk∈K(x̄){φK(x), 0}+‖ψ(x)‖)

is Lipschitz near x̄, one has

0 ∈ ∇f(x̄) + ∂F (G+ δΩ)(x̄) (by Proposition 2.5(i))

⊆ ∇f(x̄) + ∂̂(G+ δΩ)(x̄)

⊆ ∇f(x̄) + ∂̂G(x̄) + N̂(x̄,Ω) (Proposition 2.5(ii)).

The remaining proof follows by using the sum rules and the chain rules as in the proof
of Lemma 5.1.
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Proof of Theorem 1.2. Suppose X is a Banach space. If the (NNAMCQ) in
the Clarke generalized gradient form does not hold, then the Fritz John condition
holds with λ = 0. Otherwise if the (NNAMCQ) in the Clarke generalized gradient
form holds, then by Remark 2 and Theorem 5.2, the Fritz John condition holds with
λ = 1.

Similarly suppose that X is an Asplund space. If the (NNAMCQ) in the limiting
subdifferential form as in Remark 2 does not hold, then the required Fritz John con-
dition holds with λ = 0. Otherwise if the (NNAMCQ) in the limiting subdifferential
form holds, then by Remark 2 and Theorem 5.2, the required Fritz John condition
holds with λ = 1.

Acknowledgments. The author would like to thank Jay Treiman for his sugges-
tions on replacing the Clarke generalized gradient by the Michel–Penot subdifferential
in Theorem 1.1 and those in section 4 in an earlier version.
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THE LOCAL SOLVABILITY OF A HAMILTON–JACOBI–BELLMAN
PDE AROUND A NONHYPERBOLIC CRITICAL POINT∗
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Abstract. We show the existence of a local solution to a Hamilton–Jacobi–Bellman (HJB)
PDE around a critical point where the corresponding Hamiltonian ODE is not hyperbolic, i.e., it
has eigenvalues on the imaginary axis. Such problems arise in nonlinear regulation, disturbance
rejection, gain scheduling, and linear parameter varying control. The proof is based on an extension
of the center manifold theorem due to Aulbach, Flockerzi, and Knobloch. The method is easily
extended to the Hamilton–Jacobi–Isaacs (HJI) PDE. Software is available on the web to compute
local approximtate solutions of HJB and HJI PDEs.

Key words. parametrized optimal control, nonlinear regulation, nonlinear disturbance rejection,
gain scheduling, linear parameter varying control, H∞ regulation
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1. Introduction. Consider a smooth optimal control problem of minimizing

1
2

∫∞
0
‖e‖2 + ‖u‖2dt(1.1)

subject to

ẋ = f(x, u) = Ax+Bu+O(x, u)2,
e = h(x, u) = Cx+Du+O(x, u)2.

(1.2)

The optimal cost π(x) and the optimal feedback κ(x) satisfy the Hamiliton–
Jacobi–Bellman (HJB) PDE

0 =
∂π

∂x
(x)f(x, κ(x)) + l(x, κ(x)),(1.3)

κ(x) = argminu

{
∂π

∂x
(x)f(x, u) + l(x, u)

}
,(1.4)

where

l(x, u) =
1

2
(‖e‖2 + ‖u‖2)

=
1

2
(x′Qx+ 2x′Su+ u′Ru) +O(x, u)3(1.5)

and Q = C ′C, S = C ′D, R = I +D′D.
The HJB PDE may not admit a smooth global solution but under suitable condi-

tions there does exist a viscosity solution. We refer the reader to [10], [11] for details.
It is well known [22] that the HJB PDE admits a smooth solution locally around

∗Received by the editors September 9, 1999; accepted for publication (in revised form) August 15,
2000; published electronically January 19, 2001. A preliminary version of this paper appeared as The
existence of optimal regulators, in Proceedings of the 1998 CDC, Tampa, FL, 1998, pp. 3081–3086.
This research was supported in part by AFOSR-49620-95-1-0409.

http://www.siam.org/journals/sicon/39-5/36108.html
†Department of Mathematics and Institute of Theoretical Dynamics, University of California,

Davis, CA 95616-8633 (ajkrener@ucdavis.edu).
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x = 0 under suitable conditions. We briefly review these conditions and the method
of proof.

Consider first the linear quadratic part of the above problem, minimizing

1
2

∫∞
0

(x′Qx+ 2x′Su+ u′Ru)(1.6)

subject to

ẋ = Ax+Bu.(1.7)

If they exist, the optimal cost is quadratic, 1
2x

′Px, and the optimal feedback is linear,
u = Kx. Moreover, P satisfies the algebraic Riccati equation

0 = A′P + PA+Q− (PB + S)R−1(PB + S)′

and

K = −R−1(PB + S)′.

It is well known [3] that if the pair A,B is stabilizable and the pair C,A is
detectable, then there is a unique nonnegative definite solution to the algebraic Riccati
equation and the resulting feedback is asymptotically stabilizing. If C,A is observable,
then P is positive definite.

The 2n dimensional Hamiltonian system associated with this problem is linear,[
ẋ

λ̇′

]
= H

[
x
λ′

]
,(1.8)

where

H =

[
A−BR−1S′ −BR−1B′

−Q+ SR−1S′ −A′ + SR−1B′

]
.(1.9)

If A,B is stabilizable and C,A is detectable, then this system is hyperbolic, i.e.,
none of the eigenvalues of H lie on the imaginary axis. Since H is Hamiltonian, this
implies that n eigenvalues lie in the open left half plane and n eigenvalues lie in the
open right half plane. In fact, the n dimensional stable subspace of H is the graph
of the gradient of the unique nonnegative definite solution to the algebraic Riccati
equation,

λ = x′P.

In other words, the stable subspace is the span of the columns of[
I
P

]
.(1.10)

We return to the nonlinear problem (1.1), (1.2). The associated Hamiltonian
system is nonlinear,

ẋ′ =
∂H

∂λ
(λ, x, κ(λ, x)),

(1.11)

λ̇ = −∂H

∂x
(λ, x, κ(λ, x)),



NONHYPERBOLIC HAMILTON–JACOBI–BELLMAN PDE 1463

where the Hamiltonian is

H(λ, x, u) = λf(x, u) + l(x, u)
= λ (Ax+Bu)

+ 1
2 (x

′Qx+ 2x′Su+ u′Ru)
+O(λ, x, u)3

(1.12)

and the optimal control as determined by the Pontryagin maximum principle satisfies

u = κ(λ, x) = argminuH(λ, x, u).(1.13)

The linearization of this system (1.11) around the origin is the linear Hamiltonian
system above (1.8). Hence if A,B is stabilizable and C,A is detectable, then there
is an n dimensional local stable manifold around the origin [15]. Moreover, this
submanifold is the graph of the gradient of the optimal cost,

λ =
∂π

∂x
(x).

Hence the HJB PDE (1.3), (1.4) is locally solvable. The details can be found in Lukes
[22].

In this paper we show that the HJB PDE is locally solvable in certain situations
where the linear part of the system is not stabilizable or not detectable. Such systems
arise naturally in the problems of nonlinear regulation, disturbance rejection, gain
scheduling, and linear parameter varying control. In these problems there tends to be
certain modes of the linearized system at the origin which are neutrally stable, uncon-
trollable, and/or unobservable. But fortunately these modes tend to be sufficiently
separated from the others or can be made so by feedforward from the exosystem state
so that an extension of the stable manifold theorem can be used to prove the local
solvability of the HJB PDE. We proved this extension, which we call the stable and
partial center manifold theorem, only to learn that a similar result had already been
shown by Aulbach, Flockerzi, and Knobloch [6] and Aulbach and Flockerzi [7]. Since
their result is not well known and may not be readily available, we include our proof.
We also prove an additional result that the Taylor series of the stable and partial cen-
ter manifold can be computed term-by-term. This justifies the term-by-term solution
of the HJB PDE in these situations in the spirit of Al’brecht [2].

The rest of the paper is organized as follows. In the next section we introduce the
problems of nonlinear regulation, disturbance rejection, gain scheduling, and linear
parameter varying control and discuss when they can be transformed so that a local
solution of the HJB equation exists. In section 4 we state and prove two theorems,
the stable and partial center manifold theorem and a theorem on its term-by-term
development. In section 5 we show how these theorems can be used to prove the
local solvability of the HJB PDE and to construct approximate solutions. In the
last section we discuss the local solvability of HJI PDEs and how they arise in H∞
extensions of the above problems.

2. Nonlinear regulation and related problems. Consider a smooth nonlin-
ear plant

ẋ = f(x, u, x̄)
= Ax+Bu+ Fx̄

+f [2](x, u, x̄) +O(x, u, x̄)3,
e = h(x, u, x̄)

= Cx+Du+Hx̄
+h[2](x, u, x̄) +O(x, u, x̄)3

(2.1)
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which is perturbed by a smooth nonlinear exosystem

˙̄x = f̄(x̄)
= Āx̄+ f̄ [2](x̄) +O(x̄)3,

(2.2)

where superscript [d] denotes terms composed of homogeneous polynomials of degree
d. The dimensions of x, u, x̄, e are n,m, n̄, p, respectively.

The goal of regulation is to use a combination of feedforward and feedback control
u = α(x, x̄) so that the output of the plant asymptotically goes to 0,

e(t) −→ 0

for every x(0), x̄(0). The plant should also be internally stable.
The exosystem could be a system whose output we wish the plant to track (reg-

ulation), a noise source whose disturbances we wish the plant to reject (disturbance
rejection), or static and/or dynamic parameters to be used for scheduling the con-
troller of the plant (gain scheduling).

A linear parameter varying (LPV) system,

ẋ = A(x̄)x+B(x̄)u

=
(
A[0] +A[1](x̄) + · · ·

)
x+

(
B[0] +B[1](x̄) + · · ·

)
u,

e = C(x̄)x+D(x̄)u

=
(
C [0] + C [1](x̄) + · · ·

)
x+

(
D[0] +D[1](x̄) + · · ·

)
u,

falls into the last category.
We make the reasonable assumptions that the linear part of the plant is stabiliz-

able and detectable when x̄ = 0 and the linear part of the exosystem is stable. Most
plants are designed to be linearly stabilizable and detectable. If the exosystem was
unstable then it would probably be impossible to overcome its effect on the plant.
The combined system (2.1), (2.2) is not linearly stabilizable because we have no con-
trol over the stable modes of the exosystem and some of these might not be linearly
detectable.

The solution of the regulator problem is in two steps. The first is to use feedfor-
ward from the exosystem state to insure exact tracking when the initial conditions of
the plant and the exosystem permit this. We are assuming that the state of the exosys-
tem is available for measurement. The more general case, when it is not measurable,
was treated in [14] and [8]. Even when the state of the exosystem is not measurable,
one must find the feedforward control law that would insure exact tracking if it were
measurable. We discuss only the case when x, x̄ are measurable.

The linear version of the problem was solved by Francis [12] and its nonlinear
generalization is due to Isidori and Byrnes [14]. One seeks θ(x̄), β(x̄) satisfying the
Francis–Byrnes–Isidori (FBI) PDE

f(θ(x̄), β(x̄), x̄) =
∂θ

∂x̄
(x̄)f̄(x̄),

(2.3)

h(θ(x̄), β(x̄), x̄) = 0.

If the FBI PDE is solvable, then the control u = β(x̄) makes x = θ(x̄) an invariant
manifold of the combined system consisting of plant and exosystem. On this manifold,
exact tracking occurs, e = 0.
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One can attempt to solve the FBI equations term-by-term. Suppose

θ(x̄) = T x̄+ θ[2](x̄) +O(x̄)3,

β(x̄) = Lx̄+ β[2](x̄) +O(x̄)3.

The linear part of the FBI equations are the Francis equations[
A B
C D

] [
T
L

]
−
[

T
0

]
Ā = −

[
F
H

]
.

These equations are solvable for any F,H iff no output zero of the plant is a pole of
the exosystem [13, 16, 17]. In other words, the exosystem should not excite those
frequencies that the plant cannot produce.

The output zeros of the plant are those complex numbers s for which there exist
complex n and p row vectors ξ and ζ such that

[
ξ ζ

] [ A− sI B
C D

]
=
[
0 0

]
.

There may be a finite or infinite number of output zeros. For example, if m = p, then
there are either n zeros or every s is a zero. The poles λ1, . . . , λn̄ of the exosystem
are the eigenvalues of Ā.

If there is a resonance between a pole and zero, the equations will still be solvable
for some F,H. The solvability depends on the direction ξ, ζ of the zero and the
eigenvector of the pole.

The higher degree equations are linear and depend on the solutions of the lower
degree equations. They are solvable for arbitrary higher degree terms iff the harmonics
of the exosystem don’t resonate with the zeros of the plant [13, 16, 17].

For example, the degree two equations are

Aθ[2](x̄) + Bβ[2](x̄)− ∂θ

∂x̄
(x̄)
(
Āx̄
)

= −f [2](T x̄, Lx̄, x̄) + T f̄ [2](x̄),

Cθ[2](x̄) + Dβ[2](x̄)

= −h[2](T x̄, Lx̄, x̄).

These are solvable for arbitrary f [2], h[2] iff no output zero of the plant equals the
sum of two poles of the exosystem, λk �= si + sj . If there is a resonance, they are
solvable for some f [2], h[2]. Matlab-based software is available on the web to compute
the solution of the FBI PDE to any degree using the function fbi.m of the Nonlinear
Systems Toolbox [20].

Now suppose that the FBI equations have been solved. The second step is to use
additional feedforward and feedback to insure that the closed loop system converges
to the tracking manifold x = θ(x̄) where e = 0. This can be achieved locally by linear
pole placement techniques [14], but an alternative approach is to use optimal control
methods to achieve a nonlinear solution [16, 17]. Define transverse coordinates z, v
by

z = x− θ(x̄) = x− T x̄− θ[2](x̄) +O(x̄)3,
v = u− β(x̄) = u− Lx̄− β[2](x̄) +O(x̄)3.

(2.4)
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In these coordinates the plant and exosystem are of the form

ż = f̃(z, v, x̄) = Ax+Bu+ f̃ [2](z, v, x̄) +O(z, v, x̄)3,
˙̄x = f̄(x̄) = Āx̄+ f̄ [2](x̄) +O(x̄)3,

e = h̃(z, v, x̄) = Cz +Dv + h̃[2](z, v, x̄) +O(z, v, x̄)3,

(2.5)

where

f̃(z, v, x̄) = f(z + θ(x̄), v + β(x̄), x̄)− f(θ(x̄), β(x̄), x̄),

h̃(z, v, x̄) = h(z + θ(x̄), v + β(x̄), x̄).
(2.6)

Notice that the linear part of the z dynamics and the linear part of the output are
unaffected by x̄. Recall we have assumed that the linear part of the plant is stabilizable
and detectable and the linear part of the exosystem is neutrally stable. Furthermore,

f̃(0, 0, x̄) = f(θ(x̄), β(x̄), x̄)− f(θ(x̄), β(x̄), x̄)) = 0,

h̃(0, 0, x̄) = h(θ(x̄), β(x̄), x̄) = 0.
(2.7)

A stabilizing feedback can be found by minimizing

1
2

∫∞
0
‖e‖2 + ‖v‖2dt(2.8)

subject to the dynamics (2.5). Other cost criterions l can be used as long as they
satisfy (2.11). In particular a cost criterion like x′Qx + u′Ru should not be used as
then (2.11) will not hold. Intuitively, one should not cost the part of the state and the
control that are necessary to achieve exact tracking. Even in the linear case, there is
considerable confusion on this point, e.g., [3].

Let π(z, x̄) denote the optimal cost and γ(z, x̄) the optimal feedback; then π, γ
satisfy the HJB PDE

0 =
∂π

∂z
(z, x̄)f̃(z, γ(z, x̄), x̄) +

∂π

∂x̄
(z, x̄)f̄(x̄)

+l(z, γ(z, x̄), x̄),

(2.9)

0 =
∂π

∂z
(z, x̄)

∂f̃

∂v
(z, γ(z, x̄), x̄) +

∂l

∂v
(z, γ(z, x̄), x̄),

where

l(z, v, x̄) = 1
2 (‖e‖2 + ‖v‖2)

= 1
2 (z

′Qz + 2z′Sv + v′Rv)
+l[3](z, v, x̄) +O(z, v, x̄)4

(2.10)

for the matrices Q = C ′C, S = C ′D, R = I +D′D, and some cubic polynomial l[3].
By generalizing Al’brecht’s method [2], we can solve the HJB PDE term-by-term

[16]. Since

f̃(z, v, x̄) = O(z, v),

h̃(z, v, x̄) = O(z, v),
l(z, v, x̄) = O(z, v)2,

(2.11)
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we expect that

π(z, x̄) = O(z)2,
γ(z, x̄) = O(z).

(2.12)

In particular, we expect that

π(z, x̄) =
1

2
z′Pz + π[3](z, x̄) +O(z, x̄)4,

γ(z, x̄) = Kz + γ[2](z, x̄) +O(z, x̄)3.

The lowest degree terms in the HJB equations are the familiar Riccati equation
and the formula for the optimal linear feedback

0 = A′P + PA+Q− (PB + S)R−1(PB + S)′,
K = −R−1(PB + S)′.(2.13)

At each higher degree d > 1, the equations are linear in the unknowns π[d+1], γ[d]

and depend on the lower order terms of the solution. They are solvable if the linear
part of the plant is stabilizable and the linear part of the exosystem is stable. For
example, to find the next terms π[3](z, x̄), γ[2](z, x̄), one plugs the first two terms of
π, γ into HJB equations and collects the next terms (degree 3 from the first HJB
equation and degree 2 from the second HJB equation)

0 =
∂π[3]

∂z
(z, x̄)(A+BK)z +

∂π[3]

∂x̄
(z, x̄)(Āx̄)

+z′P f̃ [2](z,Kz, x̄) + l[3](z,Kz, x̄),

(2.14)

0 =
∂π[3]

∂z
(z, x̄)B + z′P

∂f̃ [2]

∂v
(z,Kz, x̄)

+γ[2](z, x̄)′R+
∂l[3]

∂v
(z,Kz, x̄).

Notice that the first equation involves only π[3], the other unknown γ[2] does not
appear. This equation is solvable if A+BK is asymptotically stable and Ā is stable.
This follows from the fact that the mapping

π[3](z, x̄) �→ ∂π[3]

∂z
(z, x̄)(A+BK)z +

∂π[3]

∂x̄
(z, x̄)(Āx̄)

is a linear operator on cubic polynomials. It is not hard to see that its eigenvalues
are the sum of three eigenvalues of A+BK and Ā. The operator restricts to a linear
operator on the subspace of π[3](z, x̄) satisfying (2.12), where its eigenvalues are the
sum of three eigenvalues of A+BK or the sum of two eigenvalues of A+BK and one
eigenvalue of Ā. Since the eigenvalues of A+BK are in the open left half plane and
those of Ā are in the closed left half plane, the restricted operator is invertible and
the first equation of (2.14) is always solvable. We discuss this further in the proof of
Theorem 4.2.

Given the solution π[3], we can then solve the second equation for γ[2]

γ[2](z, x̄) = −R−1

(
∂π[3]

∂z
(z, x̄)B + z′P

∂f̃ [2]

∂v
(z,Kz, x̄) +

∂l[3]

∂v
(z,Kz, x̄)

)′
.
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The higher degree terms are found in a similar fashion. Matlab-based software is
available on the web to compute the solution of the HJB PDE to any degree using
the function hjb.m in the Nonlinear Systems Toolbox [20]. If one wants to solve the
FBI PDE and then the HJB PDE in the transverse coordinates, use the function
mdl mtch.m.

Given the solutions of the FBI and HJB equations, the desired feedforward/feedback
is

u = α(x, x̄)

= β(x̄) + γ(x− θ(x̄), x̄).

Of course the above discussion is formal. We shall show using results from [6], [7]
that the HJB PDE (2.9) is locally solvable. Furthermore, its Taylor series expansion
can be computed term-by-term as described above. To do so we shall use an invariant
manifold theorem that we shall discuss in the next section. In section 4 we use this
theorem to show the local existence of the solution to the HJB equation (2.9).

Suppose one has computed approximate solutions to the FBI PDE up to degree
d and the HJB PDE up to degree d+1, and one has the desired α(x, x̄) up to degree
d. Despite the formal nature of these, one can explicitly verify where it gives the
desired solution. The function π(x− θ(x̄, x̄)) is a potential Lyapunov function for the
approximate tracking manifold x = θ(x̄) on which the error e = O(x̄)d+1. Using this
and the true closed loop dynamics, one can estimate the basin of attraction of the
approximate tracking manifold.

3. Stable and partial center manifold theorem. The following theorem was
proven by Aulbach, Flockerzi, and Knobloch [6] and Aulbach and Flockerzi [7]. We
were unaware of their work and suspected that such a theorem must hold because of
the formal discussion of the last section. We present our independent proof because
[6] and [7] are not widely known nor readily available. Moreover, Theorem 3.2 is new
and its proof depends on the proof of Theorem 3.1.

Theorem 3.1 (see [6], [7]). Given an ODE of the form ẋ1

ẋ2

ẋ3

 =

 A1 0 0
0 A2 0
0 0 A3

 x1

x2

x3

+

 f1(x)
f2(x)
f3(x)

 ,(3.1)

where xi ∈ Rni , n = n1 + n2 + n3, and fi(x) is Ck for k ≥ 2. Suppose that

the eigenvalues of A1 have negative real part,(3.2)

the eigenvalues of A2 have nonnegative real part,(3.3)

the eigenvalues of A3 have nonpositive real part,(3.4)

fi(0, 0, 0) = 0, i = 1, 2, 3,(3.5)

∂fi
∂xj

(0, 0, 0) = 0, i, j = 1, 2, 3,(3.6)

fi(0, x2, 0) = 0, i = 1, 3.(3.7)

Then there exists, around x = (0, 0, 0), a local Ck−2 invariant manifold

x3 = φ(x1, x2),(3.8)
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where

φ(0, x2) = 0,(3.9)

∂φ

∂x
(0, 0) = 0 if k > 2.(3.10)

Remarks. The condition (3.7) implies that {x1 = 0, x3 = 0} is an invariant
manifold. When the spectrum of A2 lies on the imaginary axis, we call this a partial
center manifold as it corresponds to only some of the eigenvalues on the imaginary
axis. We call (3.8) a local stable and partial center manifold because it contains the
local stable manifold and part of the local center manifold. The partial center manifold
provides the needed gap between the eigenvalues that are associated to the invariant
manifold and those that are not. The necessity of the existence of the partial center
manifold to the existence of the stable and partial center manifold could be argued as
follows. If the stable and partial center manifold exists, then its intersection with the
center manifold should yield the partial center manifold. The flaw in this argument
is that center manifolds are not necessarily unique and the intersection of manifolds
is not necessarily a manifold [5], [9]. Still it is plausible. In the above theorem there
is a loss of smoothness, from a Ck dynamics to a Ck−2 local stable and partial center
manifold. This is probably an artifact of the proof. In the stable manifold theorem
and the theorem of Aulbach and Flockerzi [7] there is no loss of smoothness, and in
the center manifold theorem there is a loss of smoothness from Ck to Ck−1.

Proof. The first step to make suitable linear changes of coordinates on each of
the three subspaces so that there exist α ≥ 16β > 0 such that for all x1, x2, x3

x′
1A1x1 ≤ −α|x1|2,

x′
2A2x2 ≤ β|x2|2,

−x′
3A3x3 ≤ β|x3|2.

This is possible by Lemma 1 of [15].
The next step is to use a cut-off function to redefine f . Let ν(x) be a scalar valued

C∞ function, 0 ≤ ν(x) ≤ 1, ν(x) = 1 for 0 ≤ |x| ≤ 1, and ν(x) = 0 for |x| ≥ 2. For
any ε > 0, define

f(x; ε) := f(ν(x/ε)x).

Since f(x; ε) agrees with f(x) for |x| ≤ ε, it suffices to prove the theorem for some
ε > 0.

Next we show that there exists a continuous function k(ε) with k(0) = 0 and a
constant K > 0 such that for all x, x̄ ∈ Rn and for i = 1, 2, 3

|fi(x; ε)− fi(x̄; ε)|2 ≤ k2(ε)|x− x̄|2(3.11)

and for i = 1, 3

|fi(x; ε)− fi(x̄; ε)|2 ≤ k2(ε)

∣∣∣∣ x1 − x̄1

x3 − x̄3

∣∣∣∣2 +K

∣∣∣∣ x̄1

x̄3

∣∣∣∣2 |x2 − x̄2|2.(3.12)

Note that

|fi(x; ε)− fi(x̄; ε)|2 ≤
∣∣∣∣∂fi∂x

(ξ; ε)

∣∣∣∣2 |x− x̄|2,
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where ξ is some point on the line between x and x̄. Also for i = 1, 3

|fi(x; ε)− fi(x̄; ε)|2 ≤ |fi(x; ε)− fi(x̄1, x2, x̄3; ε) + fi(x̄1, x2, x̄3; ε)− fi(x̄; ε)|2
≤ 2|fi(x; ε)− fi(x̄1, x2, x̄3; ε)|2 + 2|fi(x̄1, x2, x̄3; ε)− fi(x̄; ε)|2

≤ 2

∣∣∣∣∂fi∂x
(ξ1, x2, ξ3; ε)

∣∣∣∣2
∣∣∣∣∣∣
x1 − x̄1

0
x3 − x̄3

∣∣∣∣∣∣
2

+2

∣∣∣∣ ∂fi∂x2
(x̄1, ξ2, x̄3; ε)

∣∣∣∣2 |x2 − x̄2|2 ,

where (ξ1, x2, ξ3) is some point on the line between x and (x̄1, x2, x̄3) and (x̄1, ξ2, x̄3)
is some point on the line between (x̄1, x2, x̄3) and x̄. Furthermore,

∣∣∣∣ ∂fi∂x2
(x̄1, ξ2, x̄3; ε)

∣∣∣∣2 ≤ ∣∣∣∣ ∂2fi
∂x∂x2

(ξ; ε)

∣∣∣∣2
∣∣∣∣∣∣
x̄1

0
x̄3

∣∣∣∣∣∣
2

,

where ξ is some point on the line between (0, ξ2, 0) and (x̄1, ξ2, x̄3).
Now ν(x) and its partials are continuous functions with compact support so there

exists a constant M such that ∣∣∣∣∂ν∂x (x)
∣∣∣∣ ≤M,∣∣∣∣∂2ν

∂x2
(x)

∣∣∣∣ ≤M

for all x. Since fi satisfies (3.6) we can choose M large enough so that∣∣∣∣∂fi∂x
(x)

∣∣∣∣ ≤M |x|,∣∣∣∣∂2fi
∂x2

(x)

∣∣∣∣ ≤M

for all |x| ≤ 1. Then for 0 < ε < 1/2∣∣∣∣∂fi∂x
(x; ε)

∣∣∣∣ ≤ ∣∣∣∣∂fi∂x
(ν(x/ε)x)

∣∣∣∣ ∣∣∣∣ν(x/ε) + ∂ν

∂x
(x/ε)

x

ε

∣∣∣∣
≤ 2M(1 + 2M)ε,

∣∣∣∣∂2fi
∂x2

(x; ε)

∣∣∣∣ ≤ ∣∣∣∣∂2fi
∂x2

(ν(x/ε)x)

∣∣∣∣ ∣∣∣∣ν(x/ε) + ∂ν

∂x
(x/ε)

x

ε

∣∣∣∣2
+

∣∣∣∣∂fi∂x
(ν(x/ε)x)

∣∣∣∣ ∣∣∣∣∂ν∂x (x/ε)2ε +
∂2ν

∂x2
(x/ε)

x

ε2

∣∣∣∣
≤M(1 + 2M)2 + 8M2.

Let

k2(ε) = 2 (2M(1 + 2M)ε)
2
,

K = 2
(
M(1 + 2M)2 + 8M2

)2
;
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then k(ε) is continuous and goes to 0 as ε goes to 0.
Henceforth we suppress the ε and write f(x) for f(x; ε).
Let k1, k2 be any positive constants and X denote the space of all Lipschitz

continuous functions φ(x1, x2) defined for |x1| < ε and any x2 such that

φ(0, x2) = 0,(3.13)

|φ(x1, x2)− φ(x̄1, x̄2)|2 ≤ k1|x1 − x̄1|2 + k2|x̄1| |x2 − x̄2|2.(3.14)

Taking x̄1 = 0, these imply that

|φ(x1, x2)|2 ≤ k1|x1|2

so we can define

‖φ‖2 = sup

{ |φ(x1, x2)|2
|x1| : |x1| < ε

}
.(3.15)

With this norm, X is a complete space.
For |x1| < ε, x2 ∈ Rn2 , and φ ∈ X, define

ξi(t) = ξi(t;x1, x2, φ)

for i = 1, 2 to be the solution of

ξ̇i = Aiξi + fi(ξ1, ξ2, φ(ξ1, ξ2)),(3.16)

ξi(0) = xi.(3.17)

Define a mapping T on X as follows:

(Tφ)(x1, x2) =

∫ 0

∞
e−A3sf3(ξ1(s), ξ2(s), φ(ξ1(s), ξ2(s))) ds.(3.18)

We would like to show that for ε sufficiently small, T is a contraction on X.
Suppose x1 = 0; then ξ1(t) = 0 because of (3.7) and for the same reason

(Tφ)(0, x2) = 0

so Tφ satisfies (3.13).
Suppose φ, φ̄ ∈ X; then for any |x1| < ε, x2 ∈ Rn2 , |x̄1| < ε, x̄2 ∈ Rn2 , and

x3 = φ(x1, x2), x̄3 = φ̄(x̄1, x̄2), then by the above for i = 1, 2, 3

|fi(x)− fi(x̄)|2 ≤ 2|fi(x)− fi(x̄1, x̄2, φ(x̄1, x̄2))|2
+2|fi(x̄1, x̄2, φ(x̄1, x̄2), )− fi(x̄)|2

≤ 2k2(ε)
(
(1 + k1)|x1 − x̄1|2 + (1 + k2ε) |x2 − x̄2|2 + ε‖φ− φ̄‖2)

(3.19)

and for i = 1, 3

|fi(x)− fi(x̄)|2 ≤ 2|fi(x)− fi(x̄1, x̄2, φ(x̄1, x̄2))|2
+2|fi(x̄1, x̄2, φ(x̄1, x̄2))− fi(x̄)|2

≤ l1(ε)|x1 − x̄1|2 + l2(ε)|x̄1| |x2 − x̄2|2 + l3(ε)|x̄1| ‖φ− φ̄‖2,
(3.20)
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where the functions

l1(ε) = 2k2(ε)(1 + k1),

l2(ε) = 2
(
k2(ε)k2 +K(1 + k1)ε

)
,

l3(ε) = 2k2(ε)

go to 0 as ε→ 0.
Suppose ξi(t), ξ̄i(t) for i = 1, 2 are the solutions of

ξ̇i = Aiξi + fi(ξ1, ξ2, φ(ξ1, ξ2)),

ξi(0) = xi,

˙̄ξi = Aiξ̄i + fi(ξ̄1, ξ̄2, φ̄(ξ̄1, ξ̄2)),

ξ̄i(0) = x̄i

and ξ3(t) = φ(ξ1(t), ξ2(t)), ξ̄3(t) = φ̄(ξ̄1(t), ξ̄2(t)).
Then since 2ab ≤ a2 + b2 and (a+ b)2 ≤ 2a2 + 2b2

d

dt

|ξ1 − ξ̄1|2 + |ξ2 − ξ̄2|2
2

≤ (ξ1 − ξ̄1)
′ (A1(ξ1 − ξ̄1) + f1(ξ)− f1(ξ̄)

)
+(ξ2 − ξ̄2)

′ (A2(ξ2 − ξ̄2) + f2(ξ)− f2(ξ̄)
)

≤ −α|ξ1 − ξ̄1|2 + β|ξ2 − ξ̄2|2 + k(ε)
(|ξ1 − ξ̄1|+ |ξ2 − ξ̄2|

)
[
2(1 + k1)|ξ1 − ξ̄1|2 + 2(1 + k2ε)|ξ2 − ξ̄2|2 + 2ε‖φ− φ̄‖2] 1

2

≤ (−α+ k(ε)(2 + k1)) |ξ1 − ξ̄1|2 + (β + k(ε)(2 + k2ε)) |ξ2 − ξ̄2|2
+k(ε)ε‖φ− φ̄‖2.

We assume ε is small enough so that

−α+ k(ε)(2 + k1) ≤ 2β

k(ε)(2 + k2ε) ≤ β

k(ε)ε ≤ 2β;

then

d

dt

(|ξ1 − ξ̄1|2 + |ξ2 − ξ̄2|2
) ≤ 4β

(|ξ1 − ξ̄1|2 + |ξ2 − ξ̄2|2 + ‖φ− φ̄‖2)
and by Gronwall’s inequality

|ξ1(t)− ξ1(t)|2 + |ξ2(t)− ξ2(t)|2 ≤ e4βt
(|x1 − x̄1|2 + |x2 − x̄2|2 + ‖φ− φ̄‖2) .

(3.21)

With this inequality in hand we can obtain a stricter one by using (3.20) instead
of (3.19).

d

dt

|ξ1 − ξ̄1|2
2

≤ −α|ξ1 − ξ̄1|2 + |ξ1 − ξ̄1|(3.22) [
l1(ε)|ξ1 − ξ̄1|2 + l2(ε)|ξ̄1| |ξ2 − ξ̄2|2 + l3(ε)|ξ̄1| ‖φ− φ̄‖2] 1

2 .
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Now suppose that x̄1 = 0, x̄2 = 0 so that ξ̄1 = 0, ξ̄2 = 0; then

d

dt

|ξ1|2
2
≤
(
−α+ l

1
2
1 (ε)

)
|ξ1|2.

If ε is small enough so that

l
1
2
1 (ε) ≤

α

2
,

then by Gronwall

|ξ1(t)|2 ≤ e−αt|x1|2.(3.23)

For a, b, c ≥ 0 we have
√
a+ b+ c ≤ √a+√b+√c so (3.22) becomes

d

dt

|ξ1 − ξ̄1|2
2

≤
(
−α+ l

1
2
1 (ε)

)
|ξ1 − ξ̄1|2

+l
1
2
2 (ε)|ξ1 − ξ̄1| |ξ̄1| 12 |ξ2 − ξ̄2|

+l
1
2
2 (ε)|ξ1 − ξ̄1| |ξ̄1| 12 ‖φ− φ̄‖

≤
(
−α+ l

1
2
1 (ε) + l

1
2
2 (ε) + l

1
2
3 (ε)

)
|ξ1 − ξ̄1|2

+l
1
2
2 (ε)|ξ̄1| |ξ2 − ξ̄2|2

+l
1
2
3 (ε)|ξ̄1| ‖φ− φ̄‖2.

Assume ε is small enough so that

l
1
2
1 (ε) + l

1
2
2 (ε) + l

1
2
3 (ε) ≤

α

2
,

then using (3.23), (3.21), this becomes

d

dt

|ξ1 − ξ̄1|2
2

≤ −α

2
|ξ1 − ξ̄1|2

+l
1
2
2 (ε)e

(4β−α
2 )t|x̄1|

(|x1 − x̄1|2 + |x2 − x̄2|2 + ‖φ− φ̄‖2)
+l

1
2
3 (ε)e

−α
2 t|x̄1| ‖φ− φ̄‖2.

Since 16β ≤ α,

d

dt
|ξ1 − ξ̄1|2 ≤ −α|ξ1 − ξ̄1|2

+2l
1
2
2 (ε)e

−α
4 t|x̄1|

(|x1 − x̄1|2 + |x2 − x̄2|2
)

+2(l
1
2
2 (ε) + l

1
2
3 (ε))e

−α
4 t|x̄1| ‖φ− φ̄‖2

so by Gronwall

|ξ1(t)− ξ̄1(t)|2 ≤ e−αt|x1 − x̄1|2

+
8

3
l
1
2
2 (ε)e

−α
4 t|x̄1|

(|x1 − x̄1|2 + |x2 − x̄2|2
)

+
8

3
(l

1
2
2 (ε) + l

1
2
3 (ε))e

−α
4 t|x̄1| ‖φ− φ̄‖2.(3.24)
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Next we use (3.20) to estimate

∣∣(Tφ)(x1, x2)− (T φ̄)(x̄1, x̄2)
∣∣2 = ∣∣∣∣∫ ∞

0

e−A3s
(
f3(ξ(s))− f3(ξ̄(s))

)
ds

∣∣∣∣2
≤
∫ ∞

0

e2βs
∣∣f3(ξ(s))− f3(ξ̄(s))

∣∣2 ds

≤
∫ ∞

0

e2βs
[
l1(ε)|ξ1(s)− ξ̄1(s)|2

+l2(ε)|ξ̄1(s)| |ξ2(s)− ξ̄2(s)|2

+l3(ε)|ξ̄1(s)| ‖φ− φ̄‖2] ds.

From (3.21), (3.23), (3.24) and 16β ≤ α

∣∣(Tφ)(x1, x2)− (T φ̄)(x̄1, x̄2)
∣∣2 ≤ ∫ ∞

0

e2βs

[
l1(ε) ( e

−αs|x1 − x̄1|2

+
8

3
l
1
2
2 (ε)e

−α
4 s|x̄1|

(|x1 − x̄1|2 + |x2 − x̄2|2
)

+
8

3

(
l
1
2
2 (ε) + l

1
2
3 (ε)

)
e−

α
4 s|x̄1| ‖φ− φ̄‖2 )

+l2(ε)e
−α

2 s|x̄1| e4βs
(|x1 − x̄1|2 + |x2 − x̄2|2 + ‖φ− φ̄‖2)

+l3(ε)e
−α

2 s|x̄1| ‖φ− φ̄‖2
]
ds

≤ m1(ε)|x1 − x̄1|2 +m2(ε)|x̄1| |x2 − x̄2|2

+m3(ε)|x̄1| ‖φ− φ̄‖2,(3.25)

where

m1(ε) = l1(ε)

(
8

7α
+

64

3α
l
1
2
2 (ε)ε

)
+

8

α
l2(ε)ε,

m2(ε) =
64

3α
l1(ε)l

1
2
2 (ε) +

8

α
l2(ε),

m3(ε) =
64

3α
l1(ε)

(
l
1
2
2 (ε) + l

1
2
3 (ε)

)
+

8

α
l2(ε) +

8

3α
l3(ε).

Notice that mi(ε)→ 0 as ε→ 0.
By letting φ̄ = φ we see that

|(Tφ)(x1, x2)− (Tφ)(x̄1, x̄2)|2 ≤ 2m1(ε)|x1 − x̄1|2
+2m2(ε)|x̄1| |x2 − x̄2|2,

so (Tφ)(x1, x2) satisfies (3.14) for ε sufficiently small and T maps X to X.
By letting x̄ = x we see that∣∣(Tφ)(x1, x2)− (T φ̄)(x1, x2)

∣∣2 ≤ m3(ε)|x̄1| ‖φ− φ̄‖2,
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so T : X → X is a contraction for ε sufficiently small. Hence there exists a unique
φ ∈ X such that

φ = Tφ.

Let ξi(t) satisfy (3.16), (3.17) for i = 1, 2 and ξ3(t) = φ(ξ1(t), ξ2(t)). By the
definition of T (3.18),

ξ3(t) = (Tφ)(ξ1(t), ξ2(t))

=

∫ 0

∞
e−A3sf3(ξ(t+ s)) ds

=

∫ t

∞
e−A3(t−s)f3(ξ(s)) ds,

so ξ(t) is a solution of the differential equation (3.1) and (3.8) defines a C0 invariant
manifold.

Now suppose k > 2. We wish to show that the invariant manifold (3.8) is C1.
Consider the dynamics tangent to (3.1), ż1

ż2

ż3

 =

 A1 0 0
0 A2 0
0 0 A3

 z1

z2

z3

+

 g1(x, z)
g2(x, z)
g3(x, z)

 ,(3.26)

where

gi(x, z) =
∂fi
∂x

(x)z.

The combined system (3.1), (3.26) satisfies the hypothesis of Theorem 3.1, so a C0

invariant manifold [
x3

z3

]
=

[
φ(x1, x2, z1, z2)
ψ(x1, x2, z1, z2)

]
(3.27)

can be found by the extension of the above contraction, call it S. Suppose φ(x1, x2)
is a C1 element of X; define

ψ(x1, x2, z1, z2) =
∂φ

∂(x1, x2)
(x1, x2)

[
z1

z2

]
.(3.28)

If

(φ̄(x1, x2, z1, z2), ψ̄(x1, x2, z1, z2)) = S(φ(x1, x2), ψ(x1, x2, z1, z2)),

then it is straightforward to verify that

φ̄(x1, x2, z1, z2) = T (φ(x1, x2)),

so φ̄(x1, x2, z1, z2) = φ̄(x1, x2) ∈ X and

ψ̄(x1, x2, z1, z2) =
∂φ̄

∂(x1, x2)
(x1, x2)

[
z1

z2

]
.
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Hence if we start the contraction at φ, ψ satisfying (3.28), it will converge to a φ, ψ
satisfying (3.28), so the invariant manifold (3.8) is C1. By repeated application of
this technique we can show it is Ck−2.

It remains to verify (3.10) if k > 2. Clearly (3.9) implies

∂φ

∂x2
(0, 0) = 0.

Since (3.8) defines a Ck−2 invariant manifold, we can take its time derivative to obtain
the PDE

A3φ(x1, x2) + f3(x1, x2, φ(x1, x2))

=

2∑
j=1

∂φi
∂xj

(x1, x2) (Ajxj + fj(x1, x2, φ(x1, x2))) .(3.29)

Taking the linear terms from both sides, we obtain a homogeneous linear equation

A3
∂φ

∂x1
(0, 0)− ∂φ

∂x1
(0, 0)A1 = 0.(3.30)

The eigenvalues of the linear mapping

B �→ A3B −BA1

have positive real part because they are of the form λ3 − λ1, where λ3, λ1 are eigen-
values of A3, A1, respectively, and so the real part of λ3−λ1 is positive. Hence (3.30)
is nonsingular and

∂φ

∂x1
(0, 0) = 0.

The next theorem gives a term-by-term approximation of the stable and partial
center manifold.

Theorem 3.2. Suppose the hypothesis of Theorem 3.1 holds for k > 3 and let
φ(x1, x2) define the Ck−2 stable and partial center manifold. Suppose ψ(x1, x2) is a
Ck−2 function satisfying (3.9) and the PDE (3.29) through terms of degree k − 3,

A3ψ(x1, x2) + f3(x1, x2, ψ(x1, x2))

=

2∑
j=1

∂ψ

∂xj
(x1, x2) (Ajxj + fj(x1, x2, ψ(x1, x2))) +O(x1, x2)

k−2.(3.31)

Then φ and ψ agree to degree k − 3,

ψ(x1, x2) = φ(x1, x2) +O(x1, x2)
k−2.(3.32)

Proof. The theorem holds because the Taylor series coefficients to degree k − 3
of any ψ satisfying (3.31) are uniquely determined. To see this we use induction on
r. Assume that φ and ψ satisfy (3.31) to degree r and their Taylor series coefficients
agree up to r − 1.

Assume that A1, A2, A3 are semisimple so that there exist bases of left and
right eigenvectors. If they are not semisimple, the argument is essentially the same
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involving bases of left and right generalized eigenvectors but the details are messier,
and hence are ommitted. Suppose for j = 1, 2, k = 1, . . . , ni, and l = 1, . . . , nj

wj,lAj = λj,lwj,l,(3.33)

A3v
3,k = λ3,kv

3,k.(3.34)

Let ψ[r](x1, x2) be the part of ψ(x1, x2) that is a homogeneous polynomial of degree
r. A basis for the n3-vector fields homogeneous of degree r in x1, x2 consists of the
vector fields

φ3,k
j1,l1;...;jr,lr

(x) = v3,k(wj1,l1xj1) . . . (wjr,lrxjr ),(3.35)

where k = 1, . . . , ni, js = 1, 2, ls = 1, . . . , njs and the pairs (j1, l1) ≤ · · · ≤ (jr, lr) are
in lexographic order.

Thus

ψ[r](x1, x2) =
∑

k;j1,l1;...;jr,lr

γj1,l1;...;jr,lr3,k ψ3,k
j1,l1;...;jr,lr

(x1, x2)(3.36)

with

γj1,l1;...;jr,lr3,k = 0(3.37)

if j1 = · · · = jr = 2 so that (3.9) is satisfied.
If we extract the degree r terms from (3.31), we obtain

A3ψ
[r]3(x1, x2)−

2∑
j=1

∂ψ
[r]
i

∂xj
(x1, x2)Ajxj = h[r](x1, x2),(3.38)

where h[r](x1, x2) depends only on the ODE (3.1) and the lower degree part of
ψ(x1, x2) which has been determined by (3.31). Now

A3ψ
3,k
j1,l1;...;jr,lr

(x1, x2)−
2∑
j=1

∂ψ3,k
j1,l1;...;jr,lr

(x1, x2)

∂xj
(x1, x2)Ajxj

= (λ3,k − λj1,l1 − · · · − λjr,lr )ψ
3,k
j1,l1;...;jr,lr

(x1, x2).

The real part of λ3,k is nonnegative and the real parts of λjs,ls are negative if js = 1
and are nonpositive if js = 2. Because of (3.37), we can restrict our attention to

ψ3,k
j1,l1;...;jr,lr

, where at least one js = 1 so such γj1,l1;...;jr,lr3,k are uniquely determined
by (3.38).

Notice that if (3.7) is not satisfied to degree r, then (3.38) might not be solvable

for then h[r](x1, x2) might contain terms of the form ψ3,k
j1,l1;...;jr,lr

(x1, x2), where j1 =
· · · = jr = 2 and λ3,k − λ2,l1 − · · · − λ2,lr might be zero.

4. Local solvability of the HJB PDE. The principle theorem of this paper
is the following.

Theorem 4.1. Suppose the plant (2.1) and exosystem (2.2) are Ck, the linear
part of the plant is stabilizable and detectable when x̄ = 0, the linear part of the
exosystem is stable, the FBI PDE (2.3) has a Ck solution in some neighborhood of
0 in x̄ space. Then in some neighborhood of 0, 0 in x, x̄ space there exists a Ck−2

solution to HJB PDE (2.9) satisfying (2.12).
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Proof. The proof generalizes the standard approach [22] to showing the existence
of local solutions to HJB PDEs. The graph of gradient of the solution π of the HJB
PDE (2.9) is an invariant manifold of the associated Hamiltonian system of ODEs. In
the standard case, the Hamiltonian ODEs have a hyperbolic fixed point at the origin
and the invariant manifold is the stable manifold of this fixed point. But in this case,
the Hamiltonian ODEs do not have a hyperbolic fixed point at the origin and the
desired invariant manifold is a stable and partial center manifold.

Consider the Hamiltonian associated to the optimal control problem (2.8),

H(λ, µ, z, x̄, v) = λf̃(z, v, x̄) + µf̄(x̄) + l(z, v, x̄)

= λ
(
Az +Bv + f̃ [2](z, v, x̄)

)
+µ
(
Āx̄+ f̄ [2](x̄)

)
+ 1

2 (z
′Qz + 2z′Sv + v′Rv)

+l[3](z, v, x̄) +O(λ, µ, z, x̄, v)4.

(4.1)

The Pontryagin maximum principle asserts that the optimal control is

v = γ(λ, µ, z, x̄) = argmin
v

H(λ, µ, z, x̄, v).(4.2)

For small λ, µ, z, x̄ this is given by solving

∂H

∂v
(λ, µ, z, x̄, v) = 0,

which yields

γ = −R−1

(
B′λ′ + S′z +

(
∂f̃ [2]

∂v

)′
λ′ +

(
∂l̃[3]

∂v

)′)
+O(λ, µ, z, x̄)3.

The HJB PDE (2.9) can be expressed in terms of the Hamiltonian as

H

(
∂π

∂z
,
∂π

∂x̄
, z, x̄, γ

(
∂π

∂z
,
∂π

∂x̄
, z, x̄

))
= 0.(4.3)

The Hamiltonian ODEs are

ż′ =
∂H

∂λ
(λ, µ, z, x̄, γ(λ, µ, z, x̄)),

λ̇ = −∂H

∂z
(λ, µ, z, x̄, γ(λ, µ, z, x̄)),

˙̄x′ =
∂H

∂µ
(λ, µ, z, x̄, γ(λ, µ, z, x̄)),

µ̇ = −∂H

∂x̄
(λ, µ, z, x̄, γ(λ, µ, z, x̄))

(4.4)

and these are Ck−1 since the Hamiltonian is Ck.
The linearization of this system around 0, 0, 0, 0 is

ż

λ̇′
˙̄x
µ̇′

 =

[
H11 H12

H21 H22

]
z
λ′

x̄
µ′

 ,(4.5)
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where

H =


A−BR−1S′ −BR−1B′ 0 0
−Q+ SR−1S′ −A′ + SR−1B′ 0 0

0 0 Ā 0
0 0 0 −Ā′

 .(4.6)

The column span of 
In×n 0
P 0
0 In̄×n̄
0 0

(4.7)

is an n+ n̄ dimensional stable and partial center subspace of the linear Hamiltonian
system (4.5), where P is the unique nonnegative definite solution of the algebraic
Riccati equation (2.13). We know that such a solution exists because the linear part
of the plant was assumed to be stabilizable and detectable [3]. Half of the eigenvalues
of the upper left 2n × 2n block H11 lie in the open left half plane and half lie in
the open right half plane. The asymptotically stable subspace is spanned by the first
n columns of (4.7). As for the lower right 2n̄ × 2n̄ block H22, by assumption the
eigenvalues of Ā are in the closed left half plane and hence those of −Ā′ are in the
closed right half plane. A stable subspace is spanned by the last n̄ columns of (4.7).
Furthermore, the submanifold z = 0, λ = 0, µ = 0 is an invariant submanifold of the
nonlinear Hamiltonian system (4.4), so the conditions of the stable and partial center
manifold Theorem are satisfied. There exists an n+ n̄ dimensional stable and partial
center manifold in the 2(n + n̄) dimensional z, λ, x̄, µ space which is tangent to the
column span of (4.7) at 0, 0, 0, 0. Hence this manifold is given by

λ = φ(z, x̄),
µ = ψ(z, x̄),

(4.8)

where φ, ψ are Ck−3 and

φ(0, x̄) = 0,
ψ(0, x̄) = 0.

(4.9)

This submanifold is Lagrangian, i.e., a maximal dimension submanifold on which the
canonical two form

ω = dλ dz + dµ dx̄

vanishes [1], [4]. To see that it vanishes we note that ω is invariant under the
Hamiltonian flow (4.4) and this flow is converging to the n̄ dimensional submani-
fold z = 0, λ = 0, µ = 0, where ω clearly vanishes. The submanifold (4.8) is of
maximal dimension, n+ n̄, in 2(n+ n̄) variables.

Hence the one form

φ(z, x̄) dz + ψ(z, x̄) dx̄

is closed locally around 0, 0 in z, x̄ space and so there exists a Ck−2 function π(z, x̄)
such that

∂π

∂z
(z, x̄) = φ(z, x̄),
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∂π

∂x̄
(z, x̄) = ψ(z, x̄),

π(0, x̄) = 0,

∂π

∂z
(0, x̄) = 0,

∂π

∂x̄
(0, x̄) = 0.

Note that π satisfies (2.12).
Differentiating (4.8) with respect to t along the Hamiltonian flow (4.4) yields

∂H

∂λ

∂2π

∂z2
+

∂H

∂µ

∂2π

∂z∂x̄
+

∂H

∂z
= 0,

∂H

∂λ

∂2π

∂z∂x̄
+

∂H

∂µ

∂2π

∂x̄2
+

∂H

∂z
= 0

or equivalently

∂

∂z
H

(
∂π

∂z
,
∂π

∂x̄
, z, x̄, γ

(
∂π

∂z
,
∂π

∂x̄
, z, x̄

))
= 0,

∂

∂x̄
H

(
∂π

∂z
,
∂π

∂x̄
, z, x̄, γ

(
∂π

∂z
,
∂π

∂x̄
, z, x̄

))
= 0.

Clearly π satisfies the HJB PDE (4.3) at z = 0, x̄ = 0, so it satisfies it in a neighbor-
hood of this point. Moreover π is of the form

π(z, x̄) =
1

2
z′Pz +O(z, x̄)3(4.10)

The next theorem shows that the solution to the HJB PDE (2.9) can be computed
term-by-term.

Theorem 4.2. Suppose the hypotheses of Theorem 4.1 hold for k > 3 and let
π(z, x̄) be the Ck−2 solution of the HJB PDE (2.9) satisfying (2.12). Suppose φ(x1, x2)
is a Ck−2 function satisfying the HJB PDE through terms of degree k−3 and satisfying
(2.12). Then π and ψ agree to degree k − 3,

π(z, x̄)) = ψ(z, x̄) +O(z, x̄)k−2(4.11)

Proof (sketch). Clearly π(z, x̄) satisfies the term-by-term equations, so the result
follows if we can show that these equations have unique solutions satisfying (2.12).
We showed above that the quadratic terms agree, and as for the cubic terms, consider
(2.14). The first equation is a linear equation for π[3]. For simplicity assume that
A+BK and Ā have bases of left eigenvectors

ξi(A+BK) = λiξi, i = 1, . . . , n,
ζjĀ = µjξi, j = 1, . . . , n̄,

(4.12)

otherwise we use bases of generalized eigenvectors. Since the linear part of the plant is
stabilizable and detectable, the linear part of the closed loop system is asymptotically
stable, Re λi < 0, and by assumption the linear part of the exosystem is stable, Re
µj ≤ 0.
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Now any cubic polynomial π[3](z, x̄) satisfying (2.12) can be expressed as

π[3](z, x̄) =
∑

ci1,i2,i3 ξi1z ξi2z ξi3z

+
∑

di1,i2,j3 ξi1z ξi2z ζj3 x̄

and

∂π[3]

∂z
(z, x̄)(A+BK)z +

∂π[3]

∂x̄
(z, x̄)(Āx̄)

=
∑

ci1,i2,i3 (λi1 + λi2 + λi3) ξi1z ξi2z ξi3z

+
∑

di1,i2,j3 (λi1 + λi2 + µj3) ξi1z ξi2z ζj3 x̄.

It follows from (2.11) that

z′P f̃ [2](z,Kz, x̄) + l[3](z,Kz, x̄) = O(z, x̄)2,

so

z′P f̃ [2](z,Kz, x̄) + l[3](z,Kz, x̄)

=
∑

ki1,i2,i3 ξi1z ξi2z ξi3z

+
∑

li1,i2,j3 ξi1z ξi2z ζj3 x̄

for some k, l’s. Hence there is a unique π[3] satisfying (2.14) and (2.12) given by

ci1,i2,i3 = −
ki1,i2,i3

λi1 + λi2 + λi3
,

di1,i2,j3 = −
li1,i2,j3

λi1 + λi2 + µj3

because the denominators are not zero, Re λi < 0, and Re µj ≤ 0. The higher degree
terms are handled in a similar fashion.

5. H∞ regulation. One can also use nonlinear H∞ control techniques to sta-
bilize the transverse dynamics in a robust fashion. Consider a smooth plant

ẋ = f(x, u, x̄) + g(x, x̄, w)
= Ax+Bu+ Fx̄+Gw

+f [2](x, u, x̄) + g[2](x, x̄, w) +O(x, u, x̄, w)3

e = h(x, u, x̄)
= Cx+Du+Hx̄

+h[2](x, u, x̄) +O(x, u, x̄)3

(5.1)

which is perturbed by an unknown noise w(t) and by a smooth nonlinear exosystem

˙̄x = f̄(x̄, w)
= Āx̄+ B̄w + f̄ [2](x̄, w) +O(x̄, w)3.

(5.2)

Notice that there is no direct interaction between the control and the noise in the
dynamics and the noise w does not directly affect the error e.
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The goal is as before, to find a feedforward and feedback control u = α(x, x̄) to
drive e(t) as close to zero as possible for any x(0), x̄(0) despite the unknown noise.
More precisely, for any choice of α the closed loop system defines a map from the
initial conditions x(0), x̄(0) and the noise w(t) to the variables that we want to keep
small, u(t), e(t). We would like the gain of this mapping to be as small as possible.
This is a very difficult problem to solve directly so we settle for a suboptimal solution.
Given an attenuation level δ > 0, we seek an u = α(x, x̄) so that the map from
x(0), x̄(0), w(t) to u(t), e(t) has gain less than δ. This goal needs to be modified
because as before we should not penalize those parts of x(0), u(t) that are necessary
for exact tracking.

As before we start by solving the FBI equations (2.3) for exact tracking and
transform the combined system into transverse coordinates (2.4) to obtain

ż = f̃(z, v, x̄) + g̃(z, x̄, w)

= Ax+Bv + G̃w + f̃ [2](z, v, x̄, w) + g̃[2](z, x̄, w) +O(z, v, x̄, w)3

˙̄x = f̄(x̄) = Āx̄+ B̄w + f̄ [2](x̄, w) +O(x̄, w)3

e = h̃(z, v, x̄) = Cz +Dv + h̃[2](z, v, x̄) +O(z, v, x̄)3,

(5.3)

where

f̃(z, v, x̄) = f(z + θ(x̄), v + β(x̄), x̄)− ∂θ
∂x̄ (x̄)f̄(θ(x̄), x̄)

g̃(z, x̄, w) = g(z + θ(x̄), x̄, w)

h̃(z, v, x̄) = h(z + θ(x̄), v + β(x̄), x̄)

G̃ = G− TB.

(5.4)

We wish to find the control v = γ(z, x̄) that maximizes

π(z, x̄) = inf
w

1

2

∫ t

0

δ2|w(s)|2 − |e(s)|2 − |v(s)|2 ds,(5.5)

where the infimum is over all t ≥ 0, with w(s) generating a trajectory satisfying
z(0) = 0, x̄(0) = 0, z(t) = z, x̄(t) = x̄. For any control v = γ(z, x̄), the function
π(z, x̄) is the minimum required net energy that must be supplied to the combined
system to go from the origin 0, 0 to z, x̄. Energy is supplied to the system at the rate
δ2

2 |w(s)|2 and extracted from the system at the rate 1
2 (|e(s)|2 + |v(s)|2). The goal is

to supremize the energy necessary to reach any z, x̄. See [23] and [18, 19] for more
on nonlinear H∞ control.

An immediate consequence of the definition of π(z, x̄) is that along any trajectory
of the system

π(z(s), x̄(s))]
t2
t1
≤ 1

2

∫ t2

t1

δ2|w(s)|2 − |e(s)|2 − |v(s)|2 ds.(5.6)

This is called a dissipation inequality; if we view π(z, x̄) as the energy stored in the
combined system when it is in state z, x̄ then the change in stored energy over any
time interval is less than or equal to the net energy supplied to the system over that
time interval.

If there exists a control v = γ(z, w) so that π(z, x̄) ≥ 0, then

1

2

∫ t2

t1

|e(s)|2 + |v(s)|2 ds ≤ π(z(t1), x̄(t1)) +
δ2

2

∫ t2

t1

|w(s)|2 ds.(5.7)
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If this holds, then the energy of the tracking error plus the energy of the control used
to reduce it is less than the energy of the initial mismatch between the plant and
exosystem, π(z(t1), x̄(t1)), plus the energy of the disturbance.

We can view (5.5) as the cost criterion of a differential game pitting the control
v against the noise w. The optimal π, v∗, w∗ satisfy the HJI PDE

0 =
∂π

∂z
(z, x̄)

(
f̃(z, v, x̄) + g̃(z, x̄, w)

)
+
∂π

∂x̄
(z, x̄)f̄(x̄, w) + l(z, v, x̄, w)

v∗, w∗ = arg min
v

max
w

{
∂π

∂z
(z, x̄)

(
f̃(z, v, x̄) + g̃(z, x̄, w)

)
+
∂π

∂x̄
(z, x̄)f̄(x̄, w) + l(z, v, x̄, w)

}
,

(5.8)

where

l(z, v, x̄, w)) =
1

2

(|e|2 + |v|2)− γ2

2
|w|2

=
1

2
(z′Qz + 2z′Sv + v′Rv)− γ2

2
|w|2

+l[3](z, v, x̄) +O(z, v, x̄)4.

Van der Schaft [23] considered the local solvability of the HJI PDE when the plant
is stabilizable and detectable and there is no exosystem (so x = z, u = v, G = G̃). He
showed that a local solution exists if the linear quadratic part of the problem admits
a stable solution. That is, there exists a P ≥ 0 satisfying the Riccati equation

0 = A′P + PA+Q+
1

γ2
PG̃G̃′P

−(PB + S)R−1(PB + S)′(5.9)

and such that the closed loop spectrum is in the open left half plane,

σ

(
A−BR−1(B′P + S′) +

1

γ2
G̃G̃′P

)
< 0.(5.10)

The optimal linear feedback and worst case noise are

v∗ = −R−1(B′P + S′)z,

w∗ =
1

γ2
G̃′Pz.

Following the approach described in section 4 using the stable and partial center
manifold theorem, one can prove the following theorems.

Theorem 5.1. Suppose the plant (5.1) and exosystem (5.2) are Ck, the linear part
of the plant is stabilizable and detectable when x̄ = 0, the linear part of the exosystem
is stable, and the FBI PDE (2.3) has a Ck solution in some neighborhood of 0 in x̄
space. If there exists a P ≥ 0 satisfying the Riccati equation (5.9) and such that the
closed loop spectrum is in the open left half plane (5.10), then in some neighborhood
of 0, 0 in x, x̄ space there exists a Ck−2 solution to HJB PDE (5.8) satisfying (2.12).
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Theorem 5.2. Suppose the hypotheses of Theorem 5.1 hold for k > 3 and let
π(z, x̄) be the Ck−2 solution of the HJI PDE (5.8) satisfying (2.12). Suppose φ(x1, x2)
is a Ck−2 function satisfying the HJI PDE through terms of degree k−3 and satisfying
(2.12). Then π and ψ agree to degree k − 3,

π(z, x̄)) = ψ(z, x̄) +O(z, x̄)k−2.(5.11)
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Abstract. This paper deals with Mayer’s problem for control systems and differential games
with discontinuous terminal cost. There are two main results in the paper. The first one says that the
value function for control systems can be characterized as the unique solution—in suitable sense—to
the Hamilton–Jacobi–Bellman equation without any regularity assumptions on the terminal cost.
For differential games satisfying Isaacs’s minmax condition, the second main result says that the
value function is the unique solution to the Hamilton–Jacobi–Isaacs equation when the terminal cost
is semicontinuous. This allows to prove the existence of the value under Isaacs’s condition. This
paper extends some results already well known in the continuous case.
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1. Introduction. We consider a differential game in which dynamics is given
by x′(t) = f(t, x, u, v), where the state variable x belongs to R

n, and the controls
u : [t0, T ] �→ U and v : [t0, T ] �→ V are measurable functions. By x(·; t0, x0, u, v) we
denote the solution to the Cauchy problem{

x′(t) = f(t, x(t), u(t), v(t)),
x(t0) = x0.

(1)

We are interested in a differential game with a terminal cost g : R
n �→ R. Namely,

the player acting on the control u tries to minimize the terminal cost g(x(T )) while
the other player tries to maximize it. These optimal behaviors of the two players
are modelized in the framework of nonanticipative strategies introduced by Varayia–
Elliot–Kalton–Roxin.

Let us denote by U(t0) and V(t0) the set of measurable controls on [t0, T ], by α :
V(t0)→ U(t0) a nonanticipative strategy of the first player and by β : U(t0)→ V(t0)
a nonanticipative strategy of the second player. The set Γ(t0) (respectively, ∆(t0))
denotes the set of all nonanticipative strategies of the first (respectively, the second)
player.

This leads to the definition of two value functions{
V −
g (t0, x0) := infα∈Γ(t0) sup{g(x) : x ∈ cl (Aα(t0, x0))},

V +
g (t0, x0) := supβ∈∆(t0) inf{g(x) : x ∈ cl (Bβ(t0, x0))},(2)

where cl means closure and Aα(t0, x0) = {x(T ; t0, x0, α(v), v) : v ∈ V(t0)}, Bβ(t0, x0)
= {x(T ; t0, x0, u, β(u)) : u ∈ U(t0)} denote the reachable sets. Let us notice that
when g is continuous, we can skip the closure in the definition (2) of value functions.
In this paper we provide an example with a discontinuous g showing that the two
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value functions V +
g and V −

g are not equal when we do not take the closure in the
definition (2).

The main question we address here is the existence of a value of the game, namely,
the question of equality between V +

g and V −
g . This problem has been studied—and

solved—in [13] in the case of Lipschitz terminal cost g. The present paper deals with
discontinuous terminal cost.

Before explaining how we solve the discontinuous Mayer problem for games, let us
recall the approach of Evans and Souganidis [13] in the case of a Lipschitz continuous
terminal cost. They prove that the two value functions are the unique continuous
viscosity solutions of two Hamilton–Jacobi equations. Under the assumption that the
two Hamiltonians coincide—the so-called Isaacs condition—these two value functions
are hereby equal. In the context of discontinuous terminal cost, the value functions are
discontinuous and standard uniqueness results for viscosity solutions of PDE cannot
be used.

Here our approach consists of proposing a definition for solutions to Hamilton–
Jacobi equations and to prove a uniqueness result for the Hamilton–Jacobi equations
coming from differential games with Isaacs’s condition. Our main aim is not to add
a new concept to the already numerous notions of generalized solutions of PDEs but
to prove the existence of a value of the game in the discontinuous case using the
definition of solution.

Our second main interest is optimal control systems with discontinuous end-cost
which leads to the following definition of the value function:1

Wg(t0, x0) = inf
u∈U(t)

g(x(T ; t0, x0, u)),(3)

where x(·; t0, x0, u) is solution to the Cauchy problem

x′(t) = f(t, x(t), u(t)), x0 = x(t0).(4)

Our main result for control says that Wg is the unique solution to the corresponding
Hamilton–Jacobi–Bellman equation for arbitrary discontinuous terminal cost g.

The proposed definition of solutions of Hamilton–Jacobi equations and our meth-
ods of proof are motivated by three already known approaches we described below.

First, Frankowska has observed that some invariance property of the epigraph
and/or hypograph of the value function for control can be used to define a notion
of solution to some Hamilton–Jacobi equation [14]. The author has used this fact to
characterize the value function of the Mayer problem in the lower semicontinuous case
in [15]. Such type of monotonicity properties of the value function along trajectories
(or equivalently invariance or viability [1] of the epigraph and/or hypograph) has also
been studied in the spirit of [15] in some works; among them we quote [6], [7], [8], [9],
[10], [11], [16].

Second, we consider the comparison principle [12] and Barles–Perthame stability
result [3] for viscosity super- and subsolutions. Since the beginning of the theory
where viscosity solutions were (bounded uniformly) continuous, there was, until now, a
constant effort to develop notions of discontinuous viscosity solutions. Without doing
an exhaustive history of these theories, let us mention the Ishii solution (well exposed
in [3]) based on semicontinuous envelopes of functions, Barron–Jensen semicontinuous

1One can easily check that the definition (3) of Wg does not require the use of the closure of the
reachable set used in (2).
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solutions [5], [2] for convex Hamiltonians, and envelope2 solutions [4] which are related
to Subbotin solution.

Third, we consider the minimax solution introduced by Subbotin (cf. [21] and its
bibliography; see also [19]). This concept of solution is related to an interpretation of
the Hamilton–Jacobi equation through a dynamic game with Isaacs’s condition. In
[21], the existence and the uniqueness of a semicontinuous minmax solution to the
Hamilton–Jacobi–Isaacs equation are proved; this allows us to deduce the existence
of the value of the game in the context of positional strategy [17].

The novelty of the results presented here are mainly the existence of the value
for differential games with nonanticipative strategies and semicontinuous terminal
cost, the characterization of the semicontinuous game value function as the unique
solution of the Hamilton–Jacobi–Isaacs equation, and the characterization of “fully”
discontinuous value function as the unique solution of the Hamilton–Jacobi–Bellman
equation for optimal control.

From the point of view of PDEs, which is not our main topic, one can consider
our work as existence and uniqueness results for PDEs with convex Hamiltonian and
“fully” discontinuous boundary condition and as existence and uniqueness results for
PDEs with nonnecessary convex Hamiltonian and semicontinuous boundary condi-
tion. In fact, at the end of the paper [2], there is an illuminating example showing
for a PDE with nonconvex Hamiltonian that many Ishii solutions can exist; we dis-
cuss this example and prove the existence and uniqueness of solution in the context
of the notion of solution used in the present paper. Also our work says that g is a
semiresolutive function for the Hamilton–Jacobi–Bellman equation in the meaning of
[18].

Let us explain how the paper is organized. In the first section, we introduce some
preliminaries and we state a result concerning the discontinuous Mayer problem for
control. In the second section, we present our main results concerning games. The
last section is devoted to an appendix with the technical proofs of our claims.

2. Preliminaries. Consider the measurable functions u : [t0, T ] �→ U and v :
[t0, T ] �→ V . Let U and V be compact metric spaces. Let us denote by U(t0) and
V(t0) the set of such measurable controls. We say that a map α : V(t0) → U(t0) is
a nonanticipative strategy of the first player if for every control v1, v2 ∈ V(t0) such
that

v1(s) = v2(s) for almost all s ∈ [t0, τ ],

we have

α(v1)(s) = α(v2)(s) for almost all s ∈ [t0, τ ].

We say that a map β : U(t0) → V(t0) is a nonanticipative strategy of the second
player if for every controls u1, u2 ∈ U(t0) such that

u1(s) = u2(s) for almost all s ∈ [t0, τ ],

we have

β(u1)(s) = β(u2)(s) for almost all s ∈ [t0, τ ].

2We thank the anonymous referee for pointing out that the notion of solution used in the present
paper is similar to envelope solution.
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Let Γ(t0) (∆(t0)) denote the set of all such nonanticipative strategies of the first
(second) player. Setting Aα(t0, x0) = {x(T ; t0, x0, α(v), v) : v ∈ V(t0)}, Bβ(t0, x0) =
{x(T ; t0, x0, u, β(u)) : u ∈ U(t0)} the reachable sets, this enables us to define the
value functions V +

g and V −
g by relation (2). We assume that f : [0, T ]×R

n×U×V →
R
n satisfies the following:

f( ·, · , u, v) is Lipschitz continuous,
f(t, x, ·, · ) is continuous,
f has a linear growth, i.e.,
sup(t,u,v) ‖f(t, x, u, v)‖ ≤ a(1 + ‖x‖)
for some given a > 0.

(5)

For convenience, we do not repeat the same assumption in the control case viewed as
a particular differential game where f does not depend on v.

Let us recall the Isaacs condition{
minu∈U maxv∈V 〈f(t, x, u, v), p〉 = maxv∈V minu∈U 〈f(t, x, u, v), p〉

for every t, x, and p ∈ R
n.

(6)

Throughout the paper, we assume that

f(t, x, U, v) is convex for every t, x, v(7)

and

f(t, x, u, V ) is convex for every t, x, u(8)

hold true.
Let g : R

n �→ R be a terminal cost.
If the terminal cost g is discontinuous, then so is the value function. To describe

the value function as a unique solution to a corresponding Hamilton–Jacobi equation
we introduce the following.

Definition 1. Let H : [0, T ] × R
2n → R be a Hamiltonian. The function

(t, x) �→ u(t, x) is a solution to the following Hamilton–Jacobi equation with terminal
condition: 

∂u

∂t
+ H

(
t, x,

∂u

∂x

)
= 0,

u(T, x) = g(x), x ∈ R
n,

(9)

if and only if 
(i) u is the supremum on the set of subsolutions

φ such that φ(T, x) ≤ g(x)∀ x ∈ R
n,

(ii) u is the infimum on the set of supersolutions
ψ such that ψ(T, x) ≥ g(x)∀ x ∈ R

n.

(10)

The above meaning of solution is similar to envelope solution introduced in [4].
Here we call supersolution3 any lower semicontinuous function ψ : (0, T ]×R

n → R

such that

∀(t, x) ∈ (0, T )× R
n, ∀ (pt, px) ∈ ∂−ψ(t, x), pt + H(t, x, px) ≤ 0,

3The definitions of the subdifferential ∂−ψ(t, x) and the superdifferential ∂+φ(t, x) can be found
in the appendix.
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and we call subsolution any upper semicontinuous function φ : (0, T ]× R
n → R such

that

∀(t, x) ∈ (0, T )× R
n, ∀ (pt, px) ∈ ∂+φ(t, x), pt + H(t, x, px) ≥ 0.

3. Discontinuous Mayer problem for control.

3.1. Main result for control. We state the result obtained for the control case.
Theorem 2. Let g : R

n �→ R be a bounded function. Assume that f : [0, T ] ×
R
n × U → R

n satisfies (5) and (7). Then the value function Wg : (0, T ] × R
n → R

given by

Wg(t, x) = inf
u∈U(t)

g(x(T ; t, x, u))

is the unique generalized solution to the Hamilton–Jacobi–Bellmann equation (18)
where

H(t, x, p) := min
u∈U
〈f(t, x, u), p〉.(11)

To avoid repetition of arguments, we postpone the proof until the appendix and we
shall obtain this proof using results stated in the differential game context.

Remark 1. Theorem 2 is in fact the existence and uniqueness result for Hamilton–
Jacobi equation (18) with Hamiltonian given by (11) and arbitrary terminal condition
g. A uniqueness result in the case of lower semicontinuous g has been obtained in [5],
[15] in the framework of different definitions of solutions. If g is lower semicontinuous,
then the solutions in the meaning of Definition 1 as well as in the meaning of [5],
[15] are equal to the value function W , so they coincide. We give an example of
nonsemicontinuous g.

Example 1. Let g : R → R be the characteristic function of rationals. The
dynamics x′ = f(t, x) of a system is given by a right-hand side that depends neither
on u nor on v and satisfies (5). In this case the value V (t0, x0) = g(x(T ; t0, x0)) is
discontinuous at every point. In spite of this, by Theorem 2, V is the unique solution
(in the sense of Definition 1) of the corresponding problem (18). Let us remark that
the concepts of solution from [15] and [21] do not apply to the example.

3.2. Application to Mayer control problems with state constraints. Let
K be a closed subset of R

n. We are interested in the characterization of the value
function WK

g : [0, T ]×K → R

WK
g (t0, x0) = inf{

u ∈ U(t0),
x(t; t0, x0, u) ∈ K for t ∈ [t0, T )

g(x(T ))(12)

as a unique solution to a Hamilton–Jacobi equation. In the literature there are many
attempts to solve this problem (see [20], [16]). The minimal requirement guaranteeing
that the function WK

g is well defined by (12) is4
for any initial condition (t0, x0) ∈ [0, T ]×K there exist
a control u ∈ U(t0) such that the solution x(t; t0, x0, u)
remains in set of constraints K for every t ∈ [t0, T ].

(13)

4Property (12), called the viability property, can also be characterized by a geometrical condition
in terms of Bouligand tangent cones (cf. [1]).
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We provide a characterization of the value function WK
g under assumption (13).

Proposition 3. Let K ⊂ R
n be closed and g : R

n �→ R be a function bounded by
M > 0. Assume that f : [0, T ] × R

n × U → R
n satisfies (5), (7) and that (13) holds

true for f , K. Then

WK
g (t, x) = U(t, x, 0) for x ∈ K,

where U : [0, T ]× R
n × R→ R is the unique solution to{

∂U
∂t + H̃(t, x, y, ∂U∂x ,

∂U
∂y ) = 0,

U(T, x, y) = g(x) + (M + 1)χ(0,∞)(y),
(14)

where H̃(t, x, y, px, py) = minu∈U 〈f(t, xu), px〉+dK(x)py and χ(0,∞) denotes the char-
acteristic function of the open interval (0,∞).

Proof. We adopt the classical method of adding an extra variable (usually used to
reduce a Bolza problem to a Mayer one) and the technique of penalization function.
We consider a new control problem{

x′(t) = f(t, x(t), u(t)),
y′(t) = dK(x(t)),

where dK(x) denotes the distance from x to K. It is obvious that (5), (7) hold true
for the extended control system. By Theorem 2, we obtain that the value function

U(t0, x0, y0)

= infu∈U(t0) g(x(T ; t0, x0, u)) + (M + 1)χ(0,∞)

(
y0 +

∫ T
t0
dK(x(t; t0, x0, u))dt

)
is the unique generalized solution to (14). On the other hand, just from the very
definition, one can easily check that for every x0 ∈ K we have

WK
g (t0, x0) = U(t0, x0, 0).

4. Mayer problem for differential games.

4.1. First comparison result. Let us state our first result comparing the value
functions following.

Proposition 4. If (5), (6) hold true and a terminal cost function g is locally
bounded, then

V +
g (t, x) ≤ V −

g (t, x)

for every (t, x) ∈ [0, T ]× R
n.

The proof is a direct conclusion from the following lemma.
Lemma 5. Assume that (5), (6) hold true. Then

cl (Aα(t0, x0)) ∩ cl(Bβ(t0, x0)) �= ∅
for each α ∈ Γ(t0), β ∈ ∆(t0).

Proof. Suppose to the contrary that there exist α0, β0 such that cl (Aα0(t0, x0))∩
cl (Bβ0(t0, x0)) = ∅.

Then there exists a Lipschitz continuous function h : R
n → [0, 1] such that h(x) =

0 for x ∈ cl (Aα0) and h(x) = 1 for x ∈ cl (Bβ0). Hence,

V −
h (t0, x0) = 0 < 1 = V +

h (t0, x0).

This is a contradiction with Theorem 4.1 in [13] stating that if the terminal cost is
Lipschitz continuous, then the upper value equals to the lower value.

To obtain the reverse inequality we shall study more deeply the Isaacs equation.
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4.2. Values and Isaacs’s equation. In the section we prove that any super-
solution to Isaacs’s equation is greater than the corresponding upper value and that
any subsolution is smaller than the lower value. The main tool in proofs is viability
theory (see [1]).

Proposition 6. Assume that (5), (7) hold true. Suppose that ψ : (0, T ]×R
n → R

is lower semicontinuous and is a supersolution to

ψt + H−(t, x, ψx) = 0(15)

on (0, T )× R
n when

H−(t, x, p) = max
v∈V

min
u∈U
〈f(t, x, u, v), p〉.

Then for every (t0, x0) ∈ (0, T )×R
n there exists a nonanticipative strategy α ∈ Γ(t0)

such that

ψ(t0, x0) ≥ ψ(t, x(t; t0, x0, α(v), v))(16)

for every v ∈ V(t0) and t ∈ [t0, T ].
The proof of this proposition is postponed until the appendix.
Corollary 7. Under the assumptions of Proposition 6 we obtain

ψ(t, x) ≥ V −
g (t, x),

where g(x) := ψ(T, x).
Proof. Since g is lower semicontinuous, then for every subset A ⊂ R

n we have
sup{g(x) : x ∈ A} = sup{g(x) : x ∈ cl (A)}. Thus

V −
g (t0, x0) = inf

α∈Γ(t0)
sup{g(x) : x ∈ Aα(t0, x0)}.

By Proposition 6 we obtain

ψ(t0, x0) ≥ inf
α∈Γ(t0)

sup{g(x) : x ∈ Aα(t0, x0)},

which gives us the desired inequality.
Proposition 8. Assume that (5), (8) hold true. Suppose that φ : (0, T ]×R

n → R

is upper semicontinuous and is a subsolution to

φt + H+(t, x, φx) = 0

on (0, T )× R
n when

H+(t, x, p) = min
u∈U

max
v∈V
〈f(t, x, u, v), p〉.

Then for every (t0, x0) ∈ (0, T )×R
n there exists a nonanticipative strategy β ∈ ∆(t0)

such that

φ(t0, x0) ≤ φ(t, x(t; t0, x0, u, β(u)))

for every u ∈ U(t0) and t ∈ [t0, T ].
The proof can be done using the same method as in the proof of Proposition 6.
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Corollary 9. Under the assumptions of Proposition 8 we obtain

φ(t, x) ≤ V +
h (t, x),

where h(x) := φ(T, x).
The proof is similar to the proof of Corollary 7.
If Isaacs’s condition (6) holds true, then H− = H+(=: H) and previous results

can be summarized in the following comparizon result (cf. Théorème d’unicité forte
4.10 in [3])

Proposition 10 (comparison result). Assume that (5)–(8) hold true. Suppose
that ψ : (0, T ]× R

n → R is lower semicontinuous and is a supersolution to

ψt + H(t, x, ψx) = 0(17)

on (0, T )×R
n and φ : (0, T ]×R

n → R is upper semicontinuous and is a subsolution
to (17) on (0, T ) × R

n. If ψ(T, x) ≥ φ(T, x) for x ∈ R
n, then ψ(t, x) ≥ φ(t, x) for

t ∈ (0, T ] and x ∈ R
n.

Proof. By Proposition 4 and Corollaries 7, 9, we have

φ(t, x) ≤ V +
h (t, x) ≤ V −

h (t, x) ≤ V −
g (t, x) ≤ ψ(t, x),

where h(x) = φ(T, x) and g(x) = ψ(T, x) for x ∈ R
n.

4.3. Main result. In the section we prove the existence of value and characterize
it by Isaacs’s equation.

Theorem 11. Assume that (5)–(8) hold true and g : R
n → R is a locally bounded

lower semicontinuous function. Then the game has a value, i.e.,

V +
g = V −

g (=: V ).

The value function V is the smallest supersolution to the Hamilton–Jacobi–Isaacs
equation

Vt + H(t, x, Vx) = 0(18)

satisfying V (T, x) ≥ g(x) when H := H+ = H−.
Moreover, the value function V is the unique generalized solution to (18) satisfying

V (T, x) = g(x).
We have stated the result in the lower semicontinuous case. After typical refor-

mulation it remains valid in the upper semicontinuous case. Before proving this result
let us recall—in an adapted version—a result proved in [3] (cf. Theorem 4.1 in [3]),
which plays an important role in the proof of our main theorem.

Lemma 12. Assume that H : (0, T )× R
2n → R is a continuous Hamiltonian. If

wn : (0, T )×R
n → R is an increasing sequence of uniformly locally bounded superso-

lutions of a Hamilton–Jacobi equation

ηt + H(t, x, ηx) = 0(19)

and w : (0, T )×R
n → R is a pointwise limit of wn, then w is a supersolution of (19).

Proof of Theorem 11.5 We define a sequence gn : R
n → R by

gn(x) = inf
y∈Rn

g(y) + n‖x− y‖.
5We would like to thank P. Cardaliaguet, who brought our attention to the inf-convolution

method, which simplified the proof.



DISCONTINUOUS VALUE FOR DIFFERENTIAL GAMES 1493

The inf-convolutions gn are Lipschitz, gn(x) ≤ gn+1(x) and limn gn(x) = g(x) for
every x ∈ R

n.
Using Evans–Souganidis characterization of value functions in the case of Lips-

chitz continuous terminal cost [13, Theorem 4.1], we have V +
gn = V −

gn(:= Vn) and Vn
is a viscosity solution (i.e., super- and subsolution) to (18).

Denote W (t, x) = limn Vn(t, x). By Lemma 12, W is a supersolution to (18). By
Corollary 7, we obtain W ≥ V −

g . Since V +
g ≥ V +

gn , we deduce V +
g ≥W . Hence

V +
g ≥ V −

g .

Combining it with Proposition 4, we obtain V +
g = V −

g = W .
If ψ : (0, T ]×R

n → R is a supersolution to (18) and ψ(T, x) ≥ g(x), then ψ ≥ V −
g .

Thus V is the smallest supersolution to (18) satisfying V (T, x) ≥ g(x).
Since Vn is a subsolution to (18), Vn(T, x) ≤ g(x) and V = limn Vn, we obtain

that V is a generalized solution to (18), V (T, ·) = g(·).
Remark 2. Due to general properties of monotone approximation, V is also a

solution to (18) in the Ishii sense. Namely, upper semicontinuous envelope of V
coincides with the upper weak limit of Vn (cf. the exercise on page 91 in [3]), which
by Theorem 4.1 in [3] is a subsolution of (18).

The following example with a slight modification is taken from [2]. It served in [2]
as a counter-example to uniqueness of discontinuous solution—in the Ishii sense—to
a Hamilton–Jacobi equation. Definition 1 is not equivalent to the notion of solution
introduced by Ishii. In the example there exists a unique solution in the meaning of
Definition 1 and there are several solutions in the Ishii sense [2].

Example 2. Let U = V = [−1, 1]. We define f : (−∞, 0]× R× U × V → R by

f(t, x, u, v) = χ(x≤t)(x− t)v + χ(x≥t)(x− t)u.

It is easy to check that f satisfies (5)–(8) and the corresponding Hamiltonian is given
by

H(t, x, p) = (x− t)|p|.

To define a terminal cost function g : R → R, we fix t0 = x0 < 0. Let b =
x(0; t0, x0, u1, v), a = x(1; t0, x0, u−1, v), where u1(t) = 1, u−1(t) = −1 for t ∈ [t0, 0],
v is an arbitrary control. We define

g(x) =

{
1 if x ∈ (a, b),
−1 elsewhere.

We set the terminal time T to be zero.
By Theorem 11, the value V for this game exists and is the unique solution to

the corresponding Hamilton–Jacobi equation{
Vt + (x− t)|Vx| = 0,
V (0, x) = g(x) for every x ∈ R.

Remark 3. The assumptions (7) and (8) concerning the convexity of the right-
hand side are crucial for obtaining V +

g ≥ V −
g because we used a viability approach

which requires convexity. We recall that thanks to Proposition 4, inequality V +
g ≤ V −

g

holds true.
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4.4. On the definition of the values of the game. In the definition of upper
and lower values (2) we have used the closure of reachable sets. They can be defined
as well without closure:{

U−
g (t0, x0) := infα∈Γ(t0) sup{g(x) : x ∈ Aα(t0, x0)},

U+
g (t0, x0) := supβ∈∆(t0) inf{g(x) : x ∈ Bβ(t0, x0)}.

We shall exhibit an example where U−
g �= U+

g .

Repeating the same arguments we can prove Corollaries 7, 9 for values U+/−

instead of V +/− and show that U+
g ≥ U−

g . To obtain the reverse inequality it would
be enough to know that Aα ∩ Bβ �= ∅ (see Proposition 4). The following example
shows that in general it is not true. Thus we can define a terminal cost function g in
such a way that U+

g > U−
g .

Example 3. We provide an example of a differential game where U+
g > U−

g . For
doing this we construct a pair of nonanticipative strategies (α, β) such that

Aα ∩Bβ = ∅.
(Let us notice that this implies that neither Aα nor Bβ are closed by Proposition 4.)
We consider the following differential game on R

2:{
x′(t) = u,
y′(t) = v,

where U = V = [0, 1]. We set x0 = 0, t0 = 0 and T = 1. We denote by xu (yv)
the solution to the Cauchy problem x′(t) = u(t), x(0) = 0 (respectively, y′(t) = v(t),
y(0) = 0). We define the constant controls u0(t) = v0(t) = 0 and u1(t) = v1(t) = 1
for t ∈ [0, 1]. For measurable functions w, z : [0, 1]→ [0, 1] we define an (ultrametric)
distance

ρ(w, z) = 1−max{t ∈ [0, 1] : w(s) = z(s) for almost everywhere s ∈ [0, t]}.
(This ultrametric distance has been used in [8] and [11] to prove Lemma 14.)

Set B = {u ∈ U(0) : ρ(u, u0) < 1} and S = {u ∈ U(0) : ρ(u, u0) = 1}. Define
two nonanticipative strategies α, β as follows:

α(v) =

{
u0 if v ∈ B,
u1 if v ∈ S,

β(u) =

{
v1 if u ∈ B,
v0 if u ∈ S.

If u ∈ S, then xu(1) > 0. If p ∈ (0, 1], then there exists a control u ∈ S such that
xu(1) = p.

If u ∈ B, then xu(1) < 1. If p ∈ [0, 1), then there exists a control u ∈ B such that
xu(1) = p.

We have

Aα = {(xα(v)(1), yv(1)) : v ∈ B} ∪ {(xα(v)(1), yv(1)) : v ∈ S}
= {0} × [0, 1) ∪ {1} × (0, 1]

and

Bβ = {(xu(1), yβ(u)(1)) : u ∈ B} ∪ {(xu(1), yβ(u)(1)) : u ∈ S}
= [0, 1)× {1} ∪ (0, 1]× {0}.
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Setting g = χBβ we obtain U+
g (0, 0) = 1 > 0 = U−

g (0, 0).
We did not succeed in finding an example where g is semicontinuous. Hence the

question of knowing if U−
g = U+

g (so, it would be equal to V −
g = V +

g ) for semicontin-
uous g remains an open problem.

Appendix. We recall some necessary notions and facts from nonsmooth analysis.
Let K ⊂ R

n be a nonempty subset and x0 ∈ K. The contingent cone to K at x0,
TK(x0), is defined by

v ∈ TK(x0) ⇐⇒ lim inf
h→0+

dist(x0 + hv,K)

h
= 0.

A polar cone T− to a subset T ⊂ R
n is defined by

T− = {p ∈ R
n : ∀v ∈ T, 〈p, v〉 ≤ 0}.

Let Ω ⊂ R
n be an open subset and w : Ω → R be a lower semicontinuous function.

The subdifferential of w at x0 ∈ Ω is given by

∂−w(x0) =

{
p ∈ R

n : lim inf
x→x0

w(x)− w(x0)− 〈p, x− x0〉
‖x− x0‖ ≥ 0

}
.

It is well known that

p ∈ ∂−w(x0) ⇐⇒ (p,−1) ∈ [TEpi(w)(x0, w(x0))
]−

,

where Epi stands for the epigraph. For an upper semicontinuous function w we define
a superdifferential by

∂+w(x0) =

{
p ∈ R

n : lim sup
x→x0

w(x)− w(x0)− 〈p, x− x0〉
‖x− x0‖ ≤ 0

}
and we have

p ∈ ∂+w(x0) ⇐⇒ (−p, 1) ∈ [THypo(w)(x0, w(x0))
]−

,

where Hypo stands for the hypograph.
The following Rockafellar result (see [15]) gives more information about the con-

nection between subgradients and normals to epigraph.
Lemma 13. Consider a lower semicontinuous function w : Ω → R and x0 ∈ Ω.

If (p, 0) ∈ [TEpi(w)(x0, w(x0))
]−

, then there exist xn → x0, pn → p, qn → 0, qn < 0
such that

(pn, qn) ∈ [TEpi(w)(xn, w(xn))
]−

.

The following result can be deduced from [8, Theorem 2.1].
Lemma 14. Assume that f : R

n × U × V → R
n satisfies (5), (7) and a subset

D ⊂ R
n is closed. If for every z ∈ D we have

∀p ∈ [TD(z)]
−
, max

v∈V
min
u∈U
〈f(z, u, v), p〉 ≤ 0,(20)

then for every z0 ∈ D, t0 < T , there exists a nonanticipative strategy α : V(t0) →
U(t0) such that for every v ∈ V(t0) we have

z(t; t0, z0, α(v), v) ∈ D
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for t ∈ [t0, T ], where z(·; t0, z0, u, v) denotes the solution to the problem{
z′ = f(z, u(t), v(t)),
z(t0) = z0.

Proof of Proposition 6. Fix t0 ∈ (0, T ). We set

Dψ := cl({(t, x, r) : t ∈ (0, T ], x ∈ R
n, r ≥ ψ(t, x)}) ∪ [T,+∞)× R

n,

f̃(t, x, r, u, v) =


0 if t < 0,
t
t0

(1, f(t, x, u, v), 0) if t ∈ [0, t0],

(1, f(t, x, u, v), 0) if t ∈ (t0, T ],
(1, f(T, x, u, v), 0) if t > T.

We show that (20) holds true for f̃ , Dψ.

Let z0 = (s0, x0, r0) ∈ Dψ. If s0 = 0, then f̃ = 0. Obviously, (20) holds true. If

s0 ≥ T and (ps, px, pr) ∈
[
TDψ (s0, x0, r0)

]−
, then ps ≤ 0, px = 0, pr = 0. Hence, (20)

holds true.
It remains to consider the case s0 ∈ (0, T ). We have

[
TDψ (s0, x0, r0)

]− ⊂[
TDψ (s0, x0ψ(s0, x0))

]−
. Let (ps, px, pr) ∈

[
TDψ (s0, x0ψ(s0, x0))

]−
. If pr < 0, then

( ps
−pr ,

px
−pr ) ∈ ∂−ψ(s0, x0). Since ψ is a supersolution to (15) we have

ps
−pr + max

v∈V
min
u∈U

〈
f(s0, x0, u, v),

px
−pr

〉
≤ 0.

Hence,

max
v∈V

min
u∈U
〈f̃(s0, x0, r0, u, v), (ps, px, pr)〉 ≤ 0.

Now, we consider the case pv = 0. By Lemma 13, there exist sn → s0, xn → x0,
psn → ps, pxn → px, prn → 0, prn < 0 such that

(psn, pxn, prn) ∈ [TEpi(ψ)(sn, xn, ψ(tn, xn))
]−

.

Since prn < 0, from what we already have proved, we obtain

max
v∈V

min
u∈U
〈f̃(sn, xn, ψ(sn, xn), u, v), (psn, pxn, prn〉 ≤ 0.

Since f is continuous and U is compact, we have

max
v∈V

min
u∈U
〈f̃(s0, x0, r0, u, v), (ps, px, pr〉 ≤ 0.

By Theorem 14, there exists α ∈ Γ(t0) such that for every v ∈ V(t0)

z(s; t0, z0, α(v), v) ∈ Dψ(21)

for every s ∈ [t0, T ], where z(s; t0, z0, u, v) denotes the solution to the Cauchy problem{
z′(s) = f̃(z(s), u(s), v(s)),
z(t0) = z0.
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Let z(s, t0, z0, α(v), v) = (t(s), x(s), r(s)). By the definition of f̃ , we have t(s) = s,
x(s) = x(s; t0, x0, α(v), v), r(s) = ψ(t0, x0). It yields (16) for t ∈ [t0, T ). Since ψ is
lower semicontinuous, we obtain (16) for t = T .

Let us deduce now our result concerning the control problem.
Proof of Theorem 2. Fix (t0, x0) ∈ (0, T ]×R

n. Let ε > 0. There exists uε ∈ U(t0)
such that g(x(T ; t0, x0, uε)) < Wg(t0, x0) + ε. We define h : R

n → R by

h(x) =

{
g(x) for x = x(T ; t0, x0, uε),
M for x �= x(T ; t0, x0, uε),

where M is a bound of ‖g‖. Obviously, h is lower semicontinuous. By Theorem 11,
the value Wh is a supersolution to (18). We have Wh(t0, x0) < Wg(t0, x0) + ε. Hence,

Wg(t0, x0) = inf{ψ(t0, x0) : ψ is a supersolution to (18), ψ(T, ·) ≥ g(·)}.
We define l : R

n → R by

l(x) =

{
Wg(t0, x0) if x ∈ {x(T ; t0, x0, u) : u ∈ U(t0)},
−M if x /∈ {x(T ; t0, x0, u) : u ∈ U(t0)}.

By (5), (7), the reachable set {x(T ; t0, x0, u) : u ∈ U(t0)} is closed. Thus, l is upper
semicontinuous. Obviously, we have Wg(t0, x0) = Wl(t0, x0). By Theorem 11 (in a
version for upper semicontinuous terminal cost), we obtain that Wl is a subsolution
to (18). Hence,

Wg(t0, x0) = sup{φ(t0, x0) : φ is a subsolution to (18), φ(T, ·) ≤ g(·)}.
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Abstract. In this paper, we consider linear systems in input-output form and introduce a new
adaptive linear quadratic Gaussian (LQG) control scheme which is shown to be self-optimizing. The
identification algorithm incorporates a cost-biasing term, which favors the parameters with smaller
LQG optimal cost and a second term that aims at moderating the time-variability of the estimate.
The corresponding closed-loop scheme is proven to be stable and to achieve an asymptotic LQG cost
equal to the one obtained under complete knowledge of the true system (self-optimization).

The results of this paper extend in a nontrivial way previous results established along the cost-
biased approach in other settings.
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1. Introduction. Since the appearance of the original contribution of Aström
and Wittenmark [1], the analysis of self-tuning control systems has constituted a
challenging topic for theorists working in the area of adaptive control. The first sig-
nificant convergence results were obtained in the late 1970s for minimum-variance
control schemes. In particular, a global convergence result for an adaptive control
system based on the stochastic gradient algorithm has been established in [13]. Ex-
tensions to the least squares (LS) algorithm are dealt with in [32] by introducing
a suitable modification to the standard recursive least squares algorithm. Such a
modification is in fact not necessary in order to achieve optimality [20].

The common result of all the above-mentioned contributions is that a minimum-
variance self-tuning control system obtains under various operating conditions the
same performance as the one achievable under complete knowledge of the true plant
(self-optimization). It is important, however, to emphasize that the minimum-variance
control law calls for the restrictive—and often unrealistic—assumption that the plant
is minimum-phase. Extending these results to more general control techniques suitable
for nonminimum-phase plants has attracted much attention in the last decade. The
corresponding analysis, however, is far more complex.

It is by now well known (see, e.g., [21, 22, 18, 25, 33]) that the self-optimization
result does not hold true for general control laws based on the minimization of mul-
tistep performance indexes. As a matter of fact, the interplay between identification
and control in a certainty equivalence adaptive control scheme may result in the con-
vergence of the parameter estimate to a parameterization different from the true one
in absence of suitable excitation conditions (see, e.g., [5, 18, 2, 6]). When a cost
criterion other than the output variance is considered, this identifiability problem re-
sults in a strictly suboptimal performance. In particular, the identifiability problem
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is significant in infinite-horizon linear quadratic Gaussian (LQG) control and, in fact,
in [33] it is proven that for a state space system subject to Gaussian noise the set of
the parameterizations leading to optimality of LQG control is strictly contained in
the set of the potential convergence points.

A first approach to achieve optimality consists of securing the parameter con-
sistency by introducing suitable probing signals in the control system. The probing
signals should be sufficiently exciting so that consistency is achieved, and—at the
same time—mild enough in order not to degrade the control system performance. In
[8, 9, 10, 14, 28], this is obtained by a careful selection of an asymptotically vanishing
dither noise. This approach is useful only in the case when noise injection is feasible.

A second approach—adopted in this paper—is based on the so-called cost-biased
method originally introduced in [21]. In order to better focus on the basic idea under-
lying this approach and to highlight the main contributions given in the present paper,
we proceed as follows: first we introduce the dynamic systems we consider; then we
outline the cost-biased approach with specific reference to our class of systems; finally
we put our results into perspective with the other existing results obtained along the
cost-biased approach.

We consider dynamic systems in input-output form described by the following
equation:

A(ϑ◦; q−1) yt = B(ϑ◦; q−1)ut−1 + nt,(1.1)

where A(ϑ◦; q−1) = 1−∑n
i=1 a◦i q

−i and B(ϑ◦; q−1) =
∑m
i=1 b◦i q

−i+1 are polynomials
in the unit-delay operator q−1 and ϑ◦ = [ a◦1 a◦2 . . . a◦n b◦1 b◦2 . . . b◦m ]T is the system
parameter vector. The control objective is to minimize the quadratic cost

lim sup
N→∞

1

N

N−1∑
t=0

[ y2
t + β u2

t ],(1.2)

where the control weighting coefficient β is strictly positive.
The basic idea of the cost-biased approach can be outlined as follows.
Suppose a standard LS algorithm is used for the identification of system (1.1)

and let ϑ̂LSt be the corresponding LS estimate at time t. According to the certainty

equivalence principle, the control action is obtained by the relation ut = u	t (ϑ̂
LS
t ),

where u	t (ϑ) indicates the optimal LQG control law for system (1.1) with parameter
ϑ. For ease of reference, let us introduce the symbol S(ϑ1, ϑ2) for the control system
formed by system (1.1) with parameter ϑ1 with the loop closed by ut = u	t (ϑ2).
Since the identification is performed in closed-loop, it is expected that the behavior
of S(ϑ◦, ϑ̂LSt ) will be the same, at least in the long run, as the one of S(ϑ̂LSt , ϑ̂LSt ).

Then, the LQG cost for S(ϑ◦, ϑ̂LSt )—i.e., the incurred cost—will be the same as the

LQG cost for S(ϑ̂LSt , ϑ̂LSt ). However, one should note that the latter configuration is
optimal for the estimated model, whereas the incurred cost obviously cannot be lower
than the optimal cost for the true system. From this, one concludes that the least
squares algorithm has a natural tendency to return estimates with an optimal cost
that is not smaller than the optimal cost associated with the true system and that,
when it is strictly larger, the adaptive scheme attains a suboptimal performance.

In the cost-biased approach an extra term that favors parameters with smaller
optimal cost is added to the LS identification cost. This extra term is selected with a
twofold objective. On the one hand, it should be strong enough so that the optimal
LQG cost associated with the estimated model is asymptotically not larger than the
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optimal cost for the true system. If, on the other hand, it is so mild that the closed-
loop identification property S(ϑ◦, ϑ̂LSt ) = S(ϑ̂LSt , ϑ̂LSt ) is preserved, then one still has

that the incurred cost is equal to the cost for S(ϑ̂LSt , ϑ̂LSt ). From this, optimality of
the adaptive control scheme is achieved.

The cost-biased approach has been successfully applied in a number of different
settings. Controlled Markov chains with a finite parameter set are considered in
[21]. The results of this paper have been extended to Markov chains with an infinite
parameter set in [24] and to systems with a general state space but still with a finite
parameter set in [19].

Linear systems in a state space representation are dealt with in [18] and [7]. In
these papers, the restrictive assumption that the state is fully accessible is made.
Moreover, it is assumed that the noise system affects all state variables. This assump-
tion is crucial for the correct functioning of the proposed identification procedure. As
a matter of fact, the presence of a full-range noise sheds light on the existing difference
between the true system and the estimated model and this helps the identification
task. In the paper [7], it is in fact shown that this mechanism is effective enough
so as to counteract the biasing effect of the cost-biasing term thus guaranteeing the
closed-loop identification property. Unfortunately, the assumption that the noise is
full-range is so restrictive that it cannot be applied to many situations of interest. In
particular, a state space realization of the input-output system (1.1) does not satisfy
this condition.

In the present paper, an optimal adaptive control scheme for system (1.1) still
based on the cost-biasing idea is presented. Extending the cost-biased approach to
systems as (1.1) is important in that input-output systems are largely used in adaptive
control applications. Moreover, assuming only the input and output measurability is
much more realistic than assuming full state accessibility. As a side remark we also
note that, in contrast with [18] and [7], our approach does not require the noise to be
Gaussian.

The paper is organized as follows: in section 2, we describe the cost-biased adap-
tive LQG control scheme and recall some relevant properties of the standard LS es-
timates. The study of the cost-biased identification algorithm is presented in section
3. Section 4 is devoted to the analysis of the closed-loop stability and the charac-
terization of the self-tuning LQG control performance. Finally, section 5 presents
conclusions and suggestions for future research.

2. The cost-biased adaptive LQG control system.

2.1. The LQG optimal control problem. In this section, we summarize some
known facts on infinite-horizon LQG control relevant for the subsequent developments.
This is also useful in order to introduce the assumptions and the notations we shall
use throughout the paper.

Consider the discrete time single input, single output (SISO) system (1.1) where
signal nt is a stochastic disturbance precisely described in the following.

Assumption 2.1. {nt} is a martingale difference sequence with respect to a
filtration {Ft}, satisfying the following conditions:

1. suptE[|nt|p/Ft−1] <∞ almost surely (a.s) ∀p > 0;

2. limN→∞ 1
N

∑N−1
t=0 n2

t = σ2 > 0 a.s.

Note that Assumption 2.1 is satisfied when {nt} is an independently and identi-
cally distributed (i.i.d.) Gaussian sequence, but it includes many other situations.

We make the assumption on system (1.1) that n > 0 (nontrivial autoregressive



1502 M. PRANDINI AND M. C. CAMPI

part). Note that if n = 0, the trivial control law ut = 0, t ≥ 0, is obviously optimal
irrespective of the value of ϑ◦.

We further assume that system (1.1) belongs to a known set of stabilizable models
according to the following.

Assumption 2.2. ϑ◦ ∈ Θ, where Θ is a compact set such that Θ ⊂ {ϑ ∈
n+m : qsA(ϑ; q−1) and qs−1B(ϑ; q−1) have no unstable pole-zero cancellations}, s =
max{n,m} being the order of the system.

System (1.1) is initialized at time t = 0 with yt = ut−1 = 0, t ≤ 0.
For the determination of an optimal control law, it is convenient to represent

system (1.1) in a state space form such that the state is accessible and then apply
the well-known solution to the optimal LQG control problem for full state accessible
state space systems (see, e.g., [10], [3]).

Defining xt := [yt yt−1 . . . yt−(n−1) ut−1 ut−2 . . . ut−(m−1)]
T , system (1.1) can be

given the following state space representation of order s̄ := n + m− 1{
xt+1 = A(ϑ◦)xt + B(ϑ◦)ut + Cnt+1, x0 = [0 0 . . . 0]T ,
yt = Hxt

(2.1)

with matrices

A(ϑ) =



a1 . . . an−1 an
1 0 . . .

. . .
. . .

1 0

b2 . . . bm−1 bm
0 . . . 0

. . . 0
0

0 . . . . . . 0
0 . . . . . . 0

. . .
. . .

0 0

0 . . . . . . 0
1 0

. . .
. . .

1 0


,

B(ϑ) =



b1
0
...
0
1
0
...
0


, C =



1
0
...
0
0
0
...
0


, H =

[
1 0 · · · 0 0 · · · 0

]
.

In this way, the LQG regulation problem for the system in input-output representa-
tion (1.1) is reformulated as a complete state information control problem where the

performance index to be minimized is given by lim supN→∞
1
N

∑N−1
t=0 [xTt Txt + βu2

t ],
where T = HTH ≥ 0 and β > 0.

Note that, in the case when n > 1 and m > 1, the state space representation
(2.1) of system (1.1) is nonminimal (the order of system (1.1) is s = max{n,m},
whereas the dimension of matrix A(ϑ◦) is s̄ = n + m − 1). However, from the block
triangular matrix structure of A(ϑ◦) it is easily seen that the added eigenvalues are
identically equal to zero. Hence from Assumption 2.2 it follows that (A(ϑ◦), B(ϑ◦))
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is stabilizable and (A(ϑ◦), H) is detectable and the standard approach based on the
solution to a Riccati equation can be used to determine the control law.

Specifically, the solution to the original LQG control problem has the following
expression [10]:

ut = S(ϑ◦; q−1) yt +R(ϑ◦; q−1)ut,(2.2)

where S(ϑ◦; q−1) =
∑n−1
i=0 si(ϑ

◦)q−i and R(ϑ◦; q−1) =
∑m−1
i=1 ri(ϑ

◦)q−i, and coeffi-
cients {si(ϑ◦)} and {ri(ϑ◦)} are computed as follows.

Set L(ϑ◦) := [ s0(ϑ◦) s1(ϑ◦) . . . sn−1(ϑ◦) r1(ϑ◦) . . . rm−1(ϑ◦) ]. Then

L(ϑ◦) = −(B(ϑ◦)TP (ϑ◦)B(ϑ◦) + β)−1B(ϑ◦)TP (ϑ◦)A(ϑ◦),(2.3)

where P (ϑ◦) is the unique positive semidefinite solution to the discrete time algebraic
Riccati equation

P = A(ϑ◦)T
[
P − PB(ϑ◦)(B(ϑ◦)TPB(ϑ◦) + β)−1B(ϑ◦)TP

]
A(ϑ◦) + HTH.

Moreover, the optimal LQG cost is given by J	(ϑ◦) = σ2trace(P (ϑ◦)CCT ), a.s.
Remark 2.3. Since the positive semidefinite solution P (ϑ) to

P = A(ϑ)T
[
P − PB(ϑ)(B(ϑ)TPB(ϑ) + β)−1B(ϑ)TP

]
A(ϑ) + HTH(2.4)

is analytic as a function of the parameter vector ϑ in the set C = {ϑ ∈ n+m :
qsA(ϑ; q−1) and qs−1B(ϑ; q−1) have no unstable pole-zero cancellations} (see [12]), it
is easily seen that si(ϑ), ri(ϑ), and J	(ϑ) are analytic functions of ϑ, ϑ ∈ C, as well.

2.2. The cost-biased identification algorithm. Introducing the observation
vector ϕt := [ yt . . . yt−(n−1) ut . . . ut−(m−1)]

T , system (1.1) can be given the regression-
like form

yt = ϕTt−1ϑ
◦ + nt,(2.5)

and the LS identification index for the estimate of ϑ◦ is [26]

Vt(ϑ) =

t∑
s=1

(ys − ϕTs−1ϑ)2.(2.6)

In the theorem below, we recall a fundamental result for the LS estimate proven in
[23, Theorem 1].

Theorem 2.4. Suppose that ut is Ft-measurable. Then

(ϑ◦ − ϑ̂LSt )T
t∑

s=1

ϕs−1ϕ
T
s−1(ϑ◦ − ϑ̂LSt ) = O

(
log λmax

(
t∑

s=1

ϕs−1ϕ
T
s−1

))
a.s.(2.7)

In particular, this implies that under the conditions

(i) λmin

(
t∑

s=1

ϕs−1ϕ
T
s−1

)
→∞ a.s.,

(ii) log λmax

(
t∑

s=0

ϕs−1ϕ
T
s−1

)
= o

(
λmin

(
t∑

s=1

ϕs−1ϕ
T
s−1

))
a.s.,
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the LS estimate is consistent.

In adaptive control, identification is performed in closed-loop. Therefore, one
cannot ensure the satisfaction of conditions (i) and (ii) and the true parameter vector
is generally not consistently estimated. Nevertheless, property (2.7) still provides a
valuable bound on the discrepancy between the estimated parameter and the true
parameter. We call this property “closed-loop identification property” to emphasize
that it holds even in closed-loop. On the other hand, as discussed in section 1, the
LS identification algorithm generally provides estimates with an optimal LQG cost
larger than the optimal cost associated with the true system. This is the reason why
optimality of an LS-based adaptive control scheme is not guaranteed.

Motivated by these considerations, we introduce a cost-biased identification al-
gorithm with the twofold objective of preserving the LS property (2.7) and forcing
the estimates to lie asymptotically in the parameter region with an optimal cost not
larger than the optimal cost associated with the true system.

Consider the estimate ϑ̂t computed through the following algorithm:

ϑ̂t =

{
arg min

ϑ∈Θ
Dt(ϑ) if t = ti, i = 0, 1, 2, . . . ,

ϑ̂t−1 otherwise,
(2.8)

where the time instants {ti} are obtained by the recursive equation ti+1 = ti + Ti
initialized with t0 = 0 and the cost-biased identification index Dt(ϑ) is given by

Dt(ϑ) = Vt(ϑ) + αtJ
	(ϑ) + γt‖ϑ− ϑ̂t−1‖, ϑ̂−1 = 0,(2.9)

where Vt(ϑ) is the LS cost (2.6) and J	(ϑ) is the optimal LQG cost for system (1.1)
with parameter ϑ. The identification algorithm is completely defined by specifying
the sequences of

• freezing time intervals {Ti},
• cost-biasing weights {αt},
• friction parameters {γt}.

We discuss hereafter the meaning of these parameters, while their actual choice is
postponed to the following section.

The freezing parameter Ti is used to ensure stability of the closed-loop system.
Since the parameter estimate changes with time and the control law is tuned to
such an estimate, the adaptive control system is time-varying. On the other hand,
it is well known that guaranteeing a stability property at each time instant for the
“frozen dynamics” does not imply that the overall time-varying system has a stable
dynamics. This problem can be solved by updating the estimate at a slower rate than
the updating of the system variables, and this is achieved by a suitable choice of Ti.
This same approach is exploited, for instance, in [17], [27], and [29].

The cost-biasing term αtJ
	(ϑ) is introduced with the objective of penalizing those

parameterizations with high optimal LQG cost. The weight αt has to be appropri-
ately selected so as to balance the contrasting objectives of preserving the closed-loop
identification property (2.7) and forcing the asymptotic estimate to correspond to a
model with value of the optimal LQG performance index not larger than the optimal
performance value for the true system.

Finally, the friction term γt‖ϑ − ϑ̂t−1‖ is introduced so as to avoid the estimate

ϑ̂t being subject to undesired jumps in the time instants ti when it is updated. This
is necessary to prove optimality of the adaptive scheme.
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3. Selection of {Ti}, {αt}, {γt} and properties of ϑ̂t. The adaptive control

law is given by the optimal control law (2.2) with the estimate ϑ̂t in place of ϑ◦

(certainty equivalence principle):

ut = S(ϑ̂t; q
−1) yt +R(ϑ̂t; q

−1)ut.

The system {
yt+1 = [1−A(ϑ̂t; q

−1)] yt+1 + B(ϑ̂t; q
−1)ut,

ut = S(ϑ̂t; q
−1) yt +R(ϑ̂t; q

−1)ut
(3.1)

is then given the name of time-varying estimated system. We will select Ti so as to
stabilize system (3.1) and later on in section 4 we shall see that this leads to the sta-
bility of the true closed-loop system. Letting xt := [yt . . . yt−(n−1)ut−1 . . . ut−(m−1)]

T ,
this system can be given the state space representation

xt+1 = F (ϑ̂t)xt(3.2)

with

F (ϑ) = A(ϑ) + B(ϑ)L(ϑ),(3.3)

where matrices A(ϑ), B(ϑ), and L(ϑ) have been introduced in section 2.1.

Choose now a constant µ < 1 (contraction constant). The time interval Ti is then
defined as

Ti := inf{τ ∈ Z+ : ‖F (ϑ̂ti)
τ‖ ≤ µ}(3.4)

(note that such a Ti exists since ϑ̂ti belongs to Θ and therefore corresponds to a
stabilizable system). In this way, the time-varying system (3.1) is kept constant
until its dynamics is contracted by a factor µ, whence guaranteeing its stability. The
following proposition makes this precise.

Proposition 3.1. The autonomous estimated system xt+1 = F (ϑ̂t)xt is a.s.
exponentially stable, uniformly in time.

Proof. The proof is given in the appendix.

The choice of {αt} and {γt} is discussed in the next theorem.

Theorem 3.2. Suppose that ut is Ft-measurable. Given δ > 0, select

αt := log1+δ λmax

(
t∑

s=1

ϕs−1ϕ
T
s−1

)
(3.5)

and {γt} to be a positive diverging sequence of real numbers satisfying γt = o(αt).
Then,

(i) (ϑ◦−ϑ̂ti)
T

ti∑
s=1

ϕs−1ϕ
T
s−1(ϑ◦−ϑ̂ti) = O

(
log1+δ λmax

(
ti∑
s=1

ϕs−1ϕ
T
s−1

))
a.s.,

(ii) lim sup
t→∞

J	(ϑ̂t) ≤ J	(ϑ◦) a.s.,

(iii) if

N∑
t=1

‖ϕt−1‖2 = O(N) a.s., then

N∑
t=1

‖ϑ̂t − ϑ̂t−1‖ = o(N) a.s.
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Proof. The proof is given in the appendix.
According to (3.5), {αt} is chosen to be an increasing sequence of real numbers

adaptively selected on the basis of the data generated by the controlled system. Ac-
cording to result (ii), this selection is effective in pushing the estimate towards the
region where the optimal LQG cost is not larger than J	(ϑ◦). In turn, result (i)
shows that the closed-loop identification property (2.7) is preserved with two slight
differences: (1) the exponent 1 + δ appears in the right-hand side, (2) the rate of
divergence in point (i) of Theorem 3.2 concerns only the time instants ti when the

estimate ϑ̂t is updated, while the original closed-loop identification property refers to
all t’s.

Before ending this section, we state a proposition regarding the estimation error

et := ϕTt [ϑ◦ − ϑ̂t].(3.6)

The technical proof of this proposition is given in the appendix and is obtained by a
suitable manipulation of the sole result (i) in Theorem 3.2.

Proposition 3.3. The estimation error et = ϕTt [ϑ◦ − ϑ̂t] satisfies the following
equation:

N∑
t=0, t�∈BN

|et|p = o

(
N∑
t=0

‖ϕt‖p + N

)
, p ≥ 2, a.s.,

where BN is a set of instant points which depends on N , whose cardinality is bounded:
|BN | ≤ CB ∀N .

4. Stability and optimality. The closed-loop system{
yt+1 = [1−A(ϑ◦; q−1)] yt+1 + B(ϑ◦; q−1)ut + nt+1,

ut = S(ϑ̂t; q
−1) yt +R(ϑ̂t; q

−1)ut
(4.1)

can be represented as a variation system with respect to the so-called estimated system
of (3.1) as follows:{

yt+1 = [1−A(ϑ̂t; q
−1)] yt+1 + B(ϑ̂t; q

−1)ut + nt+1 + et,

ut = S(ϑ̂t; q
−1) yt +R(ϑ̂t; q

−1)ut,
(4.2)

where et is defined in (3.6). The uniform stability property of the estimated system
(3.1) (Proposition 3.1) and the property of et stated in Proposition 3.3 are exploited
in the next theorem to prove stability of system (4.1).

Theorem 4.1 (Lp-stability). The adaptive LQG control scheme{
yt+1 = [1−A(ϑ◦; q−1)] yt+1 + B(ϑ◦; q−1)ut + nt+1,

ut = S(ϑ̂t; q
−1) yt +R(ϑ̂t; q

−1)ut

is Lp-stable: lim supN→∞
1
N

∑N−1
t=0 [|yt|p + |ut|p] <∞ a.s. ∀p > 0.

Proof. Fix a time point N > 0 and an integer d ≥ 1.
From Proposition 3.3, there exists a set of instant points BN−1 such that

N−1∑
t=0, t�∈BN−1

e2d

t = o

(
N−1∑
t=0

‖ϕt‖2d + N

)
a.s.(4.3)



ADAPTIVE LQG CONTROL OF INPUT-OUTPUT SYSTEMS 1507

In view of representation (4.2) of system (4.1), it is easily seen that the state vector

xt = [yt . . . yt−(n−1) ut−1 . . . ut−(m−1)]
T

is governed by the equation

xt+1 = F ◦(ϑ̂t)xt + Cnt+1(4.4)

= F (ϑ̂t)xt + C[et + nt+1],(4.5)

where F ◦(ϑ) = A(ϑ◦) + B(ϑ◦)L(ϑ), A(ϑ◦), B(ϑ◦), L(ϑ), and C are defined in section
2.1, and F (ϑ) is given in (3.3).

For the following derivations, it is convenient to use representation (4.4) in the
time instants t ∈ BN−1 and representation (4.5) for t /∈ BN−1, thus finally leading to

xt+1 =

{
F ◦(ϑ̂t)xt + Cnt+1, t ∈ BN−1,

F (ϑ̂t)xt + C[et + nt+1], t /∈ BN−1.
(4.6)

Note now that since ϑ̂t belongs to the compact set Θ and F ◦(ϑ) is a continuous

function of ϑ, ϑ ∈ Θ, we then have that ‖F ◦(ϑ̂t)‖ is uniformly bounded. From this

fact and the uniform exponential stability of the autonomous system xt+1 = F (ϑ̂t)xt
(Proposition 3.1), and the fact that |BN−1| ≤ CB ∀N (see Proposition 3.3), it is easy
to show that the state vector xt generated by system (4.6) can be bounded as follows:

‖xt‖ ≤ k1


t∑
i=1

νt−i|ni|+
t−1∑

i=0,i/∈BN−1

νt−i|ei|
 , t ≤ N,

where k1 and ν ∈ (0, 1) are suitable constants. We now havek1


t∑
i=1

νt−i|ni|+
t−1∑

i=0,i/∈BN−1

νt−i|ei|

2d

≤ k2d

1




t∑
i=1

νt−i|ni|+
t−1∑

i=0,i/∈BN−1

νt−i|ei|


2


2d−1

≤ k2d

1

2

{
t∑
i=1

ν
t−i
2 (ν

t−i
2 |ni|)

}2

+ 2


t−1∑

i=0,i/∈BN−1

ν
t−i
2 (ν

t−i
2 |ei|)


2


2d−1

≤ k2d

1

2

t∑
i=1

νt−i
t∑
i=1

νt−in2
i + 2

t−1∑
i=0,i/∈BN−1

νt−i
t−1∑

i=0,i/∈BN−1

νt−ie2
i

2d−1

≤ k2d

1

(
2

1− ν

)2d−1
 t∑
i=1

νt−in2
i +

t−1∑
i=0,i/∈BN−1

νt−ie2
i

2d−1

.

Iterating this same equation d times, we then obtain

‖xt‖2d ≤ k2


t∑
i=1

νt−in2d

i +

t−1∑
i=0,i/∈BN−1

νt−ie2d

i

 , t ≤ N,(4.7)
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k2 being a suitable constant, from which we finally get

1

N

N∑
t=1

‖xt‖2d ≤ k3

 1

N

N∑
t=1

n2d

t +
1

N

N−1∑
t=0,t/∈BN−1

e2d

t

 ,(4.8)

where k3 is a suitable constant, independent of N .
We next bound the two terms in the right-hand side of (4.8).

The term 1
N

∑N
t=1 n2d

t is handled as follows. Define vt := n2d

t −E[n2d

t |Ft−1]. Then
{vt} is a martingale difference satisfying

∞∑
t=1

1

t2
E[v2

t |Ft−1] ≤
∞∑
t=1

1

t2
E[n2d+1

t |Ft−1] <∞,

due to Assumption 2.1. By applying Theorem 2.18 in [16], we then conclude that
1
N

∑N−1
t=0 [n2d

t −E[n2d

t |Ft−1]] tends to zero, a.s. Since 1
N

∑N−1
t=0 E[n2d

t |Ft−1] is bounded

by Assumption 2.1, we finally have lim supN→∞
1
N

∑N−1
t=0 n2d

t <∞, a.s.

The term 1
N

∑N−1
t=0,t/∈BN−1

e2d

t is immediately bounded by means of (4.3) and the

final bound for 1
N

∑N
t=1 ‖xt‖2

d

is obtained

1

N

N∑
t=1

‖xt‖2d = O(1) + o

(
1

N

N−1∑
t=0

‖ϕt‖2d
)

a.s.

Since 1
N

∑N−1
t=0 ‖ϕt‖2

d ≤ 1
N

∑N
t=0 ‖xt‖2

d

, this implies that 1
N

∑N−1
t=0 ‖ϕt‖2

d

remains
bounded. Then, the thesis immediately follows from the arbitrariness of d and the

fact that 1
N

∑N−1
t=0 ‖ϕt‖p ≤ 1

N

∑N−1
t=0 [‖ϕt‖2d + 1], p ≤ 2d.

In the next theorem we show that the LQG adaptive control scheme is self-
optimizing.

Theorem 4.2 (optimality). The adaptive LQG control scheme{
yt+1 = [1−A(ϑ◦; q−1)] yt+1 + B(ϑ◦; q−1)ut + nt+1,

ut = S(ϑ̂t; q
−1) yt +R(ϑ̂t; q

−1)ut

is self-optimizing: lim supN→∞
1
N

∑N−1
t=0

[
y2
t + β u2

t

]
= J	(ϑ◦) a.s.

Proof. We start by showing that xt := [yt . . . yt−(n−1) ut−1 . . . ut−(m−1)]
T satisfies

the following equation:

‖xt‖p = o(t), ∀p > 0, a.s.(4.9)

This condition will be useful in the subsequent derivations. By contradiction, suppose
that there exist {tk}k≥0 and a real number η > 0, such that ‖xtk‖ > ηtk ∀k. Then

lim sup
N→∞

1

N

N∑
t=1

‖xt‖1+p ≥ lim sup
k→∞

1

tk
‖xtk‖1+p ≥ lim sup

k→∞

1

tk
η1+pt1+pk =∞,

which contradicts Theorem 4.1.
Observe now that the dynamic programming equation for the estimated model

xt+1 = A(ϑ̂t)xt + B(ϑ̂t)ut + Cnt+1 writes

J	(ϑ̂t) + xTt P (ϑ̂t)xt = xTt Txt + βu2
t + E

[
(A(ϑ̂t)xt + B(ϑ̂t)ut + Cnt+1)T

P (ϑ̂t)(A(ϑ̂t)xt + B(ϑ̂t)ut + Cnt+1) | Ft
]
,(4.10)



ADAPTIVE LQG CONTROL OF INPUT-OUTPUT SYSTEMS 1509

where P (ϑ) is the solution to the Riccati equation (2.4). By (2.1) and the definition
(3.6), xt can be given the following expression:

xt+1 = A(ϑ̂t)xt + B(ϑ̂t)ut + Cnt+1 + Cet.(4.11)

Substituting (4.11) in (4.10), we then get

J	(ϑ̂t) + xTt P (ϑ̂t)xt = xTt Txt + βu2
t + E

[
(xt+1 − Cet)

TP (ϑ̂t)(xt+1 − Cet) | Ft
]
,

from which

1

N

N−1∑
t=0

J	(ϑ̂t)− 1

N

N−1∑
t=0

[xTt Txt + βu2
t ]

= − 1

N

N−1∑
t=0

[
xTt P (ϑ̂t)xt − E

[
xTt+1P (ϑ̂t+1)xt+1 | Ft

]]

+
1

N

N−1∑
t=0

E
[
xTt+1(P (ϑ̂t)− P (ϑ̂t+1))xt+1 | Ft

]
+

1

N

N−1∑
t=0

E
[
eTt C

TP (ϑ̂t)Cet | Ft
]

−2
1

N

N−1∑
t=0

E
[
xTt+1P (ϑ̂t)Cet | Ft

]
.(4.12)

From property (ii) in Theorem 3.2, we get lim supN→∞
1
N

∑N−1
t=0 J	(ϑ̂t) ≤ J	(ϑ◦) a.s.

Therefore, the thesis will be proved if we show that all the terms in the right-hand
side of (4.12) tend to zeros as N →∞. We shall study each term separately.

First term:

1

N

N−1∑
t=0

[
xTt P (ϑ̂t)xt − E

[
xTt+1P (ϑ̂t+1)xt+1 | Ft

]]
= − 1

N
xTNP (ϑ̂N )xN

+
1

N
xT0 P (ϑ̂0)x0 +

1

N

N−1∑
t=0

[
xTt+1P (ϑ̂t+1)xt+1 − E

[
xTt+1P (ϑ̂t+1)xt+1 | Ft

]]
.

The term 1
N xT0 P (ϑ̂0)x0 equals zero. As for 1

N xTNP (ϑ̂N )xN , observe that

1

N
xTNP (ϑ̂N )xN ≤ k1

1

N
‖xN‖2,

k1 being a suitable constant, since P (ϑ) is uniformly bounded on the compact set Θ
(see Remark 2.3). Therefore, from (4.9) we get

lim
N→∞

1

N
xTNP (ϑ̂N )xN = 0.

Define wt := xTt+1P (ϑ̂t+1)xt+1−E
[
xTt+1P (ϑ̂t+1)xt+1 | Ft

]
. Then {wt} is a martingale

difference. Hence, 1
N

∑N−1
t=0 wt asymptotically vanishes if

∑∞
t=0

1
t2 E[w2

t+1|Ft] < ∞
(see Theorem 2.18 in [16]). We have

E[w2
t+1|Ft] ≤ E

[
(xTt+1P (ϑ̂t+1)xt+1)2| Ft

] ≤ k2E
[‖xt+1‖4| Ft

] ≤ k3

[
‖xt‖4+‖ut‖4+1

]
,
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k2, k3 being suitable constants, since P (ϑ) is uniformly bounded over Θ and {nt}
satisfies point 1 in Assumption 2.1. We then need to prove that

∑∞
t=0

1
t2 [‖xt‖4 +

‖ut‖4] < ∞. This is easily shown through (4.9) with p = 8, which implies ‖xt‖4 =
o(t1/2) and u4

t = o(t1/2), since
∑∞
t=0

1
t2 [‖xt‖4 +‖ut‖4] =

∑∞
t=0

1
t3/2

1
t1/2

[‖xt‖4 +‖ut‖4],

where
∑∞
t=0

1
t3/2

converges.
Second term:
Observe that {vt} := {xT

t+1(P (ϑ̂t)−P (ϑ̂t+1))xt+1−E
[
xT
t+1(P (ϑ̂t)−P (ϑ̂t+1))xt+1| Ft

]
}

is a martingale difference. By derivations similar to those for the first term, we can
prove that 1

N

∑N
t=0 vt → 0. Then

lim
N→∞

1

N

N−1∑
t=0

E
[
xTt+1(P (ϑ̂t)− P (ϑ̂t+1))xt+1 | Ft

]
= 0

is proven by showing that

lim
N→∞

1

N

N−1∑
t=0

xTt+1(P (ϑ̂t)− P (ϑ̂t+1))xt+1 = 0.(4.13)

To prove (4.13), apply the Schwarz inequality to obtain∣∣∣∣∣ 1

N

N−1∑
t=0

xTt+1(P (ϑ̂t)− P (ϑ̂t+1))xt+1

∣∣∣∣∣ ≤ 1

N

N−1∑
t=0

‖P (ϑ̂t)− P (ϑ̂t+1)‖ ‖xt+1‖2

≤
(

1

N

N−1∑
t=0

‖P (ϑ̂t)− P (ϑ̂t+1)‖2
) 1

2
(

1

N

N−1∑
t=0

‖xt+1‖4
) 1

2

.

By Theorem 4.1 1
N

∑N−1
t=0 ‖xt+1‖4 is bounded. Moreover, limN→∞ 1

N

∑N−1
t=0 ‖P (ϑ̂t)−

P (ϑ̂t+1)‖2 = 0 because of property (iii) in Theorem 3.2 and the Lipschitz continuity
of P (ϑ) over Θ (P (ϑ) is analytic on Θ and Θ is compact). This concludes the proof
of (4.13).

Third term:
Since ϑ̂t ∈ Θ and P (ϑ) is uniformly bounded on Θ, then

0 ≤ 1

N

N−1∑
t=0

E
[
eTt C

TP (ϑ̂t)Cet | Ft
]

=
1

N

N−1∑
t=0

eTt C
TP (ϑ̂t)Cet ≤ h1

1

N

N−1∑
t=0

e2
t ,

h1 being a suitable constant. We now show that

lim
N→∞

1

N

N−1∑
t=0

e2
t = 0 a.s.(4.14)

From Proposition 3.3 it follows that there exists a set of instant points BN−1 whose

cardinality is upper bounded by a constant CB <∞ such that 1
N

∑N−1
t=0, t�∈BN−1

e2
t =

1
N o(
∑N−1
t=0 ‖ϕt‖2) a.s. Then, recalling the definition (3.6) of et, we have

1

N

N−1∑
t=0

e2
t =

1

N
o

(
N−1∑
t=0

‖ϕt‖2
)

+
1

N

∑
t∈BN−1

|ϕTt (ϑ◦ − ϑ̂t)|2.
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By Theorem 4.1, the first term tends to zero. As for the second term, we have that
it can be upper bounded as follows:

1

N

∑
t∈BN−1

|ϕTt (ϑ◦ − ϑ̂t)|2 ≤ h2 CB
1

N
max

0≤t≤N−1
‖ϕt‖2, h2 = suitable constant,

since ϑ̂t is bounded uniformly in time. Noting that ‖ϕt‖2 ≤ ‖xt+1‖2 + ‖xt‖2, from
(4.9) we get

‖ϕt‖2 = o(t) a.s.,(4.15)

which implies 1
N max0≤t≤N−1 ‖ϕt‖2 → 0.

Fourth term:

1

N

N−1∑
t=0

E
[
xTt+1P (ϑ̂t)Cet | Ft

]
=

1

N

N−1∑
t=0

E
[
(A(ϑ◦)xt + B(ϑ◦)ut + Cnt+1)TP (ϑ̂t)Cet | Ft

]
=

1

N

N−1∑
t=0

xTt A(ϑ◦)TP (ϑ̂t)Cet +
1

N

N−1∑
t=0

uTt B(ϑ◦)TP (ϑ̂t)Cet.

We next show that each term on the right-hand side goes to zero as N tends to infinity.
Since ϑ̂t ∈ Θ, with Θ compact, and P (ϑ) is analytic on Θ, by using Schwarz

inequality, we have∣∣∣∣∣ 1

N

N−1∑
t=0

xTt A(ϑ◦)TP (ϑ̂t)Cet

∣∣∣∣∣ ≤ k

(
1

N

N−1∑
t=0

‖xt‖2
) 1

2
(

1

N

N−1∑
t=0

e2
t

) 1
2

.

Then limN→∞ 1
N

∑N−1
t=0 xTt A(ϑ◦)TP (ϑ̂t)Cet = 0 a.s. follows from Theorem 4.1 and

(4.14).

Similarly, one can prove that limN→∞ 1
N

∑N−1
t=0 uTt B(ϑ◦)TP (ϑ̂t)Cet = 0

a.s.

5. Conclusions. The more commonly adopted strategy for the design of adap-
tive control laws is the certainty equivalence approach. Although the approach is
conceptually simple, working out stability and optimality results for certainty equiva-
lence adaptive control schemes is a difficult task even in the ideal case when the true
system belongs to the model class. This is due to the intricate interaction between
control and identification in closed-loop, which can cause identifiability problems.

We introduced a new LQG adaptive control scheme based on the certainty equiva-
lence principle able to ensure both stability and optimality results irrespectively of the
excitation characteristics of the involved signals by adopting a cost-biased approach.

This paper presents the following limitations:
• the true system is described as an ARX system subject to white noise. This

hypothesis is necessary mainly for the applicability of the proposed cost-biased LS
identification method, whose properties are in fact derived on the basis of the LS
estimate properties. As a consequence of this fact, the extension to the ARMAX
system case is not straightforward.
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• the proposed identification method is nonrecursive. The cost-biased iden-
tification index has, in general, multiple local minima and its minimization is not
straightforward. Therefore, it should be minimized by resorting to some global op-
timization algorithm (see, e.g., [30, 31, 4, 15]). This limitation must be removed by
introducing some recursive way to minimize our performance index so as to retain all
the properties relevant to control.

These problems constitute interesting research issues. In particular, inspired by
the result obtained for the white noise case, one can conceive of introducing appro-
priate cost-biased identification algorithms for the colored noise case. In this regard,
much work has to be done, but an encouraging starting point is represented by the
fact that the extended LS algorithm satisfies closed-loop properties similar to those
valid for the LS algorithm (see, e.g., [10]).

Appendix. Proofs of the results in section 3.

Proof of Proposition 3.1. Recall that ϑ̂t ∈ Θ, t ≥ 0, where Θ is compact and is
such that all the parametrizations in Θ correspond to stabilizable models. We start
by proving that T (ϑ) := inf{τ ∈ Z+ : ‖F (ϑ)τ‖ ≤ µ} is uniformly bounded in the
compact set Θ, i.e., supϑ∈Θ T (ϑ) <∞.

Condition ϑ ∈ Θ implies that the system A(ϑ; q−1)yt+1 = B(ϑ; q−1)ut associated
with parameter ϑ is stabilizable and therefore stabilized by the control law ut =
S(ϑ; q−1)yt +R(ϑ; q−1)ut. From this it follows that the dynamic matrix F (ϑ) of the
time-invariant system

xt+1 = F (ϑ)xt(A.1)

is exponentially stable.

Denote by {λi(ϑ)}i=1,...,n+m−1 the eigenvalues of F (ϑ).

By the observation that F (ϑ) is a continuous function of ϑ, C = {ϑ ∈ n+m :
qsA(ϑ; q−1) and qs−1B(ϑ; q−1) have no unstable pole-zero cancellations}, we have that
λ̄(ϑ) := maxi∈{1,...,n+m−1} |λi(ϑ)| is also a continuous function of ϑ, ϑ ∈ C. Being Θ
compact and included in C, the conclusion is finally drawn that

λ̄ := max
ϑ∈Θ

λ̄(ϑ) < 1.

Fix now a real number ν̄ ∈ (λ̄, 1) and introduce the system

wt+1 =
1

ν̄
F (ϑ)wt.(A.2)

System (A.2) is exponentially stable ∀ϑ ∈ Θ, since |λi(ϑ)
ν̄ | ≤ λ̄

ν̄ < 1 ∀ i, ∀ϑ ∈ Θ.
Hence, the solution S(ϑ) to the Lyapunov equation associated with matrix 1

ν̄ F (ϑ)

1

ν̄
F (ϑ)T S(ϑ)

1

ν̄
F (ϑ)− S(ϑ) = −I

is positive definite. Moreover, it is a standard fact that the state vector wt of system
(A.2) can be bounded as follows in terms of S(ϑ):

‖wt‖ ≤
√

λmax(S(ϑ))

λmin(S(ϑ))
‖ wt�‖, t ≥ t	 ≥ 0,(A.3)
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where λmax(S(ϑ)) and λmin(S(ϑ)) are, respectively, the maximum and minimum
eigenvalues of S(ϑ). Since S(ϑ) is continuous in the closed set Θ (see [12]), we can de-

fine c := maxϑ∈Θ

√
λmax(S(ϑ))
λmin(S(ϑ)) and rewrite inequality (A.3) as ‖wt‖ ≤ c ‖wt�‖, t ≥ t	

∀ϑ ∈ Θ. Setting wt� = xt� , we finally get a bound on the state vector xt of the time-
invariant system (A.1)

‖xt‖ ≤ c ν̄t−t
�‖xt�‖, t ≥ t	, ∀ϑ ∈ Θ.(A.4)

Set T̄ = inf{τ ∈ Z+ : c ν̄τ ≤ µ} < ∞. Since ‖xT̄+t�‖ = ‖F (ϑ)T̄ xt�‖ ≤ µ‖xt�‖
∀ϑ ∈ Θ, ∀xt� , then ‖F (ϑ)T̄ ‖ = sup‖x‖�=0

‖F (ϑ)T̄ x‖
‖x‖ ≤ µ ∀ϑ ∈ Θ, and therefore

T (ϑ) = inf{τ ∈ Z+ : ‖F (ϑ)τ‖ ≤ µ} satisfies T (ϑ) ≤ T̄ ∀ϑ ∈ Θ. This finally implies
that

sup
ϑ∈Θ
{T (ϑ)} ≤ T̄ <∞.(A.5)

Let us turn now to considering the time-varying system xt+1 = F (ϑ̂t)xt.

Being ϑ̂t ∈ Θ, t ≥ 0, from (A.5) it follows that the updating time interval Ti in
(3.4) is uniformly bounded:

T := sup
i≥0

Ti < T̄ .(A.6)

We are now in a position to establish the uniform exponential stability. We apply
(A.4) to the state vector xt on each finite time interval [ti, ti+1], thus getting

‖xt‖ ≤ c ν̄t−t
�‖xt�‖, ti ≤ t	 ≤ t ≤ ti+1.(A.7)

If we choose t	 = ti, we have ‖xt‖ ≤ c ν̄t−ti‖xti‖, t ∈ [ti, ti+1]. From the definition
(3.4) of {Tk}, it follows that ‖xti‖ ≤ µi−j‖xtj‖, j ≤ i. By applying (A.7) in the time

interval [tj−1, tj ] with t = tj , we get ‖xtj‖ ≤ c ν̄tj−t
�‖xt�‖, t	 ∈ [tj−1, tj ]. These last

three inequalities lead to

‖xt‖ ≤ c ν̄t−tiµi−j c ν̄tj−t
�‖xt�‖, tj−1 ≤ t	 ≤ tj ≤ ti ≤ t ≤ ti+1, j ≤ i.

By setting ν = max{ν̄, µ 1
T } < 1, we have that µ ≤ νTk ∀k and therefore

‖xt‖ ≤ c2 νt−tiνti−ti−1 . . . νtj+1−tjνtj−t
�‖xt�‖

= c2 νt−t
�‖xt�‖, tj−1 ≤ t	 ≤ tj ≤ ti ≤ t ≤ ti+1.

Finally, from this last inequality and inequality (A.7), we get ‖xt‖ ≤ c2 νt−t
�‖xt�‖,

t	 ≤ t, i.e., the thesis.
Proof of Theorem 3.2. Point (i): Dt(ϑ)− Vt(ϑ̂

LS
t ) can be written as follows:

Dt(ϑ)− Vt(ϑ̂
LS
t )=

t∑
s=1

(ys − ϕTs−1ϑ)2 + αtJ
	(ϑ) + γt‖ϑ− ϑ̂t−1‖ −

t∑
s=1

(ys − ϕTs−1ϑ̂
LS
t )2

=ϑT
t∑

s=1

ϕs−1ϕ
T
s−1ϑ− 2ϑT

t∑
s=1

ϕs−1ys + αtJ
	(ϑ) + γt‖ϑ− ϑ̂t−1‖(A.8)

−(ϑ̂LSt )T
t∑

s=1

ϕs−1ϕ
T
s−1ϑ̂

LS
t + 2(ϑ̂LSt )T

t∑
s=1

ϕs−1ys.
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The LS estimate ϑ̂LSt minimizing Vt(ϑ) satisfies the following equality:

t∑
s=1

ϕs−1ys =

t∑
s=1

ϕs−1ϕ
T
s−1ϑ̂

LS
t .

Substituting this last expression in (A.8), we obtain

Dt(ϑ)− Vt(ϑ̂
LS
t ) = (ϑ− ϑ̂LSt )T

t∑
s=1

ϕs−1ϕ
T
s−1(ϑ− ϑ̂LSt )(A.9)

+αtJ
	(ϑ) + γt‖ϑ− ϑ̂t−1‖.

Set ϑt := arg minϑ∈Θ Dt(ϑ). By definition of ϑt we have

Dt(ϑt)− Vt(ϑ̂
LS
t ) ≤ Dt(ϑ)− Vt(ϑ̂

LS
t ), ϑ ∈ Θ.

By choosing ϑ = ϑ◦ and using expression (A.9), we then get

(ϑt − ϑ̂LSt )T
t∑

s=1

ϕs−1ϕ
T
s−1(ϑt − ϑ̂LSt ) + αtJ

	(ϑt) + γt‖ϑt − ϑ̂t−1‖

≤ (ϑ◦ − ϑ̂LSt )T
t∑

s=1

ϕs−1ϕ
T
s−1(ϑ◦ − ϑ̂LSt ) + αtJ

	(ϑ◦) + γt‖ϑ◦ − ϑ̂t−1‖(A.10)

= O(αt) a.s.,

where the last equality follows from Theorem 2.4, the definition (3.5) of αt, the fact

that ‖ϑ◦ − ϑ̂t−1‖ is bounded, and the relation γt = o(αt). Since αtJ
	(ϑt) + γt‖ϑt −

ϑ̂t−1‖ ≥ 0, we have (ϑt − ϑ̂LSt )T
∑t
s=1 ϕs−1ϕ

T
s−1(ϑt − ϑ̂LSt ) = O(αt) a.s. From defini-

tion (3.5) of αt and Theorem 2.4, we then have

(ϑt − ϑ◦)T
t∑

s=1

ϕs−1ϕ
T
s−1(ϑt − ϑ◦) ≤ 2

[
(ϑt − ϑ̂LSt )T

t∑
s=1

ϕs−1ϕ
T
s−1(ϑt − ϑ̂LSt )

+(ϑ̂LSt − ϑ◦)T
t∑

s=1

ϕs−1ϕ
T
s−1(ϑ̂LSt − ϑ◦)

]
= O(αt) a.s.,

thus concluding the proof of point (i), since ϑ̂t = ϑt, for t = ti, i = 0, 1, . . . .
Point (ii): A simple elaboration of (A.10) shows that

J	(ϑt) ≤ (ϑ◦ − ϑ̂LSt )T
∑t
s=1 ϕs−1ϕ

T
s−1(ϑ◦ − ϑ̂LSt )

αt
+ J	(ϑ◦) +

γt
αt
‖ϑ◦ − ϑ̂t−1‖

=
O(log λmax(

∑t
s=1 ϕs−1ϕ

T
s−1))

log1+δ λmax(
∑t
s=1 ϕs−1ϕTs−1)

+
o(αt)

αt
+ J	(ϑ◦) a.s.,

where in the second equation we have used the definition of αt given in equation
(3.5) and the fact that γt = o(αt). To conclude the proof, it suffices to show that
limt→∞ log λmax(

∑t
s=1 ϕs−1ϕ

T
s−1) =∞. The easy proof of this fact is omitted.

Point (iii): By the definition (2.8) of ϑ̂t, we have

Vt(ϑ̂t) + αtJ
	(ϑ̂t) + γt‖ϑ̂t − ϑ̂t−1‖ ≤ Vt(ϑ̂t−1) + αtJ

	(ϑ̂t−1),
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which implies

N∑
t=1

γt‖ϑ̂t − ϑ̂t−1‖ ≤
N∑
t=1

[Vt(ϑ̂t−1)− Vt(ϑ̂t)] +

N∑
t=1

αt[J
	(ϑ̂t−1)− J	(ϑ̂t)].(A.11)

The first term in the right-hand side of (A.11) can be bounded as follows:

N∑
t=1

[Vt(ϑ̂t−1)− Vt(ϑ̂t)] ≤ V1(ϑ̂0)− VN (ϑ̂N ) +

N−1∑
t=1

[Vt+1(ϑ̂t)− Vt(ϑ̂t)]

≤ V1(ϑ̂0) +

N−1∑
t=1

[ϕTt (ϑ◦ − ϑ̂t) + nt+1]2

≤ V1(ϑ̂0) + 2

N−1∑
t=1

[ϕTt (ϑ◦ − ϑ̂t)]
2 + 2

N−1∑
t=1

n2
t+1

≤ k1

[
1 +

N∑
t=1

‖ϕt−1‖2 +

N−1∑
t=1

n2
t+1

]
,

k1 being a suitable constant, where we used the boundedness of ϑ̂t.
By Remark 2.3, the second term in the right-hand side of (A.11) can be bounded

as follows:

N∑
t=1

αt[J
	(ϑ̂t−1)− J	(ϑ̂t)] = α1J

	(ϑ̂0)− αNJ	(ϑ̂N ) +

N−1∑
t=1

(αt+1 − αt)J
	(ϑ̂t)

≤ α1J
	(ϑ̂0) + max

ϑ∈Θ
J	(ϑ)

N−1∑
t=1

(αt+1 − αt)

= k2[1 + αN ],

where k2 is a suitable constant.
Substituting these bounds in (A.11), we then have

1

N

N∑
t=1

γt‖ϑ̂t − ϑ̂t−1‖ ≤ k̄

[
1

N
+

αN
N

+
1

N

N∑
t=1

‖ϕt−1‖2 +
1

N

N−1∑
t=1

n2
t+1

]
,(A.12)

with k̄ = suitable constant. Observe now that all the terms in the right-hand side
of (A.12) are O(1). This, in particular, follows from the assumption of point (iii)

in Theorem 3.2 that
∑N
t=1 ‖ϕt−1‖2 = O(N) and Assumption 2.1, point 2. Then

1
N

∑N
t=1 γt‖ϑ̂t − ϑ̂t−1‖ = O(1). Since γt tends to infinity, this last equation implies

1
N

∑N
t=1 ‖ϑ̂t − ϑ̂t−1‖ = o(1), that is, the thesis.
Proof of Proposition 3.3. Fix a real number ε > 0 and a time instant N . Con-

sider the set of instant points in the interval [0, N ] where ϑ̃t := ϑ◦ − ϑ̂t changes:
t0, t1, . . . , ti(N), where i(N) := max{i : ti ≤ N}. In these instant points we define a

set of subspaces {Sti}i(N)
i=0 through the following backward recursive procedure:

for i = i(N) + 1, set Si = ∅,
for i = i(N), i(N)− 1, . . . , 0, set (here and throughout the symbol ϑ̃t,S stands for

the projection of vector ϑ̃t onto the subspace S)

Sti =

{
Sti+1 if ‖ϑ̃ti,S⊥

ti+1

‖ ≤ ε,

Sti+1 ⊕ span{ϑ̃ti} otherwise.
(A.13)
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For each t ∈ [0, N ], with the notation i(t) := max{i : ti ≤ t}, we have

|ϕTt ϑ̃t|p ≤ cp |ϕTt,S⊥
ti(t)

ϑ̃t,S⊥
ti(t)

|p + c1 |ϕTt,Sti(t) ϑ̃t,Sti(t) |
p,(A.14)

where cp is a suitable constant depending on p. By definition (A.13), the first term
in the right-hand side can be upper bounded as follows:

|ϕTt,S⊥
ti(t)

ϑ̃t,S⊥
ti(t)

|p ≤ εp‖ϕt‖p.(A.15)

To handle the second term, we first work out a basis in Sti(t) . For this purpose,

consider the subset {τj}dim(St0 )
j=1 of instant points {ti}i(N)

i=0 such that subspace Sti

enlarges: Sτj ⊃ Sti , ti > τj . The searched basis is {ϑ̃τj}dim(St0 )

j=dim(St0 )−dim(Sti(t) )+1.

In view of the uniform boundedness of ϑ̃t and also considering the very definition
of subspaces Sti (equation (A.13)), it is easy to see that vectors {ϑ̃τj} are spread
in subspace Sti(t) in such a way that the angle between each pair of vectors tends
to zero only when ε → 0. Consequently, there exists a constant c(ε), depending on
ε, but independent of N , such that term |ϕTt,Sti(t) ϑ̃t,Sti(t) |

p in the right-hand side of

inequality (A.14) can be bounded as follows:

|ϕTt,Sti(t) ϑ̃t,Sti(t) |
p ≤ ∆p‖ϕt,Sti(t)‖p

≤ ∆pc(ε)

dim(St0 )∑
j=dim(St0 )−dim(Sti(t) )+1

‖ϕt,span{ϑ̃τj }‖
p,(A.16)

where ∆ = maxϑ1,ϑ2∈Θ‖ϑ1 − ϑ2‖.
By plugging estimates (A.15) and (A.16) in (A.14), we obtain

|ϕTt ϑ̃t|p ≤ cpε
p‖ϕt‖p + cp ∆p c(ε)

dim(St0 )∑
j=dim(St0 )−dim(Sti(t) )+1

‖ϕt,span{ϑ̃τj }‖
p.

Summing up these relations from time t = 0 to t = N , we finally have

N∑
t=0

|ϕTt ϑ̃t|p ≤ cpε
p
N∑
t=0

‖ϕt‖p + cp ∆p c(ε)

N∑
t=0

dim(St0 )∑
j=dim(St0 )−dim(Sti(t) )+1

‖ϕt,span{ϑ̃τj }‖
p.

(A.17)
Introduce now the time-varying set of instant points

BN := ∪dim(St0 )
j=1 {τj , τj + 1, . . . , τj + T − 1},

where T := supi≥0 Ti < ∞ (see (A.6) in the proof of Proposition 3.1). Since
dim(St0) ≤ n + m, we obviously have |BN | ≤ T (n + m).

Then

N∑
t=0, t�∈BN

dim(St0 )∑
j=dim(St0 )−dim(Sti(t) )+1

‖ϕt,span{ϑ̃τj }‖
p ≤

dim(St0 )∑
j=1

τj−1∑
t=0

‖ϕt,span{ϑ̃τj }‖
p.
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We now show that

ti−1∑
t=0

|ϕTt ϑ̃ti |p = o

(
ti−1∑
t=0

‖ϕt‖p
)

a.s.,(A.18)

from which it follows that

N∑
t=0, t�∈BN

dim(St0 )∑
j=dim(St0 )−dim(Sti(t) )+1

‖ϕt,span{ϑ̃τj }‖
p ≤ n + m

εp

[
o

(
N∑
t=0

‖ϕt‖p
)

+ O(1)

]
,

(A.19)
where we used the fact that dim(St0) ≤ n + m ∀N .

Observe first that

ti−1∑
t=0

‖ϕt‖2 = O

(
ti−1∑
t=0

‖ϕt‖p
)

a.s.(A.20)

Indeed, using Jensen’s inequality [11, Corollary 1 in section 4.3])

ti−1∑
t=0

‖ϕt‖2 = ti

( 1

ti

ti−1∑
t=0

‖ϕt‖2
)p/22/p

≤ ti

[
1

ti

ti−1∑
t=0

‖ϕt‖p
]2/p

=

ti−1∑
t=0

‖ϕt‖p
[

ti∑ti−1
t=0 ‖ϕt‖p

]1−2/p

,

where

lim sup
i→∞

ti∑ti−1
t=0 ‖ϕt‖p

<∞ a.s.(A.21)

This last equation is easily derived as follows. From the regression-like form yt =
ϕTt−1ϑ

◦ + nt, it follows that |nt|p ≤ 2p−1 max{‖ϑ◦‖, 1}[ |yt|p + ‖ϕt−1‖p ]. Taking
into account that the autoregressive part of system is not trivial (n > 0), this in
turn implies that |nt|p ≤ h1[ ‖ϕt‖p + ‖ϕt−1‖p ], from which it is easily shown that∑N−1
t=1 |nt|p ≤ h1

∑N−1
t=0 ‖ϕt‖p, where h1 is a suitable constant. Since 1

N

∑N−1
t=1 |nt|p ≥

[ 1
N

∑N−1
t=0 n2

t ]
p/2 (using Jensen’s inequality), from Assumption 2.1, we then get

lim sup
N→∞

1

N

N−1∑
t=0

‖ϕt‖p > 0 a.s.,

from which (A.21) follows.

By means of (A.20), we now show that
∑ti−1
t=0 |ϕTt ϑ̃ti |p = o(

∑ti−1
t=0 ‖ϕt‖p) a.s.,

which implies (A.18). This equation is easily derived from property (i) in Theorem 3.2
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as follows:

ti−1∑
t=0

|ϕTt ϑ̃ti |p ≤
∣∣∣∣∣
ti−1∑
t=0

|ϕTt (ϑ◦ − ϑti)|2
∣∣∣∣∣
p/2

= o

(Log

ti−1∑
t=0

‖ϕt‖
)p(1+δ)/2 (by property (i))

= o

(
ti−1∑
t=0

‖ϕt‖2
)

= o

(
ti−1∑
t=0

‖ϕt‖p
)

(by (A.20)).

By using inequality (A.17) and inequality (A.19), we obtain

N∑
t=0, t�∈BN

|ϕTt ϑ̃t|p ≤ cpε
p
N∑
t=0

‖ϕt‖p + cp∆
pc(ε)

n + m

εp

[
o

(
N∑
t=0

‖ϕt‖p
)

+ O(1)

]

≤ cpε
pO

(
N∑
t=0

‖ϕt‖p + N

)
+ cp∆

pc(ε)
n + m

εp
o

(
N∑
t=0

‖ϕt‖p + N

)
,

which finally implies that

lim sup
N→∞

N∑
t=0, t�∈BN

|ϕTt ϑ̃t|p

N∑
t=0

‖ϕt‖p + N

≤ cpε
p.

Since ε is arbitrarily chosen, the thesis follows.
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Abstract. This paper is concerned with two-person zero-sum dynamic stochastic games in Borel
spaces, with possibly unbounded payoff function, and several average (or ergodic) payoff criteria. We
give conditions under which the long-run expected average payoff criterion, the sample-path average
criterion, the existence of solutions to the average payoff Shapley equations, and a certain “martingale
condition” are all equivalent.
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average payoff, Shapley equations
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1. Introduction. In this paper we study noncooperative, discrete-time, two-
person zero-sum stochastic games in Borel spaces with possibly unbounded payoff
function. We consider three average (or ergodic) payoff criteria: the long-run expected
average payoff (EAP), the sample-path average payoff (SPAP), and the existence of
canonical pairs of stationary strategies, by which we mean a pair of strategies that
satisfy the Shapley equations for the average payoff criterion (see Definition 4.3). We
give conditions under which these criteria are all equivalent and also equivalent to a
certain “martingale condition” (Theorem 5.9(c)).

This equivalence is not obvious at all. For instance, there are well-known coun-
terexamples (e.g., [4]) showing that EAP optimality (Definition 4.1) does not imply
the existence of solutions to the Shapley equation. Similarly, the comparison—not to
mention the equivalence—between EAP optimality and SPAP optimality (Definition
4.2) is not quite straightforward, not even in the case of a bounded payoff function
or for Markov control processes (MCPs), which correspond to the one-player case (see
Remark 5.11).

The average payoff criteria have been widely studied for finite or countable state
spaces (see, for instance, [1, 3, 6, 24, 26] and their references), but for uncountable
spaces they are restricted to just a few publications, for instance, [7, 16, 17, 18, 21, 22,
25]. In the latter case, which is the one we are interested in, one can distinguish two
main approaches: the “contraction” and the “vanishing discount” approaches. In the
former, the idea is to impose conditions to ensure that Fan’s minimax operator (see
(4.15)) is a contraction map in some norm. This has been done in [7, 22, 25] using the
“span” seminorm (see also section 3.3 in [9] for the one-player case), which requires
the immediate payoff function to be bounded, and in [18] (see also [1, 24]) using the
weighted w-norm in (5.2) below. The second, “vanishing discount,” approach is used
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in [21]. Here we use a third approach to obtain the Shapley equation, which is roughly
related to the “policy iteration” (or Howard’s) algorithm for MCPs.

At any rate, a common feature to all these works and ours is that they all require
strong ergodicity conditions. For instance, the hypotheses in [7, 22, 25] guarantee
geometric ergodicity in the total variation norm, whereas in [1, 18, 21, 24] this kind
of ergodicity is with respect to a weighted w-norm (see (5.3) and (5.4)). This w-norm
is of common use to analyze MCPs—see, for example, [8, 11, 12, 13, 14, 19] and their
references.

The remainder of the paper is organized as follows. Sections 2 and 3 introduce
standard material on stochastic games and strategies, respectively. The optimality
criteria we are concerned with are presented in section 4. The core of the paper
is contained in section 5: after introducing some assumptions, we present our main
results on the equivalence of EAP optimality, the existence of “canonical pairs” of
strategies (Theorem 5.8), a certain martingale condition (Theorem 5.9), and SPAP
optimality (Theorem 5.10). These results are specialized in the obvious manner to
MCPs (Corollary 5.12). Finally, after some technical preliminaries in section 6, the
proofs of Theorems 5.8, 5.9, and 5.10 are presented in sections 7, 8, and 9, respectively.

2. The game model. In this section we introduce the (discrete-time, time-
homogeneous) two-person zero-sum stochastic game model we are interested in. We
begin by introducing the following terminology and notation—for further details the
reader may refer to Bertsekas and Shreve [2], for instance.

Definition 2.1. (a) A Borel subset X of a complete and separable metric space
is called a Borel space, and its Borel σ-algebra is denoted by B(X). We deal only with
Borel spaces, and so “measurable” (for either sets or functions) always means “Borel-
measurable.” Given a Borel space X, we denote by P(X) the family of probability
measures on X, endowed with the weak topology σ(P(X), Cb(X)), where Cb(X) stands
for the space of continuous bounded functions on X. In this case, P(X) is a Borel
space. Moreover, if X is compact, then so is P(X).

(b) Let X and Y be Borel spaces. A measurable function ϕ : Y → P(X) is called
a transition probability from Y to X (also known as a stochastic kernel on X given
Y), and we denote by P(X|Y) the family of all those transition probabilities. If ϕ is
in P(X|Y), then we write its values either as ϕ(y)(B) or as ϕ(B|y) for all y ∈ Y and
B ∈ B(X). Finally, if X = Y, then ϕ is called a Markov transition probability on X.

The stochastic game model. We shall consider the two-person zero-sum game
model

GM := (X, A,B,KA,KB , Q, r),(2.1)

where X is the state space, and A and B are the action spaces for players 1 and 2,
respectively. These spaces are all assumed to be Borel spaces. The sets KA ∈ B(X×A)
and KB ∈ B(X×B) are the constraint sets. That is, for each state x ∈ X, the x-section
in KA, namely,

A(x) := {a ∈ A|(x, a) ∈ KA},

represents the set of admissible actions for player 1 in the state x. Similarly, the
x-section in KB ,

B(x) := {b ∈ B|(x, b) ∈ KB},
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stands for the family of admissible actions for player 2 in the state x. Let

K := {(x, a, b)|x ∈ X, a ∈ A(x), b ∈ B(x)},
which is a Borel subset of X × A × B (see Lemma 1.1 in [20], for instance). Then
Q ∈ P(X|K) is the game’s transition law, and, finally, r : K → R is a measurable
function representing the reward function for player 1 (or the cost function for player
2).

The game is played as follows. At each stage (or time) t = 0, 1, . . . , players 1
and 2 observe the current state x ∈ X of the system and then independently choose
actions a ∈ A(x) and b ∈ B(x), respectively. As a consequence of this, the following
happens: (1) player 1 receives an immediate reward r(x, a, b); (2) player 2 incurs a cost
r(x, a, b); and (3) the system moves to a new state x′ with distribution Q(· |x, a, b).
Thus, the goal of player 1 is to maximize his/her reward, whereas that of player 2 is
to minimize his/her cost.

3. Strategies. Let H0 := X and Ht := K × Ht−1 for t = 1, 2, . . . . For each
t, an element ht = (x0, a0, b0, . . . , xt−1, at−1, bt−1, xt) of Ht represents a “history”
of the game up to time t. A strategy for player 1 is then defined as a sequence
π1 = {π1

t , t = 0, 1, . . . } of transition probabilities π1
t in P(A|Ht) such that

π1
t (A(xt))|ht) = 1 ∀ht ∈ Ht, t = 0, 1, . . . .

We denote by Π1 the family of all strategies for player 1.
Now define A(x) := P(A(x)) for each state x ∈ X, and let Φ1 be the class of all

transition probabilities ϕ ∈ P(A|X) such that ϕ(x) is in A(x) for all x ∈ X. Then a
strategy π1 = {π1

t } ∈ Π1 is called stationary if there exists ϕ ∈ Φ1 such that

π1
t (· |ht) = ϕ(xt)(· ) ∀ht ∈ Ht, t = 0, 1, . . . .

We will identify Φ1 with the family of stationary strategies for player 1.
The sets of strategies Π2 and Φ2 for player 2 are defined similarly, writing B(x)

and B(x) := P(B(x)) in lieu of A(x) and A(x), respectively.
Let (Ω,F) be the (canonical) measurable space that consists of the sample space

Ω := (X × A × B)∞ and its product σ-algebra F . Then for each pair of strategies
(π1, π2) ∈ Π1 ×Π2 and each “initial state” x ∈ X, there exists a probability measure

Pπ
1,π2

x and an stochastic process {(xt, at, bt), t = 0, 1, . . . } defined on (Ω,F) in a
canonical way, where xt, at, and bt represent the state and the actions of players 1
and 2, respectively, at each stage t = 0, 1, . . . . The expectation operator with respect
to Pπ

1,π2

x is denoted by Eπ
1,π2

x .
Remark 3.1. As was already mentioned at the end of section 2, the players

choose their actions independently. This means, more precisely, that for any pair of
strategies πi = {πit} ∈ Πi (i = 1, 2) and any initial state x ∈ X, the corresponding
action processes {at} and {bt} are conditionally independent in the sense that

Pπ
1,π2

x (at ∈ C, bt ∈ D|ht) = π1
t (C|ht)π2

t (D|ht)
for all C ∈ B(A), D ∈ B(B), ht ∈ Ht, and t = 0, 1, . . . .

4. Average payoff criteria. For each n = 1, 2, . . . and each history h∞ :=
(x0, a0, b0, x1, a1, b1, . . . ), let

J0
n(h∞) :=

n−1∑
t=0

r(xt, at, bt)(4.1)
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be the n-stage sample-path payoff when player i (i = 1, 2) uses the strategy πi ∈ Πi,
given the initial state x0 = x. The corresponding n-stage expected payoff is

Jn(π1, π2, x) := Eπ
1,π2

x

[
n−1∑
t=0

r(xt, at, bt)

]
.(4.2)

We then define the long-run SPAP

J0(h∞) := lim inf
n→∞ J0

n(h∞)/n,(4.3)

and, similarly, the long-run EAP

J(π1, π2, x) := lim inf
n→∞ Jn(π1, π2, x)/n.(4.4)

To introduce the optimality criteria we are concerned with we use the following
concepts. The functions on X defined as

L(x) := sup
π1∈Π1

inf
π2∈Π2

J(π1, π2, x) and U(x) := inf
π2∈Π2

sup
π1∈Π1

J(π1, π2, x)(4.5)

are called the lower value and the upper value, respectively, of the (expected) average
payoff game. It is clear that L(· ) ≤ U(· ) in general, but if it holds that L(x) = U(x)
for all x ∈ X, then the common function is called the value of the game and is denoted
by V (· ).

Definition 4.1. Suppose that the game has a value V (· ). Then a strategy π∗1

in Π1 is said to be expected average payoff optimal (briefly, EAP optimal) for player
1 if

inf
π2∈Π2

J(π∗1, π2, x) = V (x) ∀x ∈ X.(4.6)

Similarly, π∗2 ∈ Π2 is EAP optimal for player 2 if

sup
π1∈Π1

J(π1, π∗2, x) = V (x) ∀x ∈ X.(4.7)

If π∗i ∈ Πi is EAP optimal for player i (i = 1, 2), then (π∗1, π∗2) is called an EAP
optimal pair of strategies (also known as a saddle point or as a noncooperative equi-
librium).

For the SPAP we introduce a similar optimality criterion. (We use below the
usual abbreviation “a.s.” for “almost surely.”)

Definition 4.2. Suppose that the game has a value V (· ). Then a pair of
strategies (π∗1, π∗2) ∈ Π1 × Π2 is said to be SPAP optimal if it satisfies that for all
x ∈ X and πi ∈ Πi (i = 1, 2),

J0(h∞) = V (x), Pπ
∗1,π∗2

x a.s.,(4.8)

J0(h∞) ≥ V (x), Pπ
∗1,π2

x a.s.,(4.9)

J0(h∞) ≤ V (x), Pπ
1,π∗2

x a.s.(4.10)

SPAP optimality is also studied in [3, 7, 24], for instance.
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To introduce our last optimality criterion we use the following notation. (Recall
that A(x) := P(A(x)) and B(x) := P(B(x)); see section 3.) For any given function
f : K→ R and probability measures ϕ ∈ A(x) and ψ ∈ B(x), we write

f(x, ϕ, ψ) :=

∫
A(x)

∫
B(x)

f(x, a, b)ψ(db)ϕ(da)(4.11)

whenever the integrals are well defined. In particular, for r and Q as in (2.1),

r(x, ϕ, ψ) :=

∫
A(x)

∫
B(x)

r(x, a, b)ψ(db)ϕ(da)

and

Q(· |x, ϕ, ψ) :=

∫
A(x)

∫
B(x)

Q(· |x, a, b)ψ(db)ϕ(da).

Definition 4.3. A four-tuple (ξ∗, u∗, ϕ∗, ψ∗) that consists of a constant ξ∗ ∈ R,
a measurable function u∗ : X → R, and a pair (ϕ∗, ψ∗) ∈ Φ1 × Φ2 of stationary
strategies is said to be a canonical four-tuple if it holds that, for all x ∈ X,

ξ∗ + u∗(x) = r(x, ϕ∗(x), ψ∗(x)) +

∫
X

u∗(y)Q(dy|x, ϕ∗(x), ψ∗(x))(4.12)

= max
ϕ∈A(x)

[
r(x, ϕ, ψ∗(x)) +

∫
X

u∗(y)Q(dy|x, ϕ, ψ∗(x))

]
(4.13)

= min
ψ∈B(X)

[
r(x, ϕ∗(x), ψ) +

∫
X

u∗(y)Q(dy|x, ϕ∗(x), ψ)

]
.(4.14)

In this case, it is also said that (ϕ∗, ψ∗) is a canonical pair of stationary strategies.
(Concerning the name “canonical four-tuple,” see the second paragraph in section 6.)

Definition 4.3 is of course related to the so-called Shapley (or dynamic program-
ming) equation

ξ∗ + u∗(x) = Tu∗(x) ∀x ∈ X,

where T is the minimax operator defined by

Tu∗(x) := max
ϕ∈A(x)

min
ψ∈B(X)

[
r(x, ϕ, ψ) +

∫
X

u∗(y)Q(dy|x, ϕ, ψ)

]
(4.15)

= min
ψ∈B(x)

max
ϕ∈A(x)

[
r(x, ϕ, ψ) +

∫
X

u∗(y)Q(dy|x, ϕ, ψ)

]
.

Our assumptions in section 5 will ensure that the maximum and the minimum in
(4.15) are indeed attained and also that the second equality holds.

On the other hand, the relation between Definitions 4.3 and 4.1 is that if u∗
satisfies that

lim
n→∞n−1Eπ

1,π2

x u∗(xn) = 0(4.16)

for all x ∈ X and πi ∈ Πi (i = 1, 2), then one can easily show that ξ∗ is the value
V (· ) of the game and that the canonical pair (ϕ∗, ψ∗) is EAP optimal. (See the proof
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of Theorem 5.8 in section 7.) Thus, denoting by (Φ1 × Φ2)ca the family of canonical
pairs and by (Φ1 × Φ2)eap the family of EAP optimal strategies, we have

(Φ1 × Φ2)ca ⊂ (Φ1 × Φ2)eap(4.17)

if (4.16) holds. Moreover, the relation (4.17) is, in general, strict; in other words, as
shown by well-known counterexamples (for instance, [4]), without suitable hypotheses,
an EAP optimal pair is not necessarily canonical. The key fact to note here is that
iteration of (4.12) yields

nξ∗ + u∗(x) = Jn(ϕ∗, ψ∗, x) + Eϕ∗,ψ∗
x u∗(xn)(4.18)

for all x ∈ X and n = 1, 2, . . . . This establishes an explicit relation between the n-
stage averages Jn(ϕ∗, ψ∗, x)/n and ξ∗, whereas for an arbitrary EAP optimal pair an
expression such as (4.18) is virtually impossible to obtain. However, we show below
(Theorem 5.8) that under appropriate assumptions we have equality in (4.17), i.e.,

(Φ1 × Φ2)ca = (Φ1 × Φ2)eap,(4.19)

and in fact these sets also coincide with the family (Φ1 × Φ2)spap of SPAP optimal
pairs of stationary strategies (Theorem 5.10).

5. Main results. As we already mentioned in section 1, our assumptions are an
obvious variant of hypotheses previously used to study MCPs and stochastic games [1,
8, 11, 12, 13, 14, 18, 19, 21, 24]. In particular, the following Assumption 5.1 consists of
standard continuity-compactness hypotheses, together with a growth condition (5.1)
on the reward/cost function r.

Assumption 5.1. (a) For each state x ∈ X, the (nonempty) sets A(x) and B(x) of
admissible actions are compact.

(b) For each (x, a, b) in K, r(x, · , b) is upper semicontinuous (u.s.c.) on A(x), and
r(x, a, · ) is lower semicontinuous (l.s.c.) on B(x).

(c) For each (x, a, b) in K and each bounded measurable function v on X, the
functions ∫

X

v(y)Q(dy|x, · , b) and

∫
X

v(y)Q(dy|x, a, · )

are continuous on A(x) and B(x), respectively.
(d) There exists a constant r1 and a measurable function w(· ) ≥ 1 on X such that

|r(x, a, b)| ≤ r1w(x) ∀(x, a, b) ∈ K,(5.1)

and, in addition, part (c) holds when v is replaced with w.
The next two assumptions are used to guarantee that the state process {xt} is

“ergodic” in a suitable sense—see Remark 5.5(b).
Assumption 5.2. There exists a probability measure ν ∈ P(X), a positive number

α < 1, and a measurable function β : K → [0, 1] for which the following holds for all
(x, a, b) in K and D in B(X):

(a) Q(D|x, a, b) ≥ β(x, a, b)ν(D).
(b)
∫
X
w(y)Q(dy|x, a, b) ≤ αw(x)+β(x, a, b) ‖ν ‖w, where w(· ) ≥ 1 is the function

in Assumption 5.1(d), and ‖ ν ‖w:=
∫
wdν.

(c) inf
∫
X
β(x, ϕ(x), ψ(x))ν(dx) > 0, where the infimum is over all pairs (ϕ,ψ) in

Φ1 × Φ2.
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Assumption 5.3. There exists a σ-finite measure λ on X with respect to which,
for each pair (ϕ,ψ) in Φ1 × Φ2, the Markov transition probability Q(· |x, ϕ(x), ψ(x))
is λ-irreducible.

We next introduce some notation and then we mention some important conse-
quences of the above assumptions.

Definition 5.4. Bw(X) denotes the linear space of real-valued measurable func-
tions u on X with a finite w-norm, which is defined as

‖ u ‖w:= sup
x∈X
|u(x)|/w(x),(5.2)

and Mw(X) stands for the normed linear space of finite signed measures µ on X such
that

‖ µ ‖w:=

∫
X

wd|µ| <∞,(5.3)

where |µ| := µ+ + µ− denotes the total variation of µ.
Note that the integral

∫
udµ is finite for each u in Bw(X) and µ in Mw(X) because,

by (5.2) and (5.3), ∣∣∣∣∫ udµ

∣∣∣∣ ≤‖ u ‖w ∫ wd|µ| =‖ u ‖w‖ µ ‖w<∞.

Remark 5.5. Suppose that Assumptions 5.2 and 5.3 are satisfied. Then we have
the following:

(a) For each pair (ϕ,ψ) in Φ1 × Φ2 the state (Markov) process {xt} is positive
Harris recurrent; hence, in particular, the Markov transition probability

Q(· |x, ϕ(x), ψ(x))

admits a unique invariant probability measure in Mw(X), which will be denoted by
q(ϕ,ψ); thus

q(ϕ,ψ)(D) =

∫
X

Q(D|x, ϕ(x), ψ(x))q(ϕ,ψ)(dx) ∀D ∈ B(X).

(b) {xt} is w-geometrically ergodic, that is, there exist positive constants θ < 1
and M such that∣∣∣∣∫

X

u(y)Qn(dy|x, ϕ(x), ψ(x))−
∫

X

u(y)q(ϕ,ψ)(dy)

∣∣∣∣ ≤ w(x) ‖ u ‖w Mθn(5.4)

for every u ∈ Bw(X), x ∈ X, and n = 0, 1, . . . , where Qn denotes the n-step Markov
transition probability. This result follows from Lemmas 3.3 and 3.4 in [8], where it
was assumed the positive Harris recurrence in part (a). However, as noted in Lemma
4.1 of [19], (a) follows from our current Assumptions 5.2 and 5.3.

The w-geometric ergodicity (5.4) was obtained in [8] following ideas from Kar-
tashov [15]. It turns out, however, that (5.4) can be obtained in several different
ways; see, for instance, Hordijk and Yushkevich [14], Küenle [18], Nowak [21], or
section 7.3.D and section 10.2.C in [11]. For the countable case, see [1] or [24], for
instance. For geometric ergodicity in the total variation norm, which is obtained by
taking w(· ) ≡ 1 in (5.3), see [7], section 3.3 in [9], or the notes to section 7.3 in [11].
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It should be noted that all of the examples in [1, 7, 11, section 10.9, 14, 19, 24] satisfy
our Assumptions 5.1, 5.2, and 5.3, as well as Assumption 5.7 below (taking γ as the
“counting measure” if X is a countable set).

Another important consequence of Assumptions 5.2 and 5.3, together with As-
sumption 5.1 is that, as proved in Theorem 3 of Nowak [21], the set (Φ1 × Φ2)eap in
(4.17) is nonempty. More precisely, we have the following.

Proposition 5.6 (Nowak [21]). If Assumptions 5.1, 5.2, and 5.3 are satisfied,
then the (expected) average payoff game has a constant value, say, V (x) = V ∗ for all
x ∈ X, and there exists an EAP optimal pair of stationary strategies.

The hypotheses C5 and C6 used in [21] to prove Proposition 5.6 are somewhat
different from our Assumptions 5.2 and 5.3, but the fact is that they also give the
w-geometric ergodicity (5.4), which combined with standard dynamic programming
arguments is a key tool to prove Proposition 5.6.

Here we use Proposition 5.6 as our point of departure, and, together with the
following assumption, use it to prove our first main result, Theorem 5.8. In fact,
Nowak [21] also obtains the Shapley equations, but our proof, in section 7, is quite
different from his—see Remark 7.1. Moreover, he does not obtain the equivalence
stated in Theorem 5.8.

Assumption 5.7. There exists a σ-finite measure γ on X and a strictly positive
density function g(x, a, b, · ) such that

Q(D|x, a, b) =

∫
D

g(x, a, b, y)γ(dy)

for all D ∈ B(X) and (x, a, b) ∈ K.
Note that Assumption 5.7 implies Assumption 5.3 with λ = γ.
Theorem 5.8. If Assumptions 5.1, 5.2, and 5.7 are satisfied, then (4.19) holds,

that is,

(Φ1 × Φ2)ca = (Φ1 × Φ2)eap.

In fact, there exists a canonical four-tuple (ξ∗, u∗, ϕ∗, ψ∗) with u∗ in Bw(X) and (by
Proposition 5.6) ξ∗ = V ∗.

In addition to the equivalence between EAP optimality and the existence of canon-
ical four-tuples, the hypotheses of Theorem 5.8 give other characterizations of EAP
optimality, as in Theorem 5.9 below, where we use the following notation.

Let Fn be the σ-algebra generated by (xt, at, bt) for t = 0, . . . , n, that is,

Fn := σ{x0, a0, b0, . . . , xn, an, bn}.(5.5)

Moreover, let J0
n be as in (4.1) and ξ∗, u∗ as in Theorem 5.8, and then define the

stochastic process

Mn(h∞) := J0
n(h∞) + u∗(xn)− nξ∗ for n = 1, 2, . . . ,(5.6)

with M0(h∞) := u∗(x0). Finally, let ∆ : K→ R be the so-called discrepancy function
given by

∆(x, a, b) := r(x, a, b) +

∫
X

u∗(y)Q(dy|x, a, b)− u∗(x)− ξ∗.(5.7)

From this definition of ∆ it is immediate that (5.8), below, is just another way of
expressing (4.12)–(4.14). Thus the equivalence of (a) and (b) in the following theorem
is a direct consequence of Theorem 5.8.
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Theorem 5.9. Under the hypotheses of Theorem 5.8, the following statements
are equivalent:

(a) The pair (ϕ∗, ψ∗) ∈ Φ1 × Φ2 is EAP optimal.
(b) For each x ∈ X

∆(x, ϕ∗(x), ψ∗(x)) = max
ϕ∈A(x)

∆(x, ϕ, ψ∗(x)) = min
ψ∈B(x)

∆(x, ϕ∗(x), ψ) = 0.(5.8)

(c) For each x ∈ X, π1 ∈ Π1, and π2 ∈ Π2

(c1) {Mn(h∞),Fn} is a Pϕ∗,ψ∗
x -martingale,

(c2) {Mn(h∞),Fn} is a Pϕ∗,π2

x -submartingale, and

(c3) {Mn(h∞),Fn} is a Pπ
1,ψ∗

x -supermartingale.
On the other hand, if we add the “second order” condition (5.9) to (5.1), it turns

out that the sets in (4.19) coincide with (Φ1×Φ2)spap. That is, we have the following.
Theorem 5.10. Suppose that the hypotheses of Theorem 5.8 are satisfied and,

in addition, there is a constant r2 ≥ 0 such that

r2(x, a, b) ≤ r2w(x) ∀(x, a, b) ∈ K.(5.9)

Then a pair of strategies in Φ1×Φ2 is EAP optimal if and only if it is SPAP optimal;
hence, by Theorem 5.8,

(Φ1 × Φ2)eap = (Φ1 × Φ2)ca = (Φ1 × Φ2)spap.(5.10)

To conclude this section and proceed to prove Theorems 5.8, 5.9, and 5.10, we
shall specialize these theorems to MCPs or one-player stochastic games. To fix ideas
we begin with the following obvious remark.

Remark 5.11. (a) If there is only one player, say player 1, then the game model
GM in (2.1) reduces to the Markov control model

MCM = (X, A,KA, Q̂, r̂),(5.11)

where X, A, and KA are exactly as in (2.1), but the transition law Q̂ and the reward

function r̂ are defined on KA, that is, Q̂ is in P(X|KA) and r̂ : KA → R.
(b) Another way in which GM reduces to a Markov control model is to assume

that one of the players, say player 2, selects a fixed stationary strategy ψ in Φ2. In
this case, the corresponding Markov control model is given by (5.11) with

r̂(x, a) := r(x, a, ψ(x)) and Q̂(· |x, a) := Q(· |x, a, ψ(x)) ∀x ∈ X.

In either case, the optimality criteria in section 4 reduce in an obvious manner. In
particular, the value of the MCP becomes

V̂ (x) := sup
π∈Πc

Ĵ(π, x) forx ∈ X,(5.12)

where Πc is the set of all control strategies obtained from Π1 (see section 3).
With this notation, Proposition 5.6 and Theorems 5.8, 5.9, and 5.10 yield the

following.
Corollary 5.12. Consider the MCP associated to (5.11) and suppose that

Assumptions 5.1, 5.2, and 5.3 are satisfied. Then we have the following:
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(a) There exists an expected average reward (EAR) optimal strategy ϕ∗ in Φ1,

the set of stationary control strategies, and the value V̂ (· ) in (5.12) satisfies

Ĵ(ϕ∗, x) = V̂ (x) = sup
ϕ∈Φ1

Ĵ(ϕ, x) =: ξ∗ ∀x ∈ X, and

(b) there exists a canonical triplet (ξ∗, h∗, ϕ∗) with ξ∗ ∈ R, h∗ ∈ Bw(X), and
ϕ∗ ∈ Φ1, that is (cf. Definition 4.3) for all x ∈ X,

ξ∗ + h∗(x) = r̂(x, ϕ∗(x)) +

∫
X

h∗(y)Q̂(dy|x, ϕ∗(x))(5.13)

= max
ϕ∈A(x)

[
r̂(x, ϕ) +

∫
X

h∗(y)Q̂(dy|x, ϕ)

]
.

In this case, ϕ∗ is said to be a canonical strategy.
Furthermore, if we replace Assumption 5.3 with Assumption 5.7, then the follow-

ing statements (c) to (f) are equivalent:
(c) ϕ∗ ∈ Φ1 is EAR optimal.
(d) ϕ∗ ∈ Φ1 is a canonical strategy.
(e) For each x ∈ X,

∆̂(x, ϕ∗(x)) = max
ϕ∈A(x)

∆̂(x, ϕ) = 0,

where ∆̂ : KA → R is the (average reward) discrepancy function:

∆̂(x, a) := r̂(x, a) +

∫
X

h∗(y)Q̂(dy|x, a)− h∗(x)− ξ∗.

(f) For each π ∈ Πc and x ∈ X, the stochastic process (cf. (5.6))

M̂n(ĥ∞) :=

n−1∑
t=0

r̂(xt, at) + h∗(xn)− nξ∗ for n = 1, 2, . . . ,

with M̂0(ĥ∞) := h∗(x0) and ĥ∞ = (x0, a0, x1, a1, . . . ), is a Pπx -supermartingale (with

respect to the σ-algebra generated by {x0, a0, . . . , xn, an}—see (5.5)), whereas {M̂n(ĥ∞),
n = 0, 1, . . . } is a Pϕ

∗
x -martingale. Finally, if in addition r̂(x, a) satisfies (5.9), then

each of the statements (c) to (f) is equivalent to the following:
(g) ϕ∗ ∈ Φ is sample-path average reward (SPAR) optimal, that is (with ξ∗ as

in (a) and the obvious changes in (4.3)),

J0(ĥ∞) = ξ∗ Pϕ
∗

x a.s. ∀x ∈ X

and

J0(ĥ∞) ≤ ξ∗ Pπx a.s. ∀π ∈ Πc, x ∈ X.

Proof. Parts (a) and (b) are well known—see, for instance, part (a) of Theorem
10.3.6 in [11]. Furthermore, part (b) of the same theorem shows that if ϕ∗ ∈ Φ1 is
EAR optimal, then ϕ∗ satisfies (5.13) for almost every x ∈ X (with respect to some
probability measure on X). However, under Assumption 5.7, it follows from Theorem
5.8 that (5.13) holds for all x ∈ X, which gives the equivalence of (c) and (d). The
remaining parts follow from Theorems 5.9 and 5.10.

The rest of the paper is devoted to proving Theorems 5.8, 5.9, and 5.10 in sections
7, 8, and 9, respectively.
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6. Preliminaries. In this section we present some concepts and preliminary
results needed to prove the theorems in section 5. Some of these results are well
known, but we state them here for completeness and ease of reference.

First of all, let us recall that if P ∈ P(X|X) is a Markov transition probability on
X and c : X→ R is a given measurable function, then the equation

ξ + u(x) = c(x) +

∫
X

u(y)P (dy|x) ∀x ∈ X(6.1)

is called the (strictly unichain) Poisson equation (P.E.) for P with “charge” c, and
the pair (ξ, u(· )), with ξ ∈ R and u(· ) : X → R, is called a solution to the P.E. This
solution is also known as a canonical pair, which partly explains the name of “canonical
triplet” for (ξ∗, h∗, ϕ∗) in (5.13), and of “canonical four-tuple” for (ξ∗, u∗, ϕ∗, ψ∗) in
(4.12). Note, in particular, that (4.12) is the P.E. for the Markov transition probability
and the charge given by

P (· |x) := Q(· |x, ϕ∗(x), ψ∗(x)) and c(x) := r(x, ϕ∗(x), ψ∗(x)),(6.2)

respectively. The following lemma shows, in particular, how to obtain the P.E. asso-
ciated to an arbitrary pair of strategies in Φ1 × Φ2.

Lemma 6.1.Suppose that Assumptions 5.1, 5.2, and 5.3 hold. Then for each pair
of stationary strategies (ϕ,ψ) ∈ Φ1 × Φ2 we have the following:

(a) The (finite) constant

j(ϕ,ψ) :=

∫
X

r(x, ϕ(x), ψ(x))q(ϕ,ψ)(dx),

with q(ϕ,ψ) as in Remark 5.5(a), is such that (4.3) and (4.4) can be written, for all
x ∈ X, as

J0(h∞) = lim
n→∞J0

n(h∞)/n = j(ϕ,ψ) Pϕ,ψx a.s.(6.3)

and

J(ϕ,ψ, x) = lim
n→∞Jn(ϕ,ψ, x)/n = j(ϕ,ψ),(6.4)

respectively.
(b) The function hϕ,ψ defined on X as

hϕ,ψ(x) := lim
n→∞ [Jn(ϕ,ψ, x)− nj(ϕ,ψ)]

=

∞∑
t=0

Eϕ,ψx [r(xt, ϕ(xt), ψ(xt))− j(ϕ,ψ)]

belongs to Bw(X) (the set in Definition 5.4), and, moreover, its w-norm is independent
of (ϕ,ψ); in fact,

‖ hϕ,ψ ‖w ≤ r1M/(1− θ) ∀(ϕ,ψ) ∈ Φ1 × Φ2,

with r1 as in (5.1), and M and θ as in (5.4).
(c) The pair (j(ϕ,ψ), hϕ,ψ) in R× Bw(X) is the unique solution of the P.E.

j(ϕ,ψ) + hϕ,ψ(x) = r(x, ϕ(x), ψ(x)) +

∫
X

hϕ,ψ(y)Q(dy|x, ϕ(x), ψ(x))(6.5)
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(compare with (6.1)) that satisfies the condition∫
X

hϕ,ψ(x)q(ϕ,ψ)(dx) = 0.

Proof. The convergence in (6.3), which is a special case of the strong law of large
numbers for Markov chains, follows from the positive Harris recurrence in Remark
5.5(a). (If necessary, for further details see Theorem 11.2.1 and Corollary 11.2.2 in
[11], for instance.) The remaining statements in the lemma are part of Proposition
10.2.3 in [11].

Following Küenle [18], one can also get the P.E. (6.5) using a “contraction argu-
ment.”

Lemma 6.2. Suppose that Assumptions 5.2 and 5.3 are satisfied. Let (ϕ,ψ) be
an arbitrary pair in Φ1 × Φ2, and define

P (· |x) := Q(· |x, ϕ(x), ψ(x)) and µ(· ) := q(ϕ,ψ)(· ).(6.6)

If a function u in Bw(X) is P -subharmonic (or subinvariant), that is,

u(x) ≤
∫

X

u(y)P (dy|x) ∀x ∈ X,

then u(· ) is constant µ-a.e.; in fact,

u(· ) = inf
x∈X

u(x) =

∫
X

udµ µ-a.e.

(with P and µ as in (6.6)). Similarly, if u is P -superharmonic (or superinvariant),
that is, u(x) ≥ ∫ u(y)P (dy|x) for all x ∈ X, then

u(· ) = sup
x∈X

u(x) =

∫
X

udµ µ-a.e.

Proof. See, for instance, Lemma 7.5.12 in [11].
Let µ1 and µ2 be two measures on X and recall that, by definition, µ1 is absolutely

continuous with respect to µ2 (in symbols: µ1 � µ2) if µ2(D) = 0, with D in B(X),
implies µ1(D) = 0. In addition, µ1 is equivalent to µ2 if µ1 � µ2 and µ2 � µ1.

Lemma 6.3. Suppose that Assumptions 5.2 and 5.7 hold, and let γ be as in the
latter assumption. Then, for any pair (ϕ,ψ) in Φ1 × Φ2,

(a) γ is equivalent to the invariant probability measure q(ϕ,ψ); hence,
(b) if q(ϕ,ψ)(D) = 0, then Q(D|x, a, b) = 0 for all (x, a, b) in K.
Proof. (a) If γ(D) = 0, then (by Assumption 5.7)

Q(D|x, a, b) =

∫
D

g(x, a, b, y)γ(dy) = 0 ∀(x, a, b) ∈ K.(6.7)

Therefore, by the invariance of q(ϕ,ψ) (see Remark 5.5(a)),

q(ϕ,ψ)(D) =

∫
X

Q(D|x, ϕ(x), ψ(x))q(ϕ,ψ)(dx) = 0;

that is, q(ϕ,ψ)� γ.
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To prove the converse, we already noted that Assumption 5.7 implies Assumption
5.3 with the irreducibility measure λ = γ. On the other hand, if a Markov chain is λ-
irreducible and has an invariant probability measure, say, µ, then λ� µ. (For a proof
of this fact see, for instance, Theorem 7.2 in [23].) Therefore, taking µ as q(ϕ,ψ), we
conclude that λ = γ is absolutely continuous with respect to q(ϕ,ψ).

(b) By part (a), q(ϕ,ψ)(D) = 0 implies γ(D) = 0, which in turn yields
(6.7).

The following result, which in particular gives (4.16), follows from straightforward
calculations using (5.2) and the inequality in Assumption 5.2(b); see, for example, [8,
12] or Lemma 10.4.1 in [11].

Lemma 6.4. Suppose that (5.1) and Assumptions 5.1(a) and 5.2(b) are satisfied,
and let k := 1+ ‖ν ‖w /(1−α). Then for any πi ∈ Πi (i = 1, 2), x ∈ X, and n = 0, 1, . . .

(a) Eπ
1,π2

x w(xn) ≤ kw(x), and

(b) Eπ
1,π2

x |r(xn, an, bn)| ≤ r1kw(x).
In particular, by (a) and (5.2), for any function u in Bw(X) we have

(c) Eπ
1,π2

x |u(xn)| ≤‖ u ‖w kw(x), and so

(d) limn→∞ n−1Eπ
1,π2

x |u(xn)| = 0, and the convergence is uniform on Π1 ×Π2.
Finally, let us consider the minimax operator T in (4.15). Choose an arbitrary

function u in Bw(X) and let

H(u;x, a, b) := r(x, a, b) +

∫
X

u(y)Q(dy|x, a, b) for (x, a, b) ∈ K.(6.8)

By Assumptions 5.1(c) and the second part of 5.1(d), the integral in (6.8) is continuous
in both a ∈ A(x) and b ∈ B(x) (see Lemma 8.3.7(a) in [11], for instance). This fact
and Assumption 5.1(b) yield that H(u;x, · , b) is u.s.c. on A(x) and that H(u;x, a, · )
is l.s.c. on B(x). Therefore (using the notation in (4.11)), the function H(u;x, ϕ, ψ)
is u.s.c. in ϕ ∈ A(x) := P(A(x)) and l.s.c. in ψ ∈ B(X) := P(B(x)); see, for example,
the “extended Fatou Lemma” 8.3.7(b) and the statement (12.3.37) in [11, p. 225].
Moreover, H(u;x, ϕ, ψ) is concave (as it is linear) in ϕ and convex in ψ. Thus, by
Fan’s minimax theorem [5] and well-known minimax measurable selection theorems
(see, for instance, [20]), we get the following.

Lemma 6.5.Suppose that Assumptions 5.1 and 5.2(b) hold. Then Tu is in Bw(X)
for each u in Bw(X), and there exist stationary strategies ϕ∗ ∈ Φ1 and ψ∗ ∈ Φ2 such
that, for all x ∈ X,

Tu(x) = H(u;x, ϕ∗(x), ψ∗(x))(6.9)

= max
ϕ∈A(x)

H(u;x, ϕ, ψ∗(x))

= min
ψ∈B(X)

H(u;x, ϕ∗(x), ψ).

Proof. By the remarks in the previous paragraph, we need only to show that if
u is in Bw(X), then so is Tu. This follows from (5.1), (5.2), and Assumption 5.2(b),
which give, for any (x, a, b) ∈ K,

|H(u;x, a, b)| ≤ r1w(x)+ ‖ u ‖w
∫

X

w(y)Q(dy|x, a, b)
≤ (r1 + ‖u‖w(α+ ‖ν‖w))w(x)(6.10)

because 0 ≤ β(x, a, b) ≤ 1 and w(· ) ≥ 1. Thus, by (6.9) and (6.10), Tu is indeed in
Bw(X).
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7. Proof of Theorem 5.8. We begin with the easiest (in fact, standard) part
(4.17). That is, we wish to show that if (ξ∗, u∗, ϕ∗, ψ∗) is a canonical four-tuple with
u∗ in Bw(X), then (ϕ∗, ψ∗) is EAP optimal.

Dividing by n both sides of (4.18) and letting n → ∞, Lemma 6.4(d) and (6.4)
give

J(ϕ∗, ψ∗, x) = j(ϕ∗, ψ∗) = ξ∗ ∀x ∈ X.(7.1)

Thus, to complete the proof that (ϕ∗, ψ∗) is EAP optimal it remains only to prove
that ξ∗ equals the value V ∗ in Proposition 5.6, i.e.,

ξ∗ = V ∗.(7.2)

To prove this let us first note that (4.13) gives

ξ∗ + u∗(x) ≥ r(x, ϕ, ψ∗(x)) +

∫
X

u∗(y)Q(dy|x, ϕ, ψ∗(x))(7.3)

for all x ∈ X and ϕ ∈ A(x). Then, by standard dynamic programming arguments (see
[1, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16, 17, 18, 19]),

nξ∗ + u∗(x) ≥ Jn(π1, ψ∗, x) + Eπ
1,ψ∗

x u∗(xn)(7.4)

for any π1 ∈ Π1, x ∈ X, and n = 1, 2, . . . . Multiplying by 1/n both sides of (7.4) and
taking the lim inf as n→∞, it follows from (4.4) and Lemma 6.4(d) that

ξ∗ ≥ J(π1, ψ∗, x) ≥ inf
π2∈Π2

J(π1, π2, x) ∀π1 ∈ Π1, x ∈ X.(7.5)

This implies that ξ∗ ≥ L(x) = V ∗ for all x ∈ X.
A similar argument, but using now (4.14), gives

ξ∗ ≤ J(ϕ∗, π2, x) ≤ sup
π1∈Π1

J(π1, π2, x) ∀π2 ∈ Π2, x ∈ X,(7.6)

so that ξ∗ ≤ U(x) = V ∗ for all x ∈ X, and so (7.2) follows. This completes the proof
of (4.17).

To prove (4.19), let us now take an EAP optimal pair (ϕ∗, ψ∗). We wish to prove
that (ϕ∗, ψ∗) is a canonical pair, so that it satisfies (4.12)–(4.14) with ξ∗ = V ∗ and
some function u∗ in Bw(X). With this in mind, first note that, by (6.4) and Proposition
5.6, we have

J(ϕ∗, ψ∗, x) = j(ϕ∗, ψ∗) = V ∗ ∀x ∈ X.(7.7)

Thus, by Lemma 6.1(b), (c), there is a function u0 in Bw(X) such that the P.E. (6.5)
for (ϕ∗, ψ∗) can be written as

V ∗ + u0(x) = r(x, ϕ∗(x), ψ∗(x)) +

∫
X

u0(y)Q(dy|x, ϕ∗(x), ψ∗(x))(7.8)

for all x ∈ X. It follows that

V ∗ + u0(x) ≥ min
ψ∈B(X)

[
r(x, ϕ∗(x), ψ) +

∫
X

u0(y)Q(dy|x, ϕ∗(x), ψ)

]
,(7.9)
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which (by Lemma 6.5) yields

V ∗ + u0(x) ≥ r(x, ϕ∗(x), ψ0(x)) +

∫
X

u0(y)Q(dy|x, ϕ∗(x), ψ0(x))(7.10)

for all x ∈ X and some ψ0 ∈ Φ2. On the other hand, iteration of (7.10) gives that (as
in (7.3)–(7.5)), for all x ∈ X,

V ∗ ≥ J(ϕ∗, ψ0, x) ≥ inf
π2∈Π2

J(ϕ∗, π2, x) = V ∗,

where the latter equality is due to (4.6). In other words,

J(ϕ∗, ψ0, x) = j(ϕ∗, ψ0) = V ∗ ∀x ∈ X,(7.11)

and so ψ0 is a best reply of player 2 to the EAP optimal strategy ϕ∗ of player 1. Now,
write the P.E. for (ϕ∗, ψ0) using (7.11). Then, repeating the argument used to obtain
(7.8), there is a function u1 in Bw(X) such that, for all x ∈ X,

V ∗ + u1(x) = r(x, ϕ∗(x), ψ0(x)) +

∫
X

u1(x)Q(dy|x, ϕ∗(x), ψ0(x)).(7.12)

If we now subtract (7.12) from (7.10), we see that

u0(x)− u1(x) ≥
∫

X

[u0(y)− u1(y)]Q(dy|x, ϕ∗(x), ψ0(x)) ∀x ∈ X,

so that u0 − u1 is superharmonic with respect to the Markov transition probability
Q(· |x, ϕ∗(x), ψ0(x)). Consequently, by Lemma 6.2, there is a constant k1 and a Borel
set D1 ⊂ X, with q(ϕ∗, ψ0)(D1) = 1, such that

u0(x) = u1(x) + k1 ∀x ∈ D1.

Finally, define

v0(· ) := u0(· ) = u1(· ) + k1 onD1

and

v0(x) := min
ψ∈B(X)

[
r(x, ϕ∗(x), ψ) +

∫
X

u0(y)Q(dy|x, ϕ∗(x), ψ)

]
− V ∗(7.13)

for x ∈ Dc
1, where Dc

1 := X\D1 denotes the complement of D1. Then, as

q(ϕ∗, ψ0)(Dc
1) = 0,

Lemma 6.3(b) gives that Q(Dc
1|x, a, b) = 0 for all (x, a, b) in K, which in turn implies

that in the integral in (7.13) we may replace u0 with v0. Thus,

V ∗ + v0(x) = min
ψ∈B(x)

[
r(x, ϕ∗(x), ψ) +

∫
X

v0(y)Q(dy|x, ϕ∗(x), ψ)

]
(7.14)

for all x ∈ X.
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We now go back to the initial P.E. (7.8), but instead of taking the “minimum” as
in (7.9), we now take the “maximum,” i.e.,

V ∗ + u0(x) ≤ max
ϕ∈A(x)

[
r(x, ϕ, ψ∗(x)) +

∫
X

u0(y)Q(dy|x, ϕ, ψ∗(x))

]
= r(x, ϕ0(x), ψ∗(x)) +

∫
X

u0(y)Q(dy|x, ϕ0(x), ψ∗(x))

for some ϕ0 ∈ Φ1. Then, with obvious changes, the arguments used in (7.11)–(7.14)
give the existence of a Borel set D2 with q(ϕ0, ψ∗)(D2) = 1 and a function v1 in
Bw(X) such that

v1(· ) = u0(· ) onD2,(7.15)

and

V ∗ + v1(x) = max
ϕ∈A(x)

[
r(x, ϕ, ψ∗(x)) +

∫
X

v1(y)Q(dy|x, ϕ, ψ∗(x))

]
(7.16)

for all x ∈ X.
To conclude, let D := D1 ∩D2 and define u∗(· ) := u0(· ) on D and

u∗(x) := Tu0(x)− V ∗ for x ∈ Dc.(7.17)

By Lemma 6.3(a), we have γ(Dc
1) = γ(Dc

2) = 0, and so γ(Dc) = 0, which by Assump-
tion 5.7 gives Q(Dc|x, a, b) = 0 for all (x, a, b) in K. Hence, instead of (7.17) we may
write

V ∗ + u∗(x) = Tu∗(x) ∀x ∈ X,(7.18)

which together with (7.8), (7.12)–(7.14), and (7.15)–(7.16) gives that (V ∗, u∗, ϕ∗, ψ∗)
is a canonical four-tuple.

Remark 7.1. It is interesting to note that the previous proof is quite different
from Nowak’s [21] “vanishing discount” proof of a solution to the Shapley equations,
but still at the last step of his proof he uses an argument such as that in (7.17)–(7.18).
Moreover, while we assume a strictly positive density g(x, a, b, · ) (see Assumption 5.7),
he uses a condition on g that implies the continuity of (a, b) �→ Q(· |x, a, b) in the total
variation norm for each x ∈ X; see hypothesis C7 in [21]. Thus, it is unclear (to us,
at least) if his hypotheses would allow a proof such as ours, and, conversely, if our
assumptions would allow a proof such as his.

8. Proof of Theorem 5.9. It is evident that (5.8) is simply another way of
writing (4.12)–(4.14). Therefore, the equivalence of (a) and (b) follows from Theorem
5.8. (For a different way of getting this equivalence see Remark 8.1 below.)

Now choose an arbitrary initial state x ∈ X and arbitrary strategies πi in Πi (i =
1, 2), and let Fn be as in (5.5). To prove that (b) implies (c), first note that

Eπ
1,π2

x [u∗(xn+1)|Fn] =

∫
X

u∗(y)Q(dy|xn, an, bn),(8.1)

and, therefore, from (5.7),

Eπ
1,π2

x [∆(xn, an, bn)|Fn] = r(xn, an, bn) + Eπ
1,π2

x [u∗(xn+1)|Fn]− u∗(xn)− ξ∗.
(8.2)
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Let us now consider the stochastic process in (5.6). From Lemma 6.4(b), (c), it follows

that this process is integrable with respect to Pπ
1,π2

x , i.e.,

Eπ
1,π2

x |Mn(h∞)| <∞ for each n = 0, 1, . . . .

Moreover,

Mn+1(h∞) = Mn(h∞) + r(xn, an, bn) + u∗(xn+1)− u∗(xn)− ξ∗,
so that, by (8.2),

Eπ
1,π2

x [Mn+1(h∞)|Fn] = Mn(h∞) + Eπ
1,π2

x [∆(xn, an, bn)|Fn] .(8.3)

This expression immediately yields that (5.8) implies (c). Indeed, if

∆(x, ϕ∗(x), ψ∗(x)) = 0 ∀x ∈ X,(8.4)

then, by (8.3),

Eϕ∗,ψ∗
x [Mn+1(h∞)|Fn] = Mn(h∞) ∀n = 0, 1, . . . ,(8.5)

and (c1) follows. Similarly, if

min
ψ∈B(x)

∆(x, ϕ∗(x), ψ) = 0 ∀x ∈ X,(8.6)

so that

∆(x, ϕ∗(x), ψ) ≥ 0 ∀x ∈ X, ψ ∈ B(x),(8.7)

then (8.3) yields

Eϕ∗,π2

x [Mn+1(h∞)|Fn] ≥Mn(h∞) ∀n = 0, 1, . . . ,(8.8)

and we get (c2). Finally, if

max
ϕ∈A(x)

∆(x, ϕ, ψ∗(x)) = 0,(8.9)

then

∆(x, ϕ, ψ∗(x)) ≤ 0 ∀x ∈ X, ϕ ∈ A(x).(8.10)

Thus, from (8.3),

Eπ
1,ψ∗

x [Mn+1(h∞)|Fn] ≤Mn(h∞) ∀n = 0, 1, . . . ,

and (c3) follows.
The converse, (c) implies (b), is just as easy; first note that taking expectations

in both sides of (8.3) we get

Eπ
1,π2

x Mn+1(h∞) = Eπ
1,π2

x Mn(h∞) + Eπ
1,π2

x ∆(xn, an, bn).(8.11)

Therefore, if (c1) holds, then

Eϕ∗,ψ∗
x ∆(xn, an, bn) = 0,
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which for n = 0 gives (8.4). Similarly, under (c2), (8.11) gives

Eϕ∗,π2

x ∆(xn, ϕ∗(xn), π2
n(hn)) ≥ 0

for all x ∈ X, hn ∈ Hn (see section 3), and n = 0, 1, . . . . In particular, for n = 0 we
obtain

∆(x, ϕ∗(x), π2
0(x)) ≥ 0 ∀x ∈ X,

and so, as π2 ∈ Π2 was arbitrary, we get (8.7) and (8.6). Finally, from (8.11) and (c3)
we deduce (8.10) and (8.9).

Remark 8.1. Let Jn(∆;π1, π2, x) and J(∆;π1, π2, x) be the functions in (4.2)
and (4.4), respectively, obtained by replacing r(x, a, b) with the discrepancy function
∆(x, a, b); that is,

Jn(∆;π1, π2, x) := Eπ
1,π2

x

[
n−1∑
t=0

∆(xt, at, bt)

]
(8.12)

and

J(∆;π1, π2, x) := lim inf
n→∞ Jn(∆;π1, π2, x)/n.(8.13)

Now take expectations on both sides of (8.2) and then sum over n to get

Jn(∆;π1, π2, x) = Jn(π1, π2, x) + Eπ
1,π2

x u∗(xn)− u∗(x)− nξ∗.
Thus multiplying by 1/n and taking lim inf as n→∞, Lemma 6.4(d) and (8.13) yield

J(π1, π2, x) = ξ∗ + J(∆;π1, π2, x).(8.14)

From this expression we can immediately deduce the equivalence of (a) and (b) in
Theorem 5.9. (A similar expression for the SPAP criterion is obtained in (9.5).)

9. Proof of Theorem 5.10. We shall use the notation in (8.12) and (8.13) but
for the SPAP criterion, that is,

J0
n(∆;h∞) :=

n−1∑
t=0

∆(xt, at, bt)(9.1)

and

J0(∆;h∞) := lim inf
n→∞ J0

n(∆;h∞)/n,

where x0 = x ∈ X and πi ∈ Πi (i = 1, 2) are arbitrary. Moreover, with Fn as in (5.5),
we consider the stochastic processes

Yt(π
1, π2) : = u∗(xt)− Eπ1,π2

x [u∗(xt)|Ft−1](9.2)

= u∗(xt)−
∫

X

u∗(y)Q(dy|xt−1, at−1, bt−1)

for t = 1, 2, . . . , and

Sn(π1, π2) :=

n∑
t=1

Yt(π
1, π2).(9.3)
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From (8.1), (8.2), and (9.1), we can also write the latter process as

Sn(π1, π2) = u∗(xt)− u∗(x0)− J0
n(∆;h∞) + J0

n(h∞)− nξ∗.(9.4)

On the other hand, (9.2), (9.3), and straightforward calculations show that Sn(π1, π2)

is a Pπ
1,π2

x -martingale with respect to Fn, and, in addition, Lemma 11.3.11 in [11],

which is the same as Lemma 4.4 in [13], gives that Pπ
1,π2

x a.s.

lim
n→∞n−1Sn(π1, π2) = 0 and lim

n→∞n−1u∗(xn) = 0.

Therefore, multiplying both sides of (9.4) by n−1 and letting n→∞ we get

J0(h∞) = ξ∗ + J0(∆;h∞) Pπ
1,π2

x a.s.(9.5)

We next use (9.5) to prove the “only if” part of Theorem 5.10.
Suppose that (ϕ∗, ψ∗) ∈ Φ1 × Φ2 is EAP optimal, that is, (ϕ∗, ψ∗) is in (Φ1 ×

Φ2)eap. Then write (5.8) more explicitly, as in (8.4), (8.6)–(8.7), and (8.9)–(8.10), to
get the following: (8.4), (9.5), and (6.3) yield (4.8) with V (· ) = ξ∗, that is,

J0(h∞) = ξ∗ Pϕ∗,ψ∗
x a.s.(9.6)

Similarly, (9.5) and (8.7) give

J0(h∞) ≥ ξ∗ Pϕ∗,π2

x a.s.,(9.7)

whereas (9.5) and (8.10) give

J0(h∞) ≤ ξ∗ Pπ
1,ψ∗

x a.s.(9.8)

Hence, as x ∈ X, π1 ∈ Π1 and π2 ∈ Π2 were arbitrary, we conclude (from Definition
4.2) that (ϕ∗, ψ∗) is SPAP optimal with the SPAP optimal payoff V (· ) = ξ∗.

Conversely, suppose that (ϕ∗, ψ∗) satisfies (9.6)–(9.8) for all x ∈ X and πi ∈
Πi (i = 1, 2). Then, by (9.6), (6.3), and (6.4), we see that (ϕ∗, ψ∗) satisfies

J(ϕ∗, ψ∗, x) = ξ∗ ∀x ∈ X.(9.9)

On the other hand, as (9.8) holds for all π1 ∈ Π1 ⊃ Φ1, using again (6.3) and (6.4)
we see that

J(ϕ,ψ∗, x) = j(ϕ,ψ∗) ≤ ξ∗ ∀ϕ ∈ Φ1, x ∈ X;(9.10)

thus, if we fix ψ∗ ∈ Φ2 as in Remark 5.11(b), then (9.9), (9.10), and Corollary 5.12(a)
yield

sup
π1∈Π1

J(π1, ψ∗, x) = ξ∗ ∀x ∈ X.(9.11)

In like manner, with the obvious (notational) changes in Remark 5.11(b) and Corollary
5.12(a), we can see that (9.7) implies that

inf
π2∈Π2

J(ϕ∗, π2, x) = ξ∗ ∀x ∈ X.(9.12)

Thus, from (9.11) and (9.12), it follows that the pair (ϕ∗, ψ∗) is EAP optimal.
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Abstract. We introduce a notion of pathwise optimality for stochastic control problems over
an infinite time horizon, and give sufficient conditions for the existence of pathwise optimal controls.
We analyze both diffusion processes and processes with discrete state space.
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1. Introduction. Suppose we are given a probability space (Ω,F , P ) and a
family of stochastic processes xu = (xut )t∈[0,T ], indexed by a control parameter u. A
stochastic control problem is defined by assigning real valued cost function J(xu, u)
and consists in minimizing its expectation E(J(xu, u)) over the controls.

This approach to optimization is quite appropriate when one deals with a con-
trolled phenomenon that replicates many times, but may lack of reliability for a single
trial. Indeed, even if a control u∗ that minimizes the expected cost is known, the
random variable J(xu

∗
, u∗) may have large fluctuations about its mean, making the

choice of the control u∗ a risky one. Various modifications of the performance index
E(J(xu, u)) have been proposed, in order to take these fluctuations into account. For
example, one may penalize fluctuations around the mean by including in the index
higher moments of the cost J(xu, u). An approach in this direction consists in mini-
mizing over u the index E{eµJ(xu,u)}, where µ > 0 is a risk parameter (risk sensitive
control).

Another point of view consists in looking for controls that are pathwise optimal,
in some suitable sense. The most naive aim would be to find a control u∗ such that
J(xu

∗
, u∗) ≤ J(xu, u) almost surely (a.s.) for every control u. This exceedingly strong

notion of optimality can be weakened by saying that a control u∗ is a.s. optimal if
for any other control u one can realize on some probability space (Ω′,F ′, P ′) the
processes Xu

∗
, Xu having the same law of xu

∗
and xu, respectively, and such that

J(Xu
∗
, u∗) ≤ J(Xu, u) P ′-a.s. It is clear that any control that is a.s. optimal also

minimizes the mean cost. In most interesting cases, however, as shown in [13], there
is no optimal control for this notion of optimality.

The picture changes when one considers stochastic control problems over an infi-
nite time horizon. Suppose the processes xu to be defined in the whole time interval
[0,+∞) and that the controls are themselves stochastic processes u = (ut)t≥0. We
assign a real valued function c(xut , ut) representing the running cost, and we let

JT (u) =

∫ T
0

c(xut , ut)dt
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(here and in what follows we simply write JT (u) rather than JT (x
u, u)). For a given

nonincreasing function g : [0,+∞) → (0,+∞) with limT→+∞ g(T ) = 0, we say that
a control u∗ is g-optimal a.s. (or in probability) if for any other control u the random
variables

g(T )[JT (u
∗)− JT (u)]+

go to zero a.s. (or in probability) as T → +∞. This notion of optimality, which
we believe has been first introduced by Rotar, has been studied in special cases in
[14, 18, 11, 12, 2, 19, 16, 7, 15, 3].

The purpose of this paper is to give results on almost sure optimality and op-
timality in probability for rather general nonlinear systems. In particular, we give
conditions for the existence of an optimal control. These conditions can be verified in
many interesting examples, including the LQG models treated, e.g., in [7], for which
we can slightly weaken the assumptions, as well as several nonlinear models.

We begin in section 2 by giving our main definitions. Sections 3 and 5 are de-
voted to almost sure optimality and optimality in probability for controlled diffusion
processes. Several examples are given in section 4. Sections 6 and 7 contain analogous
results for point processes. In section 8 we consider controlled Markov chains with
finite state space. In this case we can establish the existence of pathwise optimal
controls in great generality.

2. Basic definitions. In this paper we consider stochastic processes with values
in R

d and whose trajectories belong to path space D. Here D is either C([0,+∞),Rd),
provided with the topology of uniform convergence on the compact subsets of [0,+∞)
or the set of cadlag functions D = D([0,+∞),Rd), provided with the Skorohod topol-
ogy (see, e.g., [5, Chapter 3, section 12]). Whenever the notion of measurability
in D will occur, it will be meant with respect to the Borel σ-field associated to the
above-mentioned topologies.

Let U be a measurable space. For any v ∈ U we are given a Markov operator
Lv, acting on a suitable domain Dv of functions from R

d to R. We assume that there
exists a subspace C of Dv, which does not depend on v, such that the operator Lv is
the closure of its restriction C. The set C is called a core for the Markov operators Lv.
Progressively measurable processes u : [0,+∞)×D → U are called controls (we shall
write ut(x) for the value of u at time t on the path x). Suppose that a nonnegative
measurable function c : R

d × U → [0,+∞) and a probability measure µ on R
d are

given. A control u is said to be admissible if the following conditions are satisfied:
1. For every t ∈ [0,+∞), the function ut : D → U is measurable with respect

to the σ-field Ft generated by the projections {Πs : s ≤ t}, where, for x ∈ D,
Πs(x) = xs.

2. There exists a probability measure Pu on D such that for every f ∈ C the
process

zt = f(xt)−
∫ t

0

(Lusf)(xs)ds

is a Pu-local martingale, and Pu ◦Π−1
0 = µ.

3. Let

Jt(u) =

∫ t
0

c(xs, us)ds.

Then Jt(u) < +∞ Pu-a.s. for all t > 0.
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The set of admissible controls will be denoted by U . Consider a nonincreasing
function g : [0,+∞)→ (0,+∞) such that limt→+∞ g(t) = 0.

Definition 2.1. We say that a control u∗ ∈ U is g-optimal a.s. (respectively, in
probability) if for all u ∈ U and for all probability measures Pu,u∗ on D ×D having
marginals Pu and Pu

∗
and such that

Pu,u
∗{(x, y) ∈ D ×D : x0 �= y0} = 0(2.1)

we have

lim
T→+∞

g(T )[JT (u
∗)− JT (u)]+ = 0 Pu,u

∗
-a.s.(2.2)

(respectively, in probability with respect to Pu,u
∗
).

Remark 1. A special and interesting choice for g is g(t) = 1/t. Under rather mild
assumptions (e.g., uniform integrability of JT (u)) one can show that 1/t-optimality
implies optimality for the average cost per unit time

lim sup
T→+∞

T−1Eu(JT (u)),

where Eu denotes expectation with respect to Pu. The results in this paper concern
g-optimality for g(t) = t−α for all α > 1/2.

Remark 2. We have chosen to introduce our stochastic processes in a weak sense,
i.e., as probability measures on the path space. In some cases there is a natural
probability space over which all processes corresponding to admissible controls can
be realized. This is the case, for instance, when considering diffusion processes, if
one chooses to deal with strong solutions. In other cases, however, e.g., for counting
processes, it is not so, the reason being that there is no natural “noise” that accounts
for the randomness in the system. Thus, in the definition of controlled Markov process,
we preferred not to make reference to any given probability space. The notion of g-
optimality has been adapted accordingly. Note that our definition is stronger than
the one given in previous works on this subject, since we require (2.2) to hold for any
“coupling” Pu,u

∗
of Pu and Pu

∗
.

Remark 3. In the examples that we give in sections 4 and 8, where pathwise
optimality is actually shown, condition (2.1) on the measures Pu,u

∗
would be irrele-

vant, so that we obtain an even stronger notion of optimality. In general, however,
condition (2.1) is relevant. To see this, let X1, X2 be two disjoint subsets of R

d. For
i = 1, 2 let Lvi , v ∈ U , be the generator of a controlled Markov process, with initial
law µi and law Pui , u being an admissible control. Assume Pui (xt ∈ Xi) = 1 for
any admissible control u, i.e., the process is Xi-valued. Finally, let u∗i be a g-optimal
control, associated to a given running cost function ci(x, v).

Now consider the X1 ∪ X2-valued process with generator Lvf(x) = Lvi f(x) if
x ∈ Xi, initial condition (µ1 + µ2)/2, and running cost c(x, v) = ci(x, v) for x ∈ Xi.
Clearly the control u∗ = u∗i if x0 ∈ Xi is g-optimal for this combined problem.

Suppose now to remove condition (2.1). Then we can construct a coupling Pu,u
∗

satisfying Pu,u
∗
(x0 ∈ X1, y0 ∈ X2 or x0 ∈ X2, y0 ∈ X1) = 1. In other words, under

this Pu,u
∗
, the two process evolve with different generator and different cost function.

There is no reason, therefore, for (2.2) to hold.
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3. Pathwise optimality for controlled diffusions. In this section we assume
the Markov operator Lv to be of the form

Lv =
1

2

d∑
i,j=1

aij(x, v)
∂2

∂xi∂xj
+

d∑
i=1

fi(x, v)
∂

∂xi
,

where aij , fi : R
d × U → R are measurable functions and, for each (x, u) ∈ R

d × U ,
the matrix a(x, u) = (aij(x, u))ij is positive semidefinite.

Suppose u ∈ U , and let Pu be the probability measure on D = C([0,+∞),Rd)
introduced in the previous section. It is well known that Pu is the law of a weak
solution of the stochastic differential equation

dxt = f(xt, ut)dt+ σ(xt, ut)dwt,
x0 ∼ µ,

where σ is a (possibly degenerate) square root of a and wt is a d-dimensional Brownian
motion.

The basic tool for solving the optimal control problem for diffusions is pro-
vided by the following partial differential equations, which will be referred to as
the Hamilton–Jacobi–Bellman (HJB) equation and the stationary Hamilton–Jacobi–
Bellman (SHJB) equation:

(HJB) :


∂VT
∂t

(t, x) + inf
v∈U

[LvVT (t, x) + c(x, v)] = 0,

VT (T, x) = 0.

(SHJB) : inf
v∈U

[Lvφ(x) + c(x, v)] = λ.

Note that the (SHJB) equation is an equation for the pair (φ, λ), where λ is a real
number. For generalities on these equations and their connections to stochastic control
we refer the reader to [4].

We now give two different sets of assumptions on the model. We will show in
Section 4 that these assumptions are satisfied for various classes of models.

The function g below is a positive, nonincreasing function vanishing at infinity.
Assumption A.
A1. For each T > 0 there exists a solution VT ∈ C1,2([0, T ]× R

d) of (HJB).
A2. There exists a solution (φ, λ) of (SHJB), with φ ∈ C2(Rd). The “inf” in

(SHJB) is attained at v = k(x), and the feedback u∗t = k(xt) is an admissible
control. Moreover, there exist constants C, ε > 0 for which

EP
u∗ [ (

φ−(xt)
)2+ε ]

< C

for all t ≥ 0, where φ− denotes the negative part of φ.
A3. The following inequality holds:

lim sup
T→+∞

g(T )
[
φ(x0) + λT − VT (0, x0)

]
≤ 0 µ-a.s.

A4. There is a constant B > 0 such that∥∥∥∂VT
∂x

(t, x)σ(x, v)
∥∥∥2

≤ B(c(x, v) + 1),

uniformly in t, T .
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A5. As A4, with φ replacing VT .
Moreover, there exists an integer m > 0 such that the following further assump-

tions hold.
A6. There exists a constant C > 0 such that

EP
u∗
{[∫ T

0

c(xt, ut) dt

]m}
≤ CTm

for all T > 0.
A7. Define q(t) = t1/2g(t). Then∫ +∞

1

qm(t)dt < +∞.

Assumption B. There exists a solution (φ, λ) of (SHJB), with φ bounded. More-
over, Assumptions A2, A5, A6, and A7 hold.

We can now state the main results, whose proof is deferred to section 5.
Theorem 3.1. Suppose that either Assumption A or Assumption B holds. Then

the feedback u∗ is g-optimal a.s.
Theorem 3.2. Suppose that either Assumption A or Assumption B holds, but in

both cases condition A7 is weakened to q(t) = o(1). Then the feedback u∗ is g-optimal
in probability.

Remark 4. Note that if one can show that A6 holds for all m large enough, then
one can choose g(t) = t−(1/2+δ) for any δ > 0.

4. Examples.

4.1. The linear quadratic regulator. As an application, consider the com-
pletely observed stationary linear regulator with quadratic cost. For simplicity we let
x0 be a deterministic vector, i.e., µ = δx0 . Such assumption can be easily weakened.

dxt = (Axt +But) dt+Gdwt,(4.1)

JT (u) =

∫ T
0

(x
′
tQxt + u

′
tRut) dt,(4.2)

where xt ∈ Rn, ut ∈ Rm, w is the standard p-dimensional Wiener process, A, B,
G, Q, R are constant matrices of appropriate dimensions, Q,R are symmetric and
positive definite, and the pair (A,B) is stabilizable. We recall that under the above
assumptions, there exists the limit

Π = lim
T→∞

ΠT (t) for all t ≥ 0,(4.3)

where ΠT (t) is the solution to the Riccati differential equation on [0, T ]

d

dt
ΠT (t) + ΠT (t)A+A

′
ΠT (t)−ΠT (t)BR

−1B
′
ΠT (t) +Q = 0, ΠT (T ) = 0,(4.4)

and Π is the positive definite solution to the algebraic Riccati equation

ΠA+A
′
Π−ΠBR−1B

′
Π +Q = 0.(4.5)
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Moreover, for some positive constants C,K

‖ΠT (t)−Π‖ ≤ Ce−K(T−t), 0 ≤ t ≤ T,(4.6)

and the matrix A−BR−1B
′
Π is stable (see [1]).

We now show that Theorems 3.1 and 3.2 hold for this model, Assumption A being
satisfied. The solutions to (HJB) and (SHJB) are given by, respectively,

VT (t, x) = φT (t, x) +

∫ T
t

λT (s) ds(4.7)

with

φT (t, x) = x
′
ΠT (t)x, λT (t) = tr(G

′
ΠT (t)G)(4.8)

and

φ(x) = x
′
Πx, λ = tr(G

′
ΠG).(4.9)

Moreover, the optimal feedback is

u∗t = −R−1B
′
Πxt,(4.10)

which is easily seen to be admissible. Thus Assumptions A1 and A2 are satisfied.
Assumption A3 is an immediate consequence of (4.6). Assumptions A4 and A5 are
easily checked using the positivity of Q and the fact that

∂VT
∂x

(t, x)σ(x, u) = 2x
′
ΠT (t),

∂φ

∂x
(x)σ(x, u) = 2x

′
Π.

Finally, by (4.10), denoting by x∗ the process corresponding to the optimal control
u∗, we have

c(x∗t , u
∗
t ) = x∗t

′
Qx∗t + u

∗
t

′
Ru∗t = x∗t

′
(Q+ ΠBR−1B

′
Π)x∗t ≤ C|x∗t |2.(4.11)

We know that the matrix A − BR−1B
′
Π is stable, so that the function t �→ E|x∗t |2

is bounded on [0,∞). As x∗t is a Gaussian process it turns out that there exists a
positive constant Ck such that

E|x∗t |k ≤ Ck for all t ≥ 0, k ≥ 2.(4.12)

From (4.11), (4.12), and the inequality

‖
∫ T

0

ξt dt‖m ≤
∫ T

0

‖ξt‖m dt,

where ‖.‖m is the Lm(Ω) norm, Assumption A6 follows for all m ≥ 1.

4.2. Uniformly ergodic diffusions. In this section we consider a class of non-
linear controlled diffusions for which Assumption A is satisfied.

Consider diffusions satisfying the following stochastic differential equation:

dxt = (g(xt) + ut)dt+ dwt,
x0 ∼ µ,
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where xt, ut ∈ R
d. The cost functional is given by

JT (u) =

∫ T
0

[
l(xt) +

1

2
‖ut‖2

]
dt.

In other words, we are considering models as in section 3 with U = R
d, f(x, u) =

g(x) + u, σ(x, u) = I, and c(x, u) = l(x) + 1
2‖u‖2. We also make the following further

assumptions on the model.
(i) The function l(·) is nonnegative, continuously differentiable, and its first par-

tial derivatives are bounded.
(ii) The function g(·) is twice continuously differentiable, and its first partial

derivatives are bounded.
(iii) There exists a constant c > 0 such that, for every x, y ∈ R

d

(x− y) · (g(x)− g(y)) ≤ −c‖x− y‖2,
where “ · ” is the scalar product in R

d.
Proposition 4.1. Under (i), (ii), and (iii) there exists a solution VT ∈ C1,2 of

(HJB). The first partial derivatives of VT with respect to x are uniformly bounded in
all variables. In particular, Assumptions A1 and A4 are satisfied. Moreover, the “inf”
in (HJB) determines an admissible feedback control uT ; the corresponding process xT ,
defined for times t ∈ [0, T ], is such that all its moments are uniformily bounded in
both t and T .

The existence of a regular solution VT is proved in [9, Theorem 6.2]. The remain-
ing part of Proposition 4.1 is proved in [8, Lemma 4.1 and Appendix A]. Note that
in [9, Theorem 6.2], the control is supposed to take values a compact set. In this
example, however, this is not a restriction since the “inf” in (HJB) is attained at the
feedback −∇xVT (t, x) that, as stated in Proposition 4.1, is bounded in all variables.

Proposition 4.2. There exists a solution (φ, λ) of (SHJB) with φ ∈ C2. The
first partial derivatives of φ are bounded. Moreover, the “inf” in (SHJB) determines
an admissible feedback control u∗; the corresponding process x∗t is such that all its
moments are bounded in time. Thus, in particular, Assumptions A2 and A5 hold,
and A6 is satisfied for every m ≥ 1.

For the proof of Proposition 4.2 see [8, sections 3 and 4].
Thus, we have only to check Assumption A3. Define WT (t, x) = φ(x) + λ(T − t).

By the standard verification theorem of stochastic control (see, e.g., [9, Chapter 4,
Theorem 4.1], we have, for all x ∈ R

d,

VT (0, x) = inf
u∈U

E

∫ T
0

c(xt, ut)dt,

WT (0, x) = φ(x) + λT = inf
u∈U

E

{∫ T
0

c(xt, ut)dt+ φ(xT )

}

= E

{∫ T
0

c(x∗t , u
∗
t )dt+ φ(x

∗
T )

}
,

where we have used the fact that the function WT (t, x) is a solution of (HJB) with
final condition WT (T, x) = φ(x). It follows that

WT (0, x) ≤ VT (0, x) + Eφ(xTT ),(4.13)

where xT is the process defined in Proposition 4.1. Note that, since φ has bounded
gradient, it grows at most linearly. Therefore, by Proposition 4.1, the expectation
Eφ(xTT ) is bounded in T , and Assumption A3 easily follows.
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4.3. Diffusions with periodic coefficients. In this section we consider a class
of nonlinear controlled diffusions for which Assumption B is satisfied.

We consider stochastic differential equations in R
d of the type

dxt = f(xt, ut)dt+ dwt,
x0 ∼ µ,

where we assume (i) U is a compact metric space; (ii) f is jointly continuous in (x, u),
and it is α-Holder continuous in x uniformly with respect to u, for some α > 0; (iii)
f is periodic in x. Moreover, the running cost function c(x, u) is also assumed to be
periodic in x, jointly continuous in (x, u), and α-Holder continuous in x uniformly
with respect to u.

Proposition 4.3. There exists a solution of (SHJB) for the above models, such
that φ ∈ C2(Rd) and it is periodic.

Proof. The existence of a periodic solution of (SHJB) in W 2,p((0, τ)d) (τ is the
period) for all p ≥ 2 comes from [4, Theorem 6.1]. It follows that ∂φ∂x ∈ W 1,p for all
large p, and therefore it is Holder continuous (see [6, Theorem IX.14]). Plugging this
information into (SHJB), we get that ∆φ is Holder continuous. Thus (see, e.g., [20,
Theorem 4.1]) φ ∈ C2.

Note now that boundedness of φ follows from Proposition 4.3. Moreover, condi-
tions A5 and A6 are trivially satisfied. As far as A2 is concerned, we have to show
that the “inf” in (SHJB) is attained at an admissible feedback control. By continuity
of f, c and compactness of U , the “inf” is attained at a feedback k(x). Since the
function b(x) = f(x, k(x)) is bounded, a weak solution of

dxt = b(xt)dt+ dwt,
x0 ∼ µ

can be constructed by a Girsanov transformation [10]. So u∗t = k(xt) is admissible.
In conclusion Assumption B is satisfied, which guarantees a.s. g-optimality of u∗ for
all g satisfying A7.

5. Proofs for diffusions.
Proof of Theorem 3.1. In this proof we let (Ω,F , P ) be any probability space in

which stochastic processes x., x
∗
. , having law Pu and Pu

∗
, respectively, are defined.

Without loss of generality (e.g., by using Theorem 4.2 in [10]), we may assume there
are Brownian motions w., w

∗
. such that the equalities

dxt = f(xt, ut)dt+ σ(xt, ut)dwt,
dx∗t = f(x∗t , u

∗
t )dt+ σ(x

∗
t , u

∗
t )dw

∗
t

hold in a strong sense.
Let n = [T ] be the integer part of T > 0. Then

g(T )[JT (u
∗)− JT (u)] = g(T )

[∫ T
0

c(x∗t , u
∗
t ) dt−

∫ T
0

c(xt, ut) dt

]

≤ g(n)
[∫ n+1

0

c(x∗t , u
∗
t ) dt−

∫ n
0

c(xt, ut) dt

]
= g(n)[Jn+1(u

∗)− Jn(u)].
Thus it is sufficient to prove

lim sup
n→+∞

g(n)[Jn+1(u
∗)− Jn(u)] ≤ 0 a.s.(5.1)
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We first assume that Assumption A holds.
For ε > 0, we define Γn = {g(n)[Jn+1(u

∗) − Jn(u)] ≥ ε}, τn = inf{s : Js(u) ≥
hn} ∧ n, and hn = nq(n)−1. We have

P (Γn, τn < n) = P (g(n)Jn+1(u
∗) ≥ g(n)Jn(u) + ε, τn < n)

≤ P (g(n)Jn+1(u
∗) ≥ g(n)hn + ε)

≤ P (Jn+1(u
∗) ≥ hn).

(5.2)

From the Chebyshev inequality, A6, and the definition of hn

P (Jn+1(u
∗) ≥ hn) ≤ h−mn E[Jn+1(u

∗)]m

≤ Ch−mn (n+ 1)m = Cq(n)m(1 + 1
n )
m,

(5.3)

where we denoted by C different constants whose specific values are irrelevant. Con-
dition A7 is equivalent to convergence of

∑+∞
n=1 q(n)

m and
∑+∞
n=1 q(n)

m(1 + 1/n)m.
Thus from (5.2) and (5.3)

+∞∑
n=1

P (Γn, τn < n) < +∞,(5.4)

which implies (5.1) on the set {τn < n}.
We now deal with the set {τn = n}. By applying Itô’s rule to the solution of

(HJB) we get

dVT (t, xt) =

[
∂VT
∂t

(t, xt) + L
utVT (t, xt)

]
dt+

∂VT
∂x

(t, xt)σ(xt, ut)dwt.

Using (HJB), adding and subtracting c(xt, ut)dt to the previous equation, we get

JT (u) = VT (0, x0) +

∫ T
0

∆VT (t, xt, ut)dt+M
VT
T (u),(5.5)

where

∆VT (t, xt, ut) = LutVT (t, xt) + c(xt, ut)− inf
v∈U

[LvVT (t, xt) + c(xt, v)] ≥ 0

and

MVT
T (u) =

∫ T
0

∂VT
∂x

(t, xt)σ(xt, ut)dwt

is a continuous local martingale. Similarly, by using the solution of (SHJB) rather
than (HJB) we have

JT (u
∗) = φ(x0) + λT − φ(x∗T ) +Mφ

T (u
∗),(5.6)

where

Mφ
T (u

∗) =

∫ T
0

∂φ

∂x
(t, x∗t )σ(x

∗
t , u

∗
t )dw

∗
t .

Thus, letting WT (t, x) = φ(x) + λ(T − t), we obtain
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g(n)[Jn+1(u
∗)− Jn(u)] ≤ g(n)[Wn+1(0, x0)− Vn(0, x0)]− g(n)φ−(x∗n+1)

+g(n)

∫ n+1

0

∂Wn+1

∂x
(t, x∗t )σ(x

∗
t , u

∗
t ) dw

∗
t − g(n)

∫ n
0

∂Vn
∂x

(t, xt)σ(xt, ut) dwt.(5.7)

It follows by Assumption A2 and the Borel–Cantelli lemma that

lim
n→∞ g(n)φ

−(x∗n+1) = 0

a.s., and by Assumption A3 that

lim sup
n→+∞

g(n)[Wn+1(0, x0)− Vn(0, x0)] ≤ 0 a.s.(5.8)

Now let Γ′
n denote the event where the expression in the second line of (5.7) takes a

value greater that ε. Using first Chebyshev and then Burkholder inequality [17], we
have

P (Γ′
n, τn = n) ≤ P

(
g(n)

∫ n+1

0

∂Wn+1

∂x
(t, x∗t )σ(x

∗
t , u

∗
t ) dw

∗
t ≥

ε

3

)

+P

(
−g(n)

∫ n
0

∂Vn
∂x

(t, xt)σ(xt, ut) dwt ≥ ε

3
, τn = n

)

≤ Cg(n)2mE
[∫ n+1

0

∣∣∣∣∂Wn+1

∂x
(t, x∗t )σ(x

∗
t , u

∗
t )

∣∣∣∣2 dt
]m

+Cg(n)2mE

[∫ τn
0

∣∣∣∣∂Vn∂x (t, xt)σ(xt, ut)

∣∣∣∣2 dt
]m

.(5.9)

Now using Assumptions A5, A6, and the inequality (a+ b)m ≤ 2m(am+ bm) we have

E

[∫ n+1

0

∣∣∣∣∂Wn+1

∂x
(t, x∗t )σ(x

∗
t , u

∗
t )

∣∣∣∣2 dt
]m

≤ B2m

[
(n+ 1)m + E

[∫ n+1

0

c(x∗t , u
∗
t ) dt

]m]
≤ B′(n+ 1)m.(5.10)

Moreover, by Assumption A4 and the definition of τn,∫ τn
0

∣∣∣∣∂Vn∂x (t, xt)σ(xt, ut)

∣∣∣∣2 dt ≤ B[Jτn(u) + n] ≤ B[hn + n].(5.11)

Thus, by (5.9)–(5.11), we obtain, for some constant A

P (Γ′
n, τn = n) ≤ Ag(n)2m[(n+1)m+(hn+n)

m] = A

[
q2mn

(
1 +

1

n

)m
+ (qn + q2n)

m

]
,

(5.12)
which implies

+∞∑
n=1

P (Γ′
n, τn = n) < +∞.
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This inequality, together with the Borel–Cantelli lemma, (5.4), and (5.8) completes
the proof under Assumption A.

Under Assumption B the proof needs a slight modification. In particular, the
proof of (5.1) on {τn < n} is unchanged. For the case {τn = n} we use Itô’s rule for
both φ(xt) and φ(x∗t ), obtaining

g(n)[Jn+1(u
∗)− Jn(u)] ≤ g(n)[λ+ φ(xn)− φ(x∗n+1)]

+g(n)

∫ n+1

0

∂Wn+1

∂x
(t, x∗t )σ(x

∗
t , u

∗
t ) dw

∗
t − g(n)

∫ n
0

∂Wn
∂x

(t, xt)σ(xt, ut) dwt.

Bounds for the martingale terms are obtained as before, while g(n)[λ+φ(xn)−φ(x∗n+1)]
goes to zero, since φ is bounded.

Proof of Theorem 3.2. Just note that, under the hypothesis of Theorem 3.2,
the expressions in (5.3) and (5.12) are infinitesimal, although possibly not
summable.

6. Pathwise optimality for multivariate point processes. In this section
we deal with stochastic processes taking value in N

d, N being the set of positive
integers, and generated by the family of operators

Lv =

d∑
i=1

λ(i)(x, v)∇i(6.1)

with x ∈ N
d; here ∇if(x) = f(x+ei)−f(x), where ei = (0, . . . , 0, 1, 0, . . . , 0), the “1”

being in the ith component. The functions λ(i) are assumed to be measurable and
nonnegative.

Suppose u is an admissible control. Here Pu is meant to be defined on D =
D([0,+∞),Nd) ⊂ D([0,+∞),Rd). It is well known that, under Pu, the processes

M
(i)
t = x

(i)
t −

∫ t
0

λ(i)(xs, us)ds, i = 1, . . . , d,(6.2)

are orthogonal local martingales. In (6.2), xt denotes the canonical process.
In this context, the equations (HJB) and (SHJB) have the same form they had

for diffusions, once the operator Lv is replaced by the one in (6.1).
As for diffusions, we now state two sets of assumptions.
Assumption A.
A1. For all T > 0 there exists a solution VT of (HJB) that is continuously differ-

entiable in t.
A2. There exists a solution (φ, λ) of (SHJB). The “inf” in (SHJB) is attained at

v = k(x), and the feedback u∗t = k(xt) is an admissible control. Moreover,
there exist constants C, ε > 0 for which

EP
u∗ [ (

φ−(xt)
)2+ε ]

< C.

A3. The following inequality holds:

lim sup
T→+∞

g(T )
[
φ(x0) + λT − VT (0, x0)

] ≤ 0 µ-a.s.

Moreover, there is an integer m > 0 such that the following further assumptions hold.
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A4. There is a constant B > 0 such that for all 1 ≤ r ≤ 2m and for all i = 1, . . . , d

|∇iVT (t, x)|rλ(i)(x, u) ≤ B(c(x, u) + 1).(6.3)

(Note that it is enough to check (6.3) for r = 1 and r = 2m.)
A5. As A4, with φ replacing VT .
A6. There is a constant C > 0 such that

E


[∫ T

0

c(x∗t , u
∗
t )dt

]2m−1 ≤ CT 2m−1

for all T > 0.
A7. Define q(t) = t1/2g(t). Then∫ +∞

1

q2
m−1

(t)dt < +∞.

As we shall see later, the reason why these assumptions are slightly more com-
plicated than the ones in section 3 is that it is harder to get good estimates for
discontinuous martingales than for continuous ones.

Assumption B. There is a solution (φ, λ) of (SHJB), with φ bounded. Moreover,
Assumptions A2, A5, A6, and A7 hold.

Under either Assumption A or B Theorems 3.1 and 3.2 hold true. Their proof,
in the context of point processes, is given in the following section.

7. Proofs for point processes. Theorems 3.1 and 3.2 for point processes are
proved using the same argument used for diffusions. We sketch here the proof, stress-
ing the only important modification that is needed. For simplicity of notation we
write P for Pu,u

∗
.

We again start by defining hn = nq−1(n) and τn = inf{s : Js(u) ≥ hn} ∧ n. The
proof of

lim sup
n→∞

g(n)[Jn+1(u
∗)− Jn(u)] ≤ 0 a.s.(7.1)

on the set {τn < n} is identical to the one in section 5. For the case {τn = n} we
need to obtain representations for the cost function JT that correspond to (5.5) and
(5.6). Observe that

VT (T, xT )− VT (0, x0) = −VT (0, x0)

=
∑

0<t≤T
[VT (t, xt)− VT (t, xt−)] +

∫ T
0

∂VT
∂t

(t, xt)dt

=
d∑
i=1

∫ T
0

∇iVT (t, xt−)dx
(i)
t +

∫ T
0

∂VT
∂t

(t, xt)dt

=

∫ T
0

(∂VT
∂t

+ LutVT

)
(t, xt)dt+M

VT
T (u),

where

MVT
T (u) =

d∑
i=1

∫ T
0

∇iVT (t, xt−)dM
(i)
t ,
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with M
(i)
t being the local martingale in (6.2). Thus, similarly to (5.5),

JT (u) = VT (0, x0) +

∫ T
0

∆VT (t, xt, ut)dt+M
VT
T (u),(7.2)

where

∆VT (t, xt, ut) = LutVT (t, xt) + c(xt, ut)− inf
v∈U

[LvVT (t, xt) + c(xt, v)] ≥ 0.

A similar representation for the cost is obtained if one uses the solution of the (SHJB).
The key to the proof of Theorem 3.1 is to show that for every ε > 0, under Assumption
A, ∑

n

P{g(n)|MVn
n (u)| > ε, τn = n} < +∞(7.3)

together with the analogous estimate for the martingale with φ replacing VT and u∗

replacing u. We prove only (7.3); the rest of the proof is identical to the diffusion
case.

We begin by noting that the quadratic variation of the local martingale MVT
T (u)

is given by (see [17, Theorem 22])

[MVT
T (u),MVT

T (u)] =

d∑
i=1

∫ T
0

[∇iVT (t, xt−)]2dx
(i)
t .

It follows, by Burkholder inequality, that

E
{
|MVτn
n (u)|2m

}
≤ C

d∑
i=1

E

{[∫ τn
0

[∇iVn(t, xt−)]2dx
(i)
t

]2m−1}

≤ C ′
d∑
i=1

(
E

{[∫ τn
0

[∇iVτn(t, xt−)]2dM
(i)
t

]2m−1}

+E

{[∫ τn
0

[∇iVτn(t, xt)]2λ(i)(xt, ut)dt

]2m−1})

for some constants C,C ′ depending on m. Now we can apply again Burkholder
inequality to the local martingale∫ τn

0

[∇iVn(t, xt−)]2dM
(i)
t

in order to bound the term

E

{[∫ τn
0

[∇iVn(t, xt−)]2dM
(i)
t

]2m−1}
.

Iterating this procedure and noting that, for the last iteration

E

{∫ τn
0

[∇iVn(t, xt−)]2
m

dx
(i)
t

}
= E

{∫ τn
0

[∇iVn(t, xt−)]2
m

λ(i)(xt, ut)dt

}
,
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we obtain the following estimate:

E
{
|MVn
τn (u)|2m

}
≤ C

d∑
i=1

m∑
r=1

E

{[∫ τn
0

[∇iVτn(t, xt−)]2
r

λ(i)(xt, ut)dt

]2m−r}
.(7.4)

It follows, using Chebyshev’s inequality, Assumption A4, and the definition of τn that

P{g(n)|MVn
n (u)| > ε, τn = n} ≤ Cg2m(n)E

{
|MVn
τn (u)|2m

}

≤ Cg2m(n)

d∑
i=1

m∑
r=1

B[Jτn(u) + n]
2m−r ≤ C ′g2

m

(n)

m∑
r=1

[hn + n]2
m−r

.

The summability over n of this last expression is straightforward. The proof of (7.3)
is therefore completed.

The modifications needed for the proof of Theorem 3.2 are identical to the case
of diffusions.

8. Pathwise optimality for Markov chains with finite state space. Let
X be a finite set and assume U is a compact metric space. For x, y ∈ X, with x �= y,
let

lx,y : U → R
+

be strictly positive functions. The X-valued controlled processes we consider in this
section correspond to the family of operators Lv, v ∈ U , defined by

Lvf(x) =
∑
y �=x

lx,y(v)[f(y)− f(x)].(8.1)

To complete the assumptions on the model we assume that the running cost function
c(x, v) is continuous in v.

Lemma 8.1. There exists a solution (φ, λ) of (SHJB).
We have not been able to find a proper reference for Lemma 8.1. Its proof,

obtained by adapting that of [4, Theorem 6.1], is given in the appendix. Note that,
due to the finiteness of X, compactness of U , and continuity of lx,y(·), c(x, ·), there is a
feedback k(x) that minimizes the “inf” in (SHJB); moreover, the associated feedback
control is admissible.

We can now prove the main result of this section.
Theorem 8.2. The control u∗(xt) is g-optimal a.s. for every g satisfying As-

sumption A7, and it is g-optimal in probability if g(t)t1/2 = o(1).
Proof. The proof is a simple modification of the one for point processes. As for

both diffusions and point processes, the proof starts by defining the stopping time τn,
and showing that

lim sup
n→∞

g(n)[Jn+1(u
∗)− Jn(u)] ≤ 0(8.2)

on the set {τn < n}, a.s. or in probability according to which assumptions one chooses.
For the case τn = n we obtain a representation of the cost function in terms of the
solution of (SHJB).
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For y ∈ X, let Nt(y) be the process that counts the number of jumps to the state
y. It is known that

Mt(y) = Nt(y)−
∫ t

0

lxs,y(us)ds

is a Pu-martingale, with quadratic variation Nt(y). Thus, if (φ, λ) is the solution of
(SHJB), we get

φ(xT )− φ(x0) =
∑

0≤t≤T
[φ(xt)− φ(xt−)]

=

∫ T
0

∑
y �=xt−

[φ(y)−φ(xt−)]dNt(y) =

∫ T
0

Lutφ(xt)dt+

∫ T
0

∑
y �=xt−

[φ(y)−φ(xt−)]dMt(y).

It follows that

g(n)[Jn+1(u
∗)− Jn(u)] ≤ g(n)[λ+ φ(xn)]

+g(n)

∫ n+1

0

∑
y �=xt−

[φ(y)−φ(x∗t−)]dM∗
t (y)−g(n)

∫ n
0

∑
y �=xt−

[φ(y)−φ(xt−)]dMt(y).

(8.3)
Expression (8.3) is estimated as in the proof for point processes. It is clear that
here φ(x) and lx,y(u) are bounded, which makes the proof work as the one for point
processes under Assumption B.

Appendix A.
Proof of Lemma 8.1.
For α > 0 define the function

Vα(x) = inf
u∈U

Eux

{∫ +∞

0

e−αtc(xt, ut)dt
}
,(A.1)

where Eux is the expectation with respect to Pu with initial condition Pu ◦Π−1
0 = δx.

It is easy to see that Vα can also be rewritten as

Vα(x) = inf
u∈U

Eux

{∫ T
0

e−αtc(xt, ut)dt+ e−αTVα(xT )

}

for any T > 0. Now define

Vα,T (x, t) = inf
u∈U

Eux

{∫ T
t

e−αsc(xs, us)ds+ e−αTVα(xT )
∣∣∣xt = x

}
= e−αtVα(x).

(A.2)

Clearly Vα,T is the value function of a stochastic control problem in the finite time
horizon [0, T ]. Thus it satisfies the (HJB) equation

∂Vα,T
∂t

(x, t) + inf
v∈U

[
LvVα,T (x, t) + e

−αtc(x, v)
]
= 0
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that, by (A.2), is equivalent to

inf
v∈U

[
LvVα(x) + c(x, v)

]
= αVα(x).(A.3)

Now let

V̄α =
1

|X|
∑
x∈X

Vα(x),

φα(x) = Vα(x)− V̄α.
Equation (A.3) can be rewritten in terms of φα as

inf
v∈U

∑
y �=x

lx,y(v)
(
φα(y)− φα(x)

)
+ c(x, v)

 = αφα(x) + αV̄α.(A.4)

Let kα(x) be the feedback that realizes the “inf” in (A.4) (or (A.3)), and let mα be
the invariant measure of the corresponding optimal process. The invariant measure
satisfies the equation∑

y �=x
mα(x)lx,y(kα(x)) =

∑
y �=x

mα(y)ly,x(kα(y))(A.5)

from which one easily obtains

0 < A ≤ mα(x) ≤ B < +∞ for all α > 0, x ∈ X,(A.6)

where

B =
|X| sup{lx,y(v) : x, y ∈ X, v ∈ U}

inf{lx,y(v) : x, y ∈ X, v ∈ U} ,

A =
inf{lx,y(v) : x, y ∈ X, v ∈ U} ∧ 1

1 + |X| sup{lx,y(v) : x, y ∈ X, v ∈ U} .

In particular, A and B do not depend on α.
Now consider (A.3). After multiplying it by mα(x)Vα(x), summing over x, and

using (A.5), we obtain

1

2

∑
x

∑
y �=x

mα(x)lx,y(kα(x))[Vα(y)− Vα(x)]2(A.7)

=
∑
x

mα(x)c(x, kα(x))Vα(x)− α
∑
x

mα(x)V
2
α (x).

On the other hand, if we multiply (A.3) by mα(x) and sum over x, we get

0 = α
∑
x

mα(x)Vα(x)−
∑
x

mα(x)c(x, kα(x)).(A.8)

By (A.7) and (A.8) we obtain

1

2

∑
x

∑
y �=x

mα(x)lx,y(kα(x))[φα(y)− φα(x)]2

=
∑
x

mα(x)c(x, kα(x))φα(x)− α
∑
x

mα(x)Vα(x)φα(x).
(A.9)
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Note now that, by (A.1),

αVα(x) ≤ sup
x,v

c(x, v) < +∞.(A.10)

Thus (A.6), (A.9), and (A.10) yield

|φα(y)− φα(x)|2 ≤ C sup
z
|φα(z)| for all x, y ∈ X(A.11)

for some constants C > 0. Inequality (A.11) implies that φα is uniformly bounded in
α. Otherwise, for any M > 0 there is α, x such that |φα(x)| > M . Combining this
with (A.11), we get ∣∣∣∣∣∑

y

φα(y)

∣∣∣∣∣ ≥M − |X|√CM.

It cannot be so for M large, since
∑
y φα(y) = 0.

Boundedness of both φα and αVα guarantees that along some sequence αn → 0

φαn → φ, αnV̄αn → λ.

We may now pass to the limit as αn → 0 in (A.4), and we see that (φ, λ) is a solution
to (SHJB).
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EXISTENCE AND CHARACTERIZATION OF AN OPTIMAL
CONTROL FOR THE PROBLEM OF LONG WAVES IN A

SHALLOW-WATER MODEL∗

AZIZ BELMILOUDI†

SIAM J. CONTROL OPTIM. c© 2001 Society for Industrial and Applied Mathematics
Vol. 39, No. 5, pp. 1558–1584

Abstract. In this paper we present a method of optimal control developed in order to calculate
the current corresponding to the observed sea level in a fluid domain Ω and during a time T . The
control is the external stress f . The cost function measures the distance between the observed and
computed sea levels. The equations satisfied by the depth and the depth averaged velocity are of
nonlinear shallow-water type. The existence and uniqueness of a solution for the direct problem
are studied in the case of Dirichlet nonhomogeneous boundary conditions. We prove, by means of
minimizing sequences, the existence of an optimal control (f, u) in the case of the small data and a
very viscous fluid. To characterize it we build a sequence of problems corresponding to a linearization
of the direct problem. We obtain the necessary conditions of optimality. The set of equations and
the inequality characterizing the optimal control (f, u) is obtained as the limit of the penalization.

Key words. optimal control, shallow-water equations, nonlinear partial differential equations,
minimizing sequences, penalization, altimetric measurements, oceanography

AMS subject classifications. 35Q30, 49J20, 49K20, 65J10, 76B15, 76D05, 76U05, 86A22

PII. S0363012999335961

1. Introduction and setting of the problem. The mathematical method
developed in this paper allows us to obtain the circulation in an oceanic domain Ω
from satellite measurements which are surface observations. Altimetric measurements
give the distance between the satellite and the sea surface. It is now possible to extract
from these data the sea level topography with a precision in the order of centimeters.
The sea level will act as the observation in our control model.

The phenomenon we are studying derives from the modelization of long waves
in shallow-water zones (lochs, lagoons, etc.). In such regions currents are weak but
play an important role in the biological and ecological equilibrium. The equations of
motion are of Navier–Stokes type. Shallow-water domains are characterized by a small
ratio between vertical and horizontal length scales. Then the friction on the bottom
is important. Some assumptions of the model are imposed by physical features, such
as the Boussinesq approximation: density variations are neglected except in the terms
of gravity acceleration. Moreover, we assume that the pressure is hydrostatic, which
is justified by the difference between horizontal and vertical scalings: the vertical
component of the Navier–Stokes equations is simplified in order to express the balance
between the gravity term and the vertical gradient of pressure.

The shallow-water equations are obtained by integrating the Navier–Stokes equa-
tions with respect to depth [5]. Moreover, we suppose that the velocity is small enough

that
∂ũ
∂t � (ũ∇)ũ. This assumption is justified for shallow-water domains (see, for

example, Pedlosky [17, pp. 67–69]) where currents remain weak, but it presents great
variations with time. It allows one to neglect the advection term. Then the equations
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†IRMAR-Université Rennes1, LANS-INSA de Rennes, 20 avenue des Buttes de Coësmes, CS
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verified by the depth averaged motion are the following:

∂ũ

∂t
− ν1∆ũ +

C

D
| ũ |2 ũ + F ∧ ũ + g∇h̃ = f̃ on Ω,

∂h̃

∂t
− ν2∆h̃ + div(h̃ũ) = f0 on Ω,

(1.1)

where ũ : Ω×]0, T [−→ R
2 is the velocity and h̃ : Ω×]0, T [−→ R is the depth of the

studied layer and | . |2 denotes the euclidean norm in R
2.

The domain Ω ∈ R
2 is the projection of the oceanic domain on the horizontal

plane. It corresponds to the undisturbed sea surface. Γ denotes its boundary. F is the
Coriolis force defined by (0, 0, 2ωsin(φ)), where ω is the rotation rate of the earth and
φ the latitude. g denotes the acceleration of gravity. The dissipative term corresponds
to Reynolds stresses. ν1 and ν2 are eddy viscosity and diffusivity coefficients. C is
the Chezy positive constant, D the averaged depth of the layer. The right-hand
terms f̃ and f0 represent, respectively, the outside stress and the fluid exchanges
(rain, evaporation, etc.). The shear effect on the bottom is represented by the term
C
D | ũ |2 ũ.

The total depth h̃ can be considered as the sum of two terms: the bottom topog-
raphy H(x, y) which is given and the topography ξ(x, y, t) of the free sea surface. In
order to solve (1.1), we have to set boundary and initial conditions:

(ũ, h̃) = (ũB , h̃B) on Γ,

(ũ, h̃)(t = 0) = (ũ0, h̃0) in Ω.
(1.2)

We are first going to prove that problem (1.1)–(1.2) is equivalent to another nonlinear
problem with homogeneous boundary conditions.

Let uL be the solution of the linear problem

∂uL
∂t
− ν1∆uL = 0 in Ω,

uL(t = 0) = u1 in Ω,
uL = ũB on Γ

(1.3)

and let hL be the solution of the linear problem

∂hL
∂t
− ν2∆hL = 0 in Ω,

hL(t = 0) = h1 in Ω,

hL = h̃B on Γ,

(1.4)

where u1 ∈ H1(Ω)∩L∞(Ω), ũB ∈ L2(0, T,H1/2(Γ))∩L∞(0, T, L∞(Γ)), h1 ∈ H1(Ω)∩
L∞(Ω), and h̃B ∈ L2(0, T,H1/2(Γ)) ∩ L∞(0, T, L∞(Γ)).

Remark 1. (i) We can choose any (u1, h1) ∈ H1(Ω) ∩ L∞(Ω). For example, we
can take u1 = ũ0 and h1 = h̃0. (uL, hL) is a lifting of the boundary conditions.

(ii) According to Fabre, Puel, and Zuazua [7] the function (uL, hL) solution
of the problems (1.3), (1.4) will thus satisfy (uL, hL) ∈ L2(0, T, (H1(Ω))3)∩
L∞(0, T, (L∞(Ω))3).

Setting u = ũ − uL, h = h̃ − hL, f1 = f0 − div(hLuL), f = f̃ − g∇hL − F ∧ uL,
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problem (1.1)–(1.2) can be rewritten as follows:

Find (u, h) such that
∂u

∂t
− ν1∆u +

C

D
| (u + uL) |2 (u + uL) + F ∧ u + g∇h = f in Ω,

∂h

∂t
− ν2∆h + div(hu) + div(hLu) + div(huL) = f1 in Ω,

(u, h) = (0, 0) on Γ,

(u, h)(t = 0) = (u0, h0) in Ω,

(1.5)

where (u0, h0) = (ũ0 − u1, h̃0 − h1).
It has to be noted that the two linear problems (1.3), (1.4) do not depend on the

forcing f̃ but only on the boundary conditions (ũB , h̃B). These two problems being
solved, problem (1.1)–(1.2) is equivalent to the homogeneous problem (1.5).

Our purpose is to develop a control method in order to compute the depth av-
eraged velocity ũ. The surface topography ξ(x, y, t) can be deduced from altimetric
measurements. Therefore h̃ = H(x, y)+ξ(x, y, t) can be taken as the observation. We
assume that the fluid exchanges f0 are known; the model is then controlled by the
external forcing f̃ .

The previous remark concerning the equivalence between problem (1.1)–(1.2) and
problem (1.5) makes it possible to apply the control method to problem (1.5) instead
of problem (1.1)–(1.2). Obviously we first have to solve problems (1.3) and (1.4) in
order to obtain (uL, hL). Then f acts as the control and the observation is the depth
hobs. The optimal control is the forcing minimizing a cost function which measures
the distance between the computed depth h and the observation hobs. Precisely we
will study the following optimal control problem: find (u, h, f) such that the cost
function

J(f, u) =
1

4
‖ h− hobs ‖4L4(0,T,L4(Ω)) +

γ

2
‖ f ‖2L2(0,T,L2(Ω)) (P)

is minimized subject to the problem (1.5), with f ∈ Kc, Kc (given) being a convex,

closed, nonempty subset of L2(0, T, L2(Ω)).
This paper is organized as follows: Section 2 is devoted to the study of problem

(1.5). We give sufficient conditions on the surface forcing f , on the initial situation
(u0, h0), and on (uL, hL) in order to prove the existence of a solution. These conditions
being satisfied, we prove the uniqueness of the solution.

Section 3 is devoted to the control problem associated with (1.5). We first deal
with the homogeneous case ũB = 0, h̃B = 0. Then we have uL = 0, hL = 0;
problem (1.1)–(1.2) and problem (1.5) are identical. We prove the existence of an
optimal control by means of minimizing sequences (f

k
, uk). In order to characterize

this optimal control, we have to introduce a penalized control problem Pε: the cost
function is penalized and adapted to the optimal control (f, u). This type of method
was introduced by Lions [12], [14] to control singular distributed systems. More recent
works have developed the method of control in mathematical physics and performed
variational data assimilation [1], [2], [3], [4], [15], [16].

The specificity of this paper derives from the following features: the direct prob-
lem is time-dependent and of shallow-water type, the equations are coupled and
nonlinear. Moreover, the altimetric measurements allow us to take the sea level to-
pography as the observation. The penalized control problem Pε is defined in such a
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way that the direct problem is linear. In order to characterize (f
ε
, wε), solution of

Pε, we define a suitable adjoint problem. The solution (f, u) of our initial control
problem is obtained as the limit of (f

ε
, wε) when ε → 0. The set of equations and

inequality characterizing (f, u) is obtained by passing to the limit in the character-
ization of (f

ε
, wε). The same technique can be used in the nonhomogeneous case:

ũB �= 0, h̃B �= 0 because the velocity uL and the depth hL do not depend on control
f . (uL, hL) is calculated first. Then the control method is applied to the homogeneous
problem (1.5).

The main result of this paper is the following theorem:
Under the assumptions of Proposition 1, the optimal control problem (P)
has at least one solution (u, h, f) such that f ∈ Kc and (u, h) is the solut-
ion of problem (2.1) with a forcing equal to f . Moreover, there exists

(R,S) ∈ L2(0, T, (H1
0 (Ω))3) ∩ L∞(0, T, (L2(Ω))3) such that

−
(

∂R

∂t
, v

)
+ a1(R, v) +

C

D

(
| (u + uL) |2 R + (u + uL, R)2

(u + uL)

| (u + uL) |2
, v

)
−(F ∧R, v)− ((h + hL)∇S, v) = 0,

−
(

∂S

∂t
, β

)
+ a2(S, β)− (((u + uL)∇)S, β)− g(div(R), β) = ((h− hobs)

3, β),

(R,S)(t = T ) = (0, 0) ∀(v, β) ∈ (H1
0 (Ω))3 almost everywhere (a.e.) t ∈ (0, T ),

and
(R + γf, g − f)L2(0,T,L2(Ω)) ≥ 0 ∀g ∈ Kc.

2. Existence and uniqueness conditions. Let Ω be a fixed bounded open
domain of R

2. Γ denotes its boundary and is supposed to be sufficiently regular.
We introduce the following functional spaces:

V1 = (H1
0 (Ω))2, H1 = (L2(Ω))2, V2 = H1

0 (Ω), H2 = L2(Ω), V = V1 × V2, and H =
H1 ×H2.

The norm and the seminorm defined on H1(Ω) are equivalent in V1, V2, and V .
Then we set ‖ v ‖=‖ v ‖V1 , ‖ β ‖=‖ β ‖V2 , and ‖ X ‖=‖ X ‖V for v ∈ V1, β ∈ V2, and
X ∈ V. | . | denotes the norm in L2(Ω), | . |2 denotes the euclidean norm in R

2, and
(., .)2 denotes the scalar product in R

2.
We define
a1(u, v) = ν1(∇u,∇v),
a2(h, β) = ν2(∇h,∇β),
a(X,Y ) = a1(u, v) + a2(h, β) with X = (u, h) and Y = (v, β).

a1, a2, and a are bilinear continuous coercive forms, respectively, on V1, V2, and V and
we denote by α the constant of coercivity of a.

We can now write the weak formulation of problem (1.5):

Find (u, h) ∈ L2(0, T, V ) ∩ L∞(0, T,H) such that(
∂u

∂t
, v

)
+ a1(u, v) +

C

D
(| (u + uL) |2 (u + uL), v) + (F ∧ u, v)− g(div(v), h) = (f, v),(

∂h

∂t
, β

)
+ a2(h, β) + (div(hu), β) + (div(hLu), β) + (div(huL), β) = (f1, β) ∀(v, β) ∈ V,

(u, h)(t = 0) = (u0, h0).

(2.1)

Before studying the existence and uniqueness conditions, we are first going to prove
four lemmas.
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Lemma 1. The operator : u −→| u |2 u is a monotone operator.

Proof. Let (u, v) ∈ V1 × V1,

(| u |2 u− | v |2 v, u− v) = (| u |22, | u |2)− (| u |2 u, v)− (| v |2 v, u) + (| v |22, | v |2).

Since (u, v)2 ≤| u |2| v |2 we have

(| u |2 u− | v |2 v, u− v) ≥ (| u |22 − | v |22, | u |2 − | v |2) = ((| u |2 − | v |2)2, | u |2 + | v |2).

This implies that

(| u |2 u− | v |2 v, u− v) ≥ 0.

Lemma 2. If (u, v) is given in V1 × V1, we have the following results:

(i) | u |2 v ∈ L3/2(Ω).

(ii) There exists a positive constant c such that ‖ | u |2 v ‖V ′
1
≤ c | u | ‖ v ‖ .

Proof. (i) Using the Schwarz inequality, we obtain

∫
Ω

| u |3/22 | v |3/22 dΩ ≤ c

(∫
Ω

| u |22 dΩ

)3/4(∫
Ω

| v |62 dΩ

)1/4

.

By applying the Sobolev injections ([11], for example), we have ‖| u |2 v ‖L3/2(Ω)≤ c |
u |‖ v ‖ and then | u |2 v ∈ L3/2(Ω).

(ii) Setting w ∈ V1, we have | (| u |2 v, w) |≤ c ‖| u |2 v ‖L3/2(Ω)‖ w ‖L3(Ω). Using
result (i), we obtain | (| u |2 v, w) |≤ c | u |‖ v ‖‖ w ‖, from which we can deduce
result (ii).

Lemma 3. (i) If v ∈ V1 or h ∈ V2, then | (div(hv), β) |≤ c ‖ h ‖L4(Ω)‖ β ‖‖
v ‖L4(Ω),

(ii) If (v, h) ∈ V , then we have (Gagliardo–Nirenberg’s inequality) ‖ v ‖L4(Ω)≤
c ‖ v ‖ 1

2 | v | 12 and ‖ h ‖L4(Ω)≤ c ‖ h ‖ 1
2 | h | 12 .

Proof. (i) By applying the Green formula and v ∈ V1 (or h ∈ V2) we obtain
| (div(hv), β) |=| ((h∇)β), v) |. Thus | (div(hv), β) |≤ c ‖ h ‖L4(Ω)‖ β ‖‖ v ‖L4(Ω). For
the proof of (ii) see, for example, [6], [18], [19].

Lemma 4. Let (um, hm) be a sequence converging toward (u, h) in L2(0, T,H)
strongly and in L2(0, T, V ) weakly. Then for any vector function ϕ(t)(v, β), ϕ ∈
C1([0, T ]) and (v, β) ∈ V , we have

(i) limm→∞
∫ T
0

(| um + uL |2 (um + uL), ϕ(t)v)dt =
∫ T
0

(| (u + uL) |2 (u +
uL), ϕ(t)v)dt.

(ii) limm→∞
∫ T
0

(div(umhm), ϕ(t)β)dt =
∫ T
0

(div(uh), ϕ(t)β)dt.

Proof. (i) We write∫ T

0

(| um + uL |2 (um + uL), ϕ(t)v)dt =

∫ T

0

〈| um + uL |2 ϕ(t)v, um + uL〉V ′
1 ,V1

dt

and ∫ T

0

(| u + uL |2 (u + uL), ϕ(t)v)dt =

∫ T

0

〈| u + uL |2 ϕ(t)v, u + uL〉V ′
1 ,V1

dt.
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Subtracting the previous equalities gives∣∣∣∣∣
∫ T

0

(| um + uL |2 (um + uL), ϕ(t)v)dt−
∫ T

0

(| u + uL |2 (u + uL), ϕ(t)v)dt

∣∣∣∣∣
=

∣∣∣∣∣
∫ T

0

〈| um + uL |2 ϕ(t)v, um + uL〉V ′
1 ,V1

dt

−
∫ T

0

〈| u + uL |2 ϕ(t)v, u + uL〉V ′
1 ,V1

dt

∣∣∣∣∣
≤
∣∣∣∣∣
∫ T

0

〈(| um + uL |2 − | u + uL |2)ϕ(t)v, um + uL〉V ′
1 ,V1

dt

∣∣∣∣∣
+

∣∣∣∣∣
∫ T

0

〈| u + uL |2 ϕ(t)v, um − u〉V ′
1 ,V1

dt

∣∣∣∣∣
≤ ‖ (| um − u |2)ϕ(t)v ‖L2(0,T,V ′

1 )‖ um + uL ‖L2(0,T,V1)

+

∣∣∣∣∣
∫ T

0

〈| u + uL |2 ϕ(t)v, um − u〉V ′
1 ,V1

dt

∣∣∣∣∣ .
Since um converges towards u strongly in L2(0, T,H1) and weakly in L2(0, T, V1),
since ϕ is bounded, and by using lemma 2 we obtain result (i).

(ii) By applying the Green formula, we have∫ T

0

(div(umhm), ϕ(t)β)dt = −
∫ T

0

(hmϕ(t)∇β, um)dt

= −
∫ T

0

i=2∑
i=1

∫
Ω

hmϕ(t)∂iβ(um)idΩdt.

Using Temam [18, Lemma 3.2, p. 289] these integrals converge to

−
∫ T

0

(hϕ(t)∇β, u)dt =

∫ T

0

(div(hu), ϕ(t)β)dt.

We can now state the result of existence and uniqueness.
Proposition 1. We assume that Fex = (f, f1) ∈ L2(0, T,H), X0 = (u0, h0) ∈

V ∩ (L∞(Ω))3, and (uL, hL) ∈ L2(0, T, (H1(Ω))3) ∩ L∞(0, T, (L∞(Ω))3).
If the following conditions are satisfied,

(i) K = (2α− Cg − CL(‖ uL ‖L∞(0,T,L4(Ω)) + ‖ hL ‖L∞(0,T,L4(Ω))))/C0 > 0,
(ii) | X0 |< K,
(iii) | X0 |2 +CI(‖ Fex ‖2L2(0,T,L2(Ω)) + ‖ uL ‖3L3(0,T,L4(Ω))) < K2,

then problem (2.1) admits one unique solution (u, h) in L2(0, T, V ) ∩ L∞(0, T,H).
Remark 2. If (uL, hL) ∈ L2(0, T, (H1(Ω))3)∩L∞(0, T, (L∞(Ω))3), then div(hLuL)

∈ L2(0, T, L2(Ω)). If (f̃ , f0) ∈ L2(0, T,H), then (f, f1) ∈ L2(0, T,H).
Proof of the existence.
Since V is separable, there exists a free and total sequence (w1, p1), . . . , (wm, pm), . . .

in V . We denote by Vm the space generated by (w1, p1), . . . , (wm, pm). For each m
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we define an approach problem:

Find (um, hm) ∈ Vm such that(
∂um
∂t

, wk

)
+ a1(um, wk) +

C

D
(| um + uL |2 (um + uL), wk) + (F ∧ um, wk)

−g(div(wk), hm) = (f, wk) ∀k = 1,m,(
∂hm
∂t

, pk

)
+ a2(hm, pk) + (div(hmum), pk) + (div(hmuL), pk)

+(div(hLum), pk) = (f1, pk) ∀k = 1,m,

(um, hm)(t = 0) = (u0m, h0m),

(2.2)

where, (u0m, h0m) is the orthogonal projection in H of (u0, h0) on Vm such that
(u0m, h0m) converges strongly towards (u0, h0) in H, | u0m |≤| u0 |, and | h0m |≤| h0 |.
Since (um, hm) ∈ Vm, we have (um, hm) = (

∑m
k=1 gkm(t)wk,

∑m
k=1 lkm(t)pk). (gkm, lkm)

are scalar functions defined on [0, T ].
Multiplying the first half of (2.2) by gkm and the second half of (2.2) by lkm and

adding with respect to k, we obtain

1

2

∂ | um |2
∂t

+ a1(um, um) +
C

D
‖ um + uL ‖3L3(Ω) −g(div(um), hm)(2.3)

−C

D
(| um + uL |2 (um + uL), uL) = (f, um),

1

2

∂ | hm |2
∂t

+ a2(hm, hm) + (div(hmum), hm) + (div(hmuL), hm)

+(div(hLum), hm) = (f1, hm).

From these two equations we deduce

1

2

∂ | Xm |2
∂t

+ a(Xm, Xm) +
C

D
‖ um + uL ‖3L3(Ω)=

C

D
(| um + uL |2 (um + uL), uL)

+ g(div(um), hm)− (div(hmum), hm)
− (div(hmuL), hm)− (div(hLum), hm) + (Fex, Xm),

where Xm = (um, hm) and Fex = (f, f1).
According to Green’s formula and Gagliardo–Nirenberg’s inequality we have

2(div(hmum), hm) = (h2
m,div(um))

and

| 2(div(hmum), hm) |≤ C ‖ hm ‖2L4(Ω)‖ um ‖≤ C0 ‖ Xm ‖2| Xm | .
According to Lemma 3 we have

| 2(div(hmuL), hm) | ≤ CL ‖ uL ‖L4(Ω)‖ Xm ‖2,
| 2(div(hLum), hm) | ≤ CL ‖ hL ‖L4(Ω)‖ Xm ‖2 .

Moreover,∣∣∣∣2CD (| um + uL |2 (um + uL), uL)

∣∣∣∣ ≤ CL(‖ uL ‖L4(Ω)‖ Xm ‖2 + ‖ uL ‖3L4(Ω))
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and

| g(div(um), hm) |≤ Cg ‖ Xm ‖2 .

Using the previous inequalities and the coercivity of a we deduce

∂ | Xm |2
∂t

+ ψm(t) ‖ Xm ‖2≤ CI(| Fex |2 + ‖ uL ‖3L4(Ω)),(2.4)

where ψm(t) = 2α−C0 | Xm(t) | −Cg−CL(‖ uL ‖L∞(0,T,L4(Ω)) + ‖ hL ‖L∞(0,T,L4(Ω))).
Let us prove that ψm(t) > 0 ∀t ∈ [0, T ].
According to condition (ii), we have ψm(0) > 0. Let us suppose that there exists

t ∈ [0, T ] such that ψm(t) ≤ 0. Since function ψm is continuous, there exists T0 ∈ [0, T [
such that ∀t ∈ [0, T0[,ψm(t) > 0 and ψm(T0) = 0.

Integrating (2.4) from 0 to T0 we obtain

| Xm(T0) |2 +

∫ T0

0

ψm(t) ‖ Xm(t) ‖2 dt

≤ CI(‖ Fex ‖2L2(0,T,L2(Ω)) + ‖ uL ‖3L3(0,T,L4(Ω)))+ | X0 |2 .

Since ψm > 0 on [0, T0[ and ψm(T0) = 0, we obtain

K2 ≤ CI(‖ Fex ‖2L2(0,T,L2(Ω)) + ‖ uL ‖3L3(0,T,L4(Ω)))+ | X0 |2;
thus condition (iii) cannot be satisfied and we conclude that

ψm(t) > 0 ∀t ∈ [0, T ].

We can now deduce from inequality (2.4) that Xm is uniformly bounded in
L∞(0, T,H) ∩ L2(0, T, V ). This result makes it possible to extract from Xm a sub
sequence also denoted by Xm which converges towards X in L∞(0, T,H) weakly*
and L2(0, T, V ) weakly. By using (2.2), the continuity of the operator a, Hölder’s
inequality, and Lemma 3, we obtain(

∂Xm

∂t
, w

)
≤ c(‖ Xm ‖ + ‖ Xm ‖2 + | Fex | + ‖ uL ‖2L4(Ω) + ‖ hL ‖2L4(Ω)) ‖ w ‖,

where w = (v, β).
Since Xm is uniformly bounded in L2(0, T, V ), Fex is in L2(0, T, L2(Ω)) and

(uL, hL) is in L2(0, T, L4(Ω)), we can deduce that ∂Xm/∂t is uniformly bounded
in L1(0, T, V ′).

Let us introduce space Y = {w ∈ L2(0, T, V ), ∂w/∂t ∈ L1(0, T, V ′)}. According
to Temam [18], [19] the injection of Y into L2(0, T,H) is compact. Sequence Xm is
uniformly bounded in Y . Then we can extract from Xm a subsequence also denoted
by Xm and such that

Xm ⇀ X weakly in L2(0, T, V ),
Xm −→ X strongly in L2(0, T,H).

We are going to prove that X = (u, h) is solution of problem (2.1).
In order to pass to the limit in (2.2), let us consider ϕ ∈ C1([0, T ]) such that

ϕ(T ) = 0.



1566 AZIZ BELMILOUDI

Multiplying (2.2) by ϕ and integrating with respect to time, we obtain

−
∫ T

0

(um, ϕ′(t)wk)dt +
∫ T

0

a1(um, ϕ(t)wk)dt +
C

D

∫ T

0

(| um + uL |2 (um + uL), ϕ(t)wk)dt

+

∫ T

0

(F ∧ um, ϕ(t)wk)dt + g

∫ T

0

(∇hm, ϕ(t)wk)dt + (u0m, ϕ(0)wk) =

∫ T

0

(f, ϕ(t)wk)dt,

−
∫ T

0

(hm, ϕ′(t)pk)dt +
∫ T

0

a2(um, ϕ(t)pk)dt +

∫ T

0

(div(hmum), ϕ(t)pk)dt + (h0m, ϕ(0)pk)

+

∫ T

0

(div(hmuL), ϕ(t)pk)dt +

∫ T

0

(div(hLum), ϕ(t)pk)dt =

∫ T

0

(f1, ϕ(t)pk)dt.

(2.5)

It is easy to pass to the limit in the linear terms. For the nonlinear terms we
apply the result of Lemma 4.

Since (u0m, h0m) converges towards (u0, h0), the limit (u, h) verifies the equation

(2.6)

−
∫ T

0

(u, ϕ′(t)v)dt +
∫ T

0

a1(u, ϕ(t)v)dt +
C

D

∫ T

0

(| (u + uL) |2 (u + uL), ϕ(t)v)dt,

+

∫ T

0

(F ∧ u, ϕ(t)v)dt + g

∫ T

0

(∇h, ϕ(t)v)dt + (u0, ϕ(0)v) =

∫ T

0

(f, ϕ(t)v)dt,

−
∫ T

0

(h, ϕ′(t)β)dt +

∫ T

0

a2(h, ϕ(t)β)dt +

∫ T

0

(div(hu), ϕ(t)β)dt + (h0, ϕ(0)β)

+

∫ T

0

(div(hLu), ϕ(t)β)dt +

∫ T

0

(div(huL), ϕ(t)β)dt =

∫ T

0

(f1, ϕ(t)β)dt

for v = w1, w2, . . . and β = p1, p2, . . . . By linearity and a continuity argument this
equation holds for any (v, β) ∈ V .

Assuming ϕ ∈ D(0, T ), we deduce that (u, h) verifies (2.1) in the distribution
sense on (0, T ).

In order to prove the initial conditions, we multiply (2.1) by a function ϕ ∈
C1([0, T ]) such that ϕ(T ) = 0. Integrating with respect to t and comparing with
(2.7), we obtain

u(0) = u0 and h(0) = h0.

Since (u, h) ∈ L2(0, T, V ) and (u′, h′) ∈ L1(0, T, V ′), we conclude that (u, h) is weakly
continuous from [0, T ] into H [13].

Remark 3. (i) Since (u, h) is in L∞(0, T,H)∩L2(0, T, V ), we obtain that (u, h)
is in L4(0, T, L4(Ω)) by applying result (ii) of Lemma 3.

(ii) If we a priori impose the regularity h ∈ L4(0, T, L4(Ω)), then we obtain the
existence of a solution (u, h) without any conditions.

Proof of the uniqueness.

Let us suppose that problem (2.1) admits two solutions (u1, h1) and (u2, h2).
Set u = u1 − u2, h = h1 − h2, and X = (u, h).
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(u, h) is the solution of the problem

(
∂u

∂t
, v

)
+ a1(u, v) +

C

D
(| u1 + uL |2 (u1 + uL)− | u2 + uL | (u2 + uL), v)

+(F ∧ u, v)− g(div(v), h) = 0,(
∂h

∂t
, β

)
+ a2(h, β) + (div(h1u1 − h2u2), β) + (div(hLu + huL), β) = 0 ∀(v, β) ∈ V,

(u, h)(t = 0) = 0.

(2.7)

Setting (v, β) = (u, h) in (2.7), we obtain

1

2

∂ | X |2
∂t

+ a(X,X) +
C

D
(| u1 |2 u1− | u2 |2 u2, u) = g(div(u), h)

−(div((h1 + hL)u), h)− (div(h(u2 + uL)), h).(2.8)

Using the coercivity of operator a and Lemmas 1, 3 we obtain

∂ | X |2
∂t

+ 2α ‖ X ‖2

≤ c1 | X |‖ X ‖ +c2 | X |1/2‖ X ‖3/2 (‖ u2 + uL ‖L4(Ω) + ‖ h1 + hL ‖L4(Ω)).

By applying Hölder’s inequality we have

∂ | X |2
∂t

+ α ‖ X ‖2≤ c(1+ ‖ u2 + uL ‖4L4(Ω) + ‖ h1 + hL ‖4L4(Ω)) | X |2 .

The functions ‖ u2 + uL ‖4L4(Ω) and ‖ h1 + hL ‖4L4(Ω) being integrable with respect to
time, we deduce by applying Gronwall’s lemma that

| X(t) |2≤ c | X(0) |2 exp

(∫ t

0

(‖ u2(s) + uL(s) ‖4L4(Ω) + ‖ h1(s) + hL(s) ‖4L4(Ω))ds

)
.

Since | X | (0) = 0, then | X(t) |2≤ 0 ∀t ∈ [0, T ].

Hence

u1 = u2 and h1 = h2.

Now we give a physical interpretation of conditions (i) and (iii).

(i) K = (2α − Cg − CL(‖ uL ‖L∞(0,T,L4(Ω)) + ‖ hL ‖L∞(0,T,L4(Ω))))/C0 > 0,
where α = min(ν1, ν2).

(uL, hL) corresponds to a lifting of the boundary conditions (ũB , h̃B). Therefore
condition (i) expresses a relationship between the eddy viscosity coefficients ν1, ν2

and the boundary conditions. ν1 and ν2 have to be chosen large enough to verify (i).

(iii) | X0 |2 +CI(‖ Fex ‖2L2(0,T,L2(Ω)) + ‖ uL ‖3L3(0,T,L4(Ω))) < K2, where X0 =

(u0, h0).

The initial conditions (u0, h0), the boundary conditions, and the eddy viscosity
coefficients being fixed, condition (iii) applies to the variability of the external forcing
Fex which has to be small enough. Physically, this condition is realistic and not too
restrictive.
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3. Existence and characterization of the optimal control. The problem
is controlled by the external stress f . The depth of the layer is h = ξ + H − hL. The
bottom topography H is known and the surface topography ξ can be deduced from
altimetric measurements. Therefore h will be the observation for the control model.

Thus Uc = L2(0, T, L2(Ω)) will be the control space; we choose L4(0, T, L4(Ω))
as the observation space; hobs ∈ L4(0, T, L4(Ω)) denotes the observation. In order to
obtain the existence of a solution for the direct problem, we assume that the data are
small and the fluid is viscous enough.

The cost function J is defined by

J(g, v) =
1

4
‖ h− hobs ‖4L4(0,T,L4(Ω)) +

1

2
γ ‖ g ‖2Uc with γ > 0,

where (v, h) is the solution of the direct problem (2.1), the external forcing being
equal to g.

Let Kc be a convex, closed, nonempty subset of Uc. The optimal control problem
can be written as follows:

Find (f, u) ∈ Uad such that

J(f, u) = inf
(g,v)∈Uad

J(g, v),(3.1)

Uad = {(g, v) ∈ Kc × L2(0, T, V1) ∩ L∞(0, T,H1)/J(g, v) < ∞, and there exists

h ∈ L2(0, T, V2) ∩ L∞(0, T,H2) such that (v, h, g) is solution of problem (2.1),with
a forcing equal to g} is the admissibility set.

Remark 4. The space Uad is not empty. Let g = 0 and then let (v, h) ∈
L2(0, T, V )∩L∞(0, T,H) be the solution of (2.1). According to Proposition 1 (v, h) exists.

Moreover we have J(0, v) ≤ c(‖ h ‖1/2

L2(0,T,V1)
‖ h ‖1/2

L∞(0,T,H1)
+ ‖ hobs ‖L4(0,T,L4(Ω)))

4 < ∞.

Thus (0, v, h) ∈ Uad.

3.1. Existence and characterization of an optimal control in the case of
homogeneous boundary conditions. We first deal with the case of homogeneous
boundary conditions ũB = 0, h̃B = 0. Then we have uL = 0, hL = 0 and the initial
problem (1.1)–(1.2) is identical to problem (1.5).

Theorem 1. Under the assumptions of Proposition 1, the optimal control problem
(3.1) has at least one solution (f, u) ∈ Uad.

Proof. Let (f
k
, uk) be a minimizing sequence in Uad for the function J such that

lim inf
k→∞

J(f
k
, uk) = inf

(g,v)∈Uad
J(g, v).

Since J(f
k
, uk) is bounded for a minimizing sequence (f

k
, uk) ∈ Uad, then (f

k
, hk) is

uniformly bounded in Uc × L4(0, T, L4(Ω)) according to the definition of J .
Setting (v, β) = (uk, hk) in (2.1) gives

1

2

∂ | uk |2
∂t

+ a1(uk, uk) +
C

D
(| uk |2 uk, uk)− g(div(uk), hk) = (f

k
, uk),

1

2

∂ | hk |2
∂t

+ a2(hk, hk) + (div(hkuk), hk) = (f1, hk).

Adding these two equations, we obtain

1

2

∂ | Xk |2
∂t

+a(Xk, Xk)+
C

D
‖ uk ‖ 3

L3(Ω)−g(div(uk), hk)+(div(hkuk), hk) = (F k, Xk),



CONTROL METHOD FOR A SHALLOW-WATER PROBLEM 1569

where Xk = (uk, hk) and F k = (f
k
, f1).

According to Green’s formula we have (div(hkuk), hk) = 1
2 (div(uk), h

2
k) and there-

fore | (div(hkuk), hk) |≤ c ‖ uk ‖ ‖ hk ‖2L4(Ω).
Applying the coercivity of the bilinear form a and Hölder’s inequality, we obtain

1

2

∂ | Xk |2
∂t

+α ‖ Xk ‖2 +
C

D
‖ uk ‖3L3(Ω)≤ c0 | F k |2 +c1 | Xk |2 +

α

2
‖ Xk ‖2 +c2 ‖ hk ‖4L4(Ω)

which implies

∂ | Xk |2
∂t

+ α ‖ Xk ‖2≤ 2c0 | F k |2 +2c1 | Xk |2 +2c2 ‖ hk ‖4L4(Ω).(3.2)

Applying Gronwall’s lemma now gives

| Xk(t) |2≤ c4(1+ ‖ F k ‖2L2(0,T,H) + ‖ hk ‖4L4(0,T,L4(Ω))) ∀t ∈ [0, T ].

Since (hk, fk) is uniformly bounded in L4(0, T, L4(Ω)) × L2(0, T, L2(Ω)) and f1 is
independent of k, we have

| Xk(t) |2≤ c5 ∀t ∈ [0, T ].

By integrating inequality (3.2) with respect to time, we now obtain

‖ Xk(t) ‖2L2(0,T,V )≤ c.

Hence

Xk is uniformly bounded in L2(0, T, V ) ∩ L∞(0, T,H).(3.3)

By using (2.1), the continuity of a, Hölder’s inequality, and Lemma 3 we obtain(
∂Xk

∂t
, w

)
≤ c6(‖ Xk ‖ + ‖ Xk ‖2L4(Ω) + | F k |) ‖ w ‖(3.4)

and then, according to the continuous injection of H1(Ω) in L4(Ω),(
∂Xk

∂t
, w

)
≤ c7(‖ Xk ‖ + ‖ Xk ‖2 + | F k |) ‖ w ‖ .

Since ‖ Xk ‖L2(0,T,V ) and ‖ F k ‖L2(0,T,H) are uniformly bounded, we can conclude
that

∂Xk

∂t
is uniformly bounded in L1(0, T, V ′).(3.5)

Let us introduce space Y = {w ∈ L2(0, T, V ), ∂w/∂t ∈ L1(0, T, V ′)}. According
to Temam [18], [19] the injection of Y into L2(0, T,H) is compact. We have proved
that Xk is uniformly bounded in Y . f

k
being uniformly bounded in Uc, we can extract

from (Xk, F k) a subsequence also denoted by (Xk, F k) and such that

f
k
⇀ f weakly in Uc,

Xk ⇀ X weakly in L2(0, T, V ),
Xk −→ X strongly in L2(0, T,H).
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We now have to verify that X = (u, h) is the solution of problem (2.1), f being
the external forcing. For this, we refer to a similar result occurring in the proof of
Proposition 1.

Since J is weakly lower semicontinuous, we have

J(f, u) ≤ lim inf
k→∞

J(f
k
, uk),

and then J(f, u) = inf(g,v)∈Uad J(g, v), which achieves the proof.

Remark 5. The question of the uniqueness is not treated; in general (in nonlinear
problems) the answer is expected to be negative (for the same remark see, for example,
Fattorini and Sritharan [8], [9] and Lions [12]).

In order to characterize the optimal control, we introduce a cost function Jε which
is a penalization of J corresponding to a linearization of problem (2.1). Then we will
study the limit when ε tends to 0.

Let (f, u) be the solution of the control problem (3.1). Function Jε is defined by

Jε(g, w) =
1

4
‖ H(g, w)− hobs ‖4L4(0,T,L4(Ω)) +

1

2
γ ‖ g ‖2Uc

+
1

2ε

∫ T

0

a1(U(g, w)− w,U(g, w)− w)dt

+
1

2
‖ U(g, w)− u ‖2L2(0,T,H1)

+
1

2
‖ g − f ‖2Uc ,

(3.6)

where (U(g, w), H(g, w)) is the solution of the following problem:(
∂U

∂t
, v

)
+ a1(U, v) +

C

D
(| w |2 U, v) + (F ∧ U, v)− g(div(v), H) = (g, v),(

∂H

∂t
, β

)
+ a2(H,β) + (div(Hw), β) = (f1, β) ∀(v, β) ∈ V,

(U,H)(t = 0) = (u0, h0).

(3.7)

Lemma 5. U(f,u)=u and H(f,u)=h, where (u,h) is the solution of problem
(2.1), the external forcing being equal to f.

Proof. Let u1 = U(f, u)− u and h1 = H(f, u)− h.
Subtracting (2.1) from (3.7) gives(

∂u1

∂t
, v

)
+ a1(u1, v) +

C

D
(| u |2 u1, v) + (F ∧ u1, v)− g(div(v), h1) = 0,(

∂h1

∂t
, β

)
+ a2(h1, β) + (div(h1u), β) = 0 ∀(v, β) ∈ V,

(u1, h1)(t = 0) = (0, 0).

(3.8)

Setting (v, β) = (u1, h1) in (3.8) and summing the first and second parts of (3.8), we
obtain

1

2

∂ | Y |2
∂t

+ a(Y, Y ) +
C

D

∫
Ω

| u |2 | u1 |22 dΩ = −(div(h1u), h1) + g(div(u1), h1),

where Y = (u1, h1).
According to Green’s formula we have (div(h1u), h1) = 1

2 (div(u), h
2
1) and there-

fore

| (div(h1u), h1) |≤ c ‖ u ‖ ‖ h1 ‖2L4(Ω).
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Using the coercivity of operator a, Gagliardo–Nirenberg’s inequality and Hölder’s
inequality we obtain

∂ | Y |2
∂t

+ α ‖ Y ‖2≤ c(1+ ‖ u ‖2) | Y |2 .

By now applying Gronwall’s lemma, we can deduce

| Y (t) |2≤ c | Y (0) |2
(
exp

(∫ t

0

‖ u ‖2 dt

))
∀t ∈ [0, T ].

Since | Y (0) |= 0 we have Y = 0 ∀t and then (u1, h1) = (0, 0).

The control problem associated with direct problem (3.7) and cost function Jε
defined by (3.6) is then the following:

Find (f
ε
, wε) ∈ U ε

ad such that

Jε(f ε, wε) = inf
(g,v)∈Uε

ad

Jε(g, v),(3.9)

where the admissibility set is U ε
ad = Kc × L2(0, T, V1) and Kc is a convex, closed,

nonempty subset of Uc.

3.1.1. Study of the penalized control problem. In this section we prove
the existence of an optimal control solution of problem (3.9). We then characterize
this control by means of direct problem (3.7) and its adjoint.

Proposition 2. For any ε > 0, control problem (3.9) has at least one solution
(f
ε
, wε) in U ε

ad.

Proof. This result is proved in the same way as in Theorem 1.

From now on, (f
ε
, wε) denotes the optimal control solution of problem (3.9). We

set U ε = U(f
ε
, wε), Hε = H(f

ε
, wε). (U ε, Hε) is the solution of the following problem:

(
∂U ε

∂t
, v

)
+ a1(U ε, v) +

C

D
(| wε |2 U ε, v) + (F ∧ U ε, v)− g(div(v), Hε) = (f

ε
, v),(

∂Hε

∂t
, β

)
+ a2(Hε, β) + (div(Hεwε), β) = (f1, β) ∀(v, β) ∈ V,

(U ε, Hε)(t = 0) = (u0, h0).

(3.10)

We are now going to characterize the optimal control (f
ε
, wε).

Theorem 2. Let (f, u) be a solution of control problem (3.1) and (f
ε
, wε) be a
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solution of control problem (3.9). Then there exists (U ε, Hε) and (Rε, Sε) such that

(
∂U ε

∂t
, v

)
+ a1(U ε, v) +

C

D
(| wε |2 U ε, v) + (F ∧ U ε, v)− g(div(v), Hε) = (f

ε
, v),(

∂Hε

∂t
, β

)
+ a2(Hε, β) + (div(Hεwε), β) = (f1, β) ∀(v, β) ∈ V,

(U ε, Hε)(t = 0) = (u0, h0),(
−∂Rε

∂t
, v

)
+ a1(Rε, v) +

C

D
(| wε |2 Rε + (Rε, U ε)2

wε
| wε |2

, v)− (F ∧Rε, v)

−((Hε∇)Sε, v) = (U ε − u, v),(
−∂Sε

∂t
, β

)
+ a2(Sε, β) + (div(βwε), Sε)− g(div(Rε), β) = ((Hε − hobs)

3, β) ∀(v, β) ∈ V,

(Rε, Sε)(t = T ) = (0, 0),

and
(Rε + γf

ε
+ f

ε
− f, g − f

ε
)Uc ≥ 0 ∀g ∈ Kc.

Proof. The partial derivative of (3.7), at point (f
ε
, wε), with respect to g at

constant w is

(
∂Ug

∂t
, v

)
+ a1(Ug, v) +

C

D
(| wε |2 Ug, v) + (F ∧ Ug, v)− g(div(v), Hg) = (g, v),(

∂Hg

∂t
, β

)
+ a2(Hg, β) + (div(Hgwε), β) = 0 ∀(v, β) ∈ V,

(Ug, Hg) = (0, 0)

(3.11)

and the partial derivative of (3.7), at point (f
ε
, wε), with respect to w at constant g

is

(
∂Uw

∂t
, v

)
+ a1(Uw, v) +

C

D
(| wε |2 Uw, v) +

C

D

(
(w,wε)2

U ε

| wε |2
, v

)
+ (F ∧ Uw, v)

−g(div(v), Hw) = 0,(
∂Hw

∂t
, β

)
+ a2(Hw, β) + (div(Hwwε) + div(Hεw), β) = 0 ∀(v, β) ∈ V,

(Uw, Hw) = (0, 0).

(3.12)

The existence of (U ε, Hε), the solution of the direct problem, follows from the
definition of Jε. On the other hand, we have to prove the existence of (Rε, Sε) verifying
the adjoint problem.
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First (Rε, Sε) will denote the solution of the following problem:

(
−∂Rε

∂t
, v

)
+ a1(Rε, v) +

C

D
(| wε |2 Rε, v)− (F ∧Rε, v)− ((Hε∇)Sε, v)

= (U ε − u, v) +
1

ε
a1(U ε − wε, v),(

−∂Sε
∂t

, β

)
+ a2(Sε, β) + (div(βwε), Sε)− g(div(Rε), β)

= ((Hε − hobs)
3, β) ∀(v, β) ∈ V,

(Rε, Sε)(t = T ) = (0, 0).

(3.13)

This linear problem has one unique solution (Rε, Sε) in L2(0, T, V ).

Setting (v, β) = (Rε, Sε) in (3.12) and integrating with respect to time gives

∫ T

0

(
∂Uw

∂t
,Rε

)
dt +

∫ T

0

a1(Uw, Rε)dt +
C

D

∫ T

0

(| wε |2 Uw, Rε)dt

+
C

D

∫ T

0

(
(w,wε)2

U ε

| wε |2
, Rε

)
dt

+

∫ T

0

(F ∧ Uw, Rε)dt− g

∫ T

0

(div(Rε), Hw)dt = 0,

∫ T

0

(
∂Hw

∂t
, Sε

)
dt +

∫ T

0

a2(Hw, Sε)dt +

∫ T

0

(div(Hwwε) + div(Hεw), Sε)dt = 0.

After integration by parts we obtain

−
∫ T

0

(
∂Rε

∂t
, Uw

)
dt +

∫ T

0

a1(Rε, Uw)dt +
C

D

∫ T

0

(| wε |2 Rε, Uw)dt

+
C

D

∫ T

0

(
(w,wε)2

U ε

| wε |2
, Rε

)
dt

−
∫ T

0

(F ∧Rε, Uw)dt− g

∫ T

0

(div(Rε), Hw)dt = 0,

−
∫ T

0

(
∂Sε
∂t

,Hw

)
dt +

∫ T

0

a2(Sε, Hw)dt +

∫ T

0

(div(Hwwε) + div(Hεw), Sε)dt = 0.

Since (Rε, Sε) verifies (3.13), this implies

C

D

∫ T

0

(
(w,wε)2

U ε

| wε |2
, Rε

)
dt− g

∫ T

0

(div(Rε), Hw)dt +

∫ T

0

(U ε − u, Uw)dt

+
1

ε

∫ T

0

a1(U ε − wε, Uw)dt = 0,∫ T

0

(div(Hεw), Sε)dt + g

∫ T

0

(div(Rε), Hw)dt +

∫ T

0

((Hε − hobs)
3, Hw)dt = 0;
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hence

(3.14)

g

∫ T

0

(div(Rε), Hw)dt =
C

D

∫ T

0

(
(U ε, Rε)2

wε
| wε |2

, w

)
dt +

∫ T

0

(U ε − u, Uw)dt

+
1

ε

∫ T

0

a1(U ε − wε, Uw)dt,

g

∫ T

0

(div(Rε), Hw)dt =

∫ T

0

(Hε∇Sε, w)dt−
∫ T

0

((Hε − hobs)
3, Hw)dt.

The partial derivative of Jε, at point (f
ε
, wε), with respect to w at constant g is

∂Jε

∂w
(f

ε
, wε).w =

∫ T

0

((Hε−hobs)
3, Hw)dt+

1

ε

∫ T

0

a1(U ε−wε, Uw−w)dt+

∫ T

0

(U ε−u, Uw)dt.

Control problem (3.9) includes no constraint concerning w, so

∂Jε
∂w

(f
ε
, wε).w = 0 ∀w ∈ L2(0, T, V1).

From this and (3.14) we deduce

1

ε

∫ T

0

a1(U ε−wε, w)dt =

∫ T

0

(
Hε∇Sε − C

D
(U ε, Rε)2

wε
| wε |2

, w

)
dt ∀w ∈ L2(0, T, V1).

In particular, we have

1

ε

∫ T

0

a1(U ε − wε, ϕ(t)v)dt =

∫ T

0

(
Hε∇Sε − C

D
(U ε, Rε)2

wε
| wε |2

, ϕ(t)v

)
dt

∀(v, ϕ) ∈ V1 ×D(0, T ).

Thus, in the distribution sense,

1

ε
a1(U ε − wε, v) =

(
Hε∇Sε − C

D
(U ε, Rε)2

wε
| wε |2

, v

)
∀v ∈ V1.(3.15)

Since (Rε, Sε) is the solution of problem (3.13), we obtain by using (3.15) that (Rε, Sε)
verifies the problem

(
−∂Rε

∂t
, v

)
+ a1(Rε, v) +

C

D

(
| wε |2 Rε + (Rε, U ε)2

wε

| wε |2
, v

)
− (F ∧Rε, v)

−((Hε∇)Sε, v) = (U ε − u, v),(
−∂Sε

∂t
, β
)

+ a2(Sε, β) + (div(βwε), Sε) − g(div(Rε), β) = ((Hε − hobs)
3, β) ∀(v, β) ∈ V,

(3.16)

which is the adjoint problem occuring in Theorem 2.

We now are going to prove the inequality which characterizes the optimal control
f
ε
.
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Setting (v, β) = (Rε, Sε) in (3.11) and integrating with respect to time give∫ T

0

(
∂Ug

∂t
,Rε

)
dt +

∫ T

0

a1(Ug, Rε)dt +

∫ T

0

C

D
(| wε |2 Ug, Rε)dt +

∫ T

0

(F ∧ Ug, Rε)dt

−g

∫ T

0

(div(Rε), Hg)dt =

∫ T

0

(g,Rε)dt,∫ T

0

(
∂Hg

∂t
, Sε

)
dt +

∫ T

0

a2(Hg, Sε)dt +

∫ T

0

(div(Hgwε), Sε)dt = 0

and then

−
∫ T

0

(
∂Rε

∂t
, Ug

)
dt +

∫ T

0

a1(Rε, Ug)dt +

∫ T

0

C

D
(| wε |2 Rε, Ug)dt

−
∫ T

0

(F ∧Rε, Ug)dt

−g

∫ T

0

(div(Rε), Hg)dt =

∫ T

0

(g,Rε)dt,

−
∫ T

0

(
∂Sε
∂t

,Hg

)
dt +

∫ T

0

a2(Sε, Hg)dt +

∫ T

0

(div(Hgwε), Sε)dt = 0.

Since (Rε, Sε) is the solution of problem (3.16), we obtain

−C

D

∫ T

0

(
(Rε, U ε)2

wε
| wε |2

, Ug

)
dt− g

∫ T

0

(div(Rε), Hg)dt

+

∫ T

0

(U ε − u, Ug)dt +

∫ T

0

(Hε∇Sε, Ug)dt =

∫ T

0

(g,Rε)dt,

g

∫ T

0

(div(Rε), Hg)dt +

∫ T

0

((Hε − hobs)
3, Hg)dt = 0.

(3.17)

The partial derivative of Jε, at point (f
ε
, wε), with respect to g at constant w is

∂Jε
∂g

(f
ε
, wε).g =

∫ T

0

((Hε − hobs)
3, Hg)dt + γ(f

ε
, g)Uc + (f

ε
− f, g)Uc

+
1

ε

∫ T

0

a1(U ε − wε, Ug)dt +

∫ T

0

(U ε − u, Ug)dt.

Applying relationship (3.15), we deduce

∂Jε
∂g

(f
ε
, wε).g =

∫ T

0

((Hε − hobs)
3, Hg)dt + γ(f

ε
, g)Uc + (f

ε
− f, g)Uc

+

∫ T

0

(
Hε∇Sε − C

D
(U ε, Rε)2

wε
| wε |2

, Ug

)
dt +

∫ T

0

(U ε − u, Ug)dt.

(Rε, Sε) verifies equations (3.17). We then obtain

∂Jε
∂g

(f
ε
, wε).g = γ(f

ε
, g)Uc + (f

ε
− f, g)Uc +

∫ T

0

(g,Rε)dt.
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Since Uc = L2(0, T, L2(Ω)) we have

∂Jε
∂g

(f
ε
, wε).g =

∫ T

0

(Rε + γf
ε
+ f

ε
− f, g)dt.

Control problem (3.9) includes a constraint on g: g ∈ Kc ⊂ Uc. Therefore the optimal
control f

ε
has to verify the inequality

∂Jε
∂g

(f
ε
, wε).(g − f

ε
) ≥ 0 ∀g ∈ Kc

and we have ∫ T

0

(Rε + γf
ε
+ f

ε
− f, g − f

ε
)dt ≥ 0 ∀g ∈ Kc.

This achieves the proof of Theorem 2.

3.1.2. Characterization of the optimal control. The penalized control prob-
lem (3.9) has a solution which is characterized by means of the direct and adjoint
penalized equations.

We are now going to characterize the optimal control (f, u), the solution of prob-
lem (3.1). (u, h) denotes the solution of direct problem (2.1). The adjoint problem
is obtained by passing to the limit in the adjoint penalized equations introduced in
Theorem 2.

Theorem 3. Let (f
ε
, wε) be a solution of control problem (3.9). The following

convergence results are verified as ε −→ 0:
• f

ε
converges to f in Uc strongly,

• limε−→0
1
ε ‖ U ε − wε ‖2L2(0,T,H1(Ω))= 0,

• U ε ⇀ u weakly in L2(0, T,H1(Ω)),
• U ε −→ u strongly in L2(0, T, L2(Ω)),
• Hε ⇀ h weakly in L2(0, T,H1(Ω)),
• Hε −→ h strongly in L2(0, T, L2(Ω)),
• wε ⇀ u weakly in L2(0, T,H1(Ω)),
• Jε(wε, f ε) converges to J(u, f),

Proof. (f, u) ∈ Uad denotes a solution of control problem (3.1). (f
ε
, wε) ∈ U ε

ad

denotes a solution of the penalized control problem (3.9). Since Jε(f, u) = J(f, u)
and Uad ⊂ U ε

ad, we have

Jε(f ε, wε) ≤ J(f, u).

According to the definition of Jε, this implies that

‖ f
ε
− f ‖2Uc≤ 2J(f, u),∫ T

0

a1(U ε − wε, U ε − wε)dt ≤ 2εJ(f, u),

‖ U ε − u ‖2L2(0,T,H1)
≤ 2J(f, u),

‖ Hε − hobs ‖4L4(0,T,L4(Ω))≤ 4J(f, u).

(3.18)

Using the coercivity of a, we deduce from (3.18) the following results:

‖ f
ε
‖2Uc≤ 2 ‖ f ‖2Uc +4J(u, f),

lim
ε→0
‖ U ε − wε ‖L2(0,T,H1(Ω))= 0,

‖ U ε ‖L2(0,T,H1)≤ c,
‖ Hε ‖L4(0,T,L4(Ω))≤ c,

(3.19)
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where c is a positive constant.
Equation (3.19) implies that U ε converges towards wε strongly in L2(0, T,H1(Ω))

and that (U ε, Hε) is uniformly bounded in L2(0, T, L2(Ω)) × L4(0, T, L4(Ω)). For ε
sufficiently small, ‖ U ε − wε ‖L2(0,T,H1(Ω)) is uniformly bounded. Therefore there
exists a positive constant c > 0 independent of ε such that

‖ wε ‖L2(0,T,H1(Ω))≤ c(1+ ‖ U ε ‖L2(0,T,H1(Ω)))

and

‖ wε ‖L2(0,T,L2(Ω))≤ c(1+ ‖ U ε ‖L2(0,T,L2(Ω))).

Since U ε is uniformly bounded in L2(0, T, L2(Ω)), we have

‖ wε ‖L2(0,T,L2(Ω))≤ c.(3.20)

We can now pass to the limit in direct problem (3.10).
Setting (v, β) = (U ε, Hε) in (3.10) and adding the first and second parts of (3.10)

gives

1

2

∂ | Xε |2
∂t

+ a(Xε, Xε) +
C

D

∫
Ω

| wε |2| U ε |22 dΩ = (F ε, Xε) + g(div(U ε), Hε)

− (div(Hεwε), Hε),

where Xε = (U ε, Hε) et F ε = (f
ε
, f1).

According to Green’s formula we have (div(Hεwε), Hε) = 1
2 (div(wε), H

2
ε ) and

therefore

| (div(Hεwε), Hε) |≤ c(‖ U ε − wε ‖ + ‖ U ε ‖) ‖ Hε ‖2L4(Ω) .

Applying the coercivity of a, the positivity of
∫
Ω
| wε |2| U ε |22 dΩ, and Hölder’s

inequality we obtain

∂ | Xε |2
∂t

+ α ‖ Xε ‖2≤ c2 | F ε |2 +c3 | Xε |2 +c4(‖ Hε ‖4L4(Ω) + ‖ U ε − wε ‖2).
(3.21)

Gronwall’s lemma now gives

| Xε |2≤ c(1+ ‖ F ε ‖2L2(0,T,L2(Ω)) + ‖ Hε ‖4L4(0,T,L4(Ω)) + ‖ U ε − wε ‖2L2(0,T,H1(Ω))).

According to (3.19) and (3.21), we deduce that sequence Xε is uniformly bounded in
L2(0, T, V )∩L∞(0, T,H); (f

ε
, wε) being uniformly bounded in Uc×L2(0, T,H1(Ω)),

we can extract from (f
ε
, Xε, wε) a subsequence also denoted by (f

ε
, Xε, wε), which

verifies

f
ε
⇀ f

0
weakly in Uc,

Xε ⇀ X0 weakly in L2(0, T,H1(Ω)),
Xε −→ X0 strongly in L2(0, T, L2(Ω)),
wε ⇀ U0 weakly in L2(0, T,H1(Ω)).

(3.22)

We now have to verify that X0 = (U0, H0) is the solution of (2.1), f
0
being the external

forcing. For this, we refer to a similar result occurring in the proof of Proposition 1.
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Now applying the property of weak lower semicontinuity of J , we obtain [6]

(3.23)

J(f
0
, U0) ≤ lim inf

ε→0
J(f

ε
, U ε)

and
1

2
(‖ U0 − u ‖2L2(0,T,L2(Ω)) + ‖ f

0
− f ‖2Uc)

≤ lim infε→0
1
2 (‖ U ε − u ‖2L2(0,T,L2(Ω)) + ‖ f

ε
− f ‖2Uc).

From (3.23), we deduce

J(f
0
, U0) ≤ lim inf

ε→0
Jε(f ε, wε).

Since (f
ε
, wε) (resp., (f, u)) is the optimal control solution of (3.1) (resp., (3.9)), we

thus have

J(f
0
, U0) ≤ lim inf

ε→0
Jε(f ε, wε) ≤ J(f, u) ≤ J(f

0
, U0).

We conclude that

J(f
0
, U0) = J(f, u);

(f
0
, U0) is a solution of control problem (3.1).
Applying Lemma 5, we also have

J(f, u) ≤ lim inf
ε→0

Jε(f ε, wε) ≤ lim sup
ε→0

Jε(f ε, wε) ≤ J(f, u),

which implies

lim
ε→0

Jε(f ε, wε) = J(f, u) = J(f
0
, U0).

U ε converges towards U0 in L2(0, T, L2(Ω)) strongly; therefore

0 ≤ lim sup
ε→0

(
1

2

(
1

ε

∫ T

0

a1(U ε − wε − U ε − wε)dt+ ‖ f
ε
− f ‖2Uc

))

+
1

2
‖ U0 − u ‖2L2(0,T,L2(Ω))

≤ lim sup
ε→0

Jε(f ε, wε)− lim inf
ε→0

J(f
ε
, U ε).

According to (3.23) this implies

lim
ε→0

1

ε

∫ T

0

a1(U ε − wε, U ε − wε)dt = 0,

lim
ε→0
‖ f

ε
− f ‖2Uc ,

(U0, H0, f0
) = (u, h, f).

These convergence results will allow us to pass to the limit in the adjoint penalized
problem and thus to characterize the optimal control (f, u).
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Theorem 4. Let (f, u) be a solution of control problem (3.1) and (u, h) be the

solution of direct problem (2.1). Then there exists (R,S) ∈ L2(0, T, V ) such that(
−∂R

∂t
, v

)
+ a1(R, v) +

C

D

(
| u |2 R + (R, u)2

u

| u |2 , v
)
− (F ∧R, v)− (h∇S, v) = 0,(

−∂S

∂t
, β

)
+ a2(S, β)− ((u∇)S, β)− g(div(R), β) = ((h− hobs)

3, β) ∀(v, β) ∈ V,

(R,S)(t = T ) = (0, 0)
and
(R + γf, g − f)Uc ≥ 0 ∀g ∈ Kc.

Proof. (Rε, Sε) being the solution of the adjoint penalized problem (3.16), we
introduce the sequence dε by setting

dε =‖ Sε ‖−1
L4(0,T,L4(Ω)) if Sε is not uniformly bounded in L4(0, T, L4(Ω)),

dε = 1 if Sε is uniformly bounded in L4(0, T, L4(Ω)).

Remark 6. Sequence dε converges towards d with d = 0 or 1.
We multiply (3.16) by dε and we thus obtain a couple (R̃ε, S̃ε) verifying

(3.24)(
−∂R̃ε

∂t
, v

)
+ a1(R̃ε, v) +

C

D

(
| wε |2 R̃ε + (R̃ε, U ε)2

wε
| wε |2

, v

)
− (F ∧ R̃ε, v)

−((Hε∇)S̃ε, v) = dε(U ε − u, v),(
−∂S̃ε

∂t
, β

)
+ a2(S̃ε, β) + (div(βwε), S̃ε)− g(div(R̃ε), β) = dε((Hε − hobs)

3, β)

∀(v, β) ∈ V,

(R̃ε, S̃ε)(t = T ) = (0, 0)

and the inequality

(R̃ε + dε(γf ε + f
ε
− f), g − f

ε
)Uc ≥ 0 ∀g ∈ Kc.

Setting (v, β) = (R̃ε, S̃ε) in (3.24), we obtain

−1

2

∂ | R̃ε |2
∂t

+ a1(R̃ε, R̃ε) +
C

D

(
| wε |2 R̃ε + (R̃ε, U ε)2

wε
| wε |2

, R̃ε

)
− ((Hε∇)S̃ε, R̃ε)

= dε(U ε − u, R̃ε),

−1

2

∂ | S̃ε |2
∂t

+ a2(S̃ε, S̃ε) + (div(S̃εwε), S̃ε)− g(div(R̃ε), S̃ε) = dε((Hε − hobs)
3, S̃ε).

Adding these two equations gives

−1

2

∂ | Yε |2
∂t

+ a(Yε, Yε) +
C

D

∫
Ω

| wε |2 | R̃ε |22 dΩ +
C

D

∫
Ω

(R̃ε, U ε)2
(wε, R̃ε)2
| wε |2

dΩ

−((Hε∇)S̃ε, R̃ε) + (div(S̃εwε), S̃ε)− g(div(R̃ε), S̃ε)

= dε(U ε − u, R̃ε) + dε((Hε − hobs)
3, S̃ε),
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where Yε = (R̃ε, S̃ε).
Hölder’s inequality implies that

dε((Hε − hobs)
3, S̃ε) ≤ c0(d

4/3
ε ‖ Hε − hobs ‖4L4(Ω) + ‖ S̃ε ‖4L4(Ω)).

According to Green’s formula we have

2(div(S̃εwε), S̃ε) = (S̃ε
2
,div(wε)) and | 2(div(S̃εwε), S̃ε) |≤ c ‖ S̃ε ‖2L4(Ω)‖ wε ‖.

Now applying the coercivity of a and Lemma 3 we obtain

−1

2

∂ | Yε |2
∂t

+ α ‖ Yε ‖2 +
C

D

∫
Ω

| wε |2 | R̃ε |22 dΩ

≤ C

D

∫
Ω

| U ε |2 | R̃ε |22 dΩ + c1 ‖ R̃ε ‖| S̃ε |

+c2(‖ Hε ‖L4(Ω)‖ R̃ε ‖L4(Ω)‖ S̃ε ‖ + ‖ S̃ε ‖2L4(Ω)‖ wε ‖)
+dε | U ε − u || R̃ε | +c0(d

4/3
ε ‖ Hε − hobs ‖4L4(Ω) + ‖ S̃ε ‖4L4(Ω)),

which implies

−1

2

∂ | Yε |2
∂t

+ α ‖ Yε ‖2 +
C

D

∫
Ω

| wε |2 | R̃ε |22 dΩ ≤ c3 | U ε |‖ Yε ‖2L4(Ω)

+c4(‖ Hε ‖L4(Ω)‖ Yε ‖L4(Ω)‖ Yε ‖ + ‖ wε ‖‖ S̃ε ‖2L4(Ω)) + c5 ‖ Yε ‖| Yε |
+c6dε | U ε − u || Yε | +c0(d

4/3
ε ‖ Hε − hobs ‖4L4(Ω) + ‖ S̃ε ‖4L4(Ω)).

Applying Gagliardo–Nirenberg’s inequality, Hölder’s inequality, and the boundedness
of U ε − u and U ε in L∞(0, T,H), we obtain

−∂ | Yε |2
∂t

+ α ‖ Yε ‖2 +
2C

D

∫
Ω

| wε |2 | R̃ε |22 dΩ ≤ c7 | Yε |2 +c8 ‖ Hε ‖4L4(Ω)

+c9 ‖ wε ‖2 +c10dε | Yε | +c11(d
4/3
ε ‖ Hε − hobs ‖4L4(Ω) + ‖ S̃ε ‖4L4(Ω)).(3.25)

In particular, we have

−∂ | Yε |2
∂t

≤ c12 | Yε |2 +c8 ‖ Hε ‖4L4(Ω) +c9 ‖ wε ‖2 +c13d
2
ε

+c10(d
4/3
ε ‖ Hε − hobs ‖4L4(Ω) + ‖ S̃ε ‖4L4(Ω)).

Integrating with respect to time gives

| Yε |2≤ c11

∫ T

t

| Yε |2 dt + c8 ‖ Hε ‖4L4(0,T,L4(Ω)) +c9 ‖ wε ‖2L2(0,T,H1(Ω)) +c12Td2
ε

+c10(d
4/3
ε ‖ Hε − hobs ‖4L4(0,T,L4(Ω)) + ‖ S̃ε ‖4L4(0,T,L4(Ω))).

Since Hε − hobs is uniformly bounded in L4(0, T, L4(Ω)), Hε in L4(0, T, L4(Ω)),
and wε in L2(0, T,H1(Ω)), then by Gagliardo–Nirenberg’s inequality we deduce

| Yε |2≤ c11

∫ T

t

| Yε |2 dt + c13(1 + d4/3
ε + d2

ε+ ‖ S̃ε ‖4L4(0,T,L4(Ω))).



CONTROL METHOD FOR A SHALLOW-WATER PROBLEM 1581

Since dε is bounded and S̃ε is uniformly bounded in L4(0, T, L4(Ω)), by using Gron-
wall’s lemma we prove that Yε is uniformly bounded in L∞(0, T, L2(Ω)).

From (3.25) we deduce that

Yε is uniformly bounded in L2(0, T,H1(Ω)) ∩ L∞(0, T, L2(Ω)).

Using (3.24), we have

−
(

∂Yε
∂t

,W

)
= −a(Yε,W )− C

D

∫
Ω

| wε |2 (R̃ε, v)2dΩ−
C

D

∫
Ω

(R̃ε, U ε)2
(wε, v)2
| wε |2

dΩ

+((Hε∇)S̃ε, v) + ((S̃ε∇)β,wε) + g(div(R̃ε), β) + dε(U ε − u, v) + dε((Hε − hobs)
3, β),

where W = (v, β).
According to the continuity of the bilinear form a, Lemma 3, and Hölder’s in-

equality, we obtain∣∣∣∣(∂Yε
∂t

,W

)∣∣∣∣ ≤ c(‖ Yε ‖ + ‖ wε ‖L4(Ω)‖ Yε ‖L4(Ω) + ‖ U ε ‖L4(Ω)‖ Yε ‖L4(Ω)

+ ‖ Hε ‖L4(Ω)‖ Yε ‖ +dε | U ε − u | +dε ‖ Hε − hobs ‖3L4(Ω)) ‖W ‖,
which implies∥∥∥∥∂Yε∂t

∥∥∥∥
V ′
≤ c(‖ Yε ‖ + ‖ wε ‖L4(Ω)‖ Yε ‖L4(Ω) + ‖ U ε ‖L4(Ω)‖ Yε ‖L4(Ω)

+ ‖ Hε ‖L4(Ω)‖ Yε ‖ +dε | U ε − u | +dε ‖ Hε − hobs ‖3L4(Ω)).

Integrating with respect to time and using Hölder’s inequality, we obtain∥∥∥∥∂Yε∂t

∥∥∥∥
L1(0,T,V ′)

≤ c(1+ ‖ Yε ‖2L2(0,T,H1(Ω)) + ‖ wε ‖2L2(0,T,H1(Ω)) + ‖ U ε ‖2L2(0,T,H1(Ω))

+ ‖ Hε ‖2L2(0,T,H1(Ω)) +d2
ε+ ‖ U ε − u ‖2L2(0,T,L2(Ω)) +d4

ε+ ‖ Hε − hobs ‖4L4(0,T,L4(Ω))).

Applying (3.18), (3.19), and the boundedness of Yε,U ε,Hε and wε in L2(0, T,H1(Ω)),
we deduce that ∂Yε/∂t is uniformly bounded in L1(0, T, V ′).

We can then extract from (Yε) a subsequence also denoted (Yε) and such that

Yε ⇀ Y weakly in L2(0, T,H1(Ω)),
Yε −→ Y strongly in L2(0, T, L2(Ω)).

Since (F ε, U ε, Hε, wε) verifies the convergence results proved in Theorem 3, we can
pass to the limit in (3.24). The method is the same as in the proof of Proposition 1.
We thus obtain that Y = (R,S) verifies the equations(
−∂R

∂t
, v

)
+ a1(R, v) +

C

D

(
| u |2 R + (R, u)2

u

| u |2 , v
)
− (F ∧R, v)

−((h∇)S, v) = 0,(
−∂S

∂t
, β

)
+ a2(S, β) + (div(βu), S)− g(div(R), β) = d((h− hobs)

3, β) ∀(v, β) ∈ V,

(R,S)(T ) = (0, 0),
and∫ T

0

(R + dγf, g − f)dt ≥ 0 ∀g ∈ Kc,where d = 0 or 1.



1582 AZIZ BELMILOUDI

We are now going to prove that d = 1 in order to achieve the proof of Theorem 4.
Let us suppose that d = 0; then (R,S) verifies the system(

−∂R

∂t
, v

)
+ a1(R, v) +

C

D

(
| u |2 R + (R, u)2

u

| u |2 , v
)
− (F ∧R, v)

−((h∇)S, v) = 0,(
−∂S

∂t
, β

)
+ a2(S, β) + (div(βu), S)− g(div(R), β) = 0 ∀(v, β) ∈ V,

(R,S)(T ) = (0, 0).

(3.26)

Setting (v, β) = (R,S) in (3.26) and adding the first and second parts of (3.26), we
obtain

−1

2

∂ | Y |2
∂t

+ a(Y, Y ) +
C

D

∫
Ω

| u |2 | R |22 dΩ +
C

D

∫
Ω

(u,R)22
| u |2 dΩ

= ((h∇)S,R)− (div(Su), S) + g(div(R), S),

where Y = (R,S).

By using the coercivity of operator a, Lemma 3, and Hölder’s inequality, we obtain

−∂ | Y |2
∂t

+ α ‖ Y ‖2≤ c(1+ ‖ h ‖4L4(Ω) + ‖ u ‖4L4(Ω)) | Y |2 .

The functions ‖ h ‖4L4(Ω) and ‖ u ‖4L4(Ω) are integrable with respect to time, so by
applying Gronwall’s lemma, we deduce

| Y |2≤ c | Y (T ) |2 exp

(∫ T

t

(‖ h(s) ‖4L4(Ω) + ‖ u(s) ‖4L4(Ω))ds

)
∀t ∈ [0, T ].

Since Y (T ) = 0, we thus obtain Y = 0.

Since the solution S is the limit with ε→ 0 of S̃ε and the sequence ‖ S̃ε ‖L4(0,T,L4(Ω))

is equal to 1, then ‖ S ‖L4(0,T,L4(Ω)) is equal to 1 and we have a contradiction. So we
can conclude that d = 1.

This achieves the proof of the theorem.

3.2. Study of the optimal control problem with nonhomogeneous bound-
ary conditions. The results obtained in section 3.1 can easily be extended to the
general nonhomogeneous case. Then the first step consists of solving linear problems
(1.3) and (1.4) whose solution (uL, hL) doesn’t depend on the control f . We have
proved the equivalence between initial problem (1.1)–(1.2) and homogeneous prob-
lem (1.5). Therefore the control method is applied to problem (1.5), the penalization
method works in the same way as in section 3.1, and we obtain the two following
theorems.

Theorem 5. Under the assumptions of Proposition 1, the optimal control problem
(3.9) has at least one solution (f, u) in Uad.
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Theorem 6. Optimal control (f, u) is characterized by(
∂u

∂t
, v

)
+ a1(u, v) +

C

D
(| (u + uL) |2 (u + uL), v) + (F ∧ u, v)− g(div(v), h) = (f, v),(

∂h

∂t
, β

)
+ a2(h, β) + (div(hu), β) + (div(hLu), β) + (div(huL), β) = (f1, β)

∀(v, β) ∈ V,

(u, h)(t = 0) = (u0, h0),(
−∂R

∂t
, v

)
+ a1(R, v) +

C

D

(
| (u + uL) |2 R + (u + uL, R)2

(u + uL)

| (u + uL) |2
, v

)
−(F ∧R, v)− ((h + hL)∇S, v) = 0,(
−∂S

∂t
, β

)
+ a2(S, β)− (((u + uL)∇)S, β)− g(div(R), β) = ((h− hobs)

3, β)

∀(v, β) ∈ V,

(R,S)(t = T ) = (0, 0),

and

(R + γf, g − f)Uc ≥ 0 ∀g ∈ Kc.

4. Conclusion. We have developed a control method in order to calculate the
velocity u and the depth h. The sea level, deduced from altimetric measurements,
constitutes the observation in our model. The fluid exchanges are supposed to be
known; the outside stress f is unknown. We take then f as the control. (u(f), h(f))
are the velocity and depth corresponding to any control f . The optimal control is
defined as the outside stress minimizing a given cost function which measures the
distance between the observed depth and the depth h(f). The observed depth is
driven by an outside stress f

r
. f is an approximation of the unknown real outside

stress f
r
and then (u(f), h(f)) induced by the optimal control f has to approach the

real circulation (ur, hr) observed by the satellite.
The existence of optimal control is proved by means of minimizing sequences.

The question of the uniqueness is not treated; in general the answer is expected to
be negative. To characterize the control, we introduce a family of penalized control
problems; we obtain a set of equations characterizing these problems. Finally we
demonstrate the convergence of the penalized problems and obtain the optimality
conditions from which the solution of the initial nonlinear control problem and states
may be determinated.

We can use this theoretical study to develop a numerical scheme: let a fixed ε
be small enough, we may choose f

1
and so (u1, h1) is the solution of the nonlinear

shallow-water problem driven by f
1
. Then we solve the linear penalized control

problem numerically, for example, by using a quasi-Newton method. We obtain then
the solution (f

ε
, wε, U ε, Hε) and we compare (f

ε
, U ε, Hε) to (f

1
, u1, h1). If the error

is not sufficiently small, we initialize the algorithm with (f
ε
, U ε, Hε) and we iterate

the process. The computed solution (f
ε
, U ε, Hε) approximates the solution of the

initial nonlinear control problem. The approximate solution (f
ε
, U ε, Hε) depends on

the small parameter ε. The circulation (U ε, Hε) is driven by the outside stress f
ε
. In

order to confirm and to validate numerically the convergence results and the control
method, we may compare (f

ε
, U ε, Hε) and (f

r
, ur, hr) for different values of ε.
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We can thus compute the velocity and depth in a shallow-water domain Ω, during
a time T , from satellite observations of the surface topography.

Acknowledgment. The author is grateful to the referee for many useful com-
ments and suggestions which have improved the presentation of this paper.
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GENERIC SIMPLICITY OF THE SPECTRUM AND STABILIZATION
FOR A PLATE EQUATION∗
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Abstract. In this work we prove the generic simplicity of the spectrum of the clamped plate
equation in a bounded regular domain of R

d. That is, given Ω ⊂ R
d, we show that there exists an

arbitrarily small deformation of the domain u, such that all the eigenvalues of the plate system in
the deformed domain Ω + u are simple. To prove this result we first prove a nonstandard unique
continuation property for this system that also holds generically with respect to the perturbations
of the domain. Both the proof of this generic uniqueness result and the generic simplicity of the
spectrum use Baire’s lemma and shape differentiation. Finally, we show an application of this unique
continuation property to a result of generic stabilization for a plate system with one dissipative
boundary condition.

Key words. spectral theory, plate equation, unique continuation property, stabilization

AMS subject classifications. 35P05, 35J40, 93D15

PII. S0363012900358483

1. Introduction and main results. In this work we are interested in the study
of the spectral properties for the plate system

�2y = λy in Ω,

y = 0 on ∂Ω,

∂y

∂n
= 0 on ∂Ω,

(1.1)

where Ω ⊆ R
d is a bounded domain with boundary of class C4.

Problem (1.1) admits a sequence of eigenvalues

0 < λ1 ≤ λ2 ≤ · · · ≤ λn ≤ · · · −→ ∞,

which have finite multiplicity. The eigenfunctions {yn}n ⊂ H2
0 (Ω) of (1.1) can be

chosen to form an orthonormal basis of H2
0 (Ω) .

On the other hand, it is well known that the eigenvalues of (1.1) are not always
simple. For instance, in [8], it is shown that the first eigenvalue is not simple in a
suitable annular domain.

The problem of the simplicity of the spectrum arises in many contexts. This
is, for instance, the case when analyzing stabilizability and controllability issues for
evolution systems. When the spectrum is simple one can often reduce these problems
to the analysis of suitable properties of eigenfunctions, which is an easier problem to
deal with because of the lack of dependence with respect to time. We refer to J. L.
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Lions and E. Zuazua [21] for an example of a control problem where this strategy is
successfully applied.

Concerning the simplicity of the spectrum, the problem we address is as follows.
Are there arbitrarily small deformations of the domain u ∈ W 5,∞(Ω,Rd), such that
the spectrum of (1.1) in the deformed domain Ω+ u is simple?

In this paper we give a positive answer to this question. We show that the set
of deformations of the domain u ∈W 5,∞(Ω,Rd), such that the spectrum of the plate
system is simple, is a dense subset of W 5,∞(Ω,Rd).

The generic simplicity of the spectrum of second order elliptic operators is by now
well known. We refer to J. H. Albert [1] for perturbations of the coefficients of the
operator and to A. M. Micheletti [22] and K. Uhlenbeck [29] for perturbations of the
domain.

The result we prove in this paper and the methods we employ are inspired in
[25] by the authors, where a similar result was proved for the 2 − D Stokes system.
The proof combines Baire’s lemma and shape differentiation. These two tools re-
duce the problem to the obtainment of a suitable unique continuation property for
the eigenfunctions. In the context of second order problems this uniqueness problem
can be dealt with by means of Holmgrem’s theorem. However, this is not the case
when working with the plate equation. In this case the uniqueness problem cannot be
analyzed in the context of the classical Cauchy problems since only three boundary
conditions are known to vanish. We then proceed as in [25], showing that the unique-
ness property holds generically with respect to the perturbations of the domain. But
this turns out to be sufficient to complete the proof of the generic simplicity of the
spectrum.

Our generic unique continuation property refers to the following uniqueness prob-
lem.

If y solves (1.1) for some λ > 0 and

∂2y

∂n2
= 0 on Γ0,

then, necessarily, y ≡ 0.
This property will be referred to as spectral uniqueness.
Theorem 1.1. Let Ω ⊂ R

d be a bounded domain with boundary of class C4. Let
Γ0 be an open nonempty subset of ∂Ω.

Then, the set of deformations of the domain u ∈ W 5,∞(Ω,Rd), such that u = 0
on ∂Ω \ Γ0 and for which spectral uniqueness holds when Ω and Γ0 are replaced by
Ω+ u and Γ0 + u, is residual in

W0 = {u ∈W 5,∞(Ω,Rd) : u = 0 on ∂Ω\Γ0}.

In other words, it is a countable intersection of dense open sets of W0. In partic-
ular, it is dense in W0.

Remark 1.1. (1) As far as we know, there is no example in the literature of
bounded domain Ω and open subset Γ0 of ∂Ω for which there exists a nontrivial
eigenfunction of (1.1) such that the further condition

∂2y

∂n2
= 0 on Γ0(1.2)

is satisfied.
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However, our result is of a generic nature, and, therefore, it does not apply to any
domain Ω and open subset Γ0 of ∂Ω.

Therefore, whether this unique continuation property holds for any Ω and Γ0 ⊂
∂Ω remains an open problem.

(2) Using multiplier techniques (see Appendix I of [18], [19], and [13]), one can
show that this unique continuation holds for any domain Ω provided Γ0 is a subset of
the boundary of the form

Γ0 = Γ(x0) = {x ∈ ∂Ω : (x− x0) · n(x) > 0} .
In fact, multiplier methods allow us to show that uniqueness holds for the dynamic

plate model, but always for subsets of the boundary of this particular form.
Note, however, that these subsets of the boundary are always large. In other

words, there are many small subsets of the boundary Γ0 that cannot be written in
this form.

Consequently, our result is, as far we know, the first one that applies to arbitrarily
small subsets of boundary, but it is of generic nature.

(3) Note also that the deformations we apply do deform the subset Γ0 itself.
Whether this unique continuation result applies when u preserves Γ0 or not is an
open problem.

With the aid of this result we prove the main result on the generic simplicity of
the spectrum.

Theorem 1.2. Let Ω be a bounded domain of R
d of class C4. Let Γ0 be an open

nonempty subset of ∂Ω.
Then the set

A=
{
u∈W 5,∞(Ω,Rd) : u = 0 on ∂Ω \ Γ0 and the spectrum of (1.1) is simple

}
is residual in

W0 =
{
u ∈W 5,∞(Ω,Rd) : u = 0 on ∂Ω \ Γ0

}
.

We also show an application of Theorem 1.1 to the study of the stabilization of
the plate system with dissipative boundary conditions.

Let us consider the system

ytt +�2y = 0 in Ω× (0,∞) ,

y = 0 on ∂Ω× (0,∞) ,

∂y

∂n
= 0 on ∂Ω \ Γ0 × (0,∞) ,

�y = −∂yt
∂n

on Γ0 × (0,∞) ,

y (x, 0) = y0 in Ω,

yt (x, 0) = y1 in Ω.

(1.3)

It is easy to see that for any (y0, y1) ∈ X = X1 × X2 system (1.3) admits
a unique solution y ∈ C ([0,∞) ;X1) ∩ C1 ([0,∞) ;X2) . Here and in what follows
X1={ϕ∈H2 (Ω)∩H1

0 (Ω) :
∂ϕ
∂n = 0 on ∂Ω\Γ0} and X2 =L2 (Ω) .

We define the energy of the system as

E (t) =
1

2

∫
Ω

[
|yt|2 + |�y|2

]
.(1.4)
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From the dissipative boundary conditions of (1.3) we have that

d

dt
E (t) = −

∫
Γ0

|�y (x, t)|2 dΓ ≤ 0.(1.5)

Thus, we deduce that the energy decreases for any solution y of (1.3) as t→∞.
Therefore, the following question arises naturally.

Does the energy of any solution of (1.3) tend to zero as t→∞? In other words,
does

E (t)→ 0 as t→∞(1.6)

for every solution of (1.3)?
We will see that the stabilization property (1.6) holds generically with respect to

the domain Ω, as in the following theorem.
Theorem 1.3. Let Ω ⊂ R

d be an open bounded set of class C4, and let Γ0 be
an open nonempty subset of the boundary, such that the spectral uniqueness property
holds.

Then, every solution of (1.3) verifies that

E (t)→ 0 as t→ +∞.(1.7)

To prove this result we use La Salle’s invariance principle, which allows us to
reduce our stabilization problem to a unique continuation property. This unique
continuation problem turns out to be the one we have solved generically in Theorem
1.1, i.e., the spectral uniqueness problem.

We could also consider system (1.3) with two dissipative boundary conditions
instead of one. Consider, for instance,

y =
∂y

∂n
= 0 on ∂Ω \ Γ0 × (0,∞) ,

�y = −∂yt
∂n

on Γ0 × (0,∞) ,

∂�y
∂n

= yt on Γ0 × (0,∞) .

(1.8)

Then the stabilization result above holds for every domain Ω and for every
nonempty open subset Γ0 ⊂ ∂Ω. In this case, by means of La Salle’s invariance prin-
ciple, we can reduce our problem to a unique continuation one that may be solved by
applying the classical uniqueness theorem by Holmgrem. Indeed, in this case, we add
the extra boundary conditions �y = ∂y

∂n = 0 on Γ0 to the solutions of (1.1), in which
case we are in the context of the classical Cauchy problem.

Remark 1.2. The methods developed in this paper may be applied to other plate
systems, such as when the plate equation is replaced by the one taking into account
the rotational inertia term, i.e.,

ytt − γ�ytt +�2y = 0,

with γ > 0. Other boundary conditions may also be considered. For instance, the
condition ∂y

∂n = 0 on ∂Ω \ Γ0 may be replaced by �y = 0 on ∂Ω \ Γ0.
The same result applies as well to plate equations with nonlinear monotone bound-

ary damping.
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Remark 1.3. When Γ0 is a subset of the boundary of the form Γ(x0) we indicated
in Remark 1.1, uniform stability properties may be proved for the systems under
consideration, i.e.,

E(t) ≤ Ce−αtE(0)

for suitable C,α > 0 (see, for instance, [15]). We do not address this problem here.
In any case, one does not expect, in general, exponential decay to hold when the
dissipative term acts on a small subset of the boundary.

The rest of this work is organized as follows. In section 2 we present some pre-
liminary results on the variational formulation of the plate equation and shape dif-
ferentiation. In section 3 we prove a result of existence and regular dependence of
the branches of eigenvalues and eigenfunctions of the bilaplacian with respect to the
perturbation of the domain. In section 4 we compute the local variations of the
eigenvalues and eigenfunctions of the bilaplacian. In section 5 we prove the unique
continuation property of Theorem 1.1. In section 6 we prove the simplicity of the
spectrum of Theorem 1.2. Finally, in section 7 we prove the stabilization result of
Theorem 1.3.

2. Preliminaries.

2.1. Baire’s lemma. First we remember the Baire’s lemma, which will be a
useful tool.

Lemma 2.1 (Baire’s lemma). Let X be a complete metric space, and let An be
an open dense subset of X for all n ∈ N.

Then ∩n∈NAn is dense in X.
A direct consequence of Baire’s lemma is the following result.
Lemma 2.2. Let X be a complete metric space, and let {An}n≥0 be a sequence

of open subsets of X such that
1. A0 = X, and
2. An+1 is a dense subset of An for all n ≥ 0.
Then ∩∞

n=1An is dense in X.

2.2. Variational formulation of the plate system. The variational formu-
lation of the eigenvalue problem (1.1) is as follows: to find y ∈ H2

0 (Ω) and λ ∈ R such
that ∫

Ω

�y�ϕ = λ

∫
Ω

yϕ ∀ϕ ∈ H2
0 (Ω) .(2.1)

This variational eigenvalue problem can be handled in a standard way.
It is well known that there exists a positive constant c > 0 such that

‖f‖2H2(Ω) ≤ c
∫

Ω

|�f |2 ∀f ∈ H2
0 (Ω) .(2.2)

Then

|f |2 =
(∫

Ω

|�f |2
) 1

2

(2.3)

defines a norm in H2
0 (Ω) , equivalent to the one induced by the norm of H2 (Ω) .
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Thus

b : H2
0 (Ω)×H2

0 (Ω)→ R,

b (φ, ϕ) =

∫
Ω

�φ�ϕ
(2.4)

is a coercive and continuous bilinear form. Then, for each f ∈ H−2 (Ω) , there exists
a unique solution y ∈ H2

0 (Ω) of the problem∫
Ω

�y�ϕ = 〈f, ϕ〉H−2×H2
0

∀ϕ ∈ H2
0 (Ω) .

This shows the existence and uniqueness of weak solutions of the elliptic problem
�2y = f in Ω,

y = 0 on ∂Ω,

∂y

∂n
= 0 on ∂Ω.

(2.5)

Using the compactness of the imbedding H2
0 (Ω) ↪→ L2 (Ω) , one can show that the

map f ∈ L2 (Ω)→ y ∈ L2 (Ω) is compact. It is also easy to see that it is self-adjoint.
Applying the classical spectral theory for compact, self-adjoint operators, we deduce
that the eigenvalue problem (2.1) admits a sequence of eigenvalues

0 < λ1 ≤ λ2 ≤ λ3 ≤ · · · → +∞.
Moreover, each eigenvalue has finite multiplicity, and the eigenfunctions yi ∈

H4 (Ω) ∩H2
0 (Ω) can be chosen to form an orthonormal basis of L2 (Ω) .

2.3. Shape differentiation. An important tool for the study of the generic
properties is the shape differentiation. For more details about this technique, we refer
to [4], [27], [28], and the bibliographies therein.

Given a domain Ω and a function u : Ω → R
d, we define the new domain Ω + u

by

Ω + u = {y ∈ R
d : y = x+ u (x) , x ∈ Ω}.(2.6)

Let us consider perturbations u in the space W k,∞(Ω,Rd) with norm

‖u‖k,∞ = sup ess
0≤|α|≤k, x∈Ω

|Dαu (x)| .

The following results are well known.
Lemma 2.3 (see [28]). Let u ∈W k,∞(Ω,Rd), and let k ≥ 1 be such that ‖u‖k,∞ ≤

1
2 . Then the map (I + u) : Ω → Ω + u is invertible. Furthermore, there exists

w ∈ W k,∞(Ω,Rd) such that (I + u)
−1

= I + w and ‖w‖k,∞ ≤ Ck ‖u‖k,∞ , where Ck
is a constant independent on u.

Remark 2.1. According to this result, if Ω is of class Cj , we can choose k = j+1
(and therefore the perturbation space W k,∞(Ω,Rd)) such that our new domain Ω+u
is also of class Cj . In particular, if Ω is of class C4, then Ω+u is also of class C4, and
the solutions of the eigenvalue problem for the bilaplacian in the new domain Ω + u
satisfy y (u) ∈ H4(Ω+u)∩H2

0 (Ω + u) for every u ∈W 5,∞(Ω,Rd) small enough. This
is the functional framework we shall work in.
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Lemma 2.4 (see [28]). Let k ≥ 1, and consider the function

γ : W k,∞(Ω,Rd) → W k−1,∞(Ω,R),
u → γ (u) = Jac (I + u) = |det [∂j (I + u)i]| .

This function γ is differentiable at u = 0. Furthermore, the directional derivative
in the direction w at the point u = 0 is divw; that is,

〈Dγ (0) , w〉 = div w ∀ w ∈ W k,∞(Ω,Rd).

Lemma 2.5 (see [28]). Let k ≥ 1. The map

β : W ⊂W k,∞(Ω,Rd) → Md×d
(
W k−1,∞(Ω,R)

)
,

u → t [∂j (I + u)i]
−1
,

where W is a neighborhood of u = 0 on W k,∞(Ω,Rd), is differentiable on u = 0. Its
directional derivative on u = 0 in the direction w is given by the matrix −t [∂jwi] ,
where t [∂jwi] denotes the adjoint of [∂jwi] . In other words,

t [∂j (I + u)i]
−1

= [I]−t [∂jui] + θ (u) ,
where the matrix θ (u) satisfies

‖θ (u)‖k−1,∞
‖u‖k,∞

→ 0 as ‖u‖k,∞ → 0.

Now, we consider a function

v : W k,∞(Ω,Rd) → Wm,r(Ω + u),
u → v (u) ,

where 1 ≤ r < ∞ and m ≤ k are integer numbers. In practice, v (u) will be the
solution of a suitable problem, which depends on the perturbation function u (for
instance, a solution of our eigenvalue problem (1.1)).

We are interested in the study of the regularity of the function v (u) with respect
to the perturbation parameter u.

Definition 2.1 (see [28]). Let k ≥ m ≥ 1, 1 ≤ r <∞. We say that the function
v (u) has a first order local variation at u = 0 on Wm−1,r

loc (Ω) if v (u) ∈Wm,r(Ω+ u)
for all u ∈ W k,∞(Ω,Rd) and there exists a linear map v′ (Ω;u) defined from u ∈
W k,∞(Ω,Rd) to Wm−1,r

loc (Ω) such that, for each open set ω ⊂⊂ Ω,

v (u) = v (0) + v′ (Ω;u) + θ̂ (u) in ω,

when ‖u‖k,∞ is small enough and

θ̂ (u)

‖u‖k,∞
→ 0 in Wm−1,r(ω) as ‖u‖k,∞ → 0.

Remark 2.2. From Definition 2.1 it follows that the first local variation can be
defined as

v′ (Ω;u) = lim
t→0

v (tu) |ω − v (0) |ω
t

in ω,(2.7)



1592 JAIME H. ORTEGA AND ENRIQUE ZUAZUA

where ω ⊂⊂ Ω and v (tu) |ω, v (0) |ω are the restrictions of the functions v (tu) and
v (0) to ω.

In what follows, to simplify the notation, we will write v′ (u) = v′ (Ω;u) .
The following theorem provides sufficient conditions for the existence of the first

local variation for functions which depend on the deformation u. Furthermore, it
provides an expression for the local variation on the boundary in terms of the normal
derivative of v (0) .

Theorem 2.6 (see [28]). Let Ω be a C0,1 domain. Consider a map u → v(u) ∈
Wm,r(Ω + u) defined on a neighborhood of u = 0 in W k,∞(Ω,Rd), with k ≥ m ≥ 1
and 1 ≤ r <∞.

Let us assume that there exists a linear continuous map u → v̇ (u) defined on
W k,∞(Ω,Rd) with values in Wm,r(Ω), such that

v (u) ◦ (I + u) = v (0) + v̇ (u) + θ (u) in Wm,r(Ω)

for all u ∈W k,∞(Ω,Rd) small enough, where

θ (u)

‖u‖k,∞
→ 0 on Wm,r(Ω) as ‖u‖k,∞ → 0.

Furthermore, assume that for each u ∈W k,∞(Ω,Rd) small enough,

v(u) = 0 on ∂ (Ω + u) .

Then, for each ω ⊂⊂ Ω, the function u→ vω(u) = v(u)|ω, defined on a neighbor-
hood of u = 0 in W k,∞(Ω,Rd) with values in Wm−1,r(ω), is differentiable at u = 0.

Moreover, the map u → v(u) has a local derivative at u = 0 (see Definition 2.1)
and the local derivative at u = 0, in the direction u, denoted by v′(u), verifies v′(u) ∈
Wm−1,r(Ω) and

v′(u) = − (u · n) ∂v(0)
∂n

on ∂Ω,

where n is the unit outward normal vector to Ω.
In what follows we will use the notation

W = {u ∈W k,∞(Ω,Rd) : ‖u‖k,∞ < cΩ},
where k ≥ 1 and cΩ < 1/2 is small enough such that all the previous results hold.

Lemma 2.7 (see [4, Lemma 9]). Let u ∈ W . If f ∈ H1
0 (Ω + u) , there exists a

unique g ∈ H1
0 (Ω) such that f ◦ (I + u) = g. Moreover,(

∂f

∂zi

)
◦ (I + u) =

∑
j

Mij (u)
∂g

∂xj
= Di (u) g,(2.8)

where the matrix M (u) is defined as

M (u) = [Mij (u)] =
t

[
∂

∂xj
(I + u)i

]−1

,

and

zi = xi + ui (x) ∀ x ∈ Ω.
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3. Regularity of the eigenvalues and eigenfunctions.

3.1. Some results of spectral theory. To prove the existence and regularity of
the eigenvalues and eigenfunctions of the plate system with respect to the perturbation
parameter u, we will use the Lyapunov–Schmidt method (see [30], [7, p. 30 ]).

Lemma 3.1 (see [7, Lemma 4.1, p. 31]). Suppose that X and Z are Hilbert
spaces and A : X −→ Z is a continuous linear operator. Let U : X −→ N(A),
E : Z −→ R(A) be the orthogonal projections from X and Z on the kernel and range
of A, respectively.

Then, there exists a bounded linear operator Q : R(A) −→ N(A)⊥, called the right
inverse of A, such that

AQ = I : R(A) −→ R(A), QA = I − U : Z −→ N(A)⊥.

Let Λ be a closed subset of a Banach space, such that IntΛ �= ∅. If N : Λ×X −→ Z
is a continuous operator, then the problem

Ax−N(x, λ) = 0(3.1)

is equivalent to the equations

z −QEN(y + z, λ) = 0,(3.2)

(I − E)N(y + z, λ) = 0,(3.3)

where x = y + z, y ∈ N(A), and z ∈ N(A)⊥.
Assume that the operator N verifies that

N(0, 0) = 0,
∂N

∂x
(0, 0) = 0,

and consider (3.2) for (x, λ) in a neighborhood of (0, 0) inX×Λ. Applying the implicit
function theorem to (3.2), we deduce the existence of a neighborhood V ⊂ N(A)×Λ
of (0, 0) and a function z∗ : V −→ N(A)⊥ with the same regularity of N providing
the solution of (3.1). Therefore, if {y1, . . . , yh} is an orthonormal basis of N(A), the
solution x(λ) of (3.1) satisfies

x(λ) =
h∑
i=1

ci(λ)yi + z
∗
(

h∑
i=1

ci(λ)yi, λ

)
= 0(3.4)

for suitable coefficients c1, . . . , ch. Then, (x, λ) ∈ V satisfy (3.1) iff

(I − E)N
(

h∑
i=1

ci(λ)yi + z
∗
(

h∑
i=1

ci(λ)yi, λ

)
, λ

)
= 0,(3.5)

which is a finite dimensional system of equations on the constants c1, . . . , ch.
Now we have the following result, which is a slight variation of a theorem due to

J. H. Albert [2].
Theorem 3.2. Let E be a Hilbert space with inner product 〈·, ·〉 , and let Λ be

a Banach space. Let P : D(P ) ⊂ E → E be a self-adjoint operator densely defined
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in E. Assume that λ is an eigenvalue of multiplicity h of P , and let φ1, . . . , φh be
the orthonormal eigenfunctions associated to λ. Moreover, assume that there exists a
bounded linear operator Q : E → E, such that QΠN = 0 and Q (P + λ) = I − ΠN ,
ΠN being the orthogonal projection in N = Ker (P + λ) .

Let R (u) be an analytic self-adjoint map in B (E,F ) for every u in a neighborhood
of u = 0 in Λ, such that R (0) = 0 and P (u) = P +R (u) .

Then there exist h analytic functions defined in a neighborhood of u = 0 in Λ
with values in R, u→ λi (u) , and h analytic functions u→ φi (u) , with values in E,
i = 1, . . . , h, defined in a neighborhood of u = 0 in Λ, such that the following hold.

1. λj (0) = λ, j = 1, . . . , h.
2. For all u small enough, (λj (u) , φj (u)) is a solution of the eigenvalue problem
P (u)φj(u) = λj(u)φj(u).

3. For all u small enough the set {φ1 (u) , . . . , φh (u)} is orthonormal in E.
4. For each interval I ⊂ R such that I contains only the eigenvalue λ of (P ),
there exists a neighborhood U of u = 0 such that there are exactly h eigenval-
ues (counting the multiplicity) λ1 (u) , . . . , λh (u) of (Pu) contained on I.

Remark 3.1. To prove Theorem 3.2, we prove first that we can find functions
u→ λ(u) ∈ R and u −→ φ(u) such that φ(u) is an eigenfunction of (Pu) associated to
the eigenvalue λ(u). To find the other h−1 branches of eigenvalues and eigenfunctions,
we apply in an iterative form the method described in the following proposition.

Proposition 3.3. Under the hypotheses of Theorem 3.2, if λ is an eigenvalue
of multiplicity h of P and φ1, . . . , φh are orthonormal eigenfunctions associated to
λ, there exists at least a function u −→ (λ(u), φ(u)) ∈ R × E which is analytic in a
neighborhood of u = 0 in Λ such that

1. λ(0) = λ, and
2. φ(u) is an eigenfunction of P (u), associated to the eigenvalue λ(u).
Proof of Proposition 3.3. Let λ be an eigenvalue of multiplicity h of P , and let

φ1, . . . , φh be the orthonormal eigenfunctions associated to λ.
Suppose that the maps u→ λ (u) , u→ φ (u) , such that

(P (u) + λ (u))φ (u) = 0,(3.6)

do exist. Then

(P + λ)φ (u) = (P + λ− P (u)− λ (u) + P (u) + λ (u))φ (u)

= (−R (u) + λ− λ (u))φ (u)
= − (R (u) + λ (u)− λ)φ (u) .

(3.7)

Since Q(P + λ) = I −ΠN , we obtain that

φ (u) = − [Q (R (u) + λ (u)− λ)]φ (u) + ψ (u) ,(3.8)

where ψ (u) ∈ N = Ker (P + λ) .
Thus

ψ (u) = [I +Q (R (u) + λ (u)− λ)]φ (u) ,(3.9)

and therefore

φ (u) = [I +Q (R (u) + λ (u)− λ)]−1
ψ (u) .(3.10)
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Moreover, the map [I +Q (R (u) + λ (u)− λ)] has an inverse in a neighborhood
of u = 0 in Λ.

Thus, if we know the functions u→ λ (u) and u→ ψ (u), we can obtain the map
u→ φ (u) .

Let φ1, . . . , φh be an orthonormal basis of N = Ker (P + λ) . We must find con-
stants cj(u) such that

ψ (u) =
h∑
j=1

cj (u)φj .(3.11)

We can see that

[R (u) + λ (u)− λ]φ (u) ∈ N⊥,(3.12)

because, according to (3.6), we have that [R (u) + λ (u)− λ]φ (u) ∈ R (P + λ) .
Thus

0 = 〈[R (u) + λ (u)− λ]φ (u) , φj〉
= 〈[R (u) + λ (u)− λ] {I +Q [R (u) + λ (u)− λ]−1}ψ (u) , φj〉

=

h∑
i=1

cj (u) 〈[R (u) + λ (u)− λ] {I +Q [R (u) + λ (u)− λ]−1}φi, φj〉,
(3.13)

which is a linear system of equations on the unknowns cj(u).
This system has a nontrivial solution iff

det(〈[R (u) + λ (u)− λ] {I +Q [R (u) + λ (u)− λ]−1}φi, φj〉) = 0.(3.14)

Now we show the existence of the constants c1 (u) , . . . , ch (u) , not all of them
being zero simultaneously.

We replace λ(u)− λ by α, and we define

fij (α, u) = 〈[R (u) + α]{I +Q[R (u) + α]−1}φi, φj〉(3.15)

and

F (α, u) = det (fij (α, u)) .(3.16)

For u small enough, the map u −→ [I +Q [R(u) + α])]
−1

is well defined. Indeed,
for α = 0 and u = 0 we have that [I +QR(0)] = I, and the map is analytic in a
neighborhood of u = 0 in Λ. On the other hand, as we mentioned above, if F (α, u) = 0,
system (3.13) has a nontrivial solution c1(u), . . . , ch(u), and then

λ(u) = λ+ α(3.17)

is an eigenvalue of P (u).
Moreover, from (3.8) and (3.11) we deduce that

φ(u) =
h∑
j=1

cj(u) [I +Q (R(u) + λ(u)− λ)]−1
(vj , pj)(3.18)

is an eigenfunction of P (u) associated to the eigenvalue λ(u).
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According to our previous discussion, for these values of α(u) and setting λ(u) =
λ + α(u), system (3.13) admits a solution c1(u), . . . , ch(u), not all the components
being zero simultaneously. We have that

fij (α, 0) = 〈[R (0) + α] {I +Q [R (0) + α]}−1
φi, φj〉

= 〈α {I + αQ}−1
φi, φj〉

= α〈{I + αQ}−1
φi, φj〉

= αδij ,

(3.19)

because [I + αQ]φi = φi.
Therefore, we have that F (α, 0) = det (αI) = αh.
Applying the Weierstrass preparation theorem, we deduce that

F (α, u) =
(
αh + a1(u)α

h−1 + · · ·+ ah(u)
)
E(α, u)

with E(α, u) �= 0 in a neighborhood of (0, 0). Then for (α, u) small enough we have
that E(α, u) �= 0, and functions aj(u) are analytic in a neighborhood of u = 0.

Then, F (α, u) = 0 iff

αh + a1(u)α
h−1 + · · ·+ ah(u) = 0.(3.20)

Let αj(u), j = 1, . . . , h be the complex roots of (3.20). Then there exist constants
c1(u), . . . , ch(u), not all vanishing simultaneously, which are the solution of system
(3.13).

Thus, from (3.18) we obtain that

φ(u) =

h∑
j=1

cj(u) [I +Q (R(u) + (λ(u)− λ))]−1
φj

and λ(u) = λ+ α1(u) constitute an eigenpair.
Notice that if cj(u) is complex, it is enough to consider the real part Rcj(u) to

get a real eigenfunction. Since the operator P (u) is self-adjoint, we have that αj(u)
is real, which completes the proof of Proposition 3.3.

Remark 3.2. Proposition 3.3 provides the existence of one branch of eigenpairs
associated to the root α(u) of (3.20). We do not use the eigenpairs associated to the
other roots αj by now since, so far, we do not know whether they coincide or not with
the eigenpair associated to α1(u).

Now we prove Theorem 3.2.
Proof of Theorem 3.2. Using induction on h, we prove the existence of the h

analytic functions u→ (λi(u), φi(u)) , such that

(P (u) + λi (u))φi (u) = 0.(3.21)

From Proposition 3.3, there exists an analytic function u→ (λ1(u), φ1(u)) defined
in a neighborhood of u = 0 in Λ with values in R× E, which verifies (3.21).

Therefore, Theorem 3.2 holds for h = 1. We must prove it for h ≥ 2.
Let Π1 (u) : E −→ E be the orthogonal projection on the eigenspace generated

by φ1(u). Then we define the map

B(u) = P (u)−Π1(u).(3.22)
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Then

B(0)φj = (P (0)−Π1(0))φj = λφj − δ1jφj ;(3.23)

that is,

B(0)φj = λφj , j = 2, . . . , h,

and

B(0)φ1 = (λ− 1)φ1.

Then, λ is an eigenvalue of multiplicity h − 1 of the operator B = B(0), with
eigenfunctions v2, . . . , vh.

Note that other linearly independent eigenfunctions of B associated to λ do not
exist. Indeed, if φ is another eigenfunction of B associated to the eigenvalue λ such
that 〈φ, φj〉 = 0, j = 2, . . . , h, then 〈φ, φ1〉 = 0 (since φ1 is an eigenfunction associated
to the eigenvalue λ− 1) and Bφ = λφ. Then

Pφ = Bφ+Π1φ = Bφ+ 〈φ, φ1〉v1 = λφ;

that is, φ is an eigenfunction of P associated to λ, and thus λ is an eigenvalue of
multiplicity h+ 1, which is impossible because the multiplicity of λ is h.

We can see that B(u) satisfies the hypotheses of Proposition 3.3. This allows us
to apply Proposition 3.3 in an iterative form and to obtain h−1 analytic functions in
a neighborhood of u = 0 in Λ, u −→ λi (u), and u −→ φi(u), with i = 1, . . . , h such
that

B(u)φi(u) = λi(u)φi(u).

Moreover, the functions φ2(u), . . . , φh(u) form an orthonormal set in E.
This shows us the existence of the h branches of eigenpairs.
Now we prove the last part of the theorem.
Since the eigenvalues u → λi (u) are analytic in a neighborhood of u = 0, there

exist constants ci such that

|λi (u)− λi (v)| ≤ ci ‖u− v‖ .
Let λ1 ≤ λ2 ≤ · · · ≤ λn . . . be the eigenvalues of the P , and assume that

· · · ≤ λn−1 < λ = λn = · · · = λn+h−1 < λn+h ≤ · · · .
Let I ⊂ R be an interval such that λ is the unique eigenvalue contained in I.
Then there exists δ > 0 such that I ⊂ (λn−1 + δ, λn+h − δ) . Let u∈B (0, δ/c) ,

with c = max {ci : i = 1, . . . , n+ h}. Then

|λn−1(u)− λn−1| ≤ cn−1‖u‖ < cn−1
δ

c
≤ δ,

and

|λn+h(u)− λn+h| ≤ cn+h‖u‖ < cn+h
δ

c
≤ δ.

Therefore, λn−1(u) �∈ I and λn+h(u) �∈ I; that is, P (u) has at most h eigenvalues
contained in I counting multiplicity. This completes the proof of Theorem 3.2.
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3.2. Equivalent formulation for the plate system. Now, for each u ∈
W 5,∞(Ω,Rd), we consider the eigenvalue problem for the plate system

�2y = λy in Ω + u,

y = 0 on ∂ (Ω + u) ,

∂y

∂n
= 0 on ∂ (Ω + u) .

(3.24)

Let {λ (u) , y (u)} be a solution of (3.24), and define the function Y (u) = y (u) ◦
(I + u) .

Thus, our problem is to find λ (u) ∈ R and Y (u) such that


D2
j (u)

(
Jac (I + u)D2

i (u)Y (u)
)

= λ (u)Y (u)Jac (I + u) in Ω,

Y (u) ∈ H2
0 (Ω) ,

(3.25)

where

Di (u) g =
∑
j

Mij (u) ∂jf,

with Mij (u) defined as in (2.8) and g = f ◦ (I + u) .
3.3. Regularity of the eigenvalues and eigenfunctions. Now, we will see

the existence of the branches of eigenvalues u→ λ(u) and eigenfunctions u→ y(u) of
the plate system.

Lemma 3.4. Let Ω ⊂ R
d be an open bounded set of class C4.

Then the map

P :W 5,∞(Ω,Rd) −→ L (H2
0 (Ω) ;H

−2 (Ω)
)
,

such that

P (u)φ =
1

Jac (I + u)
D2
j (u)

(
Jac (I + u)D2

i (u)φ
)

(3.26)

is analytic in a neighborhood of u = 0 in W 5,∞(Ω,Rd).
Proof. We can see that Jac(I + u) is a polynomial on the first partial derivatives

of u. Then the map u −→ Jac(I + u) is analytic in a neighborhood of u = 0 in
W 5,∞(Ω,Rd). On the other hand,

Mij(u) =
1

Jac(I + u)
(δij + aij),

where aij(u) is the minor of the matrix M−1(u) associated to its ijth element, which
is also a polynomial of the first partial derivatives of u. Moreover, for u small enough
Jac(I + u) > 0. Therefore, u −→ M(u) is analytic in a neighborhood of u = 0 in
W 5,∞(Ω,Rd) as well.

Since D(u)ϕ = M(u)∇ϕ, from the analyticity of the functions u −→ Jac(I + u)
and u −→ M(u) we obtain that the map P (u) is analytic in a neighborhood of
u = 0 on W 5,∞(Rd,Rd) with values in L (H2

0 (Ω) ;H
−2 (Ω)

)
, and the proof is

complete.
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Now, we can apply Theorem 3.2 to the operator P (u) to obtain the existence of
the h analytic branches u→ (λi(u), yi(u)) , with i = 1, . . . , h.

From Lemma 3.1 we have that the map A = P − λI has a right inverse operator
Q which satisfies the hypotheses of Theorem 3.2. Furthermore, we have that if u ∈
W 5,∞(Ω,Rd), the new domain Ω + u has a boundary of class C4, and then, the
eigenfunctions satisfy that yi ∈ H4(Ω) ∩H2

0 (Ω). Thus we have the following result.
Theorem 3.5. Let Ω ⊂ R

d be an open bounded domain of class C4. Let λ be
an eigenvalue of multiplicity h of the plate system (1.1) for u = 0 with associated
eigenfunctions y1, . . . , yh.

Then, there exist h analytic functions with values in R, u→ λi (u) , and h analytic
functions u→ yi (u) , with values in H

4(Ω + u) ∩H2
0 (Ω + u), i = 1, . . . , h, defined in

a neighborhood of u = 0 in W 5,∞(Ω,Rd), such that the following hold.
1. λj (0) = λ, j = 1, . . . , h.
2. For all u small enough, (λj (u) , yj (u)) is a solution of the plate system defined
in the new domain Ω+ u.

3. For all u small enough, the set {y (u) , . . . , y (u)} is orthonormal in L2(Ω+u).
4. For each interval I ⊂ R such that I contains only the eigenvalue λ of (1.1),
there exists a neighborhood U of u = 0 such that there are exactly h eigenval-
ues (counting the multiplicity) λ1 (u) , . . . , λh (u) of (Pu) contained on I.

4. Local variations of the eigenvalues and the eigenfunctions. Let Ω ⊂
R
d be a bounded open set with boundary of class C4. Let λ be an eigenvalue of (1.1)

of multiplicity h, and let yi, i = 1, . . . , h be the associated eigenfunctions, normalized
in L2 (Ω) .

Let yi (u) ∈ H4 (Ω + u)∩H2
0 (Ω + u) , i = 1, . . . , h, be the eigenfunctions of (3.24)

associated to the eigenvalue λi(u), where λ = λi (0) , yi (0) = yi, i = 1, . . . , h.
According to the results of the previous section, the branches of the eigenvalues

u −→ λi(u) ∈ R and the eigenfunctions u −→ yi(u) ∈ H4 (Ω + u) ∩ H2
0 (Ω + u) are

analytic with respect to the perturbation parameter u in a neighborhood of u = 0 in
W 5,∞(Ω,Rd). The first local variation of the branches solves the system

�2y′i (u) = λ′i (u) yi + λy
′
i (u) in Ω,

y′i (u) = 0 on ∂Ω,

∂y′i (u)
∂n

= − (u · n) ∂
2y

∂n2
on ∂Ω.

(4.1)

The following result provides an identity for the local derivative of the eigenvalues.
Lemma 4.1. Under the above conditions, the first local derivatives of the eigen-

values verify

δijλ
′
i (u) = −

∫
∂Ω

(u · n) ∂yi
∂n
· ∂

2yj
∂n2

∀i, j = 1, . . . , h.(4.2)

Note that here and in what follows, λ′i(u) denotes the derivative of λi at u = 0 in
the direction u.

Proof. Multiplying (4.1) by w ∈ H2
0 (Ω) , we obtain that∫

Ω

�y′i (u)�w = λ′i (u)
∫

Ω

yiw + λ

∫
Ω

y′i (u)w.(4.3)

Taking w = yj in (4.3), we have that∫
Ω

�y′i (u)�yj = λ′i (u)
∫

Ω

yiyj + λ

∫
Ω

y′i (u) yj .
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Since yi ∈ H4 (Ω) , i = 1, . . . , h (see [10, Theorem 7.1.2]), integrating by parts,
we deduce that∫

Ω

�2yj y
′
i (u) +

∫
∂Ω

∂y′i (u)
∂n

�yj (u) = λ′i (u) δij + λ
∫

Ω

y′i (u) yj .

Therefore,

δijλ
′
i (u) =

∫
∂Ω

∂y′i (u)
∂n

�yj

= −
∫
∂Ω

(u · n) ∂
2yi
∂n2

�yj = −
∫
∂Ω

(u · n) ∂
2yi
∂n2

∂2yj
∂n2

.

(4.4)

The proof is complete.

5. Proof of Theorem 1.1. In this section, we prove the generic unique contin-
uation property stated in Theorem 1.1.

First, we state a unique continuation result for the evolution plate system, which
is a consequence of the classical Holmgrem uniqueness theorem and which is needed in
the proof. Being more precise, in the proof of Theorem 1.1 we use this result only for
the eigenfunctions of the plate system or, more precisely, for the corresponding sep-
arated variables solutions of (5.1). However, we state the result for general solutions
of the evolution plate system for the sake of completeness.

Lemma 5.1 (see [18, Lemma 3.6, p. 276]). Let Ω ⊂ R
d be an open bounded

domain with boundary of class C4. Let Γ0 ⊂ ∂Ω be a nonempty open set, and let
T > 0.

Then, if y solves 

y′′ +�2y = 0 in Ω× (0, T ) ,

y = 0 on ∂Ω× (0, T ) ,

∂y

∂n
= 0 on ∂Ω× (0, T ) ,

∂2y

∂n2
= 0 on Γ0 × (0, T ) ,

∂�y
∂n

= 0 on Γ0 × (0, T ) ,

(5.1)

then, necessarily, y ≡ 0.
Proof of Theorem 1.1. Let Γ0 ⊆ ∂Ω be an open nonempty set.
Assume that λ is an eigenvalue of (1.1) of multiplicity h, and let yi, i = 1, . . . , h,

be the associated eigenfunctions.
We define the set

A0 =W0 =
{
u ∈W 5,∞(Ω,Rd) : u = 0 on ∂Ω \ Γ0

}
,

and for each n ∈ N we consider the set

An={u∈W 5,∞(Ω,Rd) : u = 0 on ∂Ω \ Γ0 and the unique continuation
property of Theorem 1.1 holds for the first n branches of eigenvalues} .
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Note that An+1 ⊂ An for all n ≥ 0. We will prove that An is an open subset of
W0 and An+1 is a dense subset of An for all n ≥ 0. Thus, by using Baire’s lemma (see
Lemmas 2.1 and 2.2), we will prove that

⋂
n∈N

An is residual in W0.
Obviously, this completes the proof since

⋂
n∈N

An coincides with the set of ad-
missible perturbations of the domain Ω such that the unique continuation property
of Theorem 1.1 holds simultaneously for all the branches of eigenvalues.

To apply Baire’s lemma, the following properties of the sets An are needed.
(i) An is open in W0.
It is clear that A0 is an open set in W0. To see that each set An is open in

W 5,∞(Ω,Rd) ∩ W0 for n ≥ 1, we argue by contradiction. Suppose that Acn is not
closed. Then, there exists a sequence of deformations {uk}k ⊂ Acn such that uk
converges to ũ ∈ An as k →∞.

Since {uk}k ⊂ Acn, there exist {λ (uk) , y (uk)}k such that

�2y (uk) = λ (uk) y (uk) in Ω + uk,

y (uk) = 0 on ∂Ω+ uk,

∂y (uk)

∂n (Ω + uk)
= 0 on ∂Ω+ uk,∫

Ω+uk

|y (uk)|2 = 1,

and

∂2y (uk)

∂n2 (Ω + uk)
= 0 on Γ0 + uk,

λ (uk) belonging to one of the branches λ1 (u) , . . . , λn (u) and y (uk) being the corre-
sponding eigenfunction.

From Theorem 3.5 we have that the branches u → λ (u) , u → y (u) are analytic
functions in a neighborhood of u = 0 in W 5,∞(Ω,Rd) with values in R and H4(Ω +
u) ∩ H2

0 (Ω + u), respectively. Thus the eigenpair (λ (ũ) , y (ũ)) is a solution of the
problem 

�2y (ũ) = λ (ũ) y (ũ) in Ω + ũ,

y (ũ) = 0 on ∂Ω+ ũ,

∂y (ũ)

∂n (Ω + ũ)
= 0 on ∂Ω+ ũ,

∂2y (ũ)

∂n2 (Ω + ũ)
= 0 on Γ0 + ũ,∫

Ω+ũ

|y (ũ)|2 = 1

for some λ (ũ) belonging to one of the first n branches λ1 (ũ) , . . . , λh (ũ) . But this is
impossible, since ũ ∈ An. This shows that An is an open set.

(ii) An+1 is dense in An.
Now we will see that An+1 is dense in An for all n ≥ 0; in particular, A1 is dense

in A0 =W0.
Suppose that An+1 is not dense in An. Then, there exists u ∈ An \ An+1 and a

neighborhood V of u such that V ⊂ An \ An+1. Without lost of generality, we may
assume that u = 0.
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For any u ∈ V ⊂ An \ An+1 there exists a nontrivial eigenfunction y (u) ∈
H2

0 (Ω + u) associated to the (n+ 1)th eigenvalue λ (u) = λn+1 (u) such that

∂2y (u)

∂2n (Ω + u)
= 0 on Γ0 + u.(5.2)

On the other hand, from Theorem 2.6, the local variations satisfy

�2y′ (u) = λ′ (u) y + λy′ (u) in Ω,

y′ (u) = 0 on ∂Ω,

∂y′ (u)
∂n

= 0 on ∂Ω,

∂2y′ (u)
∂n2

= − (u · n) ∂
3y

∂n3
on Γ0

(5.3)

for all u ∈ V, where
y (0) = y, λ (0) = λ.

Since u = 0 on ∂Ω \ Γ0, we have that

λ′ (u) = −
∫
∂Ω

(u · n)
∣∣∣∣∂2y

∂n2

∣∣∣∣2 = 0,

and therefore 

�2y′ (u) = λy′ (u) in Ω,

y′ (u) = 0 on ∂Ω,

∂y′ (u)
∂n

= 0 on ∂Ω,

∂2y′ (u)
∂2n

= − (u · n) ∂
3y

∂n3
on Γ0.

(5.4)

That is, for each u ∈ V, y′ (u) is an eigenfunction of the plate system associated
to the eigenvalue λ.

We now distinguish two cases.
Case 1. λ is a simple eigenvalue. Since y′ (u) is an eigenfunction of the plate

system associated to the eigenvalue λ, there exists a constant cu such that y
′ (u) = cuy,

and therefore

∂2y′ (u)
∂n2

= − (u · n) ∂
3y

∂n3
= cu

∂2y

∂n2
= 0 on Γ0.

Thus, we obtain that ∂3y
∂n3 = 0 on Γ0 as well.

From Lemma 5.1 we conclude that y ≡ 0 in Ω, which is impossible since y is an
eigenfunction of the plate system.

Case 2. λ is a multiple eigenvalue. First, we assume that the eigenvalue λ has
multiplicity two. Let y1, y2 be the associated eigenfunctions.

We will show that there exists a perturbation u, as small as we want, such that
the eigenvalue λ(u) is simple or the unique continuation property holds for the branch
u → y1(u). Notice that the case where λ(u) is simple has been addressed in Case 1
above.
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We can proceed in an analogous form considering the branch u→ y2 (u) .
We argue by contradiction.
We suppose that the eigenvalue λ(u) remains of multiplicity two and the corre-

sponding eigenfunction y1(u) satisfies (5.2) in a neighborhood V of u = 0. If λ(u) is
simple, we can proceed as in Case 1. In other words,

∂2y1(u)

∂n2(Ω + u)
= 0 on Γ0 + u ∀u ∈ V.

Then, as in the case of simple eigenvalues, the local variation y′1 (u) is an eigen-
function associated to the eigenvalue λ. Then, there exist constants c1 (u) , c2 (u) such
that y′1 (u) = c1 (u) y1 + c2 (u) y2. Thus, from (5.4) we have that

∂2y′1(u)
∂n2

= − (u · n) ∂
3y1
∂n3

on Γ0

and

∂2y′1(u)
∂n2

= c1 (u)
∂2y1
∂n2

+ c2(u)
∂2y2
∂n2

= c2(u)
∂2y2
∂n2

on Γ0.

Hence, for every pair of deformations u1 and u2 we have that

c2 (u1)
∂2y2
∂n2

= − (u1 · n) ∂
3y1
∂n3

on Γ0,

c2 (u2)
∂2y2
∂n2

= − (u2 · n) ∂
3y1
∂n3

on Γ0.

If ∂3y1
∂n3 = 0 on Γ0, in view of Lemma 5.1 we immediately deduce that y1 ≡ 0,

which is a contradiction. Thus, we can assume that ∂3y1
∂n3 �≡ 0 on Γ0 and consequently

that ∂2y2
∂n2 �≡ 0 on Γ0 as well.

Then

(u1 · n)
(u2 · n) =

c2(u1)
∂2y2
∂n2

c2(u2)
∂2y2
∂n2

=
c2(u1)

c2(u2)
= constant.

That is, necessarily (u1 · n) = c (u2 · n) for a suitable constant c. This is impossible
since the functions u1 and u2 may be chosen arbitrarily.

Thus we reach a contradiction.
Assume now that λ is an eigenvalue of multiplicity h > 2, and let y1, . . . , yh be

the associated eigenfunctions normalized in L2 (Ω) .
We claim that there exists a deformation u, arbitrarily small, such that the eigen-

value λ (u) has multiplicity at most h − 1 or the unique continuation property holds
for the branch y1(u).

To prove this we argue by contradiction. Suppose that λ (u) is an eigenvalue
of multiplicity h for all u ∈ V, with associated eigenfunctions y1 (u) , . . . , yh (u) .
Moreover, assume that

∂2y1 (u)

∂n (Ω + u)
2 = 0 on Γ0 + u(5.5)

for each u ∈ V.
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Then, from (5.3) we have that y′1 (u) is an eigenfunction of the plate system
associated to the eigenvalue λ for each u ∈ V.

Thus, there exist constants c1 (u) , . . . , ch (u) such that

y′1 (u) = c1 (u) y1 + · · ·+ ch (u) yh.(5.6)

Therefore,

∂2y′1 (u)
∂n2

= − (u · n) ∂
3y1
∂n3

= c1 (u)
∂2y1
∂n2

+ · · ·+ ch (u) ∂
2yh
∂n2

= c2 (u)
∂2y2
∂n2

+ · · ·+ ch (u) ∂
2yh
∂n2

on Γ0.

(5.7)

On the other hand,

λ′i (u) = −
∫

Γ0

(u · n)
∣∣∣∣∂2yi
∂n2

∣∣∣∣2 ∀i = 1, . . . , h.(5.8)

From (5.5) we have that

∂2y1
∂n2

= 0 on Γ0.(5.9)

Since the multiplicity does not decrease in a neighborhood U of u = 0, we obtain
that

λ′1 (u) = · · · = λ′h (u)(5.10)

for all u ∈ U such that u = 0 on ∂Ω \ Γ0. Moreover, according to (5.7)–(5.9), we also
have that λ′1(u) = 0. Therefore,

λ′1 (u) = · · · = λ′h (u) = 0.

Thus

∂2yi
∂n2

= 0 on Γ0 ∀i = 1, . . . , h.(5.11)

From (5.7) and (5.11), we deduce that

∂3y1
∂n3

= 0 on Γ0.(5.12)

From Lemma 5.1 we have that y1 ≡ 0 on Ω, which is impossible because y1 is an
eigenfunction.

Therefore, there exists a deformation ũ ∈ V such that the eigenvalue λ1 (ũ) has
multiplicity at most h− 1 or the unique continuation property holds for y1 (ũ) .

If the unique continuation property does not hold in the new domain Ω+ũ, we can
apply the same argument in an iterative way and obtain a deformation û, arbitrarily
small, such that the eigenvalue λ(û) is of multiplicity two or the unique continuation
property holds. Since the case where the multiplicity is two was solved before, this
completes the proof of the density of An+1 on An for all n ≥ 0.
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Applying Baire’s lemma (see Lemmas 2.1 and 2.2), we complete the proof of
Theorem 1.1.

Remark 5.1. Note that in the proof of Theorem 1.1 above, we consider only
deformations u such that u = 0 on ∂Ω \ Γ0. Consequently, the deformations u we use
do deform the subset Γ0 of the boundary.

If we consider deformations which do not deform the set Γ0 (that is, such that
u = 0 on Γ0), the argument of the proof does not apply. That is because we cannot
guarantee anymore that the local variations y′i (u) are eigenfunctions of (1.1).

6. Proof of Theorem 1.2. The proof of Theorem 1.2 is similar to the proof
of the generic simplicity of the eigenvalues of the Stokes system (see [25]). We apply
Baire’s lemma for a suitable sequence of sets {An}n≥0 .

Let n = 1, 2, . . . , and define the sets

A0 =W0 =
{
u ∈W 5,∞(Ω,Rd) : u = 0 on ∂Ω \ Γ0

}
,(6.1)

and

An=
{
u∈W 5,∞(Ω,Rd): u = 0 on ∂Ω \ Γ0, and the first n branches

λ1 (u) , . . . , λn (u) of eigenvalues of (3.24) are simple} .

(6.2)

As in the proof of Theorem 1.1, we need to check that An is an open subset of
W0 and An+1is a dense subset of An for all n ≥ 0. Then, applying Lemma 2.2, we
conclude the proof.

(a) An is an open set in W 5,∞(Ω, R
d) ∩ W0.

It is clear that A0 is an open set. Let u ∈ An for n ≥ 1, and then

λi (u) �= λj (u) ∀i, j = 1, . . . , n+ 1, i �= j.

Let

δ = min{|λi (u)− λj (u)| : i, j = 1, . . . , n, i �= j}.
Let u′ ∈ U, where

U =

{
w ∈ W : ‖u− w‖5,∞ <

δ

2c

}
and c is the maximum of the Lipschitz constants for the functions u′ → λi (u+u

′) ,
i = 1, . . . , n+ 1.

Then

δ ≤ |λi (u)− λj (u)|
≤ |λi (u+ u′)− λi (u)|+ |λi (u+ u′)− λj (u+ u′)|
+ |λj (u+ u′)− λj (u)|
< δ + |λi (u+ u′)− λj (u+ u′)| .

Thus

|λi (u′)− λj (u′)| > 0, i, j = 1, . . . , n+ 1,

which proves that u+ u′ ∈ An, and the set An is open.
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(b) An+1 is dense in An for all n ≥ 0.
Let w ∈ An \ An+1. Without loss of generality we can assume that u = 0. Then,

either λn+1 remains to be of multiplicity h in a neighborhood of u = 0, or there
exists u �= 0 arbitrarily small such that the multiplicity is at most h − 1. (In the
case of n = 0, we have that the first eigenvalue has multiplicity h ≥ 2; that is,
λ = λ1 (u) = · · · = λh(u).) Iterating this argument, it can be shown that the (n+1)th
eigenvalue becomes simple for suitable arbitrarily small perturbations u or it remains
of constant multiplicity h ≥ 2 in a neighborhood of u = 0. If the eigenvalue becomes
simple, the proof of the density of An+1 is concluded.

Thus, we can assume that λn+1 is of constant multiplicity h ≥ 2; that is,

λ = λn+1 (u) = · · · = λn+h(u)

for any u in a neighborhood of u = 0.
Let y1(u), . . . , yh(u) be the eigenfunctions associated to λ normalized in

L2(Ω + u).
In view of the generic unique continuation result of Theorem 1.1, we can also

assume that the spectral uniqueness holds in Ω.
Then, from (4.2) we have that

λ′n+i (Ω;u) δij = −
∫
∂Ω

(u · n) ∂
2yi
∂n2

∂2yj
∂n2

.(6.3)

We will prove that there exists a deformation u such that

λ′n+i (Ω;u) �= λ′n+j (Ω;u) ∀ i �= j.(6.4)

Assuming for the moment that this holds, we deduce that

λn+i (εu) �= λn+j (εu) ∀i, j = 1, . . . , n+ h+ 1, i �= j,

for ε > 0 small enough and then εu ∈ An+1.
We proceed by contradiction. Suppose that (6.4) does not hold. Then there exist

i �= j, i, j ∈ {1, . . . , h}, such that

λ′n+i (Ω;u) = λ′n+j (Ω;u)(6.5)

for all u in a neighborhood of u = 0.
Thus, from (4.2) we have that∫

∂Ω

(u · n)
[
∂2yi
∂n2

∂2yj
∂n2

]
= 0,

and from (6.3) and (6.5) we have that∫
∂Ω

(u · n)
[∣∣∣∣∂2yi
∂n2

∣∣∣∣2 − ∣∣∣∣∂2yj
∂n2

∣∣∣∣2
]
= 0

for all u in a neighborhood of u = 0.
Since u = 0 on ∂Ω \ Γ0, we deduce that

∂2yi
∂n2

∂2yj
∂n2

= 0 on Γ0(6.6)
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and ∣∣∣∣∂2yi
∂n2

∣∣∣∣ = ∣∣∣∣∂2yj
∂n2

∣∣∣∣ on Γ0.(6.7)

Therefore, we obtain that

∂2yi
∂n2

=
∂2yj
∂n2

= 0 on Γ0.(6.8)

Since the spectral uniqueness property holds in the domain Ω, we obtain that

yi = yj = 0 in Ω.

But this is impossible because yi and yj are eigenfunctions of the plate system.
Applying Baire’s lemma (see Lemmas 2.1 and 2.2) to the sets An on the space

W0, we complete the proof.

7. Proof of Theorem 1.3. In this section we analyze the evolution dissipative
plate equation (1.3). First, we prove the existence and uniqueness of solutions. Then
we derive a generic unique continuation result in an infinite time interval. Finally, we
complete the proof of Theorem 1.3.

7.1. Existence and uniqueness of solutions for the evolution plate sys-
tem. First, we analyze the variational formulation of system (1.3).

Recall that X1 = {ϕ ∈ H2 (Ω) ∩H1
0 (Ω) : ∂ϕ

∂n = 0 on ∂Ω \ Γ0, }, X2 =L2 (Ω),
and X = X1 ×X2. Then X = X1 ×X2 is a Hilbert space endowed with the norm of
H2 (Ω)× L2 (Ω) .

We also introduce the space X3={ϕ ∈ X1 : �2ϕ ∈ L2 (Ω)}.
Let B : X1 → X ′

1 be the map

〈Bz, v〉X′
1,X1

=

∫
Γ0

∂z

∂n

∂v

∂n
.(7.1)

We can see that the linear map B is continuous and accretive.
Let z ∈ X1. Then, multiplying (1.3) by z, we have that

0 =
〈
y′′ +�2y, z

〉
X1×X′

1

=

∫
Ω

(y′′z +�y�z) +
∫
∂Ω

(
z
∂ (�y)
∂n

−�y ∂z
∂n

)
=

∫
Ω

(y′′z +�y�z) +
∫

Γ0

∂y′

∂n

∂z

∂n
.

(7.2)

We also define the map A : X1 → X ′
1 as

〈Az, v〉X′
1,X1

=

∫
Ω

�z�v.(7.3)

Then, (7.2) is equivalent to

〈y′′ +Ay +By′, v〉X′
1,X1

= 0 ∀v ∈ X1.(7.4)

We define the operator A : D (A) ⊂ X → X by

AU = (−U2, AU1 +BU2) , where U = (U1, U2) ,

and D (A) = {(y, z) ∈ X3 ×X1 : �y = − ∂z
∂n on Γ0}.
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Thus, the problem (1.3) is equivalent to solve

U ′ +AU = 0 in R
+,

U (0) = (y0, y1) ,

with U = (y, y′) .
Proposition 7.1. The operator A is m-accretive.
Proof. Let U, V ∈ D (A) . Then

〈AU −AV,U − V 〉X = 〈V2 − U2, U1 − V1〉X1

+ 〈AU1 −AV1 +BU2 −BV2, U2 − V2〉X′
1,X1

=

∫
Ω

� (V2 − U2)� (U1 − V1)+

∫
Ω

� (U1 − V1)� (U2 − V2)

= +

∫
Γ0

∂ (U2 − U1)

∂n

(∂ (U2 − V2)

∂n

=

∫
Γ0

∣∣∣∣∂ (U2 − V2)

∂n

∣∣∣∣2 ≥ 0,

which proves that A is an accretive operator.
We must prove that I +A : D(A)→ X is onto.
Let W = (W1,W2) ∈ X. We must show that there exists U = (U1, U2) ∈ D (A) ,

such that

(U1 − U2, U2 +AU1 +BU2) = (W1,W2) .(7.5)

System (7.5) is equivalent to

U2 = U1 −W1, U1 +AU1 +BU1 =W2 +BW1 +W1.(7.6)

To prove the existence of a solution of (7.6), it is enough to show that for every
f ∈ X ′

1, there exists U1 ∈ X1 such that

(I +A+B)U1 = f.(7.7)

We first observe that

〈(I +A+B) v, v〉X′
1,X1

=

∫
Ω

v2 + |�v|2 +
∫

Γ0

∣∣∣∣ ∂v∂n
∣∣∣∣2 ≥ α ‖v‖2X1

∀v ∈ X1,(7.8)

which shows that the bilinear form associated to (I +A+B) is coercive.
On the other hand, the embedding H2 (Ω) ↪→ H1 (Γ0) is continuous. Thus, the

bilinear form associated to (I +A+B) is continuous. Therefore, from Lax–Milgram’s
lemma we have that there exists a unique U1 ∈ X1 such that (7.7) holds.

Therefore, there exists (U1, U2) = (U1, U1 −W1, ) ∈ X1×X1 which satisfies (7.5).
Moreover, U1 ∈ X3 and (U1, U2) ∈ D(A).

This proves that the map I+A is onto, and thus the operator A is an m-accretive
operator on X3 ×X1.
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Remark 7.1. Note that since the operator A is m-accretive in X, in view of [5,
Proposition VII.1, p. 101], we deduce that D (A) is dense on X.

We have the following result on the existence, uniqueness, and regularity of solu-
tions of (1.3).

Proposition 7.2. Let (y0, y1) ∈ X. Then there exists a unique solution y of
(1.3) which verifies

y ∈ Cb ([0,+∞[;X1) ∩ C1
b ([0,+∞[;X2) .(7.9)

Furthermore, if (y0, y1) ∈ D (A) , the solution y verifies

(y, yt) ∈ Cb ([0,+∞[;D(A)) .(7.10)

Moreover, when (y0, y1) ∈ D(A), the energy E : R
+ → R

+, defined as

E (t) =
1

2

∫
Ω

[
|yt (x, t)|2 + |�y (x, t)|2

]
dx,

is a decreasing and differentiable function on R
+.

Remark 7.2. Here and in what follows we denote by Ckb ([0,+∞[;X) the space
of functions Ck ([0,+∞[;X) ∩W k,∞(0,+∞;X).

Proof of Proposition 7.2. Since the operator A m-accretive in X, from the Hille–
Yosida theorem we have the following.

1. If (y0, y1) ∈ X = X1 ×X2, there exists a unique solution U = (y, yt) of{
dU

dt
+AU = 0 on (0,+∞),

U (0) = (y0, y1),
(7.11)

such that (see, for instance, [5, Theorem VII.5, p. 111])

U ∈ Cb ([0,+∞[;X) .(7.12)

2. If (y0, y1) ∈ D(A), there exists a unique solution U = (y, yt) of (7.11) such
that (see, for instance, [5, Theorem VII.4, p. 105])

U ∈ C1
b ([0,+∞[;X) ∩ Cb ([0,+∞[;D (A)) .(7.13)

On the other hand,

dE

dt
(t) =

∫
Ω

[ytt (x, t) yt (x, t) +�yt (x, t)�y (x, t)] dx.(7.14)

Taking z = yt in (7.2) and integrating by parts, we have that

dE

dt
(t) = −

∫
Γ0

∣∣∣∣∂yt∂n
∣∣∣∣2 ≤ 0,(7.15)

which shows us that the energy E is decreasing.
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7.2. A generic unique continuation result. In order to prove Theorem 1.3,
we need a nonstandard unique continuation result for the evolution plate system. This
is the object of the following proposition.

Proposition 7.3. Let Ω ⊂ R
d be an open bounded set of class C4, and let

Γ0 ⊂ ∂Ω be a nonempty open set such that the spectral uniqueness property holds.

If (y0, y1) ∈ D (A) and the corresponding solution of (1.3) is such that
∂yt
∂n

= 0 on Γ0 × (0,∞) ,(7.16)

then necessarily y ≡ 0.

Proof. We set v = yt. Then v is a weak solution of the system

vtt +�2v = 0 in Ω× (0,∞) ,

v = 0 on ∂Ω× (0,∞) ,

∂v

∂n
= 0 on ∂Ω× (0,∞) ,

v (x, 0) = v0 = y1 in Ω,
vt (x, 0) = v1 = −�2y0 in Ω,

(7.17)

with initial datum (v0, v1) ∈ H2
0 (Ω)×L2 (Ω) , and, furthermore, satisfies the condition

�v = 0 on Γ0 × (0,∞) .(7.18)

We will see that v = 0. Thus y (x, t) ≡ y (x) . Therefore, y (x) = y0 solves

�2y = 0 in Ω,

y = 0 on ∂Ω,

∂y

∂n
= 0 on ∂Ω \ Γ0,

�y = 0 on Γ0 × (0,∞) .

(7.19)

Multiplying (7.19) by y and integrating by parts, we deduce that
∫
Ω
|�y|2 dx = 0;

that is, y ≡ 0, since y = 0 on ∂Ω.

Thus, the problem is reduced to show that

v ≡ 0.(7.20)

To prove (7.20), first we observe that (v, vt) ∈ Cb([0,+∞);H2
0 (Ω)× L2(Ω)).

This can be proved easily by analyzing the well posedness of the conservative
plate system (7.17).

In what follows we shall use the notation X = H2
0 (Ω)× L2 (Ω) .

The solution v of (7.17) may be developed in a Fourier series. Indeed, let {λn}n
be the eigenvalues of the bilaplacian operator with clamped boundary conditions, and
let wn be the associated eigenfunctions normalized in L2 (Ω) : �2wn = λnwn in Ω,

wn =
∂wn
∂n

= 0 on ∂Ω.
(7.21)
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We decompose the initial data in Fourier series:

v0 (x) =

∞∑
n=1

anwn, v1 (x) =

∞∑
n=1

bnwn.(7.22)

It is easy to check that

‖v0‖2H2
0 (Ω) =

∞∑
n=1

λn |an|2 , ‖v1‖2L2(Ω) =

∞∑
n=1

|bn|2 .(7.23)

The solution v of (7.17) may be written as

v (x, t) =

∞∑
n=1

[
an cos

(√
λnt
)
+
bn
λn

sin
(√

λnt
)]
wn (x) .(7.24)

Let us define

µk =
√
λk, µ−k = −

√
λk, w−k (x) = wk (x) .(7.25)

If we define the complex coefficients

ck =
1

2

(
ak − i bk√

λk

)
, c−k =

1

2

(
ak + i

bk√
λk

)
,(7.26)

we can write

v (x, t) =
∑
k∈Z

cke
iµktwk (x) .(7.27)

Taking into account that �v = 0 on Γ0 × (0,∞) and applying Bohr’s transform
to �v (x, t) on Γ0 (see [3]), we deduce that

ck�wk = 0 on Γ0 ∀k ≥ 1.(7.28)

Therefore, for every k ∈ Z, we have that ck = 0 or wk is a solution of the problem

�2wk = λ2
kwk in Ω,

wk = 0 on ∂Ω,

∂wk
∂n

= 0 on ∂Ω,

�wk = 0 on Γ0.

(7.29)

Since, by assumption, the spectral uniqueness holds in Ω, (7.29) implies that
wk = 0 in Ω, which is a contradiction. Thus ck = 0 for all k ∈ Z and consequently
v ≡ 0.

This completes the proof.

7.3. Proof of Theorem 1.3. Now we prove the stabilization result for system
(1.3).

Proof. We distinguish two cases.
1. (y0, y1) ∈ D (A) .
2. (y0, y1) ∈ X.
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Step 1. Regular initial data.
Let {St}t≥0 be the contraction semigroup associated to (1.3). Then, given (y0, y1)

∈ D(A), we have that (y, yt) = St (y0, y1) and ‖y, yt‖D(A) ≤ ‖y0, y1‖D(A) .

Therefore, the trajectory {y (t) , yt (t)}t≥0 is bounded in D(A), and, according to
the compactness of the imbedding D(A) ↪→ X, {y (t) , yt (t)}t≥0 is relatively compact
in X.

Moreover, the energy E is a strict Lyapunov functional for the semigroup {St}t≥0.
Indeed, suppose that (y0, y1) ∈ D (A) is such that E (t) is constant for all t ≥ 0. Then
y solves (1.3) with

∂yt
∂n

= 0 on Γ0 × (0,∞) .(7.30)

From Proposition 7.3, we have that y ≡ 0. Therefore, (y0, y1) = (0, 0) , which is
the unique equilibrium point for system (1.3).

Thus, from the La Salle invariance principle (see [6, Theorem 9.2.3, p. 122]),
we deduce that the ω−limit of the trajectory {y, yt}t≥0 in X has a unique point
(y0, y1) = (0, 0) .

Therefore,

lim
t→+∞E (t) = 0.(7.31)

Step 2. Initial data in X.
Let (y0, y1) ∈ X. Since D (A) is dense in X, there exists a sequence of initial data

(yn0 , y
n
1 ) ∈ D (A) which converges to (y0, y1) in X as n→∞.

Let y be the solution of (1.3) with initial datum (y0, y1), and let yn be the solution
of (1.3) with initial datum (yn0 , y

n
1 ) .

Let

Ey (t) =

∫
Ω

[
|yt|2 + |�y|2

]
.

Then

0 ≤ Ey (t) ≤ 2Eyn (t) + 2Ey−yn (t) ≤ 2Eyn (t) + 2Ey−yn (0) .

Since (yn0 , y
n
1 )→ (y0, y1) in X as n→∞, for each ε > 0 there exists n0 ∈ N such

that

Ey−yn (0) < ε for n ≥ n0.

Moreover, since (yn0
0 , yn0

1 ) ∈ D (A) , according to the result of the first step, there
exists t0 ≥ 0 such that

Eyn0
(t) < ε, t ≥ t0.

Therefore, if t ≥ t0, we have that
Ey (t) ≤ 2Eyn0

(t) + 2Ey−yn0
(t) < 4ε.

Thus

lim
t→+∞Ey (t) = 0.

This completes the proof of Theorem 1.3.
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Abstract. We prove the existence of a value for pursuit games with state constraints. We also
prove that this value is lower semicontinuous.
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Introduction. In this paper, we intend to prove that two-player differential
games with state constraints have a value.

We investigate a differential game where the first player, called Ursula, playing
with u, controls a first system

y′(t) = g(y(t), u(t)), u(t) ∈ U,(0.1)

and has to ensure that the state constraint y(t) ∈ KU is fulfilled, while the second
player, called Victor, playing with v, controls a second system

z′(t) = h(z(t), v(t)), v(t) ∈ V,(0.2)

and has to ensure the state constraint z(t) ∈ KV . The first player aims the state of
the full system (y(·), z(·)) at avoiding a target as long as possible, while the second
player aims the state of the system at reaching this target in minimal time.

This game is known as the pursuit game. Most of the examples and results of
the early theory for differential games are concerned with this problem. (For several
examples and for methods of explicit resolution, see Isaacs [26], Flynn [20], Breakwell
[10], and Bernhard [9].)

As usually in differential game theory, one can define two value functions for
the game: the upper one and the lower one. The purpose of this paper is to give
some conditions on the system under which the pursuit game has a value, i.e., that
the upper value function is equal to the lower value function. We have to face two
difficulties: the presence of state constraints and the fact that the value functions can
be discontinuous. Let us point out that in most examples studied in Isaacs’s book
[26], one has to face at least one of the difficulties and often both.

In the early ’70s, the question of the existence of a value for pursuit games was
the aim of several papers (Varaiya [37], Varaiya and Lin [38], Osipov [29], Friedman
[23], [24], [25], Elliot and Kalton [16], [17], Fleming [19], Krasovskii and Subbotin
[27]). These works are mainly dealing with unconstrained problems (except for [25]),
and the value function is always continuous. Related problems, such as notions of

∗Received by the editors December 17, 1998; accepted for publication (in revised form) August
23, 2000; published electronically February 23, 2001.

http://www.siam.org/journals/sicon/39-5/34932.html
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de Lattre de Tassigny, F-75775 Paris Cedex, France (stpierre@viab.dauphine.fr).

1615



1616 P. CARDALIAGUET, M. QUINCAMPOIX, P. SAINT-PIERRE

local asymptotics and local and global stabilizations are studied in the article of Yong
[39].

More recently, the techniques of viscosity solutions allow Evans and Sougandinis
[18] to simplify the proofs of existence of a value and to characterize this value as
a unique solution of some Hamilton–Jacobi equation. Pursuit games without state
constraints and for continuous value functions are studied by Soravia in [36]. Alziary
de Roquefort [1], [2] uses these methods for a particular continuous pursuit game with
state constraints (the lion and man game).

In [33], Rozyev and Subbotin prove the existence of a value for a differential game
without continuity and with some state constraints for one player (Victor). However,
these results couldn’t directly be extended to differential games with separate dy-
namics and with state constraints on both dynamics. Actually, the basic idea of this
method—the so-called “extremal aiming” (which gives the strategy)—is not applica-
ble to situations where there are state constraints for both players. Let us also point
out that their approach is devoted to games in a context of strategies slightly different
from the one used in this paper. This method is adapted to the kind of strategies we
use, the nonanticipative strategies, and to the viscosity solution approach by Bardi,
Bottacin, and Falcone in [6]. Our definition of value function is (partially) borrowed
from this paper.

When this paper was complete, we received a preprint of Bardi, Koike, and Soravia
[7] establishing the existence of a value for pursuit games with state constraints when
this value is continuous. Let us point out that the constraints in [7] are more general
than ours. However, the method developed in [7] heavily relies on the fact that the
value function is continuous. For getting this continuity, the authors assume that one
of the value functions vanishes at the boundary of the target and is continuous on
this boundary, and that each control system (0.1) and (0.2) is locally controllable.

In this paper, we do not make any controllability condition at the boundary of
the target, so that the value of the game is, in general, not continuous. However,
following Soner [34], [35] we make some restriction on the dynamics at the boundary
of the state constraints. Under this restriction, we prove that the pursuit-evasion
game has a value. Let us point out that our result can be used in most examples
given in the “classical theory” of differential games.

We follow here the method described in [14] for characterizing the value functions
of differential game. Namely, we reduce the study of the pursuit game to a quali-
tative differential game called an “approach-evasion game.” The idea of reducing a
quantitative game to a qualitative one comes back to Isaacs [26]. Here we use an idea
of Frankowska for control problems, which amounts to characterizing the epigraph of
the value function (see [21], for instance, or [14] for further references on the subject).
So, in a first step, we study this qualitative game (or game of kind, in Isaacs terminol-
ogy), we give an “alternative result” for that game, and we characterize the victory
domains in a geometric way. Then, in a second step, we interpret the pursuit game
as a qualitative pursuit-evasion game in order to prove that there is a value to the
problem.

1. Existence of a value for the pursuit game. In this section, we state the
main result of this paper, namely, that pursuit games have a value. For doing so, we
first introduce some notations and assumptions.
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1.1. Notations and assumptions. The dynamics of the system are{
y′(t) = g(y(t), u(t)), u(t) ∈ U, y(t) ∈ KU ,

z′(t) = h(z(t), v(t)), v(t) ∈ V, z(t) ∈ KV ,

with y ∈ R
l, z ∈ R

m. We set x(t) := (y(t), z(t)), N := l +m, and

f(x, u, v) := f(y, z, u, v) := {g(y, u)} × {h(z, v)}.
The first player (Ursula), controlling u, has to ensure that y(t) ∈ KU , while the second
player (Victor), playing with v, has to ensure that z(t) ∈ KV .

The sets KU and KV have smooth boundaries. Moreover, we assume some
transversality conditions of the vector fields at the boundary of the state constraints
similar to those of Soner [34], [35]. Namely,

(i) U and V are compact subsets of some finite
dimensional spaces,

(ii) f : R
N × U × V → R

N is continuous and
Lipschitz continuous (with Lipschitz constant �)
with respect to x,

(iii)
⋃
u f(x, u, v) and

⋃
v f(x, u, v) are convex for any x,

(iv) KU = {y ∈ R
l, φU (y) ≤ 0} with φU ∈ C2(Rl;R),

∇φU (y) 
= 0 if φU (y) = 0,

(v) KV = {z ∈ R
m, φV (z) ≤ 0} with φV ∈ C2(Rm;R),

∇φV (z) 
= 0 if φV (z) = 0,

(vi) ∀y ∈ ∂KU , ∃u ∈ U with 〈∇φU (y), g(y, u)〉 < 0,

(vii) ∀z ∈ ∂KV , ∃v ∈ V with 〈∇φV (z), h(z, v)〉 < 0.

(1.1)

For any time-measurable controls u(·) and v(·), we denote by y[y0, u(·)], z[z0, v(·)],
and x[x0, u(·), v(·)] the solutions (in the Caratheodory sense) to (0.1), (0.2), and to

x′(t) = f(x(t), u(t), v(t)),(1.2)

starting, respectively, from y0, z0, and x0 := (y0, z0).
The sets of time-measurable controls u(·) : R

+ → U and v(·) : R
+ → V are

denoted, respectively, by U and V, while the sets of admissible controls are denoted
by U(y0) and V(z0):{

U(y0) := {u(·) ∈ U | y[y0, u(·)](t) ∈ KU ∀t ≥ 0},
V(z0) := {v(·) ∈ V | z[z0, v(·)](t) ∈ KV ∀t ≥ 0}.

Under condition (1.1), it is well known (see [4]) that the sets U(y0) and V(z0) are not
empty for any y0 ∈ KU and z0 ∈ KV . Moreover, according to Arisawa and Lions [3]
(see also [28]), the sets U(y0) and V(z0) are Lipschitz continuous with respect to y0
and z0. Namely, (for instance, for y), we have the following lemma.

Lemma 1.1. Under assumption (1.1), for any positive constants Q and T , there is
some positive λ = λ(Q,T, �) such that, for any y0, y1 belonging to KU , with ‖y0‖ ≤ Q
and ‖y1‖ ≤ Q, and for any admissible control u0(·) ∈ U(y0), there is some admissible
control u1(·) ∈ U(y1) such that

∀t ∈ [0, T ], ‖y[y0, u0(·)](t)− y[y1, u1(·)](t)‖ ≤ ‖y0 − y1‖eλt .
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Remarks on assumptions (1.1).
1. The regularity assumptions on the domainsKU andKV can also be weakened

by using an extension of Lemma 1.1 recently obtained by Frankowska and
Rampazzo in [22] for nonsmooth domains. The transversality condition has
to be extended in a suitable way. The results of the present paper also
hold true (with the exactly the same proof) under the Frankowska–Rampazzo
assumption provided that the sets KU and KV are sleek in the sense of [4].

2. Following also [22], the convexity assumption (iii) can be avoided. We have
preferred not to do so for simplicity. However, if one omits this assumption,
one has to modify the transversality assumption in a suitable way as well as
the definition of ϑ
C (see [22]).

The players play nonanticipative strategies. A map α : V(z0) → U(y0) is a
nonanticipative strategy (for the first player Ursula and for the point x0 := (y0, z0) ∈
KU × KV ) if, for any τ > 0 and for any control v1(·) and v2(·) belonging to V(z0),
which coincide almost everywhere (a.e.) on [0, τ ], α(v1(·)) and α(v2(·)) coincide a.e.
on [0, τ ]. We denote by SU (x0) the set of such nonanticipative strategies for Ursula.

The nonanticipative strategies β for the second player Victor are defined sym-
metrically, and we denote by SV (x0) the set of such strategies.

Throughout this paper, B denotes the closed unit ball of R
N (endowed with the

Euclidean norm), and dS(x) denotes the distance from a point x to a set S. Moreover,
if S is a subset of R

N and ε is positive, we denote by S + εB the set

S + εB = {x ∈ R
N | dS(x) ≤ ε} .

1.2. The main theorem. Let C ⊂ KU ×KV be a closed target. The hitting-
time of C for a trajectory x(·) := (y(·), z(·)) is

θC(x(·)) := min{t ≥ 0 | x(t) ∈ C}.
If x(t) /∈ C for every t ≥ 0, then we set θC(x(·)) := +∞. In the pursuit game, Ursula
wants to maximize θC , while Victor wants to minimize it.

Definition 1.2 (value functions). The lower optimal hitting-time function is the
map ϑ
C : KU ×KV → R

+ ∪ {+∞} defined, for any x0 := (y0, z0), by

ϑ
C(x0) := inf
β(·)∈SV (x0)

sup
u(·)∈U(y0)

θC (x[x0, u(·), β(u(·))]) .

The upper optimal hitting-time function is the map ϑ�C : KU ×KV → R
+∪{+∞}

defined, for any x0 := (y0, z0), by

ϑ�C(x0) := lim
ε→0+

sup
α(·)∈SU (x0)

inf
v(·)∈V(z0)

θC+εB (x[x0, α(v(·)), v(·)]) .

By convention, we set ϑ
C(x) = ϑ
�
C(x) = 0 on C.

Remarks.
1. Let us point out that the limit in the definition of ϑ�C exists because the

quantity

sup
α(·)∈SU (x0)

inf
v(·)∈V(z0)

θC+εB (x[x0, α(v(·)), v(·)])

is nondecreasing with respect to ε. Such a definition is used, for instance, in
[6]. The meaning of such a definition is the following. Whatever strategy α
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is played, the second player can ensure the state of the system to go as close
as he wants to the target before ϑ�C(x0) (but the state of the system need not
reach the target).

2. The following definition of the upper value function has been used in several
papers:

ϑ̂�C(x0) := sup
α(·)∈SU (x0)

inf
v(·)∈V(z0)

θC (x[x0, α(v(·)), v(·)]) .

However, without controllability assumptions on the boundary of the target,
we cannot hope to have a value with this definition of upper value function.
For instance, if one considers the unconstrained pursuit game where the dy-
namics is 

y′(t) = u(t), where u(t) ∈ U = [−1, 1],

z′1(t) = v(t), where v(t) ∈ V = [−1, 1],

z′2(t) = 1,

and the target is C = {(y, z1, z2) ∈ R
3 | y = z1 and z2 = 1}, then

ϑ̂�C(0, 0, 0) = +∞,

while

ϑ
C(0, 0, 0) = ϑ
�
C(0, 0, 0) = 1.

Proof. We first prove the last equality. Let us notice that β(u(·))(t) = u(t)
is an optimal strategy for the second player. Hence ϑ
C(0, 0, 0) = 1. Equality

ϑ
C(0, 0, 0) = ϑ
�
C(0, 0, 0) comes from Theorem 1.3 below.

We now prove the first equality. We define the nonanticipative strategy
α in the following way. For any control v(·), let z1(·) be the solution to{

z′1(t) = v(t),
z1(0) = 0.

We set c = lim infh→0+ z1(h)/h. Since v(t) ∈ [−1, 1], we have c ∈ [−1, 1]. If
c > −1, we set α(v(·))(t) = −1, while, if c = −1, we set α(v(·))(t) = 1. Let
us point out that such a map α is a nonanticipative strategy. We claim that,
for any control v(·), the solution x(·) = x[0, α(v(·)), v(·)] never touches the
target.

We consider two cases. If, on the one hand, c > −1, then there is some
τ ∈ (0, 1) such that

∀t ∈ (0, τ ], z1(t) ≥ (c− 1)

2
t > −t = y(t) .

Hence

∀t ≥ τ, z1(t) ≥ (c− 1)

2
τ − (t− τ) > −t = y(t) .

Therefore, for any t, z1(t) > y(t), so that x(t) /∈ C.
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If, on another hand, c = −1, there is a sequence tn → 0+ such that
limn z1(tn)/tn = −1. Hence there is some n such that tn ∈ (0, 1) and z1(tn) ≤
tn/2. Then

∀t ≥ tn, z1(t) ≤ tn/2 + (t− tn) < t = y(t) .

Therefore, for any t ≥ tn, z1(t) < y(t), so that x(t) /∈ C.
3. A natural question is “What happens if one modifies the lower value function

in the same way?” We show below that

ϑ
C(x0) := lim
ε→0+

inf
β(·)∈SV (x0)

sup
u(·)∈U(y0)

θC+εB (x[x0, u(·), β(u(·))])

(see Proposition 3.2).
4. A last remark, which is not really interesting for differential games, might be

interesting from a PDE point of view. In the theory of viscosity solutions, one
often characterizes the solution through its lower semicontinuous and upper
semicontinuous envelope. In the above example we can notice that the lower
semicontinuous envelope of ϑ̂�C is not equal to ϑ�C .

Theorem 1.3. Assume that conditions (1.1) are fulfilled. Then the game has a
value:

∀x0 ∈ KU ×KV , ϑ


C(x0) = ϑ

�
C(x0).

This theorem is proved in section 4 by reducing the pursuit game to a qualitative
differential game called the pursuit-evasion game. We deduce from the “alternative
theorem” for this qualitative game (see Theorem 2.6, below) the existence of a value
for the pursuit game.

Moreover, the proof gives a geometric characterization of the value function. This
characterization can be formulated as a Hamilton–Jacobi–Isaacs equation (see [14]).
We shall not do so for the sake of brevity. As indicated in [14], we can also derive
from this characterization numerical schemes for computing the value function.

2. An alternative theorem for a qualitative differential game with state
constraints. In this section, we study the differential game in which the first player,
Ursula, controlling system (0.1), aims the state of the full system at reaching an open
target O while the other player, Victor, controlling system (0.2), aims the state of the
system at avoiding O and—if possible—at reaching some given evasion set E . This
game is very close to the approach-evasion game of Krasovskii and Subbotin [27].

2.1. Statement of the qualitative problem.
Definition 2.1. Let O ⊂ KU ×KV be an open target, and let E ⊂ KU ×KV be

a closed evasion set. The victory domains of the players are defined as follows.
• Victor’s victory domain is the set of initial positions x0 := (y0, z0) belonging to

KU ×KV for which there is an admissible nonanticipative strategy β : U(y0) → V(z0)
such that, for any admissible control u(·) ∈ U(y0), the solution x[x0, u(·), β(u(·))]
avoids O as long as it does not reach E (or avoids O on [0,+∞) if it never reaches
E).

• Ursula’s victory domain is the set of initial positions x0 := (y0, z0) belonging
to KU × KV for which there are T ≥ 0, ε > 0, and an admissible nonanticipative
strategy α : V(z0) → U(y0) such that, for any admissible control v(·) ∈ V(z0), the
solution x[x0, α(v(·)), v(·)] reaches Oε := {x ∈ O | d∂O(x) > ε} at some time τ ≤ T
and does not reach E + εB on [0, τ ].
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In this section, we prove the following alternative result: if x belongs to KU×KV ,
then x belongs to one and only one victory domain. Moreover, we give a geometric
characterization of the victory domains.

2.2. The discriminating domains. For x := (y, z) ∈ R
N , we set

U(y) := {u ∈ U | g(y, u) ∈ TKU (y)},
where TKU (y) is the usual tangent half-space to the set with smooth boundary KU

at y. Let us notice that, under assumptions (1.1), the set-valued map y → f(y, U(y))
is lower semicontinuous with convex compact values (see [5]).

Let us introduce the Hamiltonian of our system:

H(x, p) :=

{
infv∈V supu∈U(y)〈f(x, u, v), p〉 if x /∈ E ,
min{0 , infv∈V supu∈U(y)〈f(x, u, v), p〉} otherwise,

(2.1)

where x := (y, z) and where

inf
v∈V

sup
u∈U(y)

〈f(x, u, v), p〉 = sup
u∈U(y)

〈g(y, u), py〉+ inf
v∈V

〈h(z, v), pz〉.

Definition 2.2. A closed subset D of KU ×KV is a discriminating domain for
H if and only if

∀x ∈ D, ∀p ∈ NPD(x), H(x, p) ≤ 0,

where NPD(x) denotes the set of proximal normal to D at x, i.e., the set of p ∈ R
N

such that the distance of x+ p to D is equal to ‖p‖.
For the original definition of discriminating domains, see Aubin [4].
Discriminating domains can be characterized in two different ways.
Theorem 2.3. Suppose that assumptions (1.1) are fulfilled. A closed subset D

of KU ×KV is a discriminating domain for H if and only if, for any initial position
x0 = (y0, z0) ∈ D, there is a nonanticipative strategy β ∈ SV (x0) such that, for
any u(·) ∈ U(y0), the solution x[x0, u(·), β(u(·))] remains in D until it reaches E (or
remains in D on [0,+∞) if it never reaches E).

Remark. This result was proved independently and in the same time by Plaskacz
[30] and by the first author [11] when KU = R

l and E = ∅. For time-measurable
dynamics, see also [15]. Theorem 2.3 (in a more general form) was announced in [13].

Theorem 2.4. Suppose that assumptions (1.1) are fulfilled. A closed set D ⊂
KU × KV is a discriminating domain for H if and only if, for any initial position
x0 := (y0, z0) ∈ D, for any admissible nonanticipative strategy α : V(z0) → U(y0),
for any T ≥ 0, and for any ε > 0, there is an admissible control v(·) ∈ V(z0) such
that the solution x[x0, α(v(·)), v(·)] remains in D+ εB on [0, T ] as long as it does not
reach E + εB. Namely,

• either there is some τ ≤ T such that x[x0, α(v(·)), v(·)](τ) belongs to E + εB
and x[x0, α(v(·)), v(·)](t) ∈ D + εB for t ∈ [0, τ ],

• or x[x0, α(v(·)), v(·)](t) ∈ D + εB for t ∈ [0, T ].
Remark. Note that, if D ⊂ (KU × KV )\O is a discriminating domain, then D

is a subset of Victor’s victory domain (according to Theorem 2.3) and has an empty
intersection with Ursula’s victory domain (according to Theorem 2.4).

The proof of Theorems 2.3 and 2.4, being rather technical, are given in the ap-
pendix.
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2.3. The alternative theorem. We now characterize Victor’s and Ursula’s
victory domains. For that purpose, we first recall the definition of the discriminating
kernel.

Proposition 2.5 (see [12]). Let H : R
N × R

N → R be a lower semicontinuous
map. If K is a subset of R

N , then K contains a largest (for the inclusion) closed
discriminating domain for H. This set is called the discriminating kernel of K for H
and is denoted by DiscH(K).

Theorem 2.6 (alternative theorem). Let H be defined by (2.1) and assume that
(1.1) is fulfilled. Then,

• Victor’s victory domain is equal to DiscH(K), and
• Ursula’s victory domain is equal to (KU ×KV )\DiscH(K),

where K := (KU ×KV )\O.
In particular, any point of (KU ×KV ) belongs either to Victor’s victory domain

or to Ursula’s. When KU = KV = R
N , this characterization can be found in [11].

The proof is given in the appendix.

3. Proof of the existence of a value for the pursuit game. We come back
to the problem of the existence of a value (see section 1), i.e., to the equality between

ϑ
C and ϑ�C . We are going to prove that their epigraphs are equal. Let us recall that
the epigraph of ϑ
C (for instance) is a subset of R

N+1 defined by

Epi(ϑ
C) = {(x, ρ) ∈ R
N+1 | ϑ
C(x) ≤ ρ}.

In what follows, we always denote by (x, ρ) any point of R
N+1, where x ∈ R

N and
ρ ∈ R.

Theorem 3.1. Assume that conditions (1.1) are fulfilled. Then we have

Epi(ϑ
C) = DiscH(K) = Epi(ϑ�C),(3.1)

where K := KU × KV × R
+ and where the Hamiltonian H : R

N+1 × R
N+1 → R is

defined by

∀(x, ρ) ∈ R
N+1, (px, pρ) ∈ R

N+1,

H(x, ρ, px, pρ)

:= sup
u∈U(y)

inf
v∈V

〈f(x, u, v), px〉 − pρ if x /∈ C,

:= min

{
0 ; sup

u∈U(y)

inf
v∈V

〈f(x, u, v), px〉 − pρ
}

otherwise.

Remarks.
• This result proves Theorem 1.3 since the functions ϑ
C and ϑ�C , having the
same hypograph, are equal.

• We can deduce from this result that the map ϑ
C = ϑ�C is lower semicontinuous
since its epigraph is closed (the set DiscH(K) being closed from Proposition
2.5).

• We can also derive from the proof of Theorem 3.1 the existence of an optimal
strategy for the pursuer (Victor).

Proof of Theorem 3.1. Proof of the first equality of (3.1).

Let us introduce the dynamic f̃ : R
N × R × U × V → R

N × R given by

f̃(x, ρ, u, v) := {f(x, u, v)} × {−1}.
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Note that the Hamiltonian H defined above is actually of the form of the Hamil-
tonian H defined by (2.1) for the dynamics f̃ and for the closed evasion set defined
by E := C × R.

From Theorem 2.6, the discriminating kernel of K for H̃ is the set of initial
positions (x0, ρ0) ∈ K for which there is some nonanticipative strategy β ∈ SV (x0)
for Victor such that, for any u(·) ∈ U(y0), the solution to

x′(t) = f(x(t), u(t), β(u(·))(t)),
ρ′(t) = −1,

x(0) = x0, and ρ(0) = ρ0

(3.2)

remains in K until it reaches the set E .
Let (x0, ρ0) belong to Disc

H̃
(K), let β be an associated nonanticipative strategy,

and let (x(·), ρ(·)) be the solution to (3.2). Since the solution (x(·), ρ(·)) remains in
K as long as it does not reach E , ρ(t) = ρ0 − t ≥ 0 as long as x(t) /∈ C. Thus the
solution x[x0, u(·), β(u(·))] reaches C before ρ0. In particular,

ϑ
C(x0) ≤ sup
u(·)∈U

θC(x[x0, u(·), β(u(·))]) ≤ ρ0 .(3.3)

So (x0, ρ0) belongs to Epi(ϑ
C(·)) and DiscH̃(K) ⊂ Epi(ϑ
C(·)).
For proving the converse inclusion, let x0 belong to the domain of ϑ
C(·), and let

ρ0 > ϑ


C(x0). There is some nonanticipative strategy β for Victor such that, for any

u(·) ∈ U(y0), the solution x[x0, u(·), β(u(·))] reaches C before ρ0. In particular, the
solution (x(·), ρ(·)) to (3.2) remains in K until it reaches E , so that (x0, ρ0) belongs
to Disc

H̃
(K) from Theorem 2.6. This holds true for any ρ0 > ϑ



C(x0).

Since the discriminating kernel is a closed set, we have proved that

Epi(ϑ
C(·)) ⊂ DiscH̃(K).

Proof of the second equality of (3.1). Let (y0, z0, w0) belong to Disc
H̃
(K). Fix

ε > 0, and let α : V(z0) → U(y0) be such that

∀v(·) ∈ V(z0), θC+εB(x[x0, α(v(·)), v(·)]) ≥ ϑ�C(y0, z0)− ε .
From Theorem 2.6, for this nonanticipative strategy α, for this ε > 0, and for

T := w0 + ε, there is a control v(·) ∈ V(z0) such that the solution to
x′(t) = f(x(t), α(v(·))(t), v(t)),
w′(t) = −1,

y(0) = y0, z(0) = z0, w(0) = w0

(3.4)

remains in K + εB on [0, T ] as long as it does not reach (C × R) + εB.
Set τ := inf{θC+εB((y(·), z(·)));T}. Then w(t) = w0 − t on [0, τ ] and w(t) ≥ −ε

for any t ∈ [0, τ ]. So τ ≤ w0 + ε.

So finally, w0 ≥ ϑ�C(y0, z0) − 2ε. Since this holds true for any ε > 0, we have

finally proved that w0 ≥ ϑ�C(y0, z0). Thus DiscH̃(K) is a subset of Epi(ϑ�C).
Conversely, let w0 > ϑ�C(y0, z0). Then, for any nonanticipative strategy α :

V(z0) → U(y0), for any positive ε, there is a control v(·) ∈ V(z0) such that

θC+εB(x[x0, α(v(·)), v(·)]) ≤ w0.
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Note that the function t → (x[x0, α(v(·)), v(·))](t), w0 − t) is a solution to (3.4).
Moreover, this solution remains in K as long as the solution does not reach E + εB
(i.e., on [0, θC+εB(x[x0, α(v(·)), v(·)])]). So (y0, z0, w0) belongs to Disc

H̃
(K). Since

Disc
H̃
(K) is closed, this holds true for any w0 ≥ ϑ�C(y0, z0).

This proves the equality between Disc
H̃
(K) and Epi(ϑ�C).

We can also use the previous theorem in order to prove some stability results.
Namely, we have the following proposition.

Proposition 3.2. Under the assumptions of Theorem 3.1,

ϑ
C(x0) := lim
ε→0

inf
β(·)∈SV (x0)

sup
u(·)∈U(y0)

θC+εB (x[x0, u(·), β(u(·))]) .
Proof. Let us denote by ϑ
C+εB and Hε the value and the Hamiltonian associated

with the target C + εB:

∀(x, ρ) ∈ R
N+1, (px, pρ) ∈ R

N+1,

H(x, ρ, px, pρ)

:= sup
u∈U(y)

inf
v∈V

〈f(x, u, v), px〉 − pρ if x /∈ C + εB,

:= min

{
0 ; sup

u∈U(y)

inf
v∈V

〈f(x, u, v), px〉 − pρ
}

otherwise.

According to Theorem 3.1, we have

Epi(ϑ
C+εB) = DiscHε(K),

where K := KU ×KV × R
+. Since Hε ≤ H, the following inequality is obvious:

DiscH(K) ⊂ DiscHε(K) .

Conversely, since the lower semicontinuous Hamiltonians Hε converge in the sense of
Proposition 1.2 of [12], this proposition states that the decreasing limit of DiscHε(K)
is a discriminating domain for H. Since this limit is contained in K, because so are
DiscHε(K), it is contained in DiscH(K). So we have proved that⋂

ε>0

DiscHε(K) = DiscH(K) ,

which is equivalent to saying that

ϑ
C(x0) := lim
ε→0+

inf
β(·)∈SV (x0)

sup
u(·)∈U(y0)

θC+εB (x[x0, u(·), β(u(·))]) .

4. Appendix. We now prove Theorems 2.3, 2.4, and 2.6. The proof of these
results has the same framework as the proof of Theorems 2.1, 2.2, 2.3, and 2.4 of [11].
However, the key points of the proofs essentially differ because of the presence of the
constraints. Hence, for the sake of brevity, we refer to [11] for the framework of the
proofs, and we only give the key points.

4.1. Proof of Theorem 2.3. The condition is sufficient. Assume that D
is a discriminating domain. The crucial point of the proof is the following lemma.

Lemma 4.1. Suppose that the assumptions of Theorem 2.3 are fulfilled, and
assume that D is a discriminating domain for H. Then for any x0 = (y0, z0) ∈ D
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and for any control u(·) ∈ U(y0), there is a control v(·) ∈ V(z0) such that the solution
x(·) := x[x0, u(·), v(·)] remains in D until it reaches E (or remains in D forever if it
does not reach E).

The sequel of the proof runs as in Theorem 2.1 of [11] or as in [15].
Proof of Lemma 4.1. Let us assume that D is a discriminating domain for H. Let

x0 ∈ D and u0(·) ∈ U(y0). It is enough to prove that there is a measurable control
v(·) ∈ V and a time T > 0 such that x(·) := x[x0, u0(·), v(·)] remains in D on [0, T ]
until it reaches E . Let us notice that, if x0 ∈ E , then the proof is obvious. We now
assume that x0 /∈ E .

We divide the proof in two steps. In the first step we assume that y0 belongs to
the interior of KU , and in the second step that y0 belongs to ∂KU .

First step. We assume that there is some T > 0 such that the solution y(·) :=
y[y0, u0(·)] remains in Int(KU ) on [0, T ]. Then we are going to prove that there is a
control v(·) ∈ V(z0) such that x[x0, u(·), v(·)] remains in D on [0, T ].

Let ε > 0 be such that

∀t ∈ [0, T ], y(t) + εB ⊂ Int(KU ).

Let us introduce the following open set:

W := {(y, z) ∈ R
N | ∃t ∈ [0, T ], ‖y(t)− y‖ < ε} = (y([0, T ]) + ε

o

B)× R
m.

Let us define the set-valued map:

F (t, x) :=

{ ⋃
v∈V f(x, u0(t), v) if x /∈ E ,

Co{{0} ∪ ⋃
v∈V f(x, u0(t), v)} if x ∈ E .

The main point of the proof is to check the assumptions for applying the measurable
viability theorem of [21] for the set W ∩D and F .

Let us notice that F is measurable and upper semicontinuous with respect to x.
Moreover, F has convex compact values. We claim that the set W ∩ D is a locally
compact viability domain for F . Indeed, if x := (y, z) ∈W ∩D, then y ∈ Int(KU ), so
that U(y) = U . Since D is a discriminating domain, U(y) = U on W , and f(x, u, V )
is convex, the proximal normal condition can be replaced by the following one (see,
for instance, [12]):

∀x ∈ D ∩W, ∀u ∈ U, ∃v ∈ V with f(x, u, v) ∈ TD(x).
Thus

F (t, x) ∩ TD(x) 
= ∅ a.e. t ∈ [0, T ],

where TD(x) = {v ∈ R
N , lim infh→0+ dD(x + hv)/h = 0}. So we have proved that

W ∩D is a locally compact viability domain for F on [0, T ].
The measurable viability theorem of [21] states that there is a solution x̄(·) to the

differential inclusion {
x̄′(t) ∈ F (t, x̄(t)),
x̄(0) = x0,

which remains in D as long as it belongs to W . Note that x̄(t) = (ȳ(t), z̄(t)), where
ȳ(·) = y[y0, u0(·)] = y(·).
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In particular, x̄(t) remains in W on [0, T ] and thus also in D on [0, T ]. As long
as x̄(·) does not belong to E , x̄(·) is the solution to

x̄′(t) ∈
⋃
v

f(x̄(t), u0(t), v) .

Then the measurable selection theorem (Theorem 8.3.1 of [5]) states that there is
some control v(·) such that the solution x[x0, u0(·), v(·)] is equal to x̄(·) until the
solution reaches E . When the solution has reached E , we can set v(t) = v̄, where v̄
is any element of V . So we have finally defined a control v(·) such that the solution
x[x0, u0(·), v(·)] remains in D on [0, T ] until it reaches E .

Second step. Let us now assume that y0 belongs to ∂KU . From assumption (1.1),
there is some ū ∈ U(y0) such that w := g(y0, ū) belongs to Int(TKU (y0)).

Fix θ > 0, and define xθ = (y0 + θw, z0) and yθ(·) := y[y0 + θw, u0(·)]. Since KU

is smooth, the solution yθ(·) remains in Int(KU ) on some interval [0, T ] (with T > 0
independent of θ) for any θ sufficiently small.

Thanks to the first step, we know that there is some control vθ(·) such that the
solution xθ(·) := x[xθ, u0(·), vθ(·)] remains in D on [0, T ] until it reaches E . Since the
set-valued map

⋃
v∈V f(x, u0(t), v) is measurable, upper semicontinuous with respect

to x, and has convex compact values, and since E is closed, there are a sequence
θn → 0+ and a sequence xθn(·) which converge to some x(·) starting from x0 and
remaining in D on [0, T ] until it reaches E . Since, as long as the x(·) has not reached
E , x(·) is a solution to

x′(t) ∈
⋃
v

f(x(t), u0(t), v),

the measurable selection theorem states that there exists a control v(·) ∈ V(z0) such
that x(·) = x[x0, u0(·), v(·)] as long as this solution has not reached E . After the
solution has reached E , we can set v(t) = v̄, where v̄ is any element of V .

The condition is necessary. Assume that the closed setD satisfies the property
given in Theorem 2.3. Let x̄ = (ȳ, z̄) ∈ D\E , p ∈ NPD(x̄), and ū ∈ U(ȳ). We have to
prove that

sup
u∈U(ȳ)

inf
v∈V

〈f(x̄, u, v), p〉 ≤ 0.

Since the set-valued map y → g(y, U(y)) is lower semicontinuous with compact convex
values, the Michael selection theorem (see [5]) yields the existence of a continuous
selection w̃ : KU → U of this set-valued map, i.e., w̃(y) ∈ g(y, U(y)) such that
w̃(ȳ) = g(ȳ, ū). Let y(·) be any solution to the differential equation{

y′(t) = w̃(y(t)), y(t) ∈ KU ,

y(0) = ȳ.

Then from the measurable selection theorem, there is some measurable control u(·) ∈
U(ȳ) with y(t) = y[ȳ, u(·)](t). Note that y′(0) = g(ȳ, ū).

Let β be a nonanticipative strategy as in Theorem 2.3. Then x(·) := x[x̄, u(·),
β(u(·))] remains in D and thus in RN\(x̄+ p+ ‖p‖B). Then from standard argu-
ments, there is a sequence tk → 0+ such that (x(tk) − x̄)/tk converges to some
v = (vy, vz) with 〈v, p〉 ≤ 0. From the very construction of u(·), vy = g(ȳ, ū). Since
h(z, V ) is convex, vz ∈ h(z̄, V ). Thus

sup
u∈U(ȳ)

inf
v∈V

〈f(x̄, u, v), p〉 ≤ 0.
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4.2. Proof of Theorem 2.4. The condition is sufficient. The proof of
the sufficient condition follows the proof of Theorem 2.3 in [11] with Lemma 4.2
below instead of Lemma 4.4 of [11]. In Lemma 4.4 of [11], we use a kind of “ex-
tremal aiming” method. Extremal aiming [27] amounts to associating with any point
x /∈ D some projection x̄ of x onto D, and to playing for Ursula some u ∈ U
such that infv〈f(x̄, u, v), x − x̄〉 is maximum, and for Victor some v ∈ V such that
supu〈f(x̄, u, v), x − x̄〉 is minimum. Unfortunately, this method fails here since the
players have to play admissible strategies, and the strategies given by the extremal
aiming method have no reason to be admissible.

For stating Lemma 4.2, let us fix some notations. Since we are working only on
the bounded interval [0, T ] and with solutions starting from initial position x0, we
denote by Q a radius such that any solution starting from x0 remains in QB on [0, T ].
We denote by M a upper bound of ‖f‖ on QB.

Lemma 4.2. Under the assumptions of Theorem 2.4, there are positive constants
(depending on Q, T , M , and �) a and b such that, for any x ∈ (KU × KV ) ∩ QB,
with x /∈ D but dD(x) ≤ Q, for any admissible nonanticipative strategy α(·) ∈ SU (x),
and for any τ ∈ [0, T ], there is some admissible control v(·) ∈ V(z) such that

d2D(x[x, α(v(·)), v(·)](τ)) ≤ d2D(x)[1 + aτ ] + bτ2.

Proof of Lemma 4.2. Let x̄ := (ȳ, z̄) belong to the projection of x onto D. We
also set p = (py, pz) = x− x̄. Recall that p belongs to NPD(x̄) and ‖p‖ ≤ Q. Let us
fix τ ∈ (0, T ].

Let us consider ũ(·) ∈ U(y) an admissible control such that

〈y[y, ũ(·)](τ), py〉 = max
u(·)∈U(y)

〈y[y, u(·)](τ), py〉.

Thanks to Lemma 1.1, there is some control ū(·) ∈ U(ȳ) such that

‖y[ȳ, ū(·)](τ)− y[y, ũ(·)](τ)‖2 ≤ ‖py‖2e2λτ .

From Lemma 4.1, there is some admissible control v̄(·) ∈ V(z̄) such that the
solution x[x̄, ū(·), v̄(·)] remains in D. Thanks to Lemma 1.1, there is some control
v(·) ∈ V(z) such that

‖z[z̄, v̄(·)](τ)− z[z, v(·)](τ)‖2 ≤ ‖pz‖2e2λτ .

Set u(·) := α(v(·)). Then

d2D(x[x, u(·), v(·)](τ))
≤ ‖x[x̄, ū(·), v̄(·)](τ)− x[x, u(·), v(·)](τ)‖2

≤ ‖pz‖2e2λτ + ‖y[ȳ, ū(·)](τ)− y[y, u(·)](τ)‖2

≤ (1 + aτ)‖pz‖2 + ‖y[ȳ, ū(·)](τ)− y[y, u(·)](τ)‖2.

If we set ȳ(·) := y[ȳ, ū(·)], y(·) := y[y, u(·)], and ỹ(·) := y[y, ũ(·)], we have

‖ȳ(τ)− y(τ)‖2

= ‖ȳ(τ)− ỹ(τ)‖2 + ‖ỹ(τ)− y(τ)‖2 + 2〈ȳ(τ)− ỹ(τ); ỹ(τ)− y(τ)〉
≤ ‖py‖2e2λτ + 4M2τ2 + 2〈−py; ỹ(τ)− y(τ)〉+ 4M2τ2

≤ (1 + aτ)‖py‖2 + bτ2



1628 P. CARDALIAGUET, M. QUINCAMPOIX, P. SAINT-PIERRE

for some constants a and b, since

〈py; y[y, ũ(·)](τ)〉 ≥ 〈py; y[y, u(·)](τ)〉
from the very construction of ũ(·). Therefore,

d2D(x[x, u(·), v(·)](τ)) ≤ (1 + aτ)‖p‖2 + bτ2,

which is the desired result since ‖p‖ = dD(x).
Necessary condition. Let us assume that D is not a discriminating domain for

H. We are going to prove the existence of some point x0 and of a nonanticipative
strategy α : V(z0) → U(y0) of positive ε and T such that, for any v(·) ∈ V(z0), the
solution x[x0, α(v(·)), v(·)] leaves D + εB before T and avoids E + εB on [0, T ].

Let x0 = (y0, z0) ∈ ∂D be such that the normal condition is not satisfied. Clearly
x0 /∈ E , and there is some p = (py, pz) ∈ NPD(x0) and some γ > 0 such that

inf
v∈V

〈h(z0, v), pz〉+ sup
u∈U(y0)

〈g(y0, u), py〉 ≥ γ .

Let ū ∈ U(y0), which achieves the maximum of 〈g(y0, u), py〉. Then, since y →
g(y, U(y)) is lower semicontinuous with convex compact values, there is a continu-
ous selection g̃(y) of g(y, U(y)) such that g̃(y0) = g(y0, ū) (by the Michael selection
theorem in [5] for instance).

Let y(·) be any solution to y′(t) = g̃(y(t)), y(0) = y0, y(t) ∈ KU for any t ≥ 0
(the Nagumo theorem [4] states that such a solution exists). There is some control
u(·) such that y(·) = y[y0, u(·)] and u(·) ∈ U(y0) since y(t) ∈ KU for t ≥ 0. Moreover,
y′(0) = g(y0, ū). In particular, there is some τ > 0 such that,

∀t ∈ (0, τ), 〈y(t)− y0, py〉 ≥ t max
u∈U(y0)

〈g(y0, u), py〉 − tγ/3.

For τ > 0 sufficiently small and for any admissible control v(·) ∈ V(z0), we have

∀t ∈ (0, τ), 〈z[z0, v(·)]− z0, pz〉 ≥ t inf
v∈V (z0)

〈h(z0, v), pz〉 − tγ/3.

Let v(·) ∈ V(z0) be any admissible control. Then, since p is a proximal normal to
D at x0, for any t ∈ (0, τ),

dD(x[x0, u(·), v(·)](t)) ≥ ‖p‖ − ‖x[x0, u(·), v(·)](t)− x0 − p‖.
Note that

‖x[x0, u(·), v(·)](t)− x0 − p‖2

≤ ‖p‖2 − 2〈y[y0, u(·)](t)− y0, py〉 − 2〈z[z0, v(·)](t)− z0, pz〉+ Ct2
≤ ‖p‖2 − 2t(γ − 2γ/3) + Ct2

for some constant C. So

dD(x[x0, u(·), v(·)](t)) ≥ ‖p‖ − [‖p‖2 − 2tγ/3 + Ct2]1/2,

which is positive for any t ∈ (0, τ) if τ > 0 is sufficiently small.
In conclusion, the desired nonanticipative strategy α : V(z0) → U(y0) is the

constant map α(v(·)) = u(·).
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4.3. Proof of Theorem 2.6. We first prove that DiscH(K) is equal to Victor’s
victory domain. This runs as in the proof of Theorem 2.2 of [11], where we use the
following sequence Kn instead of the sequence Kn of [11]:
K0 = K,

Kn+1 :=

x = (y, z) ∈ Kn |
∀u(·) ∈ U(y), ∃v(·) ∈ V(z), ∃τ ∈ [0,+∞],

such that x[x, u(·), v(·)](τ) ∈ E if τ < +∞, and
∀t ∈ [0, τ), x[x, u(·), v(·)](t) ∈ Kn

 .
It is easy to check that

⋂
nKn is a discriminating domain. Hence

⋂
nKn ⊂ DiscH(K).

On the other hand, since the Kn contain DiscH(K), one has
⋂
nKn = DiscH(K).

Hence
⋂
nKn = DiscH(K).

For the characterization of Ursula’s victory domain, we introduce the complement
of Ursula’s victory domain:

L :=


x0 ∈ K |

∀α(·), T ≥ 0, ε > 0, ∃v(·) ∈ V(z0),
such that, if x(·) := x[x0, α(v(·)), v(·)],
then, either ∀t ∈ [0, T ], x(t) ∈ K + εB

or ∃τ ≤ T, x(τ) ∈ E + εB, and

x(t) ∈ K + εB for t ∈ [0, τ ]


.

Thanks to Theorem 2.4, DiscH(K) ⊂ L. So we have to prove the converse inclusion.
For doing this, the key argument of [11, Lemma 5.1] is replaced by the following

lemma.
Lemma 4.3. If x0 belongs to K but not to L, there are positive η, ε, and T and,

for any x := (y, z) ∈ (x0 + ηB) ∩ K, a nonanticipative strategy α : V(z) → U(y) such
that, for any v(·) ∈ V(z), the solution x[x, α(v(·)), v(·)] does not reach E + εB and
leaves K + εB before T . Namely, if we set x(·) := x[x, α(v(·)), v(·)],

∃τ ∈ [0, T ], x(τ) /∈ K + εB, and x(t) /∈ E + εB for t ∈ [0, τ ] .

Lemma 4.3 states that the ε and T appearing in the definition of Ursula’s victory
domain are locally uniform.

Proof of Lemma 4.3. From the very definition of L, if x0 does not belong to L,
there is a nonanticipative strategy α0(·), T and ε0 > 0 such that for any v(·) ∈ V(z0),
if we set x0(·) := x[x0, α0(v(·)), v(·)],

∃τ ∈ [0, T ], x0(τ) /∈ K + ε0B and x0(t) /∈ E + ε0B for t ∈ [0, τ ] .(4.1)

In the proof of Lemma 5.1 of [11], the same strategy α0(·) gave the desired result
for any x ∈ (x0 + ηB)—provided that η was sufficiently small. The situation is
more complicated here because α0 is not necessarily an admissible strategy for x ∈
(x0+ηB)∩K because of the constraints. For solving this difficulty, we use the following
lemma proved below. Although we shall apply this lemma indifferently to y and to z,
we only formulate it for y.

Lemma 4.4. Let Q and T be fixed positive constants. There is some λ > 0
(depending on the constants of the problem on Q and on T ) such that, for any y and
y0 belonging to KU , with ‖y‖ ≤ Q and ‖y0‖ ≤ Q, there is a nonanticipative strategy
σ : U(y) → U(y0) with, for any u(·) ∈ U(y) and for t ∈ [0, T ],

‖y[y0, σ(u(·))](t)− y[y, u(·)](t)‖ ≤ ‖y − y0‖eλt .
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Let us complete the proof of Lemma 4.3. We fix a constant Q sufficiently large
in such a way that any solution starting from a point of x0 + B remains in the ball
QB on [0, T ]. Fix η := ε0e

−λT /4, where λ is defined by Lemma 4.4. Let x := (y, z) ∈
(x0 + ηB).

From Lemma 4.4, there is a nonanticipative map σ1 : V(z) → V(z0) such that,
for any v(·) ∈ V(z) and for any t ∈ [0, T ],

‖z[z, v(·)](t)− z[z0, σ1(v(·))](t)‖ ≤ ηeλt .

Then α0 ◦ σ1 : V(z) → U(y0) is a nonanticipative map. From Lemma 4.4 again,
there is a nonanticipative strategy σ2 : U(y0) → U(y) such that, for t ∈ [0, T ],

‖y[y0, u(·)](t)− y[y, σ2(u(·))](t)‖ ≤ ηeλt

for any u(·) ∈ U(y). Then α := σ2 ◦ α0 ◦ σ1 is a nonanticipative strategy from V(z)
to U(y).

Fix some control v(·) ∈ V(z). Set x0(·) := x[x0, α0(σ1(v(·))), σ1(v(·))] and x(·) :=
x[x, α(v(·)), v(·)].

Then, for τ ∈ [0, T ] defined in formula (4.1),

dK(x(τ)) ≥ dK(x0(τ))− ‖x(τ)− x0(τ)‖ ≥ ε0 − 2ηeλT ≥ ε0/2 .

In the same way, dE(x(t)) ≥ ε0/2 on [0, τ ], which completes the proof of Lemma 4.3.
Proof of Lemma 4.4. From Lemma 1.1, there is some λ > 0 such that, for any

u0(·) ∈ U(y0) and for any y ∈ KU , there is some control u(·) ∈ U(y) with

‖y[y, u(·)](t)− y[y0, u0(·)](t)‖ ≤ ‖y − y0‖eλt(4.2)

for any t ∈ [0, T ]. Let us consider the set-valued map Σ : U(y0) → U(y) defined by

Σ(u0(·)) := {u(·) ∈ U(y) | (4.2) is satisfied}.

It is easy to check that Σ is nonanticipative in the sense of [15], so that, from the
Plaskacz lemma (Lemma 2.7 of [15]), it enjoys a nonanticipative selection σ, i.e., σ is
nonanticipative and σ(u0(·)) ∈ Σ(u0(·)) for any u0 ∈ U(y0).
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Abstract. In this paper we prove well-definedness and weak convergence of the generalized
proximal point method when applied to the variational inequality problem in reflexive Banach spaces.
The proximal version we consider makes use of Bregman functions, whose original definition for finite
dimensional spaces has here been properly extended to our more general framework.
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1. Introduction. Let B be a reflexive Banach space and Ω ⊂ B a nonempty
closed and convex set. Given T :B → P(B∗) a maximal monotone operator, we
consider the classical variational inequality problem for T and Ω, V IP (T,Ω), defined
by

Find x∗ ∈ Ω such that there exists y∗ ∈ T (x∗) with

〈y∗, x− x∗〉 ≥ 0(1.1)

for all x ∈ Ω, where 〈·, ·〉 stands for the dual product in B.
In the particular case in which T is a subdifferential, i.e., T = ∂ϕ, where ϕ : B →

R ∪ {+∞} is a proper, convex, and lower semicontinuous functional, (1.1) reduces to
the nonsmooth constrained optimization problem

min
x∈Ω

ϕ(x).(1.2)

The following natural hypotheses will be assumed in our study:
H1: D(T )0 ∩ Ω �= ∅ or D(T ) ∩ Ω0 �= ∅.
Our aim is to study the algorithm given by:
1. Take x0 ∈ Ω ∩D(T ).
2. Given xk, define xk+1 by the inclusion

0 ∈ (T +NΩ + λk∇f)xk+1 − λk∇f(xk),(1.3)

where f is a Bregman function (see Definition 2.1 in section 2.1), λk > 0, and NΩ(·)
is the normality operator associated to Ω.

3. If xk+1 = xk, stop.
When B = Ω = H, for H a Hilbert space, and f = 1

2‖ · ‖22, algorithm (1.3) reduces
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to the classical proximal point method in a Hilbert space [43]. Thus, scheme (1.3)
can be seen as an extension to a Banach space of the proximal point method. The
intention of this paper is to study existence and convergence of the sequence {xk}
given by (1.3).

An important motivation for analyzing the convergence properties of algorithm
(1.3) is related to the so-calledmesh independence principle [2, 1, 28, 32, 35]. The mesh
independence principle relies on infinite-dimensional convergence results for predicting
the convergence properties of the discretized finite-dimensional method. Furthermore,
it provides a theoretical foundation for the justification of refinement strategies and
helps to design this refinement process. Since the focus is the infinite-dimensional
solution, a fine discretization scheme has to be chosen so that the discrete solution
approximates the infinite-dimensional solution appropriately. Many real-world prob-
lems in economics and engineering are modeled in infinite-dimensional spaces. These
include optimal control problems, shape optimization problems, and the problem of
minimal area surface with obstacles, among many others. In many shape optimization
problems [35], the function space is only a Banach and not a Hilbert space, motivat-
ing an analysis in this more general framework. For solving constrained optimization
problems in Banach spaces, the application of (1.3) to the saddle point operator asso-
ciated with the problem has been proposed in [37]. The connection of these methods
with our results will be discussed in section 4.

The family of Bregman functions we consider in this work includes, for instance,
f(x) = ‖x‖pp when B = Lp or B = lp, with p ∈ (1,+∞). Hence, the case f = 1

2‖ · ‖22
considered in the classical proximal point method can be seen as a particular case of
(1.3). A natural question is, Why should we use a generic Bregman function in (1.3)
instead of f = 1

2‖ · ‖2? A first answer is that inclusion (1.3) can be substantially
simplified by an appropriated choice of f . For instance, if B = Lp or B = lp, with
p ∈ (1,+∞), then by choosing f(x) = ‖x‖pp, (1.3) is much simpler than its version for
f(x) = 1

2‖x‖2p (see [13]). Second, consider the case in which we have an optimization
problem, i.e., T = ∂ϕ in a Banach space contained in a Hilbert space H. Assume
that ϕ can be extended to H. The proximal point method can then be applied in the
whole space H, in which case, the generated sequence may (weakly) converge to an
element not in B. In this situation, the use of a “proper” Bregman function defined
on B makes sense.

Other extensions of the classical proximal point method to Banach spaces can be
found in [17] and [36].

The notion of Bregman function has its origin in [5] and this name was first used
by Censor and Lent in [19]. Bregman functions have been extensively used for convex
optimization algorithms (e.g., [4], [19], [25], [20]) in finite-dimensional spaces. It has
also been used for defining “generalized” versions of the proximal point method (e.g.,
[21], [23], [26], [30], [34] for finite-dimensional spaces, [10] for Hilbert spaces, and
[40], [13], [15] for Banach spaces). A useful tool for comparing the Bregman distance
with the distance induced by the norm of the Banach space leads to the notions of
modulus of convexity and total convexity of f (the latter introduced in [8]). More
material on these concepts can be found in [22] and [11]. The paper is organized as
follows. Section 2 contains theoretical preliminaries. In subsection 2.1 we consider
the concept of a Bregman function and examples in a Banach space. In subsection
2.2 we give definitions, properties, and examples related to modulus of convexity and
total convexity. In subsection 2.3 we recall some classical material about maximal
monotone operators. We also extend to a reflexive Banach space a result known to
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hold in Hilbert spaces [6, Lemme 1]. This result will ensure existence of the iterates.
Section 3 establishes results concerning the existence and convergence of the iterates.
Finally, we present in section 4 an application of algorithm (1.3) to the stochastic
convex feasibility problem [9].

2. Theoretical preliminaries.

2.1. Bregman distances in Banach spaces. Let B be a reflexive Banach
space and f : B → R ∪ {+∞} a strictly convex, proper, and lower semicontinuous
function with closed domain D := dom(f). Assume from now on that D◦ �= ∅ and
that f is Gâteaux differentiable on D◦.

The Bregman distance with respect to f is the function Df : D×D◦ → R defined
by

Df (z, x) := f(z)− f(x)− 〈∇f(x), z − x〉,(2.1)

where ∇f(·) is the differential of f defined in D◦. The function Df (·, ·) is not a
distance in the usual sense of the term (in general, it is not symmetric and does not
satisfy the triangular inequality). However, there is a “three point property” which
takes the place of this inequality in the proofs.

Property 2.1. Given x ∈ D, y, z ∈ D◦, the following equality is straightforward:

〈∇f(y)−∇f(z), z − x〉 = Df (x, y)−Df (x, z)−Df (z, y).(2.2)

Consider the following set of assumptions on f :
B1 : The right level sets of Df (y, ·):

Sy,α := {z ∈ D◦ : Df (y, z) ≤ α}

are bounded for all α ≥ 0 and for all y ∈ D.
B2 : If {xk} ⊂ D◦ and {yk} ⊂ D◦, w − limk→∞ xk = x, w − limk→∞ yk = x, and

limk→∞ Df (x
k, yk) = 0, then

lim
k→∞

(
Df (x, xk)−Df (x, yk)

)
= 0.

B3 : If {xk} ⊂ D is bounded, {yk} ⊂ D◦ is such that w − limk→∞ yk = y and
limk→∞ Df (x

k, yk) = 0, then w − limk→∞ xk = y.
B4 : (zone coerciveness)

For every y ∈ B∗, there exists x ∈ D◦ such that ∇f(x) = y.
The following alternative condition will also be considered in our analysis.

B∗
2 : If {xk} ⊂ D◦ and {yk} ⊂ D◦ are bounded sequences such that limk→∞ ‖xk − yk‖

= 0, then

lim
k→∞

(∇f(xk)−∇f(yk)
)
= 0.

Remark 2.1.
(i) Condition B∗

2 will be used as an optional assumption in our convergent anal-
ysis. Examples of auxiliary functions which satisfy this property are relevant.
It has been proved in [16] that for the important cases in which B = �p or
B = Lp, with p > 1, condition B∗

2 is satisfied for the family of functions
f(x) = ‖x‖s, s > 1.

(ii) When B = R
n, assumption B∗

2 implies B2.
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(iii) Condition B2 has been considered for the first time in [10] for the case in which
B = H a Hilbert space. When B = Rn, Censor and Lent [19] considered the
condition if {xk} ⊂ D◦, limk→∞ xk = x, then limk→∞ Df (x, xk) = 0. We
point out that this assumption is stronger than B2. Conditions B1 and B3

are natural extensions of the ones required in [19].
Definition 2.1. (i) We say that f is a Bregman function if it satisfies B1–B3.

(ii) The function f is said to be a coercive Bregman function if it satisfies B1–B4.
In our study, the following assumption will be made on the Bregman function f :

H2 : Ω ⊂ D◦.

2.2. Total convexity. Let R++ := {α ∈ R : α > 0} and R+ := {α ∈ R : α ≥
0}. Let D ⊂ B be a closed and convex set, with D◦ �= 0 and f : B → R ∪ {+∞} a
convex function which is Gâteaux differentiable in D◦. Following [12], we define the
modulus of convexity of f , νf : D

◦ × R+ → R+ by

νf (z, t) := inf{Df (x, z) : ‖x− z‖ = t},(2.3)

where Df (·, ·) is given by (2.1). The function f is said to be totally convex in D◦ if
and only if νf (z, t) > 0 for all z ∈ D◦ and t > 0. The result below, which will be
useful in what follows, has been proved in [12].

Property 2.2. Let z ∈ D◦. The function νf (z, ·) is increasing on R++, i.e., if
0 < α < β, then νf (z, α) < νf (z, β).

Totally convex functions are strictly convex, and in finite dimension total convex-
ity is equivalent to strict convexity, but in infinite dimensional Banach spaces (e.g.,
in �p) there exist strictly convex functions which are not totally convex (see [12]). On
the other hand, total convexity is a weaker condition than uniform convexity (i.e.,
〈∇f(x) − ∇f(y), x − y〉 ≥ γ‖x− y‖p for some γ > 0, p > 1). Uniformly convex
functions are totally convex (see [12]), but in the spaces Lp and �p with 1 < p < 2
the function f(x) = ‖x‖pp is totally convex (see [12], [16]), while it is not uniformly
convex. We will see later on that total convexity also turns out to be a key property
in our convergence analysis. We are now ready to present our last assumption on f .

B5 : (uniform total convexity). The function f is said to be uniformly totally
convex if for any bounded set K ⊂ D◦, and any t ∈ R++, it holds that

inf
x∈K

νf (x, t) > 0 .(2.4)

Remark 2.2.
(i) This condition is called sequential consistency in [11].
(ii) Assumption B5 will be an alternative requirement on f in our convergence

analysis. When B = �p or B = Lp, with p > 1, the family of functions
f(x) = ‖x‖sp, s > 1 is uniformly totally convex (see [16]). Moreover, the
latter result has been extended in [14], where the authors prove that in any
uniformly convex Banach space the function f(x) = ‖x‖sp, s > 1 is uniformly
totally convex.

(iii) Let f : B → R∪{+∞} be a Gâteaux differentiable function on D◦ such that
it verifies assumptions B∗

2 and B5. Then condition B2 holds. Indeed, take
two sequences {xk}, {yk} ⊂ D◦, weakly converging (and thus bounded) to
the same point x, such that

lim
k→∞

Df (x
k, yk) = 0.(2.5)
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We must prove that

lim
k→∞

(
Df (x, xk)−Df (x, yk)

)
= 0.(2.6)

First we see that under this condition, it holds that limk→∞ ‖xk − yk‖ = 0.
If this is not true, there exists a subsequence {xkj − ykj}j≥0 and a positive
number α such that

‖xkj − ykj‖ > α, for all j ≥ 0.(2.7)

Let C be a bounded set which contains the sequence {yk}. We have that

Df (x
kj , ykj ) ≥ inf{Df (z, y

kj ) : ‖xkj − ykj‖ = ‖z − ykj‖}
= νf (y

kj , ‖xkj − ykj‖)
> νf (y

kj , α)
≥ infy∈C νf (y, α) > 0,

where we used that the function νf (z, ·) is increasing and B5. This contradicts
the fact that limk→∞ Df (x

k, yk) = 0. Thus it holds that limk→∞ ‖xk − yk‖ =
0. By B∗

2 , this implies that

lim
k→∞

‖∇f(xk)−∇f(yk)‖ = 0.(2.8)

By Property 2.1,

Df (x, xk)−Df (x, yk) = 〈∇f(yk)−∇f(xk), x− xk〉 −Df (x
k, yk).

Combining now (2.5) and (2.8), we obtain (2.6).

2.3. Maximal monotone operators in a reflexive Banach space. For an
arbitrary point to set operator A : B → P(B∗), we recall the following definitions:
domain of A:

• D(A) := {y ∈ B : A(y) �= ∅},
graph of A:

• G(A) := {(y, v) ∈ B ×B∗ : v ∈ A(y)},
range of A:

• R(A) := {v ∈ B∗ : v ∈ A(y) for some y ∈ B}.
The operator T : B → P(B∗) is monotone if

〈u− v, x− y〉 ≥ 0

for all x, y ∈ B and all u ∈ T (x), v ∈ T (y). A monotone operator is called maximal
if for any other monotone operator T̃ with T̃ (x) ⊇ T (x) for all x ∈ B, it holds that
T̃ = T .

Maximal monotone operators have an important closedness property.
Proposition 2.2 (see [38, p. 105]). Any maximal monotone operator S : B →

P(B∗) is demiclosed, i.e., the conditions below hold:
If {xk} converges weakly to x and {wk ∈ Sxk} converges strongly to w, then

w ∈ Sx.
If {xk} converges strongly to x and {wk ∈ Sxk} converges weakly to w, then

w ∈ Sx.
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The following well-known result is very useful for asserting maximality of the sum
of maximal monotone operators.

Proposition 2.3 (see [42, Theorem 1]). Let B be a reflexive Banach space, and
let T1 and T2 be maximal monotone operators from B to P(B∗). If D(T1)∩D(T2)

0 �= ∅,
then T1 + T2 is a maximal monotone operator.

Definition 2.4. An operator A is said to be coercive (see [38]) if D(A) is
bounded or

lim
(z, v) ∈ G(A)
‖z‖ → +∞

〈v, z〉
‖z‖ = +∞.(2.9)

The following definition has been introduced in [3] and [6]. It also appears in [39].
Definition 2.5. An operator A : B → P(B∗) is said to be regular if

for all u ∈ R(A) and for all y ∈ D(A), sup
(z,v)∈G(A)

〈v − u, y − z〉 <∞.(2.10)

Proposition 2.6 (see [6, p. 167]). The subdifferential of a proper lower semi-
continuous convex function ϕ is a regular operator.

Recall that for a nonempty convex and closed set Ω ⊂ B, the normality operator
NΩ : B → P(B∗) is given by

NΩ(x) =

{ {φ ∈ B∗ | 〈φ, z − x〉 ≤ 0 for any z ∈ Ω} if x ∈ Ω ,
∅ if x /∈ Ω .

It is easy to check that NΩ(·) is the subdifferential of the indicator function χΩ

associated to the set Ω, i.e.,

χΩ(x) =

{
0 if x ∈ Ω ,
+∞ if x /∈ Ω .

The function χΩ is proper convex and lower semicontinuous; hence NΩ(·) is a maximal
monotone operator. For further use we emphasize that x ∈ Ω0 if and only if NΩ(x) =
0.

Recall that the normalized duality mapping J : B → P(B∗) is defined by the
property v ∈ Ju if and only if ‖v‖2B∗ = ‖u‖2B = 〈v, u〉 for any u ∈ B, where ‖·‖X
means the norm in the space X. The next property, which we introduce here, will
allow us to obtain the existence of the iterates in (1.3). It extends to a Banach space
a lemma proved in [6] for Hilbert spaces.

Lemma 2.7. Assume that B is a reflexive Banach space and J its normalized
duality mapping. Let C, T0 : B → P(B∗) be maximal monotone operators such that

(a) C is regular,
(b) D(T0) ∩D(C) �= ∅ and R(C) = B∗,
(c) C + T0 is maximal monotone.

Then R(C + T0) = B∗.
Proof. The proof of this lemma consists of two steps.
Step 1.
In this step we prove the following statement: Let T1 be a maximal monotone

operator such that there exists a convex set F ⊂ B∗ with the following condition: for
all u ∈ F there exists an element y ∈ B such that

sup
(z,v)∈G(T1)

〈v − u, y − z〉 <∞,(2.11)



PROXIMAL METHOD IN BANACH SPACES 1639

then F 0 ⊂ R(T1).
Step 2.
In this part of the proof, we apply the statement of Step 1 for the choices F :=

R(C) +R(T0)(= B∗ by condition (b)) and T1 := C + T0. Namely, we show here that
the set F = B∗ satisfies (2.11) for the operator C + T0. Then the conclusion of Step
1 readily gives R(T1) = R(T0 + C) = B∗.

Step 1.
If F 0 = ∅, the conclusion trivially holds. Assume now that F 0 �= ∅. For any

f ∈ F , we can consider the inclusion

f ∈ (T1 + εJ)(xε), ε > 0,(2.12)

where J is the normalized duality mapping in B. We observe that (2.12) has a unique
solution thanks to Browder’s result (see [7]). Take vε ∈ Jxε such that f − εvε ∈ T1xε.
Let a ∈ B be such that (2.11) holds for y = a, i.e., there exists c ∈ R such that

for all (z, v) ∈ G(T1), 〈v − f, a− z〉 ≤ c.(2.13)

For the choice (z, v) := (xε, f − εvε), (2.13) writes

ε‖xε‖2 ≤ ε〈vε, a〉+ c.

Using the fact that for any p, q ∈ B, w ∈ Jp ‖p‖2 − 2〈w, q〉+ ‖q‖2 ≥ 0, the inequality
above becomes

ε

2
‖xε‖2 ≤ ε

2
‖a‖2 + c,

which gives
√

ε‖xε‖ ≤ r for some r > 0 and ε > 0 small enough.
Now let f̃ ∈ F 0 and ρ > 0 such that f̃+B∗(0, ρ) := {f̃+ϕ ∈ B∗ : ‖ϕ‖ < ρ} ⊂ F .

For any ϕ ∈ B∗(0, ρ), it holds by (2.11) that there exists a(ϕ) ∈ B and c(ϕ) ∈ R such
that

for all (z, v) ∈ G(T1), 〈v − (f̃ + ϕ), a(ϕ)− z〉 ≤ c(ϕ).(2.14)

Take in (2.12) f = f̃ and xε = x̃ε. Then choose (z, v) := (x̃ε, f̃ − εṽε) in (2.14) to get

〈−εṽε − ϕ, a(ϕ)− x̃ε〉 ≤ c(ϕ).

Some rearrangements of the expression above yield

〈ϕ, x̃ε〉 ≤ c(ϕ) + 〈ϕ, a(ϕ)〉+ ε〈ṽε, a(ϕ)〉 − ε‖x̃ε‖2,
which implies

〈ϕ, x̃ε〉 ≤ c(ϕ) + 〈ϕ, a(ϕ)〉+ ε

2
(‖a(ϕ)‖2 − ‖x̃ε‖2).

Altogether, we conclude

〈ϕ, x̃ε〉 ≤ c(ϕ) + 〈ϕ, a(ϕ)〉+ ε

2
‖a(ϕ)‖2,

where we are now considering the elements x̃ε as functionals defined in B∗. Taking
in the expression above ϕ = −ψ ∈ B∗(0, ρ), we obtain a bound K(ϕ) such that

|x̃ε(ϕ)| ≤ K(ϕ), for all ϕ ∈ B∗(0, ρ).(2.15)
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Take now ε = 1
k , and define xk := x̃ 1

k
for any k. By (2.15), |xk(ϕ)| ≤ K(ϕ) for any

k. Using now Banach–Saks–Steinhauss theorem (see [24]), there exists K̄ a constant
such that |xk(ϕ)| ≤ K̄ for any k and for any ϕ ∈ B∗(0, ρ). This implies that the
sequence {xk} is bounded and hence it has a weakly convergent subsequence. Call
{xkj} such a subsequence and x̄ its weak limit. Take vkj ∈ Jxkj such that (2.12)
holds for f = f̃ and xε = xkj . Observe that J maps bounded sets on bounded sets.
Thus, there exists a subsequence of {xkj} (which we still call {xkj} for simplicity)
such that

w − limj→∞ xkj = x̄,

f̃ − 1
kj

vkj ∈ T1(x
kj ),

w − limj→∞ f̃ − 1
kj

vkj = f̃ .

(2.16)

Using now maximality of T1, we will show that f̃ ∈ T1(x̄). Indeed, for any (z, v) ∈
G(T1), we have that

0 ≤
〈

f̃ − 1

kj
vkj − v, xkj − z

〉
=

〈
f̃ − 1

kj
vkj , xkj − z

〉
− 〈v, xkj − z〉.

It is clear that limj→∞〈v, xkj − z〉 = 〈v, x̄ − z〉 and limj→∞〈f̃ , xkj − z〉 = 〈f̃ , x̄ − z〉.
On the other hand,

1

kj
|〈vkj , xkj − z〉| ≤ 1

kj
‖vkj‖ ‖xkj − z‖,

the rightmost term tending to zero because {xkj} and hence {vkj} are bounded, and
kj →∞. This yields

0 ≤ 〈f̃ − v, x̄− z〉,
which implies by maximality that f̃ ∈ T1(x̄), as we claimed.

Step 2.
We must prove that the set F = R(C) + R(T0) satisfies (2.11) for the operator

C + T0. Let u ∈ R(C) +R(T0), x ∈ D(C) ∩D(T0), and w ∈ T0(x). Then

u = w + (u− w).

Since R(C) = B∗, we can find y ∈ B such that (u−w) ∈ C(y). Using now regularity
of C, we know that given (u − w) ∈ R(C) and x ∈ D(C), there exists some c ∈ R

with sup(z,s)∈G(C)〈s− (u− w), x− z〉 ≤ c, which implies that for any (z, s) ∈ G(C)

〈s− (u− w), x− z〉 ≤ c.(2.17)

Let z ∈ D(T0) ∩D(C) and v ∈ T0(z), by monotonicity we get

〈v − w, x− z〉 ≤ 0.(2.18)

Adding (2.17) and (2.18) we obtain

〈(s+ v)− u, x− z〉 ≤ c

for any s ∈ C(z) , v ∈ T0(z), i.e., for any s+ v =: t ∈ (C + T0)z. Therefore,

sup
(z,t)∈G(C+T0)

〈t− u, x− z〉 <∞.
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This establishes (2.11) for F = R(C) + R(T0) and T1 = C + T0. Now by Step 1 and
the fact that F = B∗, we obtain that C + T0 is onto.

Our convergence theorems require two conditions on the operator T , namely
para- and pseudomotonicity, which we discuss next. The notion of paramonotonicity
was introduced in [18] and further studied in [29]. It is defined as follows. Let
T : B → P(B∗), and Ω a closed and convex set.

Definition 2.8. T is paramonotone in Ω if it is monotone and 〈z−z′, w−w′〉 = 0
with z, z′ ∈ Ω, w ∈ T (z), w′ ∈ T (z′) implies w ∈ T (z′), w′ ∈ T (z).

The next proposition, whose proof can be found in [29], presents the main prop-
erties of paramonotone operators.

Proposition 2.9. (i) If T is the subdifferential ∂f of a convex function f : B →
R, then T is paramonotone in B.

(ii) If T is paramonotone in Ω, x∗ solves V IP (T,Ω) and x̄ ∈ Ω satisfies that there
exists an element ū ∈ T (x̄) such that 〈ū, x∗ − x̄〉 ≥ 0, then x̄ also solves V IP (T,Ω).

(iii) If T1 and T2 are paramonotone in Ω, then T1 + T2 is paramonotone in Ω.
Next we recall the definition of pseudomonotonicity, which has been taken from

[7], and should not be confused with other uses of the same word, e.g., [31].
Definition 2.10. Let B be a reflexive Banach space and T : B → P(B∗) such

that D(T ) is closed and convex. T is said to be pseudomonotone if and only if it
satisfies the following condition:

Take any sequence {xk} ⊂ D(T ), converging weakly to an element x0 ∈ D(T ) and
any sequence {wk} ⊂ B∗, with wk ∈ Txk for all k, such that

lim sup
k
〈wk, xk − x0〉 ≤ 0.

Then for each y ∈ D(T ) there exists an element w0 ∈ Tx0, such that

〈w0, x0 − y〉 ≤ lim inf
k
〈wk, xk − y〉.

Proposition 2.11.
(i) NC is pseudomonotone for any C ⊂ B, a closed and convex set.
(ii) The sum of pseudomonotone operators is pseudomonotone.
Proof. (i) Consider a sequence {(xk, wk) ∈ G(T )}k in the conditions of Definition

2.10. Call x0 the weak limit of {xk}. As NC(·) is a closed cone, 0 ∈ NC(x
0). Take

now any y ∈ D(NC) = C and w0 = 0 ∈ NC(x
0), then

lim inf
k
〈wk, xk − y〉 ≥ 0 = 〈w0, x0 − y〉,

which proves our claim.
(ii) See [38, p. 97].

3. The variational inequality problem in a Banach space: Existence
and convergence analysis. In this section we study first the existence of iterates
in algorithm (1.3). It is known that a maximal monotone operator with bounded
domain is surjective (see [7]); hence the iterates clearly exist when the domain of
T +NΩ +∇f is bounded. Other classical results due to Browder (see [7]) concerning
surjectivity of the sum of maximal monotone operators apply if we assume that ∇f(·)
or T are coercive operators (see Definition 2.4), with no extra assumptions (besides
the natural requirement of existence of solutions of the original problem). When∇f(·)
or T are not coercive, what can be said about the existence of the sequence? We
answer this question in the case of a coercive Bregman function.
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Corollary 3.1. Let f be a coercive Bregman function. Then algorithm (1.3) is
well defined.

Proof. Define the operators T0 := T +NΩ and C := λk∇f . It holds that
(a) C is regular (since it is the gradient of a proper closed convex function).
(b) D(T0) ∩D(C) = D(T ) ∩ Ω ∩D◦ = D(T ) ∩ Ω �= ∅ (by H1 and H2).
(c) C + T0 is maximal monotone (by (b) and Proposition 2.3).

Then by Lemma 2.7, T0+λkC = T+NΩ+λk∇f is onto. Hence, given λk∇f(xk) ∈ B∗

there exists xk+1 such that

λk∇f(xk) ∈ (T +NΩ + λk∇f)(xk+1).

The uniqueness follows from the strict monotonicity of f .
Now we analyze the convergence of the sequence given by (1.3) in a reflexive

Banach space B. When the solution set is not empty, we get boundedness of the
iterates (see Theorem 3.3). Moreover, we establish in Theorem 3.6 that boundedness
of the iterates and nonemptyness ofX∗ are equivalent. Weak convergence of the whole
sequence is established when ∇f(·) is weak-to-weak continuous or when the set X∗

of solutions of problem (1.1) is a singleton. Note that the iterative step of algorithm
(1.3) can be rewritten in terms of the Bregman distance: given zk, zk+1 solves the
inclusion

0 ∈ (T +NΩ + λk∇Df (·, zk))(zk+1).(3.1)

If zk+1 = zk, stop.(3.2)

Theorem 3.2. Suppose that the sequence {zk} given by (1.3) is well defined and
finite. Then the last term is a solution of (1.1).

Proof. If the sequence is finite, then it must stop at step (3.2). In this case,
inclusion (3.1) for zk+1 = zk writes

0 ∈ (T +NΩ + λk∇Df (·, zk))(zk) = (T +NΩ)(z
k),(3.3)

where we used that ∇Df (z
k, zk) = ∇f(zk) − ∇f(zk) = 0. Inclusion (3.3) readily

implies that zk ∈ X∗.
From now on we assume that the sequence {zk} generated by (1.3) is well defined

and infinite.
Theorem 3.3. Assume that X∗ �= ∅. Then it holds that
(i) The sequence {zk} generated by (1.3) is bounded,
(ii)
∑∞
k=0 Df (z

k+1, zk) <∞.
Proof. Let z∗ ∈ X∗. In order to prove the boundedness of {zk}, we will show

that the sequence Df (z
∗, zk) is decreasing, in which case the result will follow from

boundedness of the level sets of the function Df (z
∗, ·). By the “three point property”

we have that

Df (z, z
k+1) = Df (z, z

k)−Df (z
k+1, zk)

+ 〈∇f(zk)−∇f(zk+1), z − zk+1〉(3.4)

for any z ∈ Ω. As we are supposing that the algorithm (1.3) is well defined, there
exist uk+1 ∈ Tzk+1 and ϕk+1 ∈ NΩ(z

k+1) such that

1

λk
(uk+1 + ϕk+1) = ∇f(zk)−∇f(zk+1).(3.5)
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Combining (3.4) with (3.5) and using the definition of normality operator, expression
(3.4) for z = z∗ becomes

Df (z
∗, zk+1) ≤ Df (z

∗, zk)−Df (z
k+1, zk)− 1

λk
〈uk+1, zk+1 − z∗〉.(3.6)

By definition of X∗, the rightmost term is nonnegative, implying

Df (z
∗, zk+1) ≤ Df (z

∗, zk)−Df (z
k+1, zk).(3.7)

Therefore the sequence Df (z
∗, zk) is decreasing and, as pointed out before, this fact

ensures the boundedness of the sequence {zk}. Actually, taking α = Df (z
∗, z0) we

have that {zk} ⊂ Sz∗,α, which is a bounded set (condition B1). This completes the
proof of (i).

(ii) As the sequence {Df (z
∗, zk)} is also bounded below, it converges to a limit,

which we call l∗. By (3.7),

Df (z
k+1, zk) ≤ Df (z

∗, zk)−Df (z
∗, zk+1).(3.8)

Summing up inequality (3.8),

∞∑
k=0

Df (z
k+1, zk) ≤

∞∑
k=0

(Df (z
∗, zk)−Df (z

∗, zk+1)) = Df (z
∗, z0)− l∗ <∞,

and (ii) is established.
The theorem above establishes boundedness of the sequence, and thus existence

of weak accumulation points. Now we establish below two different hypotheses on
the data under which the weak accumulation points are in fact solutions of the orig-
inal problem (1.1). The first hypothesis is an assumption on the Bregman function
f alone, and is the total uniform convexity, together with B∗

2 instead of B2. The
second hypothesis is a requirement on the operator T , which we ask to be para- and
pseudomonotone.

Theorem 3.4. Let X∗ be nonempty and λk < λ. Suppose further any of the
assumptions below:

A1: T is pseudo- and paramonotone with closed domain,
A2: f is a Bregman function with B∗

2 instead of B2, which is also uniformly totally
convex.

Then any weak accumulation point is a solution of the V IP (T,Ω).
Proof. By (i) of Theorem 3.3, there exists a subsequence {zkj} ⊂ {zk} which is

weakly convergent to a point z̄. Using now Theorem 3.3 (ii), limj→∞ Df (z
kj+1, zkj ) =

0. Condition B3 implies that also limj→∞ zkj+1 = z̄.
Case 1: Assume condition A1. We use B2 for xj = zkj+1 and yj = zkj , which

yields

lim
j→∞

(Df (z̄, z
kj+1)−Df (z̄, z

kj )) = 0.(3.9)

Using (3.5), (3.4) for z =: z̄, and (3.9) we obtain

0 = limj→∞(Df (z̄, z
kj+1)−Df (z̄, z

kj )−Df (z
kj+1, zkj ))

≤ lim infj→∞ 1
λkj
〈ukj+1, z̄ − zkj+1〉.
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By pseudomonotonicity of T , for z∗ ∈ X∗, there exists u ∈ T (z̄) with the property

〈u, z̄ − z∗〉 ≤ lim inf
j→∞

〈ukj+1, zkj+1 − z∗〉 = 0,

where the last equality is obtained by (3.6). In fact, for u∗ ∈ T (z∗),

0 ≤ 〈u∗, zkj+1 − z∗〉 ≤ 〈ukj+1, zkj+1 − z∗〉
≤ λkj (Df (z

∗, zkj )−Df (z
∗, zkj+1)−Df (z

kj+1, zkj )),

where we used monotonicity in the second inequality. The claim follows taking limit
for j →∞. By Proposition 2.9(ii), z̄ is a solution of V IP (T,Ω).

Case 2: Consider hypothesis A2. We follow the same steps as in Remark 2.2(ii)
for {xj} = {zkj} and {yj} = {zkj+1}. It holds that limj→∞ ‖zkj − zkj+1‖ = 0.
By B∗

2 , we have that limj→∞(∇f(zkj ) − ∇f(zkj+1)) = 0. Now the definition of
the algorithm yields limj→∞ 1

λkj
(ukj+1 + ϕkj+1) = 0, for some ukj+1 ∈ Tzkj+1 and

ϕkj+1 ∈ NΩ(z
kj+1). Our hypothesis on λ implies that limj→∞(ukj+1 + ϕkj+1) = 0.

By demiclosedness of the graph of T + NΩ (see Proposition 2.2), we conclude that
0 ∈ (T +NΩ)(z̄), as we wanted to prove.

Remark 3.1. The result below establishes conditions under which the whole se-
quence defined by algorithm (1.3) converges weakly to a solution. A crucial hypothesis
is the weak-to-weak continuity of ∇f . This requirement is fulfilled when X = lp and
f(x) = 1/p‖x‖pp.

Theorem 3.5. Consider the same assumptions as in Theorem 3.4. If X∗ is a
singleton or if ∇f is a weak-to-weak continuous mapping, then the whole sequence
converges weakly to a solution, i.e., there exists a unique weak accumulation point.

Proof. The statement is obvious if X∗ is a singleton. For the second claim suppose
that ∇f(·) is weak-to-weak continuous. We will show that there exists only one weak
accumulation point. Suppose there are two points z1, z2, which are weak limits of
subsequences of {zk}. By Theorems 3.3 and 3.4, we know that z1 and z2 belong to
X∗. By (3.7), the sequences {Df (z1, z

k)} and {Df (z2, z
k)} are convergent. Call l1

and l2 their limits. Then

lim
k→∞

(
Df (z1, z

k)−Df (z2, z
k)
)
= l1 − l2(3.10)

= f(z1)− f(z2) + lim
k→∞

〈∇f(zk), z2 − z1〉.

Call l := limk→∞〈∇f(zk), z2−z1〉. If w − limj→∞ zkj = z1, and w − limj→∞ zlj = z2,
taking k = kj in (3.10) and using the weak-to-weak continuity of ∇f(·), we get that
l = 〈∇f(z1), z2 − z1〉. Repeating the same argument with k = lj in (3.10), we get
l = 〈∇f(z2), z2−z1〉. Hence, 〈∇f(z2)−∇f(z1), z2−z1〉 = 0. By strict convexity of f ,
we conclude that z1 = z2, which establishes the uniqueness of the weak accumulation
point.

The result below establishes that boundedness of the sequence given by algorithm
(1.3) is a sufficient and necessary condition for existence of solutions of problem (1.1).

Theorem 3.6. Consider the assumptions A1 or A2 of Theorem 3.4. If X∗ = ∅,
then the sequence is unbounded. Conversely, if X∗ �= ∅, then the sequence is bounded.

Proof. The second claim follows from Theorem 3.3(i). We prove the first one.
Suppose that X∗ = ∅ and {zk} bounded. Then there are a convex, closed, and
bounded set S and a positive number r such that

{zk}w ⊂ B(0, r) ⊂ S0,(3.11)
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where X
w
stands for the weak closure and B(0, r) := {y ∈ B : ‖y‖ ≤ r} is a

(strongly and weakly) closed ball in B. Define the operator T̃ := T +NS , where NS

is the normality operator associated with S. The operator T̃ is maximal monotone
by Proposition 2.3 and the fact that D(T ) ∩ S0 ⊃ {zk} �= ∅.

Consider the sequence {z̃k} generated by method (1.3) for T̃ . First, we prove
that this sequence is well defined. Recall that any maximal monotone operator with
bounded domain is onto (see [7]). The operator T̃ has bounded domain, and so the
same happens with the operator T k(·) := (T̃ + NΩ + λk∇f)(·) − λk∇f(zk) used in
each iteration. Thus, T k is onto, and so z̃k+1 exists. The uniqueness of z̃k+1 follows
from strict monotonicity of ∇f(·). Altogether, we have that z̃k+1 is uniquely defined
as the solution of the inclusion on y:

0 ∈ (T̃ +NΩ + λk∇f)(y)− λk∇f(z̃k).(3.12)

Thus, we established the well-definedness of the sequence {z̃k}.
Our second step will be to prove by induction that if method (1.3) is applied to

T̃ with z̃0 = z0, then z̃k = zk for all k. The claim is true for k = 0. Suppose that
z̃k = zk. The point zk+1 satisfies

0 ∈ (T +NΩ + λk∇f)zk+1 − λk∇f(zk).(3.13)

Since zk+1 belongs to S0, we have that NS(z
k+1) = 0, which, together with (3.13)

and the induction hypothesis, gives

0 ∈ (T +NS)(z
k+1) +NΩ(z

k+1) + λk(∇f(zk+1)−∇f(z̃k)).

Therefore, zk+1 is the unique solution of (3.12), and, as a consequence, z̃k+1 = zk+1.
The induction step is complete and we conclude that z̃k = zk for all k. Our goal is
to prove that any weak accumulation point of {zk} is a solution of V IP (T,Ω), thus
contradicting the hypothesis X∗ = ∅. As z̃k = zk for all k, it will be enough to prove
that any weak accumulation point of {z̃k} is a solution of V IP (T,Ω). Before we
establish this fact, let us observe that if z is a weak accumulation point of {z̃k} which
solves V IP (T̃ ,Ω), then it also solves V IP (T,Ω). Indeed, let z ∈ {z̃k}w be such that

there exists u ∈ T̃ (z) with 〈u, x−z〉 ≥ 0 for any x ∈ Ω. As z ∈ {z̃k}w = {zk}w ⊂ S0, it
holds that T̃ (z) = T (z)+NS(z) = T (z). Hence, there exists u ∈ T (z) = T̃ (z) such that
〈u, x− z〉 ≥ 0 for any x ∈ Ω. This proves that z solves V IP (T,Ω). It only remains to
prove that any weak accumulation point of {z̃k} (and hence of {zk}) solves V IP (T̃ ,Ω).
In order to establish this result, let us check that the requirements of Theorem 3.4 hold
for T̃ under conditions A1 or A2. In order to do this, let us check first that the set of
solutions of V IP (T̃ ,Ω) is not empty. As mentioned above, the elements of this set are
the zeroes of T̃+NΩ = T+NS+NΩ. Note that D(T̃+NΩ) = D(T )∩Ω∩S ⊂ S. Since
S is bounded, T̃ +NΩ is onto (see [7]), and therefore it has zeroes. Then V IP (T̃ ,Ω)
is not empty.

We prove now that any of the assumptions A1 or A2 on the data imply that
algorithm (1.3) applied to T̃ generates a sequence whose accumulation points are all
solutions of V IP (T̃ ,Ω). This is trivial for hypothesis A2, which does not depend on
the operator.

Assume now hypothesis A1. Since T̃ = T + ∂(χS), T̃ is paramonotone as a sum
of two paramonotone operators (see Proposition 2.9(iii)). It follows from Proposition
2.11(i) that NS is pseudomonotone. Thus T̃ is the sum of two pseudomonotone
operators, and therefore it is pseudomonotone (see Proposition 2.11(ii)). Hence all
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the requirements of Theorem 3.4 hold for T̃ . This implies that any weak accumulation
point of {z̃k} is a solution of V IP (T̃ ,Ω).

By boundedness, {z̃k}, and therefore {zk}, has weak cluster points and, as proved
in Theorem 3.4, all of them are solutions of V IP (T̃ ,Ω). As observed above this
implies that all this elements are also solutions of V IP (T,Ω), in contradiction with
our hypothesis. We conclude that {zk} is unbounded.

4. An application: Augmented Lagrangians in Banach spaces. The con-
nection between augmented Lagrangian methods and proximal-type methods in the
context of finite dimensional spaces or Hilbert spaces has been the subject of intense
investigation since the pioneer work of [44], [43]; see, for example, [27], [26], [34]. In
an arbitrary reflexive Banach space, augmented Lagrangians have been studied for
the first time in [11], [37], as an application for solving the stochastic convex fea-
sibility problem (SCFP ) (see [9]). This problem is the minimization of a convex
function subject to (possibly infinitely many) constraints. In [11], the authors define
a Lagrangian and a dual problem for (SCFP). They establish Karush–Khun–Tucker
conditions, which, under reasonable circumstances, are necessary and sufficient for
a pair to be a primal-dual solution of (SCFP). It is proved in [11] that primal-dual
solutions of (SCFP) are the zeroes of a maximal monotone operator T̃ , associated to
the Lagrangian. Hence, algorithm (1.3) for finding zeroes of monotone operators can
be applied to T̃ , as long as we find a Bregman function which satisfies conditions B∗

2

and B5 in the primal and dual variables. First we describe briefly (SCFP). Second
we present a particular instance of (SCFP) for which a specific Bregman function
satisfying conditions B∗

2 and B5 can be given.
Problem (SCFP):
Take X to be a reflexive separable Banach space with dual X∗, f : X → R

a convex and continuously differentiable function, Λ a nonempty set, and (Λ,A, µ)
a complete probability space. For defining the constraints of the problem, consider
F : X × Λ→ R such that

• F (·, λ) : X → R is convex and continuously differentiable.
• F (x, ·), ∂xF (x, ·) : Λ→ R belong to L p(Λ), with p > 1.

Consider the problem

(SCFP)
min f(x)

subject to F (x, λ) ≤ 0 a.e. (Λ),

where the expression “a.e. (Λ)” means that

µ({λ ∈ Λ | F (x, λ) ≤ 0}) = 1.

The Lagrangian L : X × L q(Λ)→ R associated with (SCFP) is defined as

L(x, y) :=


f(x) +

∫
Λ

F (x, λ)y(λ)dµ(λ) if y(λ) ≥ 0 a.e. (Λ),

−∞ c.c.

Take q = p/(p − 1). In a similar way as in [44], define the (maximal monotone)
operator T̃ : X × L q(Λ)→ P(X∗ × L p(Λ)) as

T̃ (x, y) := (∂xL(x, y),−∂yL(x, y)).

Then the dual problem associated with the primal problem (SCFP) is find y ∈ L q(Λ)
such that

y ∈ argmax{ϕ(z) | z ∈ L q(Λ), z(λ) ≥ 0 a.e. (Λ)},
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where ϕ : L q(Λ)→ [−∞,∞) is the function

ϕ(z) := inf{L(x, z) | x ∈ X}.

Karush–Khun–Tucker conditions can be stated in this context, and under mild as-
sumptions a pair (x, y) satisfies these conditions if and only if it is a zero of T̃ [11,
Chapter 2]. These are the primal-dual optimal pairs associated to (SCFP). In [37],
a doubly augmented Lagrangian method is defined. It requires auxiliary Bregman
functions g, h in the primal and dual variables, respectively.

Particular instance of (SCFP):
Take X = L s(Λ), s > 1, g : L s(Λ)→ R, and h : L q(Λ)→ R given by

g(x) := (1/s)‖x‖ss , h(y) := (1/q)‖y‖qq.

The fact that g and h satisfy conditions B∗
2 and B5 has been observed in Remarks

2.1(i) and 2.2(ii), respectively. We can now set in the definition of algorithm (1.3):

B := L s(Λ)× L q(Λ),
Ω := L s(Λ),

T := T̃ ,
f(x, y) := g(x) + h(y).

(4.1)

As f satisfies A2 of Theorem 3.4, algorithm (1.3) generates a bounded sequence such
that any weak accumulation point is a primal-dual solution of (SCFP), as long as
there exist primal-dual solutions of (SCFP). If Λ is denumerable, then by Remark 3.1
and Theorem 3.5, the whole sequence converges weakly to a primal-dual solution.
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[1] E. L. Allgower and K. Böhmer, Application of the mesh independence principle to mesh
refinement strategies, SIAM J. Numer. Anal., 24 (1987), pp. 1335–1351.
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[3] A. Auslender, Optimisation. Méthodes Numériques, Masson, Paris, 1976.
[4] H. H. Bauschke and J. M. Borwein, Legendre Functions and the method of random Bregman

functions, J. Convex Anal., 4 (1997), pp. 27–67.
[5] L. M. Bregman, The relaxation method of finding the common points of convex sets and its

application to the solution of problems in convex programming, USSR Comput. Math.
Math. Phys., 7 (1967), pp. 200–217.
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Abstract. The proofs of Lemma 5.2 and Theorem 5.1 in [SIAM J. Control Optim., 38 (2000),
pp. 947–970] have a common error which concerns the existence of (locally) Lipschitz selections.
Indeed, Lemma 5.2 is true in the case where the multivalued mapping G is convex-valued, and in our
case this assumption is not satisfied. So some modifications are needed. The statement of Theorem
5.1 (which does not use Lemma 5.2) is as follows.

PII. S0363012900370466

Theorem 1. Suppose that the graph GrF of the multivalued mapping F is closed
and that

(0, v∗) ∈ ∂F(u,v)h(u, 0, y) =⇒ v∗ = 0,(1)

where h(u, v, y) = d(u, v,GrFy) and Fy : u → F (u, y). Suppose also that the multi-
valued mapping y → Fy(u) is pseudo-Lipschitzian around y uniformly in u in some
neighborhood of u; that is, there exist a > 0 and r > 0 such that for all y, y′ ∈ y+rBY ,
and u ∈ u+ rBU

Fy(u) ∩ rBV ⊂ Fy′(u) + a‖y − y′‖BV .

Then the multivalued mapping (y, v)→ F−1
y (v) is pseudo-Lipschitzian around (y, 0, u).

This allows us to modify the statement of Corollary 5.4 in [1].
Corollary 2. Let f be locally Lipschitzian around the point (u, y) solution of

f(u, y) = 0.

Suppose that

0 ∈ ∂Fu (v∗ ◦ f)(u, y) =⇒ v∗ = 0.

Then the multivalued mapping S defined by

S(y) = {x : f(x, y) = 0}

is pseudo-Lipschitzian around (y, u).
Consequently, I am withdrawing Lemma 5.2 and the third remark after it in [1].
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Abstract. The abscissa mapping on the affine variety Mn of monic polynomials of degree n
is the mapping that takes a monic polynomial to the maximum of the real parts of its roots. This
mapping plays a central role in the stability theory of matrices and dynamical systems. It is well
known that the abscissa mapping is continuous on Mn, but not Lipschitz continuous. Furthermore,
its natural extension to the linear space Pn of polynomials of degree n or less is not continuous. In
our analysis of the abscissa mapping, we use techniques of modern nonsmooth analysis described
extensively in Variational Analysis (R. T. Rockafellar and R. J.-B. Wets, Springer-Verlag, Berlin,
1998). Using these tools, we completely characterize the subderivative and the subgradients of the
abscissa mapping, and establish that the abscissa mapping is everywhere subdifferentially regular.
This regularity permits the application of our results in a broad context through the use of standard
chain rules for nonsmooth functions. Our approach is epigraphical, and our key result is that the
epigraph of the abscissa map is everywhere Clarke regular.

Key words. nonsmooth analysis, polynomials, stability, subgradient, Clarke regular

AMS subject classifications. 34D05, 34D20, 49J52

PII. S0363012900367655

Let Pn denote the linear space of complex polynomials of degree n or less, and
let Mn denote the affine variety in Pn consisting of the monic polynomials of degree
n. In this article we study variational properties of the abscissa mapping

a :Mn → R

given by

a(p) = max {Re ζ | p(ζ) = 0} .

Our study is partly motivated by the need to provide tools for understanding the
variational behavior of the spectral abscissa mapping on the n by n complex matrices
defined by

α(M) = a(det(λI −M)).

Properties of the spectral abscissa are closely tied to stability theory for matrices
and dynamical systems. Thus, the variational behavior of the spectral abscissa has
important consequences for the sensitivity of the stability properties of such systems
under perturbation. In [BO], we apply the variational results obtained in this paper
to study the variational behavior of the spectral abscissa map.

The abscissa mapping has a number of characteristics that make it difficult to
analyze. It is well known that a is continuous, but not Lipschitz continuous, on
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Mn. In addition, the natural extension of a to all of Pn is not continuous at any
point of the subspace Pn−1. In this paper, we show that the techniques of modern
nonsmooth analysis described in the recent book [RW98] are ideally suited to the study
of mappings of this type. Thus, a secondary purpose of this paper is to illustrate the
usefulness of the nonsmooth analysis techniques developed by many authors over the
last 30 years by applying them to a classical function of great practical importance.
Using techniques from nonsmooth analysis, we are able to establish that the abscissa
mapping is everywhere subdifferentially regular. This remarkable result has major
consequences for the development of a calculus for the variational behavior of the
abscissa mapping under composition.

It needs to be stated that our analysis owes a great debt to earlier work of Levan-
tovskii [Lev80]. Levantovskii studied the set of stable polynomials, i.e., the set of
polynomials whose abscissa is nonpositive, and provided an outline for the derivation
of the tangent cone to this set. We generalize this proof technique to establish the
key result of section 1 (Theorem 1.2).

The paper is organized as follows; we assume that the reader is familiar with
[RW98]. Section 1 is devoted to the derivation of the subderivative of a. This is done
via an epigraphical approach, where we derive the formula for the subderivative from a
description of the tangent cone to the epigraph of the abscissa mapping a. In addition,
we develop some basic tools that relate the prime factorization of a polynomial to a
factorization of the tangent cone. The key to this result is the local factorization
Lemma 1.4. In section 2, we use the representation of the tangent cone obtained in
section 1 to derive a representation for the set of regular normals to the epigraph of
a. This in turn yields a representation for the set of regular subgradients for a at
any point in Mn. In section 3, we establish that the abscissa mapping is everywhere
subdifferentially regular. The key result is that the epigraph of the abscissa map is
Clarke regular.

Most of the notation that we use is introduced as it is required. However, it is
useful to briefly describe our conventions for discussing polynomials in their distinct
roles as points in the linear space Pn and as functions over the complex field. One
could identify Pn with C

n+1 and attempt to derive the variational properties of a as a
mapping on C

n+1, but this would completely ignore the very rich underlying algebraic
structure of polynomials. Since it is the roots of polynomials that lie at the heart of
the mapping a, it is the polynomial perspective that drives our analysis. Given a
polynomial p ∈ Pn, we will always use the Greek letter λ to denote the indeterminant
associated with representing the polynomial as a function. Thus we write p(λ) as the
associated polynomial function. Monomials and shifted monomials play a central role
in our analysis. For this reason we give them a special notation so that we can discuss
them as points in Pn. We write

e(�,λ0)(λ) = (λ− λ0)
�.

1. The subderivative and the tangent cone. To apply the tools developed
in [RW98], we first extend the definition of a to the entire linear space Pn:

a : Pn → R

is given by

a(p) =

{
max {Re ζ | p(ζ) = 0} if p ∈ Mn,
+∞ otherwise.
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This extension allows us to focus our attention on the set of monic polynomials.
In particular, we have dom (a) = {p | a(p) < +∞} = Mn. Given p ∈ Mn, our
goal is to derive a formula for da(p), the subderivative of the mapping a. Following
[RW98, Definition 8.1], the subderivative of a at a point p ∈ Mn is the mapping
da(p) : Pn → R ∪ {±∞} given by

da(p)(q̂) = lim inf
τ↘0
q→q̂

a(p+ τq)− a(p)

τ
,

where the parameter τ is understood to be real. Since a is +∞ on Pn\Mn, we have

dom (da(p)) = {p | da(p) < +∞} ⊂ Pn−1.

Hence, we restrict our attention to the behavior of da(p) on the subspace Pn−1.
We approach the problem of computing da(p) from an epigraphical perspective.

The epigraph of a is the set

epi (a) = {(p, µ) | a(p) ≤ µ < +∞} .

Using this set, we can construct da(p) from the formula

epi (da(p)) = Tepi (a)(p, a(p))(1.1)

[RW98, Theorem 8.2]. Here Tepi (a)(p, a(p)) is the tangent cone to the set epi (a) at
the point (p, a(p)). For a subset C of a finite dimensional linear space X, we have

TC(x) =

{
d

∣∣∣∣ ∃ {xk} ⊂ C and {tk} ⊂ R+ such that
xk → x, tk ↘ 0, and t−1

k (xk − x)→ d

}
(1.2)

=

γd

∣∣∣∣∣∣
γ ≥ 0, and there exits {xk} ⊂ C

with xk → x such that d = lim
k→∞

xk − x

‖xk − x‖

 ,(1.3)

where R+ is the set of nonnegative real numbers and ‖·‖ is any norm on X. By
considering Pn−1 as a subspace of Pn, we have

Tepi (a)(p, µ) ⊂ Pn−1 × R for all µ ≥ a(p),(1.4)

since a is +∞ on Pn\Mn. In particular,

Tepi (a)(p, µ) = Pn−1 × R whenever µ > a(p),(1.5)

since a is continuous on Mn.
In our first lemma we show that the tangential geometry of epi (a) remains essen-

tially unchanged under the linear transformations corresponding to a uniform shift of
the roots. For each λ0 ∈ C

n define the linear transformation Hλ0 : Pn → Pn by
Hλ0(p)(λ) = p(λ− λ0).

Lemma 1.1. Let λ0 be a given complex number. Then

Tepi (a)(Hλ0
(p), η + Re (λ0)) = {(Hλ0

(v), µ) : (v, µ) ∈ Tepi (a)(p, η)} .



1654 JAMES V. BURKE AND MICHAEL L. OVERTON

Proof. Define the affine transformation Ĥλ0
: Pn × R → Pn × R by

Ĥλ0(p, µ) = (Hλ0(p), µ+ Re (λ0)).

Clearly, the mapping Ĥλ0 is invertible (indeed, Ĥ
−1
λ0
= Ĥ−λ0). In addition,

Ĥ−1
λ0
(epi (a)) = epi (a).

Therefore, by [RW98, Exercise 6.7] and the invertibility of Ĥλ0 , we have

Tepi (a)(Hλ0
(p), µ+ Re (λ0)) = Tepi (a)(Ĥλ0(p, µ))

= ∇Ĥλ0(p, µ)Tepi (a)(p, µ)

= {(Hλ0(v), µ) : (v, µ) ∈ Tepi (a)(p, η)}.
We now derive a formula for the tangent cone to epi (a) at (e(n,0), 0). All of our

subsequent analysis relies on this key result. The proof is rather long and involved.
It is based on an outline provided by Levantovskii [Lev80] for deriving a formula for
the tangent cone to the set of stable polynomials.

Theorem 1.2. We have (v, η) ∈ Tepi (a)(e(n,0), 0), with

v = β1e(n−1,0) + β2e(n−2,0) + · · ·+ βn,(1.6)

if and only if

Reβ1 ≥ −nη,(1.7)

Reβ2 ≥ 0,(1.8)

Imβ2 = 0, and(1.9)

βk = 0 for k = 3, . . . , n.(1.10)

Therefore, for v ∈ Pn−1 given by (1.6), we have

da(e(n,0))(v) =

{
− Re β1

n if (1.8)–(1.10) hold, and
+∞ otherwise.

Proof. We begin by showing that (1.7)–(1.10) and (1.6) imply that (v, η) is an
element of the tangent cone Tepi (a)(e(n,0), 0). This is done by constructing a curve
in epi (a) converging to (e(n,0), 0) and having derivative equal to (v, η). Consider the
polynomials having coefficients that are polynomials in ξ and given by

p(λ, ξ) =

(
λ+

β1

n
ξ

)n−2(
λ+

√−1(β2ξ)
1
2 +

β1

n
ξ

)(
λ− √−1(β2ξ)

1
2 +

β1

n
ξ

)
=

(
λn−2 + (n− 2)β1

n
ξλn−3 + o(ξ)

)(
λ2 + 2

β1

n
ξλ+ β2ξ + o(ξ)

)
= λn + β1ξλ

n−1 + β2ξλ
n−2 + o(ξ)

= λn + ξv(λ) + o(ξ) .

Let ξ be real and positive. Then a(p(λ, ξ)) = − Re (β1)
n ξ. Therefore,

lim
ξ↘0

a(p(λ, ξ))− a(λn)

ξ
= − Re (β1)

n
≤ η,
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which yields the result.
We now show that any element (v, η) in the tangent cone Tepi (a)(e(n,0), 0) must

satisfy (1.7)–(1.10) if v is given the representation (1.6). To this end, we make use of
the following norm on Pn × R:∥∥(b0e(n,0) + b1e(n−1,0) + · · ·+ bn, µ)

∥∥ = max{ |b0| , |b1| , . . . , |bn| , |µ| } .

Let (v, η) ∈ Tepi (a)(e(n,0), 0) with v written as in (1.6). By definition there is a
sequence {(pk, µk)} ∈ epi (a) with (pk, µk)→ (e(n,0), 0) and

((pk, µk)− (e(n,0), 0))∥∥(pk, µk)− (e(n,0), 0)
∥∥ → (γv, γη)(1.11)

for some γ > 0.
Given ε ∈ C

n, define σj : C
n → C for j = 1, 2, . . . , n to be the symmetric

functions

σ1(ε) =

n∑
t=1

εt and σj(ε) =
∑

1≤t1<t2<···<tj≤n

(
j∏
s=1

εts

)
for j = 2, . . . , n,(1.12)

and set σ = (σ1, σ2, · · · , σn)T . For each k = 1, 2, . . . there exist complex numbers
εk = (εk1, εk2, . . . , εkn)

T → 0 such that Re (εkj) ≥ −µk for j = 1, 2, . . . , n and

pk(λ) =

n∏
j=1

(λ+ εkj) = (λ
n + σ1(ε

k)λn−1 + · · ·+ σn(ε
k)) .(1.13)

For each k = 1, 2, . . ., set

νk =
∥∥(pk, µk)− (e(n,0), 0)

∥∥ = max{(∥∥σ(εk)∥∥∞ , |µk| }.
Then the limit (1.11) can be interpreted componentwise as

γβj = lim
k→∞

σj(ε
k)

νk

for j = 1, 2, . . . , n. Set σ̃j = γβj for j = 1, 2, . . . , n. We establish the result by showing
that

Re σ̃1 ≥ −nγη, Re σ̃2 ≥ 0, Im σ̃2 = 0, and σ̃k = 0 for k = 3, 4, . . . , n.(1.14)

Clearly, Re (σ̃1) ≥ −nγη since Re (σ1(ε
k)) =

∑n
j=1 Re (εkj) ≥ −nµk for all

k = 1, 2, . . . and µk/νk → γη. We now show that σ̃j = 0 for j = 3, 4, . . . , n. First note
that

σj(ε) = o(‖ε‖2
∞) for j = 3, 4, . . . , n.(1.15)

Define

αkj = Re εkj and δkj = Im εkj(1.16)

for j = 1, 2, . . . , n and k = 1, 2, . . .. Note that αkj ≥ −µk for j = 1, 2, . . . , n and
k = 1, 2, . . .. In addition, it is easily verified that

Reσ2(ε
k) =

∑
s<t

[αksαkt − δksδkt] and Imσ2(ε
k) =

[∑
s<t

αksδkt +
∑
s<t

δksαkt

]
.
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Then, by definition,∣∣σ1(ε
k)
∣∣ 2 = ∥∥εk∥∥2

2
+ 2

∑
s<t

Re (ε̄ksεkt)

=
∥∥εk∥∥2

2
+ 2

∑
s<t

αksαkt + 2
∑
s<t

δksδkt

=
∥∥εk∥∥2

2
+ 4

∑
s<t

αksαkt + 2
∑
s<t

[δksδkt − αksαkt]

=
∥∥εk∥∥2

2
+ 4

∑
s<t

αksαkt − 2Reσ2(ε
k)

≥ ∥∥εk∥∥2

∞ − 2n(n− 1)µ2
k − 2Re (σ2(ε

k))

≥ ∥∥εk∥∥2

∞ − 4n(n− 1)max{ |µk| ,
∣∣σ2(ε

k)
∣∣ } ,

whenever |µk| ≤ 1. Hence, if εk and µk are such that
∣∣σ1(ε

k)
∣∣ <

‖εk‖∞
2 and |µk| ≤ 1,

then, for ∆ = 3
16n2 , we have

max{ |µk| ,
∣∣σ2(ε

k)
∣∣ } > ∆

∥∥εk∥∥2

∞ .

On the other hand, if
∣∣σ1(ε

k)
∣∣ ≥ ‖εk‖∞

2 and
∥∥εk∥∥∞ ≤ 1, then

∣∣σ1(ε
k)
∣∣ ≥ ‖εk‖2

∞
4 .

Thus, in either case, we have

max( |µk| ,
∣∣σ1(ε

k)
∣∣ , ∣∣σ2(ε

k)
∣∣ ) ≥ ∆

∥∥εk∥∥2

∞ ,(1.17)

whenever
∥∥εk∥∥∞ ≤ 1 and |µk| ≤ 1. This implies that

νk ≥ ∆
∥∥εk∥∥2

∞(1.18)

for all k sufficiently large. This bound, in conjunction with (1.15), allows us to
conclude that

σ̃j = lim
k→∞

σj(ε
k)

νk
= 0 for j = 3, 4, . . . , n.

We now turn our attention to the coefficient σ̃2. If

max{ ∣∣σ1(ε
k)
∣∣ , ∣∣σ2(ε

k)
∣∣ } = o(νk),

we are done since then σ̃ = 0. Hence, we assume that

max{ ∣∣σ1(ε
k)
∣∣ , ∣∣σ2(ε

k)
∣∣ } �= o(νk)

so that

νk = max{
∣∣σ1(ε

k)
∣∣ , ∣∣σ2(ε

k))
∣∣ , |µk| }

for all k sufficiently large. Set ν̃kj = max{
∣∣σj(εk)∣∣ , |µk| } for j = 1, 2. Observe that

if limk→∞
σ2(ε

k)
ν̃k1

= 0, then we are done since in this case νk = ν̃k1 for all k sufficiently
large which implies that σ̃2 = 0. Hence, with no loss in generality, we can assume
that there is a constant c > 0 such that∣∣σ2(ε

k)
∣∣ ≥ cν̃k1 for all k = 1, 2, . . ..(1.19)



THE ABSCISSA MAPPING 1657

Therefore, there is a constant K > 0 such that

K
∣∣σ2(ε

k)
∣∣ ≥ νk for all k sufficiently large.(1.20)

Now observe that

|σ2(ε)| =
∣∣∣∣∣∑
s<t

εsεt

∣∣∣∣∣ ≤∑
s<t

|εs| |εt| ≤ n(n− 1)
2

‖ε‖2
∞ .(1.21)

Therefore, for all k sufficiently large,

c
∣∣Re (σ1(ε

k))
∣∣ ≤ c

∣∣σ1(ε
k)
∣∣ ≤ cν̃k1 ≤ ∣∣σ2(ε

k)
∣∣ ≤ n(n− 1)

2

∥∥εk∥∥2

∞ ,

and so, from (1.20), we have

|µk| ≤ νk ≤ Kn(n− 1)
2

∥∥εk∥∥2

∞ .(1.22)

In particular, this implies that

µk
‖εk‖∞

→ 0.

In addition, since αkj + µk ≥ 0 for each j = 1, 2, . . . , n and all k = 1, 2, . . . and

0 ≤
n∑
j=1

αkj + µk
‖εk‖∞

≤
∣∣Re (σ1(ε

k))
∣∣ + n |µk|

‖εk‖∞
≤ n(n− 1)

2

(
1

c
+Kn

)∥∥εk∥∥∞ ,

for all k = 1, 2, . . . (recall the definition of the αkj ’s from (1.16)), we obtain

lim
k→∞

αkj
‖εk‖∞

= 0 for j = 1, 2, . . . , n.(1.23)

Putting together the bounds (1.18), (1.20), and (1.22), we obtain the relation

∆
∥∥εk∥∥2

∞ ≤ νk ≤ K
∣∣σ2(ε

k)
∣∣ ≤ K

n(n− 1)
2

∥∥εk∥∥2

∞ ,(1.24)

for all k = 1, 2, . . .. In addition, the bound (1.19) implies that∣∣ Im (σ1(ε
k))
∣∣ 2

|σ2(εk)| ≤
∣∣σ1(ε

k)
∣∣ 2

|σ2(εk)| ≤ 1

c2
∣∣σ2(ε

k)
∣∣

so that ∣∣ Im (σ1(ε
k))
∣∣ 2

|σ2(εk)| → 0.

Now since
∣∣ Im (σ1(ε

k))
∣∣ 2 =∑n

j=1 δ2
kj + 2

∑
s<t δksδkt, this implies that

lim
k→∞

∑
s<t

δksδkt
|σ2(εk)| ≤ 0.(1.25)
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Finally, recall that

σ2(ε
k) =

[∑
s<t

αksαkt −
∑
s<t

δksδkt

]
+ i

[∑
s<t

αksδkt +
∑
s<t

δksαkt

]
.

Therefore, by (1.24), (1.25), and (1.23), we see that

Re (σ̃2) = lim
k→∞

Re (σ2(ε
k))

νk
≥ 0.

Similarly, from (1.24) and (1.23), we have

| Im (σ̃2)| = lim
k→∞

∣∣ Im (σ2(ε
k))
∣∣

νk

≤ ∆−1 lim
k→∞

∑
s<t

( |αks|
‖εk‖∞

|δkt|
‖εk‖∞

+
|αkt|
‖εk‖∞

|δks|
‖εk‖∞

)
= 0,

since
|δkj |

‖εk‖∞
≤ 1 for all j = 1, 2, . . . , n and k = 1, 2, . . ..

The final statement of the theorem concerning the formula for da(e(n,0))(v) now
follows immediately from the equivalence of (1.1) and (1.7)–(1.10).

By combining Lemma 1.1 with Theorem 1.2, we obtain the following corollary.
Corollary 1.3. Given λ0 ∈ C, we have (v, η) ∈ Tepi (a)(e(n,λ0), Re (λ0)), with

v = β1e(n−1,λ0) + β2e(n−2,λ0) + · · ·+ βn ,(1.26)

if and only if β1, β2, . . . , βn satisfy the conditions (1.7)–(1.10). Therefore, for v ∈ Pn−1

given by (1.26), we have

da(e(n,λ0))(v) =

{
− Re β1

n if (1.8)–(1.10) hold,
+∞ otherwise.

We now show that the factorization of a polynomial into powers of linear factors
(or the prime factorization) can be used to obtain a description of the tangent cone
to the epigraph of a from Corollary 1.3. We begin by developing a tool that allows us
to treat each of the linear factors in the prime factorization separately. We then glue
the results for each of the factors back together to obtain a result for the polynomial
as a whole. This tool is provided in the next lemma which establishes a local property
for factorizations into relatively prime factors.

Lemma 1.4. Let (n1, n2, . . . , nm) be a partition of n, that is, for j = 1, 2, . . . ,m
each nj is a positive integer and n =

∑m
j=1 nj. Set

S = C × Pn1−1 × Pn2−1 × · · · × Pnm−1

and let pj ∈ Mnj for j = 1, 2, . . . ,m. Consider the mapping F : S → Pn given by

F (v0, v1, v2, . . . , vm) = (1 + v0)

m∏
j=1

(pj + vj) .

If the polynomials p1, . . . , pm are relatively prime(i.e., have no common roots), then
there exist open neighborhoods U of 0 ∈ S and W of F (0) ∈ Pn such that F is
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a homeomorphism between U and W with ∇(F−1) existing, continuous on W , and
satisfying ∇(F−1)(F (u)) = [∇F (u)]−1 for all u ∈ U . Thus, in particular, we have
Ran (∇F (0)) = Pn; that is, every polynomial h ∈ Pn can be written as

h = ∇F (0)(w0, w1, . . . , wm) =

m∑
j=0

rjwj ,(1.27)

for some (w0, w1, . . . , wm) ∈ S, where

r0 =

m∏
j=1

pj and rs =
∏
j �=s

pj for s = 1, 2, . . . ,m.(1.28)

Proof. Since dim(S) = n + 1 = dim(Pn), the result follows from the classical
inverse function theorem once it is shown that ker (∇F (0)) = {0}. Let Zj denote the
set of zeros of the polynomial pj counting multiplicity, for j = 1, 2, . . . ,m, and let
(w0, w1, . . . , wm) ∈ ker (∇F (0)). Since the polynomials p1, p2, . . . , pm are relatively
prime, we have Zj ∩ Zs = ∅ whenever j �= s. Equations (1.27) and (1.28) and the
inclusion (w0, w1, . . . , wm) ∈ ker (∇F (0)) imply that for each s = 1, 2, . . . ,m the
polynomial

fs = rsws

has zeros not only at the points ∪j �=sZj (with the corresponding multiplicities) but
also at the points Zs (with the corresponding multiplicities). Hence, each fs is either
the zero polynomial or its degree is at least n. However, the degree of each fs is at most
n−1, since ws ∈ Pns−1. Therefore, fs is the zero polynomial for s = 1, 2, . . . ,m. This
in turn implies that wj = 0 for j = 1, 2, . . . ,m, and finally that w0 = 0. Consequently,
ker (∇F (0)) = {0}.

As a first application of Lemma 1.4, we show if a polynomial is written as a
product of relatively prime factors, then the tangent cone to the epigraph of a at this
polynomial is contained within a kind of product of the tangent cones associated with
each of the relatively prime factors.

Theorem 1.5. Let (n1, n2, . . . , nm) be a partition of n, and let pj ∈ Mnj for
j = 1, 2, . . . ,m be relatively prime. Set p =

∏m
j=1 pj ∈ Mn. Let the space S and the

function F : S → Pn be as given in Lemma 1.4. If (h, ω) ∈ Tepi (a)(p, a(p)), then
there exists (0, w1, w2, . . . , wm) ∈ S such that h is given by (1.27) and (1.28), where,
for j = 1, . . . ,m, (wj , ω) ∈ Tepi (anj )

(pj , a(p)) and anj denotes the abscissa mapping

on Pnj .
Proof. Let (h, ω) be a nonzero element of the tangent cone Tepi (a)(p, a(p)). Then

there is a sequence {(qk, αk)} ⊂ epi (a) ⊂ Mn × R and a scalar γ > 0 such that

(qk, αk)→ (p, a(p)) and
(qk, αk)− (p, a(p))

‖(qk, αk)− (p, a(p))‖ → (γh, γω) .

Let F : S → Pn be as in Lemma 1.4. Then, by trimming finitely many terms
from the beginning of the sequence if necessary so that qk is sufficiently close to p,
Lemma 1.4 yields the existence of a sequence {(0, vk1, vk2, . . . , vkm)} ⊂ S such that
(0, vk1, vk2, . . . , vkm)→ 0 and

qk = F (0, vk1, vk2, . . . , vkm) =

m∏
j=1

(pj + vkj) for all k = 1, 2, . . . ,
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since {qk} ⊂ Mn = dom (a). Since (qk, αk) ∈ epi (a), we have

(pj + vkj , αk) ∈ epi (anj ) for all j = 1, 2, . . . ,m and k = 1, 2, . . .(1.29)

and

(pj + vkj , αk)→ (pj , a(p)) for all j = 1, 2, . . . ,m.(1.30)

Set vk = (0, vk1, vk2, . . . , vkm) for k = 1, 2, . . ., and set v̄ = 0 so that vk → v̄. Then

qk − p = F (vk)− F (v̄)

= ∇F (v̄)(vk − v̄) + o(
∥∥vk − v̄

∥∥) .(1.31)

By Lemma 1.4, ∇(F−1) is continuous in a neighborhood of p so that F−1 is Lipschitz
continuous near p. Consequently, there is a constant K > 0 such that

∥∥vk − v̄
∥∥ ≤

K ‖qk − p‖ for all k = 1, 2, . . .. This fact, combined with (1.31), yields

γh = lim
k→∞

qk − p

‖(qk, αk)− (p, a(p))‖

= ∇F (v̄) lim
k→∞

vk − v̄

‖(qk, αk)− (p, a(p))‖
= ∇F (0)(0, ŵ1, ŵ2, . . . , ŵm),(1.32)

where

ŵj = lim
k→∞

vkj
‖(qk, αk)− (p, a(p))‖ for j = 1, 2, . . . ,m.

Equation (1.32) verifies (1.27) with wj = γ−1ŵj for j = 1, 2, . . . ,m. From (1.29),
(1.30), and definition (1.2) (here tk = ‖(qk, αk)− (p, a(p))‖), we have that (wj , ω) is
an element of Tepi (anj )

(pj , a(p)), for j = 1, 2, . . . ,m, which proves the result.

We now apply Corollary 1.3, Lemma 1.4, and Theorem 1.5 to obtain a complete
representation of the tangent cone to the epigraph of the abscissa mapping at an
arbitrary polynomial. This representation involves the prime factorization of the
polynomial. For this purpose, and for the application of this result in later sections,
it is useful to introduce some more notation.

Let p ∈ Mn have prime factorization

p =

m∏
j=1

e(nj ,λj),(1.33)

where λ1, . . . , λm are distinct complex numbers and (n1, n2, . . . , nm) is a partition of
n. Define Sp to be the product space

Sp = C × Pn1−1 × Pn2−1 × · · · × Pnm−1.(1.34)

In conjunction with Sp, we define the mapping Fp : Sp → Pn by

Fp(v0, v1, . . . , vm) = (1 + v0)

m∏
j=1

(e(nj ,λj) + vj) for all (v0, v1, . . . , vm) ∈ Sp,(1.35)
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so that Fp(0) = p. By analogy with (1.27), for every (w0, w1, . . . , wm) ∈ S, we have

∇Fp(0)(w0, w1, . . . , wm) =

m∑
j=0

rjwj ,(1.36)

where

r0 = p and rs =
∏
j �=s

e(nj ,λj) for s = 1, 2, . . . ,m.(1.37)

In addition, we define

I(p) = {j ∈ {1, 2, . . . ,m} | a(p) = Reλj } ,(1.38)

the set of indices of active roots of p.
We now state and prove the main result of this section.
Theorem 1.6. Let p ∈ Mn have factorization (1.33). Then (h, ω) is an element

of Tepi (a)(p, a(p)) if and only if there exists a vector (w0, w1, w2, . . . , wm) ∈ Sp such
that

h = ∇Fp(0)(w0, w1, w2, . . . , wm),(1.39)

where ∇Fp(0) is defined in (1.36)–(1.37),

w0 = 0,(1.40)

and

(wj , ω) ∈ Tepi (anj )
(e(nj ,λj), a(p)) for j = 1, 2, . . . ,m.(1.41)

In addition, if for each j = 1, 2, . . . ,m, wj is given the representation

wj = βj1e(nj−1,λj) + βj2e(nj−2,λj) + · · ·+ βjnj ,(1.42)

then, for each j ∈ I(p), a necessary and sufficient condition for (1.41) to hold is that

Reβj1 ≥ −njω,(1.43)

Reβj2 ≥ 0,(1.44)

Imβj2 = 0, and(1.45)

βjs = 0 for s = 3, 4, . . . , nj .(1.46)

Proof. Let us first assume that (h, ω) ∈ Tepi (a)(p, a(p)) and show that (h, ω)
must satisfy (1.39), (1.40), and (1.41). By Lemma 1.4, there must exist a vector
(w0, w1, w2, . . . , wm) in Sp such that (1.39) holds. The fact that w0 = 0 follows from
(1.4), while (1.41) follows immediately from Theorem 1.5. The conditions (1.43)–
(1.46) follow from (1.41) and Corollary 1.3.

Next, let us assume that (h, ω) ∈ Pn−1×R satisfies (1.39), (1.40), and (1.41). We
need to show that (h, ω) ∈ Tepi (a)(p, a(p)). We accomplish this by following the ap-
proach taken in Theorem 1.2. That is, we will exhibit a curve in epi (a) passing through
(p, a(p)) and having the tangent direction (h, ω) at (p, a(p)). For j = 1, 2, . . . ,m, give
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each wj in (1.39) the representation (1.42). Then, by Corollary 1.3, we know that the
conditions (1.43)–(1.46) are satisfied for j ∈ I(p). For each such j ∈ I(p), define

pj(λ, ξ) =

(
(λ− λj) +

βj1
nj

ξ

)nj−2

×
(
(λ− λj) +

√−1(βj2ξ)
1
2 +

βj1
nj

ξ

)(
(λ− λj)− √−1(βj2ξ)

1
2 +

βj1
nj

ξ

)
= (λ− λj)

nj + (βj1ξ)(λ− λj)
nj−1 + βj2ξ(λ− λj)

nj−2 + o(ξ)

= (λ− λj)
nj + ξwj(λ) + o(ξ),(1.47)

and, for j ∈ {1, 2, . . . ,m}\I(p), define
pj(λ, ξ) = (λ− λj)

nj + ξwj(λ) .(1.48)

Set p(λ, ξ) =
∏m
j=1 pj(λ, ξ), so that, from (1.36), (1.37), and (1.39),

p(λ, ξ) = p(λ) + ξ

m∑
j=1

rj(λ)wj(λ) + o(ξ)

= p(λ) + ξ∇Fp(0)(0, w1, . . . , wm)(λ) + o(ξ)

= p(λ) + ξh(λ) + o(ξ).

Then, for all ξ small, positive, and real,

a(p(λ, ξ)) = max
j∈I(p)

Re

(
λj − βj1

nj
ξ

)
≤ a(p) + ξω

so that (p(λ, ξ), a(p)+ξω) ∈ epi (a) for all ξ small, positive, and real. Therefore, since

lim
ξ↘0

(p(λ, ξ), a(p) + ξω)− (p(λ), a(p))
ξ

= (h(λ), ω),

we have (h, ω) ∈ Tepi (a)(p, a(p)), completing the proof.
Corollary 1.7. Let p ∈ Mn have factorization (1.33) and let h ∈ Pn. By

Lemma 1.4, there exists (w0, w1, w2, . . . , wm) in Sp such that (1.39) holds, where, for
each j = 1, 2, . . . ,m, wj can be written as in (1.42). With this representation for h,
either w0 = 0 and (1.44)–(1.46) hold for j ∈ I(p), in which case

da(p)(h) = max
j∈I(p)

−Re (βj1)
nj

,

or

da(p)(h) = +∞.

Proof. By Theorem 1.6, we know that da(p)(h) = +∞ if either w0 �= 0 or the
coefficients βjs, s = 1, 2, . . . , nj , do not satisfy one of the conditions in (1.44)–(1.46)
for every j ∈ I(p). On the other hand, if w0 = 0 and all of the conditions in
(1.44)–(1.46) are satisfied for every j ∈ I(p), then the inequality (1.43) in Theorem
1.6 implies that (h, ω) ∈ Tepi (a)((p, a(p))) if and only if ω ≥ −Re (βj1)

nj
for every

j ∈ I(p). Since Tepi (a)((p, a(p))) = epi (da(p)) [RW98, Theorem 8.2], this proves the
corollary.
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2. Regular subgradients and the normal cone. We now turn our attention
to the variational objects dual to the subderivative and the tangent cone. These are
the subgradients and the normal cone. These objects are defined in terms of a duality
pairing between the linear space Pn and its dual space. Traditionally the dual space
is the space of continuous linear functionals on the primal space (which in our setting
is Pn). The duality pairing is then the continuous bilinear functional obtained by
evaluating a given linear functional at a given point. However, in general, the dual
space may have many possible representations and for each representation there may
be any number of bilinear functionals that pair the spaces in duality.

In our analysis, we have chosen to regard Pn as a Hilbert space, in which case
the dual of Pn is itself. However, we will need to consider a whole family of duality
pairings, or inner products, on Pn. To describe this family of inner products, recall
that for each λ0 ∈ C, the polynomials

e(j,λ0), j = 0, 1, . . . , n,(2.1)

form a basis for Pn. Hence, for each λ0 ∈ C, we can define a real inner product on
Pn associated with the representation in this basis. Given p =

∑n
j=1 aje(n−j,λ0) and

q =
∑n
j=1 bje(n−j,λ0), define the inner product

〈· , ·〉(n,λ0)
: Pn × Pn → R

by

〈p , q〉(n,λ0)
= Re

n∑
j=0

ājbj .(2.2)

Thus, in the case n = 0, we recover the real inner product on C. Note that this family
of inner products behaves continuously in p, q, and λ0 in the sense that the mapping

(p, q, λ) �→ 〈p , q〉(n,λ)(2.3)

is continuous on Pn×Pn×C. To see this, note that the expansions of the polynomials
p and q in the basis (2.1) are just their Taylor series expansions at λ0, hence,

〈p , q〉(n,λ) = Re

 n∑
j=0

p(j)(λ)

j!

q(j)(λ)

j!

 ,

where f (j) denotes the jth derivative of the function f .
By setting λ0 = 0 in (2.1), we obtain the standard basis for Pn. The inner product

(2.2) associated with the standard basis is simply written 〈· , ·〉.
The spaces Sp defined in (1.34) also play a key role in our analysis; therefore, we

need an inner product on these spaces as well. We use the inner product

〈(u0, u1, . . . , um) , (v0, v1, . . . , vm)〉p =
m∑
s=0

〈us , vs〉(ns−1,λs)
,(2.4)

for every (u0, u1, . . . , um) and (v0, v1, . . . , vm) in Sp, where we define n0 = 1 in this
expression and hereafter.

Spaces paired in duality give rise to the notion of the adjoint of a linear transfor-
mation. Suppose (X,X∗) and (Y, Y ∗) are spaces paired in duality, with the duality
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pairing between X and X∗, and Y and Y ∗ given by 〈· , ·〉X and 〈· , ·〉Y , respectively.
If A is a linear transformation mapping X to Y , then the adjoint of A, denoted A∗,
is the linear transformation mapping Y ∗ to X∗ defined by the condition that

〈A∗y , x〉X = 〈y ,Ax〉Y for all x ∈ X and y ∈ Y ∗.

The dual variational objects studied in this section are the cone of regular normals
and the set of regular subgradients. The cone of regular normal vectors to the epigraph
of a at a point (p, µ) ∈ epi (a), denoted N̂epi (a)(p, µ), is given by{

(z, η)

∣∣∣∣ 〈(z, η) , (q, τ)− (p, µ)〉 ≤ o(‖(q, τ)− (p, µ)‖)
∀ (q, τ) ∈ epi (a)

}
,

where 〈(z, η) , (q, τ)〉 = ητ + 〈z , q〉 (note that epi (a) ⊂ Pn × R so that η and τ are
real). The cone of regular normals is defined to be the empty set at points not in the
epigraph of a. The set of regular subgradients of a at p ∈ dom a =Mn is given by

∂̂a(p) = {z | a(q) ≥ a(p) + 〈z , q − p〉+ o(‖q − p‖) ∀ q ∈ Pn } .

If p �= Mn, we define ∂̂a(p) to be the empty set. By [RW98, Theorem 8.9], we have
the following relationship between the cone of regular normals and the set of regular
subgradients:

∂̂a(p) =
{
z
∣∣∣ (z,−1) ∈ N̂epi (a)(p, a(p))

}
.(2.5)

In addition, [RW98, Proposition 6.5] tells us that the cone of regular normals is the
polar of the tangent cone at points (p, a(p)) ∈ epi (a):

N̂epi (a)(p, a(p)) = Tepi (a)(p, a(p))
◦ ,(2.6)

where

Tepi (a)(p, a(p))
◦ =

{
(z, ξ)

∣∣ 〈(z, ξ) , (h, ω)〉 ≤ 0 ∀ (h, ω) ∈ Tepi (a)(p, a(p))
}
.

We take a moment to observe two important consequences of the equivalence (2.6).
These observations are based on the relations (1.4) and (1.5). By (1.4), we have that
the vector (e(n,0), 0) is orthogonal to every vector in Tepi (a)(p, a(p)), regardless of the
choice of the polynomial p ∈ Mn. Therefore, by (2.6),{

(βe(n,0), 0) |β ∈ C
} ⊂ N̂epi (a)(p, a(p)) for every p ∈ Mn.(2.7)

In addition, (1.5) and (2.6) imply that{
(βe(n,0), 0) |β ∈ C

}
= N̂epi (a)(p, µ), whenever µ > a(p).(2.8)

We now proceed to derive an expression for N̂epi (a)(p, a(p)) using (2.6) and The-

orem 1.6. We then use the relation (2.5) to determine ∂̂a(p).
Theorem 2.1. Let p ∈ Mn have factorization (1.33) and let I(p) be as defined

in (1.38). Then (z, η) is an element of the normal cone N̂epi (a)(p, a(p)) if and only if

η ≤ 0(2.9)
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and the vector u ∈ Sp defined by u = ∇Fp(0)
∗z and given the representation

uj =

nj∑
l=1

µjle(nj−l,λj) for j = 1, . . . ,m(2.10)

satisfies

uj = 0 for j /∈ I(p) and j �= 0,(2.11)

Reµj1 ≤ 0 and Imµj1 = 0 for j ∈ I(p),(2.12)

Reµj2 ≤ 0 for j ∈ I(p), and(2.13) ∑
j∈I(p)

njµj1 = η.(2.14)

Proof. Let (h, ω) ∈ Tepi (a)(p, a(p)). By Theorem 1.6, we know that there exists
(0, w1, w2, . . . , wm) ∈ Sp such that h = ∇Fp(0)(0, w1, w2, . . . , wm), where for j =
1, 2, . . . ,m each wj has the representation (1.42) with the coefficients βjs satisfying
(1.43)–(1.46) for j ∈ I(p), and, for j /∈ I(p),

βjs, s = 1, 2, . . . , nj , are unrestricted.(2.15)

Now let (z, η) ∈ Pn×R and set u = (u0, u1, . . . , um) = ∇Fp(0)
∗z, where each uj ,

j = 1, . . . ,m is given the representation (2.10). Then, from definition (2.4), we have

〈(z, η) , (h, ω)〉 = ηω + 〈z , h〉
= ηω + 〈z ,∇Fp(0)(0, w1, w2, . . . , wm)〉
= ηω + 〈∇Fp(0)

∗z , (0, w1, w2, . . . , wm)〉p
= ηω + 〈(u0, u1, . . . , um) , (0, w1, w2, . . . , wm)〉p

= ηω +

m∑
j=1

〈uj , wj〉(nj−1,λj)

= ηω +

m∑
j=1

nj∑
l=1

Re µ̄jlβjl.(2.16)

Hence, by (2.6), (z, η) ∈ N̂epi (a)(p, a(p)) if and only if

ηω +

m∑
j=1

nj∑
l=1

Re µ̄jlβjl ≤ 0(2.17)

for all choices of ω and βjl, j = 1, . . . ,m, l = 1, . . . , nj , satisfying (1.43)–(1.46) for
each j ∈ I(p).

We first show that any (z, η) ∈ Pn × R for which the associated vector u =
(u0, u1, . . . , um) = ∇Fp(0)

∗z, where each uj , j = 1, . . . ,m, has representation (2.10)
and for which η and µjl, j = 1, . . . ,m, l = 1, . . . , nj , satisfy (2.9) and (2.11)–(2.14) is

necessarily an element of the normal cone N̂epi (a)(p, a(p)). For this purpose, suppose
that ω and βjl, j = 1, . . . ,m, l = 1, . . . , nj satisfy (1.43)–(1.46) for each j ∈ I(p) so
that the corresponding vector (h, ω) is an element of the tangent cone Tepi (a)(p, a(p)).
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Then

〈(z, η) , (h, ω)〉 = ηω +

m∑
j=1

nj∑
l=1

Re µ̄jlβjl

= ηω +
∑
j∈I(p)

[µj1Reβj1 + Reµj2Reβj2]

≤ ηω −
∑
j∈I(p)

njµj1

(−Reβj1
nj

)
≤ ηω −

∑
j∈I(p)

njµj1ω

= 0,

where the first equality follows from (2.16), the second equality from (2.11), (2.12),
(1.45), and (1.46), the first inequality from (2.13) and (1.44), the second inequality
from (1.43), and the final equality from (2.14). Therefore, the set of (z, η) satisfying

(2.9)–(2.14) is contained in N̂epi (a)(p, a(p)).

We now show the reverse inclusion. Let (z, η) ∈ N̂epi (a)(p, a(p)) and set u =
(u0, u1, . . . , um) = ∇Fp(0)

∗z with each uj , j = 1, . . . ,m given representation (2.10).
We show that (z, η) must satisfy the conditions (2.11)–(2.14) by requiring that the
inequality (2.17) holds for every (h, ω) in the tangent cone Tepi (a)(p, a(p)). To this end,
let (h, ω) be any element of the tangent cone Tepi (a)(p, a(p)) so that the corresponding
vectors wj , j = 1, . . . ,m, satisfy (1.43)–(1.46) for each j ∈ I(p) and (2.15) for j /∈
I(p). By setting ω = 1 and all βjl equal to zero in (2.17), we find that η ≤ 0. By
(2.15), βjs is free for j /∈ I(p), s = 1, 2, . . . , nj , so that (2.17) implies that (2.11)
holds. Since Imβj1 is free whenever j ∈ I(p), (2.17) implies that Imµj1 = 0 for
all j ∈ I(p). In addition, (1.43) and (2.17) imply that Reµj2 ≤ 0 for all j ∈ I(p).
Therefore, (2.9), (2.11), the second half of (2.12) (i.e., the equality), and (2.13) have
been verified.

We now establish the first half of (2.12) (i.e., the inequality) and (2.14). By taking
Reβj2 = 0 for j ∈ I(p), the expression (2.16) can be simplified to

〈(z, η) , (h, ω)〉 = ηω +
∑
j∈I(p)

µj1Reβj1.(2.18)

By combining this with (2.17), we must have∑
j∈I(p)

µj1Reβj1 ≤ −ηω(2.19)

for all choices of ω and Reβj1, j ∈ I(p), satisfying (1.43). Observe that (1.43) holds
if and only if

ω ≥ max
j∈I(p)

−Reβj1
nj

.(2.20)

Since −η ≥ 0, we can multiply this inequality through by −η to obtain the inequality

−ηω ≥ −η max
j∈I(p)

−Reβj1
nj

.(2.21)
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Since the right-hand side of this inequality yields the smallest possible value of the
product −ηω, we find that (1.43) and (2.19) hold if and only if∑

j∈I(p)

µj1Reβj1 ≤ (−η) max
j∈I(p)

−Reβj1
nj

∀βj1 ∈ C, j ∈ I(p).(2.22)

Consider two cases: η = 0 and η < 0. If η = 0, then (2.22) implies that µj1 = 0
for all j ∈ I(p) so that (2.12) and (2.14) are satisfied. On the other hand, if η < 0,

define µ̃j =
nj
η µj1 and β̃j =

−Re βj1
nj

for j ∈ I(p). Substituting into (2.22), we obtain∑
j∈I(p)

µ̃j β̃j ≤ max
j∈I(p)

β̃j ∀β̃j ∈ R.(2.23)

But this holds if and only if µ̃j ≥ 0 for j ∈ I(p) and ∑j∈I(p) µ̃j = 1, or equivalently,

(2.12) and (2.14) hold.
Theorem 2.1 and (2.5) immediately yield the following representation for the set

of regular subgradients.
Theorem 2.2. Let p ∈ Mn have factorization (1.33). Then z ∈ ∂̂a(p) if and

only if the vector of polynomials

∇Fp(0)
∗z = (u0, u1, . . . , um) ∈ Sp,

with

uj =

nj∑
l=1

µjle(nj−l,λj), j = 1, 2, . . . ,m,

is such that

uj = 0 for j /∈ I(p) and j �= 0,
Reµj1 ≤ 0 and Imµj1 = 0 for j ∈ I(p),

Reµj2 ≤ 0 for j ∈ I(p), and∑
j∈I(p)

njµj1 = −1.

A more concise representation for the set of regular subgradients is possible. First
note that if p = e(n,λ0), then, for (h0, h1) ∈ Sp = C × Pn−1,

∇Fp(0)(h0, h1) = h0e(n,λ0) + h1

and

∇Fp(0)
∗

n∑
j=0

bje(n−j,λ0) =

b0,

n∑
j=1

bje(n−j,λ0)

 ,(2.24)

since〈
n∑
j=0

bje(n−j,λ0) , h0e(n,λ0) + h1

〉
(n,λ0)

=

〈
(b0,

n∑
j=1

bje(n−j,λ0)) , (h0, h1)

〉
p

.
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In this case ∇Fp(0)
∗ = ∇Fp(0)

−1. Hence, by Theorem 2.2, we have the following
formula for the set of regular subgradients of a at e(n,λ0):

∂̂a(e(n,λ0)) =

z

∣∣∣∣∣∣
z =

∑n
j=0 µje(n−j,λ0),

where µj ∈ C, j = 0, 1, . . . , n,
µ1 =

−1
n , and Re (µ2) ≤ 0

 .(2.25)

In the general case a similar formula can be obtained with the aid of the recession
cone of the set ∂̂a(e(n,λ0)):

∂̂a(e(n,λ0))
∞ =

z

∣∣∣∣∣∣
z =

∑n
j=0 µje(n−j,λ0),

where µj ∈ C, j = 0, 1, . . . , n,
µ1 = 0, and Re (µ2) ≤ 0

 .(2.26)

Define ∂̂a(e(n,λ0))
∞̃ as the projection of ∂̂a(e(n,λ0))

∞ onto Pn−1:

∂̂a(e(n,λ0))
∞̃ =

z

∣∣∣∣∣∣
z =

∑n
j=1 µje(n−j,λ0),

where µj ∈ C, j = 1, . . . , n,
µ1 = 0, and Re (µ2) ≤ 0

 .

Then, given a polynomial p ∈ Mn having prime factorization (1.33), the set of regular
subgradients of a at p has the form

∂̂a(p) = ∇Fp(0)
−∗ [conv {vj | j ∈ I(p)}+K] ,(2.27)

where v1, . . . , vm ∈ Sp are given by

v1 = − 1

n1
(0, e(n1−1,λ1), 0, . . . , 0),

v2 = − 1

n2
(0, 0, e(n2−1,λ2), 0, . . . , 0),

...

vm = − 1

nm
(0, 0, . . . , 0, e(nm−1,λm)),

and K is the convex cone in Sp given by

K = C × ∂̂a(e(n1,λ1))
∞̃ × · · · × ∂̂a(e(nm−1,λm))

∞̃.

Observe that this implies the recession cone of ∂̂a(p) is given by

∂̂a(p)∞ = ∇Fp(0)
−∗K.(2.28)

3. Subdifferential regularity. The set of normal vectors to epi (a) at a point
(p, µ) ∈ epi (a) is given by

Nepi (a)(p, µ) =

(z, ω)
∣∣∣∣∣∣∣∣
∃ {(pk, µk)} ⊂ epi (a), {(zk, ωk)} ⊂ Pn × R

with (zk, ωk) ∈ N̂epi (a)(pk, µk) ∀ k,
such that

(pk, µk)→ (p, µ) and (zk, ωk)→ (z, ω)

 .(3.1)
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By convention Nepi (a)(p, µ) = ∅ if (p, µ) �∈ epi (a). The abscissa mapping a is said to
be subdifferentially regular at a point (p, µ) ∈ epi (a) (equivalently, epi (a) is Clarke
regular at (p, µ)) if

N̂epi (a)(p, µ) = Nepi (a)(p, µ)(3.2)

[RW98, Definition 7.25]. The goal of this section is to show that the set epi (a) is
everywhere subdifferentially regular.

Some simplification in definition (3.1) is possible due to the continuity of a on its
domain Mn. Recall from (2.8) that

N̂epi (a)(p, µ) =
{
(βe(n,0), 0) |β ∈ C

}
whenever µ > a(p).

Since this subspace is constant on the set {(p, µ) |µ > a(p)}, we find that

Nepi (a)(p, µ) = N̂epi (a)(p, µ) whenever µ > a(p).

Therefore, to establish that a is everywhere subdifferentially regular we need only
establish the equivalence (3.2) at the points (p, a(p)) for p ∈ Mn. In addition, from

(2.7), we have
{
(βe(n,0), 0) |β ∈ C

} ⊂ N̂epi (a)(p, µ) for all (p, µ) ∈ epi (a). Hence, it
is always the case that

N̂epi (a)(p, η) ⊂ N̂epi (a)(p, µ) whenever a(p) ≤ µ < η.

Therefore, the representation for the normal cone at the points (p, a(p)) for p ∈ Mn

can be refined to

Nepi (a)(p, a(p)) =

(z, ω)
∣∣∣∣∣∣∣∣

∃ {pk} ⊂ Mn, {(zk, ωk)} ⊂ Pn × R

with (zk, ωk) ∈ N̂epi (a)(pk, a(pk)) ∀ k,
such that

pk → p and (zk, ωk)→ (z, ω)

 .(3.3)

However, even with this simplification, we are confronted with a significant tech-
nical hurdle. Recall from Theorem 2.1 that the regular normals are characterized
through the adjoint operator ∇Fp(0)

∗. Therefore, we now need to compute limits
of these operators along sequences pk → p. But these adjoints are defined as linear
transformations from Pn to Spk and are based on the inner products 〈· , ·〉pk . How can
we interpret limits of the adjoints ∇Fpk(0)

∗ when the spaces Spk and their associated
inner products 〈· , ·〉pk may not even be commensurate? The answer again lies with
the local factorization lemma, Lemma 1.4.

Suppose that the polynomial p ∈ Mn has prime factorization (1.33) and let
{pk} be a sequence of monic polynomials converging to p. Lemma 1.4 says that, by
trimming off finitely many elements of the sequence if necessary, we may assume with
no loss of generality that each of the polynomials pk has a factorization of the form

pk =

m∏
j=1

qkj ,(3.4)

where the roots of the polynomials qkj , j = 1, . . . ,m, are pairwise disjoint and
qkj → e(nj ,λj) for each j = 1, . . . ,m. Moreover, since there are only finitely many
partitions of n, we may assume with no loss in generality (by extracting a subsequence
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if necessary) that there exist positive integers <j , j = 1, . . . ,m, and njs, j = 1, . . . ,m,

s = 1, . . . , <j , with
∑�j
s=1 njs = nj , such that, for each k = 1, 2, . . .,

qkj =

�j∏
s=1

e(njs,λkjs),(3.5)

where the complex numbers λkjs, j = 1, . . . ,m, s = 1, . . . , <kj are distinct and satisfy
λkjs → λj for s = 1, . . . , <j . Hence, for each k = 1, 2, . . ., we have

Spk = C ×
 m×
j=1

(
Pnj1−1 × · · · × Pnj�j−1

) ,(3.6)

Fpk(v0, v11, . . . , v1�1 , . . . , vm1, . . . , vm�m) = (1 + v0)

m∏
j=1

�j∏
s=1

(e(njs,λkjs) + vjs),(3.7)

and

∇Fpk(0)(h0, h11, . . . , h1�1 , . . . , hm1, . . . , hm�m) = h0rk0 +

m∑
j=1

rkj

 �j∑
s=1

r̂kjshjs

 ,(3.8)

where

rk0 = pk and rkj0 =
∏
j �=j0

�j∏
s=1

e(njs,λkjs), j0 = 1, . . . ,m,

and

r̂kj0s0 =

�j0∏
s=1
s�=s0

e(nj0s,λkj0s),
j0 = 1, . . . ,m, s0 = 1, . . . , <j .

Let us write Ŝ = Spk , since Spk is fixed for all k = 1, 2, . . .. Note that as k → ∞, we
have rkj → rj , where rj is defined in (1.37), for j = 0, 1, . . . ,m, and r̂kjs → e(n̄js,λj),
where n̄js = nj − njs, for j = 1, . . . ,m, s = 1, . . . , <j . Hence, ∇Fpk(0) → Ψ, where

the linear transformation Ψ : Ŝ → Pn is given by

Ψ(h0, h11, . . . , h1�1 , . . . , hm1, . . . , hm�m) = h0r0 +

m∑
j=1

rj

 �j∑
s=1

e(n̄js,λj)hjs

 .(3.9)

Observe that the representation of ∇Fp(0) given in (1.36) and (1.37) enables us to
write the operator Ψ as the composition

Ψ = ∇Fp(0) ◦ Ξ,(3.10)

where the linear operator Ξ : Ŝ → Sp is given by
Ξ(h0, h11, . . . , h1�1 ,. . ., hm1, . . . , hm�m)

=

(
h0,

�1∑
s=1

e(n̄1s,λ1)h1s, . . . ,

�m∑
s=1

e(n̄ms,λm)hms

)
.(3.11)
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Theorem 2.1 gives us access to the regular normals through the adjoint operators
∇Fp(0)

∗. Thus, in order to understand the normal cone, which consists of the limits of
the regular normals, we need to come to an understanding of the limit of the adjoints
∇Fpk(0)

∗. This limit is an adjoint of the operator Ψ. However, what this means
needs clarification since each of the adjoints ∇Fpk(0)

∗ arises from a different duality
pairing. We need to determine the correct duality pairing for the definition of the
adjoint Ψ∗ so that it is the limit of the operators ∇Fpk(0)

∗.
The duality pairing that we seek is obtained from our earlier observation (2.3)

that the mapping (p, q, λ) �→ 〈p , q〉(n,λ) is continuous. This continuity implies that

the pointwise limit of the inner products 〈· , ·〉pk exists as k → ∞. Indeed, for each
u = (u0, u11, . . . , u1�1 , . . . , u1�m , . . . , um�m)

and

v = (v0, v11, . . . , v1�1 , . . . , v1�m , . . . , vm�m)

in Ŝ, we have
〈u , v〉pk → 〈u , v〉∞ ,

where

〈u , v〉∞ = 〈u0 , v0〉+
m∑
j=1

�j∑
s=1

〈ujs , vjs〉(njs−1,λj)
.(3.12)

Therefore, if we define Ψ∗ to be the adjoint of Ψ with respect to the duality pairings
(Pn, 〈· , ·〉) and (Ŝ, 〈· , ·〉∞), then

∇Fpk(0)
∗ → Ψ∗.(3.13)

Our next task is to derive a representation for the operator Ψ∗. Using the rep-
resentation for Ψ given in (3.10), this reduces to deriving a representation for the
adjoint of the operator Ξ. For this, the following lemma provides the key.

Lemma 3.1. Let λ0 ∈ C and let δ = (n1, n2, . . . , nm) be a partition of n. Define
Dδ to be the product space

Dδ = P(n1−1) × P(n2−1) × · · · × P(nm−1),

endowed with the inner product

〈(u1, . . . , um) , (v1, . . . , vm)〉(δ,λ0)
=

m∑
j=1

〈uj , vj〉(nj−1,λ0)
.

For j = 1, 2, . . . ,m, define n̄j = n−nj and consider the linear transformation Φ(δ,λ0) :
Dδ → Pn−1 given by

Φ(δ,λ0)(h1, . . . , hm) =

m∑
j=1

e(n̄j ,λ0)hj .

Then the adjoint of Φ(δ,λ0) with respect to the duality pairings

(Pn−1, 〈· , ·〉(n−1,λ0)
) and (Dδ, 〈· , ·〉(δ,λ0)

)
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is given by

Φ∗
(δ,λ0)

 n∑
j=1

bje(n−j,λ0)

 =

 n1∑
j=1

bje(n1−j,λ0), . . . ,

nm∑
j=1

bje(nm−j,λ0)

 .

Proof. Define Js = {j |nj ≥ s} for s = 1, 2, . . . , n. Note that Js may be empty
for some values of s. For example, if m ≥ 2, then Jn = ∅. Let (h1, . . . , hm) ∈ Dδ,
where each hj ∈ Pnj−1 has representation

hj = aj1e(nj−1,λ0) + aj2e(nj−2,λ0) + · · ·+ ajnj .

Given q ∈ Pn−1 with

q = b1e(n−1,λ0) + · · ·+ bn,

we have〈
q ,Φ(δ,λ0)(h1, . . . , hm)

〉
(n−1,λ0)

=

〈(
b1e(n−1,λ0) + · · ·+ bn

)
,

e(n−1,λ0)

∑
j∈J1

aj1


+ e(n−2,λ0)

∑
j∈J2

aj2

+ · · ·+
∑
j∈Jn

ajn

〉
(n−1,λ0)

= Re

b̄1
∑
j∈J1

aj1

+ · · ·+ b̄n

∑
j∈Jn

ajn


= Re

[
n1∑
s=1

b̄sa1s +

n2∑
s=1

b̄sa2s + · · · +
nm∑
s=1

b̄sams

]

=

〈(
n1∑
s=1

bse(n1−s,λ0), . . . ,

nm∑
s=1

bse(nm−s,λ0)

)
,(

n1∑
s=1

a1se(n1−s,λ0), . . . ,

nm∑
s=1

amse(nm−s,λ0)

)〉
(δ,λ0)

=

〈(
n1∑
s=1

bse(n1−s,λ0), . . . ,

nm∑
s=1

bse(nm−s,λ0)

)
, (h1, . . . , hm)

〉
(δ,λ0)

.

Since this relation holds for all possible choices of q ∈ Pn−1 and (h1, . . . , hm) ∈ Dδ,
we have established the result.

By using the notation developed in Lemma 3.1, we can rewrite the operator
Ξ : Ŝ → Sp, defined in (3.11), as

Ξ =
(
I,Φ(δ1,λ1), . . . ,Φ(δm,λm)

)
,(3.14)

where δj = (nj1, nj2, . . . , nj�j ) is a partition of nj for each j = 1, 2, . . . ,m. Hence,
from (3.10), we have

Ψ∗ = Ξ∗ ◦ ∇Fp(0)
∗,(3.15)
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where Ξ∗ : Sp → Ŝ can be written as

Ξ∗ =
(
I,Φ∗

(δ1,λ1)
, . . . ,Φ∗

(δm,λm)

)
.(3.16)

An explicit representation for the operator Ξ∗ can be obtained by applying Lemma
3.1 to each of the operators Φ(δj ,λj) for j = 1, 2, . . . ,m.

We now prove the main result of this section.
Theorem 3.2. The abscissa mapping a is everywhere subdifferentially regular.

Equivalently, epi (a) is Clarke regular.
Proof. Let p ∈ Pn have factorization (1.33). Let (z, ω) ∈ Nepi (a)(p, a(p)) so

that there exist sequences {pk} ⊂ Mn and {(zk, ωk)} ⊂ Pn × R such that pk → p,

(zk, ωk)→ (z, ω), and (zk, ωk) ∈ N̂epi (a)(pk, a(pk)) for k = 1, 2, . . .. We need to show

that (z, ω) ∈ N̂epi (a)(p, a(p)).
The discussion preceding this theorem shows that we may assume with no loss of

generality that (3.4)–(3.16) hold for the sequence {pk}. Hence, we make free use of
these facts and their associated notations.

Let Ĩ(pk) = {(j, s) | a(pk) = Reλkjs }. Since (zk, ωk) ∈ N̂epi (a)(pk, a(pk)) for
k = 1, 2, . . ., Theorem 2.1 states that ωk ≤ 0 and there exists

uk = (uk0, uk11, . . . , uk1�1 , . . . , ukm1, . . . , ukm�m) ∈ Ŝ
with

ukjs =

njs∑
t=1

µkjste(njs−t,λkjs),
k = 1, 2, . . . ,
j = 1, 2, . . . ,m,
s = 1, 2, . . . , <j ,

such that

uk = ∇Fpk(0)
∗zk,(3.17)

ukjs = 0 for (j, s) �∈ Ĩ(pk),(3.18)

Reµkjs1 ≤ 0 and Imµkjs1 = 0 for (j, s) ∈ Ĩ(pk),(3.19)

Reµkjs2 ≤ 0 for (j, s) ∈ Ĩ(pk), and(3.20) ∑
(j,s)∈Ĩ(pk)

njsµkjs1 = ωk.(3.21)

Due to the finiteness of the index sets, we may assume with no loss of generality
that Ĩ(pk) = Ĩ for all k = 1, 2, . . .. Define

Î =
{
j
∣∣∣ (j, s) ∈ Ĩ for some s = 1, . . . , <j

}
.

By the continuity of the roots of the monic polynomials (as a multivalued mapping),
we have Î ⊂ I(p), where I(p) is defined in (1.38).

Using (3.13), let

u = Ψ∗z = lim
k→∞

∇Fpk(0)
∗zk = lim

k→∞
uk(3.22)

and write

u = (u0, u11, . . . , u1�1 , . . . , um1, . . . , um�m) ∈ Ŝ
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where

ujs =

njs∑
t=1

µjste(njs−t,λj),(3.23)

with µkjst → µjst for j = 1, . . . ,m, s = 1, . . . , <j , t = 1, . . . , njs. By (3.22) and
(3.17)–(3.21), we have

ujs = 0 for (j, s) �∈ Ĩ,(3.24)

Reµjs1 ≤ 0 and Imµjs1 = 0 for (j, s) ∈ Ĩ,(3.25)

Reµjs2 ≤ 0 for (j, s) ∈ Ĩ, and(3.26) ∑
(j,s)∈Ĩ

njsµjs1 = ω.(3.27)

Set

(w0, w1, . . . , wm) = ∇Fp(0)
∗z,(3.28)

with

wj =

nj∑
s=1

bjse(nj−s,λj) for j = 1, . . . ,m.(3.29)

By (3.15), (3.16), (3.22), and (3.28), we have

(uj1, uj2, . . . , uj�j ) = Φ
∗
(δj ,λj)

wj for j = 1, . . . ,m.

Consequently, by Lemma 3.1 and (3.23),

ujs =

njs∑
t=1

µjste(njs−t,λj) =
njs∑
t=1

bjte(njs−t,λj)

for j = 1, . . . ,m, s = 1, . . . , <j , or equivalently,

µjst = bjt for j = 1, . . . ,m, s = 1, . . . , <j , t = 1, . . . , njs.(3.30)

Combining this with (3.24) and the definitions (3.23) and (3.29), we find

wj = 0 for j /∈ Î,(3.31)

and combining (3.30) with (3.25) and (3.26) yields

Re bj1 ≤ 0 and Im bj1 = 0 for j ∈ Î and(3.32)

Re bj2 ≤ 0 for j ∈ Î.(3.33)

Finally, by combining (3.30) with (3.27), we find∑
(j,s)∈Ĩ

njsbj1 = ω.(3.34)
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Note that the equivalence (3.30) implies that for every j ∈ Î for which bj1 �= 0 it

must be the case that µjs1 �= 0 for s = 1, 2, . . . <j and so {(j1), (j2), . . . , (j<j)} ⊂ Ĩ.
Therefore, by (3.27) and (3.34),

ω =
∑

(j,s)∈Ĩ
njsbj1 =

∑
j∈Î

�j∑
s=1

bj1njs =
∑
j∈Î

bj1nj .

Consequently, by (3.28), (3.29), (3.31), (3.32), (3.33), the inclusion Î ⊂ I(p), and
Theorem 2.1, we find that (z, ω) ∈ N̂epi (a)(p, a(p)), which establishes the result.

Just as the set of normal vectors is defined to be the set of limits of regular
normal vectors, the set of subgradients is defined to be the set of limits of regular
subgradients:

∂a(p) =

q

∣∣∣∣∣∣
∃ {pk} ⊂ dom (a) and {qk} ⊂ Pn,
such that qk ∈ ∂̂a(pk)∀ k = 1, 2, . . . ,

pk → p and qk → q

 ,(3.35)

with ∂a(p) = ∅ if p /∈ dom a =Mn. The set of horizon subgradients, denoted ∂∞α(p),
is defined similarly, however, instead of qk → q one has tkqk → q for some sequence of
positive real numbers {tk} converging to zero. By convention, we have ∂∞a(p) = {0}
if p /∈ dom a. As in the case of regular subgradients, there is a relationship between
these subgradients and the normal cone at a polynomial p ∈ Mn [RW98, Theorem
8.9]:

∂a(p) =
{
q
∣∣ (q,−1) ∈ Nepi (a)(p, a(p))

}
and

∂∞a(p) =
{
q
∣∣ (q, 0) ∈ Nepi (a)(p, a(p))

}
.

Using these relationships, Theorem 3.2 and [RW98, Corollary 8.11] imply that

∂a(p) = ∂̂a(p) and ∂∞a(p) = ∂̂a(p)∞(3.36)

whenever p ∈ Mn (see (2.27) and (2.28)).
The subdifferential regularity of the abscissa mapping implies that it possesses a

rich subdifferential calculus. For example, the following chain rule holds.
Theorem 3.3 (see [RW98, Theorem 10.6]). Let X be a finite dimensional Eu-

clidean space, and suppose G : X → Pn is continuously differentiable in the real
sense. Consider the composite mapping g = a ◦G. If x ∈ X is such that G(x) ∈ Mn

and the only polynomial q ∈ ∂∞a(G(x)) with ∇G(x)∗q = 0 is q = 0, then

∂g(x) = ∇G(x)∗∂a(G(x)), ∂∞g(x) = ∇G(x)∗∂∞a(G(x)),

and

dg(x)(d) = da(G(x))(∇G(x)d).

To illustrate these results, we apply Theorem 3.3 to the example studied in [BLO].
Let X be C

n with the standard real inner product, and consider the composition of
the abscissa function with the affine mapping G : Cn → Pn given by

G(x) = (1 + x0)e(n,0) + x1e(n−1,0) −
n∑
j=2

xj−1e(n−j,0).
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In [BLO, Theorem 2.1], it is shown that x = 0 is a strict global minimizer of the
function g = a ◦G. Since G is affine, we have

∇G(0)d = d0e(n,0) + d1e(n−1,0) −
n∑
j=2

dj−1e(n−j,0),

and

∇G(0)∗
n∑
j=0

yje(n−j,0) = (y0, y1 − y2,−y3, . . . ,−yn).

The representation for ∂∞a(e(n,0)) given by (3.36) and (2.26) shows that the only
q ∈ ∂∞a(e(n,0)) with ∇G(0)∗q = 0 is q = 0. Therefore, Theorem 3.3 and the relations
(3.36) and (2.25) show that

∂̂g(0) = ∂g(0) =

{(
z0, z1 − 1

n
, z2, . . . , zn−1

)
| Re z1 ≥ 0

}
.

Finally, observe that since the origin is in the interior of ∂̂g(0), we have, directly from
the definition of regular subgradients, that x = 0 is a sharp minimizer of g in the
sense that there exist ε > 0 and κ > 0 such that

g(x) ≥ g(0) + κ ‖x‖ whenever ‖x‖ ≤ ε.

Further consequences of these results are explored in [BLO].

Acknowledgment. We gratefully acknowledge a referee for a careful reading of
the paper and for several useful suggestions.
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Abstract. We study the boundary controllability properties of the linearized Benjamin–Bona–
Mahony equation {

ut − uxxt + ux = 0, x ∈ (0, 1), t > 0,
u(t, 0) = 0, u(1, t) = f(t), t > 0.

We show that the equation is approximately controllable but not spectrally controllable (no
finite linear combination of eigenfunctions, other than zero, is controllable). Next, we prove a finite
controllability result and we estimate the norms of the controls needed in this case.

Key words. boundary control, moments, biorthogonals
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1. Introduction. The Benjamin–Bona–Mahony (BBM) equation

ut + ux + uux − uxxt = 0,(1.1)

like the Korteweg-de Vries (KdV) equation

ut + ux + uux + uxxx = 0,(1.2)

was originally derived as approximation for surface water waves in a uniform channel
(see, for instance, [3], [4], and [5]).

Both (1.1) and (1.2) also cover cases of the following type: surface waves of long
wavelength in liquids, acoustic-gravity waves in compressible fluids, hydromagnetic
waves in cold plasma, acoustic waves in anharmonic crystals, etc. The wide applica-
bility of these equations is the main reason why, during the last decades, they have
attracted so much attention from mathematicians.

The main mathematical difference between KdV and BBM models can be most
readily appreciated by comparing the dispersion relation for the respective linearized
equations. It can be easily seen that these relations are comparable only for small
wave numbers (i.e., long waves) and they generate drastically different responses to
short waves (which are irrelevant to its role as a physical model). This is one of the
reasons why, whereas existence and regularity theory for the KdV equation is difficult,
the theory of the BBM equation is comparatively simple. The computing is also much
easier for (1.1) than for (1.2).

The existence, uniqueness, and regularity of the BBM equation have been studied,
for instance, in [7] and [18]. The large time behavior of the solutions of (1.1) was also
intensively analyzed in the last decade (see, for instance, [1], [2], and [3]).
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Although it is generally considered that the BBM equation is easier to deal with
than the KdV equation, it seems that, from the controllability point of view, (1.2)
offers greater possibilities than (1.1). While important progress has been made in
the last years for the KdV (see, for instance, [20], [24], and [21]), very little is known
about the BBM. Some interior unique continuation properties for (1.1) and related
problems (the linear case included) were studied in [9]. It is well known that, for
the linear equation, by using the Hilbert uniqueness method due to J.-L. Lions (see
[15]), the unique continuation property implies approximate controllability. Therefore,
from [9], some approximate interior controllability results can be obtained for the
linearized BBM equation. Nevertheless, the approximate controllability results for the
nonlinear case do not seen to be entirely reducible to a unique continuation property
and some estimates are needed on the dependence of the control function with respect
to the perturbation introduced by the nonlinear term. In [23], (1.1) posed in R+ with
boundary control is studied. It is proved that approximate controllability holds for
the corresponding linear equation.

As far as we know there are no results for the controllability of the nonlinear
BBM equation.

The present paper is concerned with the boundary controllability properties of
the linearized BBM equation in finite domain. More precisely, given T > 0 and
u0 ∈ H−1(0, 1) can we find a control function f ∈ L2(0, T ) such that the solution u
of 

ut − uxxt + ux = 0, t > 0, x ∈ (0, 1),
u(t, 0) = 0, u(t, 1) = f(t), t > 0,
u(0, x) = u0(x), x ∈ (0, 1),

(1.3)

satisfies

u(T, x) = 0, x ∈ (0, 1)?(1.4)

We shall first show that (1.3) is not spectrally controllable. This means that no
finite linear nontrivial combination of eigenvectors can be driven to zero in finite time
by using a control f ∈ L2(0, T ).

Nevertheless, (1.3) is approximately controllable, i.e., the set of reachable states

R(T, u0) = {u(T, x) | f ∈ L2(0, T )}

is dense in L2(0, 1) for any u0 ∈ H−1(0, 1) and T > 0. Hence, given T > 0, u0 ∈
H−1(0, 1), v0 ∈ H−1(0, 1), and ε > 0, there exists a control function f ∈ L2(0, T )
such that the solution u of (1.3) satisfies ||u(T )− v0||L2(0,1) < ε.

These two results can be found at the beginning of the last section (Theorems 4.2
and 4.3).

We refer to [19] for similar negative results in the context of the exact controlla-
bility of the linear heat equation in a half-line.

Another interesting problem, with practical relevance, is the following finite con-
trollability property: given T > 0, N > 0, and u0 ∈ H−1(0, 1), is there a control
fN ∈ L2(0, T ) such that the projection of the solution of (1.3) over the finite dimen-
sional space generated by the first 2N eigenvectors is equal to zero at t = T?

We give a positive answer to this question in Theorem 4.6. Moreover, by using
some estimates for the corresponding biorthogonal sequences, we analyze how the
norms of the controls change with N . We find an upper bound for the norms of the
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controls and we prove that this is, in some sense, sharp. More precisely, we prove that
for any initial data u0 ∈ H−1(0, 1) there exists a control fN such that

‖ fN ‖L2(0,T )≤ c1e
γ1N ln(N) ‖ u0 ‖H−1(0,1),(1.5)

where c1 and γ1 do not depend on N . Moreover, there are initial data u0 ∈ H1
0 (0, 1)

for which any corresponding control fN satisfies

c2e
γ2N ln(N) ‖ u0 ‖H1

0 (0,1)≤‖ fN ‖L2(0,T ),(1.6)

where c2 and γ2 do not depend on N .
We remark that the norms of the controls fN may increase very rapidly as N

goes to infinity. Hence, the cost needed to drive to zero the first 2N eigenmodes can
be very high when N is large.

The controllability of the KdV equation has been studied in [20], [21], and [24]. It
has been proved that exact controllability holds for the linearized equation with dif-
ferent boundary conditions and number of controls. Hence, a Sobolev space of initial
data can be controlled from the boundary. This implies that the linearized KdV equa-
tion is not only spectrally controllable but also N-partially controllable with uniformly
bounded controls. Therefore the boundary controllability properties of the linearized
KdV are much “nicer” than the corresponding ones for the linearized BBM (which is
not spectrally controllable and not uniformly N-partially controllable). We also re-
mark that, based on the linear case, local or global controllability results (depending
on the number of controls) can be obtained for the nonlinear KdV equation.

The paper is organized in the following way. In the second section we study the
differential operator A corresponding to (1.3). We prove that A has a sequence of
purely imaginary eigenvalues (iλn)n∈Z∗ such that lim|n|→∞ λn = 0.

In the third section we analyze the biorthogonal sequences to the exponentials
family {eiλnt}n∈Z∗ or to a subset of it. First, we prove that there is no full biorthogonal
sequence. Next we concentrate our attention on the finite families {eiλnt}|n|≤N

n�=0

. In

this case various biorthogonal sequences can be constructed. We give an example and
we analyze the behavior of the norms of the biorthogonals as N goes to infinity. The
techniques used in this section combine classical elements from the theory of analytic
functions with constructions specific to our problem.

Finally, in the last section, we use the previous results to solve the controllability
problems mentioned above.

2. Linearized BBM equation: Elementary properties. Let us consider the
following equation 

ut − uxxt + ux = 0, x ∈ (0, 1), t > 0,
u(t, 0) = u(t, 1) = 0, t > 0,
u(0, x) = u0(x), x ∈ (0, 1),

(2.1)

representing the linearized BBM equation.
In order to put (2.1) in an abstract Cauchy form, we apply the operator (I−∂2

x)
−1.

The following equivalent equation is obtained:{
ut +Au = 0, x ∈ (0, 1), t > 0,
u(0) = u0, x ∈ (0, 1),(2.2)

where A : H1
0 (0, 1)→ H1

0 (0, 1) is given by

Au = (I − ∂2
x)

−1∂xu.(2.3)
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Here ∂2
x denote the Laplace operator

∂2
x : H

2(0, 1) ∩H1
0 (0, 1)→ L2(0, 1), ∂2

xu = uxx.

The main properties of the operator A are given in the following proposition.
Proposition 2.1. A is a compact, skew-adjoint operator in H1

0 (0, 1).
Proof. Due to the regularizing effect of the operator (I − ∂2

x)
−1 it follows imme-

diately that A takes values in H2(0, 1) ∩ H1
0 (0, 1) which is compactly embedded in

H1
0 (0, 1). Hence A is compact.
Let us consider in H1

0 (0, 1) the inner product given by

(u, v) =

∫ 1

0

∂xu∂xv +

∫ 1

0

uv.(2.4)

For any u, v ∈ H2(0, 1) ∩H1
0 (0, 1), we obtain

(Au, v) =
((I − ∂2

x

)−1
∂xu, v

)
=

∫ 1

0

∂x

[(I − ∂2
x

)−1
∂xu
]
∂xv+

∫ 1

0

[(I − ∂2
x

)−1
∂xu
]
v

=

∫ 1

0

(I − ∂2
x

)−1 (
∂2
xu
)
∂xv −

∫ 1

0

[(I − ∂2
x

)−1
u
]
∂xv = −

∫ 1

0

u(∂xv)

=

∫ 1

0

(∂xu)v = −
∫ 1

0

∂xu
(I − ∂2

x

)−1 (
∂2
xv
)
+

∫ 1

0

∂xu
[(I − ∂2

x

)−1
v
]

= −
∫ 1

0

∂xu∂x

[(I − ∂2
x

)−1
∂xv
]
−
∫ 1

0

u
[(I − ∂2

x

)−1
∂xv
]
= −

(
u,
(I − ∂2

x

)−1
∂xv
)

= −(u,Av).

By density we obtain that (Au, v) = −(u,Av) ∀u, v ∈ H1
0 (0, 1) and therefore A

is skew-adjoint in H1
0 (0, 1).

Since A is compact, (2.2) can be treated like an ordinary differential equation in
the Hilbert space H1

0 (0, 1). By using Cauchy–Lipschitz–Picard theorem the following
properties concerning the solutions of (2.2) are immediate.

Proposition 2.2. Equation (2.2) has a unique solution u ∈ C1
(
[0,∞); H1

0 (0, 1)
)

which satisfies∫ 1

0

| ∂xu(x, t) |2 +
∫ 1

0

| u(x, t) |2=
∫ 1

0

| ∂xu0 |2 +
∫ 1

0

| u0 |2 .(2.5)

Proof. Since A is a bounded linear operator the existence and uniqueness of
solutions follow from Cauchy–Lipschitz–Picard theorem (see [8, p. 104]).

On the other hand, since A is skew-adjoint, we have

1

2

d

dt
‖ u ‖2H1

0
= Re(u, ut) = Re(u,−Au) = 0.

Hence, the H1
0 norm of the solution is conserved.
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Remark 2.1. In fact much more can be said about the regularity of solutions
of (2.2). Since (2.2) is linear and A is a bounded operator we can easily deduce that
u ∈ Cω

(
[0,∞); H1

0 (0, 1)
)
, where Cω

(
[0,∞); H1

0 (0, 1)
)
represents the class of analytic

functions defined in [0,∞) with values in H1
0 (0, 1). Indeed, for t0 ∈ [0,∞),∣∣∣∣∣

∣∣∣∣∣
∞∑
n=0

u(n)(t0)
(t− t0)

n

n!

∣∣∣∣∣
∣∣∣∣∣
H1

0

≤
∞∑
n=0

|t− t0|n
n!

∣∣∣∣∣∣u(n)(t0)
∣∣∣∣∣∣
H1

0

≤
∞∑
n=0

|t− t0|n
n!

||A||n ||u(t0)||H1
0
<∞.

Hence the series
∑∞
n=0 u

(n)(t0)
(t−t0)n
n! is (absolutely) convergent and

u(t) = exp (−A(t− t0))u(t0) =

∞∑
n=0

(−1)n (t− t0)
n

n!
Anu(t0) =

∞∑
n=0

(t− t0)
n

n!
u(n)(t0).

Our next objective is to express the solution u of (2.2) in Fourier series. To do so
we need the spectral decomposition of the operator A.

Proposition 2.3. A has a sequence of purely imaginary eigenvalues (µn)n∈Z∗ ,

µn = sgn(n)
i

2
√
1 + n2π2

, n ∈ Z
∗.(2.6)

Moreover, to each eigenvalue µn corresponds an unique eigenfunction Un,

Un(x) =
1√

n2π2 + 1
e−i sgn(n)

√
n2π2+1x sin(nπx), n ∈ Z

∗,(2.7)

such that ‖ Un ‖H1
0
= 1. The family (Un)n∈Z∗ forms an orthonormal basis in H1

0 (0, 1).

Proof. We are looking for µ ∈ C and τ ∈ H1
0 (0, 1) such that Aτ = µτ , which is

equivalent to {
µτ − µτxx − τx = 0,
τ(0) = τ(1) = 0.

(2.8)

Hence, τ(x) = c1e
x

−1−
√

1+4µ2

2µ + c2e
x

−1+
√

1+4µ2

2µ .
From the boundary conditions we obtain, from one hand, that c1 = −c2 and from

the other hand, that the eigenvalues of the operator are given by the equation

e

√
1+4µ2

µ = 1.(2.9)

It results that the eigenvalues of the operator A are

µn = sgn(n)
i

2
√
1 + n2π2

, n ∈ Z
∗.

To each µn corresponds an eigenfunction

Un(x) =
1√

n2π2 + 1
e−i sgn(n)

√
1+n2π2x sin(nπx)



1682 SORIN MICU

with ||Un||H1
0
= 1.

Remark 2.2. Let us remark that, for each n ∈ Z
∗,

(Un)x(1) =
(−1)nnπ√
n2π2 + 1

e−i sgn(n)
√

1+n2π2 �= 0

and |(Un)x(1)| ∼ 1 as |n| → ∞.

Remark 2.3. We have obtained that lim|n|→∞ λn = 0. This is due to the
compactness of the operator A and will have some very important consequences for
the controllability properties of the BBM equation.

If we consider an initial data, u0 ∈ H1
0 (0, 1), u0 =

∑
n∈Z∗ anUn, the solution of

(2.2) corresponding to this initial data can be written as

u =
∑
n∈Z∗

anUne
iλnt,

where λn =
sgn(n)

2
√

1+n2π2
and µn = iλn are the eigenvalues of the operator A found in

Proposition 2.3.

3. Biorthogonal sequences. Let λni, n ∈ Z
∗, be the eigenvalues of the opera-

torA. In this section we study the sequences biorthogonal to the family of exponentials
{eiλnt}n∈Z∗ or to some subset of it. All the results of this section will be used to study
the boundary controllability properties of the BBM equation in the last section.

Let us first recall the following definition.

Definition 3.1. Let (fn)n≥1 be a sequence of vectors from a Hilbert space H.
The sequence (gn)n≥1 ⊂ H is biorthogonal to (fn)n≥1 if and only if (fn, gm) = δnm
∀n,m ≥ 1.

We begin with the following negative result.

Theorem 3.2. Let T > 0 and m ∈ Z
∗. There is no function Θm ∈ L2(−T, T )

such that ∫ T

−T
Θm(t)e

iλntdt =

{
0 if n ∈ Z

∗, n �= m,
1 if n = m.

(3.1)

Proof. Let us suppose that there exists a function Θm ∈ L2(−T, T ) such that
(3.1) is satisfied.

We define F : C→ C by

F (z) =

∫ T

−T
Θm(t)e

iztdt.(3.2)

From the Paley–Wiener theorem, F is an entire function. Moreover, from (3.2)
and (3.1) we obtain that

F (λn) = δnm ∀n ∈ Z
∗.(3.3)

Since limn→∞ λn = 0, it follows that F is zero on a set with a finite accumulation
point. Therefore F = 0 which contradicts the fact that F (λm) = 1.

Hence, there is no function Θm ∈ L2(−T, T ) such that (3.1) is satisfied and the
proof ends.
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Remark 3.1. From Theorem 3.2 the following result of nonobservability can be
obtained: there is no sequence (ρn)n∈Z∗ of positive constants such that the following
inequality

∑
n∈Z∗

ρn | an |2≤
∫ T

−T

∣∣∣∣∣∑
n∈Z∗

ane
iλnt

∣∣∣∣∣
2

dt(3.4)

is true for any sequence (an)n∈Z∗ with a finite number of nonzero terms.
This is a direct consequence of Theorem 3.2 and the following result in moments

theory (see [22, p. 151]).
Theorem A. Let H be a Hilbert space, (fn)n a vector family from H, and (cn)n

a sequence of scalars. In order for a vector f ∈ H to exist such that ‖ f ‖≤ M and
(f, fn) = cn ∀n, it is necessary and sufficient that∣∣∣∣∣∑

n

anc̄n

∣∣∣∣∣ ≤M

∥∥∥∥∥∑
n

anfn

∥∥∥∥∥
2

(3.5)

for any finite number of scalars a1, a2, . . ..
Let us suppose now that (3.4) is true. Then, for each m ∈ Z

∗,

|am|2 ≤ 1

ρm

∫ T

−T

∣∣∣∣∣∑
n∈Z∗

ane
iλnt

∣∣∣∣∣
2

dt

for any sequence (an)n∈Z∗ with a finite number of nonzero terms.
From Theorem A it follows that there exists Θm ∈ L2(−T, T ) such that∫ T

−T Θm(t)e
iλntdt = δmn which contradicts Theorem 3.2.

Remark 3.2. Theorem 3.2 proves that there is no sequence biorthogonal to
{eiλnt}n∈Z∗ in L2(−T, T ). This is related to the fact that lim|n|→∞ λn = 0 which

affects the linear independency of the exponential family {eiλnt}n∈Z∗ in L2(−T, T ).
We shall use this result in the last section to prove that no eigenfunction of equa-

tion (1.3) can be driven to zero by using a control function in L2(0, T ) (see Theorem
4.2).

Let N ∈ N
∗. We shall pass now to prove the existence of a biorthogonal to the

finite family of exponentials {eiλnt}|n|≤N
n�=0

.

Theorem 3.3. Let T > 0 and N ∈ N
∗. There exists a biorthogonal sequence

{Ψm}|n|≤N
n�=0

to the family of exponentials {eiλnt}|n|≤N
n�=0

in L2(−T, T ) .

Proof. Let us first prove that there is a constant C1(N) > 0 such that, for any
scalars (an)|n|≤N

n�=0

,

C1(N)
∑

|n|≤N
n�=0

| an |2≤
∫ T

−T

∣∣∣∣∣∣∣
∑

|n|≤N
n�=0

ane
iλnt

∣∣∣∣∣∣∣
2

dt.(3.6)

We consider the space generated by {eiλnt}|n|≤N
n�=0

,

X = Span
L2(−T,T )

{
eiλnt

}
|n|≤N
n�=0

.
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X is a finite-dimensional space of dimension 2N . Moreover, the application∑
|n|≤N
n�=0

ane
iλnt ∈ X −→

√√√√∑
|n|≤N
n�=0

| an |2

is a norm in X. Since X is finite dimensional this new norm and the one induced from
L2(T, T ) are equivalent. It follows that there is a constant C1(N) such that (3.6) is
satisfied for any scalars (an).

Now, for each m, | m |≤ N , m �= 0, we can apply Theorem A from Remark 3.1
by taking cn = δnm, fn = eiλnt, and H = L2(−T, T ). It follows that there exists a

function Ψm ∈ L2(−T, T ) such that
∫ T
−T Ψm(t)e

iλntdt = δnm ∀n, | n |≤ N , n �= 0.
Hence we get a biorthogonal sequence {Ψm}|m|≤N

m�=0

⊂ L2(−T, T ) to the family of

exponentials {eiλnt}|n|≤N
n�=0

and the proof finishes.

Remark 3.3. The following inequality is also true:

∫ T

−T

∣∣∣∣∣∣∣
∑

|n|≤N
n�=0

ane
iλnt

∣∣∣∣∣∣∣
2

dt ≤ 4NT
∑

|n|≤N
n�=0

| an |2 .(3.7)

Indeed, from the Cauchy inequality

∫ T

−T

∣∣∣∣∣∣∣
∑

|n|≤N
n�=0

ane
iλnt

∣∣∣∣∣∣∣
2

dt ≤
∫ T

−T

∑
|n|≤N
n�=0

| an |2

∑

|n|≤N
n�=0

| eiλnt |2
 dt = 4NT

∑
|n|≤N
n�=0

| an |2

and (3.7) is proved.
Remark 3.4. The proof of Theorem 3.3 shows that there exists at least a biorthog-

onal sequence to any finite family of exponentials.
Remark 3.5. From Theorem A (Remark 3.1) we also obtain that the norm of

the biorthogonal sequence {Ψm}|m|≤N
m�=0

is bounded by C1(N). Since Theorem 3.2 proves

that there is no biorthogonal sequence to {eiλnt}n∈Z∗ we deduce again from Theorem
A that C1(N) degenerates when N goes to infinity. We shall analyze how this constant
changes when N increases.

Theorem 3.4. Let T > 0 and N ∈ N
∗. There exists a biorthogonal sequence

{Θ}|n|≤N
n�=0

to the family of exponentials {eiλnt}|n|≤N
n�=0

in L2(−T, T ) such that

‖ Θm ‖2L2(−T,T )≤ C1e
αN ln(N),(3.8)

where C1 and α are two constants which do not depend on N .
Proof. Let us first define, for each m such that | m |≤ N and m �= 0,

ξm(z) =

 ∏
|n|≤N
n�=0,m

z − λn
λm − λn

( sin T (z−λm)
2N

T (z−λm)
2N

)2N

.(3.9)

Each function ξm has the following properties:
• ξm is an entire function,
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• ξm(λn) = δnm,
• ξm(x) ∈ L2(−∞,∞),
• ξm is of the exponential type at most T , i.e., there exists a constant A > 0
such that ∀ε > 0, we have

|ξm(z)| ≤ Ae(T+ε)|z| ∀z ∈ C.

Let us now define

Θm(t) =
1√
2π

∫ ∞

−∞
ξm(x)e

−ixtdx,(3.10)

and we shall show that {Θm}|n|≤N
n�=0

is the biorthogonal sequence we are looking for.

From the properties of ξm, by using Paley–Wiener theorem, it follows that Θm
has compact support in [−T, T ], it belongs to L2(−T, T ), and∫ T

−T
Θm(t)e

iλntdt = ξm(λn) = δnm.

It follows that (Θm)|m|≤N
m�=0

is a biorthogonal sequence to {eiλnt}|n|≤N
n�=0

.

Our next objective is to estimate the norm of Θm and to see that it satisfies (3.8).
From Plancherel’s theorem we have that

‖ Θm ‖L2(−T,T )=‖ ξm ‖L2(−∞,∞).(3.11)

Let us now estimate ‖ ξm ‖L2(−∞,∞).

‖ ξm ‖2L2(−∞,∞)=

∫ ∞

−∞

∣∣∣∣∣∣∣
 ∏

|n|≤N
n�=0,m

x− λn
λm − λn

( sin T (x−λm)
2N

T (x−λm)
2N

)2N
∣∣∣∣∣∣∣
2

=

 ∏
|n|≤N
n�=0,m

1

| λn − λm |2

∫ ∞

−∞

∣∣∣∣∣∣∣
 ∏

|n|≤N
n�=0,m

(x− λn)

( sin T (x−λm)
2N

T (x−λm)
2N

)2N
∣∣∣∣∣∣∣
2

dx.

Let us first evaluate the constant

γ1(N) =
∏

|n|≤N
n�=0,m

1

| λm − λn |2 .

We have

1

|λm − λn| =
1∣∣∣ sgn(n)√

1+n2π2
− sgn(m)√

1+m2π2

∣∣∣ = 2
√
1 + n2π2

√
1 +m2π2∣∣sgn(n)√1 +m2π2 − sgn(m)√1 + n2π2

∣∣
≤ 2

√
1 + n2π2

√
1 +m2π2∣∣√1 +m2π2 −√1 + n2π2

∣∣ = 2
√
1 + n2π2

√
1 +m2π2

(√
1 +m2π2 +

√
1 + n2π2

)
|m2 − n2|π2

≤
2
√
(1 + n2π2)(1 +m2π2)

(
π2

2 m+ π2

2 n
)

|m2 − n2|π2
≤
√
(1 + n2π2)(1 +m2π2) ≤ (2πN)2.
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It follows that

γ1(N) =
∏

|n|≤N
n�=0,m

1

| λm − λn |2 ≤ (2πN)
8N−4.(3.12)

Let us now evaluate the integral

γ2(N) =

∫ ∞

−∞

∣∣∣∣∣∣∣
 ∏

|n|≤N
n�=0,m

(x− λn)

( sin T (x−λm)
2N

T (x−λm)
2N

)2N
∣∣∣∣∣∣∣
2

dx.

We have

γ2(N) =

∫
|x|≤ 1

2

∣∣∣∣∣∣∣
∏

|n|≤N
n�=0,m

(x− λn)

∣∣∣∣∣∣∣
2 ∣∣∣∣∣ sin

T (x−λm)
2N

T (x−λm)
N

∣∣∣∣∣
4N

dx

+

∫
|x|≥ 1

2

∣∣∣∣∣∣∣
∏

|n|≤N
n�=0,m

(x− λn)

∣∣∣∣∣∣∣
2 ∣∣∣∣∣ sin

T (x−λm)
2N

T (x−λm)
2N

∣∣∣∣∣
4N

dx

≤
∫
|x|≤ 1

2

∣∣∣∣∣∣∣
∏

|n|≤N
n�=0,m

(x− λn)

∣∣∣∣∣∣∣
2

dx+

∫
|x|≥ 1

2

∣∣∣∣∣∣∣
∏

|n|≤N
n�=0,m

(x− λn)

∣∣∣∣∣∣∣
2(

2N

T (x− λm)

)4N

dx.

However, since |λn| < 1
2 ,∣∣∣∣∣∣∣

∏
|n|≤N
n�=0,m

(x− λn)

∣∣∣∣∣∣∣ ≤
{
1 if |x| ≤ 1

2 ,
(2 | x |)2N−1 if | x |≥ 1

2 .

It follows that

γ2(N) ≤ 1 +
∫
|x|≥ 1

2

24N−2

| x |2
∣∣∣∣ x

x− λm

∣∣∣∣4N 24N (N

T

)4N

dx

≤ 1 + 212N−2

(
N

T

)4N ∫
|x|≥ 1

2

1

| x |2 = 1 + 2
12N

(
N

T

)4N

.

Hence,

γ2(N) ≤ 1 + 212N
(
N

T

)4N

.(3.13)

From (3.12) and (3.13) it follows that, for N large enough,

‖ ξm ‖L2(−∞,∞)≤ C1N
αN ,(3.14)
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where C1 > 0 and α > 3 are two constants which do not depend on N .
From (3.11) it follows that

‖ Θm ‖L2(−T,T )≤ C1N
αN

and (3.8) is obtained.
Remark 3.6. In Theorem 3.4 we construct an explicit biorthogonal sequence

which norm increases as exp(αN ln(N)) as N → ∞. Nevertheless, many other
biorthogonals can be found. What can be said about the norms of these biorthogonals?
We shall prove in the next theorem that the norm of any biorthogonal to {eiλnt}|n|≤N

n�=0

is bounded from below by a constant of the type exp(βN ln(N)). In this sense, (3.8)
is sharp.

Theorem 3.5. Let (ψn)|n|≤N
n�=0

be biorthogonal to {eiλnt}|n|≤N
n�=0

in L2(−T, T ). Then

there exist two positive constants C2 and ω, not depending on N , such that

‖ ψm ‖L2(−T,T )≥ C2e
ωN ln(N)(3.15)

∀m �= 0 such that | m |≤ N .
Proof. In order to prove the theorem some arguments from [11] will be used. We

shall give the proof in several steps.
Step 1. Let us define the following sequence of functions:

τm(z) =

∫ T

−T
ψm(t)e

itzdt, | m |≤ N, m �= 0.(3.16)

From the Paley–Wiener theorem it follows that τm is an entire function of expo-
nential type at most T . Moreover,

| τm(x) |≤
√
2T ‖ ψm ‖L2(−T,T ) ∀x ∈ R.(3.17)

Since τm is a function of exponential type it follows from Hadamard’s factorization
theorem that

τm(z) = azpebz
∏
zk∈E

(
1− z

zk

)
ez/zk ,(3.18)

where E is the set of the zeros zk of τm with zk �= 0, E = {zk ∈ C | τm(zk) = 0, zk �=
0}.

From the definition of the function τm it follows that τm(λn) = δm,n. Therefore
{λn : | n |≤ N, n �= 0, n �= m} ⊆ E. Let E′ = {λn : | n |≤ N, n �= 0, n �= ±m} and
define the polynomial function

Pm(z) =
∏

|n|≤N
n�=0,±m

λn − z

λn − λm
.(3.19)

Let us now define function φm(z) by

φm(z) =
τm(z)

Pm(z)
.(3.20)

The function φm has the following properties:
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• it is an entire function of exponential type at most T ,
• φm(λm) = 1,
• τm(z) = Pm(z)φm(z).

Step 2. In this step we shall give some estimates for | Pm(z) |.

| Pm(z) |=

∣∣∣∣∣∣∣
∏

|n|≤N
n�=0,±m

λn − z

λn − λm

∣∣∣∣∣∣∣ =
 ∏

|n|≤N
n�=0,±m

| λn − z |


 ∏

|n|≤N
n�=0,±m

| λn − λm |


−1

.

By taking z ∈ C such that | z |≥ 2 we obtain that∏
|n|≤N
n�=0,±m

| λn − z |≥ (| z | −1)2N−2.(3.21)

On the other hand∏
|n|≤N
n�=0,±m

| λn − λm |≤
∏

|n|≤N
n�=0,±m

1

2

(
1√

1 + n2π2
+

1√
1 +m2π2

)
≤ 1.(3.22)

From (3.21) and (3.22) we deduce that

| Pm(z) |≥ (| z | −1)2N−2 ∀z ∈ C, | z |≥ 2.(3.23)

Step 3. From (3.17) and (3.23) we obtain that

| φm(z) |= | τm(z) || Pm(z) | ≤
√
2TeT Im z ‖ ψm ‖L2(−T,T )

(|z| − 1)2N−2
∀z ∈ C, |z| ≥ 2.(3.24)

It follows that

| φm(x) |≤
√
2T ‖ ψm ‖L2(−T,T )

1

(| x | −1)2N−2
∀x ∈ R, | x |≥ 2.(3.25)

We shall show that (3.25) is not possible unless ‖ ψm ‖ grows rapidly with N .
Let us first recall the following result (see [14, p. 21] and [6, p. 52]).
Theorem B. Let f(z) be holomorphic in the circle | z |≤ 2eR (R > 0) with

f(0) = 1 and let η ∈ (0, 3e
2 ). Then inside the circle | z |≤ R, but outside of a family

of excluded circles the sum of whose radii is not greater than 4ηR, we have

ln(| f(z) |) > −
(
2 + ln

(
3e

2η

))
ln(Mf (2eR)),(3.26)

where Mf (2eR) = max
|z|=2eR

| f(z) |.
We apply this result to our case. Let us define ϕm : C→ C, ϕm(z) = φm(λm−

z).
Evidently, ϕm is an entire function such that ϕm(0) = 1. Hence, ϕm satisfies the

hypothesis of Theorem B. It follows that, ∀R > 0 and η ∈ (0, 3e
2 ),

ln(| ϕm(z) |) > −2e
(
2 + ln

(
3e

2η

))
ln(Mϕm(2eR)) ∀z ∈ C, | z |≤ R,(3.27)
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outside of a set of circles the sum of whose radii is not greater than 4ηR.
Let us denote δ = 2e(2 + ln( 3e

2η )) > 1. Also, remark that, from (3.24),

Mϕm(2eR) ≤ e4eRT ||ψm||L2(−T,T )

if 2eR ≥ 2.
Hence, ∀R > 0 and η ∈ (0, 3e

2 ) such that 2eR ≥ 2,

ln(| ϕm(z) |) > −δ ln
(
e4eRT ||ψm||L2(−T,T )

) ∀z ∈ C, | z |≤ R,(3.28)

outside of a set of circles the sum of whose radii is not greater than 4ηR.
Let us consider R > 6 and η ∈ (0, 1

8 ).

It follows that there exists x0 ∈ [R2 , R] such that

ln(| ϕm(x0) |) > −δ ln
(
e4eRT ||ψm||L2(−T,T )

)
.(3.29)

On the other hand, from (3.25),

|ϕm(x0)| = |φm(λm − x0)| ≤
√
2T ‖ ψm ‖L2(−T,T )

1

(| λm − x0 | −1)2N−2
.(3.30)

From (3.30) and (3.29) the following estimate is obtained:

ln

(√
2T ‖ ψm ‖L2(−T,T )

1

(| λm − x0 | −1)2N−2

)
> −δ ln (e4eRT ||ψm||L2(−T,T )

)
.

Hence

(1+ δ) ln
(||ψm||L2(−T,T )

)
> −4eδTR− ln(

√
2T ) + (2N − 2) ln(|x0− λm| − 1).(3.31)

Let us now analyze the expression

G(N,x0, R) = (2N − 2) ln(| λm − x0 | −1)− 4eδTR.

Remark that, for R = N > 6,

G(N,x0, R) ≥ (2N − 2) ln(| x0 | − | λm | −1)− 4eδTN

≥ (2N − 2) ln
(
N

2
− 2
)
− 4eδTN

= 2N

N − 1
N

ln

(
N

2
− 2
)
− 2eδT︸ ︷︷ ︸

cte

 .

It follows that there exists ω > 0, not depending on N , such that

G(N,x0, R) ≥ ωN ln(N)(3.32)

for any N sufficiently large.
From (3.31) it follows that

ln
(||ψm||L2(−T,T )

)
> − ln(

√
2T )

1 + δ
+ ωN ln(N)

and the proof finishes.
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4. Controllability results. In this section we study some boundary control-
lability properties of the BBM equation. We begin with the following exact con-
trollability problem: given T < 0 and an initial data u0 ∈ H−1(0, 1) find a control
f ∈ L2(0, T ) such that the solution u of

ut − uxxt + ux = 0, x ∈ (0, 1), t > 0,
u(t, 0) = 0, u(t, 1) = f(t), t > 0,
u(0, x) = u0(x), x ∈ (0, 1),

(4.1)

satisfies

u(T, x) = 0, x ∈ (0, 1).(4.2)

Remark 4.1. Equation (4.1) has to be understood in a weak sense. For instance,
the solution of (4.1) can be defined by transpositions (see [16], [17]). Let us briefly
recall how can this be done.

Consider g ∈ L1(0, T, L2(0, 1)) and v the solution of the adjoint equation
vt − vxxt + vx = g, x ∈ (0, 1), t > 0,
v(t, 0) = v(t, 1) = 0, t > 0,
v(T, x) = 0, x ∈ (0, 1).

(4.3)

By multiplying (formally) (4.1) by v and integrating by parts we obtain

0 =

∫ T

0

∫ 1

0

(ut − uxxt + ux)v =

∫ 1

0

(
uv|T0 − uxxv|T0

)
+

∫ T

0

(ux − uvx + uv) |10

−
∫ T

0

∫ 1

0

u(vt − vtxx + vx) =

∫ 1

0

[−u0v(0) + (u0)xxv(0)]−
∫ T

0

fvtx −
∫ T

0

∫ 1

0

ug.

Therefore we can say that u is the solution of (4.1) if and only if∫ T

0

∫ 1

0

ug + 〈u0, v(0)〉H−1,H1
0
= −

∫ T

0

f(t)vtx(t, 1)dt(4.4)

∀g ∈ L1(0, T ;L2(0, 1)) and v the solution of (4.3). 〈· , ·〉 represents the duality product
between H1

0 and H−1. As in [16], [17] it can be proved that (4.4) has a unique solution
u ∈ C([0, T ];L2(0, 1)). On the other hand we have just seen that a classical solution
of (4.1) is the solution of (4.4).

Concerning the controllability of (4.1) let us begin with the following result which
transforms the control problem into a moments problem.

Lemma 4.1.
(i) The initial data u0 ∈ H−1(0, 1) is controllable to zero in time T > 0 with a

control f ∈ L2(0, T ) if and only if

〈u0, v(0)〉H−1,H1
0
= −

∫ T

0

f(t)vtx(t, 1)dt(4.5)

for any solution v of the equation
vt − vtxx + vx = 0,
v(t, 0) = v(t, 1) = 0,
v(T, x) = vT (x) ∈ H1

0 .
(4.6)
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(ii) The initial data u0 ∈ H−1(0, 1), u0(x) =
∑
n∈Z∗ anUn(x), is controllable to

zero in time T > 0 if and only if there exists f ∈ L2(0, T ) such that∫ T

0

f(t)e−iλntdt =
i

λ2
n(Un)x(1)

an ∀n ∈ Z
∗.(4.7)

Proof. (i) Let u be the solution of (4.1) and v the solution of (4.6). It follows that

0 =

∫ T

0

∫ 1

0

(ut − uxxt + ux)v = −
∫ T

0

∫ 1

0

u(vt − vtxx + vx)

+

∫ 1

0

(uv − uxxv)

∣∣∣∣T
0

+

∫ T

0

(uxvt − uvxt + uv)

∣∣∣∣∣
1

0

= −
∫ 1

0

(u0v(0) + (u0)xvx)

+

∫ 1

0

(u(T )v(T ) + ux(T )vx(T ))−
∫ T

0

f(t)vxt(t, 1)dt.

We obtain that∫ T

0

f(t)vxt(t, 1)dt+ 〈u0, v(0)〉H−1,H1
0
= 〈u(T ), vT 〉H−1,H1

0

∀vT ∈ H1
0 .

Hence, u0 is controllable to zero in time T > 0 if and only if (4.5) is satisfied.
(ii) For the second part let us put vT =

∑
n �=0 bnUn and use (4.5). It follows that∑

n �=0

1

λn
anbne

iλnT = −
∫ T

0

f(t)
∑
n �=0

iλne
iλn(T−t)bn(Un)x(1)dt

which is equivalent to∑
n �=0

bne
iλnT

[∫ T

0

f(t)iλne
−iλnt(Un)x(1)dt+

1

λn
an

]
= 0

for any (bn)n �=0 ∈ 32.
It follows that the control problem is equivalent to finding f ∈ L2(0, T ) such that∫ T

0

f(t)e−iλntdt =
i

(λn)2(Un)x(1)
an ∀n ∈ Z

∗.

By using Lemma 4.1 and Theorem 3.3 from section 3 the following negative result
can be easily proved.

Theorem 4.2. No eigenfunction of the operator A can be driven to zero in finite
time.

Proof. The controllability of an eigenfunction Um is equivalent, by Lemma 4.1,
to finding f ∈ L2(0, T ) such that∫ T

0

f(t)e−iλnt =
{

0 ∀n ∈ Z
∗, n �= m,

i
(λm)2(Um)x(1)

, n = m.

Let us suppose that there exists f ∈ L2(0, T ) with these properties. We define

g ∈ L2(−T2 , T2 ) such that g(t) = f(T2 −t)e−
iλmT

2 almost everywhere in (−T2 , T2 ). Then∫ T
2

T
2

g(t)eiλntdt = e
iT
2 (λn−λm)

∫ T

0

f(t)e−iλntdt =
{

0 ∀n ∈ Z
∗, n �= m,

i
(λm)2(Um)x(1)

, n = m.
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However, in Theorem 3.2, we have proved that this is not possible and the proof
finishes.

Remark 4.2. From Theorem 4.2 it follows that (4.1) is not spectrally controllable.
This means that no finite linear nontrivial combination of eigenvectors can be driven
to zero in finite time by using a control f ∈ L2(0, T ).

Let us now study the approximate controllability of (4.1). We recall that (4.1) is
approximate controllable in time T > 0 if the set of reachable states

R(u0, T ) = {u(T, x) | f ∈ L2(0, T )}(4.8)

is dense in L2(0, 1) for any u0 ∈ H−1(0, 1).
In other words, given T > 0, u0 ∈ H−1(0, 1), v0 ∈ L2(0, 1), and ε > 0 there exists

a control function f ∈ L2(0, T ) such that the solution u of (4.1) satisfies ||u(T ) −
v0||L2(0,1) < ε.

Theorem 4.3. Equation (4.1) is approximate controllable in any time T > 0
with controls in L2(0, T ).

Proof. From the linearity of (4.1) it follows that it is sufficient to prove that the
set R(0, T ) is dense in H1

0 (0, 1) for any T > 0. Therefore we shall consider only the
case u0 = 0. Let u ∈ C([0, T ], H1

0 (0, 1)) be the corresponding solution of (4.1).
Let also v be the solution of the adjoint equation

vt − vtxx + vx = 0, x ∈ (0, 1), t < T,
v(t, 0) = v(t, 1) = 0, t < T,
v(T, x) = vT (x) ∈ H1

0 (Ω).
(4.9)

It follows that ∫ T

0

f(t)vxt(t, 1)dt = (u(T, x), vT (x))H1
0
.(4.10)

Suppose that R(0, T ) is not dense in H1
0 (0, 1). Hence, there exists v

T ∈ H1
0 (0, 1),

vT �= 0, such that

(u(T, x), vT (x)) = 0 ∀f ∈ L2(0, T ).

From (4.10) it follows that∫ T

0

f(t)vxt(t, 1) = 0 ∀f ∈ L2(0, T ).

Therefore vxt(t, 1) = 0 ∀t ∈ (0, T ). We show now that this contradicts the fact
that vT �= 0. Hence, the problem is reduced to a unique continuation property.

Let us consider the Fourier decomposition of vT :

vT =
∑
n∈Z∗

anUn,

where (an)n∈Z∗ ∈ 32 and the series converges in H1
0 (0, 1).

It follows that the corresponding solution of (4.9) is

v(t, x) =
∑
n∈Z∗

ane
iλn(T−t)Un(x), t ∈ (0, T ).
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From the equation v verifies it follows that v ∈ Cω
(
[0,∞); H1

0 (0, 1)
)
(see Remark

2.1).
Hence, from the fact that vxt(t, 1) = 0 ∀t ∈ (0, T ), we obtain that vxt(t, 1) =

0 ∀t ∈ R, i.e., ∑
n∈Z∗

ane
iλn(T−t)(Un)x(1)(−iλn) = 0 ∀t ∈ R.

For each m ∈ Z
∗,

0 = lim
S→∞

1

2S

∫ S

−S

[∑
n∈Z∗

ane
iλn(T−t)(Un)x(1)(−iλn)

]
eiλmtdt

= am(Um)x(1)(−iλm)eiλmT .

From Remark 2.2 (Um)x(1) �= 0. This implies that am = 0 ∀m ∈ Z
∗ and

therefore vT = 0, which represents a contradiction. Hence, R(0, T ) is dense inH1
0 (0, 1)

and the proof finishes.
As we have seen in Theorem 4.2 no finite linear combination of eigenfunctions can

be driven to zero. In this case the following question arises naturally: can we control
to zero at least a part of the solution u of (4.1)? And if we can do this, what is the
cost we have to pay?

Therefore we shall now investigate the following special type of controllability.
Definition 4.4. Equation (4.1) is N -partially controllable to zero in time T > 0

if, for any u0 ∈ H−1(0, 1), there exists a control f ∈ L2(0, T ) such that the projection
of the corresponding solution u of (4.1) over the space generated by the eigenvectors
(Un)|n|≤N

n�=0

is zero at time t = T .

Let XN = Span{Un :| n |≤ N, n �= 0} and let

ΠN : H
−1(0, 1)→ XN , ΠN

∑
n �=0

anUn

 = ∑
|n|≤N
n�=0

anUn,

be the projection operator.
Evidently, u is N -partially controllable to zero if and only if

ΠN (u(T )) = 0.(4.11)

By using the same argument as in Lemma 4.1, the following result can be obtained
immediately.

Lemma 4.5. The initial data u0 =
∑
n �=0 anUn is N -partially controlled to zero

in time T > 0 if and only if there exists f ∈ L2(0, T ) such that∫ T

0

f(t)eiλntdt =
i

λ2
n(Un)x(1)

an ∀ | n |≤ N,n �= 0.(4.12)

Now, the following theorem can be proved.
Theorem 4.6. Any initial data u0 ∈ H−1(0, 1) can be N -partially controlled to

zero in time T > 0 by using a control fN ∈ L2(0, T ) such that

‖ fN ‖2L2(0,T )≤ c1 ‖ u0 ‖2H−1 eα1N ln(N),(4.13)
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where c1 and α1 are two constants which do not depend on N .
Moreover, there exists initial data u0 ∈ H1

0 (0, 1) such that any control fN satisfies

‖ fN ‖2L2(0,T )≥ c2 ‖ u0 ‖2H1
0
eω1N ln(N),(4.14)

where c2 and ω1 are two constants which do not depend on N .
Proof. Let us consider the initial data u0 =

∑
n �=0 anUn from H−1(0, 1). We

prove that there exists a function fN ∈ L2(0, T ) such that (4.12) is satisfied. This
will be the control we are looking for.

Let (Θn)n≤N
n�=0

be the biorthogonal sequence to (eiλnt)n≤N
n�=0

in L2(−T2 , T2 ) constructed
in Theorem 3.4.

Then we can define

fN (t) =
∑
n�=0

|n|≤N

ian
λ2
n(Un)x(1)

Θn

(
T

2
− t

)
e
iλnT

2 .

Evidently, fN ∈ L2(0, T ) and
∫ T
0

fN (t)e
−iλntdt = ian

λ2
n(Un)x(1)

∀ | n |≤ N,n �= 0.
From Lemma 4.5 it follows that fN is the control we are looking for.
By using inequality (3.8) from Theorem 3.4 it follows that

‖ fN ‖2L2(0,T )≤
∑

|n|≤N
n�=0

| an |2
| λn |2| (Un)x(1) |2

∑
|n|≤N
n�=0

‖ Θn ‖2

≤
∑

|n|≤N
n�=0

| an |2
| λn |2| (Un)x(1) |2

∑
|n|≤N
n�=0

c1e
αN ln(N) ≤ c1 ‖ u0 ‖2H−1 eα1N ln(N)

for any α1 > α.
On the other hand let us consider u0 = Um, | m |≤ N , m �= 0. From Lemma 4.5

u0 is N -partially controllable to zero in time T > 0 if and only if there exists a control
fmN ∈ L2(0, T ) such that∫ T

0

fmN (t)e
−iλntdt =

{
0, n �= m,
i

(λm)2(Um)x(1)
, n = m.

We define gmN ∈ L2(−T2 , T2 ) such that gmN (t) = fmN (
T
2 − t)e−

iλmT
2 almost every-

where in (−T2 , T2 ). Then∫ T
2

T
2

gmN (t)e
iλntdt = e

iT
2 (λn−λm)

∫ T

0

fmN (t)e
−iλntdt =

{
0 ∀n ∈ Z

∗, n �= m,
i

(λm)2(Um)x(1)
, n = m.

Now, by using Theorem 3.5, it follows that

‖ fmN ‖2L2(0,T )=‖ gmN ‖2L2(−T
2 ,
T
2 )
≥ C2

2 | λm |4| (Um)x(1) |2 e2ωN ln(N).

It follows that (4.14) is true for any ω1 < 2ω and c2 = C2
2 and the proof

finishes.
Remark 4.3. Theorem 4.6 proves that the cost (the norm of the control functions)

needed to drive to zero the projection of the solutions of (4.1) over the space generated
by the first 2N eigenfunctions may increase very rapidly when N goes to infinity.
Theorem 4.6 gives an upper bound for these norms (essentially, eαN ln(N)) and shows
that there exists a lower bound of the same order.
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5. Comments. As we have mentioned in the introduction, based on the linear
case, local or global controllability results (depending on the number of controls) have
been obtained for the nonlinear KdV equation in [20], [21], and [24].

The same cannot be said for the nonlinear equation (1.1). In fact, to our knowl-
edge, no result for the controllability of the BBM equation is available. The con-
trollability properties of the nonlinear systems are usually studied by linearizing the
problem at an equilibrium state, by proving exact controllability results for this lin-
ear problem and by applying next the implicit function theorem. This method was
first used in [13] for the ordinary differential equations and next generalized for the
nonlinear wave equation (see, for instance, [12]). In [10] and [25] exact and local con-
trollability results were given by using Schauder’s fixed point theorem instead of the
implicit function theorem. All approaches use the exact controllability result for the
linearized equation. Taking into account the negative results (like nonspectral con-
trollability) obtained in this paper for the linearized BBM equation it is not possible
to study the controllability properties of (1.1) by using one of the classical techniques
mentioned above. Probably, the controllability results for (1.1) are not better than
the ones for the corresponding linear case but this is still to be proved.
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Dunod, Paris, 1968.

[17] J.-L. Lions and E. Magenes, Problèmes aux Limites non Homogènes et Applications, Vol. 2,
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SINGULAR STOCHASTIC CONTROL, LINEAR DIFFUSIONS,
AND OPTIMAL STOPPING: A CLASS OF SOLVABLE PROBLEMS∗
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Abstract. We consider a class of singular stochastic control problems arising frequently in
applications of stochastic control. We state a set of conditions under which the optimal policy and
its value can be derived in terms of the minimal r-excessive functions of the controlled diffusion, and
demonstrate that the optimal policy is of the standard local time type. We then state a set of weak
smoothness conditions under which the value function is increasing and concave, and demonstrate
that given these conditions increased stochastic fluctuations decrease the value and increase the
optimal threshold, thus postponing the exercise of the irreversible policy. In line with previous
studies of singular stochastic control, we also establish a connection between singular control and
optimal stopping, and show that the marginal value of the singular control problem coincides with
the value of the associated stopping problem whenever 0 is not a regular boundary for the controlled
diffusion.

Key words. singular stochastic control, linear diffusions, optimal stopping, harvesting, cash
flow management

AMS subject classifications. 49L05, 60H30, 93E20, 92D25

PII. S0363012900367825

1. Introduction. Singular stochastic control problems arise quite naturally in
many fields applying stochastic control theory. Good examples of such fields are, for
example, rational harvesting planning (cf. [1], [5], [6], [15], [24], [25], and [26]) and
optimal cash flow management (cf. [3], [19], and [29]). Somewhat surprisingly, while
the mathematical literature on singular stochastic control is very extensive (cf. [4], [7],
[8], [9], [10], [17], [20], [21], [22], [23], [30], and [31]), it has not been applied yet to its
full extent in these applications even though there are many important unanswered
questions left. In order to illustrate this argument more precisely, consider a har-
vester facing the problem of having to determine the harvesting strategy maximizing
the expected cumulative yield from the present up to extinction given the form of the
underlying stochastic population dynamics. The recent literature on singular stochas-
tic harvesting policies indicates that the depletion and, therefore, the extinction of a
harvested population is seldom an optimal policy for a future-oriented harvester and
that in most cases a part of the population should be left unharvested in order to be
able to harvest in the future as well. Since harvesting is suboptimal as long as the
marginal yield accrued from harvesting an extra individual falls short of its opportu-
nity cost (measuring the marginal yield accrued from preserving an extra individual)
and the latter factor usually dominates the former at sufficiently low densities, we
find that the instantaneous depletion of a population is not optimal. Unfortunately,
even though this conclusion is appealing, it has been rigorously proved only for diffu-
sion models with logistic expected growth rates. Similarly, most studies of cash flow
management rely on cash flows with affine growth and diffusion parameters (geomet-
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ric Brownian motion, Ornstein–Uhlenbeck process, and Brownian motion). Although
that assumption is advantageous due to its mathematical simplicity, it overlooks a
broad class of processes appearing frequently in reality (for example, mean reverting
diffusions) and, therefore, leaves unanswered important questions on the nature of the
optimal solution and its value in the presence of more complex cash flow processes.

In light of these arguments, we plan to consider the singular stochastic control
problem of a regular linear diffusion when the cumulative payoff of the decision-maker
depends solely on the implemented policy, and the expected percentage growth rate
of the controlled diffusion is decreasing. Thus, the considered problem can be inter-
preted as the determination of the dividend policy maximizing the expected cumu-
lative present value of the dividends from the present up to the random liquidation
date or, alternatively, as the determination of the harvesting strategy maximizing the
expected cumulative yield from the present up to the extinction date of the harvested
population. By relying on a combination of the classical theory of diffusions and the
results of the recent study [4], we show that the results obtained by relying on logistic
growth rates are typically qualitatively robust in the sense that the optimal policy is to
reflect the controlled diffusion at a single threshold satisfying an ordinary first order
necessary condition for an optimum in most models subject to decreasing percentage
growth rates. In contrast to [4], we are also able to state a set of very weak sufficient
conditions under which the value of the singular stochastic control problem is increas-
ing and concave. To the best knowledge of the author, these conditions are the weakest
under which the value of the singular stochastic control problem has been shown to
be concave since no Novikov-type condition is required nor does the drift have to
be globally concave. Moreover, the result is shown to be valid independently of the
boundary behavior of the controlled diffusion at the lower boundary (for a compari-
son, see [4]). Given this finding, we show that increased stochastic fluctuations (i.e.,
volatility) decrease the value of the singular stochastic control problem and increase
the threshold at which the diffusion should optimally be reflected. Put differently, we
demonstrate that the sign of the relationship between stochasticity and the optimal
policy is unambiguously negative, a result which is in accordance with observations
in reality. An economically and biologically important consequence of this finding is
that our results support the argument that increased stochastic fluctuations increase
the required exercise premium of an irreversible policy. We also establish a connec-
tion between singular stochastic control and optimal stopping by first demonstrating
that the marginal value of the control problem dominates the value of an associated
optimal stopping problem. By relying on the classical theory of diffusions, we then
prove that these quantities coincide whenever the lower boundary of the state-space
of the controlled diffusion is not regular (i.e., when it is either natural, entrance, or
exit). This result is of interest since it extends previous results obtained under the
assumption that the lower boundary is unattainable for the controlled diffusion (cf.
[30] and [31]). In line with recent studies considering singular stochastic control and
optimal stopping, we then present an alternative interpretation of the marginal value
of the associated stopping problem in terms of the valuation of a perpetual American
forward contract and demonstrate that determining the optimal singular stochastic
control is closely related to the determination of an optimal irreversible exit policy in
the presence of uncertainty.

2. The singular stochastic control problem. Consider the process {X(t); t ∈
[0, τ(0))}, where τ(0) = inf{t ≥ 0 : X(t) ≤ 0} denotes the possibly infinite exit date
from R+, defined on a complete filtered probability space (Ω, P, {Ft}t≥0,F) satisfying
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the usual conditions and described on R+ by the (Itô-) stochastic differential equation

dX(t) = µ(X(t))X(t)dt+ σ(X(t))dW (t)− dZ(t), X(0) = x,(1)

where the mapping µ : R+ �→ R denotes the expected percentage growth rate of X,
Z(t) denotes the implemented control, and σ : R+ �→ R+ denoting the infinitesimal
diffusion coefficient of X is a given Lipschitz-continuous mapping on R+. We assume
throughout this study that the expected percentage growth rate µ(x) is continu-
ous, decreasing, and satisfies the conditions limx↓0 µ(x) > 0, limx↓0 xµ(x) = 0, and
limx→∞ µ(x) < 0. In other words, (1) describes a dynamic system subject to pure
compensation. These assumptions imply that the equation µ(x) = 0 has a unique root
K = µ−1(0) and that µ(x)x < 0 for x > K (in mathematical biology, K is known as
the carrying capacity of the environment; cf. [12], [13], and [14]). For simplicity, we
also assume that σ(x) > 0 on (0,∞) (this assumption can be relaxed as long as the
boundary behavior of the diffusion is specified at the singularities {σ−1(0)}; cf. [4]
and [5]). Moreover, in accordance with reality (cf. [1], [5], [6], [24], [25], and [26]), we
assume that the upper boundary ∞ of the state-space of X is natural. Thus, even
while X may be expected to increase, it is never expected to become infinitely high in
finite time. Finally, we call a control Z admissible if it is nonnegative, nondecreasing,
right-continuous, and {Ft}-adapted, and denote the set of admissible controls as Λ.

We observe that when Z(t) ≡ 0, X evolves according to a regular linear time
homogeneous diffusion with basic characteristics

S′(x) = exp

(
−
∫ x 2µ(y)y

σ2(y)
dy

)
denoting the density of its scale function S and

m′(x) =
2

σ2(x)S′(x)

denoting the density of its speed measure m. It is worth observing that applying Itô’s
theorem on the mapping x �→ lnx yields that

X(t) = x exp

(∫ t

0

µ(X(s))ds

)
M(t),(2)

where

M(t) = exp

(∫ t

0

σ(X(s))

X(s)
dW (s)−

∫ t

0

1

2

σ2(X(s))

X2(s)
ds

)
.

Thus, if σ(x)/x is square-integrable, that is, if

Ex

∫ t∧τ(0)

0

σ2(X(s))

X2(s)
ds <∞,

then M(t) is a positive local martingale and, therefore, a supermartingale. In that
case, we observe that 0 ≤ X(t) ≤ xeµ(0)tM(t) almost surely and that 0 ≤ E[X(t)] ≤
xeµ(0)t.

We now define the net convenience yield accrued from retaining a stock x undis-
tributed as the mapping θ : R+ �→ R defined in

θ(x) = (µ(x)− r)x.(3)
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As is clear intuitively, the mapping θ(x) measures the net income flow accrued from
storing a marginal unit of stock x. In order to guarantee the boundedness of the
considered functionals, we assume throughout this study that for all x ∈ R+ we have

Ex

∫ τ(0)

0

e−rsθ(X(s))ds <∞,(4)

where the expectation is taken with respect to the law of the uncontrolled diffusion.
Given the assumptions above, we now plan to consider the stochastic control

problem

V (x) = sup
Z∈Λ

Ex

∫ τ(0)

0

e−rsdZ(s),(5)

where r > 0 denotes the exogeneously determined discount rate. As in [4], we find by
applying the generalized Itô’s theorem for semimartingales to the identity map x �→ x
that

V (x) ≤ x+ sup
Z∈Λ

Ex

∫ τ(0)

0

e−rsθ(X(s))ds(6)

for all x ∈ R+. Thus, we immediately find the following.
Lemma 1. If µ(0) ≤ r, then the optimal policy is Z(0) = x. Under the optimal

policy, we have τ(0) = 0 and V (x) = x.
Proof. The assumption µ(0) ≤ r implies that θ(x) ≤ 0 for all x ∈ R+. The

required result is then a straightforward consequence of the inequality (6).
Lemma 1 states that if the percentage growth rate µ(x) is smaller than the dis-

count rate r for all x, then waiting is never optimal and the current stock x should be
instantaneously depleted since no intertemporal gains can be accrued by postponing
the decision into the future. Before proceeding in our analysis, we state the following
auxiliary definition.

Definition 2 (see [11, chapter II], [18, section 4.6], and [27, section II.3]). The
Green-kernel Gr : I2 �→ R+ of the diffusion X with state-space I ⊆ R is defined as

Gr(x, y) =

∫ ∞

0

e−rtp(t;x, y)dt,

where p(t;x, y) is the transition density of X defined with respect to its speed measure

m. There are two linearly independent fundamental solutions, ψ̂(x) and ϕ̂(x), with

ψ̂(x) increasing and ϕ̂(x) decreasing, spanning the set of solutions of the ordinary
differential equation ((A− r)u)(x) = 0, where

A =
1

2
σ2(x)

d2

dx2
+ µ(x)x

d

dx
(7)

is the second order differential operator representing the infinitesimal generator of the
underlying diffusion X. The Green-kernel Gr(x, y) can be rewritten in terms of these
solutions in the alternative form

Gr(x, y) =

{
B−1ψ̂(x)ϕ̂(y), x < y,

B−1ψ̂(y)ϕ̂(x), x ≥ y,
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where

B =
ψ̂′(x)
S′(x)

ϕ̂(x)− ϕ̂
′(x)
S′(x)

ψ̂(x) > 0

is the constant Wronskian determinant of the fundamental solutions.
In order to solve the singular stochastic control problem (5), we now define the

auxiliary Markovian functional F : R
2
+ �→ R as (cf. [1], [4], and [5])

F (x, b) =

R(b)−
R′(b)
ψ′(b)ψ(b), x ≥ b,

R(x)− R′(b)
ψ′(b)ψ(x), x < b,

(8)

where

ψ(x) =

{
ψ̂(x) if 0 is either natural, exit, or entrance for X,

ψ̂(x)− ψ̂(0)
ϕ̂(0) ϕ̂(x) if 0 is regular for X

denotes the increasing fundamental solution of the ordinary differential equation ((A−
r)u)(x) = 0 defined in the domain of the generator of the diffusion {X(t); t ∈ [0, τ(0))}
and

R(x) = B−1ϕ̂(x)

∫ x

0

ψ(y)θ(y)m′(y)dy +B−1ψ(x)

∫ ∞

x

ϕ̂(y)θ(y)m′(y)dy(9)

denotes the expected cumulative present value of the future net convenience yields
θ(x) (condition (4) guarantees the convergence of the integrals in (9)). Our first
results characterizing the value and optimal policy are now presented in the following
(generalizing the results of Theorem 4 in [4]).

Theorem 3. Assume that µ(0) > r and that the convenience yield θ(x) is increas-
ing for x < x∗ and decreasing for x > x∗, where x∗ = argmaxx∈R+

{θ(x)} ∈ (0,∞).
Then the optimal policy is

Z(t) =

{
L(t, b∗), t > 0,

(x− b∗)+, t = 0,
(10)

where L(t, b∗) denotes the local time of the process X(t) at the state b∗, and

b∗ = argmin
x∈R+

{
R′(x)
ψ′(x)

}
∈ (x∗, µ−1(r))

is the unique interior root of the ordinary first order necessary condition

r

∫ b∗

0

ψ(y)θ(y)m′(y)dy = θ(b∗)
ψ′(b∗)
S′(b∗)

.(11)

Moreover, the value of the optimal policy is twice continuously differentiable on R+

and it reads as

V (x) =

{
x+ θ(b∗)

r , x ≥ b∗,
x+ F (x, b∗), x < b∗,

(12)



1702 LUIS H. R. ALVAREZ

which can be rewritten alternatively as

V (x) =

{
x+ θ(b∗)

r , x ≥ b∗,
ψ(x)
ψ′(b∗) , x < b∗.

(13)

Proof. Consider first the Markovian functional

R′(x)
ψ′(x)

= B−1 ϕ̂
′(x)
ψ′(x)

∫ x

0

ψ(y)θ(y)m′(y)dy +B−1

∫ ∞

x

ϕ̂(y)θ(y)m′(y)dy.

Standard differentiation yields

d

dx

[
R′(x)
ψ′(x)

]
=

2S′(x)
σ2(x)ψ′2(x)

[
r

∫ x

0

ψ(y)θ(y)m′(y)dy − θ(x)ψ
′(x)
S′(x)

]
.

Define now the functional J : R+ �→ R as

J(x) = r

∫ x

0

ψ(y)θ(y)m′(y)dy − θ(x)ψ
′(x)
S′(x)

.(14)

If z > x > x∗, the monotonicity of θ(x) implies that

1

r
[J(z)− J(x)] =

∫ z

x

ψ(y)θ(y)m′(y)dy − θ(z)
r

ψ′(z)
S′(z)

+
θ(x)

r

ψ′(x)
S′(x)

>
θ(z)

r

[
ψ′(z)
S′(z)

− ψ
′(x)
S′(x)

]
− θ(z)

r

ψ′(z)
S′(z)

+
θ(x)

r

ψ′(x)
S′(x)

=
[θ(x)− θ(z)]

r

ψ′(x)
S′(x)

> 0,

proving that I(x) is monotonically increasing on (x∗,∞). Similarly, if z < x < x∗,
the monotonicity of θ(x) implies that

1

r
[J(x)− J(z)] =

∫ x

z

ψ(y)θ(y)m′(y)dy − θ(x)
r

ψ′(x)
S′(x)

+
θ(z)

r

ψ′(z)
S′(z)

<
[θ(z)− θ(x)]

r

ψ′(z)
S′(z)

< 0,

proving that I(x) is monotonically decreasing on (0, x∗). Moreover, it is clear that the
assumption µ(0) > r and the monotonicity of µ(x) imply that θ(x) > 0 on (0, µ−1(r)).
Thus, we find that J(0) = 0,

J(µ−1(r)) = r

∫ µ−1(r)

0

ψ(y)θ(y)m′(y)dy,

and

J(x∗) =
∫ x∗

0

ψ(y)(θ(y)− θ(x∗))m′(y)dy − θ(x
∗)
r

ψ′(0)
S′(0)

< 0.

Combining this finding with the proven monotonicity and continuity of the functional
J(x) implies that there is a unique threshold b∗ ∈ (x∗, µ−1(r)) at which the functional
R′(x)/ψ′(x) is minimized and that R′(x)/ψ′(x) is monotonically decreasing for x < b∗
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and monotonically increasing for x > b∗. Given these results, we observe that the
proposed value function is twice continuously differentiable on R+. Moreover, we
observe that on (0, b∗) the proposed value function satisfies the inequality

V ′(x) = 1 +R′(x)− R
′(b∗)
ψ′(b∗)

ψ′(x) ≥ 1,

since ψ′(x) > 0 and R′(x)/ψ′(x) ≥ R′(b∗)/ψ′(b∗) for all x ∈ R+. Moreover, we also
find that

((A− r)V )(x) =
{
θ(x)− θ(b∗), x ≥ b∗
0, x < b∗

≤ 0,

since ((A− r)R)(x) + θ(x) = 0 and b∗ is attained on the set where θ(x) is decreasing.
Thus, the proposed value function satisfies the conditions of Lemma 1 in [4] and,
therefore, dominates the value of the singular stochastic control problem (5). The
rest of the proof is then completed as in the proof of Theorem 4 in [4].

Theorem 3 states a set of considerably weak sufficient conditions under which the
optimal policy is of the threshold type in the sense that there is a unique optimal
threshold at which the control policy should be instantaneously applied at a maximal
rate in order to maintain the process below the critical threshold b∗. It is clear that
if µ(x) is continuously differentiable on R+, then partial integration of (11) implies
that the optimal reflection threshold has to satisfy the equivalent condition∫ b∗

0

ψ′(y)
S′(y)

[µ(y)− r + µ′(y)y]dy = 0.(15)

It is also worth noticing that the optimal threshold b∗ is below the equilibrium density
µ−1(r) at which the percentage growth rate is equal to the discount rate, but above
the density x∗ at which the net convenience yield θ(x) is maximized. This result
is of interest since the difference b∗ − x∗ measures the required exercise premium
from exercising the irreversible policy, since x∗ is the threshold at which the policy is
irreversibly exercised in the absence of stochastic fluctuations (i.e., in the deterministic
case).

The results of Theorem 3 are interesting from the point of view of studies consid-
ering rational harvesting planning in the presence of extinction risk, since it demon-
strates that the basic conclusions of models relying on logistic growth remain valid
even in models subject to more complex and general per capita growth rates. More
specifically, Theorem 3 shows that there is a unique optimal threshold density at which
harvesting should be initiated in most models of pure compensation (cf. [5], [6], [24],
[25], and [26]). Thus, we find that the results obtained by relying on logistic models
are qualitatively robust. Similarly, Theorem 3 extends the older results obtained in
studies considering the determination of the rational dividend policy of a firm facing
the risk of liquidation by stating a simple monotonicity condition in terms of the dis-
count rate and the expected growth rate of the cash flow of the firm (cf. [3], [19], and
[29]). Moreover, if µ(x) is assumed to be differentiable, then the result of Theorem
3 is of interest from a capital theoretic point of view as well, since it demonstrates
that in the presence of stochastic fluctuations we have that µ(b∗)+µ′(b∗)b∗ < r, thus
violating the standard deterministic golden rule of capital accumulation stating that
the marginal yield µ(b∗) + µ′(b∗)b∗ accrued from retaining yet another marginal unit
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of stock x should be equal to the interest rate r (cf. [28, pp. 594–595]). In the present
case, we find by ordinary differentiation that

µ(b∗) + µ′(b∗)b∗ = r − 1

2
σ2(b∗)V ′′′(b∗−).

It is also of interest to point out that Theorem 3 demonstrates that on x < b∗ the
value function satisfies the ordinary differential equation ((A−r)V )(x) = 0 subject to
the (Von Neumann-type) boundary condition V ′(b∗) = 1 and the variational inequality
V ′(x) > 1. Especially, Theorem 3 shows that the value function V ∈ C2(R+) is the
solution of the quasi-variational inequality

min {((r −A)V )(x), V ′(x)− 1} = 0.

Remark 1. It is worth pointing out that the results of Theorem 3 are also valid
in the case where the infinitesimal diffusion coefficient σ(x) vanishes at a point ξ ≥
K = µ−1(0) (independently on the boundary behavior of X at ξ). The reason for this
finding is that the analysis in the proof of Theorem 3 is independent of the upper
boundary of the state-space of the controlled diffusion as long as this boundary is not
below µ−1(0). This type of diffusion usually appears in studies considering random
percentage growth rates, that is, in models of the form (cf. [4], [5], [13], [14], and [26])

dX(t)

X(t)
= (αdt+ σdW (t))µ(X(t)).

A set of sufficient conditions under which the conditions of Theorem 1 are always
satisfied are now summarized in the following.

Corollary 4. If µ(x) is continuously differentiable, µ(x)x is strictly concave,
and µ(0) > r, then the conclusions of Theorem 3 are valid.

Proof. It is sufficient to prove that the net convenience yield satisfies the mono-
tonicity properties of Theorem 3. It is clear that under the assumptions of our
corollary, the convenience yield θ(x) is strictly concave and satisfies the condition
θ(0) = θ(x̂) = 0, where x̂ = µ−1(r). Rolle’s theorem then implies that there is at
least one point x∗ ∈ (0, x̂) where the marginal net convenience yield θ′(x) vanishes.
Since θ(x) is strictly concave, x∗ is unique and constitutes a global maximum of θ(x).
Moreover, θ′(x) > 0 on (0, x∗) and θ′(x) < 0 on (x∗,∞) completing the proof of our
corollary.

Corollary 4 states an usually satisfied concavity condition under which the results
of our Theorem 3 are always valid (for example, logistic and Gompertz-type growth).
However, it is worth emphasizing that the results of Theorem 3 are more generally
valid than the results of Corollary 4, since the concavity of the mapping µ(x)x is
not a necessary condition for the existence of a well-defined global maximum for
the net convenience yield θ(x) (for example, the gamma-response model µ(x)x =
(x−αe−βx − δ)x, where 0 < α < 1, β > 0, and δ > 0).

In order to describe unambiguously the sign of the relationship between stochastic
fluctuations and the optimal policy, we first prove the following important result
summarizing the monotonicity and curvature properties of the value.

Theorem 5. Assume that µ(0) > r and that the net convenience yield θ(x) is
increasing for x < x∗ and decreasing for x > x∗. Then, V ′(x) > 0 and V ′′(x) ≤ 0 for
all x ∈ R+, and F (x, b∗) is concave on (0, b∗).

Proof. As was shown in Theorem 3, our assumptions imply that the value is
twice continuously differentiable and that it can be written as in (13). Since ψ(x)
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is increasing, ordinary differentiation of (13) then proves the alleged monotonicity of
V (x). Differentiating (13) twice then yields

V ′′(x) =

{
0, x ≥ b∗,
ψ′′(x)
ψ′(b∗) , x < b∗.

Thus, it is sufficient to show that ψ(x) is concave on (0, b∗). To accomplish this task,
we first observe that the ordinary differential equation ((A − r)ψ)(x) = 0 can be
rewritten as

1

2
σ2(x)

ψ′′(x)
S′(x)

= r
ψ(x)

S′(x)
− µ(x)ψ

′(x)
S′(x)

.(16)

Adding and subtracting rxψ′(x)/S′(x) from (16) then yield that

1

2
σ2(x)

ψ′′(x)
S′(x)

= r

[
ψ(x)

S′(x)
− xψ

′(x)
S′(x)

]
− θ(x)ψ

′(x)
S′(x)

.

Consider now the mapping

g(x) =
ψ(x)

S′(x)
− xψ

′(x)
S′(x)

.

Since 0 ≤ limx↓0
ψ′(x)
S′(x) < ∞ (cf. [11, p. 19]), we find that the second term on the

right-hand side of the equation above vanishes as x ↓ 0. Thus, we observe that

lim
x↓0
g(x) = lim

x↓0
ψ(x)

S′(x)
.

If 0 is either natural, exit, or regular, we find that limx↓0
ψ(x)
S′(x) = 0 whenever limx↓0 S′(x)

> 0, since ψ(0) = 0 (cf. [11, p. 19]). If 0 is entrance, then limx↓0 S′(x) = ∞ and

ψ(0) ∈ [0,∞), implying that limx↓0
ψ(x)
S′(x) = 0 (cf. [11, p. 19]). Thus, it remains to

deal with the case when 0 is either natural, exit, or regular and limx↓0 S′(x) = 0. The

latter condition implies that µ(x)x
σ2(x) has to tend towards infinity as x ↓ 0. L’Hospital’s

rule then yields that

lim
x↓0
g(x) = − lim

x↓0
σ2(x)

2µ(x)x

ψ′(x)
S′(x)

= 0,

proving that

lim
x↓0
g(x) = 0.

Ordinary differentiation of g(x) then yields that

g′(x) = θ(x)ψ(x)m′(x),

implying that

ψ(x)

S′(x)
− xψ

′(x)
S′(x)

=

∫ x

0

θ(y)ψ(y)m′(y)dy.
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Thus, we have proved that

1

2
σ2(x)

ψ′′(x)
S′(x)

= r

∫ x

0

θ(y)ψ(y)m′(y)dy − ψ
′(x)
S′(x)

θ(x).(17)

Combining (17) with (11) and the analysis in the proof of Theorem 3 then implies
that ψ′′(x) ≤ 0 for all x ∈ (0, b∗], proving the alleged concavity of both the value V (x)
and the cumulative net convenience yields R(x, b∗).

Theorem 5 states a set of sufficient conditions under which the marginal value
V ′(x) is positive but diminishing as a mapping of the current stock x. It is worth
emphasizing that Theorem 5 is valid under a set of very weak conditions, since it does
not require a Novikov-type condition, nor does it require concavity or differentiability
assumptions on the form of the drift µ(x)x (for a comparison, see [16]). Thus, Theorem
5 demonstrates that it is only the first order monotonicity properties of the yield θ(x)
which determine both the monotonicity and concavity of the value of the optimal
policy. To the best knowledge of the author, the conditions of Theorem 5 are the
weakest under which the concavity of the value function has been proven.

Our main results on the effect of increased volatility both on the optimal policy
and the value are now summarized in the following.

Theorem 6. Assume that the conditions of Theorem 5 are met. Then, increased
stochastic fluctuations decrease or leave unchanged the value V (x) and increase or
leave unchanged the optimal threshold. That is, if σ̃ : R+ �→ R satisfies the condition
σ̃(x) ≥ σ(x) on R+, Ṽ (x) denotes the value, and b̃ denotes the optimal threshold in
the presence of greater stochastic fluctuations, then b̃ ≥ b∗ and Ṽ (x) ≤ V (x) on R+.

Proof. The alleged result is proved by applying the same technique as in the proof
of Theorem 6 in [4].

Theorem 6 states a set of usually satisfied conditions under which increased un-
certainty has a negative impact on both the value and the optimal policy. As Theorem
6 demonstrates, increased uncertainty increases the optimal threshold and, therefore,
postpones the exercise of the singular policy whenever the net convenience yield is
increasing below a given point x∗ and decreasing above it. It is also worth pointing
out that Theorem 6 clearly shows that the value of the associated singular stochastic
control problems can be completely ordered in terms of the volatilities of the con-
trolled diffusions whenever the value functions are concave. The result of Theorem
6 is very important from the point of view of applications, since it confirms the in-
tuitively clear argument that the sign of the relationship between uncertainty and an
irreversible policy is unambiguously negative. Summarizing, we have the following.

Corollary 7. Assume that µ(0) > r and that the net convenience yield θ(x)
is increasing for x < x∗ and decreasing for x > x∗. Then, increased stochastic
fluctuations increase the required exercise premium b∗ − x∗.

Proof. Since x∗ is independent of σ(x), the conclusion is a straightforward impli-
cation of Theorem 6.

3. Optimal stopping and the marginal value. It is well known that sin-
gular stochastic control is closely related to optimal stopping (cf. [7], [8], [10], [20],
[21], [22], [30], and [31]). In order to verify this connection in the present case, we
assume throughout this section that both the diffusion coefficient σ(x) and the per-
centage growth rate µ(x) are continuously differentiable on R+. Given these extra
assumptions, we now plan to consider the optimal stopping problem

H(x) = sup
τ<τ̃(0)

Ex

[
exp

(∫ τ

0

θ′(X̃(s))ds

)]
,(18)
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where X̃(t) evolves according to the diffusion described by the stochastic differential
equation

dX̃(t) = (µ(X̃(t))X̃(t) + σ′(X̃(t))σ(X̃(t)))dt+ σ(X̃(t))dW (t), X̃(0) = x,(19)

and τ̃(0) = inf{t ≥ 0 : X̃(t) ≤ 0}. We can now show the following.
Lemma 8. Assume that µ(0) > r and that the net convenience yield θ(x) is

increasing for x < x∗ and decreasing for x > x∗. Then, V ′(x) ≥ H(x) for all
x ∈ R+.

Proof. It is clear that V ′ ∈ C1(R+)∩C2(R+\{b∗}), that V ′(x) ≥ 1 for all x ∈ R+,
that V ′′′(b∗+) = 0, and that

V ′′′(b∗−) = −2θ′(b∗)
σ2(b∗)

<∞.

Moreover, since

((A− r)V )(x) =
{
θ(x)− θ(b∗), x > b∗,
0, x < b∗,

we find that

d

dx
((A− r)V )(x) = 1

2
σ2(x)V ′′′(x) + (µ(x)x+ σ′(x)σ(x))V ′′(x) + θ′(x)V ′(x) ≤ 0,

since b∗ is attained on the set where θ(x) is decreasing. Thus, the alleged result follows
from Theorem 10.4.1 in [32].

Lemma 8 demonstrates, by relying on a simple variational argument, that under
the assumptions of our paper the marginal value V ′(x) of the singular stochastic
control problem (5) dominates the value of the associated stopping problem (18). It
is, of course, of interest to find out the cases when these two values may coincide
in the present case. The main conclusion of this section is now summarized in the
following.

Theorem 9. Assume that µ(0) > r, that the convenience yield θ(x) is increasing
for x < x∗, decreasing for x > x∗, and that 0 is either natural, exit, or entrance for
the diffusion X. Then, V ′(x) = H(x) for all x ∈ R+.

Proof. We know from Lemma 8 that V ′(x) ≥ H(x) so it is sufficient to show the
opposite inequality. Since the stopping time τ in the optimal stopping problem (18)
is arbitrary, we observe that

H(x) ≥ Ex
[
exp

(∫ τ(0,b∗)

0

θ′(X̃(s))ds

)]
,

where τ(0, b∗) = inf{t ≥ 0 : X̃(t) �∈ (0, b∗)}. Define now the functional G(x, a, b∗) as

G(x, a, b∗) = Ex

[
exp

(∫ τ(a,b∗)

0

θ′(X̃(s))ds

)]
,

where τ(a, b∗) = inf{t ≥ 0 : X̃(t) �∈ (a, b∗)}. Since ϕ̂′′(x)ψ′(x) − ψ′′(x)ϕ̂′(x) =
2rBS̃′(x) > 0, where S̃′(x) = S′(x)/σ2(x), we observe that the general solution of
the ordinary second order differential equation

1

2
σ2(x)u′′(x) + (µ(x)x+ σ′(x)σ(x))u′(x) + θ′(x)u(x) = 0
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is u(x) = c1ψ
′(x) + c2ϕ̂′(x), where c1 and c2 are unknown real constants. It is now

an elementary exercise in linear algebra to demonstrate that if x ∈ (a, b∗), then

G(x, a, b∗) =
ϕ̂′(x)− ϕ̂′(b∗)

ψ′(b∗)ψ
′(x)

ϕ̂′(a)− ϕ̂′(b∗)
ψ′(b∗)ψ

′(a)
+
ψ′(x)− ψ′(a)

ϕ̂′(a) ϕ̂
′(x)

ψ′(b∗)− ψ′(a)
ϕ̂′(a) ϕ̂

′(b∗)
.(20)

Consider now the second term on the right-hand side of (20). Invoking the alleged
boundary behavior of X then implies that (cf. [11, p. 19])

lim
a↓0

ψ′(x)− ψ′(a)
ϕ̂′(a) ϕ̂

′(x)

ψ′(b∗)− ψ′(a)
ϕ̂′(a) ϕ̂

′(b∗)
= lim

a↓0

ψ′(x)− ψ′(a)/S′(a)
ϕ̂′(a)/S′(a) ϕ̂

′(x)

ψ′(b∗)− ψ′(a)/S′(a)
ϕ̂′(a)/S′(a) ϕ̂

′(b∗)
=
ψ′(x)
ψ′(b∗)

.

Consider now the first term on the right-hand side of (20). Since ϕ̂′(x)/ψ′(x) is
increasing on R+ and ψ(x) is increasing and concave on (0, b∗), we find that

0 ≤
ϕ̂′(x)− ϕ̂′(b∗)

ψ′(b∗)ψ
′(x)

ϕ̂′(a)− ϕ̂′(b∗)
ψ′(b∗)ψ

′(a)
=
ψ′(x)
ψ′(a)

ϕ̂′(x)
ψ′(x) − ϕ̂′(b∗)

ψ′(b∗)

ϕ̂′(a)
ψ′(a) − ϕ̂′(b∗)

ψ′(b∗)

≤
ϕ̂′(x)
ψ′(x) − ϕ̂′(b∗)

ψ′(b∗)

ϕ̂′(a)
ψ′(a) − ϕ̂′(b∗)

ψ′(b∗)

.

Letting a ↓ 0 and invoking again the alleged boundary behavior of X then yields

0 ≤ lim
a↓0

ϕ̂′(x)− ϕ̂′(b∗)
ψ′(b∗)ψ

′(x)

ϕ̂′(a)− ϕ̂′(b∗)
ψ′(b∗)ψ

′(a)
≤ 0

implying that

lim
a↓0
G(x, a, b∗) =

ψ′(x)
ψ′(b∗)

and, therefore, that

H(x) ≥ G(x, 0, b∗) = V ′(x)

completing the proof of our theorem.
Theorem 9 demonstrates, by relying on the classical theory of linear diffusions,

that the marginal value V ′(x) of the singular stochastic control problem (5) coincides
with the value of an associated optimal stopping problem (18) except in the case where
the lower boundary is regular. It is worth emphasizing that the result of Theorem
9 is rather general since it is valid also in the case where the lower boundary may
be attainable in finite time (exit) for the controlled diffusion X. It is also clear that
whenever 0 is regular, we have that V ′(x) ≥ H(x) and, therefore, that {x ∈ R+ :
H(x) > 1} ⊆ {x ∈ R+ : V ′(x) > 1}. In other words, the continuation region of the
stopping problem (18) is a subset of the do-nothing-region in the associated singular
stochastic control problem (5).

Applying now the fundamental theorem of calculus to the mapping
exp(

∫ t
0
θ′(X̃(s))ds) then implies that the value of the optimal stopping problem (18)

coincides with the value of a perpetual American-type forward contract (an optimal
exit problem; see [2] and references therein, see also [8] for an associated interpreta-
tion) of the form

H(x) = 1 + sup
τ<τ̃(0)

Ex

∫ τ

0

exp

(∫ s

0

θ′(X̃(t))dt

)
θ′(X̃(s))ds.

Thus, we find the following.
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Corollary 10. Assume that µ(0) > r, that the convenience yield θ(x) is in-
creasing for x < x∗, decreasing for x > x∗, and that 0 is either natural, exit, or
entrance for the diffusion X. Then, for all x ∈ R+ we have that

V ′(x) = 1 + sup
τ<τ̃(0)

Ex

∫ τ

0

exp

(∫ s

0

θ′(X̃(t))dt

)
θ′(X̃(s))ds.

Proof. The result is a direct consequence of Theorem 9.
Corollary 10 presents an interesting result from the point of view of applications.

Namely, it states that under the optimal policy (given the conditions of Theorem
9), the marginal expected cumulative present value of the future convenience yields
θ(x) is equal to the expected cumulative present value of the future marginal conve-
nience yields θ′(x) evaluated from the present up to the Markov time at which the
accumulation of the marginal yields is optimally stopped.
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[16] N. El Karoui, M. Jeanblanc-Picqué, and S. E. Shreve, Robustness of the Black-Scholes
formula, Math. Finance, 8 (1998), pp. 93–126.

[17] W. H. Fleming and H. M.Soner, Controlled Markov Processes and Viscosity Solutions,
Springer, New York, 1993.
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Abstract. We consider the problem of designing a suboptimal H2/H∞ feedback control law for
a linear time-invariant control system when a complete set of state variables is not available. This
problem can be necessarily restated as a nonconvex optimization problem with a bilinear, multiob-
jective functional under suitably chosen linear matrix inequality (LMI) constraints. To solve such a
problem, we propose an LMI-based procedure which is a sequential linearization programming ap-
proach. The properties and the convergence of the algorithm are discussed in detail. Finally, several
numerical examples for static H2/H∞ output feedback problems demonstrate the applicability of
the considered algorithm and also verify the theoretical results numerically.
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1. Introduction. The static or reduced fixed order dynamic output feedback
control problem that meets desired performance and/or robustness specifications is
an active research area of the control community. In this paper we consider the com-
putational design of static H2/H∞ output feedback controllers. This is an important
example of a nonconvex control problem. It consists of determining a static output
feedback gain which achieves a certain nominal (suboptimal) performance measure
subject to a robustness constraint. The static output feedback problems are impor-
tant, since it is not always possible to have full access to the state vector and a
controller must be used which is based only on the available observations. Moreover,
they are important because other problems are reducible to some variations of the
static output feedback problem and relevant when a simple controller must be used
due to cost and reliability.

During the past decade, control problems with combined H2 and H∞ design
criteria have gained a great deal of attention. Concerning continuous-time systems,
[7] provides the solution of standardH2 andH∞ control problems in terms of algebraic
Riccati equations, where both state feedback and full order compensator-based output
feedback are considered. The design of feedback controllers that satisfy both H∞
and H2 specifications is interesting because it offers robust stability and nominal
performance. In 1989, Bernstein and Haddad [2] introduced a mixedH2/H∞ problem.
Their approach is to minimize an auxiliary cost subject to an H∞ norm constraint,
and this cost yields an upper bound on the H2 norm. The work of [2] is extended
in [46] and [6], where another mixed H2/H∞ problem is addressed. The system
considered therein is dual to the Bernstein–Haddad setup (see [45]). Other related
works on the design of H2/H∞ controllers by state or full order output feedback can
be found, for example, in [23], [33], [35], [38], and [40]. Only [44] considers a mixed
H2/H∞ problem for the static output feedback case. The solvability conditions and
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the algorithms discussed in the above literature are based on coupled Riccati and/or
Lyapunov equations. Recently, linear matrix inequalities (LMIs) have attained much
attention in control engineering [3], [5], [36], since many control problems can be
formulated in terms of LMIs and thus solved via convex programming approaches.
For example, this includes H∞ [4], [11], [12], [25], H2 [18], [37], and mixed H2/H∞
[19], [20], [27], [29], [39]. However, the resulting controllers are state feedback or of
order nx equal to the plant. The difficulties arise if we want to design a static (or
reduced fixed order) output feedback controller. Then the problem of determining a
static output feedback controller including H2 and H∞ can be restated as a linear
algebra problem, which involves two coupled LMIs. In this case, the solution of one
should be the inverse of the other. The problem is then no longer convex [12], [25],
[31], [30], [42], [43], and finding a solution numerically to these nonconvex problems
is a difficult task.

In this paper we will develop an LMI-based computational procedure for solving a
mixed H2/H∞ problem by a static output feedback controller, which is an extension
of the algorithm proposed by Leibfritz [31] for the design of stabilizing static H2 and
H∞ output feedback gains. The suboptimal static H2/H∞ output feedback problem
considered in this paper can be necessarily rewritten to a nonconvex, multiobjective
programming problem. In particular, this problem consists of minimizing a (noncon-
vex) functional of the form J (P,Q, Y ) = Tr(PQ) + Tr(Y ) subject to suitably chosen
LMI constraints. Then, using the solution of this problem (if any exists), the existence
of a static H2/H∞ output feedback gain F can be tested by solving a suitably chosen
LMI feasibility problem in F . Therefore, the problem of finding a suboptimal static
H2/H∞ output feedback gain reduces to an optimization problem with a nonconvex
objective over a convex set and an LMI feasibility problem.

Similar to Leibfritz [31], we will derive the so-called sequential linear program-
ming matrix method (SLPMM) for solving the resulting nonconvex programming
problem. This approach is motivated by successive minimization of a linearization
of J (P,Q, Y ) subject to LMI constraints as proposed by [1] for general nonconvex
bilinear programming problems. Note that the SLPMM algorithm is closely related to
the cone complementarity linearization method developed by [9] for solving the static
output feedback stabilization problem. As shown in [31], the theoretical advantages
of the SLPMM algorithm over the cone complementarity algorithm are the following.
First, the SLPMM algorithm always generates a strictly decreasing sequence of the
objective function values which is bounded below by an integer nx, and thus it is
convergent. Second, the sequence of iterates generated by the SLPMM is contained
in a compact level set, and therefore it is always bounded. Finally, if a corresponding
bilinear matrix problem is nonempty, then every accumulation point of the generated
sequence solves this bilinear matrix problem. In this case, it is always possible to
reconstruct a static output feedback gain from this solution. On the other hand, if
there exists no matrix pair satisfying the bilinear matrix problem, then the SLPMM
algorithm always terminates with an objective function value of a bilinear matrix
inequality minimization problem which is greater than nx. This indicates for the
considered plant that there exists no static output feedback controller. But in this
case, one can construct a reduced fixed order dynamic controller from the computed
solution of the bilinear matrix inequality minimization problem. For more details, we
refer to Leibfritz [31]. In contrast to these strong theoretical convergence results, the
authors in [9] can guarantee only that the sequence of a linear approximation of the
objective function values is a monotonically (nonstrict) decreasing sequence, which
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is bounded below by 2nx. Moreover, in the last few years a number of numerical
procedures have been proposed for solving static H2 output feedback problems. For
example, the LMI-based methods also include the Min-Max algorithm of Geromel,
de Souza, and Skelton [16], [17], the XY-centering algorithm of Iwasaki and Skelton
[26], and the alternating projection method of Grigoriadis and Skelton [21], but the
convergence of these algorithms is not always guaranteed. Particularly, the Min-Max
algorithm guarantees only sequences of upper and lower bounds to the maximal and
minimal eigenvalues of PQ, which are strictly decreasing, and increasing sequences
under strong technical assumptions. In addition, for ensuring the global convergence
of the Min-Max algorithm, they must assume that the generated sequences are con-
tained in a compact set. On the other hand, it may occur that the Min-Max algorithm
generates an unbounded sequence even if the bilinear matrix problem is nonempty.
In this case the Min-Max method breaks down [9], [17]. Since the XY-centering al-
gorithm is closely related to the Min-Max procedure, the global convergence of this
approach can be shown only under similar technical assumptions that are as strong as
the ones imposed for the Min-Max algorithm [26, Theorem 2]. Finally, the alternating
projection method is guaranteed to converge only locally. These observations motivate
us to derive the SLPMM algorithm for more complicated problems such as the static
H2/H∞ problem. For this problem class, we will show that the SLPMM procedure
behaves theoretically as well as numerically in a similar way to that described above.

The paper is organized as follows. Section 2 defines the considered system real-
ization and describes the static H2/H∞ output feedback problem considered in this
paper. Section 3 contains the necessary and sufficient conditions for the existence
of stabilizing static H∞ output feedback controllers. Moreover, the formulation of
the LMI-based nonconvex optimization problem, which must be necessarily solvable
if the static H2/H∞ output feedback problem has a solution, can be found therein.
Section 3.1 presents the main part of this paper. Therein we motivate the nonconvex
multiobjective programming problem, and, similarly as in [31], we derive the SLPMM
algorithm for finding a numerical solution of this problem class. Thereafter, we dis-
cuss the properties and global convergence of this procedure. Finally, in section 4,
we present several examples for the design of suboptimal static H2/H∞ output feed-
back control laws, which will demonstrate the applicability of the SLPMM algorithm
applied to this problem class. We also verify numerically the theoretical results and
demonstrate the design of reduced fixed order dynamic controllers if the algorithm
terminates with an optimal value greater than nx + Tr(Y ∗).

We will use the following notation. Ir denotes the (r × r) identity matrix. The
set of real symmetric (n × n) matrices is denoted by Sn, and S+

n describes the cone
of symmetric positive definite (n × n) matrices. For A ∈ Sn, A � 0 (A � 0) means
that A is positive definite (semidefinite). Similarly, A ≺ 0 (A 	 0) denotes that
A is negative definite (semidefinite). For A,B ∈ Sn, A 	 B (A � B) denotes the
usual Loewner ordering [24]. The symbol Tr(A) =

∑n
i=1 aii is the trace operator of a

matrix A ∈ R
n×n. ||A||F is the Frobenius norm of a matrix. Finally, ||Tzw||∞ denotes

the H∞ norm of a proper and real rational stable transfer matrix, i.e., Tzw ∈ RH∞
[10], and ||Tzw||H2

is the usual H2 norm of a strictly proper and real rational stable
transfer matrix, i.e., Tzw ∈ RH2 [10].

2. The static H2/H∞ output feedback problem. In this section, we focus
on the staticH2/H∞ output feedback problem as formulated by Doyle et al. [6] for the
full order dynamic output feedback case. However, we take a “suboptimal” approach
for designing a static output feedback controller which is similar to [29]. The problem
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solved by Doyle et al. has been shown to be a dual problem of Bernstein and Haddad [2]
in some sense; see, for example, Yeh, Banda, and Chang [45]. Khargonekar and Rotea
[29] have obtained a nice solution to the dual problem for a class of suboptimal full
order output feedback compensators. For example, a convex optimization approach
is proposed to solve the full order output feedback dual problem. However, the static
output feedback case considered in this paper is much more difficult, since the problem
is then no longer convex.

Consider a finite dimensional linear time–invariant plant ΣP with the state space
realization

ΣP


ẋ(t) = Ax(t) +B0w0(t) +B1w1(t) +B2u(t), x(0) = 0,
z(t) = C1x(t) +D10w0(t) +D11w1(t) +D12u(t),
y(t) = C2x(t) +D20w0(t) +D21w1(t),

where x(t) ∈ R
nx is the state, wi(t) ∈ R

nw , i = 0, 1, are the disturbance inputs,
u(t) ∈ R

nu is the control input, z(t) ∈ R
nz is the regulated output, and y(t) ∈ R

ny is
the measured output of the control system. The static output feedback controller ΣC
with the state space realization

ΣC
{
u(t) = Fy(t)

is to be designed, where F ∈ R
nu×ny denotes the unknown static output feedback

gain. Substituting ΣC into the plant, ΣP yields the corresponding closed loop system
given by

Σcl

{
ẋ(t) = AFx(t) +B0Fw0(t) +BFw1(t), x(0) = 0,
z(t) = CFx(t) +D0Fw0(t) +DFw1(t),

where the closed loop matrices AF , BF , CF , DF , B0F , and D0F are defined as follows:

AF = A+B2FC2, BF = B1 +B2FD21, CF = C1 +D12FC2, DF = D11 +D12FD21,
B0F = B0 +B2FD20, D0F = D10 +D12FD20.

Throughout the whole paper, the following assumptions are imposed on the system.
Assumption 2.1.
(1) The pair (A,B2) is stabilizable, and the pair (A,C2) is detectable.
(2) The data matrices in ΣP , especially the following, are real constant matrices:

A ∈ R
nx×nx , B1 ∈ R

nx×nw , B2 ∈ R
nx×nu , C1 ∈ R

nz×nx , C2 ∈ R
ny×nx ,

D11 ∈ R
nz×nw , D12 ∈ R

nz×nu , D21 ∈ R
ny×nw , B0 ∈ R

nx×nw ,
D10 ∈ R

nz×nw , D20 ∈ R
ny×nw .

(3) F ∈ R
nu×ny , nu < nx, ny < nx, and rank(B2) = nu, rank(C2) = ny.

We start by considering the analysis problem. Assume the static output feedback
law ΣC is fixed such that the closed loop system Σcl is internally stable. For example,
there exists a static output feedback gain in the set

Fs = {F ∈ R
nu×ny | AF is Hurwitz},(2.1)

the so-called stability set. Let Tzw1(s) = CF (sI−AF )−1BF +DF (Tzw0
(s) = CF (sI−

AF )−1B0F +D0F ), s ∈ C, denote the closed loop transfer matrix from w1 to z (from
w0 to z). The concepts of H∞ norm and H2 norm/cost are well known (cf. [7]).
Therefore, we will omit detailed discussion and content ourselves with starting the
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following definitions for reference. Since all coefficient matrices are assumed to be real
and F ∈ Fs is fixed, the transfer matrix Tzw1 ∈ RH∞ and the H∞ norm of Tzw1 is
defined by

||Tzw1 ||∞ = sup
ω∈R

σmax(Tzw1(iω)),(2.2)

where σmax(Tzw1(·)) denotes the largest singular value of Tzw1
and i denotes the

imaginary unit. Recall that Tzw0 ∈ RH2 and the H2 norm of Tzw0 is finite, for
example, ||Tzw0 ||H2 < ∞, if and only if D0F ≡ 0. In this case, if Lo denotes the
observability Gramian of the pair (AF , CF ), the H2 norm of Tzw0

can be computed
by

||Tzw0
||2H2

= Tr(BT0FLoB0F );(2.3)

for example, Lo satisfies Lyap(Lo, F ) = ATFLo + LoAF + CTFCF = 0.
Now let the scalar γ > 0 be given and assume that ||Tzw1 ||∞ < γ. Define RF =

Inw−γ−2DTFDF , and then it is a standard fact (see, for example, [30], [47]), that there
exist a unique real symmetric matrix X and a gain F ∈ R

nu×ny such that RF � 0,

Ric(X,F ) = ATFX +XAF + γ−1CTFCF(2.4)

+ γ−1(XBF + γ−1CTFDF )R−1
F (BTFX + γ−1DTFCF ) = 0,

and AF + γ−1BFR
−1
F (BTFX + γ−1DTFCF ) is Hurwitz. Moreover, X satisfies (cf. [2])

0 	 Lo 	 X 	 P,
where P fulfills Ric(P, F ) 	 0. Thus, if the H2 norm of Tzw0

is finite, then we have

||Tzw0 ||2H2
= Tr(BT0FLoB0F ) ≤ Tr(BT0FXB0F ) ≤ Tr(BT0FPB0F ).(2.5)

Similarly as in [2], [46], [29], or [35], these inequalities motivate us to define the
following auxiliary H2/H∞ cost function for the linear time–invariant closed loop
system Σcl:

Cγ(P, F ) = Tr(BT0FPB0F ),(2.6)

which is an upper bound on ||Tzw0
||2H2

if and only if D0F ≡ 0. Moreover, Cγ(P, F ) ≤
Tr(Y ) whenever the symmetric matrices P � 0 and Y � 0, Y ∈ R

nw×nw , satisfy
Ric(P, F ) ≺ 0 and

ψ(F, P, Y ) :=

[
Y BT0FP

PB0F P

]
� 0.(2.7)

Note that (2.7) is equivalent to Y � BT0FPB0F � 0 and can be stated also as follows:[
Y BT0 P
PB0 P

]
+

[
0
PB2

]
F
[
D20 0

]
+

[
DT20
0

]
FT
[

0 BT2 P
] � 0.(2.8)

Thus, for given P ∈ S+
nx , the matrix inequality (2.8) is an LMI in Y and F .

By this discussion, it is immediate that ||Tzw1 ||∞ < γ and ||Tzw0 ||2H2
< Cγ(P, F ) if

and only ifD0F ≡ 0. Hence, the Riccati inequality Ric(P, F ) ≺ 0 leads to anH∞ norm
bound γ and an H2 cost upper bound Cγ(P, F ). If D0F �= 0, then ||Tzw0 ||2H2

= ∞. In
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this case, we do not interpret the auxiliary cost function Cγ(P, F ) as an upper bound
on the H2 cost, but we can interpret it as a robust performance measure similar
to the results of [46, Theorem 4] and [6, Theorem 1]. The results concerning the
optimization of the auxiliary static H2/H∞ performance measure over the set of all
stabilizing static controller gains F satisfying ||Tzw1 ||∞ < γ can be obtained from the
following characterization. The proof of this result is very similar to [29, Lemma 2.1]
and is thus omitted (see also [6, Theorems 1, 2]).

Lemma 2.2. Consider the stable closed loop system Σcl and let Tzw1
(Tzw0

) denote
the closed loop transfer matrix from w1 to z (from w0 to z). Let γ > 0 be given and
suppose that Tzw0 is strictly proper, i.e., D0F ≡ 0. Let Ric(·) be defined by (2.4).
Then there exists a gain F ∈ R

nu×ny satisfying ||Tzw1 ||∞ < γ if and only if there
exists a pair (P, F ), F ∈ R

nu×ny , P ∈ S+
nx , such that RF � 0 and Ric(P, F ) ≺ 0. In

this case,

Cγ(P, F ) = inf{Tr(BT0FPB0F ) | (P, F ) satisfy RF � 0,Ric(P, F ) ≺ 0, P � 0}.(2.9)

With the result of Lemma 2.2, our goal is to minimize the auxiliary static H2/H∞
performance measure over all stabilizing static output feedback gains F that enforce
the H∞ constraint. From the previous discussion, this is equivalent to minimizing
Tr(Y ) over all matrices F , P , and Y satisfying Ric(P, F ) ≺ 0, RF � 0, P � 0, Y � 0,
and ψ(F, P, Y ) � 0. Thus, we state the suboptimal static H2/H∞ output feedback
problem considered in this paper as the following nonconvex optimization problem:

min Tr(Y ), subject to (s.t.) P � 0, RF � 0, Ric(P, F ) ≺ 0, Y � 0,
ψ(F, P, Y ) � 0.

(2.10)

In the following sections, we will discuss a procedure for finding solutions to this
problem. Note, a solution (P ∗, F ∗, Y ∗) of (2.10), if any exists, is suboptimal in the
sense that

Coptγ (X,F ) = min{Tr(BT0FXB0F ) | X � 0, RF � 0,Ric(X,F ) = 0}
≤ Tr(BT0F∗P ∗B0F∗) ≤ Tr(Y ∗),(2.11)

where Coptγ (X,F ) denotes the minimal value of the “optimal” static H2/H∞ output
feedback problem.

Finally, note that the results in the following sections can be easily extended to
the following static H2/H∞ output feedback problem formulation:

min Tr(Y ), s.t. P � 0, RF � 0,Ric(P, F ) ≺ 0, Y � 0, ψ(F, P, Y ) � 0,
Lyap(P, F ) ≺ 0, D0F = 0.

(2.12)

Here, the goal is to minimize an upper estimate of the optimal static H2 performance
subject to the H∞ constraint.

3. Suboptimal static H2/H∞ output feedback design; LMI approach.
This paragraph is devoted to the computational design of a suboptimal static H2/H∞
output feedback controller. For deriving the LMI-based formulation of the static
H2/H∞ output feedback problem, we need the following result which can be found,
for example, in [25].

Lemma 3.1. Let B ∈ R
n×m, rank(B) = m < n, C ∈ R

r×n, rank(C) = r < n, and
Ω ∈ R

n×n be given. Then there exists F ∈ R
m×r satisfying BFC + (BFC)T + Ω ≺ 0

if and only if N(BT )TΩN(BT ) ≺ 0 and N(C)TΩN(C) ≺ 0 hold, where N(BT ) ∈



SUBOPTIMAL STATIC H2/H∞ OUTPUT FEEDBACK DESIGN 1717

R
n×(n−m), N(C) ∈ R

n×(n−r), denoting any matrices whose columns form orthonormal
bases of the null spaces of BT , C, respectively.

By involving Lemma 3.1 and the strict bounded real lemma [47], the suboptimal
static H∞ output feedback problem, i.e., find a static output feedback gain F , if any
exists, such that AF is Hurwitz and ||Tzw1 ||∞ < γ, can be transformed to a problem
of solving two LMIs coupled through a bilinear matrix equation. Similar results can
be found, for example, in [12], [25], and [30].

Theorem 3.2 (existence of static H∞ controllers). Let Fs �= ∅, γ > 0 be given
and consider the closed loop system Σcl with w0 = 0. Then the following are equiva-
lent.

(i) There exists a static output feedback gain F ∈ R
nu×ny such that AF is a

Hurwitz matrix and ||Tzw1
||∞ < γ.

(ii) There exists a pair (F, P ), F ∈ R
nu×ny , P ∈ S+

nx , satisfying

BFC + (BFC)T + Ω ≺ 0,(3.1)

Ω =

 ATP + PA PB1 CT1
BT1 P −γInw DT11
C1 D11 −γInz

 ,B =

 PB2

0
D12

 , C = [C2 D21 0] .

(iii) There exist matrices P ∈ S+
nx and Q ∈ S+

nx satisfying PQ = I and

NT
Q

[
AQ+QAT + γ−1B1B

T
1 (C1Q+ γ−1D11B

T
1 )T

(C1Q+ γ−1D11B
T
1 ) γ−1D11D

T
11 − γInz

]
NQ ≺ 0,(3.2)

NT
P

[
ATP + PA+ γ−1CT1 C1 PB1 + γ−1CT1 D11

(PB1 + γ−1CT1 D11)
T γ−1DT11D11 − γInw

]
NP ≺ 0,(3.3)

where NQ := N([BT2 DT12]) and NP := N([C2 D21]), denoting any matrices whose
columns form orthonormal bases of the null spaces of [BT2 DT12] and [C2 D21],
respectively.

Proof. Combining the strict bounded real lemma [47], Theorem 3.1, and using a
Schur complement argument yields the desired result with Q = P−1.

The inequalities (3.2) and (3.3) are LMIs in Q and P , respectively, and are there-
fore convex. But finding P � 0 and Q � 0 satisfying PQ = I, (3.2), and (3.3) together
is a difficult task since

ΦH∞(P,Q, γ) := {(P,Q) ∈ S+
nx | (P,Q) satisfying PQ = I, (3.2), (3.3)}(3.4)

is a nonconvex set, i.e., elements in ΦH∞(P,Q, γ) must be inverse to each other. A
numerical algorithm for determining a pair (P,Q) ∈ ΦH∞(P,Q, γ) can be found, for
example, in Leibfritz [31].

Similarly as in Theorem 3.2, we can eliminate the matrix variable F from (2.8)
by using [25, Theorem 1], which is a generalization of Lemma 3.1. In particular, we
have the following lemma.

Lemma 3.3. Let Y ∈ R
nw×nw , Y � 0, P ∈ S+

nx , and F ∈ R
nu×ny . Moreover,

let B0 ∈ R
nx×nw , B2 ∈ R

nx×nu , and D20 ∈ R
ny×nw be given. Suppose [0 PB2]

T ∈
R

(nw+nx)×nu , rank([0 PB2]
T ) ≤ nu, and [D20 0] ∈ R

ny×(nw+nx), rank([D20 0]) ≤
ny. Then the following statements are equivalent.

(i) There exists a triple (F, P, Y ) satisfying (2.8).
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(ii) There exist matrices Y ∈ R
nw×nw , Y � 0, P ∈ S+

nx , and Q ∈ S+
nx satisfying

PQ = I and

Q̃(Q,Y ) = N([0 BT2 ])T
[
Y BT0
B0 Q

]
N([0 BT2 ]) � 0,(3.5)

P̃(P, Y ) = N([D20 0])T
[
Y BT0 P
PB0 P

]
N([D20 0]) � 0,(3.6)

where N([0 BT2 ]) and N([D20 0]) denote any matrices whose columns form orthonor-
mal bases of the null spaces of [0 BT2 ] and [D20 0], respectively.

Proof. Observing that

N

([
0
PB2

]T)
=

[
Inw 0
0 P−1

]
N

([
0
B2

]T)
and using [25, Theorem 1], we obtain the desired result with Q = P−1.

The set

Φ̃(P,Q, Y ) := {(P,Q) ∈ S+
nx , Y ∈ Snw | (P,Q, Y )

satisfying Y � 0, PQ = I, (3.5), (3.6)}(3.7)

is not convex due to the coupling condition PQ = I.
Obviously, a suboptimal static H2/H∞ controller in the sense of the previous

section exists if and only if condition (ii) of Theorem 3.2 and (2.8) hold for the same
gain matrix F. Assuming that there exist matrices F, P ∈ S+

nx , Y ∈ Snw satisfying
(3.1) and (2.8), there exist matrices (P,Q) ∈ S+

nx and Y ∈ Snw satisfying condition
(iii) of Theorem 3.2 and condition (ii) of Lemma 3.3. Thus, the static H2/H∞ output
feedback problem can be necessarily transformed to the following bilinear optimization
problem:

min Tr(Y ), s.t. (P,Q, Y ) ∈ ΦH∞(P,Q, γ) ∩ Φ̃(P,Q, Y ).(3.8)

Now suppose that there exists a solution triple (P ∗, Q∗, Y ∗) of (3.8) (not necessarily
unique); then there exists a suboptimal static H2/H∞ output feedback controller if
and only if there exists an F satisfying (3.1) and (2.8) for P = P ∗ and Y = Y ∗.
Note, for given (P ∗, Q∗, Y ∗), this is an LMI feasibility problem in F . Therefore, the
suboptimal static H2/H∞ problem is solvable if and only if the bilinear optimization
problem (3.8) has a solution and the corresponding LMI feasibility problem in F is
nonempty. Hence, these observations lead to the following necessary and sufficient
conditions for the existence of static H2/H∞ output feedback controllers.

Theorem 3.4. Let Fs �= ∅, γ > 0 be given, and consider the closed loop system
Σcl. Then the following statements are equivalent.

(i) There exists a triple (F, P, Y ), F ∈ R
nu×ny , P ∈ S+

nx , Y ∈ Snw , and Y � 0
satisfying (3.1) and (2.8).

(ii) There exist matrices P ∈ S+
nx , Q ∈ S+

nx , Y ∈ Snw , and Y � 0 satisfying
PQ = I, (3.2), (3.3), (3.5), (3.6), and, for all such fixed (P, Y ), there is a
matrix F ∈ R

nu×ny satisfying (3.1) and (2.8).
Due to this result, the suboptimal static H2/H∞ problem can be solved by first

finding a solution of (3.8) which is also a necessary condition for the solvability of
(2.10). Secondly, if (3.8) has a solution, the static H2/H∞ output feedback gain, if
any exists, can be obtained by solving the corresponding LMI feasibility problem in F .
Finally, all gains F which can be reconstructed in this way will be called suboptimal
due to the relation Tr(Y ∗) ≥ Cγ(P ∗, F ) ≥ Coptγ (X,F ).
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3.1. Bilinear LMI-based algorithm. In this subsection we describe a bilinear,
multiobjective LMI-based algorithm for finding a triple (P,Q, Y ) satisfying approxi-
matively (3.8). As defined by (3.4) and (3.7), the sets ΦH∞(P,Q, γ) and Φ̃(P,Q, Y )
are not convex and not closed. To make these sets convex, the coupling constraint
PQ = I can be weakened to the following well-known semidefinite programming
(SDP)-relaxation:

P � Q−1 � 0 ⇐⇒ M(P,Q) :=

[
P I
I Q

]
� 0.(3.9)

Replacing PQ = I in the nonconvex sets ΦH∞(P,Q, γ) and Φ̃(P,Q, Y ) by M(P,Q) �
0 yields a convex approximation of these sets. Moreover, for computational purposes,
we prefer to have closed sets. Introducing a positive scalar β > 0 and replacing
the closed loop matrix AF by A + βI + B2FC2 in Theorem 3.2, we can rewrite the
existence conditions of Theorem 3.2 to the following bilinear matrix feasibility problem
(cf. Leibfritz [31]).

Find (P,Q) � 0, such that PQ = I, Qβ(Q, γ) 	 0, Pβ(P, γ) 	 0,(3.10)

where, for given β > 0 and γ > 0, we define

Qβ(Q, γ) = NT
Q

[
AQ+QAT + 2βQ+ γ−1B1B

T
1 (C1Q+ γ−1D11B

T
1 )T

C1Q+ γ−1D11B
T
1 γ−1D11D

T
11 − γInz

]
NQ,

(3.11)

Pβ(P, γ) = NT
P

[
ATP + PA+ 2βP + γ−1CT1 C1 PB1 + γ−1CT1 D11

(PB1 + γ−1CT1 D11)
T γ−1DT11D11 − γInw

]
NP ,(3.12)

and NQ, NP are defined as in Theorem 3.2. With these definitions, we replace the
nonconvex set ΦH∞(P,Q, γ) by the bilinear approximation

Φ̄H∞(P,Q, γ, β) = {(P,Q) ∈ S+
nx | (P,Q) satisfying PQ = I,Qβ(Q, γ) 	 0,

Pβ(P, γ) 	 0}(3.13)

and redefine the bilinear optimization problem (3.8) as

min Tr(Y ), s.t. (P,Q, Y ) ∈ Φ̄H∞(P,Q, γ, β) ∩ Φ̃(P,Q, Y ).(3.14)

Then, replacing PQ = I by M(P,Q) � 0 in (3.7) and (3.13) yields the following
closed and linear approximations to the nonconvex and open sets Φ̄H∞(P,Q, γ) and
Φ̃(P,Q, Y ), respectively:

Xβ(P,Q, γ) = {(P,Q) ∈ Snx |M(P,Q) � 0,Qβ(Q, γ) 	 0,Pβ(P, γ) 	 0}(3.15)

and

X̃ (P,Q, Y ) = {(P,Q) ∈ Snx , Y ∈ Snw |M(P,Q) � 0, Y � 0, Q̃(Q,Y ) � 0,

P̃(P, Y ) � 0}.(3.16)

Observe that the condition PQ = I, which is equivalent to Tr(PQ) = nx, is satisfied
if and only if rank(M(P,Q)) ≡ nx, i.e., the nx smallest eigenvalues of the positive
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semidefinite (2nx × 2nx) matrix M(P,Q) are equal to zero. In fact, the constraint
PQ = I characterizes the boundary of the set

{(P,Q) ∈ Snx | P � Q−1 � 0} = {(P,Q) ∈ Snx |M(P,Q) � 0}.
Thus, a feasible matrix triple to the following nonconvex bilinear matrix feasibility
problem

Find (P,Q) � 0, Y � 0 such that

PQ = I, Qβ(Q, γ) 	 0, Pβ(P, γ) 	 0, Q̃(Q,Y ) � 0, P̃(P, Y ) � 0
(3.17)

can be obtained by searching for boundary points of the linear and closed set Xβ(P,Q, γ)

∩ X̃ (P,Q, Y ), defined by (3.15) and (3.16), respectively. This suggests the following
nonconvex bilinear matrix inequality minimization problem:

min Tr(PQ), s.t. (P,Q, Y ) ∈ Xβ(P,Q, γ) ∩ X̃ (P,Q, Y ).(3.18)

Note that there exists a feasible triple (P,Q, Y ) satisfying (3.17) if and only if the
optimal value of (3.18) is equal to nx. Since we are interested in a solution triple
(P,Q, Y ) of the nonconvex problem (3.14), this observation motivates us to define the
following bilinear, multiobjective programming problem:

min Tr(PQ) + Tr(Y ), s.t. (P,Q, Y ) ∈ Xβ(P,Q, γ) ∩ X̃ (P,Q, Y ).(3.19)

This problem combines the objective functionals of (3.14) and (3.18). Obviously,
minimizing Tr(PQ) enforces a solution of (3.19) to be close to or on the boundary
of the feasible set of (3.19), while minimizing Tr(Y ) drives a solution of (3.19) to be
suboptimal for the corresponding static H2/H∞ output feedback problem.

If the triple (P ∗, Q∗, Y ∗) is a boundary solution of (3.19) satisfying P ∗Q∗ = I,
then we know that (P ∗, Q∗, Y ∗) is contained in the feasible set of (3.14) and also
satisfies

nx + Tr(Y ∗) = min{Tr(PQ) + Tr(Y ) | (P,Q, Y ) ∈ Φ̄H∞(P,Q, γ, β) ∩ Φ̃(P,Q, Y )}.
Thus, the optimal value of (3.14) fulfills

min{Tr(Y ) | (P,Q, Y ) ∈ Φ̄H∞(P,Q, γ, β) ∩ Φ̃(P,Q, Y )} − nx ≤ Tr(Y ∗)− nx
= min{Tr(PQ) + Tr(Y ) | (P,Q, Y ) ∈ Xβ(P,Q, γ) ∩ X̃ (P,Q, Y )} − nx.

Hence, an optimal solution of (3.19) yields an upper bound to the optimal value of
(3.14) and at least a suboptimal solution of (3.14) if and only if the minimal triple
(P ∗, Q∗, Y ∗) of (3.19) satisfies P ∗Q∗ = I. Finally, if and only if P ∗Q∗ = I, then the
corresponding suboptimal static H2/H∞ output feedback gain can be reconstructed
from (P ∗, Q∗, Y ∗) if and only if the following LMI feasibility problem in F is nonempty.

Find F ∈ R
nu×ny , such that BFC + (BFC)T + Ω̄ 	 0 and[

Y ∗ BT0 P
∗

P ∗B0 P ∗

]
+

[
0

P ∗B2

]
F
[
D20 0

]
+

[
DT20
0

]
FT
[

0 BT2 P
∗ ] � 0,

(3.20)
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where

Ω̄ =

 ATP ∗ + P ∗A+ 2βP ∗ P ∗B1 CT1
BT1 P

∗ −γInw DT11
C1 D11 −γInz

 ,B =

 P ∗B2

0
D12

 , C = [C2 D21 0] .

In this case, the discussion in section 3 implies the existence of a suboptimal static
H2/H∞ controller. It also guarantees that AF is Hurwitz, ||Tzw1 ||∞ < γ, and
Tr(Y ∗) ≥ Tr(BT0FP

∗B0F ) ≥ Coptγ (X,F ). Thus, such an F is indeed a suboptimal
static H2/H∞ output feedback gain.

In what follows we explain a numerical procedure for determining an optimal
solution of the bilinear, multiobjective programming problem (3.19). This problem is
not convex since the functional Tr(PQ) is, in general, not convex, but it is bilinear.
Therefore, in problem (3.19) we minimize a combination of a bilinear and linear matrix
functional over a closed convex set. To solve such a problem, a sequential linearization
programming approach as proposed by [1] for general nonconvex bilinear programming
problems can be used. In particular, the idea of this approach is very simple. Instead
of solving the nonconvex problem (3.19) directly, we linearize the bilinear part of the
objective functional. Then we minimize successively the resulting (linearized) LMI
constrained semidefinite programming problems.

Algorithm 1 (SLPMM).
For given β > 0, let Xβ(P,Q, γ) ∩ X̃ (P,Q, Y ) �= ∅.

(0) Determine (P 0, Q0, Y 0) ∈ Xβ(P,Q, γ) ∩ X̃ (P,Q, Y ).

For k = 0, 1, 2, . . . do
(1) Determine (Uk, V k, Zk) as the unique solution of

min Tr(PQk + P kQ) + Tr(Y ),

s.t. (P,Q, Y ) ∈ Xβ(P,Q, γ) ∩ X̃ (P,Q, Y ).
(3.21)

(2) If Tr(UkQk + P kV k) + Tr(Zk) = 2Tr(P kQk) + Tr(Y k), −→ Stop.
(3) Compute α ∈ [0, 1] by solving

minα∈[0,1] Tr((P k + α(Uk − P k))(Qk + α(V k −Qk)))
+ Tr(Y k + α(Zk − Y k)).(3.22)

(4) Set P k+1 = (1 − α)P k + αUk, Qk+1 = (1 − α)Qk + αV k, and Y k+1 =
(1− α)Y k + αZk.

This algorithm is similar to the SLPMM procedure proposed by Leibfritz [31] for
the design of stabilizing static H2 and suboptimal static H∞ output feedback con-
trollers. The initialization step of Algorithm 1 is an LMI feasibility problem, and
(3.21) is an SDP problem with a linear objective functional under LMI constraints.
There are many algorithms available for solving such kinds of problems. For example,
interior point methods developed for SDPs can be used (cf. [13]). Algorithm 1 termi-
nates if the first order necessary minimum principle is satisfied at a (local) minimum
of (3.19) [34, section 6.1]. For example, define

J (P,Q, Y ) := Tr(PQ) + Tr(Y ).(3.23)

Note that J (P,Q, Y ) is continuous and differentiable on the cone of symmetric ma-
trices. Hence,

J ′(P,Q, Y )(U, V, Z) = Tr(UQ+ PV ) + Tr(Z),
J ′′(P,Q, Y )(U, V, Z)(H,G,W ) = Tr(HV + UG)
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for any U, V,H,G ∈ Snx and Z,W ∈ Snw . If (P ∗, Q∗, Y ∗) denotes a local minimum of
J over the closed convex set Xβ(P,Q, γ)∩ X̃ (P,Q, Y ), then for any feasible direction
(P − P ∗, Q−Q∗, Y − Y ∗) = (δP, δQ, δY ) at (P ∗, Q∗, Y ∗) we obtain

J ′(P ∗, Q∗, Y ∗)(δP, δQ, δY ) = Tr(PQ∗ + P ∗Q) + Tr(Y )
− 2Tr(P ∗Q∗)− Tr(Y ∗) ≥ 0

(3.24)

for all (P,Q, Y ) ∈ Xβ(P,Q, γ) ∩ X̃ (P,Q, Y ) [34, section 6.1, Proposition 1]. Numeri-
cally, for a sufficiently small scalar ε > 0, we terminate the algorithm if

τk := Tr(UkQk + P kV k) + Tr(Zk)− 2Tr(P kQk)− Tr(Y k) ≥ −ε, k ≥ 0.(3.25)

Moreover, if (P k, Qk, Y k) ∈ Xβ(P,Q, γ)∩X̃ (P,Q, Y ) and (Uk, V k, Zk) ∈ Xβ(P,Q, γ)∩
X̃ (P,Q, Y ) do not satisfy (3.24), we determine a step size parameter α ∈ [0, 1] by
minimizing (3.22) with respect to α. Finally, the new iterates (P k+1, Qk+1, Y k+1) are
convex combinations of (P k, Qk, Y k) and (Uk, V k, Zk), respectively, and therefore,
they are also contained in Xβ(P,Q, γ) ∩ X̃ (P,Q, Y ). Note that the points (Uk −
P k, V k − Qk, Zk − Y k), k ≥ 0, are descent directions for J at (P k, Qk, Y k) unless
τk ≥ 0 for some k ≥ 0.

For proofing the convergence of Algorithm 1, we need the following result. Sup-
pose for fixed β > 0 that there exist matrices (P 0, Q0, Y 0) ∈ Xβ(P,Q, γ)∩X̃ (P,Q, Y );
then we can define the following level set:

Γ(P 0, Q0, Y 0) := {(P,Q, Y ) ∈ Xβ(P,Q, γ) ∩ X̃ (P,Q, Y ) | J (P,Q, Y )
≤ J (P 0, Q0, Y 0)}.(3.26)

For this level set, we conclude the following lemma.
Lemma 3.5. Let β > 0 be given, Xβ(P,Q, γ) ∩ X̃ (P,Q, Y ) be nonempty, and let

(P 0, Q0, Y 0) ∈ Xβ(P,Q, γ)∩ X̃ (P,Q, Y ) be given. Then the level set Γ(P 0, Q0, Y 0) is
compact.

Proof. Using [24, Theorem 7.4.10], the closeness of Xβ(P,Q, γ), X̃ (P,Q, Y ), and
the definition of Γ(P 0, Q0, Y 0) shows the desired result.

With the compactness of the level set Γ(P 0, Q0, Y 0), it is straightforward to show
the existence of an optimal solution of (3.19) in this level set. In particular, we have
the following lemma.

Lemma 3.6. Let Xβ(P,Q, γ) ∩ X̃ (P,Q, Y ) �= ∅ and (P 0, Q0, Y 0) ∈ Xβ(P,Q, γ) ∩
X̃ (P,Q, Y ) be given. Then there exists an optimal solution (P ∗, Q∗, Y ∗) of (3.19) in
the level set Γ(P 0, Q0, Y 0).

Proof. By the compactness of Γ(P 0, Q0, Y 0), the continuity of J , and the theorem
of Bolzano–Weierstrass, the result follows immediately.

Thus, Lemma 3.6 ensures the existence of a solution of the multiobjective pro-
gramming problem (3.19) at least in the compact level set Γ(P 0, Q0, Y 0).

The following lemma is needed in the proof of the Theorem 3.8 given below.
Lemma 3.7. Let a > 0, b < 0, and c ≥ 1 be given. Then there exists ρ∗ ≥ 0 such

that the optimal solution of minα∈[0,1] (c+ α b+ (α2/2) a) satisfies

0 < α∗ = −b+ ρ∗
a

≤ 1.

Moreover, ρ∗ = 0 if and only if a ≥ −b.
Proof. The result can be proven by using the convexity of the objective function

and the Karush–Kuhn–Tucker theorem.
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The next result states the basic convergence properties of Algorithm 1. It also jus-
tifies the fact that we need only the existence of a solution of (3.19) in Γ(P 0, Q0, Y 0).
Before stating these properties, we define the boundary of the set Xβ(P,Q, γ) ∩
X̃ (P,Q, Y ), given by

∂X (P,Q, Y ) := {(P,Q, Y ) ∈ Xβ(P,Q, γ) ∩ X̃ (P,Q, Y ) | PQ = I}.(3.27)

Obviously,

∂X (P,Q, Y ) = Φ̄H∞(P,Q, γ, β) ∩ Φ̃(P,Q, Y ) ⊆ Xβ(P,Q, γ) ∩ X̃ (P,Q, Y ).

Hence, the level set Γ(P 0, Q0, Y 0) also contains all (P,Q, Y ) on the boundary of
Xβ(P,Q, γ)∩X̃ (P,Q, Y ). Therefore, similarly as in Lemma 3.6, we can conclude that
there also exists an optimal solution of the nonconvex optimization problem (3.14) in
the level set Γ(P 0, Q0, Y 0).

Theorem 3.8. Let β > 0 and (P 0, Q0, Y 0) ∈ Xβ(P,Q, γ) ∩ X̃ (P,Q, Y ) be given.

Furthermore, assume that {(P k, Qk, Y k)} ⊂ Xβ(P,Q, γ)∩ X̃ (P,Q, Y ) is generated by
Algorithm 1. Then the sequence {(P k, Qk, Y k)} is well defined and for all k ≥ 0, we
have

nx + Tr(Y ∗) ≤ nx + Tr(Y k+1) ≤ J (P k+1, Qk+1, Y k+1) < J (P k, Qk, Y k)(3.28)

unless J ′(·)(·) = 0, where (P ∗, Q∗, Y ∗) solves (3.19). Thus, {J (P k, Qk, Y k)} con-
verges to Ĵ ≥ nx + Tr(Y ∗) and for all k ≥ 0, (P k, Qk, Y k) ∈ Γ(P 0, Q0, Y 0), i.e.,
{(P k, Qk, Y k)} is bounded. Finally, J (P k, Qk, Y k) = nx + Tr(Y k) if and only if
(P k, Qk, Y k) ∈ ∂X (P,Q, Y ) and J ′(·)(·) = 0 for some k.

Proof. For all k ≥ 0, we define the following abbreviations:

Sk = (P k, Qk, Y k), δSk = (Uk−P k, V k−Qk, Zk−Y k), and T k = (Uk, V k, Zk).

If Algorithm 1 terminates at Sk ∈ Xβ(P,Q, γ) ∩ X̃ (P,Q, Y ), k ≥ 0, then

J ′(Sk)(Sk) = J ′(Sk)(T k) = min
S∈Xβ(P,Q,γ)∩X̃ (P,Q,Y )

J ′(Sk)(S)

and J ′(P k, Qk, Y k)(P − P k, Q − Qk, Y − Y k) ≥ 0 for all (P,Q, Y ) ∈ Xβ(P,Q, γ) ∩
X̃ (P,Q, Y ). Thus, if the algorithm does not terminate in step (2), then

J ′(Sk)(δSk) = Tr(UkQk + P kV k) + Tr(Zk)− 2Tr(P kQk)− Tr(Y k) < 0,(3.29)

i.e., δSk is a descent direction. Using Sk ∈ Xβ(P,Q, γ)∩X̃ (P,Q, Y ), T k ∈ Xβ(P,Q, γ)∩
X̃ (P,Q, Y ), and the convexity of Xβ(P,Q, γ)∩ X̃ (P,Q, Y ), steps (3) and (4) of Algo-
rithm 1 imply that

(P k+1, Qk+1, Y k+1) ∈ Xβ(P,Q, γ) ∩ X̃ (P,Q, Y )

for all α ∈ [0, 1]. Hence, the sequence {Sk} = {(P k, Qk, Y k)} is well defined by
Algorithm 1.

To show the strictly decreasing property of {J (P k, Qk, Y k)}, note that for α ∈
[0, 1], the construction of the algorithm implies

J (Sk+1) = J (Sk) + α∗ J ′(Sk)(δSk) +
α2
∗

2
J ′′(Sk)(δSk)(δSk)

≤ J (Sk) + α J ′(Sk)(δSk) +
α2

2
J ′′(Sk)(δSk)(δSk)

≤ J (Sk) + J ′(Sk)(δSk) +
1

2
J ′′(Sk)(δSk)(δSk),(3.30)

where α∗ ∈ [0, 1] denotes the optimal value of (3.22).
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Assuming J ′′(Sk)(δSk)(δSk) = 0 and using (3.29), from (3.30) we obtain J (Sk+1)
< J (Sk) for all k ≥ 0 unless J ′(Sk)(δSk) ≡ 0. Moreover, if J ′′(Sk)(δSk)(δSk)
< 0, then we can conclude that J (Sk+1) < J (Sk) for all k ≥ 0. Finally, if
J ′′(Sk)(δSk)(δSk) > 0, then the problem is convex. Defining a = J ′′(·)(·)(·),
b = J ′(·)(·), and c = J (·), Lemma 3.7 implies the existence of ρ∗ ≥ 0 such that
the solution α∗ of (3.22) satisfies

0 < α∗ = − J
′(Sk)(δSk) + ρ∗

J ′′(Sk)(δSk)(δSk)
≤ 1.

But this implies

1

2
α2
∗ J ′′(Sk)(δSk)(δSk) = −1

2
α∗ J ′(Sk)(δSk)− 1

2
α∗ρ∗.(3.31)

Using α∗ ∈ (0, 1], ρ∗ ≥ 0, (3.29), (3.30), and (3.31), we obtain J (Sk+1) < J (Sk)
unless J ′(Sk)(δSk) ≡ 0 for all k ≥ 0. Hence, {J (P k, Qk, Y k)} is a strictly decreasing
sequence unless J ′(Sk)(δSk) ≡ 0. Since Tr(Y k) ≥ 0 and Tr(P kQk) ≥ nx for all k ≥ 0,
the sequence {J (P k, Qk, Y k)} is also bounded below by nx + Tr(Y ∗). Therefore, it
converges to a limit Ĵ ≥ nx+Tr(Y ∗). Moreover, by the definition of the compact level
set Γ(P 0, Q0, Y 0), we know that {(P k, Qk, Y k)} ⊂ Γ(P 0, Q0, Y 0), and thus that the
generated sequence {(P k, Qk, Y k)} is bounded. Finally, assume that (P k, Qk, Y k) ∈
∂X (P,Q, Y ) and J ′(Sk)(δSk) = 0 for some k. Note that this is fulfilled if and only
if P kQk = I and the minimal point T k of (3.21) satisfy Uk = P k, V k = Qk, and
Zk = Y k for some k. Thus, J (P k, Qk, Y k) = nx + Tr(Y k) ≥ nx + Tr(Y ∗) if and only
if (P k, Qk, Y k) ∈ ∂X (P,Q, Y ) and J ′(Sk)(δSk) = 0 for some k.

Theorem 3.8 ensures that {J (P k, Qk, Y k)} is a strictly decreasing sequence which
is bounded below by nx + Tr(Y ∗) if and only if (P k, Qk, Y k) �∈ ∂X (P,Q, Y ) and
J ′(Sk)(δSk) < 0. On the other hand, J (P k, Qk, Y k) = nx+Tr(Y k) ≥ nx+Tr(Y ∗) if
and only if (P k, Qk, Y k) ∈ ∂X (P,Q, Y ) and J ′(Sk)(δSk) = 0 for some k ≥ 0. Then
we know that P kQk = I and Uk = P k, V k = Qk, Zk = Y k for some k. Hence, in this
case, the SLPMM algorithm terminates in step (2) at a point satisfying the coupling
condition PQ = I.

The SLPMM algorithm may be interpreted as a modified version of the cone com-
plementarity algorithm, expect that in each iteration we must also compute a step
size parameter. But this further computational work is essential for the strictly de-
creasing property of the SLPMM. Indeed, the novel aspect of the SLPMM algorithm
is that it always generates a strictly decreasing sequence {J (P k, Qk, Y k)}. More-
over, this approach guarantees the boundedness of the iterates (P k, Qk, Y k) for all
k ≥ 0. In contrast to this, the cone complementarity algorithm, the XY-centering
algorithm, and other related computational methods in the literature do not share
these properties.

The strictness in the inequality (3.28) and the boundedness of {(P k, Qk, Y k)} is
essential to prove the global convergence of the SLPMM algorithm. The following
theorem states the global convergence of our method under rather weak assumptions
compared to the existing algorithms in the literature.

Theorem 3.9. Let β > 0 and (P 0, Q0, Y 0) ∈ Xβ(P,Q, γ) ∩ X̃ (P,Q, Y ) be given.

Furthermore, assume that {(P k, Qk, Y k)} ⊂ Xβ(P,Q, γ)∩ X̃ (P,Q, Y ) is generated by
Algorithm 1. Then the following hold.

(i) The algorithm terminates at some (P k, Qk, Y k) satisfying (3.24), or every
accumulation point (P̃ , Q̃, Ỹ ) of {(P k, Qk, Y k)} is stationary, i.e., (P̃ , Q̃, Ỹ ) satisfy
(3.24).
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(ii) Every accumulation point (P̃ , Q̃, Ỹ ) of {(P k, Qk, Y k)} satisfies the nonconvex
bilinear matrix feasibility problem (3.17) and solves the nonconvex optimization prob-
lem (3.14) if and only if the boundary set ∂X (P,Q, Y ) defined in (3.27) is nonempty.

Proof. (i) This result follows immediately by making straightforward modifica-
tions to the proof of Leibfritz [31, Theorem 3.7].

(ii) Note that ∂X (P,Q, Y ) = Φ̄H∞(P,Q, γ, β) ∩ Φ̃(P,Q, Y ) ⊂ Γ(P 0, Q0, Y 0) and
that Γ(P 0, Q0, Y 0) is compact. Theorem 3.8 implies limk→∞ J (P k, Qk, Y k) = Ĵ ≥
nx + Tr(Y ∗) =: J ∗. Since (P k, Qk, Y k) ∈ Γ(P 0, Q0, Y 0), we also know that the
functions J (P,Q, Y ) = Tr(PQ) + Tr(Y ) and J̃ (P,Q, Y ) = Tr(Y ) attain the (global)
minimum values on the compact level set Γ(P 0, Q0, Y 0); i.e., J ∗ = J (P ∗, Q∗, Y ∗) ≡
nx + Tr(Y ∗) and J̃ ∗ = J̃ (P ∗, Q∗, Y ∗) ≡ Tr(Y ∗), respectively.

Suppose Ĵ > J ∗ = nx + Tr(Y ∗). From the compactness of Γ(P 0, Q0, Y 0) �= ∅
and the continuity of J , it follows that for every ε > 0, there exist a δ > 0 and a
vicinity Uδ(P

∗, Q∗, Y ∗) such that Uδ(P
∗, Q∗, Y ∗) ∩ Γ(P 0, Q0, Y 0) �= ∅ and

0 ≤ J (P,Q, Y )− J ∗ < ε

for all (P,Q, Y ) ∈ Uδ(P ∗, Q∗, Y ∗)∩Γ(P 0, Q0, Y 0). Choosing ε := Ĵ −nx−Tr(Y ∗) > 0
implies

J (P,Q, Y ) < ε+ nx + Tr(Y ∗) = Ĵ .

But this implies the existence of an integer k̂ such that for all k ≥ k̂ and (P k, Qk, Y k) ∈
Uδ(P

∗, Q∗, Y ∗) ∩ Γ(P 0, Q0, Y 0) we have J (P k, Qk, Y k) < Ĵ , which contradicts that
the sequence {J (P k, Qk, Y k)} converges monotonically to Ĵ . Hence Ĵ = J ∗ =
nx + Tr(Y ∗); i.e.,

lim
k→∞

J (P k, Qk, Y k) = J ∗ ⇐⇒ lim
k→∞

(J (P k, Qk, Y k)− nx) = J̃ ∗.(3.32)

Since {(P k, Qk, Y k)} ⊂ Γ(P 0, Q0, Y 0) and Γ(P 0, Q0, Y 0) is compact, we conclude the
existence of a convergent subsequence of {(P k, Qk, Y k)}; i.e.,

lim
j→∞

(P kj , Qkj , Y kj ) = (P̃ , Q̃, Ỹ ) ∈ Γ(P 0, Q0, Y 0).

Suppose that this accumulation point is not globally optimal. Then J (P̃ , Q̃, Ỹ ) >
J ∗ = nx + Tr(Y ∗) > J̃ ∗ and the sequence {J (P k, Qk, Y k) − nx − Tr(Y ∗)} do not
tend to zero. This contradicts (3.32). Hence, ∂X (P,Q, Y ) �= ∅ if and only if every
accumulation point satisfies (3.17) and solves

min{Tr(PQ) + Tr(Y ) | (P,Q, Y ) ∈ Φ̄H∞(P,Q, γ, β) ∩ Φ̃(P,Q, Y )} = nx + Tr(Y ∗)
= nx + min{Tr(Y ) | (P,Q, Y ) ∈ Φ̄H∞(P,Q, γ, β) ∩ Φ̃(P,Q, Y )},

which in turn is equivalent to the solvability of (3.14).
From Theorem 3.8, we know that the sequence {J (P k, Qk, Y k)} is strictly de-

creasing unless J ′(·)(·) = 0 and is bounded below by nx + Tr(Y ∗), and hence con-
verges. If in the limit Tr(PQ) = nx, then ∂X (P,Q, Y ) �= ∅. In this case, Theorem
3.9 guarantees the existence of an accumulation point which satisfies the nonconvex
bilinear matrix feasibility problem (3.17). Moreover, this point is also a solution of
the nonconvex optimization problem (3.14), and therefore, in the limit the neces-
sary condition for the existence of a static H2/H∞ output feedback gain is fulfilled.
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Note that for reconstructing such a gain, it is not necessary that the computed so-
lution of the multiobjective problem (3.19) is the global solution of this problem. It
suffices that this solution is contained in the boundary set ∂X (P,Q, Y ) defined by
(3.27), i.e., it satisfies PQ = I. Then, this solution triple is at least an upper bound
to the global optimal value of (3.14), and the corresponding gain, if any exists, is
at least suboptimal. Thus, if Algorithm 1 terminates with a boundary solution of
(3.19), i.e., J (P k, Qk, Y k) = nx + Tr(Y k) for some k ≥ 0, then Theorem 3.8 im-
plies (P k, Qk, Y k) ∈ ∂X (P,Q, Y ) for some k. Moreover, (P k, Qk, Y k) ∈ ∂X (P,Q, Y )
satisfies

min{Tr(Y ) | (P,Q, Y ) ∈ Φ̄H∞(P,Q, γ, β) ∩ Φ̃(P,Q, Y )} ≤ Tr(Y k).

Then, using the results of the previous section, a corresponding suboptimal static
H2/H∞ output feedback controller exists if and only if the LMI feasibility problem
(3.20) in F is nonempty. On the other hand, it may occur that Algorithm 1 terminates
at a triple (P k, Qk, Y k) satisfying the first order necessary minimum principle, but
(P k, Qk, Y k) �∈ ∂X (P,Q, Y ). In this case, we know that Tr(P kQk) > nx and a static
gain F can not be reconstructed from this triple. But we can reconstruct a reduced
dynamic output feedback control law of order nc ≤ nx−max{nu, ny} from this triple
by using a well-known system augmentation technique. For more details, we refer the
reader, for example, to Leibfritz [31].

4. Numerical examples. In this section, several examples are given for test
purposes in order to test the SLPMM approach. We present examples for the design
of suboptimal static H2/H∞ output feedback controllers.

The SLPMM algorithm as well as the reconstruction of the controller gain F
from the corresponding LMIs have been implemented making use of MATLAB 5.0
facilities. Particularly, for determining a feasible solution (P 0, Q0, Y 0) ∈ Xβ(P,Q, γ)∩
X̃ (P,Q, Y ) in Algorithm 1, step (0), we have used the LMI control toolbox [14] routine
FEASP, which finds a solution to a given system of LMIs, if any exists. Moreover, for
solving the linearized minimization problem (3.21) of Algorithm 1, step (1), which is a
semidefinite programming problem, we have taken the LMI control toolbox procedure
MINCX. This solver is an implementation of Nesterov and Nemirovski’s projective
method for minimizing a linear objective function under LMI constraints as described
in [13]. For MINCX we have adjusted the desired relative accuracy on the optimal
value to 10−12.

We terminated Algorithm 1 if, for a sufficiently small scalar ε > 0, the condition
(3.25) was fulfilled. Moreover for the computation of a step size α ∈ [0, 1] we have
used the MATLAB function FMIN.

Finally, we have taken the LMI control toolbox function FEASP applied to the
LMI feasibility problem (3.20) for reconstructing the static output feedback controller
gain F .

The following data are given in the tables: the iteration counter k of the SLPMM
algorithm; if k = 0, j denotes the total number of iterations for finding a feasible ini-
tial point (P 0, Q0, Y 0) by FEASP; else j is the total number of iterations for solving
the semidefinite programming problem (3.21) by MINCX with relative accuracy of
10−12; the objective function value J (P k, Qk, Y k) = Tr(P kQk)+Tr(Y k) of the corre-
sponding multiobjective optimization problem (3.19); the function values Tr(P kQk)
and Tr(Y k); and τk, which indicates if the first order necessary minimum principle is
approximatively satisfied.
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Table 4.1
Convergence behavior of the SLPMM algorithm for the VTOL helicopter model: static H2/H∞

case.

k j J (Pk, Qk, Y k) Tr(PkQk) Tr(Y k) τk

0 6 1209.96168 1156.3660285 53.5956538 —
1 53 4.21991536 4.0001534809 0.21976188 −2.058e+ 03
2 45 4.21973458 4.0000000000 0.21973458 −1.808e− 04
3 18 4.21973458 4.0000000000 0.21973458 0.000e+ 00

For all test examples we have chosen the data matrices B0, D10, D11, and D20 as
follows:

B0 = B1, D10 = D11 = 0, D20 = 0.

This choice guarantees D0F = 0. Therefore, if a static H2/H∞ controller gain F
exists for the corresponding test problem, it is an upper estimate of ||Tzw0 ||2H2

that
enforces ||Tzw1

||∞ < γ.
Example 1. A state space model of the longitudinal motion of a VTOL helicopter

is considered as in [28]. The dynamic equations of the helicopter model are linearized
around a nominal solution where the given dynamic equation is computed for typical
loading and flight conditions of the VTOL helicopter at a certain airspeed [41]. The
linearization results in a fourth order linear time-invariant state equation with two
control and two unknown input components. The data matrices of the linearized
model are given by

A =


−0.0366 0.0271 0.0188 −0.4555
0.0482 −1.0100 0.0024 −4.0208
0.1002 0.3681 −0.7070 1.4200

0 0 1.0000 0

 , B1 =


0.0468 0
0.0457 0.0099
0.0437 0.0011

−0.0218 0

 ,

B2 =


0.4422 0.1761
3.5446 −7.5922

−5.5200 4.4900
0 0

 ,

C1 = 1√
2

[
2 0 0 0
0 1 0 0

]
, C2 =

[
0 1 0 0

]
, D12 = 1√

2

[
1 0
0 1

]
,

D21 =
[
0.00039 0.00174

]
.

The goal is to design a suboptimal static H2/H∞ output feedback controller ΣC by
the SLPMM Algorithm 1 according to the discussion of the previous sections. In the
run of Algorithm 1 we have chosen β = 0.01, γ = 0.423722, and ε = 10−10. Table
4.1 demonstrates the convergence behavior of the SLPMM. It illustrates numerically
that {J (P k, Qk, Y k)} is a strictly decreasing sequence if (P k, Qk, Y k) �∈ ∂X (P,Q, Y )
and τk < 0, which converges to nx + Tr(Y ∗) = 4 + 0.21973458. Thus, we have
∂X (P,Q, Y ) �= ∅, and equality holds if and only if (P k, Qk, Y k) ∈ ∂X (P,Q, Y ) and
τk = 0 for some k according to Theorem 3.8. Moreover, Theorem 3.9 guarantees
the existence of an accumulation point of {P k, Qk, Y k)} which also solves the non-
convex optimization problem (3.14). Therefore, a suboptimal static H2/H∞ output
feedback controller exists if and only if the LMI feasibility problem (3.20) in F is
nonempty. The resulting static gain matrix which satisfies (3.20) and the closed loop
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eigenvalues are

F =
[−0.978987 19.43483

]T
, λ(AF ) =

[−152.04 −0.0989 −0.2990± 0.949i
]
.

Moreover, ||Tzw1 ||∞ = 0.2937866 < γ and Tr(BT0FPB0F ) = 0.02869950 ≤ Tr(Y ) =
0.21973458, which shows that F is a suboptimal static H2/H∞ output feedback gain.
To compare this solution with the optimal one, we have calculated Coptγ (X,F ) =
0.0231044 with an algorithm proposed by Leibfritz [32], [30]. This shows, that (3.19)
provides a good suboptimal solution to the problem under consideration. As it can be
also verified, the sequence {(P k, Qk, Y k) ⊂ Γ(P 0, Q0, Y 0) and is thus bounded. For
example, we have

{||P k||} = {82.26, 49.82, 49.82, 49.82},
{||Qk||} = {41.16, 1.159, 1.159, 1.159},
{||Y k||} = {26.86, 0.1099, 0.1099, 0.1099},

which demonstrates numerically the boundedness of the generated sequence according
to Theorem 3.8. The whole computation needs 2.47 CPU seconds on a SUN Ultra 60.

Finally, for this example, we demonstrate numerically that the extended static
H2/H∞ output feedback problem (2.12) can be also solved by the LMI approach
as discussed in section 3. The SLPMM terminates after four outer iterations with
an approximate solution (P,Q, Y ) of the corresponding bilinear programming prob-
lem, i.e., Tr(PQ) = 4.0000001. Then, using this solution, the corresponding LMI
feasibility problem in F was found to be nonempty. Thus, a static H2/H∞ output
feedback gain F satisfying (2.12) exists, and the resulting gain matrix is given by
F = [−0.457876 17.38107]T .

Example 2 (transport airplane). This example studies the longitudinal motion of
a modern transport airplane under VMIN flight conditions [15]. The linearized state
space model yields the following data matrices:

A =



−0.06254 0.01888 0 −0.56141 −0.02751 0 0.06254 −0.00123 0
0.01089 −0.99280 0.99795 0.00097 −0.07057 0 −0.01089 0.06449 0
0.07743 1.67540 −1.31111 −0.00030 −4.25030 0 −0.07743 −0.10883 0

0 0 1 0 0 0 0 0 0
0 0 0 0 −20.0000 20 0 0 0
0 0 0 0 0 −30 0 0 0
0 0 0 0 0 0 −0.88206 0 0
0 0 0 0 0 0 0 −0.88206 0.00882
0 0 0 0 0 0 0 −0.00882 −0.88206


,

B1 =



0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

1.3282 0 0 0
0 1.62671 0 0
0 −68.75283 0 0


, B2 =



0
0
0
0
0

30
0
0
0


, C1 = 1√

2



−0.00519
0.47604
0.00098

−0.00031
0.03378

0
0.00519

−0.03086
0



T

,

CT2 =



−0.00519 0
0.47604 0
0.00098 0

−0.00031 0
0.03378 0

0 0
0.00519 0

−0.03086 0
0 0


, DT21 =


0 0
0 0
0 0
0 1

 ,

and D12 = [1/
√

2]. The goal is the design of a robust static control law. Defining
β = 10−2, γ = 0.152032 and ε = 10−12, Table 4.2 illustrates the convergence behavior
of the SLPMM for this example. According to Theorem 3.8, it shows numerically
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Table 4.2
Convergence behavior of the SLPMM algorithm for the transport airplane: static H2/H∞ case.

k j J (Pk, Qk, Y k) Tr(PkQk) Tr(Y k) τk

0 18 1.766e+ 14 1.766e+ 14 7.622e+ 07 —
1 58 131.706754 83.966174369 47.74057934352 −3.533e+ 14
2 49 9.80419099 9.4602075306 0.343983455585 −1.689e+ 02
3 56 9.39445809 9.0504993630 0.343958730681 −2.843e− 01
4 86 9.34395876 9.0000000338 0.343958722207 −4.318e− 02
5 24 9.34395876 9.0000000338 0.343958722207 0.000e+ 00

the strictly decreasing property of the objective function values of (3.19) and the
nonemptiness of the boundary of the set Xβ(P,Q, γ) ∩ X̃ (P,Q, Y ), i.e., in the limit
we achieve Tr(PQ) = nx. Thus, ∂X (P,Q, Y ) �= ∅ and Theorem 3.9 ensures the
existence of an accumulation point of {P k, Qk, Y k)} which also solves the nonconvex
optimization problem (3.14). Therefore, a suboptimal static H2/H∞ output feedback
controller exists if and only if the LMI feasibility problem (3.20) in F is nonempty.
Solving the LMI feasibility problem (3.20) results in the feasible gain

F =
[

2.286293 0.001023
]
.

The real parts of the closed loop poles range between −0.02686 and −33.4213. More-
over, ||Tzw1 ||∞ = 0.08088935 and Tr(BT0FPB0F ) = 0.05135721 ≤ Tr(Y ) = 0.34395872.
Once again, comparing this solution with the optimal one, we have calculated
Coptγ (X,F ) = 0.0502692 with the algorithm of [32] for solving the optimal static
H2/H∞ output feedback problem (2.11). Finally, the whole computation needs 53.53
CPU seconds. Again, this example demonstrates numerically the theoretical proper-
ties of our algorithm and shows that this approach can be used for the design of a
suboptimal static H2/H∞ output feedback gain.

Example 3 (Euler–Bernoulli beam). This example consists of a simple supported
Euler–Bernoulli beam as discussed in [22] (see also [18]). Following [22], the state
space model is given by ΣP , with matrices as follows:

A = diag

{[
0 1

−r4 −0.02 r2

]
, r = 1, . . . , 5

}
,

BT
2 = C2 =

[
0 0.9877 0 −0.309 0 −0.891 0 0.5878 0 0.7071

]
, B1 =

[
B2 010×1

]
,

C1 =

[
0.809 0 −0.9511 0 0.309 0 0.5878 0 −1 0

0 0 0 0 0 0 0 0 0 0

]
,

D12 =

[
0

0.5

]
, D21 =

[
0 1.9

]
.

Choosing β = 0.01, γ = 3.59251, and ε = 10−10, Algorithm 1 terminates after 28.59
CPU seconds, and (3.20) provides the static H2/H∞ output feedback controller gain
F = −0.6221049 with Tr(BT0FPB0F ) = 0.5742053 ≤ Tr(Y ) = 4.4202 and ||Tzw1 ||∞ =
2.179593. Moreover, the closed loop poles are

λ(AF ) =
[−0.395± 24.9i −0.257± 15.9i −0.326± 8.98i −0.305± 0.95 −0.059± 3.99i

]
.

Using the algorithm proposed by [30], [32] yields the optimal cost value Coptγ (X,F ) =
0.185282 of (2.11) with Fopt = −1.036985 and ||Tzw1 ||∞ = 2.14176.
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Fig. 4.1. Singular value plot.
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Fig. 4.2. Phase portraits of the regulated output z (dashed line) and the observed output y
(solid line) for the Euler–Bernoulli beam under worst case disturbances: Controlled case.

The SLPMM algorithm has generated the sequences

{J (P k, Qk, Y k)}4k=0 = {229.5443, 14.4202522, 14.4202000, 14.4202000, 14.4202000},
{Tr(P kQk)}4k=0 = {180.32, 10.000029, 10.0000000001, 10.0000000000, 10.0000000000},

{τk}4k=1 = {−3.281 · 102,−5.224 · 10−5,−1.278 · 10−10, 0.000},

which underline the theoretical results stated in Theorems 3.8 and 3.9.
Figure 4.1 shows the singular value response of the corresponding closed loop

system for the problem under consideration. In Figure 4.2, the phase portraits for
the regulated output variable z (dashed line) and the observed output variable y
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Fig. 4.3. Worst case disturbances.
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Fig. 4.4. Phase portraits of the regulated output z (dashed line) and the observed output y
(solid line) for the Euler–Bernoulli beam under worst case disturbances: Uncontrolled case.

(solid line) are displayed for the computed suboptimal static H2/H∞ output feedback
controller under the corresponding worst case inputs w, as illustrated in Figure 4.3.
These plots demonstrate that the computed controller gain yields an asymptotically
stable closed loop system and satisfies the robustness constraint, even if the worst-
case input affects the system. In contrast to this, the uncontrolled system outputs,
as shown in Figure 4.4, oscillate away from the stable equilibrium of the system.
Especially, the worst case inputs support this behavior and drive the system to be
unstable.

Example 4 (reduced order control). In this example we consider a three–mass-
spring system and illustrate our approach for the design of a reduced order compen-
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sator if the SLPMM algorithm terminates at a point (P,Q, Y ) satisfying Tr(PQ) > nx.
The system under consideration consists of three unit masses connected by two linear
springs with stiffness constant κ. There we have assumed that only the position of
the third mass is measured and a control force acts on the first mass. The linear state
space realization of this system is given by ΣP with the following data matrices:

A =


0 1 0 0 0 0

−κ 0 κ 0 0 0
0 0 0 1 0 0
κ 0 −2κ 0 κ 0
0 0 0 0 0 1
0 0 κ 0 −κ 0

 , B1 =


0
0
0
0
0
1

 , B2 =


0
1
0
0
0
0

 , C2 =


0
0
0
0
1
0



T

, D12 =



0
0
0
0
0
0
1


,

C1 = [I6 0]T , D21 = 0, and the state components xi, xi+1, i = 1, 2, 3, denote the
position and the velocity of the mass i, respectively. It is well known that this linear
system is not stabilizable by a static output feedback gain, i.e., Fs = ∅, but it is
stabilizable by a reduced order controller of order nc = 3, where

ΣCD { ẋc(t) = Acxc(t) +Bcy(t), u(t) = Ccxc(t) +Dcy(t)

denotes the compensator of order nc ≤ nx with Ac ∈ R
nc×nc , Bc ∈ R

nc×ny , Cc ∈
R
nu×nc ,Dc ∈ R

nu×ny , and xc(t) ∈ R
nc . Using Algorithm 1 with β = 0.1, γ = 50.0869,

and ε = 10−8, we can compute a reduced order compensator of the form ΣCD for
this example as follows. Since Fs = ∅, the SLPMM algorithm provides a solution
triple (P,Q, Y ) of (3.19) satisfying Tr(PQ) > nx, i.e., (P,Q, Y ) �∈ ∂X (P,Q, Y ). In
particular, the algorithm has generated the following sequences:

{J (P k, Qk, Y k)}5k=0 = {10192.8935, 48.3013702, 38.2048006, 37.5019180, 36.7597188,

36.7596674},
{Tr(P kQk)}5k=0 = {9786.7919, 39.2714948, 30.9417654, 30.8152693, 30.7274670,

30.7274665},
{Tr(Y k)}5k=0 = {406.1016, 9.0298754, 7.2630352, 6.6866487, 6.0322518,

6.0322009},
{τk}5k=1 = {−1.84 · 104,−9.50,−1.24 · 10−2,−9.12 · 10−3,−3.19 · 10−9}.

Obviously, {J (P k, Qk, Y k)} is a strictly decreasing sequence which tends to Tr(P 5Q5)
+ Tr(Y 5) = 30.7274665 + 6.0322009 > nx + Tr(Y ∗), and Algorithm 1 terminates af-
ter six iterations satisfying approximatively the first order necessary condition. Since
∂X (P,Q, Y ) = ∅, we know that there exists no static gain for the problem under
consideration. But it is possible to reconstruct a reduced order compensator from
the computed solution triple (P,Q, Y ) of (3.19). For example, first we compute the
eigenvalues of P −Q−1 � 0. If there are m eigenvalues of P −Q−1 which are less than
or equal to ε̃ > 0, ε̃ $ 1, then there exists an ncth order dynamic output feedback
control law of the form ΣCD such that the eigenvalues of the augmented closed loop
system matrix ÂF̂ = Â + B̂2F̂ Ĉ2 have negative real parts [8, Theorem 3.1], where
nc = nx −m and the augmented system matrices are defined by [12]:

(4.1)

Â =

[
A 0
0 0nc

]
, B̂1 =

[
B1

0

]
, B̂2 =

[
0 B2

Inc 0

]
, Ĉ1 = [C1 0],

Ĉ2 =

[
0 Inc
C2 0

]
, D̂12 = [0 D12], D̂21 =

[
0
D21

]
, F̂ =

[
Ac Bc
Cc Dc

]
,
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B̂0 = B̂1, D̂20 = [0 0ny×nw ]T , and D̂10 = D̂11 = D11. Second, we decompose the
positive semidefinite matrix P −Q−1 as UUT +E by a singular value decomposition,
where U ∈ R

nx×nc , E ∈ R
nx×nx , ||E|| ≤ ε̃, and we define

P̂ =

[
P U
UT Inc

]
, Ŷ = Y.(4.2)

By [36, Lemma 7.5] we have P̂ � 0. Then, replacing in (3.20) the system matrices
by their augmented counterparts, the corresponding LMI feasibility problem in F̂ has
a solution. Choosing ε̃ = 10−10 yields m = 3, nc = 3, and the resulting third order
compensator gain

F̂ =

[
Ac Bc
Cc Dc

]
=


−0.23619 −0.59416 1.85859 −2.31612

0.52718 −0.14806 1.38309 −1.58075
−0.51506 −0.91840 −0.64521 2.59614
−0.05706 −0.01872 0.55757 −1.17127

 .
The real parts of closed loop eigenvalues of ÂF̂ ranges between−0.00963 and−0.02874.

Moreover, Tr(B̂T
0F̂
P̂ B̂0F̂ ) = 6.032201 and ||Tzw1

||∞ = 46.46845 < γ, which shows nu-

merically that F̂ is a suboptimal third order H2/H∞ output feedback compensator
gain. Summing up, this example demonstrates that we always can construct from the
computed solution of Algorithm 1 at least a reduced order compensator gain which
satisfies the design criteria. Finally, the whole computation time needs 9.62 CPU
seconds on a SUN Ultra 60.

REFERENCES

[1] K. P. Bennett and O. L. Mangasarian, Bilinear separation of two sets in n–space, Comput.
Optim. Appl., 2 (1993), pp. 207–227.

[2] D. S. Bernstein and W. M. Haddad, LQG control with an H∞ performance bound: A Riccati
equation approach, IEEE Trans. Automat. Control, 34 (1989), pp. 293–305.

[3] S. P. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnan, Linear Matrix Inequalities in
System and Control Theory, SIAM Stud. Appl. Math. 15, SIAM, Philadelphia, 1994.

[4] M. Chilali and P. Gahinet, H∞ design with pole placement constraints: An LMI approach,
IEEE Trans. Automat. Control, 41 (1996), pp. 358–367.

[5] J. Doyle, A. Packard, and K. Zhou, Review of LFTs, LMIs and µ, in Proceedings of the
30th Conference on Decision and Control, Brighton, England, 1991, pp. 1227–1232.

[6] J. Doyle, K. Zhou, K. Glover, and B. Bodenheimer, Mixed H2 and H∞ performance
objectives II: Optimal control, IEEE Trans. Automat. Control, 39 (1994), pp. 1575–1587.

[7] J. C. Doyle, K. Glover, P. P. Khargonekar, and B. A. Francis, State-space solutions
to standard H2 and H∞ control problems, IEEE Trans. Automat. Control, 34 (1989), pp.
831–847.

[8] L. El Ghaoui and P. Gahinet, Rank minimization under LMI constraints: A framework for
output feedback problems, in Proceedings of the European Control Conference, Groningen,
The Netherlands, 1993, pp. 1176–1179.

[9] L. El Ghaoui, F. Oustry, and M. AitRami, A cone complementarity linearization algorithm
for static output feedback and related problems, IEEE Trans. Automat. Control, 42 (1997),
pp. 1171–1176.

[10] B. Francis, A Course in H∞ Control Theory, Lecture Notes in Control and Inform. Sci. 88,
Springer-Verlag, New York, London, Paris, 1987.

[11] P. Gahinet, Explicit controller formulas for LMI-based H∞ synthesis, Automatica J. IFAC,
32 (1996), pp. 1007–1014.

[12] P. Gahinet and P. Apkarian, A linear matix inequality approach to H∞ control, Internat.
J. Robust Nonlinear Control, 4 (1994), pp. 421–448.

[13] P. Gahinet and A. Nemirovski, The projective method for solving linear matrix inequalities,
Math. Programming, 77 (1997), pp. 163–190.



1734 F. LEIBFRITZ

[14] P. Gahinet, A. Nemirovski, A. J. Laub, and M. Chilali, LMI Control Toolbox; For Use
with MATLAB, The Math Works Inc., Natick, MA, 1995.

[15] D. Gangsaas, K. R. Bruce, J. D. Blight, and U.-L. Ly, Application of modern synthesis
to aircraft control: Three case studies, IEEE Trans. Automat. Control, 31 (1986), pp.
995–1014.

[16] J. C. Geromel, C. C. de Souza, and R. E. Skelton, LMI numerical solution for output
feedback stabilization, in Proceedings of the American Control Conference, Baltimore, MD,
1994, pp. 40–44.

[17] J. C. Geromel, C. C. de Souza, and R. E. Skelton, Static output feedback controllers:
Stability and convexity, IEEE Trans. Automat. Control, 43 (1998), pp. 120–125.

[18] J. C. Geromel and P. B. Gapski, Synthesis of positive real H2 controllers, IEEE Trans.
Automat. Control, 42 (1997), pp. 988–992.

[19] J. C. Geromel, P. L. D. Peres, and S. R. Souza, A convex approach to the mixed H2/H∞
control problem for discrete-time uncertain systems, SIAM J. Control Optim., 33 (1995),
pp. 1816–1833.

[20] A. Giusto, A. Trofino-Neto, and E. B. Castelan, H∞ and H2 design techniques for a
class of prefilters, IEEE Trans. Automat. Control, 41 (1996), pp. 864–871.

[21] K. M. Grigoriadis and R. E. Skelton, Low order control design for LMI problems using
alternating projection methods, Automatica J. IFAC, 32 (1996), pp. 1117–1125.

[22] W. M. Haddad, D. S. Bernstein, and Y. W. Wang, Dissipative H2/H∞ controller synthesis,
IEEE Trans. Automat. Control, 49 (1994), pp. 827–831.

[23] W. M. Haddad, V. Kapila, and D. S. Bernstein, Robust H∞ stabilization via parameterized
lyapunov bounds, IEEE Trans. Automat. Control, 42 (1997), pp. 241–248.

[24] R. A. Horn and C. R. Johnson, Matrix Analysis, Cambridge University Press, Cambridge,
UK, 1985.

[25] T. Iwasaki and R. E. Skelton, All controllers for the general H∞ control problem: LMI
existence conditions and state space formulas, Automatica J. IFAC, 30 (1994), pp. 1307–
1317.

[26] T. Iwasaki and R. E. Skelton, The XY-centering algorithm for the dual LMI problem: A
new approach to fixed-order control design, Internat. J. Control, 62 (1995), pp. 1257–1272.

[27] I. Kaminer, P. P. Khargonekar, and M. A. Rotea, Mixed H2/H∞ control for discrete time
systems via convex optimization, Automatica J. IFAC, 29 (1993), pp. 57–70.

[28] L. H. Keel, S. P. Bhattacharyya, and J. W. Howze, Robust control with structured pertur-
bations, IEEE Trans. Automat. Control, 33 (1988), pp. 68–77.

[29] P. P. Khargonekar and M. A. Rotea, Mixed H2/H∞ control: A convex optimization ap-
proach, IEEE Trans. Automat. Control, 36 (1991), pp. 824–837.

[30] F. Leibfritz, Static Output Feedback Design Problems, Shaker Verlag, Aachen, Germany, 1998.
[31] F. Leibfritz, Computational Design of Stabilizing Static Output Feedback Controllers, Tech-

nical Report Trierer Forschungsberichte Mathematik/Informatik 99–01, Universität Trier,
Trier, Germany, 1999.

[32] F. Leibfritz, Static Output Feedback Design by Using a Newton-SQP Interior Point Method,
Technical Report Trierer Forschungsberichte Mathematik/Informatik 99–03, Universität
Trier, Trier, Germany, 1999.

[33] D. J. N. Limebeer, B. D. O. Anderson, and B. Hendel, A Nash game approach to mixed
H2/H∞ control, IEEE Trans. Automat. Control, 39 (1994), pp. 69–82.

[34] D. G. Luenberger, Introduction to Linear and Nonlinear Programming, Addison-Wesley,
Menlo Park, London, Sydney, 1973.

[35] D. Mustafa, Combined H∞/LQG control via the optimal projection equations: On minimizing
the LQG cost bound, Internat. J. Robust Nonlinear Control, 1 (1991), pp. 99–109.

[36] A. Packard, K. Zhou, P. Pandey, and G. Becker, A collection of robust control problems
leading to LMIs, in Proceedings of the 30th Conference on Decision and Control, Brighton,
England, 1991, pp. 1245–1250.

[37] M. A. Rotea, The generalized H2 control problem, Automatica J. IFAC, 29 (1993), pp. 373–
385.

[38] M. A. Rotea and P. P. Khargonekar, H2-optimal control with an H∞-constraint: The state
feedback case, Automatica J. IFAC, 27 (1991), pp. 307–316.

[39] M. A. Rotea and P. P. Khargonekar, Generalized H2/H∞ control, in Robust Control
Theory, IMA Vol. Math. Appl. 66, B. A. Francis and P. P. Khargonekar, eds., Springer-
Verlag, New York, 1995, pp. 81–103.

[40] A. Saberi, B. M. Chen, S. Peddapullaiah, and U.-L. Ly, Simultaneous H2/H∞ optimal
control: The state feedback case, Automatica J. IFAC, 29 (1993), pp. 1611–1614.



SUBOPTIMAL STATIC H2/H∞ OUTPUT FEEDBACK DESIGN 1735

[41] S. N. Singh and A. R. Coelho, Nonlinear control of mismatched uncertain linear systems and
application to control of aircraft, Journal of Dynamic Systems, Measurement and Control,
106 (1984), pp. 203–210.

[42] R. E. Skelton, J. Stoustrup, and T. Iwasaki, The H∞ control problem using static output
feedback, Internat. J. Robust Nonlinear Control, 4 (1994), pp. 449–455.

[43] V. L. Syrmos, C. T. Abdallah, P. Dorato, and K. Grigoriadis, Static output feedback—a
survey, Automatica J. IFAC, 33 (1997), pp. 125–137.

[44] I. Yaesh and U. Shaked, Minimum entropy static output feedback control with an H∞ norm
performance bound, IEEE Trans. Automat. Control, 42 (1997), pp. 853–858.

[45] H.-H. Yeh, S. S. Banda, and B.-C. Chang, Necessary and sufficient conditions for mixed H2

and H∞ optimal control, IEEE Trans. Automat. Control, 37 (1992), pp. 355–358.
[46] K. Zhou, K. Glover, B. Bodenheimer, and J. Doyle, Mixed H2 and H∞ performance

objectives I: Robust performance analysis, IEEE Trans. Automat. Control, 39 (1994), pp.
1564–1574.

[47] K. Zhou and P. P. Khargonekar, An algebraic Riccati equation approach to H∞ optimiza-
tion, Systems Control Lett., 11 (1988), pp. 85–91.



RIESZ BASIS APPROACH TO THE STABILIZATION OF A
FLEXIBLE BEAM WITH A TIP MASS∗
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Abstract. Using an abstract condition of Riesz basis generation of discrete operators in the
Hilbert spaces, we show, in this paper, that a sequence of generalized eigenfunctions of an Euler–
Bernoulli beam equation with a tip mass under boundary linear feedback control forms a Riesz
basis for the state Hilbert space. In the meanwhile, an asymptotic expression of eigenvalues and
the exponential stability are readily obtained. The main results of [SIAM J. Control Optim., 36
(1998), pp. 1962–1986] are concluded as a special case, and the additional conditions imposed there
are removed.

Key words. beam equation, boundary control, stability, eigenvalues, Riesz basis
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1. Introduction. When a tip mass is attached to the free end, the vibration
of a flexible beam that is clamped at one end and controlled at the free end can
be described by the following Euler–Bernoulli beam equation (Conrad and Morgül,
1998):

(1)


ytt(x, t) + yxxxx(x, t) = 0, 0 < x < 1, t > 0,
y(0, t) = yx(0, t) = yxx(1, t) = 0, t ≥ 0,
−yxxx(1, t) +mytt(1, t) = u(t), t ≥ 0,

where y is the amplitude of the vibration, m is the tip mass, and u is the boundary
control force applied at the free end. In order to achieve uniform stability for this sys-
tem, one has to employ “higher” derivative controllers. The following linear feedback
control law is proposed in Conrad and Morgül (1998):

u(t) = −αyt(1, t) + βyxxxt(1, t), t ≥ 0,

where α and β are real constants. The closed-loop system then becomes

(2)


ytt(x, t) + yxxxx(x, t) = 0,
y(0, t) = yx(0, t) = yxx(1, t) = 0,
yxxx(1, t) = αyt(1, t) +mytt(1, t)− βyxxxt(1, t).

The energy multiplier method is used in Conrad and Morgül (1998) to show that
system (2) is exponentially stable for any α, β > 0. It is further proved for a special
case wherem = αβ that a set of generalized eigenfunctions of system (2) forms a Riesz
basis for the state Hilbert space, usually referred to as the Riesz basis (generation)
property, and that the spectrum-determined growth condition holds, both for almost
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every α > 0. Systems with the Riesz basis property are usually referred to as Riesz
spectral systems (Xu and Sallet, 1996).
Verification of the Riesz basis property is a very important problem both theo-

retically and practically. Usually, the property will lead to the establishment of such
results as the spectrum-determined growth condition and the exponential stability
of the system. However, such verification is usually difficult because the associated
system operator is non-self-adjoint. For one-dimensional string equations with gen-
eral variable coefficients under linear boundary feedback control, successful treatments
have been made for the basis property in last two decades; we refer to Cox and Zuazua
(1994), Shubov (1996, 1997), and the references therein. The case of a string equation
with a tip mass was investigated in Morgül, Conrad, and Rao (1994). An abstract
treatment of general Riesz spectral system with one rank perturbation can be found
in Sun (1981), Rebarber (1989), and Xu and Sallet (1996), to name just a few. In
Rao (1997) and, recently, Li et al. (1999), the beam equations with “low order” per-
turbations were considered. Since the model of serially connected Euler–Bernoulli
beams under joint linear feedback control was proposed in Chen et al. (1987), many
efforts have been made to study the asymptotic distribution of the eigenvalues (Chen
et al., 1989) and the exponential stability (Rebarber, 1995). However, the spectrum-
determined growth condition had not been reported until Conrad (1990), where a
cantilevered beam equation was shown to have the Riesz basis property for small
feedback gain, and hence the spectrum-determined growth condition is concluded for
this special case. The general case for this cantilevered beam equation was resolved
partly by Conrad and Morgül (1998).
In these works mentioned above, the verification of Riesz basis generation relies

upon Bari’s theorem (see, for example, Gohberg and Krein, 1969): if {φn}∞1 is a Riesz
basis for a Hilbert space H, and {ψn}∞1 , an ω-linearly independent sequence in H, is
quadratically close to {φn}∞1 in the sense that

∞∑
n=1

‖ φn − ψn ‖2<∞,

then {ψn}∞1 is also a Riesz basis itself for H. In order to use Bari’s theorem, the
following steps are required:
(i) to estimate “high” eigenfrequencies by asymptotic analysis technique;
(ii) to find a sequence of generalized eigenvectors {ψn}∞N+1 (where N is a large

integer) such that {ψn}∞N+1 is quadratically close to a given Riesz basis {φn}∞1 :∑∞
n=N+1 ‖ φn − ψn ‖2<∞; and
(iii) to show that the number of linearly independent “low” eigenvectors is exactly

N , or, more generally, as in Rao (1997) and Shubov (1996), to show that the root
subspace of the system is complete in the state space.
While steps (i) and (ii) are relatively easy, step (iii) has been very difficult, in

general, so far. Toward easing this difficulty, Guo (to appear) recently establishes an
abstract condition under which steps (i) and (ii) automatically imply step (iii) for
discrete operators in general Hilbert spaces. This greatly simplifies the verification
of the Riesz basis property in applications. In this paper, we shall use this result (a
simplified proof is presented in the appendix of the present paper) to show that a
sequence of generalized eigenfunctions of system (2) forms a Riesz basis for the state
Hilbert space for any real parameters α, β �= 0 and m. This covers the main results
of Conrad and Morgül (1998) as a special case and removes the additional conditions
imposed there. The exponential stability of the system is then readily established from



1738 BAO-ZHU GUO

an asymptotic expression of the eigenvalues, which is also obtained in the process of
verification of the Riesz basis generation property.
The paper is organized as follows. In sections 2 and 3, some asymptotic expres-

sions of eigenvalues and eigenfunctions are presented. Section 4 is devoted to the
Riesz basis generation. Concluding remarks are given in section 5. Finally, in the
appendix, we present a much simplified proof of the abstract result obtained in Guo
(to appear) about the Riesz basis property of discrete operators in general Hilbert
spaces.

2. Asymptotic expressions of eigenvalues and eigenfunctions. Through-
out the paper, we always assume that β �= 0. As in Conrad and Morgül (1998), the
state Hilbert space for system (2) is H = H2

E(0, 1)× L2(0, 1)× C, where H2
E(0, 1) =

{f ∈ H2(0, 1) | f(0) = f ′(0) = 0}, with the inner product induced norm defined as

‖ (f, g, η) ‖2=
∫ 1

0

[| f ′′(x) |2 + | g(x) |2]dx+K | η |2,

whereK > 0 is any constant. Equation (2) can be written as an evolutionary equation
in H:

(3)
dY (t)

dt
= AY (t),

where Y (t) = (y(·, t), yt(·, t),−yxxx(1, t)+mβ−1yt(1, t)) and the operator A : D(A)(⊂
H)→ H is defined as follows:{A(f, g, η) = (g,−f (4),−β−1η − β−1(α−mβ−1)g(1)) ∀(f, g, η) ∈ D(A),
D(A) = {(f, g, η) ∈ (H4 ∩H2

E)×H2
E × C, f ′′(1) = 0, η = −f ′′′(1) +mβ−1g(1)}.

Now, we present the following lemma on the spectrum of the operator A.
Lemma 2.1. A−1 exists and is compact on H. Hence the spectrum σ(A) of A

consists of isolated eigenvalues only: σ(A) = σp(A), where σp(A) denotes the set of
eigenvalues of A. Moreover, each λ = iτ2 ∈ σ(A), λ �= −β−1, is geometrically simple
and satisfies the characteristic equation

(4) τ(iτ2 + β−1)(1 + cosh τ cos τ) + (mτ2 − αi)(sinh τ cos τ − cosh τ sin τ) = 0.

An eigenfunction (f, g, η) corresponding to λ = iτ2 ∈ σ(A)(λ �= −β−1) is given by

(5)


f(x) = sinh τ(1− x)− sin τ(1− x)− (sinh τ cos τx+ sinh τx cos τ)

+(cosh τx sin τ + cosh τ sin τx),
g = λf,

η = − λβ−1

λ+ β−1
(α−mβ−1)f(1).

Proof. A simple calculation shows that

A−1(f, g, η) = (f1, g1, η1) ∀(f, g, η) ∈ H,

f1 =

∫ 1

x

(x− τ)3

6
g(τ)dτ +

∫ 1

0

(
τ3

6
− x

τ2

2

)
g(τ)dτ +

(x− 1)3 − 3x+ 1
6

[βη + αf(1)],

g1 = f, η1 = −βη − (α−mβ−1)f(1).
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Since f
(4)
1 = −g, g1 = f, |η1| ≤ |β||η|+ |α−mβ−1|‖f‖H2 , it follows that

‖A−1(f, g, η)‖H4×H2×C ≤M‖(f, g, η)‖H
for some constant M > 0. By the Sobolev embedding theorem, A−1 is compact on
H. This is the first part.
Second, for any λ ∈ σp(A), λ �= −β−1, solving eigenvalue problem

A(f, g, η) = (g,−f (4),−β−1η − β−1(α−mβ−1)g(1)) = λ(f, g, η),

one gets

g = λf, η = − λβ−1

λ+ β−1
(α−mβ−1)f(1),

where f satisfies

(6)

 f (4)(x) + λ2f(x) = 0,
f(0) = f ′(0) = f ′′(1) = 0,
(λ+ β−1)f ′′′(1) = β−1λ(α+mλ)f(1).

If (6) has two linearly independent solutions f1, f2, then there are constants c, d (|c|+
|d| �= 0) such that cf1(1) + df2(1) = 0. It follows from (6) that f = cf1 + df2 satisfies{

f (4)(x) + λ2f(x) = 0,
f(0) = f ′(0) = f(1) = f ′′(1) = f ′′′(1) = 0.

A simple calculation shows that the above equation has only zero solution. Hence
cf1 + df2 ≡ 0. This contradicts the assumption that f1, f2 are linearly independent.
Therefore, each λ = iτ2 ∈ σ(A), λ �= −β−1, is geometrically simple.
Now, let λ = iτ2. By the first equation in (6) and the conditions f(0) = f ′(0) = 0,

we have

f(x) = c1(cosh τx− cos τx) + c2(sinh τx− sin τx),

where c1 and c2 are constants. Since f
′′(1) = 0, we can set

c1 = sinh τ + sin τ, c2 = − cosh τ − cos τ.

Obviously c1, c2 can not be zero simultaneously. Hence

f(x) = sinh τ(1− x)− sin τ(1− x)− (sinh τ cos τx+ sinh τx cos τ)
+(cosh τx sin τ + cosh τ sin τx),

which satisfies

(7)

{
f (4)(x) + λ2f(x) = 0,
f(0) = f ′(0) = f ′′(1) = 0

for all λ = iτ2.
Finally, from the last condition (λ + β−1)f ′′′(1) = β−1λ(α + mλ)f(1), one can

obtain (4) (see also Conrad and Morgül, 1998). The proof is complete.
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Lemma 2.2. There is a family of eigenvalues {λn, λn}, λn = iτ2
n of A satisfying

(8) λ = λn = iτ2
n = −2m+ i(kπ)2 +O(n−1),

where k = n − 1/2 and n is a sufficiently large positive integer. An eigenfunction
(fn, gn, ηn) of A corresponding to λn satisfies

(9)

Fn(x) = 2τ−2
n e−τn

 f ′′
n (x)
gn(x)
ηn

T

=

 e−kπx + (−1)ne−kπ(1−x) + (cos kπx− sin kπx)
i[e−kπx + (−1)ne−kπ(1−x) − (cos kπx− sin kπx)]

0

T

+O(n−1),

which holds uniformly for x ∈ [0, 1]. Consequently,
(10) ‖ Fn(x) ‖2L2×L2×C

=‖ 2τ−2
n e−τn(fn, gn, ηn) ‖2H→ 2 as n→∞.

Proof. Let k = n−1/2, with n as a sufficiently large positive integer. Noting that
as n → ∞, ‖e−kπx‖2L2 → 0, ‖e−kπ(1−x)‖2L2 → 0, ‖ cos kπx − sin kπx‖2L2 → 1, we can
conclude (10) from (9) immediately. So only (9) should be verified. First, in a small
neighborhood of kπ, the following estimates are valid uniformly for all n > 0:

2e−τ sinh τ = 1 +O(e−2|τ |), 2e−τ cosh τ = 1 +O(e−2|τ |), sin τ = O(1), cos τ = O(1).
Second, multiplying −2iτ−3e−τ on both sides of (4) yields

(11) cos τ = O(| τ |−1) or cos τ =
m

τ
i(cos τ − sin τ) +O(| τ |−2),

which is valid uniformly in a small neighborhood of kπ for all n > 0. Since cos kπ = 0,
we can apply Rouche’s theorem to the functions f(τ) = cos τ and g(τ) = −O(| τ |−1)
in a small neighborhood of kπ to find a solution to the first equation of (11) to be

(12) τ = τn = kπ +O(n−1).

Note that

(13)

{
e−τny = e−kπy +O(n−1),
sin τnx = sin kπx+O(n−1), cos τnx = cos kπx+O(n−1),

which holds uniformly for bounded y > 0 and x ∈ [0, 1]. Upon substituting (12) into
the second equation of (11), the term O(n−1) in the expression (12) satisfies

− sin kπO(n−1) = −mi

kπ
sin kπ +O(n−2),

so

O(n−1) =
mi

kπ
+O(n−2).

This, together with (12), gives

τn = kπ +
mi

kπ
+O(n−2).
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Then (8) readily follows.
Now let τ = τn and (fn, gn, ηn) = (f, g, η) be defined by (5). Since

τ−2f ′′
n (x) = sinh τ(1− x) + sin τ(1− x) + (sinh τ cos τx− sinh τx cos τ)

+(cosh τx sin τ − cosh τ sin τx),

it follows from (13) that

2τ−2e−τf ′′
n (x) = e−τx + cos τx− e−τ(1−x) cos τ + e−τ(1−x) sin τ − sin τx+O(e−kπ)

= e−kπx + e−kπ(1−x) sin kπ + cos kπx− sin kπx+O(n−1)
= e−kπx + (−1)ne−kπ(1−x) + (cos kπx− sin kπx) +O(n−1),

2τ−2e−τgn(x) = ie−τfn(x) = i[e−τx − cos τx− e−τ(1−x) cos τ + e−τ(1−x) sin τ
+sin τx] +O(e−kπ)
= i[e−kπx + (−1)ne−kπ(1−x) − (cos kπx− sin kπx)] +O(n−1),

2τ−2e−τηn = −2τ−2e−τ λβ−1

λ+β−1 (α−mβ−1)fn(1) = O(n−2).

The above estimates are valid uniformly for x ∈ [0, 1]. (9) is established.
It should be pointed out that we are not sure at this stage that (8) is an asymptotic

expression for all eigenvalues of A. This will be cleared up after the verification of
the Riesz basis generation in section 4.

3. Results of an auxiliary system. In this section, we consider an auxil-
iary system which is composed of a conservative system and an ordinary differential
equation coupled. This system will produce a reference Riesz basis of H, required
in Theorem 6.3 in the appendix in verification of basis generation. The principle of
constructing this system is based on an observation of the characteristic equation (4)
that the “dominant” equation of (4) is iτ3(1+cosh τ cos τ) = 0, which can be obtained
by letting α = m = β−1 = 0. In this case, system (2) becomes{

ytt + yxxxx = 0,
y(0, t) = yx(0, t) = yxx(1, t) = yxxxt(1, t) = 0.

Naturally, we consider the well-posed conservative system{
ytt + yxxxx = 0,
y(0, t) = yx(0, t) = yxx(1, t) = yxxx(1, t) = 0,

which has the same nonzero eigenvalues as that of the system above. In order to get
a state space the same as that of the system (2), i.e., H, we complete the conserva-
tive system with another ordinary differential equation; then the auxiliary system is
obtained, which is described by the following equation:

ytt + yxxxx = 0,
y(0, t) = yx(0, t) = yxx(1, t) = yxxx(1, t) = 0,
η̇(t) = 0.

Alternatively, we can describe the auxiliary system in the form of an evolutionary
equation in H,

(14)
dY (t)

dt
= A0Y (t),
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where the operator A0 : D(A0)(⊂ H)→ H is defined as follows:{A0(f, g, η) = (g,−f (4), 0) ∀(f, g, η) ∈ D(A0),
D(A0) = {(f, g, η) ∈ (H4 ∩H2

E)×H2
E × C, f ′′(1) = f ′′′(1) = 0}.

It is easy to show that 1 ∈ ρ(A0), (I − A0)
−1 is compact on H and A∗

0 = −A0.
That is, A0 is a skew-adjoint operator with compact resolvent on H (and hence iA0

is self-adjoint with compact resolvent). It then follows from a well-known result in
functional analysis that (i) there is a sequence of normalized eigenfunctions of A0

which forms an orthonormal basis of H; (ii) for each eigenvalue of A0, its geometric
multiplicity equals its algebraic multiplicity; and (iii) all eigenvalues of A0 lie on the
imaginary axis. (ii) is actually a consequence of (i). (iii) comes directly from the
skew-adjointness of A0. These are advantages of the construction of A0.
All the analysis of the operator A in the preceding section is true for the oper-

ator A0. In particular, each µ ∈ σ(A0), µ �= 0, is geometrically simple and hence
algebraically simple. And the characteristic equation for µ = iω2(�= 0) ∈ σ(A0) is

(15) 1 + coshω cosω = 0.

Since all eigenvalues of A0 lie on the imaginary axis, we need consider only the positive
solutions to (15) in order to find all nonzero eigenvalues of A0.
For ω > 0, writing (15) as cosω = O(e−ω), we can get the positive solutions of

(15) being

(16) ω = ωn = kπ +O(e−kπ),
where k = n− 1/2 for all sufficiently large positive integers n.
Therefore, the spectrum of A0 consists of all pairs {µn, µn} together with possibly

another finite set, where µn = iω2
n with ωn given in (16). This is unlike A; µn = iω2

n =
i(kπ)2+O(kπe−kπ) is now indeed an asymptotic expression for all eigenvalues of A0.
Now, letting α = m = β−1 = 0 and τn = ωn, in Lemma 2.2, we get an eigenvector

(un, vn, νn) of A0 corresponding to µn = iω2
n(�= 0) given below:

(17)


un(x) = sinhωn(1− x)− sinωn(1− x)− (sinhωn cosωnx+ sinhωnx cosωn)

+(coshωnx sinωn + coshωn sinωnx),
vn = µnun,
νn = 0.

Clearly, the asymptotic expression (12) is also valid for ωn defined in (16). Noting
that only the expression (12) is used in the proof of Lemma 2.2, we have the following
counterpart of Lemma 2.2 for A0. Similar results were also obtained in Lancaster and
Shkalikov (1994).

Lemma 3.1. The spectrum of A0 consists of all {µn, µn} but possibly a finite
number of the other eigenvalues, where µn = iω2

n, ωn is determined by (16). And the
eigenvalues µn (µn) are algebraically simple for all large n. In addition, an eigen-
function (un, vn, νn) of A0 corresponding to µn satisfies

(18)

Gn(x) = 2ω−2
n e−ωn

u′′n(x)
vn(x)
νn

T

=

 e−kπx + (−1)ne−kπ(1−x) + (cos kπx− sin kπx)
i[e−kπx + (−1)ne−kπ(1−x) − (cos kπx− sin kπx)]

0

T

+O(n−1),
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which holds uniformly for all x ∈ [0, 1].
4. Riesz basis generation. In this section, we shall apply Theorem 6.3 in the

appendix to get the basis property of A. To do this, we need a reference Riesz
basis of H first. This is accomplished by collecting the eigenfunctions of A0. As
we can conclude from Lemma 3.1 that a “maximal” set (see appendix) of ω-linearly
independent eigenfunctions of A0 consists of all (un, vn, νn) defined by (17) but a
finite number of the other eigenfunctions, we may assume, without loss of generality,
that such a set is

{2ω−2
n e−ωn(un, vn, νn)}∞1 ∪ {their conjugates}.

Since A0 is skew-adjoint, the set {2ω−2
n e−ωn(un, vn, νn)}∞1 ∪{their conjugates} forms

an orthogonal basis of H. Because they are approximately normalized (that is, they
are upper and lower bounded) according to (10), the set is indeed a Riesz basis of
H by a well-known fact that all approximately normalized Riesz bases in a separate
Hilbert space are equivalent.
From (9) and (18), it follows that there is a large positive integer N such that

(19)

∞∑
n>N

‖ 2τ−2
n e−τn(fn, gn, ηn)− 2ω−2

n e−ωn(un, vn, νn) ‖2H

=

∞∑
n>N

‖ Fn −Gn ‖2L2×L2×C
=

∞∑
n>N

O(n−2) <∞.

The same is true for their conjugates. Note that all λn = iτ2
n are different for large

n; we can now apply Theorem 6.3 in the appendix to obtain the main results of the
present paper.

Theorem 4.1. Let the operator A be defined as in (3). Then
(i) there is a sequence of generalized eigenfunctions of A which forms a Riesz

basis for the state space H;
(ii) all of the eigenvalues of A have the asymptotic expression (8); and
(iii) all λ ∈ σ(A) with sufficiently large modulus are algebraically simple.
Therefore, A generates a C0-group on H for any real constants m,α, and β.

Moreover, for the semigroup eAt generated by A, the spectrum-determined growth
condition holds. And the growth rate of eAt is not less than −2m.
The stability result for the system (2) is given in the following corollary.
Corollary 4.2. The semigroup eAt is exponentially stable for any m,α, β > 0.
Proof. Taking the inner product of H as in the beginning of the section 2 with

K = β2/(m+ αβ), it is calculated in Conrad and Morgül (1998) that

Re〈AY, Y 〉 = −K
β
| f ′′′(1) |2 −Kmα

β2
| g(1) |2≤ 0 ∀ Y = (f, g, η) ∈ D(A).

That is, A is dissipative and hence no eigenvalues of A lie on the open right half
complex plane. Now, if AY = λY , Y = (f, g, η), and Reλ = 0, then f ′′′(1) = g(1) = 0.
It follows from (6) that  f (4)(x) + λ2f(x) = 0,

f(0) = f ′(0) = f ′′(1) = 0,
f ′′′(1) = f(1) = 0.
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As it is indicated in the proof of Lemma 2.1, the above equation has a zero solution
only. Hence f ≡ 0 and so g = η = 0 by (5). Therefore,

(20) Reλ < 0 ∀λ ∈ σ(A).
Finally, since A is of compact resolvent, there are only finitely many eigenvalues of A
in any bounded region of the complex plane, which, together with Theorem 4.1 (ii),
shows that there is a constant ω > 0 such that

(21) S(A) = sup
λ∈σ(A)

Reλ < −ω.

The exponential stability then follows from the spectrum-determined growth condi-
tion. The proof is complete.
Before ending the section, we indicate that Theorem 4.1 can be used to obtain

the basis property and the spectrum-determined growth condition of a beam equation
without tip mass under linear boundary feedback control. LetA1 be defined by setting
m = θβ, where θ is real, in the definition of the operator A; that is,{A1(f, g, η) = (g,−f (4),−β−1η − β−1(α− β−1)g(1)) ∀(f, g, η) ∈ D(A1),

D(A1) = {(f, g, η) ∈ (H4 ∩H2
E)×H2

E × C, f ′′(1) = 0, η = −f ′′′(1) + θg(1)}.

Then Theorem 4.1 holds true for operatorA1 for any reals β
−1, α, and θ. Furthermore,

let A2 be defined by setting α = β−1 = 0 in the definition of A1. We have{A2(f, g, η) = (g,−f (4), 0) ∀(f, g, η) ∈ D(A2),
D(A2) = {(f, g, η) ∈ (H4 ∩H2

E)×H2
E × C, f ′′(1) = 0, η = −f ′′′(1) + θg(1)}.

And Theorem 4.1 is also true for operator A2 for any real θ. However,

dY

dt
= A2Y (t)

is equivalent to

(22)


ytt(x, t) + yxxxx(x, t) = 0, 0 < x < 1, t > 0,
y(0, t) = yx(0, t) = yxx(1, t) = 0, t ≥ 0,
yxxx(1, t) = θyt(1, t), t ≥ 0.

That is, system (22) is also a Riesz spectral system. This system is just the can-
tilevered beam equation considered in Conrad (1990), Conrad and Morgül (1998),
and Guo (to appear).

Remark 4.3. The conclusion of Corollary 4.2 was proved in Conrad and Morgül
(1998) by energy multiplier method. Theorem 4.1 (i) was shown there in the case
of m = αβ for almost every α > 0 with other additional conditions. Theorem 4.1
(iii) was also shown there by complex analysis. The Riesz basis property for (22) was
obtained there for almost every θ > 0.

5. Concluding remarks. In this paper, an abstract condition for Riesz basis
generation of discrete operators in Hilbert spaces is used to show that a sequence
of generalized eigenfunctions of an Euler–Bernoulli beam equation with a tip mass
under boundary linear feedback control forms a Riesz basis for the state Hilbert
space. The stability of the system is also established. This paper greatly improves
the work of Conrad and Morgül (1998), where the same results are obtained but
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for a very special case where m = αβ. Besides these results, the contributions of
this paper lie in providing a very simple method which enables us (a) to obtain
the asymptotic expressions of eigenvalues and eigenfunctions; (b) to avoid the usual
treatment for “low” eigenfrequencies in applying Bari’s theorem; and (c) to study
potential applications to other problems of beam equations (see Guo and Chan, 2001).

6. Appendix. Abstract result on Riesz basis property. In this appendix,
we present the abstract result together with a simplified proof about Riesz basis
generation for discrete operators in the Hilbert spaces. This result is crucial to the
establishment of the main results of the present paper.
Let us recall that for a closed linear operator A in a Hilbert space H, a nonzero

x ∈ H is called a generalized eigenvector of A, corresponding to an eigenvalue λ
(with finite algebraic multiplicity) of A, if there is a positive integer n such that
(λ− A)nx = 0. Let sp(A) , the so-called root subspace of A, be the closed subspace
spanned by all generalized eigenvectors of A. The following theorem gives a simple
characterization of the completeness of sp(A); that is, sp(A) = H.

Lemma 6.1. Let A be a densely defined discrete operator (that is, there is a
λ ∈ ρ(A) such that R(λ,A) = (λ − A)−1 is compact) in a Hilbert space H. Then
sp(A) = H if and only if the codimension of sp(A) in H is finite.

Proof. It is well known that the adjoint operator A∗ of a densely defined discrete
operator A is also a discrete operator. It follows from Lemma 5 on p. 2355 of Dunford
and Schwartz (1971) that the following orthogonal decomposition holds:

H = σ∞(A∗)⊕ sp(A),

where σ∞(A∗) = {x|E(λ)x = 0, ∀λ ∈ σ(A∗)}, E(λ) is the eigen-projector of A∗

corresponding to λ. Hence sp(A) = H if and only if σ∞(A∗) = {0}. On the other
hand, Lemma 5 on p. 2295 of Dunford and Schwartz (1971) suggests that σ∞(A∗) is
either {0} or infinite dimensional. Therefore the codimension of sp(A) is finite if and
only if σ∞(A∗) = {0}. The proof is complete.

Lemma 6.2. Let {φn}∞1 be a Riesz basis in a Hilbert space H. Let {ψn}∞N+1

(N ≥ 0) be another sequence in H. If

∞∑
n=N+1

‖ φn − ψn ‖2<∞,

then there exists an M ≥ N such that {φn}M1 ∪ {ψn}∞M+1 is a Riesz basis of H. In
particular, {ψn}∞M+1 is ω-linearly independent.

Proof. The proof can follow from Corollary 11.4 on page 374 of Singer (1970).
Theorem 6.3. Let A be a densely defined discrete operator in a Hilbert space H.

Let {φn}∞1 be a Riesz basis of H. If there are an integer N ≥ 0 and a sequence of
generalized eigenvectors {ψn}∞N+1 of A such that

∞∑
N+1

‖φn − ψn‖2 <∞,

then the following hold.
(i) There are a constant M > N and generalized eigenvectors {ψn0}M1 of A such

that {ψn0}M1 ∪ {ψn}∞M+1 forms a Riesz basis of H.
(ii) Let {ψn0}M1 ∪{ψn}∞M+1 correspond to eigenvalues {σn}∞1 of A. Then σ(A) =

{σn}∞1 , where σn is counted according to its algebraic multiplicity.
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(iii) If there is an M0 > 0 such that σn �= σm for all m,n > M0, then there is an
N0 > M0 such that all σn are algebraically simple if n > N0.

Proof. (ii) and (iii) are consequences of (i). Only proof of (i) is needed. By Lemma
6.2, there is an M > N such that {ψn}∞M+1 is ω-linearly independent. Let {ψα} be
an arbitrary set such that {ψn}∞M+1 ∪ {ψα} is a “maximal” ω-linearly independent
set of generalized eigenvectors of A; that is, {ψn}∞M+1 ∪ {ψα} is a ω-linearly indepen-
dent subset of the set of the generalized eigenvectors of A, and for any generalized
eigenvector ψ of A, the extended set {ψn}∞M+1 ∪ {ψα} ∪ {ψ} must not be ω-linearly
independent anymore. Therefore, {ψn}∞M+1 ∪ {ψα} spans the root subspace sp(A).
By the assumption and Bari’s theorem, the number of such ψα’s does not exceed
M . Let {ψα} = {ψn0}L1 , L ≤ M . It follows from Theorem 3.2 of Rao (1997) that
{ψn0}L1 ∪ {ψn}∞M+1 forms a Riesz basis of sp(A).
On the other hand, by the assumption and Bari’s theorem, the number of linearly

independent elements in the orthogonal complement of sp(A) in H cannot exceed M ,
and hence the codimension of sp(A) is finite. Then from Lemma 6.1, sp(A) = H.
Therefore, {ψn0}L1 ∪ {ψn}∞M+1 forms a Riesz basis for the entire space H.
Since a “proper” subset of a basis can not be a basis, it follows from Bari’s theorem

and the assumption that L =M . This is (i). The proof is complete.

Acknowledgments. The author would like to thank the anonymous referees for
their valuable comments and suggestions.

REFERENCES

G. Chen, M. C. Delfour, A. M. Krall, and G. Payre (1987), Modeling, stabilization and
control of serially connected beams, SIAM J. Control Optim., 25, pp. 526–546.

G. Chen, S. G. Krantz, D. L. Russell, C. E. Wayne, H. H. West, and M. P. Coleman (1989),
Analysis, designs, and behavior of dissipative joints for coupled beams, SIAM J. Appl. Math.,
49, pp. 1665–1693.

F. Conrad (1990), Stabilization of beams by pointwise feedback control, SIAM J. Control Optim.,
28, pp. 423–437.

F. Conrad and O. Mörgül (1998), On the stabilization of a flexible beam with a tip mass, SIAM
J. Control Optim., 36, pp. 1962–1986.

S. Cox and E. Zuazua (1994), The rate at which energy decays in a damped string, Comm.
Partial Differential Equations, 19, pp. 213–243.

N. Dunford and J. T. Schwartz (1971), Linear Operators, Part III, Wiley-Interscience, New
York.

B. Z. Guo, The Riesz basis property of discrete operators and application to an Euler-Bernoulli
beam equation with boundary linear feedback control, IMA J. Math. Control Inform., to ap-
pear.

B. Z. Guo and K. Y. Chan, Riesz basis generation, eigenvalues distribution, and exponential
stability for an Euler-Bernoulli beam with joint feedback control, Rev. Mat. Complut., 14
(2001), pp. 1–24.

I. C. Gohberg and M. G. Krein (1969), Introduction to the Theory of Linear Nonselfadjoint
Operators, Transl. Math. Monogr. 18, AMS, Providence, RI.

P. Lancaster and A. Shkalikov (1994), Damped vibrations of beams and related spectral prob-
lems, Canad. Appl. Math. Quart., 2, pp. 45–90.

S. Li, J. Yu, Z. Liang, and G. Zhu (1999), Stabilization of high eigenfrequencies of a beam
equation with generalized viscous damping, SIAM J. Control Optim., 37, pp. 1767–1779.

O. Morgül, F. Conrad, and B. P. Rao (1994), On the stabilization of a cable with a tip mass,
IEEE Trans. Automat. Control, 39, pp. 2140–2145.

B. P. Rao (1997), Optimal energy decay rate in a damped Rayleigh beam, in Optimization Meth-
ods in Partial Differential Equations (South Hadley, MA, 1996), Contemp. Math. 209, S. Cox
and I. Lasiecka, eds., AMS, Providence, RI, pp. 221–229.

R. Rebarber (1989), Spectral assignability for distributed parameter systems with unbounded
scalar control, SIAM J. Control Optim., 27, pp. 148–169.



BASIS PROPERTY OF A BEAM EQUATION 1747

R. Rebarber (1995), Exponential stability of coupled beams with dissipative joints: A frequency
domain approach, SIAM J. Control Optim., 33, pp. 1–28.

M. A. Shubov (1996), Basis property of eigenfunctions of nonselfadjoint operator pencils gener-
ated by the equation of nonhomogenerous damped string, Integral Equations Operator Theory,
25, pp. 289–328.

M. A. Shubov (1997), Spectral operators generated by damped hyperbolic equations, Integral
Equations Operator Theory, 28, pp. 358–372.

I. Singer (1970), Bases in Banach Spaces I, Springer-Verlag, New York, Berlin.
S. H. Sun (1981), On spectrum distribution of completely controllable linear systems, SIAM J.

Control Optim., 19, pp. 730–743 (translated by L. F. Ho).
C.-Z. Xu and G. Sallet (1996), On spectrum and Riesz basis assignment of infinite-dimensional

linear systems by bounded linear feedbacks, SIAM J. Control Optim., 34, pp. 521–541.



ACHIEVING ARBITRARILY LARGE DECAY IN THE DAMPED
WAVE EQUATION∗

CARLOS CASTRO† AND STEVEN J. COX‡

SIAM J. CONTROL OPTIM. c© 2001 Society for Industrial and Applied Mathematics
Vol. 39, No. 6, pp. 1748–1755

Abstract. We exhibit a sequence of viscous dampings for the fixed string that yields arbitrarily
fast attenuation of any and all initial disturbances. The limit case produces extinction of all solutions
in finite time.
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1. Introduction. The displacement u of a string of unit length, fixed at its ends,
and in the presence of viscous damping 2a, satisfies

utt(x, t)− uxx(x, t) + 2a(x)ut(x, t) = 0, 0 < x < 1, 0 < t,
u(0, t) = u(1, t) = 0, 0 < t,

(1.1)

upon being set in motion by the initial disturbance

u(x, 0) = u0(x), ut(x, 0) = v0(x).(1.2)

If a ∈ L∞(0, 1) is nonnegative and strictly positive on some subinterval, then the
energy

E(t) ≡
∫ 1

0

u2
x(x, t) + u2

t (x, t) dx

is known to obey E(t) ≤ CE(0)e2ωt for some finite C > 0 and ω < 0, independent of
the initial disturbance. The smallest such ω,

ω(a) ≡ inf { ω : ∃C(ω) > 0 such that (s.t.) E(t) ≤ CE(0)e2ωt

for every finite energy solution of (1.1)},
is referred to as the decay rate associated with a. If a is to be introduced in order to
absorb an initial disturbance, then one naturally wishes to strike upon that a with
the least possible (most negative) decay rate. The mathematical attraction here lies
in the often noted fact that, with respect to damping, “more is not better.” More
precisely, for constant a, the decay rate is not a decreasing function of a. Rather,
for small a, ω decreases until a reaches π, after which ω rapidly increases to 0. Our
aim is to show that there exist nonconstant a that circumvent this phenomena of
overdamping and hence that more indeed can be better.
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Cox and Zuazua [3, Thm. 6.5] have shown that a �→ ω(a) attains its finite
minimum over {a ∈ BV (0, 1) : T (a) ≤M}, where T (a) denotes the total variation of
a. We show here that the total variation constraint is not superfluous. More precisely,
we establish the following theorem.

Theorem 1.1. If an(x) = 1/(x + 1/n), then ω(an) → −∞ and T (an) → ∞ as
n→∞.

This result is a dramatic improvement over previous attempts to minimize a �→
ω(a). In particular, Cox and Overton [2], based on the study of ω near a = π,
conjectured that ω(π) may indeed be the minimum. Later on, Freitas [4] suggested a
negative answer to the conjecture by numerical evidence based on the clever choices
a(x) = π(1 + cos(2πx))/2.

When n→∞, an(x)→ 1/x /∈ BV (0, 1). In this case the solutions are extinct in
finite time.

Theorem 1.2. If a(x) = 1/x, for any initial data (u0, u1) ∈ H1
0 (0, 1)× L2(0, 1)

the solution u(x, t) of (1.1)–(1.2) satisfies

u(x, t) = ut(x, t) = 0 ∀t > 2.(1.3)

The remainder of the paper is organized as follows. In section 2 we equate the
decay rate with the spectral abscissa of the associated damped wave operator and
express its shooting function in the case that a(x) = 1/(x + c). In section 3, via
simple calculus, we show that all zeros of the shooting function travel arbitrarily far
to the left as c is made small. Finally, in section 4 we prove the result for the limit
case a(x) = 1/x.

2. The shooting function. For a of finite total variation Benaddi and Rao [1]
have shown that ω(a) coincides with the spectral abscissa

µ(a) = sup {λ : λ ∈ σ(a)},

where σ(a) denotes the spectrum of the associated damped wave operator

A(a) =
(

0 I
d2/dx2 −2a

)
, D(A(a)) = (H2(0, 1) ∩H1

0 (0, 1))×H1
0 (0, 1).

If V = [y, z] is an eigenvector of A(a) with eigenvalue λ, then z = λy and y′′ − 2az =
λz, or

y′′ − λ2y − 2aλy = 0,(2.1)

subject to

y(0) = y(1) = 0.(2.2)

We adopt the shooting method for the study of (2.1)–(2.2). That is, we denote by
x �→ y2(x, λ) the function that satisfies (2.1) and the initial conditions

y2(0, λ) = 0 and y′2(0, λ) = 1.

The eigenvalues are then simply the roots of λ �→ y2(1, λ). This gives the exact
spectrum when a is constant (in which case y2 may be obtained in closed form) and
asymptotic results in general. In establishing such asymptotic results, Cox and Zuazua
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[3, equation 5.3] observed that y2 could also be simply expressed when the damping
was of the particular form

a(x) =
1

x+ c
(2.3)

for any c > 0. In this case,

y2(x, λ) = c(x+ c)eλx
∫ x

0

e−2λs

(s+ c)2
ds.

Hence the eigenvalues of A(a) are the zeros of the shooting function λ �→ F (λ, c),
where

F (λ, c) ≡
∫ 1

0

e−2λx

(x+ c)2
dx.

One first notices that F (·, c) has no real zeros, and hence the choice (2.3) is not
thwarted by overdamping, even for small c. Second, we note that as c becomes
small the integrand in F becomes large unless the real part of λ itself becomes quite
(negatively) large. We devote the next section to a precise statement of the latter
observation and the ensuing proof of Theorem 1.1.

3. Calculus lemmas. We split F into its real and imaginary parts

F (λ, c) =

∫ 1

0

eαx cos(βx)

(x+ c)2
dx+ i

∫ 1

0

eαx sin(βx)

(x+ c)2
dx,

where α = −2λ and β = −2�λ, and we attack them separately.
Lemma 3.1. If f ∈ L∞(0, 1) is nonnegative and decreasing, then∫ 1

0

f(x) sin(βx) dx > 0 ∀β > 0.(3.1)

Proof. For β ≤ 2π the result is obvious. For larger β, let K be the greatest integer
for which 2πK < β, and write∫ 1

0

f(x) sin(βx) dx =

∫ 2πK/β

0

f(x) sin(βx) dx+

∫ 1

2πK/β

f(x) sin(βx) dx ≡ I1 + I2.

The first integral

I1 =

K−1∑
k=0

∫ 2π(k+1)/β

2πk/β

f(x) sin(βx) dx

=

K−1∑
k=0

[∫ π(2k+1)/β

2πk/β

f(x) sin(βx) dx+

∫ 2π(k+1)/β

π(2k+1)/β

f(x) sin(βx) dx

]

=
K−1∑
k=0

∫ π(2k+1)/β

2πk/β

(f(x)− f(x+ π/β)) sin(βx) dx > 0

because each integrand is positive.
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Concerning I2, if (1−2πK/β) < π/β, then the integrand is positive and so I2 > 0.
On the other hand, if (1− 2πK/β) ≥ π/β, we find

I2 =

∫ π(2K+1)/β

2πK/β

f(x) sin(βx) dx+

∫ 1

π(2K+1)/β

f(x) sin(βx) dx

=

∫ π(2K+1)/β

2πK/β

f(x) sin(βx) dx−
∫ 1−π/β

2πK/β

f(x+ π/β) sin(βx) dx

=

∫ 1−π/β

2πK/β

{f(x)− f(x+ π/β)} sin(βx) dx+

∫ π(2K+1)/β

1−π/β
f(x) sin(βx) dx > 0.

Lemma 3.2. If β > 0 and g ∈ L∞(0, 1) is nonnegative and strictly convex, then∫ π(2J+1)/β

0

g(x) sin(βx) dx > 0 ∀J ∈ N, s.t. π(2J + 1) ≤ β.(3.2)

Proof. As g is strictly convex, either (i) g is decreasing, (ii) g is increasing, or (iii)
there exists x0 ∈ (0, 1) such that g is decreasing on [0, x0) and increasing on (x0, 1].

In case (i) the result follows from Lemma 3.1. In case (ii)

∫ π(2J+1)/β

0

g(x) sin(βx) dx =

∫ π(2J+1)/β

0

g(π(2J + 1)/β − x) sin(π(2J + 1)− βx) dx

=

∫ π(2J+1)/β

0

g(π(2J + 1)/β − x) sin(βx) dx,

and we can apply again Lemma 3.1, as f(x) = g(π(2J + 1)/β − x) is decreasing.
Regarding the third case, we write∫ π(2J+1)/β

0

g(x) sin(βx) dx =

∫ x0

0

g(x) sin(βx) dx+

∫ π(2J+1)/β

x0

g(x) sin(βx) dx

=

∫ x0

0

g(x) sin(βx) dx+

∫ π(2J+1)/β−x0

0

g(π(2J + 1)/β − x) sin(βx) dx,

and we note that as g and x �→ g(π(2J + 1)/β − x) are decreasing on (0, x0) and
(0, π(2J + 1)/β − x0), respectively, we may apply the previous lemma to each and
conclude positivity of the whole.

Lemma 3.3. Given A > 0, there exist B1 = B1(A) > 0 and C1 = C1(A) > 0
such that if 0 < α ≤ A, |β| ≥ B1, and c ≤ C1, then∫ 1

0

eαx sin(βx)

(x+ c)2
dx �= 0.(3.3)

Proof. We assume, without loss of generality, that β > 0. We decompose∫ 1

0

eαx sin(βx)

(x+ c)2
dx =

∫ 1

0

sin(βx)

(x+ c)2
dx+

∫ 1

0

(eαx − 1) sin(βx)

(x+ c)2
dx ≡ I1 + I2

and estimate I2 via

I2 =

∫ π(2J+1)/β

0

(eαx − 1) sin(βx)

(x+ c)2
dx+

∫ 1

π(2J+1)/β

(eαx − 1) sin(βx)

(x+ c)2
dx,(3.4)
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where J is the greatest integer such that π(2J + 1) ≤ β. The first integral in (3.4) is
positive, via Lemma 3.2, thanks to the convexity of x �→ (eαx − 1)(x+ c)−2 on [0, 1]
when α and c are positive. Concerning the second integral in (3.4) as∣∣∣∣∣

∫ 1

π(2J+1)/β

(eαx − 1) sin(βx)

(x+ c)2
dx

∣∣∣∣∣ ≤ (1− π(2J + 1)/β)(1 + eα)

(π(2J + 1)/β + c)2

≤ 2π

β

(1 + eα)

(c+ 1− 2π/β)2
,

it follows that

I2 ≥ − 2π(1 + eα)

β(c+ 1− 2π/β)2
.(3.5)

We now estimate I1. Integrating by parts, we easily obtain

β

∫ 1

0

sin(βx)

(x+ c)2
dx =

1

c2
− cos(β)

(1 + c)2
− 2

∫ 1

0

cos(βx)

(x+ c)3
dx.(3.6)

The third term in this expression can be bounded by

−2
∫ 1

0

cos(βx)

(x+ c)3
dx > −2

∫ π/2β

0

cos(βx)

(x+ c)3
dx(3.7)

for

−2
∫ 1

π/2β

cos(βx)

(x+ c)3
dx = 2

∫ 1−π/2β

0

sin(βx)

(x+ π/2β + c)3
dx > 0,

thanks to Lemma 3.1 and the decreasing nature of x �→ (x+ π/2β + c)−3. Returning
to (3.7), we find

−2
∫ 1

0

cos(βx)

(x+ c)3
dx > −2

∫ π/2β

0

1

(x+ c)3
dx =

1

(π/2β + c)2
− 1

c2
.

Using this in (3.6) brings

β

∫ 1

0

sin(βx)

(x+ c)2
dx ≥ 1

(π/2β + c)2
− cos(β)

(1 + c)2
≥ 1

(π/2β + c)2
− 1

(1 + c)2
.

From this and (3.5) we finally deduce∫ 1

0

eαx sin(βx)

(x+ c)2
dx = I1 + I2 ≥ 1

β

[
1

(π/2β + c)2
− 1

(1 + c)2
− 2π(1 + eα)

(c+ 1− 2π/β)2

]
.

Note that we can choose C(A) and B1(A) such that the term in the brackets is strictly
positive when 0 < c < C(A), β ≥ B1(A), and 0 < α ≤ A.

Lemma 3.4. Given positive A and B, there exists a constant C2 = C2(A,B) > 0
such that if 0 < α ≤ A, |β| ≤ B, and c ≤ C2, then∫ 1

0

eαx cos(βx)

(x+ c)2
dx > 0.(3.8)
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Proof. Assume that 0 ≤ α ≤ A and |β| ≤ B. Integrating by parts, we obtain∫ 1

0

eαx cos(βx)

(x+ c)2
dx =

1

c
− eα cos(β)

(1 + c)
− β

∫ 1

0

eαx sin(βx)

(x+ c)
dx+ α

∫ 1

0

eαx cos(βx)

(x+ c)
dx

=
1

c
− eα cos(β)

(1 + c)
− β

∫ 1

0

eαx sin(βx)

(x+ c)
dx

+ α

∫ 1

0

(eαx − 1) cos(βx)

(x+ c)
dx+ α

∫ 1

0

cos(βx)

(x+ c)
dx

≡M1 +M2 +M3 +M4 +M5.(3.9)

Note that the terms |M2|, |M3|, and |M4| remain uniformly bounded as c→ 0 for all
0 ≤ α ≤ A and |β| ≤ B. Concerning M5, we have

M5 = α

∫ 1

0

cos(βx)

(x+ c)
dx = α

[
cos(β) log(1 + c)− log(c)− β

∫ 1

0

sin(βx) log(x+ c) dx

]
,

which is clearly positive if c is small enough. Therefore, due to the M1 term, we can
choose C sufficiently small so that (3.9) is positive for all c ≤ C.

Let us now deduce Theorem 1.1 from these last two lemmas. For A > 0 we choose

C(A) ≡ min{C1(A), C2(A,B1)},

where B1 and C1 are the constants of Lemma 3.3 and C2 is the constant of Lemma
3.4. Now, if 0 < α ≤ A, then either (3.8) or (3.3) holds, depending on the size of
β. As a result, if c < C(A), then all zeros of λ �→ F (λ, c) must lie in the half-space
λ ≤ −A/2. As A was arbitrary, we may indeed, via (2.3), produce arbitrarily large
decay. As A approaches∞, we note that C(A) decreases to 0 and so the total variation
of 1/(x+ c) approaches ∞.

4. The limit case a(x) = 1/x. In this section we prove the extinction result
stated in Theorem 1.2. For the sake of simplicity we present here a formal argument.
The rigorous proof can be achieved in a standard way.

Consider the limit damped wave equation
utt(x, t)− uxx(x, t) +

2
xut(x, t) = 0, 0 < x < 1, t > 0,

u(0, t) = u(1, t) = 0,
u(x, 0) = u0, ut(x, 0) = u1.

(4.1)

We introduce the Laplace transform

L{u}(τ) = U(x, τ) =

∫ ∞

0

e−τtu(x, t)dt.(4.2)

When applying the Laplace transform to (4.1), we obtain{
τ2U − Uxx + τ 2

xU = τu0(x) + u1(x) +
2
xu0(x),

U(0, τ) = U(1, τ) = 0.
(4.3)

Observe that

U(x, τ) = xeτx(4.4)
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is a solution of the homogeneous equation associated to (4.3):

τ2U − Uxx + τ
2

x
U = 0.(4.5)

We look for the solution of (4.3) via reduction of order, i.e., we assume that

U(x, τ) = xeτxv(x, τ).(4.6)

Then v(x, τ) must satisfy
xvxx + vx (2 + 2τx) = −e−τx (τu0 + u1 +

2u0

x

)
,

v(1, τ) = 0,
limx→0 |v(x, τ)| <∞.

(4.7)

Hence

(vxx
2e−2τ(1−x))x = −xe−2τ(1−x)e−τx

(
τu0 + u1 +

2u0

x

)
,

v =

∫ 1

x

1

r2
e2τ(1−r)

∫ r

0

se−τ(2−s)
(
τu0(s) + u1(s) +

2u0(s)

s

)
dsdr,

U = xeτx
∫ 1

x

1

r2
e2τ(1−r)

∫ r

0

se−τ(2−s)
(
τu0(s) + u1(s) +

2u0(s)

s

)
dsdr.(4.8)

In order to invert the Laplace transform, we simplify the term in the form τeτα.
Integrating by parts, we have∫ r

0

se−τ(2−s)τu0(s)ds =

∫ r

0

su0(s)
d

ds
e−τ(2−s)ds = su0(s)e

−τ(2−s)
]r
0

−
∫ r

0

e−τ(2−s) (su′
0 + u0) ds

= ru0(r)e
−τ(2−r) −

∫ r

0

e−τ(2−s) (su′
0 + u0) ds.(4.9)

Substituting in (4.8), we have

U = xeτx
∫ 1

x

1

r
e2τ(1−r)u0(r)e

−τ(2−r)dr

+xeτx
∫ 1

x

1

r2
e2τ(1−r)

∫ r

0

e−τ(2−s) (−su′
0(s) + u0(s) + su1(s)) dsdr.(4.10)

Now we apply the inverse Laplace transform L−1 to obtain u:

u(x, t) = L−1{U}(x, t) = x

∫ 1

x

1

r
u0(r)L−1{eτ(x−r)}dr

+x

∫ 1

x

1

r2

∫ r

0

(−su′
0(s) + u0(s) + su1(s))L−1{eτ(x−2r+s)}dsdr

= x

∫ 1

x

1

r
u0(r)δ(t− r + x)dr

+x

∫ 1

x

1

r2

∫ r

0

(−su′
0(s) + u0(s) + su1(s)) δ(t− 2r + x+ s)dsdr.(4.11)
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Here δ(x) represents the Dirac delta at x = 0.
Once we have an explicit formula for the solution of (4.1), we easily prove the

theorem.
Assume that t > 2. We have

t+ x > 1,

and the first integral in (4.11) is zero due to the fact that the support of δ(t− r + x)
is not in the domain of the integral. Moreover,

2r − x− t < 0

(because r − x < 1 and r − t < 1− 2 = −1), and the second integral in (4.11) is also
zero.

Acknowledgment. The first author is grateful to J. J. L. Velazquez for some
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Abstract. The aim of the topological sensitivity analysis is to obtain an asymptotic expansion
of a design functional with respect to the creation of a small hole. In this paper, such an expansion is
obtained and analyzed in the context of linear elasticity for general functionals and arbitrary shaped
holes by using an adaptation of the adjoint method and a domain truncation technique. The method
is general and can be easily adapted to other linear PDEs and other types of boundary conditions.

Key words. topological sensitivity, topological derivative, shape optimization, design sensitiv-
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1. Introduction. The goal of topological optimization is to find an optimal
design with an a priori poor information on the optimal shape of the structure. Unlike
the case of classical shape optimization, the topology of the structure may change
during the optimization process, as, for example, through the inclusion of holes.

Most of the known results concern structural mechanics. Classical topology opti-
mization involves relaxed formulations and homogenization (see, e.g., [1, 19, 3, 12]).
This approach leads us to introduce some microstructures. In the case of compliance
(external work) minimization under a volume constraint, a class of laminated mate-
rials is exhibited, together with an explicit expression of the optimal material at each
point of the structure. Such a method has two drawbacks.

• The optimal solution is not a classical design: it is a quasi-uniform distri-
bution of composite materials. Then some penalization methods must be
applied to retrieve a realistic shape.
• Optimization of a criterion like Von Mises stress via homogenization seems

to be a difficult task.

For this latter reason, global optimization techniques like genetic algorithms or
simulated annealing have been proposed (see, e.g., [22]), but these methods have a
high computational cost and can hardly be applied to industrial problems.

Another approach instigated by the work of Schumacher [21] is presented and
analyzed in this paper. The shape optimization problem consists in minimizing a
functional j(Ω) = J(Ω, uΩ), where the displacement uΩ is defined on a variable open
and bounded subset Ω of R

n, n = 2 or 3. For ρ > 0, let Ωρ = Ω\(x0 + ρω) be the set
obtained by removing a small part x0 + ρω from Ω, where x0 ∈ Ω and ω ⊂ R

n are a
fixed open and bounded subset containing the origin. Then, an asymptotic expansion
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of the function j can be obtained in the following form:

j(Ωρ) = j(Ω) + f(ρ)g(x0) + o(f(ρ)),(1.1)

lim
ρ→0

f(ρ) = 0, f(ρ) > 0.

The “topological sensitivity” g(x0) provides an information for creating a small hole
located at x0. Hence the function g can be used like a descent direction in an opti-
mization process. The physical meaning of creating a hole depends on the boundary
condition which is imposed on its boundary.

• A homogeneous Neumann boundary condition means that x0 +ρω represents
a perforation, i.e., a lack of material.
• A homogeneous Dirichlet boundary condition means that x0 + ρω represents

a weld or a rivet. This kind of boundary condition is difficult to handle by
classical homogenization methods.

Schumacher [21] introduced the topological sensitivity in the case of compliance
minimization. Next, Sokolowski and Żochowski [23] generalized it to a class of func-
tionals in the plane stress case with a homogeneous Neumann condition imposed on
the boundary of a circular hole. A topological sensitivity framework using an adapta-
tion of the adjoint method and a truncation technique has been introduced in [17] in
the case of a homogeneous Dirichlet condition imposed on the boundary of a circular
hole (see also [6]). The fundamental property of an adjoint technique is to provide
the variation of a function with respect to a parameter by using a solution uΩ and
an adjoint state vΩ which do not depend on the chosen parameter. Numerically, it
means that only two systems must be solved for obtaining the discrete approximation
of g(x) for all x ∈ Ω. In [10], the topological sensitivity has been derived for a large
class of problems, functionals, and boundary conditions on a circular hole x0 + ρω.
For example, in linear elasticity the first variation of the function j reads

j(Ωρ)− j(Ω) = − π(λ+ 2µ)

µ(9λ+ 14µ)
{20µσ(uΩ) : ε(vΩ)(1.2)

+(3λ− 2µ)trσ(uΩ) tr ε(vΩ)}ρ3 + o(ρ3)

for a three-dimensional (3D) Neumann boundary condition on the hole. In the case
of a 3D Dirichlet boundary condition, the variation becomes

j(Ωρ)− j(Ω) =
12πµ(λ+ 2µ)

2λ+ 5µ
uΩ.vΩ ρ+ o(ρ).(1.3)

In [23, 14], only variations in O(ρn), that is, proportional to the volume of the hole,
were considered. One can observe here that other behaviors may occur, depending on
the boundary condition which is imposed on the hole.

In this paper is presented the mathematical analysis of the topological sensitivity
in the case of general functionals and arbitrary shaped holes. For example, optimiza-
tion of a criterion like Von Mises stress can be handled by this method. The case of
arbitrary shaped holes can be interesting for the identification of cracks. The equations
which are here considered are those of linear elasticity, with a Neumann boundary
condition on the hole. However, the method is general and can be adapted without
any significant modification to many other equations like Stokes or Helmholtz equa-
tions. For these equations, the natural boundary condition on the hole is a Dirichlet
condition for which the analysis is very similar to the one presented here.
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First, an adaptation of the adjoint method to the topological context [17] is devel-
oped in section 2. Next, the elasticity problem, the truncation method for simulating
the creation of a hole, and the main result are presented in section 3. In the case
of a circular or spherical hole, explicit expressions of the topological sensitivity are
given for both Dirichlet and Neumann boundary conditions and dimension n = 2 or
3. Section 4 is devoted to the proof of the main result presented in section 3. Finally,
section 5 describes a topology optimization algorithm illustrated by some numerical
examples.

2. A generalized adjoint method. In this section, the adjoint method [4] is
adapted to the topology optimization [17, 10]. Let V be a fixed Hilbert space. For
ρ ≥ 0, let aρ be a bilinear, symmetric, uniformly continuous, and coercive form on
V, and let lρ be a linear and uniformly continuous form on V. That is, there exist
constants α > 0, M > 0, and L > 0 independent of ρ such that for all ρ ≥ 0,

aρ(u, v) ≤M‖u‖ ‖v‖ ∀u, v ∈ V,
aρ(u, u) ≥ α‖u‖2 ∀u ∈ V,
|lρ(v)| ≤ L‖v‖ ∀v ∈ V.

We assume in this section that there exist a bilinear and continuous form δa, a linear
and continuous form δl, and a real function f(ρ) > 0 defined on R+ such that

lim
ρ→0

f(ρ) = 0,(2.1)

‖aρ − a0 − f(ρ)δa‖L2(V) = o(f(ρ)),(2.2)

‖lρ − l0 − f(ρ)δl‖L(V) = o(f(ρ)),(2.3)

where L(V) (respectively, L2(V)) denotes the space of continuous and linear (respec-
tively, bilinear) forms on V. It will be shown in section 4 that this assumption is
fulfilled in the topology optimization context. The same function f is used here for
both asymptotics (2.2)–(2.3). It does not exclude the case where aρ − a0 and lρ − l0
have different behaviors O( f1(ρ)) and O(f2(ρ)), in which case f is chosen to be the
“slowest” between f1 and f2; that is, fi(ρ) = O(f(ρ)), i = 1, 2.

For ρ ≥ 0, let uρ be the solution to the problem: find uρ ∈ V such that

aρ(uρ, v) = lρ(v) ∀v ∈ V.(2.4)

Lemma 2.1. For ρ ≥ 0, this problem has a unique solution uρ, and

‖uρ − u0‖ = O(f(ρ)).

Proof. It follows from the coercivity of aρ that

α‖uρ − u0‖2 ≤ aρ(uρ − u0, uρ − u0),(2.5)

which implies

α‖uρ − u0‖2 ≤ aρ(uρ, uρ − u0)− aρ(u0, uρ − u0)

= lρ(uρ − u0)− aρ(u0, uρ − u0)

= l0(uρ − u0) + (lρ − l0)(uρ − u0)− aρ(u0, uρ − u0)

= a0(u0, uρ − u0)− aρ(u0, uρ − u0) + (lρ − l0)(uρ − u0)

= f(ρ)(δa(u0, uρ − u0) + δl(uρ − u0)) + (‖u0‖+ 1) ‖uρ − u0‖ o(f(ρ)).
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Now consider a function j(ρ) = Jρ(uρ), where J0 is differentiable with respect to
u, its derivative being denoted by DJ(u). Moreover, we suppose that there exists a
function δJ defined on V such that

Jρ(v)− J0(u) = DJ(u)(v − u) + f(ρ)δJ(u) + o(‖v − u‖+ f(ρ)).(2.6)

This expression looks like a first order derivative and would be, in fact, the first order
derivative of the function J (s, u) defined by J (s, u) := Jf−1(s)(v) − J0(u) with the
change of variable s = f(ρ).

Next, the Lagrangian L [4] is defined by

Lρ(u, v) = Jρ(u) + aρ(u, v)− lρ(v) ∀u, v ∈ V.(2.7)

Its variation with respect to ρ is given by

δL(u, v) = δJ(u) + δa(u, v)− δl(v),

and we have

Lρ(u, v)− L0(u, v) = f(ρ)δL(u, v) + o(f(ρ)).

Theorem 2.2. The function j has the asymptotic expansion

j(ρ) = j(0) + f(ρ)δL(u0, v0) + o(f(ρ)),(2.8)

where v0 is the solution to the adjoint problem: find v0 ∈ V such that

a0(w, v0) = −DJ(u0)w ∀w ∈ V.(2.9)

Proof. For all v ∈ V, one has

j(ρ) = Lρ(uρ, v).
Hence

j(ρ)− j(0) = Lρ(uρ, v)− L0(u0, v),

= aρ(uρ, v)− a0(u0, v) + Jρ(uρ)− J0(u0)− lρ(v) + l0(v).

It follows from (2.6) and Lemma 2.1 that

Jρ(uρ)− J0(u0) = DJ(u0)(uρ − u0) + f(ρ)δJ(u0) + o(f(ρ)).

Next, choosing v0 as the solution to (2.9), we obtain with (2.3)

j(ρ)− j(0) = aρ(uρ, v0)− a0(u0, v0) +DJ(u0)(uρ − u0)

+f(ρ)(δJ(u0)− δl(v0)) + o(f(ρ))

= aρ(uρ, v0)− a0(uρ, v0) + a0(uρ − u0, v0) +DJ(u0)(uρ − u0)

+f(ρ)(δJ(u0)− δl(v0)) + o(f(ρ))

= aρ(uρ, v0)− a0(uρ, v0) + f(ρ)(δJ(u0)− δl(v0)) + o(f(ρ)).

Then, it follows from (2.1), (2.2), and Lemma 2.1 (with ||uρ|| bounded) that

j(ρ)− j(0) = f(ρ)δa(uρ, v0) + f(ρ)(δJ(u0)− δl(v0)) + o(f(ρ))

= f(ρ)(δa(u0, v0) + δa(uρ − u0, v0)) + f(ρ)(δJ(u0)− δl(v0)) + o(f(ρ))

= f(ρ)δL(u0, v0) + o(f(ρ)).
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3. The elasticity problem. Let Ω be an open and bounded subset of R
n, n = 2

or 3. The linear elasticity problem [7, 13] is the following: find uΩ such that
−div σ(uΩ) = 0 in Ω,

σ(uΩ)n = F on ΓN ,
uΩ = 0 on ΓD,

(3.1)

where the strain tensor ε and the stress tensor σ are given by

σij(u) = λdiv u δij + 2µεij(u),

εij(u) =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
, 1 ≤ i, j ≤ n.

Here δij is the Kronecker symbol, and n denotes the outward normal to the boundary
Γ = ΓD ∪ ΓN , where ΓD and ΓN have both a nonnegative Lebesgue measure and
ΓD ∩ ΓN = ∅. More general stress tensors of the form σij(u) = Hklij εkl(u) could be
considered without any major modifications. Equations (3.1) describe the displace-
ment uΩ of an isotropic solid which is loaded by a surface traction F on ΓN and which
is clamped on ΓD. For simplicity, no volume forces are considered.

Γ

Ω

∂ωρ

Ωρ
ωρ

Γ

Fig. 3.1. The initial domain and the same domain after the perforation.

For a given x0 ∈ Ω, consider the perforated open set Ωρ = Ω\ωρ, ωρ = x0 + ρω,
where ω ⊂ R

n is a fixed open and bounded set containing the origin (ωρ = ∅ if ρ = 0),
whose boundary ∂ω is connected and piecewise of class C1 (see Figure 3.1). The new
displacement uΩρ is the solution to the problem: find uΩρ such that

−div σ(uΩρ) = 0 in Ωρ,
σ(uΩρ)n = F on ΓN ,

uΩρ = 0 on ΓD,
σ(uΩρ)n = 0 on ∂ωρ.

(3.2)

Note that for ρ = 0, one has uΩ0 = uΩ.
In the context of identification of conductivity imperfections, the asymptotic be-

havior of a voltage potential uΩρ − uΩ has been studied in [24, 25] for the Laplace
equation. In that context, a new variation of uΩ is computed for each new location
of a hole. This method is usually referred to as the direct method. An alternative
to this method is to use the adjoint technique. In this case, it is not necessary to
compute the variation of uΩ in order to obtain the variation of a cost function; only
an adjoint state must be evaluated, which is independent of the location of the hole.

The displacement uΩρ is defined on the variable domain Ωρ; thus it belongs to
a functional space which depends on ρ. Hence if we want to derive the asymptotic
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expansion of a function of the form

j(ρ) = J̃(uΩρ),(3.3)

we cannot apply directly the tools of section 2, which require a fixed functional space.
In classical shape optimization, this requirement can be satisfied with the help

of a domain parameterization technique [18, 16, 11]. This technique involves a fixed
domain and a bi-Lipshitz map between this domain and the modified one. In the
topology optimization context, such a map does not exist between Ω and Ωρ. However,
a functional space independent of ρ can be constructed by using a domain truncation
technique. Let R > 0 be such that the open ball B(x0, R) is included in Ω. Then the
truncated open set ΩR (see Figure 3.2) is defined by

ΩR = Ω \B(x0, R).

ΩR

ΓR
R

Γ

Dρ

Fig. 3.2. The truncated domain.

In section 3.1 are defined
• a Hilbert space VR independent of ρ,
• a VR-elliptic bilinear and continuous form aρ, and
• a linear and continuous form l,

such that the solution uρ to the equation

aρ(uρ, v) = l(v) ∀v ∈ VR
is equal to the restriction of uΩρ to ΩR. A bilinear form δa satisfying (2.2) will be
obtained in section 4, from which the asymptotic expansion of the cost function will
be derived by using the framework described in section 2. As no volume forces are
considered, we have δl ≡ 0. The main result is presented in section 3.2, and the
particular case of a spherical hole is detailed in section 3.3.

3.1. Truncation. The open set B(x0, R)\ωρ is denoted by Dρ (see Figure 3.2).
For ϕ ∈ H1/2(ΓR)

n and ρ > 0, let uϕρ be the solution to the problem: find uϕρ such
that 

−div σ(uϕρ ) = 0 in Dρ,
uϕρ = ϕ on ΓR,

σ(uϕρ )n = 0 on ∂ωρ,
(3.4)

where ΓR is the boundary of B(x0, R). The normal n is chosen outward to Dρ on
∂ωρ and ΓR, regardless of whether Dρ or ΩR are considered. For ρ = 0, the function
uϕ0 is the solution to { −div σ(uϕ0 ) = 0 in B(x0, R),

uϕ0 = ϕ on ΓR.
(3.5)
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For ρ ≥ 0, the Dirichlet-to-Neumann operator Tρ is defined by

Tρ : H1/2(ΓR)
n −→ H−1/2(ΓR)

n,
ϕ �−→ Tρϕ = σ(uϕρ )n.

One can observe that the null space of Tρ consists in the constant functions. Finally,
the displacement uρ is defined for ρ ≥ 0 as the solution to the truncated problem:
find uρ such that 

−div σ(uρ) = 0 in ΩR,
σ(uρ)n = F on ΓN ,

uρ = 0 on ΓD,
σ(uρ)n = Tρuρ on ΓR.

(3.6)

The variational formulation associated to problem (3.6) is the following: find
uρ ∈ VR such that

aρ(uρ, v) = l(v) ∀v ∈ VR,
where the functional space VR, the bilinear form aρ, and the linear form l are defined
by

VR =
{
u ∈ H1(ΩR)

n, u = 0 on ΓD
}
,

aρ(u, v) =

∫
ΩR

σ(u) : ε(v) dx+

∫
ΓR

Tρu.v dγ(x),(3.7)

l(v) =

∫
ΓN

F.v dγ(x).

Here x.y denotes the usual dot product of R
n, σ : ε =

∑n
i,j=1 σijεij , and dγ(x) is

the Lebesgue measure on the boundary. Symmetry, continuity, and coercivity of aρ
follow directly from ∫

ΓR

Tρϕ.ψ dγ(x) =

∫
Dρ

σ(uϕρ ) : ε(uψρ ) dx.

The following result is standard in PDE theory.
Proposition 3.1. Problems (3.2) and (3.6) have a unique solution. Moreover,

the restriction to ΩR of the solution uΩρ to problem (3.2) is the solution uρ to problem
(3.6).

We have now at our disposal the fixed Hilbert space VR required by section 2.
Function (3.3) can be redefined in the following way: for u ∈ VR, let ũ ∈ H1(Ωρ)

n

be the extension of u which coincides with u on ΩR and ΓR and which satisfies
div σ(ũ) = 0 on Dρ, σ(ũ)n = 0 on ∂ωρ. Then a function Jρ can be defined on VR by

Jρ(u) = J̃(ũ).(3.8)

In particular, it follows from the previous proposition that

j(ρ) = J̃(uΩρ) = Jρ(uρ).(3.9)

Notice that Jρ(uρ) is independent of the choice of R. For example, if J̃(uΩρ) =∫
Ωρ
|uΩρ |2dx, then we have

Jρ(u) =

∫
ΩR

|u|2dx+

∫
Dρ

|uϕρ |2dx, u ∈ VR and ϕ = u on ΓR.
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3.2. The main result. Possibly changing the coordinate system, we can sup-
pose for convenience that x0 = 0. Let vω be the solution to the problem

−div σ(vω) = 0 in R
n\ω,

vω = 0 at ∞,
σ(vω)n = σ(uΩ)(x0)n on ∂ω.

(3.10)

In order to be consistent with previous notations, the normal n is chosen outward to
R
n\ω on ∂ω. This function vω can be expressed by a single layer potential on ∂ω in

the following way. Let

E(y) =
1

r

(
βI + γere

T
r

)
if n = 3,(3.11)

E(y) = β log r I + γere
T
r if n = 2,

where I is the n× n identity matrix, r = ||y||, er = y/r, eTr is the transposed vector
of er, and

β =
λ+ 3µ

8πµ(λ+ 2µ)
, γ =

λ+ µ

8πµ(λ+ 2µ)
for n = 3,

β = − λ+ 3µ

4πµ(λ+ 2µ)
, γ =

λ+ µ

4πµ(λ+ 2µ)
for n = 2 (plain strain).

For two-dimensional (2D) plain stress, λ∗ = 2µλ/(λ+ 2µ) must be substituted for λ.
The matrix distribution E ∈ D′

(Rn,Rn×n) is a fundamental solution for the elasticity
problem in R

n; that is, each column Ej is a solution to

−div σ(Ej) = δej in R
n,

where δ is the Dirac distribution and (ej)j=1,n is the canonical basis of R
n. Then

function vω reads

vω(y) =

∫
∂ω

E(y − x)p(x) dγ(x), y ∈ R
n\ω,

where p ∈ H−1/2(∂ω)n is the solution to boundary integral equation [8, 9]

p(y)

2
+

∫
∂ω

σy(E(y − x)p(x))n(y) dγ(x) = σ(uΩ)(x0)n(y) ∀y ∈ ∂ω,(3.12)

the subscript y in σy denoting a differentiation with respect to the variable y. More-
over, due to∫

∂ω

σ(uΩ)(x0)n(x) dγ(x) = 0,∫
∂ω

σy(Ej(y − x))n(y) dγ(y) =
1

2
ej if x ∈ ∂ω, ∂ω of class C1 at x,

multiplying (3.12) by ei and integrating over ∂ω yield

0 =
1

2

∫
∂ω

pi(y) dγ(y) +

∫
∂ω

pj(x)

∫
∂ω

σy(Ej(y − x))n(y) dγ(y).ei dγ(x)

=
1

2

∫
∂ω

pi(y) dγ(y) +
1

2

∫
∂ω

pj(x)δij dγ(x)

=

∫
∂ω

pi(y) dγ(y),
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where Einstein’s summation convention on repeated indices is used throughout this
paper. Hence we have ∫

∂ω

p(x) dγ(x) = 0,(3.13)

and, using the first order Taylor expansion of E at the point y �= x for x bounded

E(y − x) = E(y)−DE(y)x+O

(
1

rn

)
,

we obtain the following asymptotic expansion at infinity of the function vω:

vω(y) =

∫
∂ω

E(y)p(x) − (DE(y)x)p(x) dγ(x) +O

(
1

rn

)
= 0−

∫
∂ω

(DE(y)x)p(x) dγ(x) +O

(
1

rn

)
.

The dominant part Pω(y) of vω is given by

vω(y) = Pω(y) +Wω(y),(3.14)

Pω(y) = −
∫
∂ω

(DE(y)x)p(x) dγ(x), Wω(y) = O

(
1

rn

)
,(3.15)

where the function rn−1Pω(y) is homogeneous of degree 0; that is, for all y �= 0,

Pω(y) = ρn−1Pω(ρy) ∀ρ > 0.(3.16)

Moreover, it can easily be checked that

−div σ(Pω) = 0 in R
n\{0}.(3.17)

Next we consider the solution Qω to the problem{ −div σ(Qω) = 0 in D0,
Qω = Pω on ΓR.

(3.18)

The main result is the following, which will be proved in section 4.
Theorem 3.2. Let j(ρ) = Jρ(uρ) be a cost function such that for all v ∈ VR and

ρ > 0,

Jρ(v)− J0(u0) = DJ(u0)(v − u0) + δJ(u0)ρ
n + o(‖v − u0‖VR + ρn),

where DJ(u0) is continuous and linear on VR. Let v0 ∈ VR be the solution to the
adjoint equation

a0(w, v0) = −DJ(u0)w ∀w ∈ VR,(3.19)

and let

δa(u0, v0) :=

∫
ΓR

σ(Qω − Pω)n.v0 dγ(x).(3.20)

Then the function j has the following asymptotic expansion:

j(ρ) = j(0) + {δa(u0, v0) + δJ(u0)} ρn + o(ρn).(3.21)
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The expression g(x0) := δa(u0, v0)+ δJ(u0) is called the “topological sensitivity.”
It is also called the “topological gradient.” Moreover, as g(x0) is independent of ρ, it
follows from the uniqueness of an asymptotic expansion that g(x0) is also independent
of R.

Practically, what is computed is the solution uΩ to (3.1) and the solution vΩ to∫
Ω

σ(w) : ε(vΩ) dx = −DJ̃(uΩ)w ∀w ∈ V0.(3.22)

As observed in Proposition 3.1, u0 is the restriction to ΩR of uΩ. The same property
holds for v0 and vΩ. This can easily be seen by observing that for w ∈ V0 such that
div σ(ω) = 0 in D0, and denoting by vR and wR the restrictions of vΩ and w to ΩR,
on the one hand, we have

a0(wR, vR) =

∫
ΩR

σ(wR) : ε(vR) dx+

∫
ΓR

T0wR.vR dγ(x)

=

∫
Ω

σ(w) : ε(vΩ) dx+ 0,(3.23)

and on the other hand, due to (3.8), we have J̃(u) = J0(uR) for all u ∈ V0 such that
div σ(u) = 0 in D0. Hence

DJ̃(uΩ)w = DJ(u0)wR.(3.24)

Then, gathering (3.23), (3.22), and (3.24), we obtain

a0(wR, vR) = −DJ(u0)wR ∀wR ∈ VR,
which proves that vR is the solution to (3.19); that is, v0 is the restriction to ΩR of
vΩ.

The basic property of an adjoint technique is also satisfied here, in that the
displacement uΩ (or u0) and the adjoint state vΩ (or v0) do not depend on x0. Hence
only two systems have to be solved in order to compute the topological sensitivity g(x)
for all x ∈ Ω. This plays a crucial role in the efficiency of the optimization algorithm
described in section 5.

Thanks to Green’s formula and Pω = Qω on ΓR, (3.20)–(3.21) reads also

j(ρ) = j(0) +

{∫
ΓR

σ(vΩ)n.Pω − σ(Pω)n.vΩ dγ(x)(3.25)

−
∫
D0

div σ(vΩ).Qω dx+ δJ(u0)

}
ρn + o(ρn).

In particular, we have the following result, which can be used when the function J
does not depend on ρ. The tensor −A is known as the mass matrix; see, e.g., [14].

Corollary 3.3. Let p be defined by (3.12), and

Aik(σ(uΩ)(x0)) =

∫
∂ω

pi(x)xk dγ(x)(3.26)

with p = (pi)1≤i≤n, x = (xk)1≤k≤n. Under the assumptions of Theorem 3.2, if
div σ(vΩ) = 0 in D0, then

δa(uΩ, vΩ) = A(σ(uΩ)(x0)) : ε(vΩ)(x0),



1766 THE TOPOLOGICAL ASYMPTOTIC IN ELASTICITY

and the function j has the following asymptotic expansion:

j(ρ) = j(0) + δa(uΩ, vΩ)ρn + o(ρn).

Moreover, the matrix A(σ(uΩ)(x0)) ∈ R
n×n is symmetric, is linear with respect to

σ(uΩ)(x0), and depends only on σ(uΩ)(x0) and ω, and the tensor A is symmetric in
the following sense:

A(σ(uΩ)(x0)) : ε(vΩ)(x0) = A(σ(vΩ)(x0)) : ε(uΩ)(x0).

Proof. Due to div σ(vΩ) = 0, the function vΩ is analytical around x0, and through
a regularization and localization technique, it can easily be shown that (3.26) becomes

j(ρ) = j(0)− ρn 〈div σ(Pω), ϕvΩ〉D′(D0),D(D0)
+ o(ρn),(3.27)

where ϕ ∈ D(D0) satisfies ϕ(x) = 1 on a neighborhood of x0. For legibility, Aik may
stand for Aik(σ(uΩ)(x0)). It follows from (3.15) that

Pω(y) = −Aik∂kEi(y).
Hence

−div σ(Pω)(y) = Aik∂kdiv σ(Ei(y)) = −Aik∂kδei,
and

−〈div σ(Pω)(y), ϕvΩ(y)〉 = 〈Aikδei, ∂k(ϕvΩ)(y)〉
= Aik(∂kvΩ)i(x0)

= A(σ(uΩ)(x0)) : DvΩ(x0).

Function p is the jump of σ(vω)n across ∂ω if vω, defined by (3.10), is extended in ω
by −div σ(vω) = 0 in ω and vω is continuous across ∂ω. Thus

Aik =

∫
∂ω

[σ(vω)n].(eixk) dγ(x),

and Aik = Aki follows from Green’s formula and σik(vω) = σki(vω). Finally, the
symmetry of the tensor A is a straightforward consequence of the symmetry of aρ for
all ρ ≥ 0.

3.3. Case of a spherical hole. Computing the coefficients

Aik(σ(uΩ)(x0)) =

∫
∂ω

pi(x)xk dγ(x)

requires solving integral equation (3.12) which is here recalled:

p(y)

2
+

∫
∂ω

σy(E(y − x)p(x))n(y) dγ(x) = σ(uΩ)(x0)n(y) ∀y ∈ ∂ω.

However, using Saint-Venant’s principle, a good approximation of p can be obtained
by computing the displacement uext on Ω\ω and the displacement uint on ω with the
Dirichlet boundary condition uint = uext on ∂ω. Then p is approximately equal to
the jump σ(uext)n−σ(uint)n on ∂ω. When ω is the unit ball B(0, 1), then vω (and
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thus P and A) can be computed explicitly with the help of symbolic calculus: with
σ0 := σ(u)(0), the solution v to −div σ(v) = 0 in R

n \B(0, 1),
σ(v)n = σ0n on ∂B(0, 1),

v = 0 at ∞,

is given for n = 2 by

vi =
π(µ+ η)

2ηµ

{
4µσ0: ε(Ei) + (η − 2µ)trσ0 tr ε(Ei)(3.28)

+
µ+ 2η

6
σ0 : ε(∆Ei)

}
, i = 1, 2,

and for n = 3 by

vi =
π(λ+ 2µ)

µ(9λ+ 14µ)

{
20µσ0: ε(Ei) + (3λ− 2µ)trσ0 tr ε(Ei)(3.29)

+ 2µσ0 : ε(∆Ei)

}
, i = 1, 2, 3,

where the constant η is defined by

η =

{
µ(3λ+2µ)
λ+2µ plane stress,

λ+ µ plane strain,

and trσ =
∑
i σii is the usual trace operator.

Also, some similar results can be obtained for a homogeneous Dirichlet boundary
condition on ∂ωρ. The main difference is the asymptotic behavior at infinity of the
solution to the exterior problem corresponding to (3.10):{ −div σ(vω) = 0 in R

n\ω,
vω = uΩ(x0) on ∂ω,

that is, O(1/r) for n = 3 and O(log(r)) for n = 2 instead of O(1/rn−1) for the
Neumann case (see (3.15)). The solution vω to this exterior problem involves E and
∆E, instead of DE and D(∆E).

Table 3.1 reports the different expressions of the topological sensitivity for the
Dirichlet and Neumann boundary condition in two and three dimensions. For the
Neumann boundary condition, they are obtained by simply keeping the principal
part Pω in (3.30) and (3.29) (that is, by removing the terms containing ∆Ei), and by
substituting −vΩ for Ei. That follows from a direct computation of (3.27) using (3.2),
similar to the proof of Corollary 3.3. In particular, we retrieve the expression given
by Sokolowski and Żochowski [23] in plane stress elasticity with a Neumann boundary
condition.

One can observe that in both cases δa(uΩ, vΩ) �= σ(uΩ) : ε(vΩ); that is, the
topological sensitivity is not obtained by considering the limit when ρ → 0 of the
classical shape optimization expression of the derivative with respect to ρ > 0 (here
for the Neumann case):

Dj(ρ) = −
∫
∂ωρ

σ(uΩ) : ε(vΩ) dγ(x).
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Table 3.1
Expressions of the topological sensitivity.

Boundary
condition on ∂ωρ f(ρ) δa(uΩ, vΩ)

2D Dirichlet
1

log(ρ)
−4πµ(µ+ η)

2µ+ η
uΩ.vΩ

3D Dirichlet ρ
12πµ(λ+ 2µ)

2λ+ 5µ
uΩ.vΩ

2D Neumann ρ2 −π(µ+ η)

2ηµ
{4µσ(uΩ) : ε(vΩ) + (η − 2µ)trσ(uΩ) tr ε(vΩ)}

3D Neumann ρ3 − π(λ+ 2µ)

µ(9λ+ 14µ)
{20µσ(uΩ) : ε(vΩ) + (3λ− 2µ)trσ(uΩ) tr ε(vΩ)}

4. Proof of the main result. This section consists in the proof of Theorem
3.2. The variation of the bilinear form aρ (see (3.7)) reads

aρ(u, v)− a0(u, v) =

∫
ΓR

(Tρ − T0)u.v dγ(x).(4.1)

Hence, the problem reduces to the analysis of (Tρ−T0)ϕ for ϕ ∈ H1/2(ΓR)
n. More pre-

cisely, it will be shown that there exists an operator δT ∈ L(H1/2(ΓR)
n;H−1/2(ΓR)

n)
such that

‖Tρ − T0 − ρnδT ‖L(H1/2(ΓR)n;H−1/2(ΓR)n) = O(ρn+1).(4.2)

Then defining δa by

δa(u, v) =

∫
ΓR

δTu.v dγ(x), u, v ∈ VR,

will yield straightforwardly

‖aρ − a0 − ρnδa‖L2(V) = O(ρn+1).

In order to derive (4.2), first we need some definitions and preliminary lemmas.

4.1. Definitions. For convenience, the following norms and seminorms are cho-
sen for the functional spaces which will be used.

• For a bounded, connected, and open subset O ⊂ R
n with a Lipschitz contin-

uous boundary, the Sobolev space H1(O)n is equipped with the norm

‖u‖21,O :=

∫
O
σ(u) : ε(u) + u.v dx,

which, due to Korn’s inequality [20], is equivalent to the usual norm. We will
also need the seminorm defined by

|u|21,O :=

∫
O
σ(u) : ε(u) dx.(4.3)

This seminorm is equivalent to the previous one on the subspace orthogonal
to the constants {u ∈ H1(O)n;

∫
O u dx = 0}.
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• For a given ρ > 0, the fractional Sobolev space H1/2(ΓR/ρ)
n is equipped with

the following norm which is equivalent to the usual norm:

‖v‖1/2,ΓR/ρ = inf
{‖u‖1,C(R/(2ρ),R/ρ); u = v on ΓR/ρ

}
,

where C(r, r′) := {x ∈ R
n; r < ||x|| < r′} . We will also need the seminorm

|v|1/2,ΓR/ρ = inf{|u|1,C(R/(2ρ),R/ρ) ; u = v on ΓR/ρ}.(4.4)

The introduction of this seminorm is related to the fact that the null space
of Tρ consists in the constant functions.

• The dual space H−1/2(ΓR/ρ)
n is equipped with the natural norm

‖w‖−1/2,ΓR/ρ = sup{〈w, v〉−1/2,1/2 ; v ∈ H1/2(ΓR/ρ)
n, ‖v‖1/2,ΓR/ρ = 1}.

It can easily be checked that if ψ ∈ H1(C(R/2, R))n with div σ(ψ) = 0 in
C(R/2, R), then

‖σ(ψ)n‖−1/2,ΓR ≤ c |ψ|1,C(R/2,R) .(4.5)

Here and in what follows, c is a positive constant independent of the data (e.g.,
of ρ).

4.2. Preliminary lemmas. Recall that x0 = 0. We will use intensively the
following change of variable: for a given function u defined on a set O, function ũ is
defined on Õ := O/ρ by

ũ(y) = u(x), y = x/ρ.

Unless otherwise specified, the derivation in the operators σ and ε will be considered
with respect to the current variable; that is, εij(u)(x) = (∂ui(x)/∂xj+∂uj(x)/∂xi)/2,
εij(ũ)(y) = (∂ũi(y)/∂yj +∂ũj(y)/∂yi)/2, etc. Due to Du(x) = Dũ(y)/ρ and to (4.3),
we have

|u|21,O =

∫
O
σ(u) : ε(u) dx =

1

ρ2

∫
Õ
σ(ũ) : ε(ũ) ρndy.

Hence

|u|1,O = ρ(n−2)/2 |ũ|
1,Õ .(4.6)

Similarly, we have

|v|1/2,ΓR = inf{|u|1,C(R/2,R) ; u = v on ΓR}
= inf{ρ(n−2)/2 |ũ|1,C(R/(2ρ),R/ρ) ; ũ = ṽ on ΓR/ρ}.

Hence

|v|1/2,ΓR = ρ(n−2)/2 |ṽ|1/2,ΓR/ρ .(4.7)

Lemma 4.1. For ϕ ∈ H−1/2(∂ω)n such that∫
∂ω

ϕdγ(x) = 0,
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let v be the solution to the problem
−div σ(v) = 0 in R

n\ω,
v = 0 at ∞,

σ(v)n = ϕ on ∂ω.
(4.8)

The function v is split into

v(y) = V (y) +W (y),

V (y) = −
∫
∂ω

(DE(y)x)p(x) dγ(x),

where E is defined in (3.11). There exists c > 0 such that

|V |1,C(R/(2ρ),R/ρ) ≤ cρn/2‖ϕ‖−1/2,∂ω,(4.9)

|W |1,C(R/(2ρ),R/ρ) ≤ cρn/2+1‖ϕ‖−1/2,∂ω.

Proof. With the help of a single layer potential representation, the function v
reads

v(y) =

∫
∂ω

E(y − x)p(x) dγ(x), y ∈ R
n\ω,

where (see also (3.13))

p(y)

2
+

∫
∂ω

σy(E(y − x)p(x))n(y) dγ(x) = −ϕ(y) ∀y ∈ ∂ω,(4.10) ∫
∂ω

p(x) dγ(x) = 0.(4.11)

Using a Taylor expansion of E computed at the point y, (4.11), and the well-posedness
of (4.10) [8], we have

||DV (y)|| ≤ c

|y|n ‖ϕ‖−1/2,∂ω, ||DW (y)|| ≤ c

|y|n+1
‖ϕ‖−1/2,∂ω,

from which (4.9) follows straightforwardly.
Lemma 4.2. For ϕ ∈ H1/2(ΓR)

n, let vρ be the solution to the problem
−div σ(vρ) = 0 in Dρ,

vρ = ϕ on ΓR,
σ(vρ)n = 0 on ∂ωρ.

(4.12)

There exist a constant c > 0 (independent of ϕ and ρ) and ρ1 > 0 such that for all
0 < ρ < ρ1,

|vρ|1,Dρ ≤ c |ϕ|1/2,ΓR .

Proof. Let w solve the problem
−div σ(w) = 0 in C(R/2, R),

w = ϕ on ΓR,
σ(w)n = 0 on ΓR/2,
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and let w = w0 + γ, where the constant γ is such that
∫
C(R/2,R)

w0 dx = 0. For ρ = 0,

(4.12) is well-posed, and there exists a constant c such that

|v0|1,D0
= |v0 − γ|1,D0

≤ c ‖ϕ− γ‖1/2,ΓR ≤ c ‖w0‖1/2,∂C(R/2,R) ≤ c ‖w0‖1,C(R/2,R) ,

where the last inequality follows from the trace theorem. On the subspace of
H1(C(R/2, R)) consisting in the functions u such that

∫
C(R/2,R)

u dx = 0, the semi-

norm |u|1 is equivalent to the norm ‖u‖1 . Hence, using (4.4), we deduce that

|v0|1,D0
≤ c |w0|1,C(R/2,R) = c |w|1,C(R/2,R) = c |ϕ|1/2,ΓR .

Then let ρ1 > 0 be such that ωρ ⊂ D0 for all ρ < ρ1. The function vρ minimizes
|v|1,Dρ over the affine space

{
v ∈ H1(Dρ)

n; v = ϕ on ΓR
}
. Hence, if v̂0 denotes the

restriction of v0 to Dρ, we have

|vρ|1,Dρ ≤ |v̂0|1,Dρ ≤ |v0|1,D0
≤ c |ϕ|1/2,ΓR .

Lemma 4.3. For ρ > 0 and ψ ∈ H1(D0)
n such that

div σ(ψ) = 0 in D0,

let uρ be the solution to the problem
−div σ(uρ) = 0 in Dρ,

uρ = 0 on ΓR,
σ(uρ)n = σ(ψ)n on ∂ωρ.

(4.13)

There exist a constant c > 0 (independent of ψ and ρ) and ρ1 > 0 such that for all
0 < ρ < ρ1,

|uρ|1,C(R/2,R) ≤ cρn‖σ(ψ)(ρy)n‖−1/2,∂ω.

Proof. First we note that∫
∂ω

σ(ψ)(ρx)n dγ(x) =
1

ρn−1

∫
∂ωρ

σ(ψ)(x)n dγ(x) =
1

ρn−1

∫
ωρ

div σ(ψ) dγ(x) = 0.

Hence we can define the solution ṽρ to the problem
−div σ(ṽρ) = 0 in R

n\ω,
ṽρ = 0 at ∞,

σ(ṽρ)n = ρσ(ψ)(ρy)n on ∂ω.

The function uρ can be written

uρ = vρ − wρ,

where vρ(x) = ṽρ(x/ρ). The function wρ itself is the solution to
−div σ(wρ) = 0 in Dρ,

wρ = vρ on ΓR,
σ(wρ)n = 0 on ∂ωρ.
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It follows from Lemma 4.2 that there exist c > 0 and ρ1 > 0 such that for all
0 < ρ < ρ1,

|wρ|1,Dρ ≤ c |vρ|1/2,ΓR .(4.14)

Using (4.7), (4.4), and Lemma 4.1, we have

|vρ|1/2,ΓR = ρ(n−2)/2 |ṽρ|1/2,ΓR/ρ ≤ ρ(n−2)/2 |ṽρ|1,C(R/(2ρ),R/ρ)

≤ ρ(n−2)/2cρn/2‖ρσ(ψ)(ρy)n‖−1/2,∂ω = cρn‖σ(ψ)(ρy)n‖−1/2,∂ω.(4.15)

Again using Lemma 4.1, we also have

|vρ|1,C(R/2,R) = ρ(n−2)/2 |ṽρ|1,C(R/(2ρ),R/ρ)

≤ cρn‖σ(ψ)(ρy)n‖−1/2,∂ω.(4.16)

Hence, gathering together (4.14), (4.15), and (4.16), we obtain

|uρ|1,C(R/2,R) = |vρ − wρ|1,C(R/2,R) ≤ |vρ|1,C(R/2,R) + |wρ|1,Dρ
≤ cρn‖σ(ψ)(ρy)n‖−1/2,∂ω.

Lemmas 4.2 and 4.3 are summarized in the following lemma.
Lemma 4.4. Let vρ be the solution to the problem

−div σ(vρ) = 0 in Dρ,
vρ = ϕ on ΓR,

σ(vρ)n = σ(ψ)n on ∂ωρ,

where ϕ ∈ H1/2(ΓR)
n and ψ ∈ H1(D0)

n with

div σ(ψ) = 0 in D0.

There exist a constant c > 0 (independent of ϕ, ψ and ρ) and ρ1 > 0 such that for all
0 < ρ < ρ1,

|vρ|1,C(R/2,R) ≤ c |ϕ|1/2,ΓR + cρn‖σ(ψ)(ρy)n‖−1/2,∂ω.

4.3. Variation of the boundary operator. The linear operator δT (indepen-
dent of ρ) is defined as follows:

δT : H1/2(ΓR)
n −→ H−1/2(ΓR)

n,
ϕ �−→ δTϕ := σ(Qw − Pω)n,

(4.17)

where Pω and Qw are defined by (3.15) and (3.18), with σ(uϕ0 )(0) substituted for
σ(uΩ)(0) in (3.10), the function uϕ0 being the solution to (3.4). (We are interested in
δTu0, and in that case there is no substitution to do.)

Proposition 4.5. The asymptotic expansion of Tρ is

‖Tρ − T0 − ρnδT ‖L(H1/2(ΓR)n;H−1/2(ΓR)n) = O(ρn+1).(4.18)

Proof. Let ϕ ∈ H1/2(ΓR)
n, and denote uρ = uϕρ , u0 = uϕ0 as the solutions to

(3.4) and (3.5). The function vω is defined by (3.10) (with σ(u0)(0) substituted for
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σ(uΩ)(0)). For y = x/ρ, recall ((3.14)–(3.16)) that vω(y) = Pω(y) + Wω(y) with
Pω(x/ρ) = ρn−1Pω(x) and Wω(y) = O(1/||y||n). Let

ψρ(x) = (Tρ − T0 − ρnδT )ϕ(x).

We have

ψρ(x) = σ(uρ(x)− u0(x) + ρnPω(x)− ρnQω(x))n

= σ(wρ(x)− ρWω(x/ρ))n,

where wρ is defined by

wρ(x) = uρ(x)− u0(x) + ρvω(x/ρ)− ρnQω(x).

The function wρ is the solution to
−div σ(wρ) = 0 in Dρ,

wρ = ρvω(x/ρ)− ρnQω(x) on ΓR,
σ(wρ)n = σ(−u0(x) + ρvω(x/ρ)− ρnQω(x))n on ∂ωρ.

In order to apply Lemma 4.4, we have to estimate the two right-hand sides.
On ΓR, due to (3.18), (3.16), and (3.14), we have

ρvω(x/ρ)− ρnQω(x) = ρWω(x/ρ).

Using (4.7), (4.4), Lemma 4.1, and the elliptic regularity of problem (3.4), we have

|ρvω(x/ρ)− ρnQω(x)|1/2,ΓR = |ρWω(x/ρ)|1/2,ΓR
= ρn/2 |Wω(y)|1/2,ΓR/ρ
≤ ρn/2 |Wω|1,C(R/(2ρ),R/ρ)

≤ cρn+1‖σ(u0)(0)n‖−1/2,∂ω

≤ cρn+1‖ϕ‖1/2,ΓR .(4.19)

On ∂ωρ, due to the definition (3.10) of vω, we have

σx(ρvω(x/ρ))n = σy(vω(y))n = σx(u0)(0)n,

where the subscript in σ denotes the differentiated variable. Hence, using σ(ε(u0)(0)x) =
σ(u0)(0) for all x, we have on ∂ωρ

σ(wρ)(x)n = σ(−u0(x) + ρvω(x/ρ)− ρnQω(x))n

= σ(−u0(x) + ε(u0)(0)x− ρnQω(x))n

= ρσ(θρ)n,

where the function θρ := (−u0(x) + ε(u0)(0)x − ρnQω(x))/ρ satisfies div σ(θρ) = 0
in D0. Applying Lemma 4.4 and using (4.19), we obtain

|wρ|1,C(R/2,R) ≤ c |ρvω(x/ρ)− ρnQω(x)|1/2,ΓR + cρn‖ρσ(θρ)(ρy)n‖−1/2,∂ω

≤ cρn+1(‖ϕ‖1/2,ΓR + ‖σ(θρ)(ρy)n‖−1/2,∂ω).
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The analyticity of σ(θρ)(ρy) = (−σ(u0)(ρy) + σ(u0)(0))/ρ − ρn−1ε(Qω)(ρy) (u0 and
Qω are analytical in D0) and the elliptic regularity of problems (3.4) and (3.18) [15]
yield for small ρ

‖σ(θρ)(ρy)n‖−1/2,∂ω ≤ c‖σ(θρ)(ρy)n‖L∞(∂ω)

≤ c‖u0‖W 2,∞(B(0,R/2)) + c‖Qω‖W 1,∞(B(0,R/2))

≤ c‖ϕ‖1/2,ΓR .

Hence

|wρ|1,C(R/2,R) ≤ cρn+1‖ϕ‖1/2,ΓR .(4.20)

We have div σ(wρ) = 0, and div σ(Wω(x/ρ)) = 0 follows from (3.17); thus using (4.5)
and (4.6) yields

‖ψρ‖−1/2,ΓR = ‖σ(wρ(x)− ρWω(x/ρ))n‖−1/2,ΓR

≤ |wρ|1,C(R/2,R) + |ρWω(x/ρ)|1,C(R/2,R)

≤ |wρ|1,C(R/2,R) + ρn/2 |Wω|1,C(R/(2ρ),R/ρ) ,

and we conclude by using (4.20) and (4.19) once more.

4.4. Variation of the bilinear form. The asymptotic expansion of the bilinear
form aρ is a direct consequence of Proposition 4.5.

Proposition 4.6. Let

δa(u, v) =

∫
ΓR

δTu.v dγ(x), u, v ∈ VR.

The asymptotic expansion of the bilinear form aρ with respect to ρ is

‖aρ − a0 − ρnδa‖L2(V) = O(ρn+1).

Hence the fundamental assumption (2.2) is satisfied, and it follows from Theorem
2.2 that

j(ρ) = j(0) + ρng(x0) + o(ρn),(4.21)

g(x0) = δa(u0, v0) + δJ(u0),

which achieves the proof of Theorem 3.2.

5. Numerical results. According to (4.21), the topological sensitivity gives an
information on the opportunity of creating a small hole around x0. Suppose that the
function j has to be minimized. Then creating a hole where g(x) < 0 may decrease
the function j. Following the presentation of Céa, Gioan, and Michel in [5], (4.21)
leads to the following optimality condition:

g(x) ≥ 0 ∀x ∈ Ω.

This condition may be used in the following way to derive a topology optimization
algorithm.
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5.1. Algorithm (see [5]). Consider an initial domain Ω0 which represents the
design domain. The optimal domain is sought in {Ω′ ⊂ Ω0; Ω′ is open}. Let (mk)k≥0

be a decreasing sequence of volume constraints with m0 = meas(Ω0). For example, a
geometrical sequence may be chosen. At the kth iteration, the topological sensitivity
is denoted by gk(x), and ck+1 is chosen in such a way that{

Ωk+1 = {x ∈ Ωk, gk(x) ≥ ck+1},
meas(Ωk+1) = mk+1.

The process stops when a target such as a volume constraint (or a constraint on the
maximum of the Von Mises stress) is reached. Hence the algorithm is the following.

Algorithm: Topology optimization with volume constraint.
• Initialization: chose the initial domain Ω0, and set k = 0.
• Repeat

1. solve the linear elasticity problem in Ωk,
2. compute the topological sensitivity gk,
3. set Ωk+1 = {x ∈ Ωk, gk(x) ≥ ck+1} , where ck+1 is chosen such that

meas(Ωk+1) = mk+1,
4. k ← k + 1.

• until target is reached.
The topological sensitivity is computed on each element. Then the elements are

sorted with respect to this sensitivity. The lowest elements are removed. The number
of elements removed at each step is given by the volume ratio (volume of elements
removed) / (volume of the previous structure). In the following examples, this volume
ratio is taken between 5% and 10%. At each iteration, most of the computational time
is required for solving the elasticity problem. As only a few iterations are needed, this
method is not expensive in terms of computational cost.

5.2. Applications. The following examples are taken from [12].

L

L

L

Fig. 5.1. The design domain and boundary conditions for the first example.

In the first example, the initial design domain Ω0 is a cube (see Figure 5.1). The
four vertices of the bottom face can slide in the horizontal plan, and the vertical
displacement is zero at those latter points. A load is applied on the center of the top
face. Fifty iterations were computed, and 9% of the material was removed at each
step. Figure 5.2 shows several intermediate designs obtained during the optimization
process. The mesh was refined after 25 iterations.

When the four bottom corners are clamped (homogeneous Dirichlet condition),
the horizontal lattices between the four supports disappear, and the optimal design
consists in four rods joined in a pyramidal structure.
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Fig. 5.2. The pyramids obtained after 8, 28, 37, and 50 iterations. Volumes represent, respec-
tively, 50%, 7%, 3%, and 1% of the initial volume.

L

1.5L

0.4L

Fig. 5.3. The design domain and boundary conditions for the slender cantilever beam.

The second example is a slender cantilever beam (see Figure 5.3). The initial
domain Ω0 is a thin hexahedron with one face clamped, i.e., a homogeneous Dirichlet
boundary condition is imposed on the whole face, and a pointwise load is applied at
the lower edge of the opposite face. In that case, the minimization of the maximum
of the Von Mises stress is also considered. Here 7% of the material is removed at
each step. The optimal domains (see Figure 5.4) are obtained after 20 iterations. The
results shown on Figure 5.4 recalls the 2D case (see, e.g., [2]); in fact, one dimension
is very small with respect to the two others. One can observe that the structures
obtained by minimization of the compliance and minimization of the maximum Von
Mises stress are slightly different.
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(a) (b)

Fig. 5.4. The slender cantilever beam for a volume equal to 20% of the initial volume, after 20
iterations. The compliance case is shown in (a), and the Von Mises case is shown in (b).

6. Conclusion. Using the mathematical framework presented in this paper, it
is possible to write an asymptotic expansion of a general functional with respect to
the creation of a small hole. This approach is general and can be adapted to various
equations and boundary conditions. Moreover, as the topological sensitivity involves
only the direct solution and possibly the adjoint state, its computation is cheap, and
efficient topology optimization algorithms can be implemented.

Acknowledgment. The authors are grateful to the referees for their thorough
reading and their suggestions concerning the presentation.
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Lieǵes, Belgium, 1996.

[3] M. Bendsøe, Optimal Topology Design of Continuum Structure: An Introduction, Technical
report, Department of Mathematics, Technical University of Denmark, DK2800 Lyngby,
Denmark, 1996.

[4] J. Cea, Conception optimale ou identification de forme. Calcul rapide de la dérivée direction-
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extérieurs, Thesis, Ecole Polytechnique, Palaiseau, France, 1976.

[10] S. Garreau, Ph. Guillaume, and M. Masmoudi, The topological sensitivity for linear
isotropic elasticity, in Proceedings of the European Conference on Computationnal Me-
chanics, The German Association for Computational Mechanics, Munich, Germany, 1999,
report MIP 99.45.

[11] P. Guillaume and M. Masmoudi, Computation of high order derivatives in optimal shape
design, Numer. Math., 67 (1994), pp. 231–250.

[12] J. Jacobsen, N. Oolhoff, and E. Rønholt, Generalized Shape Optimization of Three-
Dimensional Structures Using Materials with Optimum Microstructures, Technical report,



1778 THE TOPOLOGICAL ASYMPTOTIC IN ELASTICITY

Institute of Mechanical Engineering, Aalborg University, DK-9920 Aalborg, Denmark,
1996.

[13] V. D. Kupradze, T. G. Gregelia, M. O. Basheleuishvili, and T. V. Burchauladze, Three
Dimensional Problems of the Mathematical Theory of Elasticity and Thermoelasticity,
North-Holland Ser. Appl. Math. Mech. 25, North-Holland, Amsterdam, 1979.

[14] T. Lewinski and J. Sokolowski, Topological Derivative for Nucleation of Non-circular Voids,
Technical report RR-3798, INRIA, Lorraine, France, 1999.
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[23] J. Sokolowski and A. Żochowski, On the topological derivative in shape optimization, SIAM

J. Control Optim., 37 (1999), pp. 1251–1272.
[24] A. Friedman and M. Vogelius, Identification of small inhomogeneities of extreme conductiv-

ity by boundary measurements: A theorem on continuous dependence, Arch. Ration. Mech.
Anal., 105 (1989), pp. 267–278.

[25] D. J. Cedio-Fengya, S. Moskow, and M. Vogelius, Identification of Conductivity Imperfec-
tions of Small Diameter by Boundary Measurements, Continuous Dependence and Com-
putational Reconstruction, Institute for Mathematics and its Applications, University of
Minnesota, Minneapolis, MN, 1997.



OPTIMAL CONTROL PROBLEMS FOR STOCHASTIC
REACTION-DIFFUSION SYSTEMS WITH NON-LIPSCHITZ

COEFFICIENTS∗

SANDRA CERRAI†

SIAM J. CONTROL OPTIM. c© 2001 Society for Industrial and Applied Mathematics
Vol. 39, No. 6, pp. 1779–1816
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1. Introduction. In this paper we consider the following class of stochastic
reaction-diffusion systems with distributed parameter controls in bounded domains
O of R

d, with d ≤ 3:



∂yk
∂s

(s, ξ) = Ak yk(s, ξ) + fk(ξ, y1(s, ξ), . . . , yr(s, ξ)) + zk(s, ξ) +Qk
∂2wk
∂s∂ξ

(s, ξ),

yk(t, ξ) = xk(ξ), 0 ≤ t < s ≤ T, ξ ∈ O,

Bk yk(s, ξ) = 0, ξ ∈ ∂O, k = 1, . . . , r.

(1.1)

Here A = (A1, . . . ,Ar) is a uniformly elliptic second order differential operator with
regular real coefficients, and B = (B1, . . . ,Br) is a first order differential operator
acting on the boundary of O. The reaction term f = (f1, . . . , fr) : O × R

r → R
r

is continuous, and f(ξ, ·) : R
r → R

r is twice differentiable, has polynomial growth
together with its derivatives, and fulfills appropriate dissipativity conditions. Q =
(Q1, . . . , Qr) is a nonnegative bounded linear operator fromH = L2(O;R r) into itself,
and ∂2wk/∂t ∂ξ are independent space-time white noises defined on a stochastic basis
(Ω,F ,Ft,P). The control z = (z1, . . . , zr) is taken in the set of adapted processes of
L2(Ω;L2(0, T ;H)). We remark that the dimension d is taken less than or equal to 3
because the noise should be, in a sense, nondegenerate, and the solution of the system
(1.1) has to take value in E = C(O;R r).

We are here concerned with the cost functional

J(t, x; z) = Eϕ(y(T )) +

∫ T

t

E (g(y(s)) + k(z(s))) ds,(1.2)
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where y(s) = y(s, t;x, z) is the solution of the problem (1.1), ϕ and g are bounded and
Lipschitz continuous functions from H into R, and k : H →]−∞,+∞] is a measurable
function which fulfills suitable conditions. Our aim is to prove that the value function
corresponding to the cost functional (1.2), which is defined by

V (t, x) = inf
{
J(t, x; z) ; z ∈ L2(Ω;L2(0, T ;H)) adapted

}
,

satisfies the Hamilton–Jacobi–Bellman equation
∂u

∂ t
(t, x) + Lu(t, x)−K(Du(t, x)) + g(x) = 0,

u(T, x) = ϕ(x),

(1.3)

where L is the differential operator

Lψ(x) = 1

2
Tr
[
Q2D2u(t, x)

]
+ 〈Ax+ f(·;x), Du(t, x)〉H

and K is the Legendre transform of k. Notice that the hamiltonian K is not assumed
to be Lipschitz continuous so that we can cover the important case of quadratic
hamiltonians. Moreover, it is important to stress that in the present paper we are
only able to treat the case when data ϕ and g are Lipschitz continuous.

After proving in the first part that there exists a unique mild solution u(t, x) for
(1.3), we show that for any adapted control z ∈ L2(Ω;L2(0, T ;H)) and for any x ∈ H
and t ∈ [0, T ] the following identity holds:

J(t, x; z) = u(t, x)

+

∫ T

t

E [K(Du(s, y(s))) + 〈z(s), Du(s, y(s))〉H + k(z(s))] ds.

Thus, in particular, we have V (t, x) ≥ u(t, x). Now if we could prove the existence of
a solution y�(t) for the closed loop equation

dy(t) = (Ay(t) + f(·; y(t))−DK(Du(t, y(t)))) dt+Qdw(t), y(0) = x,(1.4)

then z�(t) = −DK(Du(t, y�(t))) would be an optimal control for the minimizing
problem related to the functional (1.2). But unfortunately here we are only able to
prove C1 regularity for the solution of the Hamilton–Jacobi–Bellman equation (1.3),
so that we cannot prove the existence of a solution for (1.4) which is adapted to the
filtration Ft. Actually, as the solution of (1.3) is only C1, the closed loop equation
(1.4) admits only martingale solutions, and hence there is no reason why the optimal
control which we could get from it is adapted to the filtration we fixed at the beginning.
Thus at present we restrict ourselves to the proof of the verification theorem. In the
future it will be interesting to check if, by introducing the notion of relaxed controls
(see [17] and [29] for the definition), it will be possible to prove the existence of an
optimal control. However, in dimension d = 1 we are able to show that under some
additional assumptions, the closed loop equation has a unique solution so that there
exists a unique optimal control.

In order to prove the opposite inequality V (t, x) ≤ u(t, x), we introduce an ap-
proximating cost functional Jα(t, x; z), and we prove that it satisfies a verification
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theorem and admits a unique optimal control for each α > 0. Due to suitable a priori
estimates, we show that there exists a subset MR of the space of adapted processes
in L2(Ω;L2(0, T ;H)) such that for any α > 0

Vα(t, x) = inf
{
Jα(t, x; z) ; z ∈ M2

R(T )
}
.

Moreover, we show that for any x ∈ C(O;R r) the functional Jα(t, x; z) converges to
J(t, x; z) as α goes to zero, uniformly for z ∈ MR, so that

lim
α→0

Vα(t, x) ≥ V (t, x).
Thus, by showing that

lim
α→0

Vα(t, x) = u(t, x),

we have that u(t, x) ≥ V (t, x), and the verification theorem holds for x ∈ C(O;R r).
The general case x ∈ H follows by further approximation arguments.

Hamilton–Jacobi–Bellman equations in infinite dimensional spaces have been stud-
ied by several authors by using both semigroup techniques and the approach of viscos-
ity solutions (see [3], [4], [12], [13], [20], [21], [23], [24], [25], and all references quoted
therein). In particular, in [20] and [21] abstract semilinear stochastic problems are
studied, and the nonlinear term f is assumed to be Lipschitz continuous. Instead, in
the present paper we are able to skip the condition of Lipschitz continuity for f , and
we can consider the case of reaction terms which have polynomial growth (and hence
are not well defined in H).

In order to solve the problem (1.3), we introduce the transition semigroup Pt
associated with the system (1.1) by setting for any bounded Borel function ϕ from H
into R and for any x ∈ H

Ptϕ(x) = Eϕ(y(t;x)), t ≥ 0,

where y(t;x) is the solution of the uncontrolled system (1.1) starting from x at time
zero. Due to Itô’s formula and the variation of constants formula, we write (1.3) in
the mild form

u(t, x) = Ptϕ(x)−
∫ t

0

Pt−sK(Du(s, ·))(x) ds+
∫ t

0

Pt−sg(x) ds,

and by using a fixed point argument we show that for any ϕ, g ∈ C1
b (H) there exists

a unique differentiable solution u(t, x) which is defined only in a small time interval
[0, T0], as K is only locally Lipschitz continuous. We want to emphasize that the
crucial point in our argument is given by the smoothing effect of the semigroup Pt.
Actually, Pt maps the space of bounded Borel functions defined on H into the space
of differentiable functions, and the estimate

sup
x∈H

|D(Ptϕ)(x)| ≤ c(t ∧ 1)−
1+ε
2 sup

x∈H
|ϕ(x)|

holds for some constant ε < 1 depending on the dimension d ≤ 3 (see [7] for the
proof). In order to have a global solution we need to obtain some a priori estimates.
To this purpose we first approximate the reaction term f by a Lipschitz continuous
sequence {fα}α>0, and then we consider the approximating Hamilton–Jacobi–Bellman
equation, with the nonlinear term f replaced by fα. By a Galerkin argument we prove
some a priori estimates for the corresponding solutions uα(t, x), and, by taking the
limit as α goes to zero, we get the good estimates for u(t, x).
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2. Notations and preliminary results. Let O be a bounded regular open set
of R

d, with d ≤ 3, having a regular boundary. Here and in what follows we denote by
H the Hilbert space L2(O;R r), endowed with the scalar product 〈·, ·〉H and the norm
| · |H . For any p ≥ 1, p �= 2, we denote by | · |p the norm in Lp(O;R r). Moreover, we
denote by E the Banach space C(O;R r) endowed with the sup-norm and the duality
pairing 〈·, ·〉E in E × E�.

If X and Y are two separable Banach spaces, Bb(X;Y ) is the Banach space of all
bounded Borel functions ϕ : X → Y endowed with the sup-norm

‖ϕ‖X0 = sup
x∈X

|ϕ(x)|Y .

Cb(X;Y ) is the subspace of uniformly continuous functions. For any integer k ≥ 1, we
denote by Ck

b (X;Y ) the subspace of k-times Fréchet differentiable functions, having
bounded and uniformly continuous derivatives, up to the kth order. If we set for any
j = 1, . . . , k

[ϕ]Xj = sup
x∈X

|Djϕ(x)|Lj(X;Y ),

we have that Ck
b (X;Y ) is a Banach space endowed with the norm

‖ϕ‖Xk = ‖ϕ‖X0 +

k∑
j=1

[ϕ]Xj .

We denote by Lipb(X;Y ) the subspace of functions ϕ ∈ Cb(X;Y ) such that

[ϕ]XLip = sup
x,y∈X
x�=y

|ϕ(x)− ϕ(y)|Y
|x− y|X <∞.

Lipb(X;Y ) is a Banach space endowed with the norm

‖ϕ‖XLip = ‖ϕ‖X0 + [ϕ]XLip.

When Y = R, we denoteBb(X;Y ), Cb(X;Y ), Ck
b (X;Y ), and Lipb(X;Y ), respectively,

by Bb(X), Cb(X), Ck
b (X), and Lipb(X).

2.1. The Nemytskii operator. We assume that for any k = 1, . . . , r there
exist two continuous functions gk : O × R → R and hk : O × R

r → R such that for
any ξ ∈ O and σ = (σ1, . . . , σr) ∈ R

r it holds that

fk(ξ, σ1, . . . , σr) = gk(ξ, σk) + hk(ξ, σ1, . . . , σr).

The functions gk and hk are assumed to enjoy the following conditions.
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Hypothesis 1.
1. For any ξ ∈ O the function hk(ξ, ·) is of class C2 and has bounded derivatives,

uniformly with respect to ξ ∈ O. Moreover, the mapping Dj
σhk : O × R

r →
Lj(R r) is continuous for j = 1, 2.

2. For any ξ ∈ O, the function gk(ξ, ·) is of class C2, and there exists m ≥ 0
such that

sup
ξ∈O

sup
t∈R

|Dj
t gk(ξ, t)|

1 + |t|2m+1−j
<∞.

Moreover, the mapping Dj
t gk : O × R

r → R is continuous for j = 1, 2.
3. There exist a > 0 and c ∈ R such that

sup
ξ∈O

Dtgk(ξ, t) ≤ −a t2m + c, t ∈ R.(2.1)

The Nemytskii operator F associated with the function (ξ, σ) �→ f(ξ, σ) is defined
as

F (x)(ξ) = f(ξ, x(ξ)), ξ ∈ O.

If we denote

p� = 2m+ 2, q� =
2m+ 2

2m+ 1
,

it is possible to show that if m ≥ 1, then F is twice Fréchet differentiable from
Lp�(O;R r) into Lq�(O;R r), and it holds that

|DjF (x)|Lj(Lp� , Lq� ) ≤ c
(
1 + |x|2m+1−j

p�

)
, x ∈ Lp�(O;R r).

From (2.1) we obtain that for any x, h ∈ Lp�(O;R r)

〈DF (x)h, h〉H ≤ −a|xmh|2H + c|h|2H ,

and, in particular,

〈DF (x)h, h〉H ≤ c |h|2H .

Moreover, from (2.1) it follows that for any σ, ρ ∈ R
r

sup
ξ∈O

〈f(ξ, σ + ρ)− f(ξ, ρ), σ〉
R r ≤ −a|σ|2m+2 + c

(
1 + |ρ|2m+1

)
for some constants a > 0 and c ∈ R, possibly different from those introduced in (2.1).
This implies that

〈F (x+ h)− F (x), h〉H ≤ −a |h|p
�

p� + c
(
1 + |x|p�p�

)
.

By using similar arguments, it is immediate to prove that F : E → E is twice
differentiable, and

|DjF (x)|Lj(E) ≤ c
(
1 + |x|2m+1−j

E

)
, x ∈ E.(2.2)
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For any h, y ∈ E we define

〈δh, y〉E =


1

|h|E
r∑

k=1

yk(ξk)hk(ξk) if h �= 0,

δ0 if h = 0,

(2.3)

where |hk(ξk)| = |hk|C(O) for any k = 1, . . . , r, and δ0 is any element of the unitary

ball of E�. It is possible to show that δh ∈ ∂ |h|E (see [11] and [6] for more details),
and for any x, h ∈ E

〈F (x+ h)− F (x), δh〉E ≤ c |h|E .
Remark 2.1. For any k = 1, . . . , r, let us define

gk(ξ, t) = −ck(ξ)t2m+1 +

2m∑
j=0

ckj(ξ)t
j ,

where ck, ckj are bounded continuous functions from O into R. If we assume that

inf
ξ∈O

ck(ξ) > 0,

then it is possible to check that gk fulfills parts 2 and 3 of Hypothesis 1.
Due to Hypothesis 1, there exists c ∈ R such that the mapping γ(ξ, ·) = f(ξ, ·)−cI

is dissipative for any ξ ∈ O. Then for any α > 0 we can define the function

γα : O × R
r → R

r, (ξ, σ) �→ γ(ξ, Jα(ξ, σ)),

where

Jα(ξ, σ) = (I − αγ(ξ, ·))−1
(σ), σ ∈ R

r.

As proved in [9, appendix A], the function Jα(ξ, ·) is of class C2 for any fixed ξ ∈ O.
Now if we set

fα(ξ, σ) = γα(ξ, σ) + cJα(ξ, σ),

we have that fα(ξ, ·) is Lipschitz continuous, uniformly with respect to ξ ∈ O, is twice
differentiable, and

sup
ξ∈O

〈fα(ξ, σ + ρ)− fα(ξ, σ), ρ〉R r ≤ c |ρ|2(2.4)

for some constant c independent of α. Moreover, by using well-known properties of
the function Jα(ξ, σ) (see [11] for the definitions and main results and see [9, chapter
9, appendix A],

sup
ξ∈O

|fα(ξ, σ)− f(ξ, σ)| ≤ α c(1 + |σ|4m+1).(2.5)

For any fixed ξ ∈ O the function fα(ξ, ·) is of class C2, and for any R > 0

lim
α→0

sup
ξ∈O

sup
|σ|≤R

|Dj
σfα(ξ, σ)−Dj

σf(ξ, σ)| = 0.(2.6)
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Moreover, it is possible to show that

sup
ξ∈O

|Dj
σfα(ξ, σ)|

1 + |σ|2m+1−j
≤ c <∞(2.7)

for a constant c independent of α.
For each α > 0, let Fα be the Nemytskii operator associated with the function fα.

Clearly Fα is Lipschitz continuous both as an operator in E and as an operator in H
and is twice Fréchet differentiable in E, and, thanks to (2.4), there exists a constant
c independent of α such that if x, y ∈ H,

〈Fα(x)− Fα(y), x− y〉H ≤ c |x− y|2H ,(2.8)

and if x, y ∈ E,

〈Fα(x)− Fα(y), δx−y〉E ≤ c |x− y|E ,(2.9)

where δx−y is the element in ∂ |x−y|E introduced in (2.3). Furthermore, due to (2.6),
for each j = 0, 1, 2 it holds that

lim
α→0

sup
|x|E≤R

|DjFα(x)−DjF (x)|Lj(E) = 0(2.10)

for any R > 0, and due to (2.7)

|DjFα(x)|Lj(E) ≤ c
(
1 + |x|2m+1−j

E

)
, x ∈ E.(2.11)

2.2. The operators A and Q and the stochastic convolution. We shall
denote by A the second order differential operator defined for each x ∈ H by Ax =
(A1x1, . . . ,Arxr). For any k = 1, . . . , r we have

Ak(ξ,D) =

d∑
i,j=1

aijk (ξ)
∂2

∂ξi∂ξj
+

d∑
i=1

bik(ξ)
∂

∂ξi
, ξ ∈ O.

The coefficients aijk and bik are assumed to be of class C1(O), and for any ξ ∈ O the

matrix [aijk (ξ)] is symmetric and satisfies the uniform ellipticity condition

inf
ξ∈O

d∑
i,j=1

aijk (ξ)hihj ≥ ν|h|2, h ∈ R
d,

for some ν > 0. The boundary operator B is defined by Bx = (B1x1, . . . ,Brxr), and
for each k = 1, . . . , r we have

Bk(ξ,D) = I or Bk(ξ,D) =

d∑
i,j=1

aijk (ξ)νj(ξ)
∂

∂ξi
, ξ ∈ ∂O.(2.12)

We denote by A the realization in H of the elliptic operator A, with the boundary
conditions given by B, that is,

D(A) =
{
x ∈ H : Ax ∈ H, Bx|∂D = 0

}
, Ax = Ax, x ∈ D(A).
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The operator A generates an analytic semigroup etA. The semigroup etA is also
analytic in each Lp(O;R r), for p ∈ (1,+∞] (see [26, chapter 3] for all details).

In what follows it will not be restrictive to assume that for any p ∈ [2,∞]

|etAx|p ≤M |x|p
for some constant M > 0 independent of p (see also [9, chapter 4]). In particular, we
will have

〈Ax, x〉H ≤ 0, x ∈ H.(2.13)

Finally, if we denote by A the realization in E of the operatorA with the boundary
conditions given by B, we have that A generates an analytic semigroup et A of negative
type; that is, for any x ∈ E and δx ∈ ∂ |x|E defined as in (2.3)

〈Ax, δx〉E ≤ 0.(2.14)

Now for any k = 1, . . . , r we define

Gk(ξ,D) =

d∑
i=1

bik(ξ)− d∑
j=1

∂aijk
∂ξj

(ξ)

 ∂

∂ξi
, ξ ∈ O,

and by difference we define Ck = Ak − Gk. The second order elliptic operators C =
(C1, . . . , Cr), generate a negative analytic semigroup etC in each Lp(O;R r) for any
p ∈ (1,∞] and in E. The semigroup etC enjoys the same properties as et A and, due
to the boundary conditions (2.12), is self-adjoint in H. Moreover, for any δ ∈ R we
have that D((−A)δ) = D((−C)δ) and

c1 |(−A)δx|H ≤ |(−C)δx|H ≤ c2 |(−A)δx|H(2.15)

for suitable positive constants c1 and c2 depending only on δ.
Concerning the realization of the operator G, as the coefficients aijk and bik are

assumed to be smooth, it is easy to check that D(G�) ⊂ D((−C)1/2) and

|G�x|H ≤ c |(−C)1/2x|H , x ∈ D(G�).(2.16)

Finally, we denote by Q the bounded linear operator of components (Q1, . . . , Qr).
In what follows we shall assume that the operators Q and C fulfill the following
conditions.
Hypothesis 2.
1. There exists a complete orthonormal basis {ek} in H which diagonalizes C

such that supk∈N
|ek|E <∞. The corresponding set of eigenvalues is denoted

by {−αk}.
2. The bounded linear operator Q : H → H is nonnegative and diagonal with re-

spect to the complete orthonormal basis {ek} which diagonalizes C. Moreover,
if {λk} is the corresponding set of eigenvalues, we have

∞∑
k=1

λ2
k

α1−γ
k

< +∞

for some γ > 0.
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3. There exists ε < 1 such that

D((−C) ε2 ) ⊂ D(Q−1).(2.17)

Remark 2.2. It is known (see, for example, the book by Agmon [1]) that when
the elliptic operator A with the boundary conditions B is smooth enough, then

αk � k2/d.

In this case, it is possible to prove that if d ≤ 3, then there exists an operator Q which
fulfills the conditions of parts 2 and 3 of Hypothesis 2.

Actually, if we assume that

λk � α−ρ
k

for some ρ > (d− 2)/4, then

λ2
k

α1−γ
k

� α−(1−γ+2ρ)
k � k− 2(1−γ+2ρ)

d .

As 1 + 2ρ > d/2, we can fix γ > 0 such that 1− γ + 2ρ > d/2, and this implies that

∞∑
k=1

λ2
k

α1−γ
k

�
∞∑
k=1

k−
2(1−γ+2ρ)

d <∞.

On the other hand, if ρ ≤ ε/2, then (2.17) holds. This means that if d ≤ 3, it is
possible to find ρ such that Q enjoys conditions 2 and 3 in Hypothesis 2. Notice that
in dimension d = 1 one can take ε = 0.

Let {wk(t)} be a sequence of mutually independent real-valued Brownian motions
defined on a stochastic basis (Ω,F ,Ft,P) and adapted to the nonanticipative filtration
Ft, t ≥ 0. We define the cylindrical Wiener process w(t) as

w(t) =
∞∑
k=1

ekwk(t),

where {ek} is the complete orthonormal system of H introduced in part 1 of Hypoth-
esis 2. The series above defining w(t) does not converge in H, but it is convergent
in any Hilbert space U such that the embedding H ⊂ U is Hilbert–Schmidt (see [15,
chapter 4]).

Now we consider the Ornstein–Uhlenbeck problem associated with the system
(1.1)

dv(t) = Av(t) dt+Qdw(t), v(s) = 0,

for 0 ≤ s ≤ t ≤ T . Due to parts 1 and 2 of Hypothesis 2, such a problem admits a
unique solution wA(t, s), which is the mean-square Gaussian process with values in
H given by

wA(t, s) =

∫ t

s

e(t−r)AQdw(r)(2.18)
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(see, e.g., [15] for a proof). Moreover, as shown in [8], wA(·, s) ∈ C([s, T ] × O),
P-almost surely (a.s.), and for any p ≥ 1 it holds that

E |wA(·, s)|pC([s,T ];E) <∞.(2.19)

For any n ∈ N we define

An = PnAPn, Cn = CPn, Gn = PnGPn, Qn = QPn,

where Pn is the projection of H onto the finite dimensional space Hn generated by
the eigenfunctions {e1, . . . , en}. If we denote by wA

n (t, s) the solution of the problem

dv(t) = Anv(t) dt+Qn dw(t), v(s) = 0,

by using a factorization argument (see [15]) it is not difficult to prove that for any
p ≥ 1

lim
n→+∞E |wA(·, s)− wA

n (·, s)|pC([s,T ];H) = 0.

3. The state equation. By using the notations introduced in the previous
section, the controlled system (1.1) can be rewritten in the abstract form

dy(t) = (Ay(t) + F (y(t)) + z(t)) dt+Qdw(t), y(s) = x,(3.1)

for 0 ≤ s ≤ t ≤ T .
Definition 3.1.
1. Let us fix an adapted process z ∈ L2(Ω;L2(0, T ;E)) and x ∈ E. An E-valued

predictable process y(t) = y(t, s;x, z) is a mild solution for the problem (3.1)
if

y(t) = e(t−s)Ax+

∫ t

s

e(t−r)A (F (y(r)) + z(r)) dr + wA(t, s),

where the process wA(t, s) is given by (2.18).
2. Let us fix an adapted process z ∈ L2(Ω;L2(0, T ;H)) and x ∈ H. A H-valued

process y(t, s;x, z) is a generalized solution for the problem (3.1) if, for any
sequences {xn} ⊂ E converging to x in H and {zn} ⊂ L2(Ω;L2(0, T ;E))
converging to z in L2(Ω;L2(0, T ;H)), the corresponding sequence of mild so-
lutions {y(·, s;xn, zn)} converges to y(·, s;x, z) in C([s, T ];H), P-a.s.

In [15] (see also [6] and [7]) the following existence and uniqueness result is proved
for the uncontrolled system. When z �= 0, the proof is analogous, and we do not repeat
it.
Theorem 3.2. Assume Hypotheses 1 and 2, and fix 0 ≤ s ≤ T .
1. For any z ∈ L2(Ω;Lp(s, T ;H)) with p > 4/(4 − d) and for any x ∈ E, the

problem (3.1) admits a unique mild solution y(·, s;x, z) ∈ L2(Ω;C((s, T ];E)∩
L∞(s, T ;E)) such that

|y(t, s;x, z)|E ≤ cT
(
|x|E + |z|2m+1

Lp(s,t;H) + sup
r∈ [s,t]

|wA(r, s)|2m+1
E

)
, P− a.s.

(3.2)
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2. For any z ∈ L2(Ω;L2(s, T ;H)) and x ∈ H, the problem (3.1) admits a unique
generalized solution y(·, s;x, z) ∈ L2(Ω;C([s, T ];H)) such that

|y(t, s;x, z)|H ≤ cT
(
|x|H + |z|2m+1

L2(s,T ;H) + sup
r∈ [s,t]

|wA(r, s)|2m+1
E

)
, P− a.s.

(3.3)

3. The unique generalized solution y(·, s;x, z) belongs to Lp�(t, T ;Lp�(O)), P-
a.s., and

y(t, s;x, z) = e(t−s)Ax+

∫ t

s

e(t−r)A (F (y(r, s;x, z)) + z(r)) dr + wA(t, s).

4. For any x1, x2 ∈ H and z1, z2 ∈ L2(Ω;L2(s, T ;H)), we have

|y(t, s;x1, z1)− y(t, s;x2, z2)|H ≤ cT
(|x1 − x2|H + |z1 − z2|L2(s,T ;H)

)
.

(3.4)

For any α > 0 we consider the approximating problem

dy(t) = (Ay(t) + Fα(y(t)) + z(t)) dt+Qdw(t), y(s) = x,(3.5)

s ≤ t ≤ T . Clearly an existence theorem analogous to Theorem 3.2 holds for (3.5).
Actually, for each x ∈ E and z ∈ L2(Ω;Lp(0, T ;H)), with p > 4/(4 − d), there
exists a unique mild solution yα(·, s;x, z) in L2(Ω;C((s, T ];E)∩L∞(s, T ;E)), and for
each x ∈ H and z ∈ L2(Ω;L2(0, T ;H)) there exists a unique generalized solution
yα(·, s;x, z) which belongs to L2(Ω;C([s, T ];H)). Moreover, estimates analogous to
(3.2) and (3.3) hold for every α > 0.
Lemma 3.3. Under Hypotheses 1 and 2, if x ∈ E and z ∈ Lp(Ω;L∞(0, T ;H))

for p sufficiently large, then for any fixed q ≥ 1

lim
α→0

E |yα(t, s;x, z)− y(t, s;x, z)|qE = 0,(3.6)

uniformly with respect to t ∈ [0, T ], x in bounded subsets of E and z in the set

MR =
{
z ∈ L2(Ω;L2(0, T ;H)) ; sup

t∈ [0,T ]

|z(t)|H ≤ R, P− a.s.
}

for any R > 0.
Proof. If we set vα(t) = yα(t) − y(t), we have that vα is the unique solution of

the problem

dv

dt
(t) = Av(t) + Fα(yα(t))− F (y(t)), v(s) = 0.

Thus, by using classical properties of the subdifferential of the norm in E introduced
in (2.3) (see [11] for all properties), if δvα(t) ∈ ∂ |vα(t)|E , we have

d

dt

−
|vα(t)|E ≤

〈
Avα(t), δvα(t)

〉
E
+
〈
Fα(yα(t))− F (y(t)), δvα(t)

〉
E
.

From (2.9) and (2.14) this easily implies that

d

dt

−
|vα(t)|E ≤ c |vα(t)|E + |Fα(y(t))− F (y(t))|E
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so that, due to the Gronwall lemma and (2.5), we have

|vα(t)|E ≤ α c
∫ t

s

ec(t−r)
(
1 + |y(r)|4m+1

E

)
dr.

This implies (3.6), as from (2.19) and (3.2) for any q ≥ 1 we have

sup
z∈MR

E |y(·, s;x, z)|qC([s,T ];E) <∞.(3.7)

Next, for any n ∈ N and α > 0 we define

Fα,n(x) = PnFα(Pnx), x ∈ H.

It is immediate to check that for any x, y ∈ H it holds that

〈Fα,n(x)− Fα,n(y), x− y〉H ≤ c |x− y|2H(3.8)

for a constant c independent of n and α. Moreover,

|Fα,n(x)− Fα,n(y)|H ≤ cα |x− y|H(3.9)

for some constant cα independent of n. In correspondence with each n ∈ N, α > 0,
and 0 ≤ s ≤ T , we consider the approximating problem

dy(t) = (Any(t) + Fα,n(y(t)) + zn(t)) dt+Qn dw(t), y(s) = Pnx,(3.10)

where zn(t) = Pnz(t) and z is an adapted process in L2(Ω;L2(s, T ;H)). Such a
problem is a finite dimensional problem with Lipschitz coefficients. Thus for any
x ∈ H there exists a unique strong solution yα,n(·, s;x, z) ∈ L2(Ω;C([s, T ];H)).
Lemma 3.4. Let z be an adapted process in L2(Ω;L2(s, T ;H)). If yα,n(·, s;x, z)

is the unique solution of the approximating problem (3.10), it holds that

lim
n→+∞ yα,n(·, s;x, z) = yα(·, s;x, z) in L2(Ω;C([s, T ];H)),(3.11)

uniformly for x in bounded subsets of H.
Proof. For each n, k ∈ N, we consider the problem

dy(t) = (Any(t) + Fα,n(y(t)) + zn∧k(t)) dt+Qk∧n dw(t), y(0) = Pnx.(3.12)

By using a factorization argument, we have that for any p ≥ 1

lim
k→+∞

sup
n∈N

E sup
t∈ [s,T ]

|wA
n,k(t, s)|pH = 0,

and, since z ∈ L2(Ω;L2(s, T ;H)), we have

lim
k→+∞

sup
n∈N

E |zn − zn∧k|2L2(s,T ;H) = 0.

Thus, by some calculations, if we denote by ykα,n(t) the solution of (3.12), we have

lim
k→+∞

sup
n∈N

|ykα,n(·, s;x, z)− yα,n(·, s;x, z)|L2(Ω;C([s,T ];H)) = 0.(3.13)
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Now for any k ∈ N we consider the problem

dy(t) = (Ay(t) + Fα(y(t)) + zk(t)) dt+Qk dw(t), y(s) = x.

It is immediate to check that wA
k ∈ Lp(Ω, C((s, T ];D((−A)δ))) for any δ ∈ R and

p ≥ 1. Hence, by straightforward computations, thanks to (2.15) we have that such a
problem admits a unique mild solution ykα(·, s;x, z) such that

|ykα(t)|2H +

∫ t

0

|(−C)1/2ykα(s)|2H ds

≤ cT
(
|x|2H + sup

t∈ [s,T ]

|wA
k (t, s)|2D((−A)1/2) + |z|2L2(s,T ;H)

)
.

(3.14)

Moreover, it is possible to show that for any fixed k ∈ N

lim
n→+∞ y

k
α,n(·, s;x, z) = ykα(·, s;x, z) in L2(Ω;C([s, T ];H)).(3.15)

Finally, we have that

lim
k→+∞

ykα(·, s;x, z) = yα(·, s;x, z) in L2(Ω;C([s, T ];H)).(3.16)

Indeed, if we define vkα(t) = yα(t)− ykα(t)− wA(t, s) + wA
k (t, s), we have that vkα(t) is

the unique solution for the problem

dv

dt
(t) = Av(t) + Fα(yα(t))− Fα(ykα(t)) + z(t)− zk(t), v(s) = 0.

Thus, by multiplying each side by vkα(t), we have

1

2

d

dt
|vkα(t)|2H + |(−A)1/2vkα(t)|2H

=
〈
Fα(yα(t))− Fα(ykα(t)), vkα(t)

〉
H
+
〈
z(t)− zk(t), vkα(t)

〉
H

so that, as Fα is Lipschitz continuous, we easily get

1

2

d

dt
|vkα(t)|2H ≤ cα |vkα(t)|2H + cα |wA(t, s)− wA

k (t, s)|2H + c |z(t)− zk(t)|2H .

By applying the Gronwall lemma, by taking the supremum over t ∈ [s, T ], and, finally,
by taking the expectation, we get

E sup
t∈ [s,T ]

|vkα(t)|2H ≤ cα,T
∫ T

s

E
(|wA(t, s)− wA

k (t, s)|2H + |z(t)− zk(t)|2H
)
dt,

and this immediately implies (3.16).
Now we can conclude. Actually, due to (3.13) and (3.16), for any ε > 0 there

exists kε ∈ N such that for any n ∈ N it holds that

E sup
t∈ [s,T ]

(|ykεα,n(t)− yα,n(t)|2H + |ykεα (t)− yα(t)|2H
)
< ε/2.

Besides, due to (3.15) there exists nε ∈ N such that

E sup
t∈ [s,T ]

|ykεα,n(t)− ykεα (t)|2H < ε/2

for any n ≥ nε so that (3.11) follows.
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4. The first variation equation. Here and in what follows, we shall denote,
respectively, by y(t;x), yα(t;x) and yα,n(t;x) the mild solutions of the problems (3.1),
(3.5), and (3.10) when z = 0 and s = 0.

In the present section we study the first variation equation associated with the
problem (3.1):

dv

dt
(t) = Av(t) +DF (y(t;x))v(t), v(0) = h.(4.1)

In [6, Theorem 4.2] we have proved that for any x, h ∈ E there exists a unique mild
solution for the problem (4.1), and for any t ≥ 0 and x, h ∈ E such a solution is given
by Dy(t;x)h, the Fréchet derivative of the mapping

E → L2(Ω;E), x �→ y(t;x),

along the direction h. Moreover, in [7, Proposition 4.1] we have proved that if x, h ∈
H, then the problem (4.1) admits a unique generalized solution v(x, h).

As proved in [5], under Hypotheses 1 and 2 the solution yα(t;x) is twice mean-
square differentiable with respect to x ∈ H. Moreover, the first derivative Dyα(t;x)h
is the unique solution of the first variation equation corresponding to the problem
(3.5), which is

dv

dt
(t) = Av(t) +DFα(yα(t))v(t), v(0) = h.

We have the following approximation result.
Lemma 4.1. Under Hypotheses 1 and 2, for any x ∈ E and t ≥ 0, it holds that

lim
α→0

E sup
|h|H≤1

|Dyα(·;x)h−Dy(·;x)h)|2L∞(0,T ;H)∩L2(0,T ;D((−A)1/2)) = 0,(4.2)

uniformly for x in bounded sets of E.
Proof. As proved in [6], for any h ∈ H

sup
x∈H

(
|Dy(t;x)h|2H +

∫ t

0

|(−A)1/2Dy(s;x)h|2H
)
≤ cT |h|2H , P− a.s.(4.3)

If we define vα(t) = Dyα(t;x)h−Dy(t;x)h, we have that vα(t) is the unique solution
to the problem

dv

dt
(t) = Av(t) +DFα(yα(t;x))Dyα(t;x)h−DF (y(t;x))Dy(t;x)h, v(0) = 0.

Thus we have

1

2

d

dt
|vα(t)|2H + |(−A)1/2vα(t)|2H

= 〈DFα(yα(t))vα(t), vα(t)〉H + 〈(DFα(yα(t))−DF (y(t)))Dy(t;x)h, vα(t)〉H

≤ c |vα(t)|2H + c ec T |DFα(yα(t))−DF (y(t))|2E |h|2H ,
the last inequality following from (2.8), (4.3), and the Young inequality. Since Fα
verifies the estimate (2.11), for any x, y ∈ E we have

|DFα(x)−DF (y)|E ≤ |DFα(x)−DFα(y)|E + |DFα(y)−DF (y)|E

≤ c (1 + |x|2m−1
E + |y|2m−1

E

) |x− y|E + |DFα(y)−DF (y)|E .
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Therefore, thanks to the Gronwall lemma and the above inequality, we have

|vα(t)|2H ≤ cT
∫ t

0

(
1 + |yα(s)|4m−2

E + |y(s)|4m−2
E

) |yα(s)− y(s)|2E ds|h|2H
+cT

∫ t

0

|DFα(y(s))−DF (y(s))|E ds|h|2H .

Due to (2.9) it is immediate to check that

sup
α>0

|yα(t;x)|E ≤ cT
(
|x|E + sup

t∈ [0,T ]

|wA(t, 0)|E
)
, P− a.s.,(4.4)

and hence, by using (2.10), (3.2), and (3.6), we have

lim
α→0

E sup
|h|H≤1

|vα(t)|2H = 0.

This immediately yields

lim
α→0

E sup
|h|H≤1

∫ t

0

|(−A)1/2vα(s)|2H ds = 0,

and (4.2) holds true.
Due to part 2 of Hypothesis 2, and the closed graph theorem, we have that the

operator Γε = Q−1(−A)−ε/2 is bounded in H. Thus, for any x ∈ D((−A)1/2), by
interpolation we get

|Q−1x|H ≤ c |(−A)1/2x|εH |x|1−ε
H .(4.5)

Therefore, from (4.2) we get

lim
α→0

E sup
|h|H≤1

∫ t

0

|Q−1(Dyα(s;x)h−Dy(s;x)h)|2H ds = 0,(4.6)

uniformly for x in bounded sets of E.
For each n ∈ N and α > 0, the solution of (3.10) is twice mean-square differen-

tiable with respect to x ∈ H. In the next lemma we show that we can approximate
in a suitable sense Dyα(t;x)h by means of Dyα,n(t;x)h.
Lemma 4.2. Assume that Hypotheses 1 and 2 hold. Then

lim
n→+∞E sup

|h|H≤1

|Dyα,n(·;x)h−Dyα(·;x)Pnh|2L∞(0,T ;H)∩L2(0,T ;D((−A)1/2)) = 0,(4.7)

uniformly for x in bounded subsets of H.
Proof. If we set vα,n(t) = Dyα,n(t;x)h − Dyα(t;x)Pnh, we have that vα,n(t) is

the unique solution of the problem

dv

dt
(t) = Cv(t) +GnDyα,n(t)h−GDyα(t)Pnh

+DFα,n(yα,n(t;x))Dyα,n(t)h−DFα(yα(t;x))Dyα(t)Pnh, v(0) = 0.
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By using (2.15), (2.16), and (3.9) by some computations, we get

d

dt
|vα,n(t)|2H + |(−C)1/2vα,n(t)|2H ≤ cα |vα,n(t)|2H

+cα,T

(
‖Pn − I‖2L(D((−C)1/2);H) + |yα,n − yα|2C([0,T ];H)

)
|Dyα(t;x)Pnh|2D((−A)1/2).

(4.8)

In [6] it is proved that for each h ∈ H

sup
x∈H

∫ t

0

|Dyα(s;x)h|2D((−A)1/2) ds ≤ cT |h|2H , P− a.s.,

and then, by using the Gronwall lemma, this yields

|vα,n(t)|2H ≤ cα,T
(
‖Pn − I‖2L(D((−C)1/2);H) + |yα,n − yα|2C([0,T ];H)

)
|h|2H .

Thus, as

lim
n→+∞ ‖Pn − I‖L(D((−C)1/2);H) = 0,

from Lemma 3.4 we get

lim
n→+∞E sup

|h|H≤1

sup
t∈ [0,T ]

|Dyα,n(t;x)h−Dyα(t;x)Pnh|2H = 0.

Thanks to (4.8), from the limit above we get

lim
n→+∞E sup

|h|H≤1

∫ t

0

|(−A)1/2(Dyα,n(s;x)h−Dyα(s;x)Pnh)|2H ds = 0

so that (4.7) follows.
By using the interpolation inequality (4.5), we get

lim
n→+∞E sup

|h|H≤1

∫ t

0

∣∣Q−1 (Dyα,n(s;x)h−Dyα(s;x)Pnh)
∣∣2
H
ds = 0.(4.9)

5. The transition semigroup. The transition semigroup Pt associated with
the system (1.1) is defined for any ϕ ∈ Bb(H) and x ∈ H by

Ptϕ(x) = Eϕ(y(t;x)), t ≥ 0,

where y(t;x) is the solution of the problem (1.1), with z = 0, starting from x at time
zero.

As proved in [7], Pt is a contraction semigroup on Cb(H). In general, Pt is not
strongly continuous in Cb(H). Nevertheless, y(·;x) ∈ L2(Ω;C([0, T ];H)) for any fixed
x ∈ H so that the mapping

[0,+∞)→ R, t �→ Ptϕ(x),

is continuous for any ϕ ∈ Cb(H).
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In [7, Theorem 5.1] we have also proved that Pt has a smoothing effect. Namely,
we have shown that Pt : Bb(H) → C1

b (H) for any t > 0, and if ε is the constant
introduced in part 3 of Hypothesis 2.

‖Ptϕ‖Hj ≤ c0 (t ∧ 1)−
(j−i)(1+ε)

2 ‖ϕ‖Hi , i ≤ j ≤ 0, 1,(5.1)

for some constant c0 > 0. Moreover, if ϕ ∈ Cb(H), for any x, h ∈ H it holds that

〈D(Ptϕ)(x), h〉H =
1

t
Eϕ(y(t;x))

∫ t

0

〈
Q−1v(s;x, h), dw(s)

〉
H
,(5.2)

where v(s;x, h) is the unique generalized solution of the problem (4.1). The formula
above is a generalization to the degenerate case of the Bismut–Elworthy formula (see
[2] and [16] for the finite dimension and [27] for the infinite dimension).

Now for any α > 0 we define Pα
t as the transition semigroup corresponding to the

approximating problem (3.5) with z = 0. As proved in [5], the semigroup Pα
t maps

Bb(H) into C2
b (H) for any t > 0, and if ϕ ∈ Cb(H), it holds that

〈D(Pα
t ϕ)(x), h〉H =

1

t
Eϕ(yα(t;x))

∫ t

0

〈
Q−1Dyα(s;x)h, dw(s)

〉
H

for all x, h ∈ H. Moreover, for i ≤ j = 0, 1, 2

‖Pα
t ϕ‖Hj ≤ cα (t ∧ 1)−

(j−i)(1+ε)
2 ‖ϕ‖Hi .(5.3)

Due to (2.8), by proceeding as in [6] it is possible to show that

sup
x∈H

(
|Dyα(t;x)h|2H +

∫ t

0

|(−A)1/2Dyα(s;x)h|2H
)
≤ cT |h|2H , P− a.s.,(5.4)

for a constant cT independent of α. Thus if j = 1, for each i = 0, 1 we have

‖Pα
t ϕ‖H1 ≤ c (t ∧ 1)−

(1−i)(1+ε)
2 ‖ϕ‖Hi ,(5.5)

and the constant c is independent of α.
From Lemma 3.3, we easily have that for any ϕ ∈ Cb(H) it holds that

lim
α→0

Pα
t ϕ(x) = Ptϕ(x),(5.6)

uniformly with respect to t ∈ [0, T ] and x in bounded subsets of E. Moreover, from
Lemma 4.1, we have that

lim
α→0

|D(Pα
t ϕ)(x)−D(Ptϕ)(x)|H = 0, t > 0,(5.7)

uniformly for x in bounded sets of E. Actually, for each α > 0 it holds that

〈D(Pα
t ϕ)(x), h〉H =

1

t
Eϕ(yα(t;x))

∫ t

0

〈
Q−1Dyα(s;x)h, dw(s)

〉
H
,

and then by easy calculations we obtain

|〈D(Pα
t ϕ)(x)−D(Ptϕ)(x), h〉H |

≤ ‖ϕ‖
H
1

t

(
E |yα(t, x)− y(t;x)|2H

)1/2(
E

∫ t

0

|Q−1Dyα(s;x)h|2H ds
)1/2

+
‖ϕ‖H1
t

(
E

∫ t

0

|Q−1(Dyα(s;x)h−Dy(s;x)h)|2H ds
)1/2

.
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Thus (5.7) follows from (3.6) and (4.6).
In correspondence of each n ∈ N, we can introduce the transition semigroup Pα,n

t

associated with the system (3.10). The semigroup Pα,n
t fulfills all the regularizing

properties described above for Pα
t . In particular, due to (3.9) it is not difficult to

check that for i = 0, 1

‖Pα,n
t ‖H1 ≤ c (t ∧ 1)−

(1−i)(1+ε)
2 ‖ϕ‖Hi , t > 0,(5.8)

for a constant c which does not depend on n and α. In the next theorem we prove
that it is possible to approximate Pα

t ϕ and its first derivative by means of Pα,n
t and

its first derivative.
Proposition 5.1. Under Hypotheses 1 and 2, for any ϕ ∈ Cb(H) we have

lim
n→+∞P

α,n
t ϕ(x) = Pα

t ϕ(x),(5.9)

uniformly for x in bounded sets of H and t ∈ [0, T ]. Moreover,

lim
n→+∞ |D(Pα,n

t ϕ)(x)−D(Pα
t ϕ)(x)|H = 0,(5.10)

uniformly for x in bounded sets of H and t ∈ [δ, T ], with δ > 0.
Proof. The limit (5.9) follows directly from Lemma 3.4. As far as the limit (5.10)

is concerned, we have

〈D(Pα
t ϕ)(x)−D(Pα,n

t ϕ)(x), Pnh〉H

=
1

t
E (ϕ(yα(t;x))− ϕ(yα,n(t;x)))

∫ t

0

〈
Q−1Dyα(s;x)Pnh, dw(s)

〉
H

+
1

t
Eϕ(yα,n(t;x))

∫ t

0

〈
Q−1(Dyα(s;x)Pnh−Dyα,n(s;x)h), dw(s)

〉
H
.

Thus we get

|〈D(Pα
t ϕ)(x)−D(Pα,n

t ϕ)(x), Pnh〉H |2

≤ 2

t2
E |ϕ(yα(t;x))− ϕ(yα,n(t;x))|2 E

∫ t

0

|Q−1Dyα(s;x)Pnh|2H ds

+
2

t2
‖ϕ‖20 E

∫ t

0

|Q−1(Dyα(s;x)Pnh−Dxyα,n(s;x)h)|2H ds.

By taking the supremum over |h|H ≤ 1, due to (3.11), (4.6), and (5.4), it follows that

lim
n→+∞ |PnD(Pα

t ϕ)(x)−D(Pα,n
t ϕ)(x)|H = 0,

and, as

lim
n→+∞ |PnD(Pα

t ϕ)(x)−D(Pα
t ϕ)(x)|H = 0,

we obtain (5.10).
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6. The Hamilton–Jacobi–Bellman equation. We are here concerned with
the infinite dimensional Cauchy problem

∂u

∂t
(t, x) = Lu(t, x)−K(Du(t, x)) + g(x), u(0, x) = ϕ(x),(6.1)

where L is the differential operator defined by

Lψ(x) = 1

2
Tr [Q2D2ψ(x)] + 〈Ax+ F (x), Dψ(x)〉H , x ∈ D(A) ∩D(F ).

In addition to Hypotheses 1 and 2, the following condition shall be assumed.
Hypothesis 3. The hamiltonian K : H → R is Fréchet differentiable and locally

Lipschitz continuous together with its derivative. Moreover, K(0) = 0.
Notice that the requirement K(0) = 0 is not restrictive, as we can substitute g

by g −K(0).
The problem (6.1) can be rewritten in the mild form

u(t, x) = Ptϕ(x)−
∫ t

0

Pt−s (K(Du(s, ·))) (x) ds+
∫ t

0

Pt−sg(x) ds.(6.2)

As we noticed in the previous section, the semigroup Pt is not strongly continuous in
Cb(H) in general. Nevertheless, the mapping

[0,+∞)→ R, t �→ Ptϕ(x)

is continuous for any fixed ϕ ∈ Cb(H) and x ∈ H. Thus the integrals in the formula
(6.2) have a meaning only for fixed x ∈ H.

We define V1
T as the space of all continuous and bounded functions u : [0, T ]×H →

R, such that u(t, ·) ∈ C1
b (H) for all t ∈ (0, T ], and the mapping

(0, T ]×H → H, (t, x) �→ Du(t, x)

is bounded and measurable. It is easy to check that V1
T , endowed with the norm

‖u‖V1
T
= sup

t∈ [0,T ]

‖u(t, ·)‖H0 + sup
t∈ (0,T ]

‖Du(t, ·)‖H0 ,

is a Banach space.
Moreover, we define Z1

T as the space of bounded continuous functions y : [0, T ]×
H → R, such that y(t, ·) ∈ C1

b (H) for all t ∈ (0, T ], and the mapping

(0, T ]×H → H, (t, x) �→ t
1+ε
2 Dy(t, x)

is bounded and measurable. It is easy to check that Z1
T , endowed with the norm

‖u‖Z1
T
= sup

t∈ [0,T ]

‖y(t, ·)‖H0 + sup
t∈ (0,T ]

(t ∧ 1)
1+ε
2 ‖Dy(t, ·)‖H0 ,

is a Banach space.
Finally, we say that a function y ∈ V1

T belongs to the space Z2
T if y(0, ·) ∈ C1

b (H),
the function y(t, ·) is in C2

b (H) for any t > 0, and the mapping

(0, T ]×H → L(H), (t, x) �→ (t ∧ 1)
1+ε
2 D2y(t;x)



1798 SANDRA CERRAI

is bounded and measurable. Z2
T , endowed with the norm

‖u‖Z2
T
= sup

t∈ [0,T ]

‖y(t, ·)‖H1 + sup
t∈ (0,T ]

(t ∧ 1)
1+ε
2 ‖D2y(t, ·)‖H0 ,

is a Banach space.
A proof of the following lemma, in the case when F = 0, can be found in [20,

Lemmas 4.8 and 4.12]. Such a proof completely adapts to our case where F �= 0; thus
we do not repeat it.
Lemma 6.1. Let us fix T > 0, and, for ψ : [0, T ] × H → R bounded and

measurable, let us define

λ(ψ)(t, x) =

∫ t

0

Pt−sψ(s, ·)(x) ds.

Then λ(ψ) is continuous and bounded, λ(ψ)(t, ·) ∈ C1
b (H) for any t ≥ 0, and

sup
t∈ [0,T ]

‖λ(ψ)(t, ·)‖H1 <∞.

It is immediate to check that Lemma 6.1 adapts to the approximating semigroups
Pα
t and Pα,n

t .
For each α > 0, we consider the approximating problem

∂u

∂t
(t, x) = Lαu(t, x)−K(Du(t, x)) + g(x), u(0, x) = ϕ(x),

where

Lαψ(x) = 1

2
Tr [Q2D2ψ(x)] + 〈Ax+ Fα(x), Dψ(x)〉H .

In mild form it can be rewritten as

u(t, x) = Pα
t ϕ(x)−

∫ t

0

Pα
t−s (K(Du(s, ·))) (x) ds+

∫ t

0

Pα
t−sg(x) ds.(6.3)

The first part of the following theorem was proved in [7], under the assumption
of Lipschitz continuity for the hamiltonian K. Here the proof is more delicate, as K
is only locally Lipschitz.
Theorem 6.2. Assume that Hypotheses 1, 2, and 3 hold, and fix T > 0. Then

for any ϕ, g ∈ Lipb(H), (6.2) admits a unique solution u(t, x) in V1
T .

If uα(t, x) denotes the unique mild solution for the approximating problem (6.3),
we have

lim
α→0

|uα(t, x)− u(t, x)|+ |Duα(t, x)−Du(t, x)|H = 0,(6.4)

uniformly for t in compact subsets of (0, T ] and for x in bounded subsets of E. More-
over, if ϕ, g ∈ C1

b (H), then the limit (6.4) is uniform for t ∈ [0, T ] and for x in
bounded subsets of E.

We first prove some preliminary results.
Lemma 6.3. Fix ϕ, g ∈ C1

b (H) and R ≥ 2c0 ‖ϕ‖H1 , where c0 is the constant
introduced in (5.1). Then the problem (6.2) admits a unique local solution u(t, x) in
[0, τR] for some constant

τR = τR

(
‖ϕ‖H1 , ‖g‖H0 , ‖K‖B

H
R

1

)
.
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Proof. For any τ > 0, we define ΛR(τ) as the set of all bounded continuous
functions u : [0, τ ]×H → R such that u(t, ·) ∈ C1

b (H) for all t ∈ [0, τ ], the mapping

[0, τ ]×H → H, (t, x) �→ Du(t, x)

is bounded and measurable, and

sup
t∈ [0,τ ]

‖u(t, ·)‖H1 ≤ R.

We claim that for some τR sufficiently small, the operator Γ defined by

Γ(v)(t, x) = Ptϕ(x)−
∫ t

0

Pt−s (K(Dv(s, ·))) (x) ds+
∫ t

0

Pt−sg(x) ds

maps ΛR(τR) into itself as a contraction. Due to Lemma 6.1, Γ(v)(t, x) is well defined
for any x and t. Due to (5.1) we have

‖Ptϕ‖H1 ≤ c0 ‖ϕ‖H1 ≤
R

2
.

Moreover, if we set

Γ1(v)(t, x) = −
∫ t

0

Pt−s (K(Dv(s, ·))) (x) ds+
∫ t

0

Pt−sg(x) ds,

we have

‖Γ1(v)(t, ·)‖H0 ≤
∫ t

0

‖K(Dv(s, ·))‖H0 ds+ t‖g‖H0 ≤ τ
(

sup
x∈BHR

|K(x)|+ ‖g‖H0
)
.

Concerning the derivative, due to the estimate (5.1) it holds that

‖D(Γ1(v))(t, ·)‖H0 ≤ c0
∫ t

0

(t− s)− 1+ε
2 (‖K(Dv(s, ·))‖H0 + ‖g‖H0 ) ds

≤ c0 τ
1−ε
2

(
sup

x∈BHR

|K(x)|+ ‖g‖H0
)
.

This implies that

sup
t∈ [0,τ ]

‖Γ(v)(t, ·)‖H1 ≤
R

2
+ c

(
τ + τ

1−ε
2

)(
sup

x∈BHR

|K(x)|+ ‖g‖H0
)

so that it is possible to find τ̄R sufficiently small such that

sup
t∈ [0,τ̄R]

‖Γ(v)(t, ·)‖H1 ≤ R.

In a completely analogous way it is possible to show that Γ is a contraction on ΛR(τR)
for some τR ≤ τ̄R. This allows us to conclude that there exists a unique fixed point u
for Γ in ΛR(τR), which is the unique solution of (6.2) in [0, τR].

Remark 6.4. In an identical way it is possible to prove that for each α > 0 the
mapping

Γα(v)(t, x) = P
α
t ϕ(x)−

∫ t

0

Pα
t−s (K(Dv(s, ·)))(x) ds+

∫ t

0

Pα
t−sg(x) ds
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is a contraction in ΛR(τR), where τR is the same as in Lemma 6.3. This implies that
there exists a unique solution uα(t, x) for the problem (6.3).

Moreover, it is useful to remark that thanks to (5.5) the contraction constant of
Γα in ΛR(τR) can be taken as the same for all α > 0.
Lemma 6.5. If u(t, x) and uα(t, x) are, respectively, the solutions of the problems

(6.2) and (6.3) with ϕ, g ∈ C1
b (H), we have

lim
α→0

|uα(t, x)− u(t, x)|+ |Duα(t, x)−Du(t, x)|H = 0,(6.5)

uniformly for t in [0, τR] and for x in bounded subsets of E.
Proof. In order to prove the existence of the solutions u(t, x) and uα(t, x) for

the problems (6.2) and (6.3), we have applied a contraction theorem. Hence, due to
Lemma 6.3 and Remark 6.4, for each ε > 0 there exists kε ∈ N such that

sup
t∈ [0,τR]

(‖uα(t, ·)− Γkεα (0)(t, ·)‖H1 + ‖u(t, ·)− Γkε(0)(t, ·)‖H1
) ≤ ε/2(6.6)

for each α > 0. Now, from Proposition 5.1, by using an induction argument we can
prove that for each k ∈ N

lim
α→0

∣∣Γkα(0)(t, x)− Γk(0)(t, x)
∣∣+ ∣∣DΓkα(0)(t, x)−DΓk(0)(t, x)

∣∣
H

= 0,(6.7)

uniformly for (t, x) in bounded subsets of [0, τR]×E. Actually, for k = 1, (6.7) follows
directly from (5.6) and (5.7). Now assume that (6.7) holds for some k ≥ 1. We have

Γk+1
α (0)(t, x)− Γk+1(0)(t, x) = Γα(Γ

k
α(0))(t, x)− Γ(Γk(0))(t, x)

= Pα
t ϕ(x)− Ptϕ(x) +

∫ t

0

(
Pα
t−sg(x)− Pt−sg(x)

)
ds

−
∫ t

0

(
Pα
t−s

[
K(D(Γkα(0))(s, ·))

]
(x)− Pt−s

[
K(D(Γk(0))(s, ·))] (x)) ds.

Since Γkα(0) and Γk(0) belong to ΛR(τR) and (6.7) holds for k, by using (5.6) and
the boundedness of K on bounded subsets of H, from the dominated convergence
theorem it follows that

lim
α→0

∫ t

0

(
Pα
t−s

[
K(D(Γkα(0))(s, ·))

]
(x)− Pt−s

[
K(D(Γk(0))(s, ·))] (x)) ds = 0,

uniformly on bounded sets of [0, τR]× E. By using (5.6) once more, we have

lim
α→0

Pα
t ϕ(x)− Ptϕ(x) +

∫ t

0

(
Pα
t−sg(x)− Pt−sg(x)

)
ds = 0,

uniformly on bounded sets of [0, τR]× E, so that we get

lim
α→0

Γk+1
α (0)(t, x)− Γk+1(0)(t, x) = 0.

The second part of the limit (6.7) for k + 1 follows by analogous arguments. By
induction we can conclude that (6.7) holds for any k ∈ N.
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Now, from (6.6) we have that

|uα(t, x)− u(t, x)|+ |Duα(t, x)−Du(t, x)|H

≤ supt∈ [0,τR] ‖uα(t, ·)− Γkεα (0)(t, ·)‖H1 + |Γkεα (0)(t, x)− Γkε(0)(t, x)|

+|DΓkεα (0)(t, x)−DΓkε(0)(t, x)|H + sup
t∈ [0,τR]

‖u(t, ·)− Γkε(0)(t, ·)‖H1

≤ ε/2 + |Γkεα (0)(t, x)− Γkε(0)(t, x)|+ ∣∣DΓkεα (0)(t, x)−DΓkε(0)(t, x)
∣∣
H
,

and due to (6.7) we can conclude that (6.5) holds.
Proof of Theorem 6.2. Let us fix T > 0 and ϕ, g ∈ C1

b (H), and let us define

R = 2c (1 + T ) ec T
(
(1 + 2c0)‖ϕ‖H1 + ‖g‖H1

)
.

Due to Lemma 6.3, there exists a mild solution u(t, x) defined for t ∈ [0, τR]. More-
over, from Lemma 6.5 we have that (6.4) holds, uniformly with respect to t ∈ [0, τR]
and x in bounded sets of E.

From Proposition A.3, we have that

sup
t∈ [0,τ�]

‖uα(t, ·)‖H1 ≤ c (1 + T )ec T
(‖ϕ‖H1 + ‖g‖H1

)
.

According to Lemma 6.5, this implies that for any t ∈ [0, τ�] and x ∈ E
|u(t, x)|+ |Du(t, x)|H ≤ c (1 + T )ec T

(‖ϕ‖H1 + ‖g‖H1
)
,

and, since u(t, ·) ∈ C1
b (H) for t ∈ [0, τ�], we have

sup
t∈ [0,τ�]

‖u(t, ·)‖H1 ≤ c (1 + T )ec T
(‖ϕ‖H1 + ‖g‖H1

)
.(6.8)

In particular, due to the definition of R we have that

‖u(τ�, ·)‖H1 ≤
R

2
.

This allows us to repeat all of the same arguments we have been using until now in
the intervals [τ�, 2τ�], [2τ�, 3τ�], and so on, up to time T , and hence to get a global
solution.

Now, assume that ϕ, g ∈ Lipb(H). It is possible to find two bounded sequences
{ϕk} and {gk} in C1

b (H) converging, respectively, to ϕ and g in Cb(H). In correspon-
dence with each k, there exists a unique solution uk(t, x) to the problem

uk(t, x) = Ptϕk(x)−
∫ t

0

Pt−s (K(Duk(s, ·))) (x) ds+
∫ t

0

Pt−sgk(x) ds.

Our aim is to show that {uk} is a Cauchy sequence in Z1
T and that the limit u fulfills

(6.2).
For each k, n ∈ N we have

uk(t, x)− uh(t, x) = Pt (ϕk − ϕh) (x)

−
∫ t

0

Pt−s (K(Duk(s, ·))−K(Duh(s, ·))) (x) ds+
∫ t

0

Pt−s (gk − gh) (x) ds.
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Due to (6.8) we easily have

sup
k∈N

sup
t∈ [0,T ]

‖Duk(t, ·)‖H1 ≤ c (1 + T )ec T sup
k∈N

(‖ϕk‖1 + ‖gk‖H1 ) = cT .(6.9)

If M is the Lipschitz constant of K in BH
cT , we have

‖uk(t, ·)− uh(t, ·)‖H0 ≤ ‖ϕk − ϕh‖H0

+M

∫ t

0

‖Duk(s, ·)−Duh(s, ·)‖H0 ds+ t ‖gk − gh‖0.
(6.10)

Moreover, we have

Duk(t, x)−Duh(t, x) = DPt(ϕk − ϕh)(x)

−
∫ t

0

DPt−s (K(Duk(s, ·))−K(Duh(s, ·))) (x) ds+
∫ t

0

DPt−s(gk − gh)(x) ds,

so that, thanks to (5.1), we get

‖Duk(t, ·)−Duh(t, ·)‖H0 ≤ c t−
1+ε
2 ‖ϕk − ϕh‖H0

+cM

∫ t

0

(t− s)− 1+ε
2 ‖Duk(s, ·)−Duh(s, ·)‖H0 ds+ c

∫ t

0

(t− s)− 1+ε
2 ds‖gk − gh‖H0 .

This implies that

t
1+ε
2 ‖Duk(t, ·)−Duh(t, ·)‖H0 ≤ c ‖ϕk − ϕh‖H0

+cMt
1+ε
2

∫ t

0

(t− s)− 1+ε
2 ‖Duk(s, ·)−Duh(s, ·)‖H0 ds+ c t ‖gk − gh‖H0 .

(6.11)

By combining (6.10) and (6.11), we conclude that

‖uk(t, ·)− uh(t, ·)‖H0 + t
1+ε
2 ‖Duk(t, ·)−Duh(t, ·)‖H0

≤ c (‖ϕk − ϕh‖H0 + T‖gk − gh‖H0
)
+M(1 + c T

1+ε
2 )

∫ t

0

s−
1+ε
2

(
(t− s)− 1+ε

2 + 1
)

(
‖uk(s, ·)− uh(s, ·)‖H0 + s

1+ε
2 ‖Duk(s, ·)−Duh(s, ·)‖H0

)
ds.

Thus, from a generalization of the Gronwall lemma, we can say that

‖uk − uh‖Z1
T
≤ cT

(‖ϕk − ϕh‖H0 + T‖gk − gh‖H0
)

(6.12)

for some constant cT independent of k and h. This implies that {uk} is a Cauchy
sequence in Z1

T , and hence it converges to a limit u ∈ Z1
T . Moreover, from (6.9) we

have that

sup
t∈ [0,T ]

‖Du(t, ·)‖H0 < +∞,
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so that u ∈ V1
T .

Now, we show that u is the mild solution of the problem (6.2). Actually, for any
s > 0 and x ∈ H

lim
k→+∞

K(Duk(s, x)) = K(Du(s, x)).

Due to (6.9) we can apply the dominated convergence theorem, and we get

lim
k→+∞

∫ t

0

Pt−sK(Duk(s, ·))(x) ds =
∫ t

0

Pt−sK(Du(s, ·))(x) ds.

Therefore, since

lim
k→+∞

Ptϕk(x) = Ptϕ(x)

and

lim
k→+∞

∫ t

0

Pt−sgk(x) ds =

∫ t

0

Pt−sg(x) ds,

we conclude that u is a solution of (6.2).
Finally, uniqueness follows from the Gronwall lemma and local Lipschitzianity of

K. Indeed, if u1 and u2 are two solutions in V1
T , we have

u1(t, x)− u2(t, x) = −
∫ t

0

Pt−s (K(Du1(s, ·))−K(Du2(s, ·))) (x) ds,

and then, if M is the Lipschitz constant of K in BH
cT , where

cT = ‖u1‖V1
T
+ ‖u2‖V1

T
,

we have

‖u1 − u2‖V1
T
≤M

∫ t

0

(
1 + (t− s)− 1+ε

2

)
ds‖u1 − u2‖V1

T
.

This implies that u1 = u2.

7. Application to control. We apply here the results proved in the previous
section to a stochastic control problem. Let k : H →] −∞,+∞] be a convex lower
semicontinuous function, and let K be its Legendre transform; that is,

K(x) = sup
z∈H

{− 〈x, z〉H − k(z)} , x ∈ H.

We assume that k is such that K fulfills Hypothesis 3. We consider here the cost
functional

J(t, x; z) = E

∫ T

t

(g(y(s)) + k(z(s))) ds+Eϕ(y(T )),

where y(s) = y(s, t;x, z) is the unique solution of the controlled system (1.1) at time
s, starting from x at time t. We want to minimize the functional J over all adapted
controls z ∈ L2(Ω;L2([0, T ];H)).
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The value function corresponding to the cost functional J is defined by

V (t, x) = inf
{
J(t, x; z) : z ∈ L2(Ω;L2([0, T ];H)) adapted

}
and is related to the Hamilton–Jacobi–Bellman equation (6.1). Namely, we are show-
ing that for every t ∈ [0, T ] and x ∈ H

V (t, x) = u(T − t, x),
where u(t, x) is the unique mild solution of the problem (6.1).

For any α > 0 we introduce the approximating cost functional

Jα(t, x; z) = E

∫ T

t

(g(yα(s)) + k(z(s))) ds+Eϕ(yα(T )),(7.1)

where yα(s) = yα(s, t;x, z) is the unique solution to the problem (3.5). In what follows
we will denote by Vα(t, x) the corresponding value function.
Lemma 7.1. Assume Hypotheses 1, 2, and 3, and assume that ϕ, g ∈ Lipb(H). If

u is the mild solution of the problem (6.2), for any control z ∈ L2(Ω;L2([0, T ];H)),
x ∈ H, and t ∈ [0, T ], the following identity holds:

J(t, x; z) = u(T − t, x)

+

∫ T

t

E (K(Du(T − s, y(s))) + 〈z(s), Du(T − s, y(s))〉H + k(z(s))) ds,

(7.2)

where y(s) = y(s, t;x, z) is the solution of the problem (3.1).
Moreover, the same identity holds with J(t, x; z), u(t, x), Du(t, x), and y(t) re-

placed, respectively, by Jα(t, x; z), uα(t, x), Duα(t, x), and yα(t).
Proof. We first assume that ϕ, g ∈ C1

b (H). Let uα,n(t, x) be the solution of (A.2),
and let yα,n(s) = yα,n(s, t;x, z) be the solution to the problem (3.10). Since uα,n is
smooth (in fact, uα,n ∈ Z2(T )) and yα,n is a strong solution, we can apply Itô’s
formula to the function s �→ uα,n(T − s, yα,n(s)) for t ≤ s ≤ T , and we get

duα,n(T − s, yα,n(s)) = 〈dyα,n(s), Duα,n(T − s, yα,n(s))〉H

+

(
1

2
Tr
[
Q2
nD

2uα,n(T − s, yα,n(s))
]− ∂uα,n

∂ t
(T − s, yα,n(s))

)
ds.

By integrating with respect to s ∈ [t, T ] and by taking the expectation, we get

Eϕ(yα,n(T ))− uα,n(T − t, x) = E

∫ T

t

(K(Duα,n(T − s, yα,n(s)))

+ 〈z(s), Duα,n(T − s, yα,n(s))〉H − g(yα,n(s))) ds.
(7.3)

Now, due to Lemma 3.4 and (A.3), we can take the limit as n goes to +∞ in each
side of (7.3), and, rearranging all terms, we get

Eϕ(yα(T )) +E

∫ T

t

g(yα(s)) ds

= uα(T − t, x) +E

∫ T

t

(K(Duα(T − s, yα(s))) + 〈z(s), Duα(T − s, yα(s))〉H) ds.

(7.4)
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This implies (7.2).
Now, let ϕ, g ∈ Lipb(H). As in the proof of Theorem 6.2, let {ϕk} and {gk} be

two bounded sequences in C1
b (H) converging, respectively, to ϕ and g in Cb(H). If

we denote by ukα(t, x) the solutions of the problem (6.2) corresponding to ϕk and gk,
we have

Eϕk(yα(T )) +E

∫ T

t

gk(yα(s)) ds = u
k
α(T − t, x)

+E

∫ T

t

(
K(Dukα(T − s, yα(s))) +

〈
z(s), Dukα(T − s, yα(s))

〉
H

)
ds.

It is immediate to check that the sequence {ukα} fulfills an estimate analogous to (6.12),
and then the sequence {ukα} converges to uα in Z1

T , as k goes to infinity. Moreover,
due to (2.19), (3.3), and (6.9), we can apply the dominated convergence theorem and,
by taking the limit for k going to +∞, we get (7.4) for any ϕ, g ∈ Lipb(H).

Now, if x ∈ E, then yα(s) ∈ E and (4.4) holds. Thus, due to (3.11) and (6.4), we
can take the limit as α goes to zero in each side of (7.4), and we get (7.2) for x ∈ E.
Finally, if x ∈ H, we fix a sequence {xn} ⊂ E converging to x in H. Thanks to (3.4)
we have that y(s, t;xn, z) converges to y(s, t;x, z) in H, and then, as u(t, ·) ∈ C1

b (H),
we easily get (7.2) for any x ∈ H.

Now we can conclude by giving the main result of this section.
Theorem 7.2. Under Hypotheses 1, 2, and 3, for any ϕ, g ∈ Lipb(H) the value

function V (t, x) coincides with u(T − t, x), where u(t, x) is the solution of the problem
(6.2). Moreover,

V (t, x) = lim
α→0

min
{
Jα(t, x; z), z ∈ L2(Ω;L2(0, T ;H)), adapted

}
,

where Jα(t, x; z) is the cost functional defined in (7.1).
Proof. From (7.2) we immediately have that J(t, x; z) ≥ u(T − t, x) for any

z ∈ L2(Ω;L2(0, T ;H)), so that V (t, x) ≥ u(T − t, x). Now we prove the opposite
inequality.

Since Jα fulfills a formula analogous to (7.2), we have Vα(t, x) ≥ uα(T − t, x).
In fact, it holds that Vα(t, x) = uα(T − t, x). Actually, by a general property of the
Legendre transform, for each t ∈ [0, T ] the mapping

H → R, z �→ 〈z,Duα(T − t, y(t))〉H + k(z),

attains its maximum for

zα(t) = −DK(Duα(T − t, y(t))), t ∈ [0, T ].

Thus, if we prove that the closed loop equation

dy(t) = (Ay(t) + Fα(y(t))−DK(Duα(T − t, y(t)))) dt+Qdw(t), y(0) = x,
(7.5)

admits a unique solution y�α(t), and if we define

z�α(t) = −DK(Duα(T − t, y�α(t))),
due to (7.2) for Jα we have that Jα(t, x; z

�
α) = u(T − t, x), so that y�α(t) and z�α(t)

are, respectively, the unique optimal state and the unique optimal control for the
minimizing problem corresponding to the functional Jα.
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Assume that ϕ, g ∈ C1
b (H). Due to (5.3) it is possible to show that the solution

uα of the problem (6.3) belongs to Z2(T ) and

‖uα‖Z2(T ) ≤ cα,T
(‖ϕ‖H1 + T ‖g‖H1

)
.(7.6)

Thus, if we define for (t, x) ∈ [0, T ]×H
Uα(t, x) = −DK(Duα(t, x)),

we have that the function Uα fulfills the conditions of Lemma A.1, so that there exists
a unique solution y�α(t) for the closed loop equation (7.5).

Now, assume that ϕ, g ∈ Lipb(H). As in the proofs of Theorem 6.2 and of Lemma
7.1, we approximate them in Cb(H) by two bounded sequences {ϕk} and {gk} in
C1
b (H). For each k there exists a unique solution uα,k for the problem (6.3), with

data ϕk and gk. Thus, as proved above, in correspondence with each uα,k there exists
a unique solution y�α,k(t) for the problem (7.5). Let us define vαh,k(t) = y

�
α,k(t)−y�α,h(t).

We have that vαh,k(t) is the unique solution of the problem

dv

dt
(t) = Av(t) + Fα(y

�
α,k(t))− Fα(y�α,h(t))−DK(Duα,k(T − t, y�α,k(t)))

+DK(Duα,h(T − t, y�α,h(t))), v(0) = 0.

Thus, by multiplying each side by vαh,k(t), due to the Lipschitz continuity of Fα and
(2.13) we get

1

2

d

dt
|vαh,k(t)|2H ≤ cα |vαh,k(t)|2H

+|DK(Duα,k(T − t, y�α,k(t)))−DK(Duα,h(T − t, y�α,h(t)))|H |vαh,k(t)|H .
(7.7)

Since Proposition A.3 holds, the sequences {ϕk} and {gk} are bounded in C1
b (H), and

DK is locally Lipschitz continuous, there exists c > 0 such that

|DK(Duα,k(T − t, y�α,k(t)))−DK(Duα,h(T − t, y�α,h(t)))|H

≤ c |Duα,k(T − t, y�α,k(t))−Duα,h(T − t, y�α,h(t))|H .
Now, for any t > 0 and x, y ∈ H, due to (7.6) we have

|Duα,k(t, x)−Duα,k(t, y)|H

≤ cα,T t−
1+ε
2

(‖ϕk‖H1 + T ‖gk‖H1
) |x− y|H ≤ cα,T t− 1+ε

2 |x− y|H
for some constant independent of k. Moreover, we can repeat all arguments used in
the proof of Theorem 6.2, and we have

|Duα,k(t, y)−Duα,h(t, y)|H ≤ cα,T t−
1+ε
2

(‖ϕk − ϕh‖H0 + T‖gk − gh‖H0
)
.

Therefore, we get∣∣K(Duα,k(T − t, y�α,k(t)))−DK(Duα,h(T − t, y�α,h(t)))
∣∣
H

≤ cα,T (T − t)−
1+ε
2

(|vαh,k(t)|H + ‖ϕk − ϕh‖H0 + T‖gk − gh‖H0
)
,
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so that, from (7.7) we conclude

d

dt
|vαh,k(t)|2H ≤ cα,T

(
1 + (T − t)− 1+ε

2

)
|vαh,k(t)|2H

+cα,T (T − t)−
1+ε
2

(‖ϕk − ϕh‖H0 + T‖gk − gh‖H0
)2
.

Due to the Gronwall lemma this yields

|y�α,k(t)− y�α,h(t)|2H ≤ cα,T
(‖ϕk − ϕh‖H0 + T‖gk − gh‖H0

)2
,

and the sequence {y�α,k} converges to some y�α in C([0, T ];H), P-a.s. and in mean-
square, and clearly y�α is the unique solution of the closed loop (7.5).

Since z�α(t) = −DK(Duα(T − t, y�α(t))), then due to (7.6) there exists a constant
R such that

sup
α>0

sup
t∈ [0,T ]

|z�α(t)|H = R, P− a.s.

This means that if we define the set MR as in the Lemma 3.3, then for any α > 0

Vα(t, x) = inf { Jα(t, x; z) ; z ∈ MR } .(7.8)

By using (6.4) we have that if ϕ, g ∈ C1
b (H), then for any t ∈ [0, T ] and x ∈ E

lim
α→0

Vα(t, x) = u(T − t, x).

Moreover,

|Jα(t, x; z)− J(t, x; z)| ≤ ‖ϕ‖H1 E |yα(T )− y(T )|E + ‖g‖H1
∫ t

0

E |yα(s)− y(s)|E ds,

so that, due to Lemma (3.3) we have

lim
α→0

sup
z∈MR

|Jα(t, x; z)− J(t, x; z)| = 0.

Due to (7.8) we have that

u(T − t, x) = lim
α→0

Vα(t, x) = inf { J(t, x; z) ; z ∈ MR } ≥ V (t, x),

and since u(T−t, x) ≤ V (t, x), we conclude that u(T−t, x) = V (t, x) for ϕ, g ∈ C1
b (H)

and x ∈ E.
Now, if x ∈ H and {xn} is a sequence in E converging to x in H, by using (3.4)

we can prove that

lim
n→+∞ sup

z∈MR

|J(t, xn; z)− J(t, x; z)| = 0.

Therefore, since u(t, xn) converges to u(t, x), we get the theorem for any x ∈ H.
Finally, if ϕ, g ∈ Lipb(H), let {ϕk} and {gk} be two bounded sequences in C1

b (H),
converging, respectively, to ϕ and g in Cb(H). We have

lim
k→+∞

Eϕk(y(T )) +E

∫ t

0

(gk(y(s)) + k(z(s))) ds = J(t, x; z),
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uniformly with respect to z, and then, thanks to (6.12), the theorem holds for any
ϕ, g ∈ Lipb(H).

In some particular cases the closed loop equation admits a unique solution, and
then there exist a unique optimal control and a unique state for the control problem.
Theorem 7.3. Assume the hypotheses of Theorem 7.2, and take the space di-

mension d = 1.
1. If the constant m in Hypothesis 1 is less than 2, then for any ϕ, g ∈ Lipb(H),

and x ∈ H there exists a unique optimal control for the minimizing prob-
lem associated with the functional J . Furthermore, the optimal control z� is
related to the corresponding optimal state y� by the feedback formula

z�(t) = −DK(DxV (T − t, y�(t))), t ∈ [0, T ].

2. If DK can be extended as a Lipschitz continuous mapping from E� into itself,
then the same conclusion of 1 holds for any x ∈ E.

Proof. We first prove 1. As we have seen in the proof of the previous theorem, the
only thing we have to show is that for any ϕ, g ∈ C1

b (H) the derivative with respect to
x of the solution u of the problem (6.1) is Lipschitz continuous, and for any x, y ∈ H

|Du(t, x)−Du(t, y)|H ≤ cT (t ∧ 1)−
1+ε
2

(‖ϕ‖H1 + T ‖g‖H1
) |x− y|H .(7.9)

Actually, if we define for (t, x) ∈ [0, T ]×H
U(t, x) = −DK(Du(T − t, x)),

the function U verifies the conditions of Lemma A.1, and then there exists a unique
solution y�(t) for the closed loop equation. Thanks to Lemma 7.1 this implies the
existence of a unique optimal control and state. Finally, as in the proof of the previous
theorem, the general case of ϕ, g ∈ Lipb(H) follows by approximation.

We have seen that u is the unique solution of (6.2) in C1
b (H) and

‖u‖H1 ≤ cT
(‖ϕ‖H1 + T ‖g‖H1

)
.

Clearly, if we show that the function D(Ptϕ) is Lipschitz continuous for any ϕ ∈
C1
b (H) and t > 0 and

|D(Ptϕ)(x)−D(Ptϕ)(y)|H ≤ c (t ∧ 1)−
1+ε
2 ‖ϕ‖H1 |x− y|H ,(7.10)

then, by using the same arguments of section 6, we have that u(t, ·) ∈ C1
b (H) and

|Du(t, x)−Du(t, y)|H ≤ c (t ∧ 1)−
1+ε
2 |x− y|H ,

where the constant c depends only on g, ϕ, and T . Since D(Ptϕ) is given by the
formula (5.2), (7.10) immediately follows once one proves that for any x, y ∈ E it
holds that

|v(t;x, h)− v(t; y, h)|2H +

∫ t

0

|Q−1v(s;x, h)− v(s; y, h)|2H ≤ cT |h|2H |x− y|2H ,(7.11)

P-a.s. Let us define z(t) = v(t;x, h)−v(t; y, h). We have that z is the unique solution
of the problem

dz

dt
(t) = (Az(t) +DF (y(t;x))z(t)) dt

+(DF (y(t;x))−DF (y(t; y))) v(t; y, h) dt, z(0) = 0.
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Thus we have

1

2

d

dt
|z(t)|2H + |z(t)|2D((−A)1/2) ≤ c |z(t)|2H

+ |〈(DF (y(t;x))−DF (y(t; y))) v(t; y, h), z(t)〉H | .
Due to the Sobolev embedding theorem, for any δ > 0 we have

|〈(DF (y(t;x))−DF (y(t; y))) v(t; y, h), z(t)〉H |

≤ |z(t)|D((−A)(1+δ)/4) |(DF (y(t;x))−DF (y(t; y))) v(t; y, h)|1 .

In [6] it is proved that

sup
x∈E

|y(t;x)|E ≤ k(t)(t ∧ 1)−
1

2m , P− a.s.,

for some process k(t) having all moments finite. Thus, since

sup
x∈H

|v(t;x, h)|H ≤ c(t)|h|H ,

for some continuous increasing function c(t), by interpolation we get

|〈(DF (y(t;x))−DF (y(t; y))) v(t; y, h), z(t)〉H |

≤ |z(t)|(1+δ)/2

D((−A)1/2)
|z(t)|(1−δ)/2

H |x− y|H |h|H c(t) (t ∧ 1)−(2m−1)/2m.

As we can write

(t ∧ 1)−(2m−1)/2m = (t ∧ 1)−(1−δ)/2(t ∧ 1)−
1
2 (1+δ−1/m),

thanks to the Young inequality we get

1

2

d

dt
|z(t)|2H + |z(t)|2D((−A)1/2) ≤ c |z(t)|2H +

1

2
|z(t)|2

D((−A)1/2)

+c |x− y|2H |h|2H(t ∧ 1)−(1−δ) + c(t) (t ∧ 1)−2(1+δ−1/m)/(1−δ) |z(t)|2H ,
where c(t) is a process having all moments finite. Now, if m < 2, it is possible to find
some δ ∈ (0, 1) such that

2(1 + δ − 1/m)/(1− δ) < 1,

and then, by using the Gronwall lemma, (7.11) follows.
Concerning the proof of 2, we recall that in [6] it has been proved that for any

ϕ ∈ C1
b (E) ⊃ C1

b (H) and t > 0 it holds that

|D(Ptϕ)(x)−D(Ptϕ)(y)|E� ≤ c (t ∧ 1)−
1+ε
2 ‖ϕ‖E1 |x− y|E , x, y ∈ E.

Then as before we have that u(t, ·) ∈ C1
b (E) and

|Du(t, x)−Du(t, y)|E� ≤ c (t ∧ 1)−
1+ε
2 |x− y|E ,(7.12)
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where the constant c depends only on g, ϕ, and T . This makes it possible to prove
that the closed loop equation admits a unique mild solution. Actually, due to the
Sobolev embedding theorem, as the dimension d equals 1, for any ε > 0 we have that
D((−C)1/4+ε) is continuously embedded into E, and then∣∣∣∣∫ t

0

e(t−s)CDK(u(T − s, y(s;x))) ds
∣∣∣∣
E

≤ c
∫ t

0

∣∣∣e(t−s)CDK(u(T − s, y(s;x)))
∣∣∣
D((−C)1/4+ε)

ds

≤ c
∫ t

0

(t− s)−1/2−2ε |DK(u(T − s, y(s;x)))|(D((−C)1/4+ε))
�

≤ c
∫ t

0

(t− s)−1/2−2ε |DK(u(T − s, y(s;x)))|E� .

Therefore, as DK is Lipschitz continuous on E� and (7.12) holds, it is easy to show
that the closed loop equation admits a unique mild solution.

Notice that if K(x) = |x|2H , then DK(x) = x, so that DK can be extended as a
Lipschitz continuous mapping from E� into itself.

Appendix A. An a priori estimate.
We prove here an a priori C1 estimate for the solution uα of the approximat-

ing problem (6.3). As in [21] we represent uα and Duα by means of the transition
semigroups associated with suitable stochastic problems. This allows us to have a
maximum principle both for uα and Duα.
Lemma A.1. Let U : [0, T ] × H → H be a bounded and measurable mapping,

such that U(t, ·) is Lipschitz continuous for any t > 0 and

sup
t∈ [ε,T ]

‖U(t, ·)‖HLip <∞

for any ε > 0. Then, for any α > 0 the stochastic problem

dy(t) = (Ay(t) + Fα(y(t)) + U(T − t, y(t))) dt+Qdw(t), y(r) = x,

admits a unique solution yα(t, r;x) ∈ L2(Ω;C([r, T );H) ∩ L∞(r, T ;H)).
Proof. For any ε > 0 the function U(T − t, ·) is Lipschitz continuous, uniformly

for t ∈ [0, T − ε], and then there exists a unique solution yα(t) in the interval [0, T − ε]
for any ε > 0. If we define vα(t) = yα(t)− wA(t, r), we have that vα(t) is the unique
solution of the problem

dv

dt
(t) = Av(t) + Fα(yα(t)) + U(T − t, yα(t)), v(r) = x.(A.1)

Thus, by multiplying each side of (A.1) by vα(t), we get

1

2

d

dt
|vα(t)|2H + |(−A)1/2vα(t)|2H =

〈
Fα(vα(t) + w

A(t, r))− Fα(wA(t, r)), vα(t)
〉
H

+
〈
Fα(w

A(t, r)), vα(t)
〉
H
+ 〈U(T − t, yα(t)), vα(t)〉H .
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Due to the Lipschitz continuity of Fα and the boundedness of U , this implies that

1

2

d

dt
|vα(t)|2H ≤ cα |vα(t)|2H + cα

(|wA(t, r)|2H + 1
)
.

Therefore, by integrating with respect to t, by taking the supremum for t ∈ [r, T − ε],
and, finally, by taking the expectation, due to the Gronwall lemma we have

E sup
t∈ [r,T−ε]

|vα(t)|2H ≤ cα,T
(
|x|2H + E sup

t∈ [r,T ]

|wA(t, r)|2H
)
.

Thanks to the regularity of wA(t, r), this allows us to conclude that

E sup
t∈ [r,T−ε]

|yα(t)|2H ≤ 2 sup
t∈ [r,T−ε]

(|vα(t)|2H + |wA(t, r)|2H
) ≤ cα,T (|x|2H + 1).

As the constant cα,T does not depend on ε, by a uniqueness argument we have that
the solution yα(t) is defined for any t ∈ [r, T ) and yα(t, r;x) ∈ L2(Ω;C([r, T );H) ∩
L∞(r, T ;H)).

For each α > 0 and n ∈ N, we introduce the approximating Hamilton–Jacobi–
Bellman equation

∂u

∂t
(t, x) = Lα,nu(t, x)−Kn(Du(t, x)) + gn(x), u(0, x) = ϕn(x),(A.2)

where

Lα,nψ(x) = 1

2
Tr
[
Q2
nD

2ψ(x)
]
+ 〈Anx+ Fα,n(x), Dψ(x)〉H .

By arguing as for the problem (6.3) (see Remark 6.4), if ϕ, g ∈ Lipb(H), the problem
(A.2) admits a unique local solution uα,n in ΛR(τR). The solution uα,n is the unique
fixed point for the functional

Γα,n(v)(t, x) = P
α,n
t ϕ(x)−

∫ t

0

Pα,n
t−sK(Dv(s, ·))(x) ds+

∫ t

0

Pα,n
t−sg(x) ds,

and due to (5.8) the contraction constant of Γα,n is independent of n and α. Thus we
can proceed as in the proof of Lemma 6.5, and thanks to Proposition 5.1 we conclude
that for any α > 0

lim
n→+∞ |uα,n(t, x)− uα(t, x)|+ |Duα,n(t, x)−Duα(t, x)|H = 0,(A.3)

uniformly for t ∈ [0, τR] and for x in bounded sets of H.
According to (5.3) it is possible to show that uα and uα,n have a stronger regu-

larity.
Lemma A.2. If ϕ, g ∈ C1

b (H), then the solutions uα and uα,n of the problems
(6.2) and (6.3) belong to Z2

τ� for some τ� = τ�(α) ≤ T , which can be taken independent
of n. For a proof we refer to [9, chapter 9].
Proposition A.3. Let us fix ϕ, g ∈ C1

b (H), and assume that uα is the unique
solution of the problem (6.3) in Z2

τ� , with τ� = τ�(α) ≤ T . Then, under Hypotheses
1, 2, and 3, we have

sup
α>0

(
sup

t∈ [0,τ�]

‖uα(t, ·)‖H1
)
≤ c (1 + T )ec T (‖ϕ‖H1 + ‖g‖H1

)
.
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Proof. If we define

Uα,n(t, x) =

∫ 1

0

DKn(λDuα,n(t, x)) dλ,(A.4)

the problem (A.2) can be rewritten as
∂u

∂t
(t, x) =

1

2
Tr [Q2

nD
2u(t, x)] + 〈Anx+ Fα,n(x) + Uα,n(t, x), Du(t, x)〉+ gn(x),

u(0, x) = ϕn(x).

Since ϕ, g ∈ C1
b (H), we have that the solution uα,n ∈ Z2

τ� and then Uα,n : [0, τ�] ×
H → Hn is continuous and bounded. Moreover, since DK is locally Lipschitz contin-
uous, if we define Mα,n as the Lipschitz constant of DK in the ball {x ∈ H ; |x|H ≤
‖uα,n‖Z2

τ�
} for any x, y ∈ H and t > 0, we have that

|Uα,n(t, x)− Uα,n(t, y)|H ≤
∫ 1

0

|DKn(λDuα,n(t, x))−DKn(λDuα,n(t, y))|H dλ

≤Mα,n |Duα,n(t, x)−Duα,n(t, y)|H ≤ cMα,n sup
z∈H

|D2uα,n(t, z)||x− y|H

≤ cMα,n t
− 1+ε

2 ‖uα,n‖Z2
τ�
|x− y|H .

This means that the function Uα,n fulfills the hypotheses of Lemma A.1 so that for
each 0 ≤ r < T the stochastic problem

dy(t) = (Any(y) + Fα,n(y(t)) + Uα,n(t, y(t))) dt+Qndw(t), y(r) = Pnx,(A.5)

admits a unique strong solution yα,n(t, r;x) ∈ L2(Ω;C([r, τ�);H) ∩ L∞(r, τ�;H)).
If we denote by Rα,n

s,t the corresponding transition semigroup, that is,

Rα,n
s,t ϕ(x) = Eϕ(yα,n(t, s;x)), 0 ≤ s ≤ t ≤ τ�,

for ϕ ∈ Bb(H) and x ∈ H, we have

uα,n(t, x) = R
α,n
τ�−t,τ�ϕ(x) +

∫ t

0

Rα,n
τ�−t,τ�−sg(x) ds.(A.6)

Indeed, since yα,n(t) is a strong solution and uα,n(t, x) is regular, we can apply Itô’s
formula to the function s �→ uα,n(τ� − s, yα,n(s, τ� − t;x)), and by integrating with
respect to s ∈ [τ� − t, τ�] and by taking the expectation, we get

uα,n(t, x) = Eϕ(yα,n(τ�, τ� − t;x)) +
∫ t

0

E g(yα,n(τ� − s, τ� − t;x)) ds,

which coincides with (A.6). As an immediate consequence this yields

sup
t∈ [0,τ�]

‖uα,n(t, ·)‖H0 ≤ ‖ϕ‖H0 + T‖g‖H0 .(A.7)

The proof of the analogous estimate for the derivative of uα,n(t, x) is more com-
plicated but is based on similar arguments.
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The problem (A.2) can be rewritten as

∂u

∂t
(t, x) =

1

2

n∑
k=1

λ2
kD

2
ku(t, x) +

n∑
k,h=1

ak,hxhDku(t, x)−Kn(Du(t, x))

+
n∑

k=1

〈Fα,n(x), ek〉H Dku(t, x) + gn(x),

u(0, x) = ϕn(x),

(A.8)

where for each k, h ∈ N we denote Dku = 〈Du, ek〉 and ak,h = 〈Aek, eh〉. By differ-
entiating each side of (A.8) with respect to xj and by setting vj = Dju, we get

∂vj
∂t

=
1

2

n∑
k=1

λ2
kD

2
kvj +

n∑
k=1

ak,hxhDkvj +

n∑
k=1

ak,jvk +

n∑
k=1

〈Fα,n(x), ek〉Dkvj

+

n∑
k=1

〈DFα,n(x)ej , ek〉 vk −
n∑

k=1

〈DKn(Duα,n), ek〉Dkvj + 〈Dgn(x), ej〉 .

By multiplying each side by vj and by summing up on j, we obtain

1

2

∂

∂t

n∑
j=1

v2j =
1

2

n∑
k,j=1

λ2
kvjD

2
kvj +

n∑
k,h,j=1

ak,hxhvjDkvj +

n∑
k,j=1

ak,jvkvj

+

n∑
k,j=1

〈Fα,n(x), ek〉 vjDkvj +

n∑
k,j=1

〈DFα,n(x)vjej , vkek〉

−
n∑

k,j=1

〈DKn(Duα,n(t, x)), ek〉 vjDkvj +

n∑
j=1

〈Dgn(x), vjej〉 .

Now, if we define 2zα,n(t, x) = |Duα,n(t, x)|2H , it holds that

n∑
k,j=1

λ2
kvjD

2
kvj =

n∑
k=1

λ2
kD

2
kzα,n −

n∑
k,j=1

λ2
k(Dkvj)

2,

n∑
k,h,j=1

ak,hxhvjDkvj +

n∑
k,j=1

ak,jvkvj = 〈Anx,Dzα,n〉+ 〈AnDuα,n, Duα,n〉 ,

n∑
k,j=1

〈Fα,n(x), ek〉 vjDkvj = 〈Fα,n(x), Dzα,n〉 ,

n∑
k,j=1

〈DKn(Duα,n), ek〉 vjDkvj = 〈DKn(Duα,n), Dzα,n〉 .
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Moreover, we have

n∑
k,j=1

〈DFα,n(x)vjej , vkek〉 = 〈DFα,n(x)Duα,n, Duα,n〉,

n∑
j=1

〈Dgn, vjej〉 = 〈Dgn, Duα,n〉 .

Thus, by substituting and by taking into account of (2.13) and (3.8), we can
conclude that

∂zα,n
∂t

(t, x) ≤Mα,nzα,n(t, x) + c zα,n(t, x) + |Dgn|2H ,

where the differential operatorMα,n is defined by

Mα,nψ(x) =
1

2
Tr [Q2

nD
2ψ(x)] + 〈Anx+ Fα,n(x)−DKn(Duα,n(t, x)), Dψ(x)〉H .

Now we define

Vα,n(t, x) = −DKn(Duα,n(t, x)).

By arguing as above for the function Uα,n(t, x) defined in (A.4), we have that Vα,n :
[0, τ�]×H → H satisfies the hypotheses of Lemma A.1 so that the stochastic problem

dy(t) = (Any(t) + Fα,n(y(t)) + Vα,n(t, y(t))) dt+Qndw(t), y(r) = Pnx,(A.9)

admits a unique strong solution yα,n(t, r;x) for any 0 ≤ r ≤ τ�. If we denote by Sα,ns,t

the transition semigroup associated with (A.9), by arguing as before for the semigroup
associated with the problem (A.5), we have that the solution of the problem

∂v

∂t
(t, x) =Mα,nv(t, x) + cv(t, x) + |Dgn(x)|2H , v(0, x) = |Dϕn(x)|2H ,

is given by

vα,n(t, x) = e
c tSα,nτ�−t,τ� |Dϕn|2H(x) +

∫ t

0

ec(t−s)Sα,nτ�−t,τ�−s|Dgn|2H(x) ds.

This yields

sup
t∈ [0,τ�]

‖vα,n(t, ·)‖H0 ≤ c (1 + T ) ec T
(‖ϕ‖H1 + ‖g‖H1

)2
so that by a comparison argument we conclude

sup
t∈ [0,τ�]

‖Duα,n(t, ·)‖H0 ≤ 2 sup
t∈ [0,T ]

‖zα,n(t, ·)‖H0 ≤ c (1 +
√
T ) eT

(‖ϕ‖H1 + ‖g‖H1
)
.

(A.10)

From (A.7) and (A.10), due to (A.3), we conclude that our statement holds.
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Abstract. If a linear, continuous, shift invariant distributed system is considered as a (dy-
namical) system converting input signals to output signals, then this information is encapsulated in
the impulse response or the transfer function of the system. The set of all transfer functions has
the structure of a ring, corresponding to the operations of parallel and cascade connections of two
systems. However, in the behavioral theory of Willems, a system is not described in terms of its
input-output transformation property. Indeed, the concept of a behavior does not even need the
notions of inputs and outputs and is therefore more fundamental than the classical concept of a
system given by its transfer function. The question then arises as to what is the structure of the set
of all behaviors. This paper argues that the relevant structure here is that of a modular lattice.

Key words. distributed systems, systems of partial differential equations, modular lattice
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1. Introduction. The purpose of this paper is to explain the algebraic structure
of the set of all linear (distributed) behaviors.

In the previous algebraic theory, where the focus was more on the discrete version
of a distributed system, i.e., linear multidimensional systems described by difference
equations in several indeterminates (see Bose [2] for the 2-D case and Shankar and Sule
[10] and Sule [12] for the general n-D case), the point of view adopted was to consider a
plant as a (nonautonomous) dynamical system, transferring input signals into output
signals. The system being linear, continuous, and shift invariant, the relationship
between inputs and outputs could be encapsulated in the impulse response or the
transfer function of the system. The transfer function of such a system was a rational
function (in several indeterminates). Now two such multidimensional input-output
systems could be connected either in parallel or in cascade. The transfer function of
the resulting input-output system was then the sum or the product of the transfer
functions of the individual systems. The set of all these systems, or more accurately
their transfer functions, with these two operations had then the structure of a ring.
It was this structure that was the foundation for the theory developed in [10], which
described the set of all stabilizing controllers of a plant and which described the
topology of robust stabilization, etc. It was this same algebraic structure that was
crucial for the characterization of the obstruction to the problem of simultaneously
stabilizing two plants by a single controller (or equivalently the problem of stabilizing
a plant by a stable controller); see [6] and Ying [16]. This was of course hardly
surprising, for any solution of a problem which required one to consider, a priori, the
set of all plants should have to take into account, and indeed rely on, the structure of
the set of all plants.

More recently, J. C. Willems has in a series of fundamental papers, summarized
in [14, 15], transformed the stage in which control problems had been formulated and
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solved. In his far-reaching theory, which goes beyond the description of a plant as
something that transforms inputs to outputs, indeed which goes beyond notions of
inputs and outputs altogether, the central object is the behavior of an autoregres-
sive (AR) system (more generally the behavior of an autoregressive moving average
(ARMA) system, but the “elimination theorem” allows one to reduce such a behavior
to the behavior of an AR system)—formal definitions appear in the next section. This
behavior is the set of all homogeneous solutions of a system of differential equations
in some appropriate function or distribution space. (By a system I mean here a ma-
trix, each entry of which is a differential operator.) While Willems and his coworkers
have in the large concentrated in formulating and solving control problems, both old
and new, for lumped systems (i.e., where the differential operators are ordinary)—see
Trentelman [13] for a recent exposition—this theory has also been carried over effec-
tively to distributed systems, i.e., the case of partial differential operators, in Oberst
[4], in Pillai and Shankar [5], and in [7, 8, 9].

One of the important features of Willems’s behavioral theory, and arguably the
principal reason for its success, is the algebraic nature of the theory—in fact the alge-
braic structure of the set of homogeneous solutions of a matrix of differential operators
is known in mathematics as a D-module. This algebraic structure is especially crucial
in the study of distributed systems for the following reason. Classically, one studied a
distributed system in the framework of semigroups of transformations of some infinite
dimensional space. These methods of study were function theoretic, necessarily of
infinite dimensional objects, and hence rarely effective (in the sense of a finite com-
putable procedure). On the other hand, in the behavioral theory, one associates to
a distributed behavior a submodule of a free module of finite rank over the ring of
constant coefficient partial differential operators (with coefficients in R or C), and one
studies properties of the behavior in terms of this submodule. As this ring is Noethe-
rian, submodules of free modules of finite rank are finitely generated. This enables
one, often, to reduce matters to the calculation of finitely generated objects such as
torsion submodules, Ext modules, etc. (see [4, 5, 7]). Moreover, the availability of
computational techniques from commutative algebra (Gröbner basis, etc.) makes the
behavioral theory a practical one, and I foresee not long from now effective procedures
to calculate stabilizing controllers for distributed systems and other such problems.

The question now arises, as in the previous theory of transfer functions, as to
what is the structure underlying the set of all behaviors. As remarked earlier, a
behavior does not come with a priori notions of inputs and outputs—it is possible to
impose an input-output structure for hyperbolic systems (see [8])—but the general
notion of a behavior does not depend upon this possibility. Thus it does not make
sense, in general, to connect two behaviors in parallel or in cascade, and it is not
the structure of a ring that is the right notion here. Instead, this paper argues, the
relevant structure here is that of a lattice. The set of behaviors is partially ordered
by inclusion, and any collection of behaviors has a least upper bound and a greatest
lower bound. This much is straightforward. However, there are two other lattices
that are in the picture here. One is the lattice of all submodules of the free module of
fixed (finite) rank, each summand some function or distribution space, in which these
behaviors are located. A behavior is such a submodule, and furthermore of a very
special kind—viz., one that is a D-module, i.e., the kernel of a system of differential
operators—and the lattice of behaviors is a subset of this lattice of all submodules.
The other is the lattice of all submodules of the free module (of the same rank as
above) over the ring of differential operators. The question then arises as to what is
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the relationship between these three lattices, and the answer to it is the subject of
this paper. In relating these structures there are several problems that have to be
overcome. For one, distinct submodules of the free module over the ring of differential
operators could determine the same behavior. For another, the sum of two behaviors
need not be a behavior. It turns out that the notion of a Willems submodule (or the
more general notion of closure introduced in this paper) is crucial in overcoming these
problems. The importance of a Willems submodule has already been demonstrated
in [5] and [7] from both the control as well as the “pure” mathematical points of view
(it is the analogue of a radical ideal when a polynomial is considered as a partial
differential operator). The results of those papers play a crucial role here, and in turn
the results of this paper justify further this notion.

The paper is organized as follows. In the next section I establish a calculus whose
final intent is to prove the differential analogue of the fact that the radical of a finite
intersection of ideals is the intersection of the individual radicals (Corollary 2.3). To
prove this I need results from [4] and [7]. This corollary is of crucial importance in
understanding the relationship between the lattices described above, and this is the
subject of section 3. The final section concerns the structure of stable and stabiliz-
able behaviors. Stability here is a notion generalizing bounded input–bounded output
(BIBO) stability of lumped behaviors that was introduced in [5] and [8], and is funda-
mental to control. I therefore also include a result describing necessary and sufficient
conditions for the stabilizability of a behavior. The paper also includes several ex-
amples (or pathologies) which explain when things go wrong and why. It concludes
with a result on determinantal ideals, an example of the reverse direction, where the
theory of behaviors is used to conclude facts in algebra and in geometry.

2. The calculus of Willems submodules. In this section I collect some pre-
liminary definitions and results that I need in what follows.

As explained in the introduction, the central object of study in control theory, as
it has emerged in recent years, is the behavior of an AR system, which I define first
(see [14, 15, 4, 5]).

Let D′ be the space of all distributions on R
n. Let A = K[∂1, . . . , ∂n], K = R

or C, be the polynomial ring in the n indeterminates ∂1, . . . , ∂n, with coefficients in
K, where ∂i is partial differentiation in the ith coordinate direction xi (and thus an
element p(∂) in A is a (constant coefficient) partial differential operator). The ring
A acts on D′ by differentiation and makes D′ an A-module. Given any A-submodule
W of D′, the map

p(∂) : W −→ W,
w �→ p(∂)w

is an A-module morphism. The kernel of p(∂), which is an A-submodule of W, is the
behavior of p(∂) in W (or the W-behavior of p(∂)), and is denoted by KerW(p(∂)).
Given an ideal I in A, the A-submodule

⋂
p(∂)∈I KerW(p(∂)) of W is called the W-

behavior of I, and is denoted by KerW(I).
More generally, given an element r(∂) = (p1(∂), . . . , pk(∂)) in the free module Ak,

the map

r(∂) : Wk −→ W,

w = (w1, . . . , wk) �→ r(∂)w =
∑k
i=1 pi(∂)wi

is an A-module morphism. Its kernel, denoted KerW(r(∂)), is an A-submodule of
Wk, and is called the W-behavior of r(∂). Given a submodule R of Ak, let KerW(R)
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denote the A-submodule of Wk given by
⋂
r(∂)∈R KerW(r(∂)). Call it the W-behavior

of R. As A is Noetherian, R is finitely generated, say, by r1(∂), . . . , rl(∂). Clearly
then KerW(R) is the kernel of the morphism

R(∂) : Wk −→ W l,
w �→ (r1(∂)w, . . . , rl(∂)w).

If ri(∂) = (ri1(∂), . . . , rik(∂)), i = 1, . . . , l, then R(∂) can be represented, in the usual
way, by the following matrix:

R(∂) =


r11(∂) . . . r1k(∂)

. . . . .

. . . . .
rl1(∂) . . . rlk(∂)

 .(1)

Thus the W-behavior of a submodule of Ak is the set of homogeneous solutions in
the space Wk of a system (i.e., matrix) of differential operators. If these differential
operators are ordinary, i.e., if n = 1, then the behavior is said to be lumped; otherwise
it is a distributed behavior. Formally, one has the following.

Definition. Let W be any A-submodule of D′. A behavior in Wk (or a W-
behavior) is an A-submodule of Wk of the type KerW(R), for some A-submodule R
of Ak.

It is an observation of Malgrange that

HomA(Ak/R,W) 	 KerW(R),

where the isomorphism is given by

φ �→ (φ(e1), . . . , φ(ek)),

ei is the image of ei = (0, . . . , 1, . . . , 0) (1 in the ith position) in Ak/R. This isomor-
phism which was studied in [4] and [7] plays a central role in this paper.

On the other hand, given a behavior B in Wk, i.e., an A-submodule of Wk of
the kind B = KerW(R) for some submodule R of Ak, let M(B) = M(KerW(R))
be the submodule of Ak consisting of all the elements in Ak that map to zero every
element in B. Clearly R ⊂ M(KerW(R)). Thus there are two assignments KerW and
M which are both inclusion reversing, i.e., R1 ⊂ R2 implies KerW(R2) ⊂ KerW(R1)
and B1 ⊂ B2 implies M(B2) ⊂ M(B1). In other words KerW and M define a Galois
connection between the partially ordered sets of submodules of Ak and behaviors in
Wk. The primary purpose of this paper is to study this Galois connection from the
viewpoint of lattice theory.

Lemma 2.1. Let {Ri} (respectively, {Bi}) be any collection of submodules of Ak

(respectively, behaviors in Wk). Then

(i) KerW(
∑
iRi) =

⋂
iKerW(Ri),

(ii)
∑
i KerW(Ri) ⊂ KerW(

⋂
iRi),

(iii) M(
∑
i Bi) =

⋂
iM(Bi),

(iv)
∑
iM(Bi) ⊂ M(

⋂
i Bi).

Proof. Elementary.

Lemma 2.2. KerW ◦ M is the identity map on behaviors for any A-submodule
W of D′, i.e., KerW ◦M(B) = B for all W-behaviors B.
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Proof. Clearly B ⊂ KerW ◦ M(B). But B by definition is KerW(R) for some
submodule R of Ak (for some k). Hence R ⊂ M(KerW(R)) = M(B). Then KerW ◦
M(B) ⊂ KerW(R) = B.

Corollary 2.1. The correspondence B → M(B) (between behaviors in Wk and
submodules of Ak) is injective for all A-submodules W of D′.

Proof. Suppose M(B1) = M(B2). Then B1 = KerW ◦M(B1) = KerW ◦M(B2) =
B2.

The correspondence R → KerW(R) is not in general injective, i.e., in general
M(KerW(R)) may strictly contain R (for instance if W is the 0 submodule of D′,
then M(KerW(R)) = Ak for every submodule R of Ak). This prompts the following
definition (see also [5] and [7]).

Definition. The submodule M(KerW(R)) is called the Willems closure of R
with respect to W. If R is equal to M(KerW(R)), i.e., if R is equal to its Willems
closure with respect to W, then the submodule R is called a Willems submodule with
respect to W.

The analogy between this definition and the classical definition of a radical ideal
was the subject of [7]. This analogy further motivates the following results.

Lemma 2.3. The Willems closure of R with respect to W is Willems with respect
to W. It is maximal amongst all submodules with the same W-behavior as R.

Proof. The first statement follows from

M(KerW(MKerW(R))) = M(KerW ◦M)KerW(R) = MKerW(R).

For the second, KerW(MKerW(R)) = KerW(R); thus the W-behavior of MKerW(R)
equals the W-behavior of R. If also KerW(R1) = KerW(R), then R1 ⊂ MKerW(R1)
= MKerW(R).

Lemma 2.4. Let {Bi} be a collection of W-behaviors. Then the Willems closure
of
∑
iM(Bi) with respect to W is M(

⋂
i Bi).

Proof. Lemma 2.1 implies that KerW(
∑
iM(Bi)) =

⋂
i KerW(M(Bi)), and this

in turn equals
⋂
i Bi = KerWM(

⋂
i Bi). Hence the behavior of

∑
iM(Bi) is equal to

the behavior of the submodule M(
⋂
i Bi) which is Willems.

Lemma 2.5. If {Ri} is any collection of submodules of Ak, each Willems with
respect to W, then

⋂
iRi is also Willems with respect to W.

Proof. By assumption M(KerW(Ri)) = Ri for each i. Hence

⋂
i

Ri ⊂ MKerW

(⋂
i

Ri

)
⊂ M

(∑
i

KerW(Ri)

)
=
⋂
i

MKerW(Ri) =
⋂
i

Ri,

where the second inclusion follows from Lemma 2.1(ii) and the inclusion reversing
nature of the assignment M. This implies equality everywhere, and thus that

⋂
iRi =

MKerW(
⋂
iRi).

A question more general than the above lemma, which is of crucial importance
in the next section, is whether MKerW(

⋂
iRi) equals

⋂
iMKerW(Ri) for an arbi-

trary collection of submodules {Ri} of Ak. In other words, is the Willems closure
of an intersection equal to the intersection of the Willems closures? Of course as
KerW(Ri) ⊂ KerW(

⋂
iRi) it follows that, always,

MKerW

(⋂
i

Ri

)
⊂
⋂
i

MKerW(Ri).(2)
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The other inclusion is not in general true for an arbitrary collection of submodules,
as the following “pathology” demonstrates.

Pathology 1. Let A = C[ ddt ], and let I be any nonzero proper ideal of A. Let
Ri = Ii, i ≥ 0, and consider the behaviors of Ri in D, the space of compactly
supported, complex valued, smooth functions on R. As each Ri is a nonzero ideal,
KerD(Ri) consists of just the 0 function alone (no nonzero differential operator admits
a compactly supported homogeneous solution by the Paley–Wiener theorem). Thus
each MKerD(Ri) = A and hence

⋂
iMKerD(Ri) = A. On the other hand

⋂
iRi = 0

by Krull’s theorem (A is an integral domain, so its I-adic completion is Hausdorff).
Thus KerD(

⋂
iRi) = D, and as the 0 ideal is the only ideal whose behavior is all of

D, it follows that MKerD(
⋂
iRi) = 0.

The question therefore is whether the above is true for finite intersections, i.e.,
does MKerW(

⋂m
i=1 Ri) =

⋂m
i=1 MKerW(Ri) hold? (This is the differential analogue

of the fact that the radical of a finite intersection of ideals equals the intersection
of the individual radicals.) While it may possibly be true for any A-submodule W
of D′, I show below that it is indeed true for the “classical” spaces by using the
characterization of Willems submodules with respect to these spaces established in
[4] and [7]. As this paper restricts attention to these spaces, I highlight them in the
following definition.

Definition. An A-submodule W of D′ is said to be a classical space if it is one
of the following:

(i) D′, the space of all distributions on R
n,

(ii) C∞, the space of all (complex valued) smooth functions on R
n,

(iii) S ′, the space of temperate distributions on R
n,

(iv) S, the Schwartz space of rapidly decreasing functions on R
n,

(v) E ′, the space of compactly supported distributions on R
n,

(vi) D, the space of compactly supported smooth functions on R
n.

In the following theorem, I collect results on the Willems closure of a submodule
R of Ak with respect to the classical spaces from [4] and [7]. Following this I prove
a stronger result on the Willems closure with respect to S ′ than the one in [7] (this
stronger version is more convenient for the purposes of this paper and is used below).
To state them, I employ the following notation. Given the submodule R of Ak,
represent R by an l × k matrix (whose entries are elements of A), where the l rows
(as elements of Ak) generate R, viz., the matrix in (1) above. Consider the kth
determinantal ideal of this matrix, i.e., the ideal generated by the determinants of
all the k × k submatrices. Clearly this ideal depends only on the submodule R and
not on the choice of the matrix representing it, i.e., it is independent of the choice
of the generators of R. Denote this determinantal ideal by Ik(R) and call it the
characteristic ideal of R. (Note that if l < k, then Ik(R) = 0.) The affine variety of
this ideal in C

n, V(Ik(R)), is called the characteristic variety of R (i.e., considering
the elements of A as polynomials). Let �V(Ik(R)) denote the set of purely imaginary
points on V(Ik(R)), i.e., �V(Ik(R)) = V(Ik(R)) ∩ ıRn.

Theorem 2.1. (i) Every submodule R of Ak is Willems with respect to D′ or
C∞.

(ii) Let R =
⋂t
i=1 Qi be an irredundant primary decomposition of R in Ak, where

Qi is Pi-primary. Suppose that the affine varieties in C
n of P1, . . . ,Pr intersect

�V(Ik(R)), and that of the varieties of Pr+1, . . . ,Pt do not. Then the Willems closure
MKerS′(R) of R with respect to S ′ is

⋂r
i=1 Qi, so that R is Willems with respect to

S ′ if and only if the variety of every Pi intersects �V(Ik(R)). In other words R is
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Willems with respect to S ′ if and only if the variety of every associated prime of Ak/R
intersects �V(Ik(R)).

(iii) Let π : Ak → Ak/R be the canonical projection. Then the Willems closure
of R with respect to S, E ′, or D is π−1(T (Ak/R)), where T (Ak/R) is the submodule
of torsion elements of Ak/R, so that R is Willems with respect to S, E ′, or D if and
only if Ak/R is torsion-free (or equivalently if and only if R is 0-primary).

Remark. (i) The first part of the above result is a consequence of two deep
theorems about D′ and C∞. Ehrenpreis, Malgrange, and Palamodov prove that these
two spaces are injective A-modules, i.e., that HomA(−,D′) and HomA(−, C∞) are
exact (contravariant) functors (see Hörmander [3]). Furthermore, Oberst in [4] proves
that D′ and C∞ are cogenerators, i.e., that HomA(X ,D′) and HomA(X , C∞) are equal
to 0 if and only if the A-module X is 0. I use these results in the next section.

The following is now immediate from Lemma 2.4.

Corollary 2.2. Let Bi be any collection of D′ or C∞-behaviors. Then
∑
iM(Bi)

= M(
⋂
i Bi).

(ii) It is an easy fact that the Willems closure of R with respect to S ′ described
above is independent of the primary decomposition of R in Ak (see [7]). Below I
establish a stronger and more convenient version of this result.

(iii) The Willems closure of a submodule R of Ak with respect to S is thus equal
to its Willems closure with respect to E ′ or D [7].

The following result is a strengthening of the second part of the above theorem.

Theorem 2.2. Let R =
⋂t
i=1 Qi be an irredundant primary decomposition of

the submodule R in Ak, where Qi is Pi-primary. Suppose that the affine varieties
in C

n of P1, . . . ,Pr contain purely imaginary points (i.e., intersect ıRn) and that of
Pr+1, . . . ,Pt do not. Then the Willems closure MKerS′(R) of R with respect to S ′

is
⋂r
i=1 Qi, so that R is Willems with respect to S ′ if and only if the variety of every

associated prime of Ak/R contains purely imaginary points.

Proof. I show that if R =
⋂t
i=1 Qi is an irredundant primary decomposition of

R in Ak, where Qi is Pi-primary, then
⋃t
i=1 V(Pi) is contained in V(Ik(R)). This

theorem now follows from Theorem 2.1(ii) above, as then the purely imaginary points
on V(Pi) are exactly those that are the intersection of V(Pi) with �V(Ik(R)).

Assume first that R itself is a P-primary submodule of Ak. I need to show that
the determinantal ideal Ik(R) is contained in P, so that V(P) is then contained in
V(Ik(R)). Thus let d in Ik(R) be the determinant of some k× k matrix, say D, with
entries in A, all of whose rows, considered as elements of Ak, are in R—by definition
every generator of Ik(R) occurs in this way. Let D′ be the matrix adjoint to D,
so that D′D is the k × k diagonal matrix with the diagonal elements each equal to
d. But (matrix) multiplying D on the left by any row, i.e., by an element of Ak, is
equivalent to taking an A-linear combination of the rows of D. Thus each row of
D′D is an element of R (as each row of D is an element of R). But as these rows
are d · ei, i = 1, . . . , k, ei = (0, . . . , 1, . . . , 0)—1 in the ith place—it follows that d
is in ann(Ak/R). As R is P-primary, P is the radical of ann(Ak/R), and thus it
further follows that d is in P. This shows that Ik(R) is contained in P, so that V(P)
is contained in V(Ik(R)).

If now R =
⋂t
i=1 Qi, where Qi is Pi-primary, then Ik(R) is contained in

each Ik(Qi) and hence, by the above, that it is in fact contained in each Pi and
hence in

⋂t
i=1 Pi. Then again

⋃t
i=1 V(Pi) is contained in V(Ik(R)). This proves the

theorem.

Remark. The above description of the Willems closure of a submodule with
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respect to the classical spaces can also be described in terms of localization in a
uniform manner. Recollect that if U is a multiplicatively closed subset of A, then one
can form rings and modules of fractions in the usual way. Thus U−1Ak is a U−1A
module, and φ : Ak → U−1Ak, mapping x in Ak to x

1 , is an A-module morphism. It
is an easy fact that if R is a submodule of Ak, and if U−1R is its extension in U−1Ak,
then its contraction φ−1(U−1R) is given by ∪u∈U (R : u). In this language the above
results can be described as follows.

(i) If U1 is the set of units of A, then U−1
1 A is equal to A, the map φ above is the

identity, and the Willems closure of R with respect to D′ or C∞ equals φ−1(U−1
1 R),

which is of course just equal to R.

(ii) Let U2 be the multiplicatively closed subset of A consisting of those polyno-
mials whose affine varieties do not contain purely imaginary points. Then an easy
check shows that MKerS′(R) is equal to φ−1(U−1

2 R).

(iii) Let U3 be the multiplicatively closed subset of A consisting of all the nonzero
elements. Then the Willems closure of R with respect to S, E ′, or D is φ−1(U−1

3 R).

The description of the lattice structure of behaviors in the next section is based
on the following corollary to the above theorems. This corollary is, as observed above,
the differential analogue of the fact that the radical of a finite intersection of ideals is
the intersection of the individual radicals.

Corollary 2.3. Let Ri, i = 1, . . . ,m, be submodules of Ak, and let W be any
of the classical spaces. Then

MKerW

(
m⋂
i=1

Ri

)
=

m⋂
i=1

MKerW(Ri).(3)

Thus in a classical space, the Willems closure of a finite intersection equals the inter-
section of the individual Willems closures.

Proof. By induction it suffices to prove the above when m = 2.

(i) In the case when W is either D′ or C∞, the statement is trivial, as then every
submodule is Willems. Thus each side of (3) equals R1 ∩R2.

(ii) Because of the inclusion (2) observed earlier, it is sufficient to prove the
other inclusion, viz., that MKerS′(R1) ∩ MKerS′(R2) ⊂ MKerS′(R1 ∩ R2). Thus
let R1 =

⋂t1
i=1 Qi and R2 =

⋂t2
j=1 Q′

j be irredundant primary decompositions of

R1 and R2 in Ak, where Qi and Q′
j are Pi-primary and P ′

j-primary, respectively,
i = 1, . . . , t1, j = 1, . . . , t2. Suppose that the varieties of P1, . . . ,Pr1 contain purely
imaginary points, whereas those of Pr1+1, . . . ,Pt1 do not. Similarly suppose that the
varieties of P ′

1, . . . ,P ′
r2 , and not those of P ′

r2+1, . . . ,P ′
t2 , contain purely imaginary

points. Then by the above theorem

MKerS′(R1) ∩MKerS′(R2) =

(
r1⋂
i=1

Qi

)
∩
 r2⋂
j=1

Q′
j

 .

On the other hand (
⋂t1
i=1 Qi) ∩ (

⋂t2
j=1 Q′

j) is a primary decomposition of R1 ∩ R2 in

Ak, though perhaps not irredundant. An irredundant primary decomposition can,
however, be obtained from it by omitting (if necessary) some of the Qi or Q′

j . Thus
the set of associated primes of R1 ∩R2 is a subset of {P1, . . . ,Pt1 ,P ′

1, . . . ,P ′
t2}. This

implies that those associated primes of R1 ∩R2 whose varieties contain purely imag-
inary points are a subset of {P1, . . . ,Pr1 , P ′

1, . . . ,P ′
r2}. Clearly then this implies (by



THE LATTICE STRUCTURE OF BEHAVIORS 1825

the above theorem) that MKerS′(R1)∩MKerS′(R2) ⊂ MKerS′(R1 ∩R2), and thus
that (3) holds when W is S ′.

(iii) Suppose W is S, E ′, or D. Then the Willems closure of R1 ∩ R2 (with
respect to such a W) is by the above theorem π−1(T (Ak/R1 ∩R2)), where π : Ak →
Ak/R1 ∩ R2 is the canonical projection. But an element x in Ak such that ax is in
R1 ∩ R2, for some nonzero a in A, implies that the residue class of x in Ak/R1 and
in Ak/R2 is a torsion element of Ak/R1 and Ak/R2, respectively. Conversely, let x
be an element of Ak whose residue class in Ak/R1 and in Ak/R2 is a torsion element
of Ak/R1 and Ak/R2, respectively. So let a1x and a2x (a1 and a2 nonzero) belong
to R1 and R2, respectively. This implies that a1a2x belongs to R1 ∩ R2. As A is
an integral domain, a1a2 is nonzero, so that the residue class of x in Ak/R1 ∩ R2 is
a torsion element. Thus when W is S, E ′, or D, it again follows that MKerW(R1 ∩
R2) = MKerW(R1) ∩ MKerW(R2), so that (3) holds for these classical spaces as
well.

These results permit the description of the lattice structure of behaviors in the
classical spaces in the next section. The calculus of behaviors is further developed in
[11].

Remark. In view of the fact that inclusion (2) holds for any A-submodule W of D′,
it is tempting to conjecture that the reverse inclusion (for finite intersections because
of Pathology 1), and hence equality (3), also holds for any W. It is not clear to me
how to even proceed to prove this general statement. The proof of (3) for the classical
spaces depends upon the description of the Willems closures of modules, a description
that is not available for a general W. Relevant here is the following warning. As
observed earlier, the concept of a Willems closure is the generalization to analysis
of the algebraic notion of the radical of an ideal (via the Hilbert Nullstellensatz).
The proof of the algebraic fact corresponding to (3), viz., that the radical of a finite
intersection equals the intersection of the individual radicals, also depends upon a
concrete description of a radical ideal.

3. The structure of behaviors. The starting point of this paper, as explained
in the introduction, is the elementary observation that the set L of all submodules of
Ak, partially ordered by inclusion, is a complete modular lattice under the operations
of module sum and intersection. Recollect (from Birkhoff [1]) that to say L is a
complete lattice is to say that any collection {Ri}, not necessarily finite, of submodules
of Ak has a least upper bound (l.u.b.), or join, given by

∑
iRi, and a greatest lower

bound (g.l.b.) or meet given by
⋂
iRi, and to say L is modular is to say that if R2 ⊂

R1, then R1∩(R2 +R3) = R2 +(R1∩R3) for any submodule R3. Recollect also that
L is not, however, a distributive lattice; standard examples show that R1∩ (R2 +R3)
is not always equal to (R1 ∩R2) + (R1 ∩R3).

Now let W be any A-submodule of D′. Each fact noted above about the set L is
of course also true about the set W of all A-submodules of Wk. Thus W, partially
ordered by inclusion, is also a complete modular lattice. Consider now the contravari-
ant functor KerW described in the previous section. Let B(W) = {KerW(R) | R ∈ L}
be the set of all behaviors in Wk, also partially ordered by inclusion. I claim that this
partially ordered set is also, trivially, a lattice. For suppose that {Bi} is any collec-
tion of elements in B(W). Then its g.l.b. is

⋂
i Bi (this intersection is a behavior by

Lemma 2.1(i)). This collection also has an l.u.b.; in fact let {Bα} be the collection of
all behaviors that contain every Bi—this collection is clearly nonempty as it contains
the behavior Wk. Then

⋂
α Bα is a behavior (again by Lemma 2.1(i)) which is clearly

the smallest behavior that contains every Bi and is therefore its l.u.b.
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Thus there are three lattices in picture here, viz., L,W, and its subset B(W), and
the question arises as to what is the relationship between them. I show below that if
W is a classical space, then B(W) is anti-isomorphic to a homomorphic image of L
(anti-isomorphic means that the map between these lattices is inclusion reversing, so
that g.l.b.’s go to l.u.b.’s and vice versa). This implies then that B(W) is modular.
Furthermore, if W is D′, C∞, or S ′, then B(W) is a sublattice ofW. These are the
central results of this paper.

Proposition 3.1. Let W be a classical space and let KerW(Ri), i = 1, . . . ,m,
be any finite set of behaviors in Wk. Then KerW(

∑m
i=1 Ri) is the largest W-behavior

contained in every KerW(Ri), and KerW(
⋂m
i=1 Ri) is the smallest W-behavior con-

taining every KerW(Ri).
Proof. The first part of the statement follows from Lemma 2.1(i). For the second

part, suppose KerW(R) contains KerW(Ri), i = 1, . . . ,m. Then MKerW(R) is con-
tained in each MKerW(Ri), and hence in

⋂m
i=1 MKerW(Ri). But this intersection is

by Corollary 2.3 (i.e., by (3)) equal to MKerW(
⋂m
i=1 Ri) (as W is by assumption a

classical space). It now follows that

KerW

(
m⋂
i=1

Ri

)
= KerWMKerW

(
m⋂
i=1

Ri

)
⊂ KerWMKerW(R) = KerW(R).

As clearly KerW(
⋂m
i=1 Ri) contains every KerW(Ri), it follows that it is in fact the

smallest behavior containing every KerW(Ri).
The converse is also true, viz., the following.
Proposition 3.2. Suppose that KerW(

⋂m
i=1 Ri) is the smallest W-behavior con-

taining every KerW(Ri). Then (3) holds.
Proof. Suppose that KerW(R) contains every KerW(Ri). Then by assumption

KerW(R) contains KerW(
⋂m
i=1 Ri). In other words, if MKerW(R) is contained in

MKerW(Ri) for each i, then MKerW(R) is contained in MKerW(
⋂m
i=1 Ri). Hence

as
⋂m
i=1 MKerW(Ri) is contained in MKerW(Ri) for each i, it follows that

m⋂
i=1

MKerW(Ri) ⊂ MKerW

(
m⋂
i=1

Ri

)
,

which together with (2) implies (3).
In essence what Proposition 3.1 establishes (via Corollary 2.3) is that if KerW(R)

contains KerW(Ri), i = 1, . . . ,m, then it also contains KerW(
⋂m
i=1 Ri). This state-

ment is not true if i ranges over an infinite set for the same reasons that in this case
Corollary 2.3 does not hold.

Pathology 2. Consider again the situation of Pathology 1. Let R = I be any
nonzero proper ideal of C[ ddt ], and let Ri = Ii, i ≥ 1. Then KerD(R) = KerD(Ri) = 0,
whereas KerD(

⋂
iRi) = KerD(0) = D.

By Proposition 3.1 it follows that the lattice structure of B(W) described in
the beginning of this section is in fact given by defining the g.l.b. of any finite set
of behaviors KerW(Ri), i = 1, . . . ,m, to be KerW(

∑m
i=1 Ri) and its l.u.b. to be

KerW(
⋂m
i=1 Ri). This lattice structure is inherited from the lattice structure of L in

the following manner. Consider the equivalence relation ∼ on L given by

R ∼ R′ if KerW(R) = KerW(R′).

In other words, R is equivalent to R′ if their Willems closures in W are equal. Then if
R1 ∼ R′

1 and R2 ∼ R′
2, it follows (by Lemma 2.1) that KerW(R1+R2) = KerW(R1)∩
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KerW(R2) = KerW(R′
1) ∩ KerW(R′

2) = KerW(R′
1 + R′

2), and thus that R1 + R2 ∼
R′

1 + R′
2. It also follows that R1 ∩ R2 ∼ R′

1 ∩ R′
2, that is, that KerW(R1 ∩ R2) =

KerW(R′
1 ∩R′

2), for these two behaviors are, by the above proposition, the l.u.b.’s of
KerW(R1)+KerW(R2) and KerW(R′

1)+KerW(R′
2), respectively, and these two sums

are equal by assumption. Thus ∼ is a congruence relation on L, and quotienting L
by it gives a lattice homomorphic to L. One therefore obtains the following theorem.

Theorem 3.1. Let W be a classical space. Then B(W), the lattice of all behaviors
in Wk, is anti-isomorphic to a homomorphic image of the lattice L of all submodules
of Ak. It follows therefore that B(W) is a modular lattice.

Proof. It only remains to observe that a homomorphic image of a modular lattice
is itself modular [1, Ex. 5, p. 66]).

On the other hand, as observed earlier, the set W of all A-submodules of Wk,
partially ordered by inclusion, is a complete modular lattice. The lattice B(W) of
all behaviors in Wk is a subset of W, and the question then arises as to whether
B(W) is a sublattice ofW. This will indeed be so if the sum of two behaviors (and
hence of a finite number of behaviors) is not just an A-submodule of Wk, but is itself a
behavior—the intersection of behaviors is of course always a behavior (Lemma 2.1(i)).
As KerW(R1∩R2) is the smallest W-behavior containing KerW(R1)+KerW(R2) (by
Proposition 3.1), the question therefore reduces to whether KerW(R1) + KerW(R2)
equals KerW(R1 ∩ R2). More generally, when is the inclusion in Lemma 2.1(ii) an
equality?

Pathology 3. Consider once more the situation of Pathologies 1 and 2; i.e., let A =
C[ ddt ]. Let R1 and R2 be cyclic submodules of A2 generated by (1, 0) and (1,− d

dt ),
respectively. Then R1 ∩ R2 is the 0 submodule, so that KerD(R1 ∩ R2) is all of D2.
On the other hand, KerD(R1) = {(0, f) | f ∈ D} and KerD(R2) = {(dgdt , g) | g ∈ D}.

Thus an element (u, v) in D2 is in KerD(R1) + KerD(R2) only if u = dg
dt , v = f + g,

where f and g are arbitrary elements in D. Let now u be any (nonzero) nonnegative
compactly supported smooth function. Then (u, 0), which is in KerD(R1 ∩ R2), is,

however, not in KerD(R1) + KerD(R2), as g(t) =
∫ t
−∞ dg =

∫ t
−∞ udt is not compactly

supported.
Hence KerD(R1) + KerD(R2) can be strictly contained in KerD(R1 ∩ R2), and

thus the lattice structure of B(D) described by the theorem above does not make it
a sublattice of the lattice of all C[ ddt ]-submodules of D2.

The situation is, however, different if W is D′, C∞, or S ′.
Theorem 3.2. Let A = K[∂1, . . . , ∂n], K = R or C, and let R1 and R2 be

submodules of Ak. Then KerW(R1) + KerW(R2) = KerW(R1 ∩ R2) if W is an
injective A-module.

Proof. Because of Lemma 2.1(ii), it suffices to prove that KerW(R1 ∩ R2) ⊂
KerW(R1) + KerW(R2). Thus given an element f in KerW(R1 ∩ R2), one needs to
show that it can be written as f1+f2, fi in KerW(Ri), i = 1, 2, when W is an injective
A-module.

Recollect from the previous section the isomorphism of Malgrange, viz., that
KerW(R) 	 HomA(Ak/R,W) for any submodule R of Ak. Thus given an element f
in KerW(R1 ∩R2), consider it as an A-module morphism

f : Ak/R1 ∩R2 −→ W.

Define

g : R1 + R2 −→ W,
x1 + x2 �→ g(x1 + x2) = f([x2]),
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where [x2] is the residue class of x2 in Ak/R1∩R2. This morphism g is well defined, for
if x1+x2 = x′

1+x′
2 (xi, x

′
i in Ri), then x1−x′

1 = x′
2−x2 is in R1∩R2. This implies that

f([x′
2 − x2]) = 0, i.e., that f([x2]) = f([x′

2]), and hence that g(x1 + x2) = g(x′
1 + x′

2).
By definition, g restricted to R1 is the zero morphism, and so it induces a morphism

h : (R1 + R2)/R1 −→ W.

Let π : (R1 + R2)/R1 ∩R2 → (R1 + R2)/R1 be the canonical projection. Let h1 be
the morphism obtained by composing π with h, i.e., let

h1 = h ◦ π : (R1 + R2)/R1 ∩R2 −→ W.

Now (R1 + R2/R1) is canonically isomorphic to R2/R1 ∩R2, a submodule of (R1 +
R2)/R1 ∩ R2. By construction h1 is equal to f on this submodule and equal to the
zero morphism on the submodule R1/R1 ∩ R2. As W is an injective A-module (by
assumption), there exists a morphism f1 : Ak/R1 ∩ R2 → W so that the following
diagram commutes:

0 → (R1 + R2)/R1 ∩R2 −→ Ak/R1 ∩R2

h1 ↓ ↙ f1

W
.

As f1 restricts to the zero morphism on R1/R1∩R2, one can consider f1 as an element
in HomA(Ak/R1,W), i.e., f1 is in the behavior KerW(R1).

Next consider the morphism f2 = f − f1 : Ak/R1 ∩R2 → W. As f1 equals f on
R2/R1 ∩R2, f2 is identically zero on this submodule and can therefore be considered
as an element in HomA(Ak/R2,W), i.e., in KerW(R2).

Thus KerW(R1 ∩R2) = KerW(R1) + KerW(R2).
Corollary 3.1. Let W be D′, C∞, or S ′. Then B(W), the lattice of all behaviors

in Wk, is a sublattice ofW, the lattice of all A-submodules of Wk.
Proof. By the theorem of Ehrenpreis–Malgrange–Palamodov (Remark (i) follow-

ing Theorem 2.1), D′ and C∞ are injective A-modules. It is a result in [9] that S ′ is
also an injective A-module.

Corollary 3.2. The latticeW, when W is either D′ or C∞, contains a sublattice
anti-isomorphic to L.

Proof. Consider the map

φ : L −→ W,
R �→ KerW(R),

where W is either D′ or C∞. By Oberst (again Remark (i) following Theorem 2.1),
these two A-modules are cogenerators, hence φ is an injective map. The corollary
now follows from Theorem 3.1 and Corollary 3.1 above.

While W is a complete lattice (i.e., arbitrary collections of elements in W have
l.u.b.’s and g.l.b.’s), the lattices B(D′) and B(C∞) (which are also complete) are,
however, not complete as sublattices ofW as the following pathology demonstrates.
Thus the map φ in the proof of the above corollary is not a morphism of complete
lattices.

Pathology 4. Let A = C[ ddt ], I = ( ddt ), and Ri = Ii, i ≥ 0. Consider the collection

of C∞-behaviors {KerC∞(Ri)}. As elements of W, i.e., as C[ ddt ]-submodules of C∞,
this collection has an l.u.b., viz.,

∑
i KerC∞(Ri). I claim, however, that

∑
i KerC∞(Ri)
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is not a behavior, so that
∑
i KerC∞(Ri) is not the l.u.b. of {KerC∞(Ri)} in B(C∞).

For suppose that this sum is a behavior, say, equal to KerC∞(R). Then as every
submodule now is Willems (Theorem 2.1(i)), it follows that

R = MKerC∞(R) = M
(∑

i

KerC∞(Ri)

)
=
⋂
i

MKerC∞(Ri) =
⋂
i

Ri,

where the third equality follows from Lemma 2.1(iii). But as before, by Krull’s theo-
rem,

⋂
iRi = 0, so that

∑
i KerC∞(Ri) must equal all of C∞. This is of course absurd

since KerC∞(Ri) equals the C-vector space of polynomials of degree less than i, and
which therefore implies that the above sum of behaviors is only the vector space of
all polynomials. This shows that B(C∞) is not complete as a sublattice ofW.

In the next section I study how this structure is inherited by the class of stable
behaviors.

4. The structure of stable behaviors. I consider now, in the context of the
lattice structure developed in the previous section, an important subclass of (smooth)
behaviors, viz., the stable ones. Indeed, the fundamental problem in control theory is
to stabilize an a priori unstable mechanism using a controller. The notion of stability
that I consider here is a generalization of BIBO stability of lumped systems introduced
in [5] and [8], where the growth of the elements in a behavior is specified along certain
directions. For the sake of completeness, I quickly review this notion below.

Definition. The directions of stability is a proper closed convex cone C in R
n

(with vertex at the origin). A C∞-behavior is said to be stable with respect to C if
every element in it tends to 0 along every half line in C.

Given the cone C of stable directions, define the subset C< of R
n as consisting

of those points x in R
n such that 〈x, y〉 < 0 for every nonzero y in C. As the cone

C is proper, i.e., as it does not contain a full line, C< is nonempty and in fact has
nonempty interior.

The stability of a behavior is determined by its characteristic variety V(Ik(R))
(defined above Theorem 2.1), The reason for this is the following. If R(∂) is any
matrix representing R (as in (1)), then let R(x) be the matrix obtained by replacing
the entries of R(∂) by corresponding polynomials (in the n indeterminates x1, . . . , xn).
Substituting for x any point ξ in V(Ik(R)) results in a matrix R(ξ) with entries in C

whose column rank is less than k. This implies that there is a nonzero element, say,
c = (c1, . . . , ck) in C

k, which is in the kernel of the linear map determined by R(ξ).
An easy check now shows that then (c1e

〈x,ξ〉, . . . , cke〈x,ξ〉) is in the C∞-behavior of R.
(Here 〈x, ξ〉 =

∑n
i=1 xiξi.) Thus there are such exponential elements in the behavior

corresponding to every point in V(Ik(R)).
Conversely, suppose that w = (c1e

〈x,ξ〉, . . . , cke〈x,ξ〉) is in the C∞-behavior of R or
equivalently in the kernel of the morphism given by the matrix R(∂) of (1). As in the
proof of Theorem 2.2, let D(∂) be any k×k submatrix of R(∂), so that the w above is
also in the behavior of the submodule generated by the rows of D(∂). Let d(∂) be the
determinant of D(∂). This d(∂) is in Ik(R); in fact Ik(R) is generated by such d(∂).
Multiplying D(∂) on the left by its adjoint D′(∂) results in a diagonal matrix all of
whose entries are d(∂). It now follows that every component of w is a homogeneous
solution of d(∂). But it is an easy check that e〈x,ξ〉 is a homogeneous solution of d(∂)
if and only if ξ lies in the variety of d (now considered as a polynomial). As this
is true for every generator of Ik(R), it follows that ξ must lie in V(Ik(R)). More
generally, call an element (p1(x)e〈x,ξ〉, . . . , pk(x)e〈x,ξ〉) in a behavior, where p1, . . . , pk
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are polynomials, an exponential element. Just as above, these exponential elements in
KerC∞(R) arise from exactly all the points of V(Ik(R)). It is a theorem of Ehrenpreis,
Malgrange, and Palamodov that the closed linear hull of such exponential elements in
the C∞-behavior of a submodule equals its entire C∞-behavior (viz., Theorem 7.6.14
in Hörmander [3]). This enables one to reduce the study of the stability of a behavior
to algebraic criteria.

I quote from [5] and [8] a result on stable behaviors that I need at the very end of
this section. I use in it, and further below, the following terminology from [3]. Given
a subset X of R

n, the tube over X is the set of points z in C
n such that $z, the real

part of z, is in X.
Theorem 4.1. If the C∞-behavior of a submodule R is stable with respect to C,

then the characteristic variety V(Ik(R)) is contained in the tube over C<. On the
other hand, suppose that the characteristic ideal Ik(R) of R contains a polynomial
without multiple factors (for instance, if this ideal were a radical ideal). Then if
V(Ik(R)) is contained in the tube over C< and if its distance from the boundary of
this tube is strictly positive, then KerC∞(R) is stable with respect to C<.

Definition. A behavior KerC∞(R) is said to be stabilizable with respect to the
cone C if it contains a nontrivial sub-behavior stable with respect to C.

Restricting such a behavior to a stable sub-behavior is the process of control.
Suppose that KerC∞(R′) is a sub-behavior of KerC∞(R) stable with respect to C.
As every submodule of Ak is Willems with respect to C∞, it follows that R ⊂ R′.
Let R1 be any submodule of Ak such that R + R1 = R′. Then as KerC∞(R′) =
KerC∞(R) ∩ KerC∞(R1) is stable with respect to C (by supposition), the behavior
KerC∞(R1) is said to be a stabilizing controller. If R and R1 are represented by
matrices R(∂) and R1(∂) (as in (1)), then the above process amounts to appending the
rows of R1(∂) to the rows of R(∂). This formulation of control, which does not require
any notions of inputs and outputs, is one of Willems’ fundamental contributions.

Theorem 4.2. A behavior KerC∞(R) is stabilizable with respect to the cone C if
and only if V(Ik(R)), the characteristic variety of R, intersects the tube over C<.

Proof. Suppose that V(Ik(R)) does not intersect the tube over C<. Then any
exponential element in KerC∞(R), corresponding to some point V(Ik(R)), will not
tend to 0 along some half line in C. As KerC∞(R), as also every nontrivial sub-
behavior of it, is a closed linear hull of such exponentials (Theorem 7.6.14 in [3]), it
follows that KerC∞(R) is not stabilizable with respect to C.

Conversely suppose that V(Ik(R)) intersects the tube over C<. Let ξ be some
point in this intersection. Then the element w = (c1e

〈x,ξ〉, . . . , cke〈x,ξ〉), c1, . . . , ck
arbitrary, is in the behavior of the submodule R1 of Ak generated by the rows of

R1(∂) =



∂1 − ξ1 0 . . . 0
∂2 − ξ2 0 . . . 0

. . . . . .
∂n − ξn 0 . . . 0

0 ∂1 − ξ1 . . . 0
. . . . . .
0 ∂n − ξn . . . 0
. . . . . .
. . . . . .
0 0 . . . ∂1 − ξ1
. . . . . .
0 0 . . . ∂n − ξn



.
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In fact every exponential solution of this behavior is of the above form. However,
as observed earlier, there is a choice of the c1, . . . , ck such that the corresponding
exponential element w, as above, is also in KerC∞(R). Indeed, these are the only kind
of exponential elements that are in KerC∞(R) ∩ KerC∞(R1). As such exponentials
tend to 0 uniformly along every half line in C, it follows, once again by Theorem
7.6.14 in [3], that KerC∞(R) is stabilizable with respect to C, and that KerC∞(R1) is
a stabilizing controller.

Recollect from [1] the definitions of an ideal in a lattice and that of a meet
homomorphism. An ideal in a lattice is a subset such that (i) the l.u.b. of any two
elements of the subset is in it, and (ii) the g.l.b. of an element in the subset and
any element in the lattice is also in the subset. A meet homomorphism between
two lattices is an order preserving map such that the image of the g.l.b. of any two
elements equals the g.l.b. of the images of the two elements.

Theorem 4.3. The set of C∞-behaviors, stable with respect to a cone C, is
an ideal in the lattice of all behaviors. Given a stabilizable behavior, the set of its
stabilizing controllers is the inverse image of this ideal under a meet homomorphism.

Proof. Let KerC∞(R1) and KerC∞(R2) be two behaviors stable with respect to C.
Then by Theorem 3.2, the l.u.b. of these two behaviors is their sum, which is clearly
also stable with respect to C. Moreover, if KerC∞(R) is any behavior, the g.l.b. of
this behavior and a stable behavior, being a sub-behavior of both, is also stable. This
shows that this set of behaviors, stable with respect to C, is an ideal, say J of B(C∞).

Let B0 be a stabilizable behavior. Consider the following map from the lattice of
C∞-behaviors to itself:

φ : B(C∞) −→ B(C∞),
B �→ B ∩ B0.

This map is clearly order preserving. As φ(B1∩B2) = (B1∩B2)∩B0 = φ(B1)∩φ(B2),
it is a meet homomorphism. The set of behaviors that stabilize B0 are those that are
mapped by φ into the ideal J of stable behaviors, i.e., φ−1(J ).

I conclude with a curious geometric consequence of the above results.
Corollary 4.1. Let R1 and R2 be two submodules of Ak such that both the

determinantal ideals Ik(R1) and Ik(R2) contain elements without multiple factors.
Suppose also that both the varieties V(Ik(R1)) and V(Ik(R2)) are contained in the
tube over C<. Then the variety V(Ik(R1 ∩ R2)) is also contained in the tube over
C<.

Proof. Let C ′ be any cone contained in the interior of C, so that C< is contained
in the interior of C ′

<. By Theorem 4.1, the C∞-behaviors of R1 and R2 are both
stable with respect to C ′. Thus by the above, the sum of these behaviors, which is
the behavior of R1 ∩ R2, is also stable with respect to C ′. Theorem 4.1 now implies
that V(Ik(R1 ∩R2)) is contained in the tube over C ′

<. As the intersection of all such
C ′
< is the cone C<, the corollary follows.
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Abstract. We study the internal and boundary stabilizability of a system of wave equations
by one control force. We prove that the “classical” internal damping applied to only one of the
equations never gives exponential stability if the wave speeds are different and, if the wave speeds
are the same, we give explicit necessary and sufficient conditions for the stability to occur. We also
study the simultaneous boundary stabilization of the same system.

Key words. stabilization, semigroups, essential spectrum

AMS subject classifications. 93C20, 93D99, 37L15
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1. Introduction. The starting point of this work was the study of the stabiliz-
ability of two coupled abstract second order equations in Hilbert spaces using only
one control force. More precisely, let us consider the system{

u′′(t) = −Au(t) +Bv′(t) in H,
v′′(t) = −B∗u′(t)− Cv(t)−Dv′(t) in G,

where H and G are Hilbert spaces. The question then is to characterize the widest
classes of operators A, B,C, and D for which the uniform stability of the semigroup
associated with this system (once the conditions for its existence are ensured) holds.
A general answer seems to be difficult but some results are given, with rather re-
strictive assumptions, by Afilal and Khodja [1] (see also [3], [5], and [7] for abstract
thermoelastic systems which correspond to this system by neglecting v′′). In this last
paper, it was pointed out that there was a “gap” between the cases A = C and A �= C
in that it is easier to find a stabilizing operator D in the first case (A = C) than in
the second (A �= C); see [1] for more details.

In this paper, keeping in mind the abstract approach we have just described, we
will confine ourselves to the study of one-dimensional hyperbolic systems which are
close to the Timoshenko beam equations (see, for instance, [11]).

The first problem we consider is the following.

utt = uxx + b(x)vt + f in (0,∞)× (0, 1),

vtt = η2vxx − b(x)ut + g in (0,∞)× (0, 1),

u(t, 0) = v(t, 0) = u(t, 1) = v(t, 1) = 0, t ∈ (0,∞),

u(0, x) = u0(x), ut(0, x) = u1(x), v(0, x) = v0(x), vt(0, x) = v1(x),

(1.1)
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where η ∈ R, b ∈ C([0, 1]) and f and g are two control forces. Our aim here is to
study the exponential stability of (1.1) whenever we choose

f ≡ 0, g = −a(x)vt,(1.2)

where a ∈ C([0, 1]). Our system then writes

utt = uxx + b(x)vt in (0,∞)× (0, 1),

vtt = η2vxx − b(x)ut − a(x)vt in (0,∞)× (0, 1),

u(t, 0) = v(t, 0) = u(t, 1) = v(t, 1) = 0, t ∈ (0,∞),

u(0, x) = u0(x), ut(0, x) = u1(x), v(0, x) = v0(x), vt(0, x) = v1(x).

(1.3)

The natural energy associated with (1.3) is

E(t) =

∫ 1

0

(| ut |2 + | ux |2 + | vt |2 +η2 | vx |2
)
dx.(1.4)

Let us recall that (1.3) is exponentially stable if there exist ω > 0 and M > 0 such
that

E(t) ≤Me−ωtE(0) ∀t > 0(1.5)

holds for any initial data (u0, u1, v0, v1) with finite energy. It is said to be strongly
stable if for any initial data (u0, u1, v0, v1) with finite energy

lim
t→∞E(t) = 0.(1.6)

Our result is then the following.
Theorem 1.1. Assume that a, b ∈ C([0, 1]).
(i) If η �= 1, then (1.5) does not hold.
(ii) If η = 1, assume moreover that a and b have disjoint supports. Then (1.5)

holds if and only if (1.3) is strongly stable and

a :=

∫ 1

0

a(x)dx > 0, b :=

∫ 1

0

b(x)dx /∈ πZ.(1.7)

Remark 1.2. We will see that under the condition (1.7), the exponential stability
holds up in an invariant subspace of the energy space of finite codimension.

If a and b have disjoint supports, we are not able to prove strong stability even
in the dissipative case (a ≥ 0 on (0, 1)). If a and b have the same support, the
strong stability follows from Kapitonov’s result [6] in the dissipative case (see the
next remark).

Remark 1.3. The technique we use allows us to deal with systems with more than
two wave equations. This is what is done by Kapitonov [6] in higher dimensions. His
assumptions amount to taking a, b with the same support assuming that a > 0 on its
support, and using the multiplier technique, he proves the exponential stability under
additional geometrical assumptions (which are easily verified in the one-dimensional
case).
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With a slight modification of Kapitonov’s proof, it is possible, in the one-dimensional
case, to prove the exponential stability by assuming only that the supports of a and
b contain a common interval.

N. Burq (lecture given at an international conference on control theory, Nancy,
France, March 1999), has generalized our result to higher dimension using the mi-
crolocal defect measures of P. Gérard and L. Tartar.

The second problem we deal with is

utt = uxx + b(x)vt in (0,∞)× (0, 1),

vtt = η2vxx − b(x)ut in (0,∞)× (0, 1),

u(t, 0) = v(t, 0) = 0,

u(t, 1) = f(t), η2vx(t, 1) = g(t), t ∈ (0,∞),

u(0, x) = u0(x), ut(0, x) = u1(x), v(0, x) = v0(x), vt(0, x) = v1(x).

Following Lions [8], we would like to stabilize simultaneously this system by two
boundary control forces which are related by the relation

f ′ = g on (0,∞).
A natural choice of the force g which makes our system dissipative (i.e., E′(t) ≤ 0 for
t > 0) is

g(t) = −α (ux(t, 1) + vt(t, 1)) , α > 0.

We then get the system

utt = uxx + b(x)vt in (0,∞)× (0, 1),

vtt = η2vxx − b(x)ut in (0,∞)× (0, 1),

u(t, 0) = v(t, 0) = 0,

η2vx(t, 1) = ut(t, 1) = −α (ux(t, 1) + vt(t, 1)) , t ∈ (0,∞),

u(0, x) = u0(x), ut(0, x) = u1(x), v(0, x) = v0(x), vt(0, x) = v1(x).

(1.8)

The energy associated with this system is again given by (1.4). Our result for system
(1.8) is the following.

Theorem 1.4. Assume that b ∈ C([0, 1]) and α > 0. Then
(i) if η �= 1, (1.5) holds if and only if (1.8) is strongly stable and

η =
2p+ 1

q
for some (p, q) ∈ Z× Z

∗;

(ii) if η = 1, (1.5) holds if and only if (1.8) is strongly stable and

b :=

∫ 1

0

b(x)dx �= (2k + 1)π
2

for any k ∈ Z.
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A related work which deals with simultaneous controllability of a system of one-
dimensional wave equations can be found in Avodin and Tucsnak [4].

Remark 1.5. As for the previous system, we will show that exponential stability
holds up in an invariant subspace of the energy space of finite codimension.

If b ≡ 0, it is easy to verify that strong stability holds. However, if b �= 0, it seems
to be difficult to find conditions on b which imply the strong stability.

The paper is organized as follows. In the second section, we begin by stating
and proving a lemma extending a result of Neves, Ribeiro, and Lopes [9]. We prove
Theorems 1.1 and 1.4 in the third section.

Some of the results of this paper were already announced in [2].

2. A lemma. We consider a one-dimensional hyperbolic system written in the
form 

∂

∂t

(
u
v

)
= −M(x) ∂

∂x

(
u
v

)
−N(x)

(
u
v

)
on [0, T ]× ]0, l[ ,

d

dt
[v(t, l)−Du(t, l)] = Fu(t, l) +Gv(t, l),

u(t, 0) = Ev(t, 0),

(2.1)

where
(i) N(x) is an n × n matrix whose entries nij are continuous complex valued

functions of x in [0, l ] ,
(ii) M(x) is a diagonal matrix satisfying

M(x) = diag ([Mii(x)]
r
i=1, [Mjj(x)]

q
j=r+1),

where Mii (resp., Mjj) are diagonal matrices such that

Mii(t, x) = λi(x)Imi , i = 1, . . . , r,

Mjj(t, x) = µj(x)Imj , j = r + 1, . . . , q,

and where Imi is the identity matrix of size mi and

r∑
i=1

mi = p;

q∑
j=r+1

mj = n− p.

We suppose also that the entries of M(x) are real valued C1 functions in x with

λi(x) > 0 and µj(x) < 0 ∀ i, j and ∀x ∈ [0, l ] ,
(iii) u(t, x) = (ui(t, x))

p
i=1 and v(t, x) = (vi(t, x))

n
j=p+1,

(iv) D,E, F , and G are matrices of appropriate sizes.
With system (2.1), we consider the reduced system

∂

∂t

(
u
v

)
= −M(x) ∂

∂x

(
u
v

)
−N0(x)

(
u
v

)
on (0, T )× ]0, l[ ,

u(t, 0) = Ev(t, 0) , v(t, l) = Du(t, l),

(2.2)

where
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(v) N0(x) = diag(N11(x), N22(x), . . . , Nqq(x)) is a diagonal matrix per block whose
elements Nηη(x) (1 ≤ η ≤ q) are mη ×mη matrices (mη is the algebraic multiplicity
of the eigenvalue λη(x) (or µη(x))) and each matrix Nηη(x) is a block of the matrix
N(x) such that

Nηη(x) = (nk, l)Sη−1≤k,l≤Sη with S0 = 1, and Sη =

η∑
d=1

md.

To illustrate this last assumption, if, for example, M = diag(1, 1, 2,−3,−3) and N =
(nij)1≤i,j≤5, then the corresponding reduced matrix N0 is given by

N0 =


n11 n12 0 0 0
n21 n22 0 0 0
0 0 n33 0 0
0 0 0 n44 n45

0 0 0 n54 n55

 .

In this study we prove that the two systems (2.1) and (2.2) have the same essential
spectral radius.

Before giving the main result of this section, we need to recall some definitions
and properties that may be found in Van Neerven [12, pp. 106–111].

Definition 2.1. (i) If L is a linear bounded operator in a Banach space, the
essential spectral radius of L is

ress(L) : = inf {r > 0 : λ ∈ σ(L), |λ| ≥ r; implies

λ is an isolated eigenvalue of finite multiplicity} ,
where σ(L) is the spectrum of L.

(ii) The type (or growth bound) ω(T ) of a C0-semigroup (T (t)) generated by A is

ω(T ) := inf
{
ω ∈ R, ∃Mω > 0, ‖T (t)‖ ≤Mωe

ωt ∀ t ≥ 0} .
A well-known result is that there exists a real number ωess(T ) (the essential type

of T (t)) such that

ωess(T ) :=
ln [ress(T (t))]

t
, t > 0.

The property below will play a significant role in our study:

ress(L+K) = ress(L) for any compact operator K.(2.3)

We recall also (see [12, pp. 106–111]) that the type ω(T ) of a semigroup (T (t)) is
given by

ω(T ) = max [s(A) ; ωess(T )] ,

where s(A) is the spectral abscissa of A:

s(A) := sup {Reλ;λ ∈ σ(A)} .
Returning to our problem, let us introduce the new variable:

z(t) = v(t, l)−Du(t, l)
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and define, on the energy space H =
[
L2([0, l])

]n × C
n−p, the following operators:

A1

 u
v
z

 =

([
−M(x) ∂

∂x
−N(x)

](
u
v

)
, Fu(t, l) +Gv(t, l)

)
(2.4)

and

A4

(
u
v

)
=

[
−M(x) ∂

∂x
−N0(x)

](
u
v

)
(2.5)

whose domains are, respectively,

D(A1) =
{
(u, v, z) ∈ H ; (u, v) ∈ [

W 1,2(0, l)
]n
;

u(0) = E v(0), z = v(l)−Du(l)}(2.6)

and

D(A4) =
{
(u, v) ∈ H ; (u, v) ∈ [

W 1,2(0, l)
]n
;

u(0) = E v(0), v(l) = Du(l)} .(2.7)

Equations (2.1) and (2.2) can be viewed as abstract systems

Yt = A1Y in H,

Zt = A4Z in H̃,

where H̃ := {(u, v, z) ∈ H; z ≡ 0} and

A1 =

(
−M ∂

∂x
−N 0

0 R

)
, A4 := −M ∂

∂x
−N0

with R : Cn−p −→ C and Rz(t) = Fu(t, l) +Gv(t, l).
As in [9], under the assumptions (i)–(v), A1 (resp., A4) defined by (2.4) and (2.6)

(resp., by (2.5) and (2.7)) generates a C0-semigroup T1(t) on H (resp., (T4(t) on H̃).
Our main ingredient is the following.
Lemma 2.2. Suppose that the assumptions (i)–(v) hold; then the difference of the

two semigroups T1(t) and T4(t) is a compact operator. In particular,

ress(T1(t)) = ress(T4(t)).

Consequently,

ωess(T1) = ωess(T4).

Remark 2.3. This lemma has been proved by Neves, Ribeiro, and Lopes [9] in
the case where the eigenvalues λi(x) and µj(x) of the diagonal matrix M(x) are all
distinct (i.e., mi = 1 for i = 1, . . . , q). In this case, these authors showed also that
ωess(T4) = s(A4).

For the proof of Lemma 2.2, we use the same techniques as Neves, Ribeiro, and
Lopes [9]. Note that the proof we propose for Lemma 2.2 works in the nonautonomous
case as well.

Proof of Lemma 2.2. To simplify, we will prove Lemma 2.2 in the following
situation:
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• M(x) = diag(λ(x), λ(x), µ(x)); with λ(x) > 0 and µ(x) < 0 for any
x in[0, l] .
• N(x) = (nij(x))1≤i,j≤3.

• D =

(
d1 0
0 d2

)
, F =

(
f1 0
0 f2

)
, G = g, and E =

(
e1
e2

)
, where

d1, d2, f1, f2, g, e1, and e2 are real or complex constants.
We introduce two intermediate reduced systems:

∂

∂t

 u
v
w

 = −M(x) ∂
∂x

 u
v
w

−N0(x)

 u
v
w

 on ]0, l[,

d

dt
[w(t, l)− d1u(t, l)− d2v(t, l)] = f1u(t, l) + f2v(t, l) + gw(t, l),

u(t, 0) = e1w(t, 0), v(t, 0) = e2w(t, 0),

(2.8)



∂

∂t

 u
v
w

 = −M(x) ∂
∂x

 u
v
w

−N0(x)

 u
v
w

 on ]0, l[,

d

dt
[w(t, l)− d1u(t, l)− d2v(t, l)] = 0,

u(t, 0) = e1w(t, 0), v(t, 0) = e2w(t, 0).

(2.9)

Denote by A2 (resp., A3) the associated operator of system (2.8) (resp., (2.9)). These
two operators are defined on the same energy space and have the same domain as A1.
A2 and A3 generate, respectively, two C0-semigroups which we will denote by T2(t)
and T3(t).

We introduce the space H̄ := {(u, v, w, z) ∈ H ; z = 0} and we define the orthog-
onal projection P of H on H̄:

P : H −→ H̄,
(u, v, w, z) �−→ (u, v, w, 0).

We can identify T4(t) with T4(t)P which is an operator on H. It is enough to show
that : (T1(t)− T4(t)P ) is compact.

We write

T1(t)− T4(t)P = (T1(t)− T2(t)) + (T2(t)− T3(t)) + (T3(t)− T4(t)P ) .

We will show that each term of the right-hand side member is a compact operator.
Step 1. (T2(t)− T3(t)) is a compact operator.
To compute explicitly the semigroups T2(t) and T3(t), we follow [9] using the

characteristics method. Taking the initial data Y0 = ((u0, v0), w0, z0) in H, we put
U = (u, v) and (u0, v0) = U0. Denote by z(t) = w(t, l) − d1u(t, l) − d2v(t, l) the new
variable and by [(u, v), w, z] the unique solution of system (2.2) with initial data Y0.

Given a fixed point (t, x) in (0, T )×]0, l[, let ϕ(., t, x) (resp., ψ(., t, x)) be the
unique solution of {

dx

ds
= λ(x(s)),

x(t) = x,
resp.,

{
dx

ds
= µ(x(s)),

x(t) = x.
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We define the maps

τi : [0, T ]× [0, l] −→ R,
(t, x) −→ τi(t, x) i = 1, 2,

such that ϕ(τ1(t, x), t, x) = 0 and ψ(τ2(t, x), t, x) = l.

Denote by R(t, y, x) the fundamental matrix associated with

d

dt
Y (t) = N11

0 (x(t))Y (t),

where

N11
0 (x) =

(
n11(x) n12(x)
n21(x) n22(x)

)
and N0(x) =

(
N11

0 (x) 0
0 n33(x)

)
.

Using the corresponding boundary conditions, the solution (U,w, z) is given by the
following:

• If 0 ≤ x ≤ ϕ(t, 0, 0), then

U(t, x) = exp

[
−

∫ τ1(t,x)

0

n33(ψ(s, τ1(t, x), 0))ds

]
R(t, τ1(t, x), x)

×
(

e1
e2

)
w0(ψ(0, τ1(t, x), 0)).

• If ϕ(t, 0, 0) ≤ x ≤ l, then

U(t, x) = R(t, 0, x)× U0(ϕ(0, t, x)).

• If 0 ≤ x ≤ ψ(t, 0, l), then

w(t, x) = exp

[
−

∫ t

0

n33(ψ(s, t, x))ds

]
w0(ψ(0, t, x)).

• If ψ(t, 0, l) ≤ x ≤ l, then

w(t, x) = exp

(
−

∫ t

τ2(t,x)

n33(ψ(s, t, x))ds

)
× [z(τ2(t, x)) + [d1, d2]R(τ2(t, x), 0, l)U0(ϕ(0, τ2(t, x), l))] .

• For any t in the interval J = [0, T ], we have

z(t) =

∫ t

0

egt−s(gd1 + f1)u(t, l) + (gd2 + f2)v(t, l)ds+ etgz0

=

∫ t

0

egt−s(GD + F )U(s, l)ds+ etgz0.

Consequently, T3(t)Y0 is obtained by cancelling the constants f1, f2, and g.
Thus

(T2(t)− T3(t)) ((u0, v0), w0, z0) = (0, w̄(t, x), z̄(t)) ,

where w̄ and z̄ are given by the following:
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• If 0 ≤ x ≤ ψ(t, 0, l), then

w̄(t, x) = 0.

• If ψ(t, 0, l) ≤ x ≤ l, then

w̄(t, x) = exp

(
−

∫ t

τ2(t,x)

n33(ψ(s, t, x))ds

)
z̄(τ2(t, x)).

• And for all t ∈ J, we have

z̄(t) =

∫ t

0

etg−s(GD + F )R(s, 0, l)U0(ϕ(0, s, l))ds+ (e
tg − 1)z0.

To prove the compactness of the difference T2(t)− T3(t), it is sufficient to show that
each component of (0, w, z) = (T2(t)− T3(t))Y0 is a compact operator. Remark that
the first component is null and that the operator defined by z0 −→ (egt − 1)z0 is
compact for any t ∈ J = [0, T ]. In addition, in view of Lemma 4 in [9], the operator

U0 −→
∫ t

0

etg−s [GD + F ]R(s, 0, l)︸ ︷︷ ︸
L(t,s)

U0(ϕ(0, s, l))ds

=

∫ t

0

L(t, s)U0(ϕ(0, s, l))ds

is compact since L = (Lij)1≤i,j≤2 is such that the Lij (1 ≤ i, j ≤ 2) are continuous
functions of their arguments and

U0(ϕ(0, s, l)) =

 u0(ϕ(0, s, l))

v0(ϕ(0, s, l))



since :
d

ds
(ϕ(0, s, l)) = −∂ϕ

∂x
(0, s, l)λ(l) �= 0.

Consequently, T2(t)− T3(t) is a compact operator for all t in the compact interval J.
Step 2. (T1(t)− T2(t)) is a compact operator.
For this we write, for a given initial data Y0 = ((u0, v0), w0, z0), the differential

equation corresponding with system (2.1) in the form

∂

∂t
Y (t) = A1Y (t) = A2Y (t) +BY (t),

where

B =

(
N −N0 0
0 0

)
.

Then we have

Y (t) = T1(t)Y0 = T2(t)Y0 +

∫ t

0

T2(t− s)BY (s)ds.
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Consequently,

(T1(t)− T2(t))Y0 =

∫ t

0

T2(t− s)BT1(s)Y0ds

=

∫ t

0

T2(t− s)BT2(s)Y0ds+

∫ t

0

T2(t− s)B(T1(s)− T2(s))Y0ds.

Lemma 2.4 (see [9, Lemma 3]). Suppose that
∫ t

0
T2(t−s)BT2(s)ds is a compact

operator for all t ∈ J ; then (T1(t) − T2(t)) is a compact operator for all t in J . In
fact, {(T1(t)− T2(t))Y ; ‖Y ‖H ≤ 1, t ∈ J} is precompact.

To show that {(T1(t)− T2(t))Y ; ‖Y ‖H ≤ 1, t ∈ J} is precompact, it is enough,
according to Lemma 2.4, to prove that

∫ t

0
T2(t − s)BT2(s)ds is a compact operator.

However, we know that

T2(t− s)BT2(s) = T3(t− s)BT3(s) + [T2(t− s)− T3(t− s)]BT3(s)

+T2(t− s)B [T2(s)− T3(s)]

As T2(t)− T3(t) is a compact operator,
∫ t

0
T2(t− s)BT2(s)ds is compact if

∫ t

0
T3(t−

s)BT3(s)ds is. For this, we are going to use Lemma 4 of [9]. Let Y0 = ((u0, v0), w0, z0) =

(U0, w0, z0) be in H. We wish to prove that each integral component of
∫ t

0
T3(t −

s)BT3(s)Y0ds defines a compact operator. Note that the third component z̄ defines
an operator of finite dimensional range; thus it is compact. We can write∫ t

0

T3(t− s)BT3(s)Y0ds =

∫ t

0

 Ū(t, s, x)
w̄(t, s, x)
z̄(t, s, x)

 ds.

We deduce that Ū(t, s) is the first component of Ȳ (t, s) which is the unique solution
of the following Cauchy problem:

d

dt
Y (t) = A3Y (t),

Y (s) = Ỹ (s).

For 0 ≤ x ≤ ϕ(t, 0, 0).
We have ∫ t

0

Ū(t, s, x)ds =

∫ τ1(t,x)

0

Ū(t, s, x)ds+

∫ t

τ1(t,x)

Ū(t, s, x)ds

In the same way as [9], we find∫ τ1(t,x)

0

Ū(t, s, x)ds =

∫ s1

0

ξ1(t, s, x) U0(ϕ(0, s, xψ))ds+

∫ τ1(t,x)

s1[
ξ2(t, s, x)

(
e1
e2

)
w0(ψ(0, τ1(s, xψ), 0))ds

]
.

And ∫ t

τ1(t,x)

Ū(t, s, x)ds =

∫ s2

τ1(t,x)

ξ3(t, s, x)

(
n13

n23

)
w0(ψ(0, s, xϕ))ds

+

∫ t

s2

ξ4(t, s, x)U0(ϕ(0, τ2(s, xϕ), l))ds,
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where s1 and s2 are the two reals satisfying
ϕ(s1, 0, 0) = ψ(s1, τ1(t, x), 0) := xψ,

ψ(s2, 0, l) = ϕ(s2, t, x) := xϕ

and (ξi)
4
i=1 are continuous functions of their arguments.

For ϕ(t, 0, 0) ≤ x ≤ l.
It is easy to see that it is a particular case of that previously treated (0 ≤ x ≤

ϕ(t, 0, 0)).
To conclude, we have

dϕ

ds
(0, s, xψ) =

∂ϕ

∂s
(0, s, xψ) +

∂ϕ

∂x
(0, s, xψ)

∂xψ
∂s

=
∂ϕ

∂x
(0, s, xψ) [µ(xψ)− λ(xψ)] .

However, µ(xψ) < 0 and λ(xψ) > 0, thus

dϕ

ds
(0, s, xψ) �= 0.

In addition we have

dψ

ds
(0, τ1(s, xψ), 0) =

∂ψ

∂τ1
(0, τ1(s, xψ), 0)×

[
∂τ1
∂s
(s, xψ) +

∂τ1
∂s
(s, xψ)

∂xψ
∂s

]
.

However,

∂ψ

∂τ1
(0, τ1(s, xψ), 0) = −∂ψ

∂x
(0, τ1(s, xψ), 0)µ(0) and

∂xψ
∂s

= µ(xψ).

Finally,

dψ

ds
(0, τ1(s, xψ), 0) = − µ(0)

λ(xψ)

∂ψ

∂x
(0, τ1(s, xψ), 0)× ∂ϕ

∂x
(τ1(s, xψ), s, xψ)

× [λ(xψ)− µ(xψ)] .

In particular,

dψ

ds
(0, τ1(s, xψ), 0) �= 0.

In the same way, we get

dψ

ds
(0, s, xϕ) �= 0 and

dϕ

ds
(0, τ2(s, xϕ), l) �= 0.

We can, according to Lemma 4 of [9], conclude that
∫ t

0
Ū(t, s, x)ds defines a compact

operator.
The second integral component

∫ t

0
w̄(t, s, x)ds can be treated by similar tech-

niques. Hence
∫ t

0
T2(t − s)BT2(s)ds is compact for any t ∈ J . Thus, from Lemma

2.4, we deduce that (T1(t) − T2(t)) is a compact operator for any t ∈ J and that
{(T1(t)− T2(t))Y, ‖Y ‖H ≤ 1, t ∈ J} is precompact.
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Finally, (T3(t)− T4(t)P ) is compact. Indeed, we have

T4(t)P = T3(t)P since A3 = (A4, 0).

Then (T3(t)− T4(t)P ) = T3(t)(I −P ) is an operator of finite dimensional range, thus
it is compact. Moreover, {(T3(t)− T4(t)P )Y, ‖Y ‖H ≤ 1, t ∈ J} is precompact.

Hence, Lemma 2.2 is proved.
Remark 2.5. Lemma 2.2 holds also in the case where the matricesM, N, D, E, F,

and G are dependent on the time.

3. Proofs. To prove our two theorems, we introduce the following new variables:
p = ut − ux; q = ut + ux,

r = vt − ηvx; s = vt + ηvx.
(3.1)

Our system becomes

∂

∂t

(
U
V

)
+M

∂

∂x

(
U
V

)
+N(x)

(
U
V

)
= 0,(3.2)

where

U =

(
p
r

)
;V =

(
q
s

)
and M = diag(1, η;−1,−η) with

N(x) =
1

2


0 −b(x) 0 −b(x)

b(x) a(x) b(x) a(x)
0 −b(x) 0 −b(x)

b(x) a(x) b(x) a(x)

 .(3.3)

Now the boundary conditions in (1.3) transform into

U(t, 0) = −V (t, 0), U(t, 1) = −V (t, 1), t > 0,(3.4)

and the boundary conditions in (1.8) into

U(t, 0) = −V (t, 0),
(
1 η
α η − α

)
U(t, 1) =

( −1 η
α η − α

)
V (t, 1),(3.5)

and (3.2) will represent system (1.8) if we set a ≡ 0 in (3.3). The equivalence of the
transformed systems with our initial systems clearly holds.

In view of the proof of Lemma 2.2, we will set

A1 = −M ∂

∂x
−N(x)

with, for the proof of Theorem 1.1, the associated boundary conditions

U(0) = −V (0), U(1) = −V (1)(3.6)
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and, for the proof of Theorem 1.4, the associated boundary conditions

U(0) = −V (0),
(
1 η
α η − α

)
U(1) =

( −1 η
α η − α

)
V (1).(3.7)

(Note that in this system, a ≡ 0.)
Proof of Theorem 1.1. Assume first that η �= 1. According to Lemma 2.2 (see

also [9]), the semigroup associated with (3.2), (3.4) has the same essential type as the
semigroup associated with the system

∂

∂t

(
U
V

)
+M

∂

∂x

(
U
V

)
+ Ñ(x)

(
U
V

)
= 0,

U(t, 0) = −V (t, 0), U(t, 1) = −V (t, 1), t > 0,

(3.8)

with Ñ(x) = diag (0, a(x), 0, a(x)). We set

A4 = −M ∂

∂x
− Ñ(x)

with the associated boundary conditions (3.6). It is sufficient (see Remark 2.3) to
prove that the spectral abscissa s(A4) is 0. So, let us consider the system

(λ−A4)

(
U
V

)
= 0,

U(0) = −V (0), U(1) = −V (1).
Computing the solutions of this last system, it is easy to prove that λ is an eigenvalue
if and only if it satisfies (

e2λ − 1) (e 2
η (λ+a) − 1

)
= 0.

Thus, the eigenvalues are

λ = ikπ, k ∈ Z
∗,

λ = −a+ ikηπ, k ∈ Z,

where a =
∫ 1

0
a(x)dx. This proves that s(A4) = 0 and concludes the proof of (i).

Let us now consider the case η = 1. We set for simplicity {x, a(x) �= 0} = [α, β]
and {x, b(x) �= 0} = [δ, γ] with β < δ and (α, β, δ, γ) ∈ ([0, 1])4.

According to Lemma 2.2, let A4 = −M ∂
∂x − N0(x) be the reduced operator

associated with A1, where

N0(x) =
1

2


0 −b(x) 0 0

b(x) a(x) 0 0
0 0 0 −b(x)
0 0 b(x) a(x)

 .(3.9)

We denote by T4(t) the C0-semigroup generated by A4.
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Lemma 2.2 implies that

ωess(T1) = ωess(T4).

Now we compute s(A4). Given Y = (U, V ) ∈ D(A4),

(λI −A4)

(
U
V

)
= 0

or 
dU

dx
(x) = −(λI +N11(x))U(x),

dV

dx
(x) = (λI +N11(x))V (x),

where

N11(x) =
1

2

(
0 −b(x

b(x) a(x)

)
.

Solving the differential system above and taking into account the boundary con-
ditions leads to

P (λ)V (0) :=

 (e−λ − eλ) cos b̄2 (e−λ− ā
2 + eλ+ ā

2 ) sin b̄
2

−(e−λ + eλ) sin b̄
2 (e−λ− ā

2 + eλ+ ā
2 ) cos b̄2

V (0) = 0.

Consequently, it is clear that

λ ∈ σ(A4)⇔ detP (λ) = 0,

⇔ e4λ − (e−ā + 1) cos
(
b̄
)
e2λ + e−ā = 0.

Let δ = (e−ā + 1)2 cos2
(
b̄
)− 4e−ā. Thus, if we put

x1 =
1
2 (e

−ā + 1) cos
(
b̄
)
+

√
δ

2
,

x2 =
1
2 (e

−ā + 1) cos
(
b̄
)− √δ

2
,

then we have

s(A4)=



1
2 lnx1 if cos

(
b̄
) ≥ 0,

1
2 ln(−x2) if cos

(
b̄
) ≤ 0

 if δ ≥ 0,

− 1
4 ā = − 1

4

∫ 1

0
a(t)dt if δ < 0.

Remark that if ā ≤ 0, then s(A4) ≥ 0 and we deduce the following.
If ā > 0, then s(A4) ≤ 0 and s(A4) = 0 if and only if cos

(
b̄
)
= ±1, that is, if

and only if b̄ ∈ πZ.
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A simple computation shows that the eigenvalues of A4 are distributed on at most
two vertical axes.

We conclude with the help of the following result.
Lemma 3.1 (Renardy [10, Theorem 1, p. 1300]). Let H be a Hilbert space and

let L = L0 + B be the infinitesimal generator of a C0-semigroup of operators in H.
Assume that L0 is normal and B is bounded. Assume that there exists a number
M > 0 and an integer n such that the following hold:

(a) If λ ∈ σ(L0) and | λ |> M − 1, then λ is an isolated eigenvalue of finite
multiplicity.

(b) If | z |> M , then the number of eigenvalues of L0 in the unit disk centered at
z (counted by multiplicity) does not exceed n.

Then ωess(e
Lt) ≤ s(L).

We apply this lemma with L = A4 (defined by (2.5) and (2.7)), L0 = −M ∂
∂x with

D(L0) = D(A4) and B = N0. Since M is a constant matrix, it is easy to see that L0

is normal. Its eigenvalues are λk = ikπ, k ∈ Z, and their (algebraic and geometric)
multiplicities are equal to 2. We can then take n = 2 and since | λk+1 − λk |= π,
assertion (b) in Lemma 3.1 is satisfied. Thus, ωess(T4) ≤ s(A4) < 0. Note that,
according to the definition of the essential spectral radius and the previous inequality,
one deduces that s(A4) = ωess(T4).

Proof of Theorem 1.4. (i) Assume first that η = 2p+1
q for some (p, q) ∈ Z × Z

∗

with η �= 1.
As in the previous proof, computing the essential type amounts to computing the

eigenvalues λ of the reduced system, namely,

λ

(
U
V

)
+M

∂

∂x

(
U
V

)
= 0

with the boundary conditions

U(0) = −V (0),
(
1 η
α η − α

)
U(1) =

( −1 η
α η − α

)
V (1).

It is then easy to see that λ is an eigenvalue if and only if it satisfies the equation

α sinhλ sinh
λ

η
+ η sinhλ cosh

λ

η
+ αη coshλ cosh

λ

η
= 0.(3.10)

To prove the assertion of the theorem, we proceed by contradiction. Assume that
there exists a sequence (λn) of eigenvalues such that

lim
n→∞Reλn = 0.(3.11)

Let us set λn = xn + iyn. Using the relations

sinh(a+ ib) = sinh a cos b+ i cosh a sin b,

cosh(a+ ib) = cosh a cos b+ i sinh a sin b,

(3.10), and (3.11), we get

−α sin yn sin yn
η
+ iη sin yn cos

yn
η
+ αη cos yn cos

yn
η
→

n→∞ 0.
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This last condition is equivalent to

sin yn cos
yn
η
→

n→∞ 0(3.12)

and

η cos yn cos
yn
η
− sin yn sin yn

η
→

n→∞ 0.(3.13)

From (3.12), it follows that either →
n→∞ 0 or cos ynη

→
n→∞ 0. If one of the alternatives

holds, (3.13) will imply the second one. We deduce that (3.12)–(3.13) are equivalent
to

sin yn →
n→∞ 0 and cos

yn
η
→

n→∞ 0.(3.14)

Now, if (yn) is bounded, there exists a subsequence that converges to y such that

sin y = 0 and cos
y

η
= 0.

But this is possible if and only if there exists (k, j) ∈ Z
2 such that η = 2k

2j+1 . This

contradicts our assumption on η. It follows that (yn) is unbounded and we may
assume that | yn | →

n→∞ ∞. In this case, (3.14) is equivalent to the existence of a
sequence (kn, jn)n ⊂ Z× Z such that

kn − η

(
jn +

1

2

)
→ 0 as n→∞

or equivalently

kn − ηjn → η

2
as n→∞.(3.15)

Let us consider the set

G =
{
k − ηj, (k, j) ∈ Z

2
}
.(3.16)

It is an additive subgroup of R. A well-known result of algebra asserts that either
there exists a real number a > 0 such that G = aZ or G = R.

The first alternative holds if and only if a ∈ Q since Z ⊂ G. On the other hand,
G is closed in R and (3.15) holds if and only if η

2 ∈ G. This means that there exists
j ∈ Z such that η = 2aj = 2p

q for some (p, q) ∈ Z×Z
∗. But this contradicts the form

of η.
The second alternative holds if and only if η ∈ R\Q. So the sufficiency part is

proved.
Assume now that η �= 2p+1

q for all (p, q) ∈ Z× Z
∗. Equation (3.10) rewrites

(α+ η + αη)e2λ(1+ 1
η ) − (α+ η − αη)e2

λ
η − (α− η − αη)e2λ + α− η + αη = 0.

We set

f(λ) = a0e
2λ(1+ 1

η ) − a1e
2λη − a2e

2λ + a3, λ ∈ C,

a0 = α+ η + αη, a1 = α+ η − αη,

a2 = α− η − αη, a3 = α− η + αη.
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We will apply Rouché’s theorem to f to prove that there exists a sequence of eigenval-
ues such that (3.11) holds true. According to the previous computations, there exists
a sequence (kn, jn) ∈ Z

2 such that

εn := (2kn − (2jn + 1)η) π
2
→

n→∞ 0.(3.17)

Let us set λn = iknπ. To achieve our goal, it suffices to prove that there exists a
sequence of positive numbers rn such that limn→∞rn = 0 and

|f(λ)− f ′(λn)(λ− λn)| < |f ′(λn)(λ− λn)| if |λ− λn| = rn.(3.18)

To estimate the left-hand term in the previous inequality, we have from Taylor’s
formula

|f(λ)− f ′(λn)(λ− λn)| ≤ |f(λn)|+
∑
p≥2

∣∣f (p)(λn)
∣∣

p!
|λ− λn|p .(3.19)

We first have, using (3.17) and noting that a0 − a1 = − a2 + a3 = 2αη

|f(λn)| =
∣∣∣(a0 − a1)e

2i εnη + a2 − a3

∣∣∣
= 2αη

∣∣∣e2i εnη − 1∣∣∣ ≤ 4α |εn| .(3.20)

Moreover, for p ≥ 1

f (p)(λn) = −2p
[(

a0

(
1 +

1

η

)p

− a1

ηp

)
e2i

εn
η π + a2

]
(3.21)

and for any p ≥ 2∣∣∣f (p)(λn)
∣∣∣ = 2p ∣∣∣∣(a0

(
1 +

1

η

)p

− a1

ηp

)
e2i

εn
η π + a2

∣∣∣∣
≤ 2p

(
|a0|

(
1 +

1

η

)p

+
|a1|
ηp

+ |a2|
)
.(3.22)

Thus (3.19), (3.20), and (3.22) imply

|f(λ)− f ′(λn)(λ− λn)| ≤ |a0|
(
e2rn(1+

1
η ) − 2rn

(
1 +

1

η

)
− 1

)
+ |a1|

(
e2

rn
η − 2rn

η
− 1

)
+ |a2|

(
e2rn − 2rn − 1

)
≤ 4

((
1 +

1

η

)2

|a0|+ |a1|
η2

+ |a2|
)
r2n forn ≥ n0.

On the other hand, it is easy to see, using the definition of the ai, that

|f ′(λn)(λ− λn)| = 2
[(

a1 − a0

η
− a0

)2

− 2a2

(
a1 − a0

η
− a0

)
cos

(
2
εn
η

)

+a2
2

]1/2

rn

≥ 2αrn.
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We then need, in order to satisfy (3.18), to find rn such that, for n sufficiently large

4α |εn|+ 4
((
1 +

1

η

)2

|a0|+ |a1|
η2

+ |a2|
)
r2n < 2αrn.

Choosing rn =
√|εn|, there will exist N ∈ N such that for all n ≥ N

|f(λ)− f ′(λn)(λ− λn)| < |f ′(λn)(λ− λn)| for | λ− λn| =
√
|εn| .

This ends the proof of the point (i) in Theorem 1.4.
(ii) Assume that η = 1.
As in the previous proof, computing the essential type amounts to computing the

eigenvalues λ of the reduced system, namely,

λ

(
U
V

)
+M

∂

∂x

(
U
V

)
+N0

(
U
V

)
= 0

with the boundary conditions

U(0) = −V (0),(
1 1
α 1− α

)
U(1) =

( −1 1
α 1− α

)
V (1).

Here

N0(x) =
1

2


0 −b(x) 0 0

b(x) 0 0 0
0 0 0 −b(x)
0 0 b(x) 0

 .

The eigenvalues satisfy the equation

e4λ +
4α

2α+ 1
sin(b)e2λ +

2α− 1
2α+ 1

= 0.

Let δ = 4α2

(1+2α)2
sin2(b)− 2α−1

2α+1 . Then we have the following.

• If δ < 0, then all solutions satisfy e2 Reλ =
∣∣e2λ∣∣ = 2α−1

2α+1 . It follows that

Reλ = 1
2 ln

2α−1
2α+1 < 0.

• If δ ≥ 0, then e2 Reλ = |e2λ| = | − 2α
2α+1 sin(b)±

√
δ|. Thus

Reλ =
1

2
ln

∣∣∣∣− 2α

2α+ 1
sin(b)±

√
δ

∣∣∣∣ ≤ 0.
Consequently,

s(A4) =



1
2 ln(− 2α

2α+1 sin(b) +
√
δ) if sin(b) ≤ 0

if δ ≥ 0,
1
2 ln(

2α
2α+1 sin(b) +

√
δ) if sin(b) ≥ 0

1
2 ln

2α−1
2α+1 if δ < 0.
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A simple computation shows that

s(A4) = 0 if and only if sin(b) = ±1.

We deduce that

s(A4) < 0 if and only if b �= (2k + 1)π
2
∀ k ∈ Z.

Next we use Lemma 3.1 and the definition of essential spectral radius; we get (in the
same way as in the proof of Theorem 1.1)

ωess(T1) = ωess(T4) = s(A4).

We conclude that the semigroup T1(t) is exponentially stable in an invariant subspace
of finite codimension.
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hyperboliques linéaires, C. R. Acad. Sci. Paris Sér. I Math., 329 (1999), pp. 957–960.

[3] F. Ammar Khodja, A. Bader, and A. Benabdallah, Dynamical stabilization of systems via
decoupling techniques, ESAIM Control Optim. Calc. Var., 4 (1999), pp. 577–594.

[4] S. Avodin and M. Tucsnak, Simultaneous Controllability in Sharp Time for Elastic Strings,
Department of Mathematics, University of Nancy-I, France, preprint.

[5] D. B. Henry, O. Lopes, and A. Perissinitto, On the essential spectrum of semigroup of
thermoelasticity, Nonlinear Anal., 21 (1993), pp. 65–75.

[6] B. Kapitonov, Uniform stabilization and exact controllability for a class of coupled hyperbolic
systems, Comput. Appl. Math., 15 (1996), pp. 199–212.

[7] Z. Liu and J. Yong, Qualitative properties of certain C0 semigroups arising in elastic systems
with various damping, Adv. Differential Equations, 3 (1998), pp. 643–686.
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VARIATIONAL INEQUALITY PROBLEMS WITH A CONTINUUM
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Abstract. In this paper three sufficient conditions are provided under each of which an upper
semicontinuous point-to-set mapping defined on an arbitrary polytope has a connected set of zero
points that connect two distinct faces of the polytope. Furthermore, we obtain an existence theorem
of a connected set of solutions to a nonlinear variational inequality problem over arbitrary polytopes.
These results follow in a constructive way by designing a new simplicial algorithm. The algorithm
operates on a triangulation of the polytope and generates a piecewise linear path of points connecting
two distinct faces of the polytope. Each point on the path is an approximate zero point. As the mesh
size of the triangulation goes to zero, the path converges to a connected set of zero points linking the
two distinct faces. As a consequence, our results generalize Browder’s fixed point theorem [Summa
Brasiliensis Mathematicae, 4 (1960), pp. 183–191] and an earlier result by the authors [Math. Oper.
Res., 21 (1996), pp. 675–696] on the n-dimensional unit cube. An application in economics and some
numerical examples are also discussed.

Key words. polytope, simplicial algorithm, continuum of zero points, system of nonlinear
equations, variational inequality, economic equilibrium model
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1. Introduction. Whenever a mathematical model of some phenomenon is con-
structed, for instance, in engineering or in economics, the first question to ask is
whether a solution to the model exists. A very powerful tool that is used to this end
is Brouwer’s fixed point theorem; see Brouwer [3]. When the model is not a system of
equations but a system of correspondences, Kakutani’s fixed point theorem [16] is in-
voked. An alternative to fixed point theorems consists of using intersection theorems
on polytopes, with the KKM theorem of Knaster, Kuratowski, and Mazurkiewicz [17]
perhaps the most prominent example. It is well known that there is a close relation-
ship between fixed point theorems and intersection theorems. Yet another alternative
consists of results that claim the existence of solutions to variational inequality prob-
lems, the existence of stationary points, or the existence of zero points.

For certain models, it is not only important to know that there exists at least
one solution, but one would like to show the existence of a continuum of solutions. In
economics the existence of a continuum of solutions leads to difficulties in expectation
formation of agents, and as a consequence provides scope for endogenously generated
fluctuations. A particular example comes from general equilibrium theory with price
rigidities, where a continuum of solutions on the unit cube as a polytope is shown to
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exist in Herings [13]. It is therefore important to have generally applicable tools that
guarantee the existence of a continuum of zero points to a certain system of equations.

This leads us to the following problem: Given a point-to-set mapping ϕ : P =⇒
R
n, with P an arbitrary polytope, what reasonable conditions can guarantee the exis-

tence of a continuum of solutions x to the system

0n ∈ ϕ(x),

where 0n denotes the n-dimensional vector of zeros? Our approach to show the
existence of a continuum of solutions is to show that there is a connected subset of
solutions that links together at least two distinct points, thereby guaranteeing the
continuum. In this paper we will show that any upper semicontinuous point-to-set
mapping with some mild (boundary) conditions will have a connected set of zero
points linking together two distinct faces of the polytope P .

It is well known that under certain conditions a point-to-set mapping defined on
a polytope has a solution to the variational inequality problem. We generalize the
variational inequality problem and define a parametric variational inequality problem.
In this paper we show that under similar conditions a point-to-set mapping defined on
a polytope P has a connected set of solutions to the parametric variational inequality
problem, called parametrized stationary points. The set of parametrized stationary
points connects two distinct faces of P . With respect to some given nonzero vector
c, on one of these faces, denoted by F−, the value c�x is minimized for x ∈ P , while
on the other face, denoted by F+, the value c�x is maximized for x ∈ P. A special
case occurs when both F− and F+ are vertices of P and the set of parametrized
stationary points contains both these vertices. Under the three different conditions
the set of parametrized stationary points is a connected set of zero points linking the
two distinct faces F− and F+ of P .

We prove the existence results by designing a simplicial variable dimension algo-
rithm on a polytope. This type of algorithm was initiated by Scarf [22]. Simplicial
homotopy methods were developed by Eaves [8]. The simplicial restart variable di-
mension algorithm was introduced by van der Laan and Talman [18] to compute a
fixed point of a continuous function from the unit simplex into itself. Such an algo-
rithm generates a unique sequence of simplices of varying dimension in a simplicial
subdivision of the set and connects the arbitrarily chosen starting point with an ap-
proximate solution. For other recent developments, we refer to Talman and Yamamoto
[24], Yamamoto [26], Brown, DeMarzo, and Eaves [5], DeMarzo and Eaves [6], Yang
[27, 28], and van der Laan, Talman, and Yang [19]. Allgower and Georg [1], Todd
[25], and Yang [28] provide comprehensive treatments of simplicial algorithms.

In this paper a simplicial algorithm is proposed which generates within a simplicial
subdivision of P a finite sequence of simplices of varying dimension. This sequence
connects two different simplices, one simplex lying in the face F− of P and the other
lying in the face F+ of P . The sequence of simplices connecting these two simplices
is generated by the algorithm through a sequence of semilexicographic pivot steps in
a linear system of equations. In case the face F− is not a vertex of P , the algorithm
starts by finding a suitable simplex in F−. Next it generates a sequence of simplices
of varying dimension in P. It is possible that the algorithm returns to F−. Then it
generates a third simplex in F− from where a sequence of adjacent simplices in P
is generated. It is shown that the algorithm eventually finds a simplex in F− from
which a sequence of adjacent simplices reaching F+ is generated.

Induced by the sequence of adjacent simplices, the algorithm yields a piecewise
linear path of parametrized stationary points of a piecewise linear approximation of
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the underlying mapping. When the mesh size of the simplicial subdivision of P goes
to zero the sequence (or at least a subsequence) of piecewise linear paths converges to
a connected set of parametrized stationary points of the original mapping. This set
has points in common with both faces F− and F+.

The results in the paper generalize earlier results of Browder [4], Mas-Colell [20],
and Herings, Talman, and Yang [15]. In the case of Browder’s theorem the polytope is
the Cartesian product of a polytope of one dimension less and the unit interval [0, 1],
while c is the unit vector with the one on the last position. Mas-Colell’s result is an
extension of Browder’s result to deal with correspondences. Both Browder and Mas-
Colell proved their results via a rather sophisticated machinery. Since our approach
here is constructive, we therefore also obtain an alternative but constructive proof for
their results. In Herings, Talman, and Yang [15] the polytope equals the unit cube
and the vector c is the vector of ones. In both Browder’s and Mas-Colell’s theorems,
a connected set of fixed points is obtained connecting the levels 0 and 1, whereas the
result on the unit cube yields a connected set of zero points connecting the vector of
zeros and the vector of ones.

Intersection theorems with a continuum of intersection points can be found in
Freidenfelds [9] and Herings and Talman [14]. Although Freidenfelds’s intersection
theorem typically has a continuum of intersection points, this is not necessarily the
case. Freidenfelds’s result generalizes the intersection theorem of Scarf [22]. Herings
and Talman’s results generalize a number of intersection theorems on the unit simplex,
including the Scarf-result and the KKM-result, to intersection theorems on the unit
cube and show the existence of a continuum of intersection points. The reader should
be aware that compared with a large amount of existence results for a single fixed or
zero point, existence results for a continuum of fixed or zero points are very rare.

This paper is organized as follows. In section 2 we state the problem and in section
3 we give three sufficient conditions for the existence of a connected set of zero points
of an upper semicontinuous point-to-set mapping over an arbitrary polytope which
link together two distinct faces of the polytope. An example is also given. In section 4
we introduce the algorithm, prove its convergence, and illustrate the algorithm by an
example. In section 5 we analyze the accuracy of the approximation of zero points and
prove the existence theorems. In section 6 we discuss a more general case. In section
7 we derive as special cases Browder’s and Mas-Colell’s theorems and an earlier result
of the authors on the unit cube, and we also give an interesting economic application.

2. The problem. Let Im denote the set of the firstm positive integers. Consider
an arbitrary full-dimensional polytope P that has the following representation as a
polyhedron:

P = {x ∈ R
n | ai�x ≤ bi ∀i ∈ Im}.

For each subset I of Im, define

F (I) = {x ∈ P | ai�x = bi ∀i ∈ I}.
Then F (I) is called a face of P unless it is empty. Note that F (∅) = P . Let

I = {I ⊂ Im | F (I) is a face of P}.
A face F of the set F (I) of dimension one lower than the dimension of F (I) is called
a facet of F (I). The polytope P is said to be simple if the dimension of any face
F (I) of P is equal to n − |I|. Throughout the paper, whenever we use a polytope



VARIATIONAL INEQUALITY PROBLEMS 1855

P , it is assumed that P is simple and that its representation as a polyhedron has no
redundant constraints.

We have the following observations.
(i) For each face F of P, the set I ∈ I with F = F (I) is unique and is given by

the set {i ∈ Im | ai�x = bi ∀x ∈ F}.
(ii) The set F (I) is a vertex of P if and only if I ∈ I with |I| = n.
(iii) If I ∈ I, then I \ {i} ∈ I for any i ∈ I.
(iv) For some I ∈ I, F is a facet of F (I) if and only if F = F (I ∪ {i}) for some

i �∈ I with I ∪ {i} ∈ I.
(v) For any I ∈ I, the vectors ai with i ∈ I are linearly independent.
Let c be an arbitrary nonzero vector in R

n. Then F+ will denote the face of P
such that for each x+ ∈ F+ it holds that c�x+ = maxx∈P c�x, and F− will denote
the face of P such that for each x− ∈ F− it holds that c�x− = minx∈P c�x. Let
t+ = c�x+ for x+ ∈ F+ and t− = c�x− for x− ∈ F−. Since P is full-dimensional, it
follows that t− < t+ and therefore F− ∩ F+ = ∅. We define

I+ = {i ∈ Im | ai�x = bi ∀x ∈ F+},
I− = {i ∈ Im | ai�x = bi ∀x ∈ F−}.

So F+ = F (I+) and F− = F (I−).
We need some further notation. For each I ∈ I, we define

A(I) =

{
y ∈ R

n | y =
∑
i∈I
µia

i + βc, µi ≥ 0 ∀i ∈ I, and β ∈ R

}
,

A0(I) =

{
y ∈ R

n | y =
∑
i∈I
µia

i, µi ≥ 0 ∀i ∈ I
}
,

A∗(I) = {x ∈ R
n | x�y ≤ 0 ∀y ∈ A(I)},

A∗
0(I) = {x ∈ R

n | x�y ≤ 0 ∀y ∈ A0(I)}.

Note that A(∅) = {y ∈ R
n | y = βc, β ∈ R}, A0(∅) = {0n}, A∗(∅) = {x ∈ R

n |
x�c = 0}, and A∗

0(∅) = R
n. Moreover, for any I ∈ I we have that A0(I) ⊂ A(I),

A∗(I) ⊂ A∗
0(I), A∗(I) ∩ A(I) = {0n}, and A∗

0(I) ∩ A0(I) = {0n}. We may interpret
A(I) and A0(I) as normal cones to the boundary of P and A∗(I) and A∗

0(I) as tangent
cones. The pairs (A(I), A∗(I)) and (A0(I), A∗

0(I)) may be viewed as primal and dual
pairs as well; see, e.g., Aubin [2].

Let ϕ : P =⇒ R
n be a correspondence that satisfies the following assumption.

Assumption 2.1. The correspondence ϕ : P =⇒ R
n is nonempty valued, compact

valued, convex valued, and upper semicontinuous.
For an arbitrary function f : P → R

n, the stationary point (or variational
inequality) problem for f on the polytope P is to find a point x∗ ∈ P such that

(x∗ − x)�f(x∗) ≥ 0 ∀x ∈ P.

Such a point x∗ is called a stationary point of f on P . It is well known that a
continuous function on a convex compact set has a stationary point; see Hartman and
Stampacchia [11] and Eaves [8].

In the following we give the definition of a stationary point of a correspondence
on the polytope P with respect to the vector c.
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Definition 2.2. A point x∗ ∈ P is a stationary point of a correspondence ϕ on
the polytope P with respect to the nonzero vector c if there exists f ∈ ϕ(x∗) such that
(x∗ − x)�f ≥ 0∀x ∈ P satisfying c�x = c�x∗.

We call the problem of finding a stationary point with respect to a nonzero vector
c a parametric variational inequality problem. A solution to it is called a parametrized
stationary point. Now we have the following simple but important observation.

Lemma 2.3. A point x∗ ∈ P is a parametrized stationary point of the mapping
ϕ on P with respect to c if and only if for some I ∈ I it holds that x∗ ∈ F (I) and
ϕ(x∗) ∩A(I) �= ∅.

Proof. Let x∗ be a parametrized stationary point of ϕ on P with respect to c.
Hence there exists f ∈ ϕ(x∗) such that (x∗−x)�f ≥ 0∀x ∈ P satisfying c�x = c�x∗;
i.e., x∗ maximizes x�f subject to ai�x ≤ bi, i ∈ Im, and c�x = c�x∗. Therefore,
there exist µi ≥ 0, i ∈ Im, and β ∈ R satisfying

f =
∑
i∈Im

µia
i + βc,

and µi = 0 if ai�x∗ < bi. Let I = {i ∈ Im | ai�x∗ = bi}. Then x∗ ∈ F (I) and
f ∈ A(I) ∩ ϕ(x∗).

Next let x∗ ∈ P be such that x∗ ∈ F (I) and A(I) ∩ ϕ(x∗) �= ∅ for some I ∈ I.
Take any f ∈ A(I)∩ϕ(x∗). Then f ∈ ϕ(x∗) and there exists µi ≥ 0, i ∈ I, and β ∈ R

satisfying

f =
∑
i∈I
µia

i + βc.

Note that ai�x∗ = bi∀i ∈ I, and for any x ∈ P, ai�x ≤ bi∀i ∈ I. Thus x∗�f =∑
i∈I µibi + βc�x∗ ≥ x�f for all x ∈ P with x�c = x∗�c. By definition, x∗ is a

stationary point of ϕ on P with respect to c.
We show the existence of a continuum of parametrized stationary points of the

correspondence ϕ with respect to the vector c. A point x∗ ∈ P is called a zero point
of the mapping ϕ if 0n ∈ ϕ(x∗). Any zero point of ϕ is a parametrized stationary
point. The main purpose of this paper is to find conditions on ϕ which enable us
to guarantee the existence and the computation of a continuum of zero points of a
correspondence ϕ on P such that it contains points of both F− and F+.

3. Existence conditions. The first result is on the existence of parametrized
stationary points.

Theorem 3.1. Let ϕ : P =⇒ R
n be any correspondence satisfying Assumption

2.1 and let c ∈ R
n\{0n} be given. Then there exists a connected set C of parametrized

stationary points of ϕ on P with respect to c such that C ∩F− �= ∅ and C ∩F+ �= ∅.
The theorem makes clear that there are many parametrized stationary points. To

be more precise, there exists a continuum of them with a special topological structure.
The set of parametrized stationary points has a connected subset that links the two
faces F− and F+.

In order to obtain the existence of a continuum of zero points, we need to impose
certain conditions on the correspondence ϕ. The following three results list sufficient
conditions for the existence of a continuum of zero points of ϕ.

Theorem 3.2. Let ϕ : P =⇒ R
n be any correspondence satisfying Assump-

tion 2.1 and let c ∈ R
n \ {0n}. If for any x ∈ F (I), I ∈ I, it holds that ϕ(x)∩A(I) ⊂

{0n}, then there exists a connected set C of zero points of ϕ such that C ∩ F− �= ∅
and C ∩ F+ �= ∅.
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The condition in the theorem states that for any x in the face F (I) of P the image
ϕ(x) may not have nonzero elements in common with A(I).

Theorem 3.3. Let ϕ : P =⇒ R
n be any correspondence satisfying Assump-

tion 2.1 and let c ∈ R
n \ {0n}. If for any x ∈ F (I), I ∈ I, it holds that

(i) ϕ(x) ∩A∗
0(I) ∩A(I) ⊂ {0n},

(ii) ϕ(x) ∩A∗
0(I) �= ∅,

then there exists a connected set C of zero points of ϕ such that C ∩ F− �= ∅ and
C ∩ F+ �= ∅.

The conditions in the theorem imply that for any x in the face F (I) of P the
image ϕ(x) may not have nonzero elements in common with A(I) ∩ A∗

0(I) and that
at least one element of ϕ(x) lies in A∗

0(I).
Theorem 3.4. Let ϕ : P =⇒ R

n be any correspondence satisfying Assump-
tion 2.1, and let c ∈ R

n \ {0n}. If for any x ∈ F (I), I ∈ I, it holds that

ϕ(x) ∩A∗(I) �= ∅,
then there exists a connected set C of zero points of ϕ such that C ∩ F− �= ∅ and
C ∩ F+ �= ∅.

The condition in the theorem says that for any x in the face F (I) of P at least
one element of ϕ(x) lies in A∗(I).

The three theorems state different conditions for which a continuum of zero points
can be shown to exist. Moreover, there is a logical order in these sufficient conditions.
Theorem 3.2 states a weak condition, but one that holds for all elements of ϕ(x).
Theorem 3.4 gives a strong condition but requires this condition to hold for only one
element in ϕ(x). Theorem 3.3 is in between: it gives a very weak condition for all
elements in ϕ(x) together with a rather weak condition for some element in ϕ(x).

The following result claims that for the special case where ϕ is a function f,
Theorem 3.2 is the strongest and Theorem 3.4 the weakest. Note that Assumption 2.1
implies that the function f is continuous.

Theorem 3.5. Let P be any polytope and let c ∈ R
n \ {0n}. The collection of

functions satisfying the conditions of Theorem 3.2 contains the collection of functions
satisfying the conditions of Theorem 3.3, which contains the collection of functions
satisfying the conditions of Theorem 3.4.

Proof. Suppose that a function f from P to R
n satisfies the conditions of

Theorem 3.4. Take any x in F (I), so f(x) ∈ A∗(I). Since A∗(I) ⊂ A∗
0(I) and

A(I) ∩ A∗(I) = {0n} we obtain that f(x) ∈ A∗
0(I) and f(x) not in A(I) unless

f(x) = 0n. Hence the conditions of Theorem 3.3 are satisfied. Suppose now that
a function satisfies the conditions of Theorem 3.3. Again take any x in F (I), so
f(x) ∈ A∗

0(I) and f(x) not in A(I)∩A∗
0(I) unless f(x) = 0n. Hence f(x) not in A(I)

unless f(x) = 0n.
That Theorems 3.2, 3.3, and 3.4 are mutually exclusive for correspondences follows

from the fact that in case of correspondences the image ϕ(x) of any point x in P might
consist of more than one element. For example, for a point x in the face F (I) of P it is
required in Theorem 3.2 that no nonzero element of ϕ(x) lies in A(I) which does not
imply that at least one such element should lie in A∗(I) as required in the conditions
of Theorem 3.4. On the other hand if for an x in F (I) it holds that some nonzero
element f ∈ ϕ(x) lies in A∗(I), as in the conditions of Theorem 3.4, then this implies
that f indeed does not lie in A(I) but not necessarily that all the other elements of
ϕ(x) also do not lie in A(I) as required in Theorem 3.2. Similar remarks can be made
when comparing the conditions of Theorem 3.3 with the conditions in the other two
theorems.
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Fig. 3.1. The set of zero points of f on P in Example 3.1 linking F− and F+.

The theorems above will be proved in a constructive manner in the following
sections. Their applications will be discussed in section 7. To conclude this section
we will give a numerical example to illustrate the existence of a connected set of zero
points on a two-dimensional diamond and then we will illustrate the algorithm with
this example in the next section.

Example 3.1. Let the polytope P, illustrated in Figure 3.1, be given by

P = {x ∈ R
2 | |x2| ≤ 1/2, |x1|+ |x2| ≤ 1}.

The vector c and the function f on P are given by c = (1, 0)� and

f(x) =

(
2− x2

1 − (x2 + 1)2,
√

2− x2
1 − x2 − 1

)�
.

Clearly, F− and F+ correspond to (−1, 0)�, (1, 0)�, vertices of P , respectively. Fur-
thermore, if x lies on the boundary of P , then f1(x) > 0 and f2(x) > 0 when x2 < 0,
and f1(x) < 0 and f2(x) < 0 when x2 > 0. Also, f1(x) = 0 whenever f2(x) = 0. Note
that P can be rewritten as

P = {x ∈ R
2 | x1 + x2 ≤ 1, x2 ≤ 1/2, −x1 + x2 ≤ 1,

−x1 − x2 ≤ 1, −x2 ≤ 1/2, x1 − x2 ≤ 1}.
One can easily verify that f is continuous and satisfies the condition of Theorem 3.2.
So it follows that there exists a connected set of zero points of f on P linking both
(−1, 0)� and (1, 0)�. In fact this set equals the circle segment {x ∈ P | x2

1+(x2+1)2 =
2}; see Figure 3.1.

4. The algorithm and its convergence proof. In this section we describe an
algorithm on the polytope P that generates a piecewise linear path of parametrized
stationary points, with respect to the given nonzero vector c, of a piecewise linear
approximation of the mapping ϕ. The piecewise linear approximation is taken with
respect to some simplicial subdivision of the set P . In this and the following sections
we assume that the faces F− and F+ are vertices of P , denoted by x− and x+,
respectively. In that case the piecewise linear path generated by the algorithm contains
both x− and x+ and can be traced by a sequence of semilexicographic pivot steps in
a system of linear equations. The general case is discussed in section 6.
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For a nonnegative integer t, a t-dimensional simplex or t-simplex, denoted by σ,
is defined by the convex hull of t + 1 affinely independent points x1, . . . , xt+1 in
R
n. We often write σ = σ(x1, . . . , xt+1) and call x1, . . . , xt+1 the vertices of σ. A

(t− 1)-simplex being the convex hull of t vertices of σ is said to be a facet of σ. The
facet τ(x1, . . . , xi−1, xi+1, . . . , xt+1) is called the facet of σ(x1, . . . , xt+1) opposite to
the vertex xi. For k, 0 ≤ k ≤ t, a k-simplex being the convex hull of k+1 vertices of σ
is said to be a k-face or face of σ. A finite collection T of n-simplices is a triangulation
of the polytope P if

(i) P is the union of all simplices in T ;
(ii) the intersection of any two simplices of T is either the empty set or a common

face of both.
Let T be any triangulation of P . Then every face F (I) of P is subdivided into t-
simplices, where t = n− |I|. For example we can take the V -triangulation of Talman
and Yamamoto [24]. Since T is finite and P is compact, every facet τ of an (n− |I|)-
simplex σ in F (I) either lies in the boundary of F (I) and is only a facet of σ or is a
facet of exactly one other (n−|I|)-simplex in F (I). Let f be a simplicial approximation
of ϕ with respect to T . This means that f(x) ∈ ϕ(x) for each vertex of T and f is
affine on each simplex of T .

A row vector is lexicopositive if it is a nonzero vector and its first nonzero entry
is positive. A matrix is said to be lexicopositive if all its rows are lexicopositive. A
matrix is said to be semilexicopositive if each row except possibly the last row is
lexicopositive.

Definition 4.1. Let τ(x1, . . . , xt) be a (t− 1)-simplex in F (I), where I ∈ I with
I = {it+1, . . . , in}, t = n− |I|. The (n+ 1)× (n+ 1) matrix

Aτ,I =

[
1 · · · 1 0 · · · 0 0

−f(x1) · · · −f(xt) ait+1 · · · ain c

]
is the label matrix of τ with respect to I. The simplex τ is I-complete if A−1

τ,I exists
and is semilexicopositive; i.e., the first nonzero entry in every row, except possibly the
last one, is positive.

Notice that if for an I-complete simplex τ we change the ordering of the first
n columns of the matrix Aτ,I , the inverse of the resulting matrix still exists and is
semilexicopositive. Clearly, if, for some I ∈ I, a (t − 1)-simplex τ(x1, . . . , xt) is an
I-complete facet of a simplex σ(x1, . . . , xt+1) in some face F (I), then the system of
n+ 1 linear equations with n+ 2 variables

t+1∑
j=1

λj

(
1

−f(xj)

)
+
∑
i∈I
µi

(
0
ai

)
+β

(
0
c

)
=

(
1
0n

)
(∗)

has a solution (λ, µ, β) = (λ1, . . . , λt+1, (µi)i∈I , β) satisfying λj ≥ 0 for j ∈ It+1 and

µi ≥ 0 for i ∈ I, with λt+1 = 0. Let x be defined by x =
∑t+1
j=1 λjx

j at a solution
(λ, µ, β) of (∗); then x lies in σ and is a parametrized stationary point of f with
respect to c.

The following result is a special case of Theorem 2.6 in Fujishige and Yang [10]
and will be used later. This result has been proved in a constructive way.

Theorem 4.2. Consider any polytope Q given by Q = {x ∈ R
n | ci�x ≤ di, i ∈

In and c0�x = d0 }. Assume that Q is an (n−1)-dimensional simple polytope with no
redundant constraints. For any g ∈ R

n, there exists a unique subset I = {j1, . . . , jn−1}
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of In with |I| = n− 1 such that the matrix

B−1 =

[
1 0 0 · · · 0 0
g cj1 cj2 · · · cjn−1 c0

]−1

exists and is semilexicopositive.
We now show that each of the two 0-simplices {x−} and {x+} is I-complete in

the face F (I) for a unique index set I ∈ I containing n− 1 indices.
Lemma 4.3. Let x1 = x− and τ = {x1}. Then there exists a unique subset

I = {j1, . . . , jn−1} of I− with |I| = n − 1 such that τ is an I-complete 0-simplex in
F (I).

Proof. Recall that x− is a unique solution to the problem

min c�x s.t. x ∈ P.

By duality theory there exists a unique solution λi > 0∀i ∈ I− such that −c =∑
i∈I− λia

i. In other words, the vectors c and ai, i ∈ I−, are affinely independent.
Consider the following polyhedron:

W = {x ∈ R
n | ai�x ≤ 1, i ∈ I−, c�x ≤ 1}.

It is easy to see that W is bounded and contains 0n in its interior and therefore is an
n-dimensional polytope. Then the set

Q = {x ∈ R
n | ai�x ≤ 1, i ∈ I−, c�x = 1}

is an (n − 1)-dimensional polytope. Let g = −f(x−). Now all the conditions of
Theorem 4.2 are satisfied. So there exists a unique subset I = {j1, . . . , jn−1} of I−

with |I| = n− 1 such that the matrix

B−1 =

[
1 0 0 · · · 0 0

−f(x−) aj1 aj2 · · · ajn−1 c

]−1

exists and is semilexicopositive. This means that τ is I-complete. Clearly, τ lies in
F (I) since F (I−) is a subset of F (I) and τ = F (I−).

Lemma 4.4. Let x1 = x+ and τ = {x1}. Then there exists a unique subset
I = {j1, . . . , jn−1} of I+ with |I| = n − 1 such that τ is an I-complete 0-simplex in
F (I).

Proof. Notice that x+ is the unique solution to the problem

max c�x s.t. x ∈ P.

By duality theory there exists a unique solution λi > 0∀i ∈ I+ such that c =∑
i∈I+ λia

i. In other words, the vectors −c and ai, i ∈ I+, are affinely indepen-
dent. Consider the following polyhedron:

W = {x ∈ R
n | ai�x ≤ 1, i ∈ I+,−c�x ≤ 1}.

It is easy to see that W is an n-dimensional polytope. Then the set

Q = {x ∈ R
n | ai�x ≤ 1, i ∈ I+, c�x = −1}
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is an (n − 1)-dimensional polytope. Let g = −f(x+). Now all the conditions of
Theorem 4.2 are satisfied. So there exists a unique subset I = {j1, . . . , jn−1} of I+

with |I| = n− 1 such that the matrix

B−1 =

[
1 0 0 · · · 0 0

−f(x+) aj1 aj2 · · · ajn−1 c

]−1

exists and is semilexicopositive. This means that τ is I-complete. Clearly, τ lies in
F (I) since F (I+) is a subset of F (I) and τ lies in F (I+).

The following lemma is well known in linear programming theory and can easily
be proved. We will invoke it later. Let B be a matrix. We denote its ith row by Bi.
and its jth column by B.j .

Lemma 4.5. Let B = (B.1, . . . , B.n+1) be any nonsingular (n+1)×(n+1) matrix
and let x be any vector in R

n+1. Let k ∈ In+1 and

B̄ = (B.1, . . . , B.k−1, x, B.k+1, . . . , B.n+1).

Then either (B−1x)k = 0 and B̄ is singular, or (B−1x)k �= 0, B̄ is nonsingular, and
B̄−1 is given by

B̄−1 =



(B−1)1. − (B−1x)1
(B−1x)k

(B−1)k.
...

(B−1)k−1. − (B−1x)k−1

(B−1x)k
(B−1)k.

1
(B−1x)k

(B−1)k.

(B−1)k+1. − (B−1x)k+1

(B−1x)k
(B−1)k.

...

(B−1)n+1. − (B−1x)n+1

(B−1x)k
(B−1)k.


.

Lemma 4.6. Let σ be a t-simplex in F (I), where I ∈ I, t = n − |I|, and
I = {it+1, . . . , in}. If σ has an I-complete facet τ , then exactly one of the following
two cases occurs:

(1) The simplex σ is an Ī-complete simplex in F (Ī), where Ī = I\{i} for precisely
one index i ∈ I.

(2) The simplex σ has exactly one other I-complete facet τ̄ .
Proof. Let xt+1 be the vertex of σ opposite to τ , and let y = A−1

τ,I(1,−f(xt+1)�)�.

Notice that y �= 0n+1. Let K = {i ∈ In | yi > 0}. We first prove |K| > 0. Since
Aτ,Iy = (1,−f(xt+1)�)�, we have

∑t
i=1 yi = 1. This implies that there exists at least

one index i ∈ It such that yi > 0. Hence K is nonempty.
Consider the ratio vectors (1/yj)(A

−1
τ,I)j.∀j ∈ K. Choose k ∈ K such that the

kth ratio vector is the minimum in the lexicographic order over all such ratio vectors.
Since A−1

τ,I is regular, k is uniquely determined. Now, we consider the following two
cases.

(1) If k ∈ In\It, then let l = ik and Ī = I\{l}. Clearly, Ī ∈ I and σ is in F (Ī). Let
B be the matrix obtained from Aτ,I by replacing its kth column by (1,−f(xt+1)�)�.
It follows from Lemma 4.5 that B−1 exists and is semilexicopositive. By reordering
the columns of B we get Aσ,Ī whose inverse exists and is semilexicopositive. So σ is
Ī-complete.
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(2) If k ∈ It, then let τ̄ be the facet of σ opposite to the vertex xk. Using
Lemma 4.5, it follows from the choice of k that A−1

τ̄ ,I exists and is semilexicopositive.
Hence τ̄ is an I-complete (t− 1)-simplex in F (I).

It follows immediately from Lemma 4.5 that if any column other than the
kth column is replaced, then the inverse of the resulting matrix is not semilexicopos-
itive.

In Lemma 4.8 we consider the analogous case of making a lexicographic pivot step
with a column (1, ai�)�. First we need the next lemma.

Lemma 4.7. For any set I ∈ I with I �= I− and I �= I+, there exist no solutions
λ0, λi, i ∈ I, to

∑
i∈I λia

i = λ0c such that λi ≤ 0∀i ∈ I and
∑
i∈I λi < 0.

Proof. We need to consider the following three cases:
Case (1). If λ0 = 0, then

∑
i∈I λia

i = λ0c = 0n contradicts the fact that all
vectors ai, i ∈ I, are linearly independent.

Case (2). If λ0 < 0, then by duality theory
∑
i∈I λia

i = λ0c and I �= I+ contra-
dicts the fact that

c�x+ = max
x∈P

c�x.

Case (3). If λ0 > 0, then by duality theory
∑
i∈I λia

i = λ0c and I �= I− contra-
dicts the fact that

c�x− = min
x∈P

c�x.

Lemma 4.8. Let σ be an I-complete (t − 1)-simplex in F (I), where I ∈ I,
t = n − |I|, and I = {it+1, . . . , in}. If σ is in F (Ī) and Ī �= I− or Ī �= I+, where
Ī = I ∪{l} ∈ I for some l ∈ Im \I, then exactly one of the following two cases occurs:

(1) There exists a unique set J ∈ I with |J | = |I| and J �= I so that σ is in F (J)
and is J-complete.

(2) There exists exactly one facet τ of σ which is in F (Ī) and is Ī-complete.
Proof. Let x = (0, al�)� and y = A−1

σ,Ix. Note that y �= 0n+1. Let K = {i ∈ In |
yi > 0}. Note that Aσ,Iy = (0, al�)�. We need to consider the following two cases.

Case (i). If there exists an index j ∈ It such that yj < 0, then there must exist

an index i ∈ It such that yi > 0 since
∑t
k=1 yi = 0. Hence K is nonempty.

Case (ii). Suppose that yi = 0∀i ∈ It. If yi ≤ 0∀i = t + 1, t + 2, . . ., n, then
we have that al =

∑n
i=t+1 yia

ji−t + yn+1c. By Lemma 4.7 it is impossible since Ī is
neither equal to I− nor equal to I+. Hence there exists at least one index i ∈ In \ It
such that yi > 0. Again K is nonempty.

Consider the ratio vectors (1/yj)(A
−1
σ,I)j.∀j ∈ K. Choose k ∈ K such that the

kth ratio vector is the minimum in the lexicographic order over all such ratio vectors.
Since A−1

τ,I is regular, k is uniquely determined. Now, we consider the following two
cases.

(1) If k ∈ In \ It, then let p = ik and J = I ∪ {l} \ {p}. Clearly, J ∈ I, J �= I,
|J | = |I|, and σ is in F (J). Let B be the matrix obtained from Aσ,I by replacing its
kth column by x. It follows from Lemma 4.5 that B−1 exists and is semilexicopositive.
It is clear that Aσ,J = B. Thus σ is a J-complete (t− 1)-simplex in F (J).

(2) If k ∈ It, then let τ be the facet of σ opposite to the vertex xk. Clearly, τ is
a (t − 2)-simplex in F (Ī). Let B be the matrix obtained from Aσ,I by replacing its
kth column by x. It follows from Lemma 4.5 that B−1 exists and is semilexicopos-
itive. By reordering the columns of B we get Aτ,Ī , whose inverse also exists and is
semilexicopositive. So τ is an Ī-complete (t− 2)-simplex in F (Ī).
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Again it follows from Lemma 4.5 that if any other column is replaced, then the
new matrix is no longer semilexicopositive.

We construct a graph G = (V,A), where V denotes the set of nodes and A denotes
the set of edges. Each I-complete (n− |I| − 1)-simplex is a node in V. An I-complete
(n − |I| − 1)-simplex τ1 in F (I) and a J-complete (n − |J | − 1)-simplex τ2 in F (J)
are said to be adjacent complete simplices if I = J = L and τ1 and τ2 are both facets
of an (n− |L|)-simplex σ in F (L), or τ1 is a facet of τ2 and τ2 is an (n− |I|)-simplex
in F (I), or τ2 is a facet of τ1 and τ1 is an (n − |J |)-simplex in F (J). Two adjacent
complete simplices τ1 and τ2 are connected by an edge e = {τ1, τ2} ∈ A. The degree
of a node τ in G is defined to be the number of nodes connected with it, denoted
by deg(τ). A path in G from node τ0 = {x−} to node τ l is defined as a sequence of
the form (τ0, e1, τ

1, . . . , el, τ
l), where τ0, τ1,. . ., τ l are nodes and e1, . . . , el are edges

such that ei = {τ i−1, τ i} for i ∈ Il. A path is simple if all its nodes and edges are
different.

Theorem 4.9. Let T be a triangulation of P . Starting at the vertex x−, the
algorithm generates a finite sequence of adjacent J-complete simplices for varying
J ∈ I which leads to the vertex x+.

Proof. By Lemma 4.6, {x−} is an I-complete 0-simplex in F (I) for some unique
set I ∈ I with |I| = n − 1. Since {x−} lies in the boundary of F (I), there exists a
unique 1-simplex σ in F (I) having {x−} as its facet. By Lemma 4.6, either σ is an
Ī-complete simplex in F (Ī), where Ī = I \ {i} for some unique i ∈ I, or σ has exactly
one other I-complete facet τ̄ . Hence there exists a unique adjacent complete simplex
to {x−}. That is, deg({x−}) = 1. Similarly, by using Lemmas 4.6 and 4.8, we can
prove deg({x+}) = 1.

In all other cases, we prove that if τ is an I-complete (n − |I| − 1)-simplex in
F (I) for some I ∈ I, τ has exactly two adjacent complete simplices. There are two
possibilities: either τ lies in the interior of F (I) or τ lies in the boundary of F (I). If τ
lies in the interior of F (I), then τ is a facet of exactly two (n− |I|)-simplices in F (I).
It follows from Lemma 4.8 that τ is adjacent to exactly two complete simplices. If τ
lies in the boundary of F (I), then there exists exactly one (n−|I|)-simplex σ in F (I)
having τ as its facet. By Lemma 4.8 either σ is an Ī-complete (n−|Ī|− 1)-simplex in
F (Ī) for some unique Ī ∈ I with |Ī| = |I| − 1 and has no other I-complete facets, or
σ has exactly one other I-complete facet. This yields one adjacent complete simplex
to τ . On the other hand, since τ lies in the boundary of F (I), τ lies in F (Ĩ) for some
unique set Ĩ ∈ I with |Ĩ| = |I| + 1. By Lemma 4.8 either τ is J-complete for some
unique set J ∈ I with |J | = |I| and J �= I, or τ has exactly one Ĩ-complete facet. In
the former case, τ lies in F (Ĩ) and hence there exists exactly one simplex σ̄ in F (Ĩ)
having τ as its facet. It follows again from Lemma 4.8 that there exists exactly one
other complete simplex adjacent to τ . This concludes that τ has exactly two adjacent
complete simplices. In other words, we have deg(τ) = 2.

As shown above, the degree of each node in the graph G = (V,A) is at most two.
Exactly two nodes have degree equal to one. Since the number of simplices in P is
finite, the number of nodes in G must be finite, too. Since deg({x−}) = 1, it is easy
to see that there exists a simple finite path starting from {x−}. The end node of this
path must be a node τ of degree one and different from x−. The only possibility is
that τ is equal to {x+}.

In what follows, if a column of Aτ,I corresponds to a vertex xi, we call it a vertex
column; if it corresponds to a constraint vector aj , we call it an index column. Now
we summarize the steps of the algorithm.
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Fig. 4.1. The triangulation of P in Example 3.1 underlying the algorithm.

ALGORITHM.
Step 0 : Take any triangulation of the polytope P. Let j := 0, t := 1, x1 := x−, τ j :=

τ(x1), and let xt+1 be the unique vertex of the simplex in F (I) having τ j as
a facet opposite to it, where I is a set with n− 1 elements as determined in
Lemma 4.3. Go to Step 1.

Step 1 : Let σ be equal to the convex hull of xt+1 and τ j . Pivot (1,−f(xt+1)�)�

lexicographically into matrix Aτj ,I . As described in Lemma 4.6, a unique
column k from the first n columns of Aτj ,I will be replaced. If the column k
is an index column, then go to Step 3. Otherwise, go to Step 2.

Step 2 : Set j := j+1 and let τ j be the facet of σ opposite the vertex xk. If τ j = 〈x+〉,
then the algorithm terminates. If τ j lies in F (Ī), where Ī = I ∪ {l} for some
l ∈ Im \ I, then go to Step 4. Otherwise there is exactly another simplex σ̃
in F (I) having τ j as its facet. Go to Step 1 with xt+1 as the unique vertex
in σ̃ opposite to the facet τ j .

Step 3 : Let i ∈ I be the index corresponding to the column k. Set I := I \{i}. There
is a unique simplex σ̃ in F (I) having σ as a facet. Set j := j + 1, t := t+ 1,
and go to Step 1 with xt+1 as the unique vertex in σ̃ opposite to σ, and
τ j := σ.

Step 4 : Set σ := τ j . Pivot (0, al�)� lexicographically into matrix Aτj ,I . By Lemma
4.8 there is a unique column k of the first n columns of Aτj ,I which has to be
replaced. If the column k is an index column, then go to Step 3. Otherwise
go to Step 2 with t := t− 1 and I := Ī.

It is worth mentioning that the algorithm can also start with the simplex 〈x+〉
and terminates with the simplex 〈x−〉. Following the above description, it is fairly
easy to implement the algorithm on a computer.

From Theorem 4.9 and the system of equations (∗) we see that every simplex from
〈x−〉 to 〈x+〉 contains a parametrized stationary point of the piecewise linear approx-
imation f of ϕ with respect to T . By taking the straight line segments between the
parametrized stationary points of any two adjacent simplices, we obtain a piecewise
linear path of parametrized stationary points of f connecting the points x− and x+.

Corollary 4.10. Let T be any triangulation of P . Then with respect to the
vector c there is a piecewise linear path of parametrized stationary points of the
piecewise linear approximation f of ϕ with respect to T and this path connects x−
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Fig. 4.2. The piecewise linear path generated by the algorithm in Example 3.1.

and x+.
Now we will illustrate the algorithm with Example 3.1. To implement the algo-

rithm, we take the triangulation depicted in Figure 4.1. Note that this triangulation is
very coarse. The piecewise linear path generated by the algorithm is given by the se-
quence of line segments [(−1, 0)�, (−a, a)�], [(−a, a)�, (0, b)�], [(0, b)�, (a, a)�], and
[(a, a)�, (1, 0)�], where a = (5−√7)−1 and b = (5−2

√
2)−1; see Figure 4.2. As we see

from Figure 4.2 the path of approximate zero points generated by the algorithm and
the set of the actual zero points of f are quite close. The finer the triangulation is the
more accurate the approximation will be. In this figure A = (−a, a)�, B = (0, b)�,
C = (a, a)�, D = (−d, d)�, E = (0, e)�, and F = (d, d)� with d =

√
3/2 − 1/2 and

e =
√

2− 1.

5. Proofs for the existence theorems. In this section we still assume that x−

and x+ are unique. First it will be argued in Theorems 5.1 and 5.2 that the points lying
on the path given in Corollary 4.10 indeed all correspond to approximate parametrized
stationary or zero points of the mapping ϕ. To show this, a sequence of triangulations
T r with mesh size converging to zero is taken. This yields, according to Corollary 4.10,
for every r ∈ N, a continuous piecewise linear function πr : [0, 1]→ P with image set
πr([0, 1]) connecting x− and x+. It will be shown that if qr is an arbitrary point in
πr([0, 1]) and the sequence (qr)r∈N converges to q, then q is a parametrized stationary
point of ϕ(q) with respect to c. Under the conditions of Theorems 3.2, 3.3, and 3.4,
the piecewise linear approximation can be chosen in such a way that q is a zero point
of ϕ. Furthermore, it will be shown in Theorem 5.4 by a limiting argument that there
exists a connected set of zero points of ϕ, containing both x− and x+, that is being
approximated.

Theorem 5.1. Let ϕ : P =⇒ R
n be a correspondence satisfying Assumption 2.1

and let c ∈ R
n \ {0n}. For r ∈ N, let T r be a triangulation of P with mesh size

smaller than 1
r , let f

r : P → R
n be a piecewise linear approximation of ϕ with respect

to T r, and let πr : [0, 1]→ P be the corresponding continuous function with image set
connecting x− and x+. Let (qr)r∈N be an arbitrary convergent sequence of points in
P with limit q∗ where qr ∈ πr([0, 1]). Then q∗ is a parametrized stationary point of ϕ
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with respect to c.
Proof. Let (λr1, . . . , λ

r
n+1, x

1r , . . . , xn+1r , s1
r

, . . . , sn+1r )r∈N be a sequence of points

in R
n+1
+ ×∏n+1

i=1 P ×
∏n+1
i=1 R

n satisfying that
∑n+1
j=1 λ

r
j = 1, σr(x1r , . . . , xn+1r ) is a

simplex of T r, qr =
∑n+1
j=1 λ

r
jx
jr ∈ πr([0, 1]), and sj

r

= fr(xj
r

). Notice that it may

happen that λrj = 0 for some j ∈ In+1. By definition, fr(qr) =
∑n+1
j=1 λ

r
js
jr . Define

sr = fr(qr); then sr = βrc +
∑
j∈Ir µ

r
ja
j for some βr ∈ R for some µrj ≥ 0 ∀j ∈ Ir,

and for some Ir ∈ I satisfying that qr lies in F (Ir). Since ∪q∈Pϕ(q) is bounded, the
sequence given above remains in a compact set, and without loss of generality it can
be assumed to converge to an element (λ∗1, . . . , λ

∗
n+1, x

∗1, . . . , x∗n+1, s∗1, . . . , s∗n+1).

Define s∗ =
∑n+1
j=1 λ

∗
js

∗j . Clearly, it holds that sr → s∗. Since for every r ∈ N the

mesh size of T r is smaller than 1
r , it holds for every j ∈ In+1 that x∗j = q∗. Using

that ϕ is upper semicontinuous this implies that for every j ∈ In+1, s
∗j ∈ ϕ(q∗).

Moreover, βr → β∗ for some number β∗, without loss of generality Ir = I∗∀r for
some I∗ ∈ I, and µrj → µ∗j∀j ∈ I∗ for some nonnegative µ∗j . Since ϕ is convex

valued,
∑n+1
j=1 λ

∗
j = 1 and λ∗j ≥ 0 ∀j ∈ In+1, it holds that s∗ ∈ ϕ(q∗). Moreover,

q∗ ∈ F (I∗) and s∗ = β∗c+
∑
j∈I∗ µ

∗
ja
j ∈ A(I∗). Hence, according to Lemma 2.3, q∗

is a parametrized stationary point of ϕ with respect to c.
In order to give a constructive proof of Theorems 3.2, 3.3, and 3.4, the piecewise

linear approximation f of ϕ with respect to a triangulation T should be chosen as
follows. We call such a piecewise linear approximation a proper one. In case of
Theorem 3.2 any piecewise linear approximation of ϕ with respect to T can be chosen.
Next consider Theorem 3.3. If a point x in the (relative) interior of a face F (I) is a
vertex of a simplex of the triangulation, this implies that at least one element in ϕ(x)
lies in the set A∗

0(I), and this element is assigned to the piecewise linear approximation
at x. In the case of Theorem 3.4 an element of the set A∗(I) in ϕ(x) is assigned to a
vertex x of a simplex if x lies in (the interior of) F (I).

Theorem 5.2. Let ϕ : P =⇒ R
n be a correspondence satisfying the conditions in

one of Theorems 3.2, 3.3, or 3.4. For r ∈ N, let T r be a triangulation of P with mesh
size smaller than 1

r and let fr : P → R
n be a proper piecewise linear approximation

of ϕ with respect to T r. Let (qr)r∈N be an arbitrary convergent sequence of points in
P with limit q∗ such that for any r ∈ N it holds that qr ∈ πr([0, 1]). Then q∗ is a zero
point of ϕ.

Proof. First consider Theorem 3.2. Following the proof of Theorem 5.1 the limit
point s∗ ∈ ϕ(q∗) is an element of A(I∗), whereas q∗ is an element of F (I∗). The latter
property implies that s∗ is not an element of A(I∗), unless s∗ = 0n. Hence, s∗ = 0n.
Next consider Theorem 3.3. Consider again the convergent sequence of simplices σr

in F (I∗) mentioned in the proof of Theorem 5.1. Then the vertex xj
r

of σr lies in
some face F (Ij

r

) of P with I∗ ⊂ Ijr . Hence, we have that A∗
0(Ij

r

) ⊂ A∗
0(I∗), and

so sr ∈ A∗
0(I∗)∀r because of the properness of fr. Consequently, s∗ ∈ A∗

0(I∗) and
therefore s∗ ∈ A∗

0(I∗) ∩ A(I∗) ⊂ {0n}, i.e., s∗ = 0n. In the case of Theorem 3.4,
following a similar argument as in the previous case we obtain that s∗ ∈ A∗(I∗) ∩
A(I∗). Since the latter intersection consists of only the zero vector, we obtain again
that s∗ = 0n.

From Theorem 5.2 the next result follows immediately.
Corollary 5.3. Let ϕ : P =⇒ R

n be a correspondence satisfying the conditions
in one of Theorems 3.2, 3.3, or 3.4. For r ∈ N, let T r be a triangulation of P
with mesh size smaller than 1

r and let fr : P → R
n be a proper piecewise linear

approximation of ϕ with respect to T r. Then for every ε > 0 there exists an R ∈ N
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such that for every r ≥ R it holds that qr ∈ πr([0, 1]) implies ‖fr(qr)‖∞ < ε.
Proof. Suppose that a sequence (qr, fr(qr))r∈N exists with qr ∈ πr([0, 1]) and

‖fr(qr)‖∞ ≥ ε for every r ∈ N. Since P and ∪q∈Pϕ(q) are compact, there exists
a converging subsequence (qr

s

, fr
s

(qr
s

))s∈N, with limit say (q∗, s∗), where ‖s∗‖∞ ≥
ε > 0. As in the proof of Theorem 5.2 it can be shown that s∗ = 0n, yielding a
contradiction.

Using Theorem 4.9 and Theorem 5.2 it will be shown that there exists a connected
set C in P such that x− ∈ C, x+ ∈ C, and 0n ∈ ϕ(q) ∀q ∈ C. Hence, there is a
continuum of zero points of ϕ being approximated by the algorithm of section 4. For
a nonempty, compact set S ⊂ R

n, define the continuous function dS : R
n → R by

dS(x) = min{‖x− y‖∞ | y ∈ S}.
Theorem 5.4. Let ϕ : P =⇒ R

n be a correspondence satisfying the conditions
in one of Theorems 3.2, 3.3, or 3.4. Then there exists a connected set C of points in
P such that x− ∈ C, x+ ∈ C, and 0n ∈ ϕ(q) ∀q ∈ C.

Proof. Define Q = {q ∈ P | 0n ∈ ϕ(q)}. From the conditions of the theorems it
immediately follows that x− ∈ Q, x+ ∈ Q, and Q is compact. Suppose the theorem is
false. Then x+ is not an element of the component of Q containing x−. By Munkres
[21, p. 235] it holds for every compact set X in some Euclidean space and for every
element x ∈ X that the component of X containing x equals the intersection of all
sets containing x which are both open and closed in X. Hence, there exists a set Q0,
which is open and closed in Q, such that x− ∈ Q0 and x+ �∈ Q0. Define Q1 = Q \Q0.
Then Q1 is open and closed in Q, x− �∈ Q1, and x+ ∈ Q1. Since Q is compact, it
follows that Q0 and Q1 are disjoint, compact sets. Hence, there exists ε > 0 such that
min{‖q0 − q1‖∞ | q0 ∈ Q0, q1 ∈ Q1} ≥ ε. For every r ∈ N, let T r be a triangulation
of P with mesh size smaller than 1

r , let fr : P → R
n be a proper piecewise linear

approximation of ϕ with respect to T r, and let πr : [0, 1] → P be the corresponding
continuous function with image set connecting x− and x+. Define gr : [0, 1]→ R by

gr(t) = dQ0(πr(t))− dQ1(πr(t)) ∀t ∈ [0, 1].

Since gr is continuous, gr(0) ≤ −ε, and gr(1) ≥ ε, there exists a point tr ∈ [0, 1] such
that gr(tr) = 0. Hence, dQ0(πr(tr)) = dQ1(πr(tr)) = dQ(πr(tr)) ≥ 1

2ε. Without loss
of generality, it can be assumed that (πr(tr))r∈N converges to a point q∗ ∈ P. Hence,

dQ(q∗) = dQ

(
lim
r→∞π

r(tr)
)

= lim
r→∞ dQ(πr(tr)) ≥ 1

2
ε > 0.

However, by Theorem 5.2, dQ(q∗) = 0, yielding a contradiction.
Similarly, one can easily show that in the case of Theorem 3.1 there exists a

connected set C of parametrized stationary points in P with respect to c such that
x− ∈ C and x+ ∈ C.

6. The general case. The algorithm proposed in the previous section can be
adapted for computing a continuum of parametrized stationary points or zero points
of ϕ on P in case the faces F− and F+ are not vertices of P . First we take any point
v in the interior of F− and a triangulation of P such that the face F− itself is being
triangulated according to the V -triangulation of Talman and Yamamoto [24]. For J ∈
I such that I− ⊂ J , let V F (J) = {x ∈ F−|x = λv + (1− λ)y, 0 ≤ λ ≤ 1, y ∈ F (J)}.
The V -triangulation subdivides any such set V F (J) into (n− |J |+ 1)-simplices.

Then we apply the algorithm of Talman and Yamamoto [24] to find a parametrized
stationary point x− in F− of the piecewise linear approximation f of the correspon-
dence ϕ on P with respect to c. To initiate the algorithm, we solve maxx�f(v)
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subject to x ∈ F−, which yields, by using Theorem 2.6 of Fujishige and Yang [10] for
its dual, a uniquely determined vertex F (I0) of F− as a solution, with |I0| = n and
I− ⊂ I0. Then starting with the 0-simplex {v} and I equal to I0 the algorithm gen-
erates a sequence of adjacent simplices in V F (I) for varying I ∈ I such that I− ⊂ I,
and the common facets τ(x1, . . . , xt) satisfy that the system of equations

t∑
j=1

λj

(
1

−f(xj)

)
+
∑
i∈I
µi

(
0
ai

)
=

(
1
0n

)
has a solution (λ, µ) satisfying λj ≥ 0, j ∈ It, µi ≥ 0 for i ∈ I \I−. Notice that I− ⊂ I
and that we allow I to be equal to I−.

The algorithm of Talman and Yamamoto stops as soon as a (t − 1)-simplex
τ−(x1, . . . , xt) in F (I) for some I containing I− is generated for which the system has
a solution (λ, µ). Then x =

∑t
j=1 λjx

j is a parametrized stationary point in F (I−)

with respect to c of the piecewise linear approximation f of ϕ. Next the vector (c�, 0)
is pivoted semilexicographically into the system, making any µi, i ∈ I, nonnegative.
Since −c =

∑
i∈I− λia

i for unique λi > 0, one of the µi’s, say µi0 , for some i0 ∈ I−,
will leave the basis. Now the algorithm continues in F (I\{i0}) with the unique t-
simplex σ in F (I\{i0}) having τ− as a facet and a semilexicographic pivot step is
made with (1,−f�(xt+1))� where xt+1 is the vertex of σ opposite to τ , and so on.

In this way the algorithm generates for varying I ∈ I by semilexicographic pivot-
ing a unique sequence of adjacent simplices in F (I) with common I-complete facets
until a facet τ being a simplex in F (H) for some H containing I− or a complete facet
τ+ being a simplex in F (J) for some J containing I+ is generated. In the former
case the algorithm continues in the subset V F (H) of F (I−) as above until again an
I-complete simplex in F (I) for some I containing I− is found, and so on. In the
latter case the point x+ =

∑t
j=1 λjx

j at the solution (λ, µ, β) lies in τ+ and is a

parametrized stationary point in F+ of f with respect to c.
Letting x− be the last point being generated in F−, the algorithm generates a

piecewise linear path of parametrized stationary points of f with respect to the vector
c. This path connects the point x− in the face F− with a point x+ in the face F+.
Taking a sequence of triangulations of P with mesh tending to zero, in the limit
a connected set of parametrized stationary points of ϕ is obtained with respect to c
connecting the faces F− and F+. In case the correspondence ϕ satisfies the conditions
of Theorems 3.2, 3.3, or 3.4 and the piecewise linear approximations are chosen in
an appropriate way, there exists a connected set of zero points of ϕ connecting F−

and F+.
Notice that if a sequence of triangulations with mesh tending to zero is taken, for

any triangulation in this sequence the points x− in F− and x+ in F+ being connected
through the piecewise linear path generated by the algorithm may differ. In the limit
these points converge on a subsequence to two different zero points of ϕ, one lying in
F− and the other lying in F+.

7. Examples. In this section we will derive three existing existence theorems
from Theorems 3.2, 3.3, and 3.4.

The first example is derived from general equilibrium theory with price rigidities.
Let Un = {x ∈ R

n | 0 ≤ xi ≤ 1 ∀ i ∈ In} be the n-dimensional unit cube. Let
1n denote the n-vector of ones and for i ∈ In let e(i) denote the ith unit vector in
R
n. Under standard assumptions on economic primitives (see, e.g., Herings [12] for

details), it can be derived that the total excess demand function of an economy with
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completely fixed prices p ∈ R
n
++ is a continuous function f : Un → R

n with the
following properties:

(A) for every x ∈ Un, for every j ∈ In, xj = 0 implies fj(x) ≥ 0, and xj = 1
implies fj(x) ≤ 0;

(B) for every x ∈ Un, p�f(x) = 0.
Theorem 7.1. Let f : Un → R

n be the excess demand function of an economy
with completely fixed prices p ∈ R

n
++. Then there exists a connected set C of zero

points of f such that 0n ∈ C and 1n ∈ C.
Proof. We can rewrite the set Un as

Un = {x ∈ R
n | ai�x ≤ bi ∀ i ∈ I2n},

where ai = e(i), bi = 1, an+i = −e(i), and bn+i = 0∀i ∈ In. We can partition any
I ∈ I into two disjoint subsets I1 and I2 with I1 ⊂ In and I2 ⊂ I2n \ In. Notice that
i ∈ I1 implies i+ n �∈ I2, and i ∈ I2 implies i− n �∈ I1.

Let c = p. Clearly, x− = 0n and x+ = 1n. We check the condition of Theorem 3.2.
Suppose 0n �= f(x) ∈ A(I) for some I ∈ I, so f(x) =

∑
i∈I1 µie(i) −

∑
i∈I2 µie(i −

n) + βp, where µi ≥ 0 ∀i ∈ I, and β ∈ R, and some µi or β nonzero. Conditions (A)
and (B) imply that f(0n) = 0n and f(1n) = 0n, so I �= In and I �= I2n \ In. If I = ∅,
then 0 = p�f(x) = p�βp �= 0, a contradiction. Take any nonempty set I ∈ I not
equal to In or I2n \ In.

If I1 �= ∅ and I2 �= ∅, then pi(β + µi) ≤ 0, for i ∈ I1, and pi−n(β − µi) ≥ 0, for
i ∈ I2, so β = 0 and µi = 0∀i ∈ I, a contradiction.

If I1 = ∅, then I2 �= ∅, so β > 0, but then f(x) > 0n, a contradiction to
0 = p�f(x).

If I2 = ∅, then I1 �= ∅, so β < 0, but then f(x) < 0n, a contradiction to
0 = p�f(x). Consequently, Theorem 3.2 holds.

The proof of Theorem 7.1 shows that our results apply to economies with com-
pletely fixed prices p ∈ R

n
++. Since the results apply to all such economies, that is,

for all possible specifications of utility functions and initial endowments, it also shows
that our results satisfy a certain kind of robustness. The above theorem can also be
derived from Theorems 3.3 and 3.4.

The following result is obtained by Herings, Talman, and Yang [15, Theorem
4.3, p. 690] which generalizes Theorem 7.1. It is therefore also related to economies
with price rigidities, and it applies even under somewhat weaker assumptions on the
economic primitives. We will show that this theorem is a special case of Theorem 3.3.

Theorem 7.2. Let ϕ : Un =⇒ R
n be any correspondence satisfying Assumption

2.1. Moreover, it holds that
(A) for every x ∈ Un, there exists f ∈ ϕ(x) such that, for every j ∈ In, xj = 0

implies fj ≥ 0, and xj = 1 implies fj ≤ 0;
(B) for every x ∈ Un, for every f ∈ ϕ(x), there exists some p ∈ R

n
++ such that

p�f = 0.
Then there exists a connected set C of zero points of ϕ such that 0n ∈ C and 1n ∈ C.

Proof. Rewrite the set Un as in the proof of Theorem 7.1. Let c = 1n. Clearly,
x− = 0n and x+ = 1n. Moreover, it is easy to verify that condition (ii) of Theorem 3.3
is satisfied by condition (A). We have to check condition (i). For I = ∅, condition
(i) is trivially satisfied. Now take any nonempty set I from I. We partition I into
two disjoint subsets I1 and I2 as in the proof of Theorem 7.1. Suppose there is some
x ∈ F (I) and some f ∈ ϕ(x) such that f ∈ (A∗

0(I) ∩ A(I)) \ {0n}. This implies that
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there exist µi ≥ 0 ∀ i ∈ I and β ∈ R such that

f =
∑
i∈I µia

i + βc,
f�ai ≤ 0 ∀ i ∈ I,

f �= 0n.

Equivalently,

f =
∑
i∈I1 µie(i)−

∑
i∈I2 µie(i− n) + βc,

fi ≤ 0 ∀ i ∈ I1,
fi ≥ 0 ∀ n+ i ∈ I2,
f �= 0n.

This implies that

β ≥ maxi∈I2 µi,
β ≤ −maxi∈I1 µi.

(7.1)

In case I2 = ∅, we have f < 0n. This contradicts condition (B). In case I1 = ∅, we
have f > 0n, again contradicting condition (B). In cases I1 �= ∅ and I2 �= ∅, without
loss of generality there exist i ∈ I1 and j ∈ I2 such that µi > 0 and µj > 0. This
would mean both β > 0 and β < 0 from (7.1) which is impossible. Hence condition
(i) is satisfied.

Now we use Theorem 3.4 to show that there is a continuum of constrained equi-
libria in a pure exchange economy with general price rigidities; see, e.g., Schalk and
Talman [23] for details. Price vectors in such an economy with n commodities are
restricted to an n-dimensional simple polytope

P = {p ∈ R
n
+ | t− ≤ p�c ≤ t+, ai

�
p ≤ bi, i ∈ Im}

for some strictly positive vector c with length 1, 0 < t− < t+, ai
�
c = 0 ∀i ∈ Im. We

also assume that there are no redundant constraints and that P is a subset of R
n
++.

We define

Q = {q ∈ R
n | t− ≤ q�c ≤ t+, ai�q ≤ bi + ε ∀i ∈ Im}

for some ε > 0. For ε small enough, F (I), I ⊂ Im, is a face of Q if and only if
{x ∈ P | aix = bi, i ∈ I} is a face of P. For any q in Q, let p(q) be the orthogonal
projection of q on P and let I(q) be such that p(q) is in the interior of the face
F (I(q)) of P . Then there exist unique nonnegative numbers µi(q), i ∈ I(q), such that
q = p(q) +

∑
i∈I(q) µi(q)a

i.

At q ∈ Q define the price vector by p(q) and a continuous rationing scheme
(ri(q), di(q)), i ∈ Im, such that ri(q) = ai, di(q) = 0 if µi(q) = 1 and di(q) = M
if µi(q) = 0 or i not in I(q), for sufficiently large M > 0. This rationing scheme
determines the constraints on the net-supply of the consumers. Given a utility func-
tion uh and initial endowment wh, consumer h ∈ H maximizes his utility uh(x)
over his budget constraint given by p(q)�x ≤ p(q)�wh and rationing constraints

ri(q)
�

(x−wh) ≤ di(q), i ∈ Im. The solution set xh(q) yields the constraint excess de-
mand set zh(q) = xh(q)−{wh} of consumer h ∈ H at q. Adding up these sets over all
consumers in H gives the total constraint excess demand correspondence ζ : Q→ R

n.
Under certain standard economic conditions, the correspondence ζ satisfies Assump-
tion 2.1 and p(q)�z = 0 for any z ∈ ζ(q), q ∈ Q.
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A constrained equilibrium is obtained if q ∈ P is such that 0n ∈ ζ(q). At such an
equilibrium, p(q)�ai = bi if the ith rationing scheme is binding.

Let F− be the face of Q on which c�x is minimized on Q and let F+ be the face
of Q on which c�x is maximized on Q. Notice that F− = {q ∈ Q | q�c = t−} and
F+ = {q ∈ Q | q�c = t+}.

To see that there is a connected set of constrained equilibria linking F− and
F+, define the mapping ϕ on Q by ϕ(q) = {y|y = z − (c�z)c , z ∈ ζ(q)}, q ∈ Q.
We will show that ϕ(q) ⊂ A∗(I) when q lies in the interior of the face F (I) of Q.
Clearly, c�y = 0 for any y ∈ ϕ(q). Moreover, for any y = z − (c�z)c ∈ ϕ(q) and

i ∈ I(q) ∩ Im it holds that ai
�
y = ai

�
z − (ai

�
c)c�z = ri(q)

�
z ≤ 0. Therefore, any

y ∈ ϕ(q) is an element of A∗(I), and hence ϕ(q) ⊂ A∗(I) if q ∈ F (I). According to
Theorem 3.4 there exists a connected set C in Q intersecting both F− and F+ such
that every point q ∈ C is a zero point of ϕ, i.e., 0n ∈ ϕ(q). For such a q it holds
that there is z ∈ ζ(q) satisfying z − (c�z)c = 0n. Because p(q)�z = 0, we obtain that
(c�z)(p(q)�c) = 0. Hence, c�z = 0, since p(q)�c > 0. This implies that z = 0n and
therefore 0n ∈ ζ(q), inducing a constrained equilibrium. Consequently there exists a
connected set of constrained equilibria linking the two faces F− and F+.

Finally, we show that the fundamental fixed point theorems of Browder [4] and
Mas-Colell [20] can also be derived from Theorem 3.4. Browder proved the contin-
uous function case and Mas-Colell extended the result to the upper semicontinuous
correspondence case.

Theorem 7.3. Let P be an n-dimensional polytope and let ϕ : P × [0, 1] =⇒ P
be any correspondence satisfying Assumption 2.1. Then the set

D = {(x, t) ∈ P × [0, 1] | x ∈ ϕ(x, t)}
contains a connected set C such that

C ∩ (P× {0}) �= ∅ and C ∩ (P× {1}) �= ∅.

Proof. We can rewrite the set P × [0, 1] as

W = {(x, t) ∈ R
n+1 | (ai�, 0)(x�, t)� ≤ bi ∀i ∈ Im,

(0, . . . , 0,−1)(x�, t)� ≤ 0,
(0, . . . , 0, 1)(x�, t)� ≤ 1}.

Let c = (0, . . . , 0, 1)� ∈ R
n+1. Obviously, W is simple and no constraint is redundant.

Moreover, F+ = {(x, t) ∈W | t = 1} and F− = {(x, t) ∈W | t = 0}.
Construct the correspondence ψ : W =⇒ R

n+1 as

ψ(x, t) = (ϕ(x, t)− {x})× {0}.
We will show that for any I ∈ I and any (x, t) ∈ F (I), we have ψ(x, t) ⊂ A∗(I). For
I = ∅, ψ(x, t) ⊂ A∗(∅) since c�z = 0 for any z ∈ ψ(x, t). Now take any nonempty set
I from I. We have to consider the following two cases:

(1) In case I ⊂ Im, take any (x, t) in the face F (I) of W and any z in ψ(x, t). We
have

ai�x = bi ∀i ∈ I; z = ((k − x)�, 0)�

for some k ∈ P . Take any y ∈ A(I). That is,

y =
∑
i∈I
λi(a

i�, 0)� + βc
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for some λi ≥ 0 and β ∈ R. Thus, we have

z�y =
∑
i∈I
λi(k − x)�ai.

Since k ∈ P , we have ai�k ≤ bi for i ∈ Im. Since ai�x = bi for i ∈ I, we have
z�y ≤ 0. This means that ψ(x, t) is a subset of A∗(I).

(2) If I �⊂ Im, either m+ 1 or m+ 2 is contained in I. For example, suppose that
m + 2 is in I, i.e., t = 1. The case m + 1 ∈ I follows the same argument. Take any
(x, t) in the face F (I) of W and any z in ψ(x, t). We have

ai�x = bi ∀i ∈ I \ {m+ 2}; t = 1; z = ((k − x)�, 0)�

for some k ∈ P . Take any y ∈ A(I). That is,

y =
∑

i∈I\{m+2}
λi(a

i�, 0)� + βc

for some λi ≥ 0 and β ∈ R. Thus, we have

z�y =
∑

i∈I\{m+2}
λi(k − x)�ai.

Since k ∈ P , we have ai�k ≤ bi for i ∈ Im. Since ai�x = bi for i ∈ I \ {m + 2}, we
have z�y ≤ 0. This means that ψ(x, t) is again a subset of A∗(I). By Theorem 3.4
there exists a connected set C in W such that

0n+1 ∈ ψ(x, t) ∀(x, t) ∈ C; F+ ∩ C �= ∅; F− ∩ C �= ∅.
Clearly, x ∈ ϕ(x, t) for each (x, t) ∈ C.

We remark that the above theorem can also be derived from Theorem 3.2 or
Theorem 3.3.
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Abstract. This work explores Lyapunov characterizations of the input-output-to-state stabil-
ity (IOSS) property for nonlinear systems. The notion of IOSS is a natural generalization of the
standard zero-detectability property used in the linear case. The main contribution of this work is
to establish a complete equivalence between the IOSS property and the existence of a certain type
of smooth Lyapunov function. As corollaries, one shows the existence of “norm-estimators,” and
obtains characterizations of nonlinear detectability in terms of relative stability and of finite-energy
estimates.
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1. Introduction. This paper concerns itself with the following question, for
dynamical systems: is it possible to estimate, on the basis of external information
provided by past input and output signals, the magnitude of the internal state x(t) at
time t? The rest of this introduction will explain, in very informal and intuitive terms,
the motivation for this question, closely related to the “zero-detectability” problem,
sketching the issues that arise and the main results. Precise definitions are provided
in the next section.

State estimation is central to control theory. It arises in signal processing ap-
plications (Kalman filters), as well as in stabilization based on partial information
(observers). By and large, the theory of state estimation is well understood for linear
systems, but it is still poorly developed for more general classes of systems, such as
finite dimensional deterministic systems, with which this paper is concerned. An out-
standing open question is the derivation of useful necessary and sufficient conditions
for the existence of observers, i.e., “algorithms” (dynamical systems) which converge
to an estimate x̂(t) of the state x(t) of the system of interest, using the information
provided by {u(s), s ≤ t}, the set of past input values, and by {y(s), s ≤ t}, the set
of past output measurements. In the context of stabilization to an equilibrium, let us
say to the zero state x = 0 if we are working in a Euclidean space, a weaker type of
estimate is sometimes enough: it may suffice to have a norm-estimate, that is to say,
an upper bound x̂(t) on the magnitude (norm) |x(t)| of the state x(t). Indeed, it is
often the case (cf. [32] and Assumption UEC (73) in [18]) that norm-estimates suffice
for control applications. To be more precise, one wishes that x̂(t) eventually becomes
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an upper bound on |x(t)| as t → ∞. We are thus interested in norm-estimators
which, when driven by the input/output data generated by the system, produce such
an upper bound x̂(t); cf. Figure 1.1.

✲ ✲

✲

✲u y
x

x̂

Fig. 1.1. Norm-estimator.

In order to understand the issues that arise, let us start by considering the very
special case when the external data (inputs u and outputs y) vanish identically. The
obvious estimate (assuming, as we will, that everything is normalized so that the
zero state is an equilibrium for the unforced system, and the output is zero when
x = 0) is x̂(t) ≡ 0. However, the only way that this estimate fulfills the goal of
upper bounding the norm of the true state as t → ∞ is if x(t) → 0. In other
words, one obvious necessary property for the possibility of norm-estimation is that the
origin must be a globally asymptotically stable state with respect to the “subsystem”
consisting of those states for which the input u ≡ 0 produces the output y ≡ 0.
One says in this case that the original system is zero-detectable. For linear systems,
zero-detectability is equivalent to detectability, that is to say, the property that if
any two trajectories produce the same output, then they approach each other. Zero-
detectability is a central property in the general theory of nonlinear stabilization on the
basis of output measurements; see, for instance, among many other references, [34, 17,
50, 10, 16]. Our work can be seen as a contribution toward the better characterization
and understanding of this fundamental concept.

✲ ✲
u→ 0

⇒ x→ 0
y → 0

Fig. 1.2. State converges to zero if external data does.

However, zero-detectability by itself is far from being sufficient for our purposes,
since it fails to be “well-posed” enough. One easily sees that, at the least, one should
ask that, when inputs and outputs are small, states should also be small, and if inputs
and outputs converge to zero as t→∞, states do too; cf. Figure 1.2. Moreover, when
formally defining the notion of norm-estimator and the natural necessary and sufficient
conditions for its existence, other requirements appear: the existence of asymptotic
bounds on states, as a function of bounds on input/output data, and the need to
describe the “overshoot” (transient behavior) of the state.

One way to approach the formal definition, so as to incorporate all the above char-
acteristics in a simple manner, is to look at the analogous questions for the stability
problem, which, for linear systems, is known to be technically dual to detectability.
This leads one to the area which deals precisely with this circle of ideas: input-to-state
stability (ISS).

ISS was introduced in [35] and has proved to be a very useful paradigm in the
study of nonlinear stability; see, for instance, the textbooks [16, 20, 22, 23], and the
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papers [7, 14, 15, 19, 28, 11, 32, 33, 44, 42, 49, 48], as well as its variants such as
integral ISS (cf. [2, 4, 24, 38]) and input/output stability (cf. [35, 46, 47]). The notion
of ISS takes into account the effect of initial states in a manner fully compatible with
Lyapunov stability, and incorporates naturally the idea of “nonlinear gain” functions;
the reader may wish to consult [37] and [41] for expositions, as well as [44] for the
proofs of several of the main characterizations. Roughly speaking, a system is ISS
provided that, no matter what is the initial state, if the inputs are small, then the
state must eventually be small. Dualizing this definition one arrives at the notion
of detectability which is the main subject of study of this paper: input-output-to-
state stability (IOSS). (The terminology “IOSS” is not to be confused with the totally
different concept called input/output stability (IOS)—cf. [35, 46, 47]—which refers
instead to stability of outputs, rather than to detectability.)

A system ẋ = f(x, u) with measurement (“output”) map y = h(x) is IOSS if
there are some functions β ∈ KL and γ1, γ2 ∈ K∞ such that the estimate

|x(t)| ≤ max
{
β(|x(0)| , t), γ1

(∥∥u|[0,t]∥∥) , γ2

(∥∥y|[0,t]∥∥)}
holds for any initial state x(0) and any input u(·), where x(·) is the ensuing trajectory
and y(t) = h(x(t)) the respective output function. (States x(t), input values u(t), and
output values y(t) lie in appropriate Euclidean spaces. We use |·| to denote Euclidean
norm and ‖·‖ for supremum norm. Precise definitions and technical assumptions
are discussed later.) The terminology IOSS is self-explanatory: formally, there is
“stability from the input/output data to the state.” The term was introduced in
the paper [45], but the same notion had appeared before: it represents a natural
combination of the notions of “strong” observability (cf. [35]) and ISS, and was called
simply “detectability” in [36] (where it is phrased in input/output, as opposed to
state space, terms and applied to questions of parameterization of controllers) and
was called “strong unboundedness observability” in [19] (more precisely, this last
notion also allows an additive nonnegative constant in the right-hand side of the
estimate). In [45], two of the authors described relationships between the existence
of full state observers and the IOSS property, or more precisely, a property which we
called “incremental IOSS.” The use of ISS-like formalism for studying observers, and
hence implicitly the IOSS property, has also appeared several times in other authors’
work, such as the papers [31, 26].

One of the main results of this paper is that a system is IOSS if and only if it
admits a norm-estimator (in a sense also to be made precise). This result is in turn
a consequence of a necessary and sufficient characterization of the IOSS property in
terms of smooth dissipation functions, namely, there is a proper (radially unbounded)
and positive definite smooth function V of states (a “storage function” in the language
of dissipative systems introduced by Willems [52] and further developed by Hill and
Moylan [12, 13] and others) such that a dissipation inequality

d

dt
V (x(t)) ≤ −σ1(|x(t)|) + σ2(|y(t)|) + σ3(|u(t)|)(1.1)

holds along all trajectories, with the functions σi of class K∞. This provides an
“infinitesimal” description of IOSS, and a norm-observer is easily built from V . Such
a characterization in dissipation terms was conjectured in [45], and we provide here a
complete solution to the problem. (The paper [45] also explains how the existence of
V links the IOSS property to “passivity” of systems.)

It is worth pointing out that several authors have independently suggested that
one should define “detectability” in dissipation terms. For example, in [27, eq. 15], one
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finds detectability defined by the requirement that there should exist a differentiable
storage function V satisfying our dissipation inequality but with the special choice
σ2(r) := r2 (there were no inputs in the class of systems considered there). A variation
of this is to weaken the dissipation inequality, to merely require

x �= 0 ⇒ d

dt
V (x(t)) < σ2(|y(t)|)

(again, with no inputs), as done, for instance, in the definition of detectability given
in [30]. Observe that this represents a slight weakening of our property, in so far as
there is no “margin” of stability −σ1(|x(t)|). One of our contributions is to show that
such alternative definitions (when posed in the right generality) are in fact equivalent
to IOSS.

❄

✲ ✲x
u y

∆

Fig. 1.3. Robust detectability.

A key preliminary step in the construction of V , just as it was for the analogous
result for the ISS property obtained in [42], is the characterization of the IOSS prop-
erty in robustness terms, by means of a “small gain” argument. The IOSS property is
shown to be equivalent to the existence of a “robustness margin” ρ ∈ K∞. This means
that every system obtained by closing the loop with a feedback law ∆ (even dynamic
and/or time-varying) for which |∆(t)| ≤ ρ(|x(t)|) for all t (cf. Figure 1.3) is OSS (i.e.,
is IOSS as a system with no inputs). In order to formulate precisely this notion of
robust detectability, we need to consider auxiliary “systems with disturbances.” Since
such systems must be introduced anyhow, we decided to present all our results (and
definitions, even of IOSS) for systems with disturbances, in the process gaining extra
generality in our results.

The core of the paper is, thus, the construction of V for “robustly detectable”
(more precisely, “robust IOSS”) systems ẋ = g(x, d) which are obtained by substitut-
ing u = dρ(|x|) in the original system, and letting d = d(·) be an arbitrary measurable
function taking values in a unit ball. The function V must satisfy a differential in-
equality of the form V̇ (x(t)) ≤ −σ1(|x(t)|) + σ2(|y(t)|) along all trajectories, that is
to say, the following partial differential inequality:

∇V (x) · g(x, d) ≤ −σ1(|x|) + σ2(|y|)
for some functions σ1 and σ2 of class K∞. But one last reduction consists of turning
this problem into one of building Lyapunov functions for “relatively asymptotically
stable” systems. Indeed, one observes that the main property needed for V is that
it should decrease along trajectories as long as y(t) is sufficiently smaller than x(t).
This leads us to the notion of “global asymptotic stability modulo outputs” and its
Lyapunov-theoretic characterization.

The construction of V relies upon the solution of an appropriate optimal control
problem, for which V is the value function. This problem is obtained by “fuzzifying”
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the dynamics near the set where y � x, so as to obtain a problem whose value function
is continuous. Several elementary facts about relaxed controls are used in deriving
the conclusions. The last major ingredient is the use of techniques from nonsmooth
analysis, and in particular inf-convolutions, in order to obtain a Lipschitz, and from
there by a standard regularization argument, a smooth, function V , starting from the
continuous V that was obtained from the optimal control problem.

Finally, we will also discuss a version of detectability which relies upon “energy”
estimates instead of uniform estimates. Such versions of detectability are fairly stan-
dard in control theory; see, for instance, [10], which defined “L2-detectability” by a
requirement that the state trajectory should be in L2 if the observations are. The
corresponding “integral to integral” notion uses a very interesting concept introduced
in [29], that of “unboundedness observability” (UO), which amounts to a “relative
(modulo outputs) forward completeness” property. It is shown that, for systems with
no controls, the integral variant of OSS is equivalent to the conjunction of OSS and
UO.

It is worth remarking that the main result in this paper amounts to providing
necessary and sufficient conditions for the existence of a smooth (and proper and
positive definite) solution V to a partial differential inequality which is equivalent to
asking that (1.1) holds along all trajectories, namely,

max
u∈Rm

{∇V (x) · f(x, u) + σ1(|x|)− σ2(|h(x)|)− σ3(|u|)} ≤ 0 .(1.2)

It is a consequence of our results that if there is an (even just) lower semicontinuous
such solution (when “solution” is interpreted in a weak sense, for example, in terms of
viscosity or proximal subdifferentials), then there is also a smooth solution (usually,
however, with different comparison functions σi’s). This is because the existence
of a weak solution is already equivalent to IOSS, as shown in [21]. It is a routine
observation that the above partial differential inequality can be posed in an equivalent
way as a Hamilton–Jacobi inequality (HJI), in the special case of quadratic input
“cost” σ3(r) = r2 and for systems ẋ = f(x, u) which are affine in controls, i.e.,
systems of the form

ẋ = g0(x) +

m∑
i=1

ui gi(x)(1.3)

(we are denoting by ui the ith component of u). Indeed, one need only replace
the expression in (1.2) by its maximum value obtained at ui = (1/2)∇V (x) · gi(x),
i = 1, . . . ,m, thereby obtaining the following HJI:

∇V (x) · g0(x) +
1

4

m∑
i=1

(∇V (x) · gi(x))2 + σ1(|x|)− σ2(|h(x)|) ≤ 0 .(1.4)

2. Definitions and statements of the main results.

2.1. Systems of interest. We study a system whose dynamics depend on two
types of inputs, which we respectively call controls and disturbances:

ẋ(t) = f(x(t),u(t),w(t)), y(t) = h(x(t)).(2.1)

Here, states evolve in X = Rn, controls are measurable, essentially bounded functions
u on I = R≥0 with values in U := Rmu , and disturbances are measurable functions
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w : I → Γ with values in Γ, which is a compact, convex subset of Rmw . We will
denote the set of all such functions by MΓ. In those cases when a different interval
I ⊂ R≥0 of definition for a control u is specified, we always apply the definitions to
the extension of u to R≥0, using u ≡ 0 on R≥0 \ I. The function f : X×U×Γ→ X
is locally Lipschitz in (x, u) uniformly on w, jointly continuous in x, u, and w, and
such that f(0, 0, w) = 0 for any w ∈ Γ; and h : X → Y := Rp is smooth (C1) and
vanishes at 0.

A function α : R≥0 → R≥0 is of class K if it is continuous, positive definite,
and strictly increasing, and is of class K∞ if it is also unbounded. A function β :
R≥0 ×R≥0 → R≥0 is said to be of class KL if for each fixed t ≥ 0, β(·, t) is of class
K, and for each fixed s ≥ 0, β(s, t) decreases to 0 as t→∞. Let z(·) be a measurable
function.

The L∞ (essential supremum) norm of the restriction of z to the interval [t1, t2]
is denoted by

∥∥z|[t1,t2]∥∥.
Given a state ξ ∈ X, for each pair (u,w) denote by x(t, ξ,u,w) the unique

maximal solution of the system (2.1), which is defined on some maximal interval
[0, tmax(ξ,u,w)). We will use the notation y(t, ξ,u,w) := h(x(t, ξ,u,w)), and, when
unimportant or clear from the context, we will write tmax instead of tmax(ξ,u,w),
x(t) instead of x(t, ξ,u,w), and y(t) instead of y(t, ξ,u,w).

2.2. Notions of “uniform detectability” and dissipation functions.
Definition 2.1. A system of type (2.1) is said to be uniformly input-output-to-

state stable (UIOSS) if there exist functions β ∈ KL and γ1, γ2 ∈ K such that the
estimate

|x(t, ξ,u,w)| ≤ max
{
β(|ξ| , t), γ1

(∥∥u|[0,t]∥∥) , γ2

(∥∥y|[0,t]∥∥)}(2.2)

holds for any initial state ξ ∈ X, control u, disturbance w, and t ∈ [0, tmax(ξ,u,w)).
Definition 2.2. A smooth (C∞) function V : X→ R≥0 is a UIOSS-Lyapunov

function for system (2.1) if
• there exist K∞-functions α1, α2 such that

α1(|ξ|) ≤ V (ξ) ≤ α2(|ξ|)(2.3)

holds for all ξ in X, and
• there exists a K∞-function α and K-functions σ1, σ2 such that

∇V (ξ) · f(ξ, u, w) ≤ −α(|ξ|) + σ1(|u|) + σ2(|h(ξ)|)(2.4)

for all ξ in X, for all control values u ∈ U, and for all disturbance values
w ∈ Γ.

Property (2.3) amounts to positive definiteness and properness of V ; requiring
the existence of an upper bound α2 is redundant, as it follows from the fact that V
is continuous and satisfies V (0) = 0. However, it is convenient to specify this bound
explicitly, as it will be used in various estimates. Condition (2.4) is a dissipation
inequality in the sense of [52].

Remark 2.1. A smooth function V : X→ R≥0, satisfying (2.3) on X with some
α1, α2 of class K∞, is a UIOSS-Lyapunov function for a system (2.1) if and only if
there exist functions α3 of class K∞, and γ and χ1 of class K such that

∇V (ξ) · f(ξ, u, w) ≤ −α3(|ξ|) + γ(|h(ξ)|)(2.5)
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for any ξ ∈ X, w ∈ Γ, and u ∈ U such that |ξ| ≥ χ1(|u|).
Indeed, clearly (2.4) implies (2.5) with α3(·) := α(·)/2, γ ≡ σ2, and χ1 := α−1 ◦

(2σ1). To prove the other implication, assume now that (2.5) holds with some α3 ∈
K∞ and γ, χ1 ∈ K. Define σ1(·) = max {0, σ̂1(·)}, where

σ̂1(r) := max {∇V (ξ) · f(ξ, u, w) + α3(χ1(|u|)) : |u| ≤ r, |ξ| ≤ χ1(r), w ∈ Γ} .

Then σ1 is continuous, σ1(0) = 0, and one can assume that σ1 is a K∞-function
(majorize it by one if it is not). We claim that (2.4) holds with α ≡ α3 and σ2 ≡ γ.
Indeed, if |ξ| ≥ χ1(|u|), then (2.5) holds, from which (2.4) trivially follows. If |ξ| <
χ1(|u|), then, by definition of σ1,

σ1(|u|) ≥ ∇V (ξ) · f(ξ, u, w) + α3(χ1(|u|))

for every w, which, in turn, implies (2.4).
A few particular cases of the UIOSS property have been studied in the literature.

If the system (2.1) in consideration has no outputs and no disturbances, UIOSS re-
duces to the well-known ISS property, whose Lyapunov characterization was obtained
in [42]. In case (2.1) is autonomous, UIOSS becomes OSS. This property was intro-
duced in [43] where Lyapunov-type necessary and sufficient conditions were obtained.
Finally, for systems with no disturbances, UIOSS is just IOSS. This property was
introduced in [45], where it was conjectured that any IOSS control system admits a
smooth IOSS-Lyapunov function. This conjecture will be proven here in a more gen-
eral setting, for systems forced by both controls and disturbances. A few interesting
applications of this Lyapunov characterization were also discussed in [45], one of them
to be defined next.

2.3. Norm-estimators.
Definition 2.3. A state-norm-estimator (or state-norm-observer) for a system

Σ of type (2.1) is a pair (Σn.o, k(·, ·)), where k : R
 × Y → R, and Σn.o is a system

ṗ = g(p, u, y)(2.6)

evolving in R
 and driven by the controls and outputs of Σ, such that the following
conditions are satisfied.

• There exist K-functions γ̂1 and γ̂2 and a KL-function β̂ such that for any
initial state ζ ∈ R
, all inputs u and y, and any t in the interval of definition
of the solution p(·, ζ,u,y), the following inequality holds:

|k(p(t, ζ,u,y),y(t))| ≤ β̂(|ζ| , t) + γ̂1

(∥∥u|[0,t]∥∥)+ γ̂2

(∥∥y|[0,t]∥∥)(2.7)

(in other words, the system (2.6) is IOS with respect to the inputs u and y
and output k).

• There are functions ρ ∈ K and β ∈ KL so that, for any pair of initial states ξ
and ζ of systems (2.1) and (2.6), respectively, any control u : R≥0 → U and
any disturbance w ∈MΓ, we have

|x(t, ξ,u,w)| ≤ β(|ξ|+ |ζ| , t) + ρ(|k(p(t, ζ,u,yξ,u,w),yξ,u,w(t))|)(2.8)

for all t ∈ [0, tmax(ξ,u,w)). (Here yξ,u,w denotes the output trajectory of Σ,
that is, yξ,u,w(t) = y(t, ξ,u,w).)
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2.4. Statement of the main result. The main theorem to be proved in this
paper, summarizing the equivalent characterizations of UIOSS, will be as follows.

Theorem 2.4. Let Σ be a system of type (2.1). Then the following are equivalent:
1. Σ is UIOSS.
2. Σ admits a UIOSS-Lyapunov function.
3. There is a state-norm-estimator for Σ.

The main contribution is in showing that 1 implies 2; the remaining implications
are much easier.

2.5. Example: Linear systems. A particular class of systems (2.1) is as fol-
lows. A linear, time-invariant system Σlin with outputs is one for which f and h are
linear, that is,

ẋ = Ax+Bu,(2.9)

y = Cx,

where A ∈ Rn×n, B ∈ Rn×m, and C ∈ Rp×n. (We assume that mw = 0.)
Recall the following definition.
Definition 2.5. A linear, time-invariant system (2.9) is detectable, or asymp-

totically observable, if the implication

Cx(t) ≡ 0 =⇒ x(t)→ 0(2.10)

holds for any trajectory x(t) of (2.9), corresponding to the zero control u ≡ 0.
The following result is a totally routine linear systems theory fact, but we include

the proof as a motivation for the nonlinear material to follow.
Proposition 2.6. If a linear system (2.9) is detectable, then it is IOSS.
Proof. It is a well-known fact (see, for example, [39]) that if a system (2.9) is

detectable, then there exists a matrix L ∈ Rn×p, such that the matrix A + LC is
Hurwitz, and, furthermore, the system

ż(t) = Az(t) +Bu(t) + L(Cz(t)− y(t)),(2.11)

referred to as an observer and driven by the controls and outputs of (2.9), has the
property that if x(t) and z(t) are any solutions of (2.9) and (2.11), respectively, then
|x(t)− z(t)| → 0, and, in particular, if x(0) = z(0), then x(t) = z(t) for all nonnegative
t. Fix an initial state ξ and a control u. Then the solution x(t, ξ,u) of (2.9) is also
the solution of (2.11) with z(0) = ξ, so that

x(t, ξ,u) = et(A+LC)ξ +

∫ t

0

es(A+LC)[Bu(t− s)− Ly(t− s)]ds.

Choose two positive numbers δ′ and δ so that �λ ≤ −δ′ < −δ for every eigenvalue
λ of A + LC. Then there exists a polynomial P (·) and, consequently, a constant K
such that

|x(t, ξ,u)| ≤ P (t)e−δ′t |ξ|+
∫ t

0

P (s)e−δ′s [‖B‖ |u(t− s)|+ ‖L‖ |y(t− s)|] ds

≤ Ke−δt |ξ|+K
‖B‖
δ

∥∥u|[0,t]∥∥+K
‖L‖
δ

∥∥y|[0,t]∥∥.(2.12)

Thus, the IOSS estimate (2.2) holds for (2.9) with the linear gains β(r, t) := Ke−δtr

and γ1(r) = γ2(r) := K ‖B‖
δ r.
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To see this, first note that the solution z(·, ζ,u,y) of (2.11) satisfies the estimate

|z(t, ζ,u,y)| ≤ Ke−δt |ξ|+K
‖B‖
δ

∥∥u|[0,t]∥∥+K
‖L‖
δ

∥∥y|[0,t]∥∥,
where K, δ are the same as in (2.12). Also, with e := x− z, we have

ė(t) = (A+ LC)e(t).

From this we see that, along any trajectory (x(t), z(t)) of (2.9) and (2.11),

|x(t)| ≤ K |ξ − ζ| e−δt + |z(t)|

for all t ≥ 0, where K, δ are again as in (2.12).
To find an IOSS-Lyapunov function for system (2.9), take any symmetric matrix

P ∈ Rn×n such that

P(A+ LC) + (A+ LC)′P = −I

(such a matrix P exists, because A+ LC is Hurwitz). Define

V (x) := x′Px.(2.13)

Notice that, since P(A + LC) = ((A + LC)′P)′, we have x′P(A + LC)x = x′(A +
LC)′Px. Therefore

∇V (x) · f(x, u) = 2x′P (Ax+Bu)

= 2x′P ((A+ LC)x+Bu− Ly)

= 2x′P(A+ LC)x+ 2x′PBu− 2x′PLy
= x′(P(A+ LC) + (A+ LC)′P)x+ 2x′PBu− 2x′PLy

≤ − |x|2 + 2 ‖P‖ ‖B‖ |u| |x|+ 2 ‖P‖ ‖L‖ |y| |x|
≤ − |x|2 + |x|2/4 + 4 ‖P‖2 ‖B‖2 |u|2 + |x|2/4 + 4 ‖P‖2 ‖L‖2 |y|2
≤ − |x|2 /2 + 4 ‖P‖2 ‖B‖2 |u|2 + 4 ‖P‖2 ‖L‖2 |y|2.

So, the UIOSS dissipation inequality holds for V with gains defined by α(r) = r/2,

σ1(r) = 4 ‖P‖2 ‖B‖2 r2, σ2(r) = 4 ‖P‖2 ‖L‖2 r2.

2.6. Systems without controls. Let Ω be a compact metric space (which is
always assumed to be of the form [−1, 1]m unless specified otherwise). Consider
systems of the type

ẋ = f(x(t),d(t)), y(t) = h(x(t)),(2.14)

where f : X × Ω is locally Lipschitz in x uniformly on d and jointly continuous in x
and d, and f(0, d) = 0 for any d ∈ Ω. The inputs are measurable functions d : I → Ω,
and we use the term disturbances to refer to such Ω-valued inputs. We will use MΩ

to denote the collection of all such functions.
This system can be seen as a particular case of (2.1) that eschews controls and

is driven only by disturbances. However, it will play an important role in our stud-
ies; therefore for convenience we will define the corresponding stability property and
dissipation inequality for this system separately from the main Definition 2.1.
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Definition 2.7. A system (2.14) is UOSS (uniformly output-to-state stable) if
there exist some β ∈ KL and γ2 ∈ K such that

|x(t, ξ,d)| ≤ max
{
β(|ξ| , t), γ2

(∥∥y|[0,t]∥∥)}(2.15)

for any disturbance d, initial state ξ ∈ X, and t ∈ [0, tmax).
Definition 2.8. A UOSS-Lyapunov function for system (2.14) is a smooth func-

tion V : X→ R≥0 satisfying (2.3) and

∇V (x) · f(x, d) ≤ −α3(|x|) + γ(|h(x)|) ∀x ∈ X, ∀ d ∈ Ω,(2.16)

with some class K∞ functions αi and a K function γ. For systems with no disturbances
we simply say that V is an OSS-Lyapunov function.

2.6.1. “Modulo outputs” relative stability. Recall the classical notion of
uniform global asymptotic stability for systems of type (2.14), ensuring that every
solution of the system tends to the equilibrium and never goes too far from it. Suppose
now that it does not matter how the system behaves when the information provided
by the output is adequate, that is, the norm of the output dominates the norm of
the current state. On the other hand, we want the system to decay nicely when
the output does not help in determining how large the state is. This motivates the
following “modulo output” definition of stability.

Definition 2.9. A system of type (2.14) satisfies the GASMO (global asymptotic
stability modulo output) property if there exist a function ρ of class K∞ and a function
λ of class KL such that, for all ξ ∈ X, d ∈MΩ, and any T < tmax(ξ,d), if

|x(t, ξ,d)| ≥ ρ(|h(x(t, ξ,d))|) ∀ 0 ≤ t ≤ T,

then the estimate

|x(t, ξ,d)| ≤ λ(|ξ| , t) ∀ 0 ≤ t ≤ T(2.17)

holds.
Remark 2.2. If a system in consideration has no outputs, then the GASMO

property becomes global asymptotic stability (GAS).
The following proposition provides an “ε-δ” characterization of the GASMO prop-

erty.
Proposition 2.10. A system of type (2.14) satisfies the GASMO property if and

only if there exists a K∞-function ρ so that the following two properties hold.
1. For any ε > 0 and any r > 0, there exists some Tr,ε such that for any |ξ| ≤ r,

any d, and any T ∈ [0, tmax(ξ,d)) such that T ≥ Tr,ε, if

|x(t, ξ,d)| ≥ ρ(|y(t, ξ,d)|) ∀ 0 ≤ t ≤ T ,

then

|x(t, ξ,d)| < ε ∀ t ∈ [Tr,ε, T ] .

2. There exists a K-function ϑ such that for any ξ ∈ X, any disturbance d, and
any T < tmax(ξ,d) such that

|x(t, ξ,d)| ≥ ρ(|y(t, ξ,d)|) ∀ 0 ≤ t ≤ T ,

the following “bounded overshoot” estimate holds:

|x(T, ξ,d)| ≤ ϑ(|ξ|) .
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The necessity part is obvious. To prove the sufficiency, we need the following
lemma, proved in section 3 of [25], although not explicitly stated in this form.

Lemma 2.11. Let Φ(r, t) : (R≥0)
2 → R≥0 be a map such that

1. for all ε > 0 and for all R > 0 there exists T such that Φ(r, t) < ε for all
0 ≤ r ≤ R and for all t ≥ T ,

2. for all ε > 0 there exists δ > 0 such that if r ≤ δ, then Φ(r, t) < ε for all
t > 0.

Then Φ can be majorized by a KL-function.
Proof of sufficiency for Proposition 2.10. Consider the function

Φ(r, t) := sup {|x(t, ξ,d)| : |ξ| ≤ r, d ∈MΩ, |x(s, ξ,d)| ≥ ρ(|y(s, ξ,d)|) ∀ s ∈ [0, t]} .
Then the conditions 1 and 2 of Lemma 2.11 follow from the assumptions 1 and 2 of
the proposition, so that one can majorize Φ by a KL-function λ.

2.6.2. Integral variants. The UOSS property gives uniform estimates on states
as a function of uniform bounds on outputs. There is a “finite energy output implies
finite energy state” version as well.

Definition 2.12. A system of type (2.14) is integral-to-integral uniformly output-
to-state stable (iiUOSS) if there exist functions γ, κ of class K, and χ ∈ K∞ such
that ∫ t

0

χ(|x(s, ξ,d)|) ds ≤ κ(|ξ|) +
∫ t

0

γ(|h(x(s, ξ,d))|) ds(2.18)

for any initial state ξ, any disturbance d ∈MΩ, and any time t ∈ [0, tmax(ξ,d)).
Without loss of generality, γ and κ can be assumed to be of class K∞.
Definition 2.13. A system (2.1) is called forward complete if for every initial

condition ξ, every input signal u, and every disturbance d defined on [0,+∞), the
corresponding trajectory x(t, ξ,u,d) is defined for all t ≥ 0, i.e., tmax(ξ,u,d) = +∞.

The following property, which is strictly weaker than forward completeness, was
introduced in [29].

Definition 2.14. A system (2.14) has the unboundedness observability property
(UO) if

lim sup
t↗tmax(ξ,d)

|y(t, ξ,d)| = +∞(2.19)

holds for each initial state ξ and disturbance d with tmax(ξ,d) <∞.
The following useful characterization of UO was provided in [3].
Proposition 2.15. A system (2.14) has the UO property if and only if there exist

class K functions ρ1, χ1, χ2, and a constant c, such that the following implication
holds:

|h(x(t, ξ,d))| ≤ ρ1(|x(t, ξ,d)|) ∀ t ∈ [0, T ]

⇒ |x(t, ξ,d)| ≤ χ1(t) + χ2(|ξ|) + c ∀t ∈ [0, T ](2.20)

for all ξ ∈ X, d ∈MΩ, and all T ∈ [0, tmax(ξ,d)).
This proposition provides a uniform bound on all the states that can be reached

by a UO system in given time from a given bounded set via a trajectory not dominated
by the output. Notice that for systems with disturbances (2.14), the UOSS property
implies the UO property.
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2.6.3. Statement of the main result for the case of no controls.
Theorem 2.16. Let Σ be a system of type (2.14). Then the following are equiv-

alent:
1. Σ is UOSS.
2. Σ is GASMO.
3. Σ is iiUOSS and UO.
4. Σ admits a UOSS-Lyapunov function.

2.7. Organization of the paper. Implications 2 ⇒ 3 ⇒ 1 of Theorem 2.4 are
proven in section 5. The part of Theorem 2.4 most difficult to prove is the implication
1 ⇒ 2. The main technical result needed for this proof is implication 2 ⇒ 4 of
Theorem 2.16. This is proven in section 4. The construction of a UIOSS-Lyapunov
function for an original system (2.1) is reduced, via a small gain argument, to the
construction of a UOSS-Lyapunov function for a special system (2.14) related to the
original system (2.1). This reduction is done in section 3.1, and section 3.2 completes
the construction of UIOSS-Lyapunov functions.

Finally, implications 3 ⇒ 2, 1 ⇒ 2, and 4 ⇒ 3 of Theorem 2.16 are proven in
section 3.3, and 4 ⇒ 1 follows from Theorem 2.4.

3. Reduction to the case of no controls. In this part we show how to reduce
our main result to the particular case of systems with no controls. Let U1 denote a
closed unit ball {u ∈ U : |u| ≤ 1} in U.

3.1. Robust output-to-state stability.
Definition 3.1. System (2.1) is said to be robustly output-to-state stable

(ROSS) if there exists a locally Lipschitz K∞-function ϕ, called a stability margin,
such that the system

ẋ(t) = g(x(t),d(t)) := f(x(t),du(t)ϕ(|x(t)|),w(t))(3.1)

with disturbances d := [du, w] ∈ U1 × Γ and outputs y = h(x) is UOSS.
Notice that the set U1 × Γ is a compact, convex subset of Rmu+mw . We will

denote it by Ω in this section. Observe also that the dynamics g of system (3.1) are
locally Lipschitz in x uniformly in d, and also g(0, d) = 0 for all d ∈ Ω.

Lemma 3.2. If a system (2.1) is UIOSS, then it is ROSS.
The proof will follow from a few preliminary lemmas.
Let β ∈ KL and γ1, γ2 ∈ K∞ be as in (2.2). Let ϑ(r) = β(r, 0). Without loss of

generality, we may assume that ϑ is K∞ and ϑ(r) ≥ r (so that ϑ−1(r) ≤ r).
Define ϕ(r) to be a locally Lipschitz K∞-function, which minorizes γ1

−1( 1
4ϑ

−1(r))
and can be extended as a Lipschitz function to a neighborhood of [0,∞). To prove
the lemma we will show that ϕ is a stability margin for (2.1).

Proposition 3.3. Fix a ξ ∈ X, a control u, and a disturbance w, and let
x(·) := x(·, ξ,u,w) be the corresponding solution of the system (2.1). Let T ∈
[0, tmax(ξ,u,w)). Then if |u(t)| ≤ ϕ(|x(t)|) for almost all t ∈ [0, T ], the estimate

|x(t)| ≤ max

{
β(|ξ| , t), γ2(

∥∥y|[0,t]∥∥), |ξ|
4

}
(3.2)

holds for all t ∈ [0, T ].
Proof.
Claim 1. Suppose T < tmax(ξ,u,w). If

|u(t)| ≤ ϕ(|x(t)|) for almost all t ∈ [0, T ),(3.3)
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then, for all t ∈ [0, T ),

|x(t)| ≤ max
{
ϑ(|ξ|), 2γ2(

∥∥y|[0,t]∥∥)} .(3.4)

Proof of the claim. Suppose first that ξ = 0. In this case x(t) ≡ 0. Indeed, define
du(·) on [0, tmax(ξ,u,w)) by

du(t) =

{
0 if x(t) = 0,
u(t)/ϕ(|x(t)|) if x(t) �= 0.

Then (3.3) implies that du ∈MU1 and that x(·) is the solution of (3.1) with ξ = 0, w
as we picked, and du(·) as we defined. Noticing that the constant function equal to 0
is also a solution of this system, with the same initial state and the same disturbance,
we conclude by uniqueness of solutions that x(t) = 0 for all nonnegative t, so that (3.4)
trivially holds.

Suppose now that ξ �= 0. Fix ε, such that 1 < ε < 2. We will first show that if
|u(t)| ≤ ϕ(|x(t)|) for almost all t < T , then the estimate

|x(t)| ≤ max
{
εϑ(|ξ|), 2γ2(

∥∥y|[0,t]∥∥)}(3.5)

holds for all t ∈ [0, T ). Indeed, notice that (3.5) is true as a strict inequality at t = 0
because |ξ| ≤ ϑ(|ξ|) < εϑ(|ξ|). If (3.5) fails at some t ∈ [0, T ), then there exists a

t0 = min
{
t < T : x(t) = max

{
εϑ(|ξ|), 2γ2(

∥∥y|[0,t]∥∥)}} .
Note that t0 > 0 because at t = 0 we have a strict inequality in (3.5). So, (3.5) holds
for all t ∈ [0, t0) and x(t0) = max

{
εϑ(|ξ|), 2γ2(

∥∥y|[0,t0]∥∥)}. Therefore for almost all
t ∈ [0, t0) we have

γ1(
∥∥u|[0,t]∥∥) ≤ γ1(

∥∥ϕ(|x(·)|)|[0,t]∥∥)
≤ max

{
1

4
ϑ−1(εϑ(|ξ|)), 1

4
ϑ−1(2γ2(

∥∥y|[0,t]∥∥))}
≤ max

{
1

4
εϑ(|ξ|), 1

4
2γ2(
∥∥y|[0,t]∥∥)}

≤ max
{
ϑ(|ξ|), γ2(

∥∥y|[0,t]∥∥)} .
Then, since our system is UIOSS and x(·) is continuous, for all t ∈ [0, t0] we have

|x(t)| ≤ max
{
ϑ(|ξ|), γ1(

∥∥u|[0,t]∥∥), γ2(
∥∥y|[0,t]∥∥)}

= max
{
ϑ(|ξ|), γ2(

∥∥y|[0,t]∥∥)} .
On the other hand, |x(t0)| = max

{
εϑ(|ξ|), 2γ2(

∥∥y|[0,t0]∥∥)} by definition of t0. The
contradiction proves the estimate (3.5). Letting ε tend to 1, we conclude that esti-
mate (3.4) holds for all t ∈ [0, T ), completing the proof of Claim 1.

Hence, under the assumption of Claim 1, we have

γ1

(∥∥u|[0,t]∥∥) ≤ γ1

(∥∥ϕ(|x(·)|)|[0,t]∥∥)
≤ max

{ |ξ|
4
,
1

4
ϑ−1
(
2γ2

(∥∥y|[0,t]∥∥))}
for all t in [0, tmax). So,

|x(t)| ≤ max

{
β(|ξ| , t), γ2

(∥∥y|[0,t]∥∥) , |ξ|
4
,
1

4
ϑ−1
(
2γ2

(∥∥y|[0,t]∥∥))}
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for all t ∈ [0, tmax). Noticing that

1

4
ϑ−1
(
2γ2

(∥∥y|[0,t]∥∥)) ≤ γ2

(∥∥y|[0,t]∥∥)
(because ϑ−1(r) ≤ r), we arrive at (3.2).

Lemma 3.4. Given any KL-function β̂, there exists a KL-function β and a K∞-
function ν such that for any τ > 0, any continuous function µ : [0, τ ] → R≥0, and
any nonnegative constant C, the following implication holds:

∀t1, t2, 0 ≤ t1 < t2 ≤ τ, µ(t2) ≤ max

{
β̂(µ(t1), t2 − t1),

µ(t1)

2
, C

}
(3.6)

implies

µ(τ) ≤ max {β(µ(0), τ), ν(C)} .(3.7)

Proof. By Proposition 7 in [38], there exist µ1 and µ2 ∈ K∞ such that

β̂(r, t) ≤ µ1(µ2(r)e
−t),

so, by majorizing β̂ as above if necessary, we can assume without loss of generality that
β̂ is continuous in its second variable, and β̂(r, 0) ≥ r for all r. For any r > 0 define

Tr to be the first time when β̂(r, Tr) = r/2. By replacing β̂ with the KL-function β̃,
defined by

β̃(r, t) := max
{
β̂(r, t), β̂(r, 0)e−t

}
,

we can assume without loss of generality that the series
∑∞

i=0 T r

2i
diverges for every

r > 0.
Define a function φ : R≥0 ×R≥0 → R≥0 as follows:

φ(r, t) =

{
β̂(r, t) for t ∈ [0, Tr),

β̂
(

r
2k

, t−∑k−1
i=0 T r

2i

)
for t ∈

[∑k−1
i=0 T r

2i
,
∑k

i=0 T r

2i

)
, k = 1, 2, 3 . . . .

Notice that the following two conditions hold for φ.
(1) For every R, ε > 0, there exists t̃ > 0 such that φ(r, t) ≤ ε for all r < R and

t > t̃.
Indeed, fix positive R and ε and find k ∈ Z such that β̂(R/2k, 0) < ε. Next, by

continuity of β̂ and by compactness of [0, R] we can find a t̃, such that
∑k−1

i=0 T r

2i
< t̃

for all positive r < R. Then, if r < R and t > t̃, then

φ(r, t) = β̂

(
r

2k
, t−

k−1∑
i=0

T r

2i

)
< β̂
( r

2k
, 0
)
< ε.

(2) For all ε > 0 there exists δ > 0 such that if r ≤ δ, then φ(r, t) < ε for all
t ≥ 0.

Indeed, for all r and t, φ(r, t) ≤ β̂0(r) := β̂(r, 0). For any positive ε, take δ =

δ(ε) := β̂−1
0 (ε). Then, for all t ≥ 0 we have

φ(r, t) ≤ β̂
(
β̂−1

0 (ε), 0
)
≤ ε.
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Therefore, by Lemma 2.11, φ can be majorized by a KL-function β.
Let ν(r) = β̂(2r, 0).
Now pick any µ, C, and τ satisfying (3.6). Define T = min {t : µ(t) ≤ 2C} and

T = τ if µ(t) > 2C for all t ≥ 0.
For any t1 and t2 in [0, τ ] such that 0 ≤ t1 ≤ t2 ≤ T , we have µ(t1) > 2C, so that

µ(t1)/2 > C, hence

µ(t2) ≤ max
{
β̂(µ(t1), t2 − t1), µ(t1)/2

}
.(3.8)

Suppose now that τ = T . If 0 ≤ τ < Tµ(0), then (3.8) with t1 = 0, t2 = τ yields

µ(τ) ≤ max

{
β̂(µ(0), τ),

µ(0)

2

}
= β̂(µ(0), τ),

where the equality follows from the definition of Tµ(0). Likewise, if

τ ∈
[
k−1∑
i=0

Tµ(0)

2i
,

k∑
i=0

Tµ(0)

2i

)
,

then

µ(τ) ≤ max

{
β̂

(
2−kµ(0), τ −

k−1∑
i=0

Tµ(0)

2i

)
, 2−(k+1)µ(0)

}

= β̂

(
2−kµ(0), τ −

k−1∑
i=0

Tµ(0)

2i

)
,

where the inequality follows from (3.8) and the equality is implied by the definition
of Tµ(0)

2k
. Therefore we have

µ(τ) ≤ φ(µ(0), τ).(3.9)

In case τ > T , inequality (3.6) implies

µ(τ) ≤ max
{
β̂(2C, τ − T ), µ(T )/2, C

}
= max

{
β̂(2C, τ − T ), C, C

}
≤ β̂(2C, 0) = ν(C).(3.10)

Combining (3.9) and (3.10) we obtain

µ(τ) ≤ max {φ(µ(0), τ), ν(C)} ≤ max {β(µ(0), τ), ν(C)} .

Proof of Lemma 3.2. We need to show that the system (3.1), corresponding to our
system (2.1) with the stability margin ϕ we have defined, is UOSS. Apply Lemma 3.4

to the KL-function β̂ := β to find appropriate functions β1 ∈ KL and ν ∈ K. Assume
given any initial state ξ and disturbance d = [du,w], and let x(t) := x(t, ξ,du,w) be
the corresponding solution. Fix any positive t < tmax(ξ,d), and define u by

u(s) :=

{
ϕ(|x(s)|)du(s), s ≤ t
0, s > t.
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Then, for all s ≤ t we have x(s) = x(s, ξ,u,w), where the latter is the solution of the
original system (2.1) with control u and disturbance w. Let C = γ2(

∥∥y|[0,t]∥∥). Then,
for any t1 and t2 in [0, t] we have C ≥ γ2(

∥∥y|[t1,t2]∥∥). So, since |u(s)| ≤ ϕ(|x(s)|) for
all s ∈ [0, t], Proposition 3.3 will imply that

|x(t2)| ≤ max

{
β(|x(t1)| , t2 − t1),

|x(t1)|
2

, C

}
.

By the choice of β1 and ν we then have

|x(t)| ≤ max
{
β1(|ξ| , t), ν(γ2(

∥∥y|[0,t]∥∥))} ,
proving the UOSS property for system (3.1) corresponding to the original UIOSS
system. Thus, ϕ is indeed a stability margin for the original system, and the proof of
Lemma 3.2 is now complete.

3.2. A UIOSS system admits a UIOSS-Lyapunov function. We show now
how the main implication of Theorem 2.4 follows from Theorem 2.16.

Lemma 3.5 (see Lemma 2.13 in [42]). Suppose a system Σ of type (2.1) is ROSS.
Let V be a UOSS-Lyapunov function for the system (3.1) associated with Σ. Then V
is a UIOSS-Lyapunov function for Σ.

Proof. Let ϕ be a stability margin for Σ. Since V is a UOSS-Lyapunov function
for (3.1), inequalities (2.3) and (2.16) hold with some α1, α2, α3, and γ. Pick a state
ξ ∈ X and disturbance value w ∈ Γ. For any control value u ∈ U with |u| ≤ ϕ(|ξ|) we
can find a du ∈ U1 such that u = duϕ(|ξ|), so that by the dissipation inequality (2.16)
for V (applied with d := [du, w]) we have

∇V (ξ) · f(ξ, u, w) = ∇V (ξ) · g(ξ, d) ≤ −α3(|ξ|) + γ(|h(ξ)|),
proving (2.5) for V . So, the condition as in Remark 2.1 is satisfied for V with χ1 =
ϕ−1, and αi and γ as before. Thus, V is a UIOSS-Lyapunov function for Σ.

By Theorem 2.16, the system (3.1) admits a UOSS-Lyapunov function V . Hence
the following corollary follows.

Corollary 3.6. If a system (2.1) is ROSS, then it admits a UIOSS-Lyapunov
function.

By Lemma 3.2, every UIOSS system is also ROSS, hence the implication 1 ⇒ 2
of Theorem 2.4 follows.

3.3. UOSS and iiUOSS imply the GASMO property.
Lemma 3.7. A UOSS system of type (2.14) satisfies the GASMO property.
Proof. Assume that system (2.14) is UOSS. Without loss of generality, we may

assume that γ2 in (2.15) is of class K∞.
Let ϑ(s) = β(s, 0). Recall that we have assumed that ϑ(s) > s for all s > 0. Now

let ρ be any K∞-function satisfying the inequality ρ(s) > ϑ(4γ2(s)) for all s > 0.
Claim. For any ξ ∈ X, any d ∈MΩ, and any τ ∈ [0, tmax(ξ,d)), if

|x(t, ξ,d)| ≥ ρ(|y(t, ξ,d)|) ∀ 0 ≤ t ≤ τ,

then

γ2(|y(t, ξ,d)|) ≤ |ξ| /2 ∀ 0 ≤ t ≤ τ,

and hence

|x(t, ξ,d)| ≤ β(|ξ| , 0) = ϑ(|ξ|) ∀ 0 ≤ t ≤ τ.
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In particular, if |x(t, ξ,d)| ≥ ρ(|y(t, ξ,d)|) for all t ∈ [0, tmax(ξ,d)), then tmax(ξ,d) =
∞.

Proof of the claim. If ξ = 0, the result is clear. Pick any ξ �= 0, d ∈ MΩ and
assume that |x(t, ξ,d)| ≥ ρ(|y(t, ξ,d)|) for all 0 ≤ t ≤ τ for some τ ∈ (0, tmax(ξ,d)).
Then, at t = 0,

γ2(|y(0, ξ,d)|) ≤ γ2(ρ
−1(|ξ|)) ≤ γ2(ρ

−1(ϑ(|ξ|))) < |ξ| /4.
Hence, γ2(|y(t, ξ,d)|) < |ξ| /4 for all t ∈ [0, δ) for some δ > 0. Let

t1 = inf {t > 0 : γ2(|y(t, ξ,d)|) ≥ |ξ| /2} .
Then t1 > 0. Assume now that t1 ≤ τ . Then

γ2(|y(t1, ξ,d)|) = |ξ| /2 and γ2(|y(t, ξ,d)|) < |ξ| /2
for each t ∈ [0, t1), and hence for such t, |x(t, ξ, d)| ≤ ϑ(|ξ|) . Then, for each 0 ≤ t ≤ t1,

γ2(|y(t, ξ,d)|) ≤ γ2(ρ
−1(|x(t, ξ,d)|)) ≤ γ2(ρ

−1(ϑ(|ξ|))) < |ξ| /4.
By continuity, γ2(|y(t1, ξ,d)|) ≤ |ξ| /4, contradicting the definition of t1. This shows
that it is impossible to have t1 ≤ τ , and the proof of the claim is complete.

For each r > 0 let Tr be any nonnegative number so that β(r, t) < r/2 for all t ≥
Tr. Now, given any r > 0 and any ε > 0, for each i = 1, 2, . . ., let ri := 21−ir, and let
k(ε) be any positive integer so that 2−k(ε)r < ε and define Tr,ε as Tr1+Tr2+· · ·+Trk(ε) .

Pick any trajectory x(t, ξ,d) as in the statement of Proposition 2.10, defined
on an interval of the form [0, T ], with T ≥ Tr,ε, with initial condition |ξ| ≤ r, and
disturbance d ∈ MΩ, satisfying |x(t, ξ,d)| ≥ ρ(|y(t, ξ,d)|) for all t ∈ [0, T ]. Then,
the above claim implies that γ2(|y(t, ξ,d)|) < |ξ| /2 for all such t. Therefore, for any
t > Tr1 = Tr,

|x(t, ξ,d)| ≤ max {β(|ξ| , t), |ξ| /2}
≤ max {β(r, t), r/2} ≤ r/2 .

Consider now the restriction of the trajectory to the interval [Tr1 , T ]. This is the same
as the trajectory that starts from the state x(Tr1 , ξ,d), which has norm less than r1,
so by the same argument and the definition of Tr2 we have that |x(t, ξ, d)| ≤ r/4 for
all t ≥ Tr2 . Repeating on each interval [Tri , Tri+1

], we conclude that |x(t, ξ, d)| < ε
for all Tr,ε ≤ t ≤ T .

Lemma 3.8. Suppose a system of type (2.14) is iiUOSS and UO. Then it satisfies
the GASMO property with ρ(·) := max

{
χ−1(2γ(·)), ρ−1

1 (·)} , where χ and γ are as in
the definition of iiUOSS and ρ1 is as in Proposition 2.15.

To prove this lemma, we need the following elementary observation, which is a
variant of what is usually referred to as “Barbălat’s lemma.”

Proposition 3.9. Let X := {xα, α ∈ A} be a family of absolutely continuous
curves in X, each of which is defined on an interval Iα, either half-open (Iα = [0, λα))
or closed (Iα = [0, λα]). Suppose the following.

• X is closed with respect to shifts, that is, for all α ∈ A and T ∈ Iα, there exists
an α′ ∈ A such that xα′ ≡ xαT , where xαT is defined by xαT (t) := xα(t+T ),
and λα′ = λα − T .

• There exists a nonnegative, increasing function ν3 such that

|ẋα(t)| ≤ ν3(|xα(t)|) ∀α ∈ A for almost all t ∈ Iα.
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• There exist functions κ and χ of class K∞ such that

κ(|xα(0)|) ≥
∫ t

0

χ(|xα(s)|) ds ∀α ∈ A, t ∈ Iα.

Then for any two positive numbers r and ε there exists a Tr,ε, such that for all α ∈ A
and t ∈ Iα the following holds:

t ≥ Tr,ε and |xα(0)| ≤ r ⇒ |xα(t)| < ε.

Proof.
Claim 1. Given any ε > 0, there exists δ = δ(ε) such that if |xα(0)| ≤ δ, then

|xα(t)| < ε for all t ∈ Iα.
Proof of Claim 1. Fix a positive ε, and set

δ(ε) = min

{
ε

2
, κ−1

(
εχ(ε/2)

2ν3(ε)

)}
.

Pick any α ∈ A such that |xα(0)| ≤ δ.
Suppose

∣∣xα(t̃2)∣∣ ≥ ε for some t̃2 ∈ Iα. Then there exist t1 and t2 with t1 < t2 ≤
t̃2 such that |xα(t1)| = ε/2 and ε/2 < |xα(t)| < ε for all t ∈ (t1, t2). Then

ε

2
= |xα(t2)| − |xα(t1)| ≤ |xα(t2)− xα(t1)| ≤ sup

t1≤t≤t2

|ẋα(t)| (t2 − t1) ≤ ν3(ε)(t2 − t1).

So,

κ(δ) ≥ κ(|ξ|) ≥
∫ t2

t1

χ(|xα(s)|) ds >
1

2
χ
(ε
2

)
(t2 − t1) ≥ εχ(ε/2)

2ν3(ε)
≥ κ(δ).

The obtained contradiction proves the claim.
Claim 2. Given positive numbers r and δ, there exists a time τ(r, δ) such that if

|xα(0)| ≤ r and τ(r, δ) ∈ Iα, then ∃t0 < τ(r, δ) such that |x(t0, ξ,d)| ≤ δ.

Proof of Claim 2. Take τ(r, δ) = 2κ(r)
χ(δ) . Then, if τ(r, δ) ∈ Iα and |xα(t)| > δ for

all t ∈ [0, τ(r, δ)), then we have

κ(r) ≥ κ(|xα(0)|) ≥
∫ τ(r,δ)

0

χ(|xα(s)|) ds > χ(δ)
κ(r)

χ(δ)
= κ(r).

The obtained contradiction proves the claim.
Fix arbitrary positive r and ε. By Claim 1, find δ(ε) such that if |xα(0)| < δ(ε),

then |xα(t)| ≤ ε for all t ∈ [0, λα). Define Tr,ε := τ(r, δ(ε)), where τ(r, δ(ε)) is
furnished by Claim 2. If |xα(0)| < r, then, by Claim 2, there is a t0 < τ(r, δ(ε)) with
|xα(t0)| < δ(ε). Consider now a function xα′(·) := xα(t0 + ·) (it belongs to X by
assumption). Since |xα′ | ≤ δ(ε), Claim 1 ensures that

|xα(t)| = |xα′(t− t0)| ≤ ε ∀ t ≥ t0 ≥ Tr,ε.

This shows that Tr,ε satisfies the conclusion of the proposition.
We now return to the proof of Lemma 3.8.
Proof. Recall that we have defined λξ,d := inf{t ∈ [0, tmax(ξ,d)) : |x(t, ξ,d)| ≤

ρ(|y(t, ξ,d)|)}, and let λξ,d = tmax if |x(t, ξ, d)| > ρ(|y(t, ξ,d)|) for all t ∈ [0, tmax).
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Note that, given ξ and d, for all t < λξ,d we have χ(|x(t, ξ,d)|) > 2γ(|h(x(t, ξ,d))|)
so that

κ(|ξ|) ≥
∫ t

0

(χ(|x(s, ξ,d)|)− γ(|h(x(s, ξ,d))|)) ds >
1

2

∫ t

0

χ(|x(s, ξ,d)|) ds.(3.11)

Let ν3 be a K-function such that maxd∈Ω |f(x, d)| ≤ ν3(|x|). Write xξ,d(·) := x(·, ξ,d).
Notice that the family {xξ,d(·), ξ ∈ X, d ∈MΩ} with Iξ,d := [0, λξ,d) satisfies all
the assumptions of Proposition 3.9 (with “κ” = 2κ). Given any positive r, ε, Propo-
sition 3.9 furnishes Tr,ε. This Tr,ε obviously fits the first condition in the characteri-
zation of the GASMO property, provided by Proposition 2.10.

To find a function ϑ to ensure that the second part of Proposition 2.10 is satisfied,
recall that, by Proposition 2.15, if a system (2.14) has the UO property, then there
exist class K∞-functions ρ1, µ1, µ2, and a constant c > 0 such that the following
implication holds for all ξ ∈ X, all d ∈MΩ, and all T ∈ [0, tmax(ξ,d)):

|h(x(t, ξ,d))| ≤ ρ1(|x(t, ξ,d)|) ∀t ∈ [0, T ]

⇒ |x(t, ξ,d)| ≤ µ1(t) + µ2(|ξ|) + c ∀t ∈ [0, T ].

Therefore, if |ξ| ≤ r and Tr,r/2 is as defined above, then for all t ∈ [0, λξ,d) we have

|x(t, ξ,d)| ≤ µ1(Tr,r/2) + µ2(r) + c if t < Tr,r/2

and

|x(t, ξ,d)| ≤ r/2 if t ≥ Tr,r/2.

Thus, the following estimate holds for all such t:

|x(t, ξ,d)| ≤ ϑ̃(|ξ|) := max
{|ξ| /2, µ1(T|ξ|,|ξ|/2) + µ2(|ξ|) + c

}
.

Next, take a sequence {εk} , k = 0, 1, 2, . . . , strictly decreasing to 0, with ε0 = 1.
For each εk, find δk = δ(εk) as in the proof of Claim 1. Since δk ≤ εk/2, the sequence
{δk} converges to 0 as well. Find a function ϑ of class K, such that

(1) ϑ(δk+1) > εk ∀k > 0,
(this will ensure that |x(t, ξ,d)| ≤ ϑ(|ξ|) for all ξ with |ξ| < δ0, for all t ∈ [0, λξ,d])

(2) ϑ(s) ≥ ϑ̃(s) ∀s > δ0.
Then ϑ satisfies the second condition in the Proposition 2.10. This completes the

proof.
Remark 3.1. The unboundedness observability assumption is crucial in prov-

ing the last lemma. The following example illustrates a disturbance-free integral-to-
integral output-to-state stable (iiOSS) system which fails to be OSS (and, equivalently,
fails to be GASMO).

Let 1A(·) denote the indicator function of a set A, and let φε be a C∞-bump
function with support in (−ε, ε):

φε(ξ) :=

{
e
− |ξ|2
ε2−|ξ|2 , |ξ| < ε,

0, |ξ| ≥ ε.
(3.12)

Fix an arbitrary positive ε < 0.25 and consider a one dimensional autonomous system

Σ : ẋ = f(x), y = h(x),
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where

f(x) = x3
[
1(−∞,−1](x)(1− φε(x+ 1)) + 1[1,+∞)(x)(1− φε(x− 1))

]
−x
[
1(−1,1)(x)(1− φε(x+ 1))(1− φε(x− 1))

]
,

and h is a smooth function such that h(x) = x for all x in [−2, 2], and h(x) = 0 if
|x| ≥ 3.

Claim 1. The system Σ is iiOSS.
Proof. Note that Σ has a stable equilibrium at x = 0 and two unstable ones at 1

and −1. If |x| < 1, then sign(x) = −sign(f(x)), so, if |ξ| ≤ 1, then |x(t, ξ)| ≤ 1 for
any nonnegative t. Therefore, if ξ ∈ [−1, 1], then for all t ≥ 0 we have∫ t

0

|x(s, ξ)| ds =

∫ t

0

|h(x(s, ξ))| ds,(3.13)

so, estimate (2.18) trivially follows for all ξ ∈ [−1, 1] and all t ∈ tmax(ξ) with γ = Id
and any κ ∈ K.

If |ξ| ≥ 1 + ε, then f(x) = x3, so that

x(t, ξ) =
sign(ξ)√
ξ−2 − 2t

.

Thus, in this case the solution x(t, ξ) is defined for all nonnegative t < tmax(ξ) = ξ−2/2
and ∫ t

0

|x(s, ξ)| ds ≤
∫ tmax(ξ)

0

|x(s, ξ)| ds =
1

ξ
≤ 1

1 + ε
.

Let κ be any K-function such that κ(1) ≥ (1 + ε)−1. Suppose 1 < |ξ| < 1 + ε.
Let t̂ be the time when

∣∣x(t̂, ξ)∣∣ = 1 + ε. Then tmax(ξ) = t̂ + (1 + ε)−2/2. Also,

x(s, ξ) = h(x(s, ξ)) for all s ∈ [0, t̂], so, in particular, equality (3.13) holds for all
t < t̂, which, again, trivially implies (2.18) with γ = Id and any κ ∈ K.

If t > t̂, then∫ t

0

|x(s, ξ)| ds =

∫ t̂

0

|x(s, ξ)| ds+
∫ t

t̂

|x(s, ξ)| ds

≤
∫ t̂

0

|x(s, ξ)| ds+
∫ tmax(ξ)

t̂

|x(s, ξ)| ds

=

∫ t̂

0

|h(x(s, ξ))| ds+
∫ tmax(1+ε)

0

|x(s, 1 + ε)| ds

≤
∫ t̂

0

|h(x(s, ξ))| ds+ κ(ξ)

≤
∫ t

0

|h(x(s, ξ))| ds+ κ(ξ).

This shows that Σ is iiOSS, as estimate (2.18) holds for Σ with the κ that we con-
structed and γ = Id.

Claim 2. System Σ is not OSS.
Proof. Indeed, pick any initial state ξ of large enough magnitude so that h(ξ) = 0.

Then h(x(t, ξ)) = 0 for all t < tmax(ξ) = ξ−2/2. If Σ were OSS, then there would
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exist some KL-function β such that |x(t, ξ)| ≤ β(|ξ| , t), but |x(t, ξ)| tends to ∞ as
t→ tmax(ξ), whereas β(|ξ| , t) ≤ β(|ξ| , 0). This contradiction proves the claim.

We now prove implication 4 ⇒ 3 of Theorem 2.16.

Proof. Suppose a system Σ of type (2.14) is UOSS. We have already remarked
that Σ is UO, so we must show that it is iiUOSS. By assumption there exists a smooth
function V satisfying (2.16) and (2.3) with some α1, α2, α3, and γ. Pick any ξ, d,
and t ∈ [0, tmax(ξ,d)). Integrating inequality (2.16) along the trajectory x(·, ξ,d) over
[0, t] we get∫ t

0

α3(|x(t, ξ,d)|)dt ≤ V (x(0, ξ,d))− V (x(t, ξ,d)) +

∫ t

0

γ(|h(x(t, ξ,d))|) dt

≤ α2(|ξ|) +
∫ t

0

γ(|h(x(t, ξ,d))|) dt,

proving inequality (2.18) for system Σ, with χ = α3 and κ = α2.

With Lemma 3.7 in mind we conclude that the only step missing in establishing
the Lyapunov characterization for UOSS is proving the implication 2.16 ⇒ 2.16 in
Theorem 2.16.

3.4. A remark on the GASMO ⇒ UOSS implication.

Remark 3.2. Once the Lyapunov characterization for UOSS is proven, the impli-
cation 2 ⇒ 1 of Theorem 2.16 will automatically follow by appealing to the converse
Lyapunov theorem (2 ⇒ 4 ⇒ 1). However, it is worth mentioning that GASMO ⇒
UOSS implication can easily be proven directly without this intermediate step.

Indeed, fix ξ ∈ X and d ∈MΩ. Take any t ∈ [0, tmax(ξ,d)). If t ≤ λξ,d, then the
GASMO property provides the estimate

|x(t, ξ,d)| ≤ λ(|ξ| , t).(3.14)

Suppose now that t > λξ,d. Obviously, at least one of the two following conditions
must be satisfied:

(1) |x(t, ξ,d)| > 2ρ(|h(x(t, ξ,d))|),
(2) |x(t, ξ,d)| ≤ 3ρ(|h(x(t, ξ,d))|).

If condition (2) applies, then we have a bound

|x(t, ξ,d)| ≤ 3ρ(|h(x(t, ξ,d))|) ≤ 3ρ(
∥∥y|[0,t]∥∥).(3.15)

In case condition (1) holds, let

t̃ := max {s, λξ,d < s < t : |x(s, ξ,d)| = 2ρ(|h(x(s, ξ,d))|)} .

Then, again by the GASMO property applied with initial state x(t̃, ξ,d), we have

|x(t, ξ,d)| ≤ λ(
∣∣x(t̃, ξ,d)∣∣ , t− t̃)

≤ λ(2ρ(
∣∣y(t̃, ξ,d)∣∣), 0) ≤ λ(2ρ(

∥∥y|[0,t]∥∥), 0).(3.16)

Combining estimates (3.14), (3.15), and (3.16), we conclude that inequality (2.15)
holds for Σ with β(·) := λ(·) and γ2(·) := max {λ(2ρ(·), 0), 3ρ(·)} .
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4. The case of no controls.

4.1. Setup. Suppose a system Σ of type (2.14) satisfies the GASMO property
with some K∞ function ρ. By majorizing ρ with another K∞-function if necessary,
we will assume that ρ is smooth when restricted to s > 0 and also ρ(s) > s for all
positive s. We let

D := {ξ ∈ X: |ξ| ≤ ρ(|h(ξ)|)} ,

E := X\D ,

and

E1 := {ξ ∈ X : |ξ| > 2ρ(|h(ξ)|)} .

For each d ∈MΩ and ξ ∈ E , define
λξ,d = inf {t ∈ [0, tmax) : x(t, ξ,d) ∈ D} ,(4.1)

with the convention λξ,d = tmax(ξ,d) if the trajectory never enters D. If D = X, then
any proper, smooth, and positive definite function V : X → R is a UOSS-Lyapunov
function for (2.14). Indeed, because it is proper and finite, V obviously satisfies (2.3)
for some α1 and α2. Since V is smooth, |∇V (ξ)| is bounded above by a nondecreasing
continuous function ν(|ξ|) and

d

dt
V (x(t)) = ∇V (x(t)) · f(x(t),d(t)) ≤ ν(|x(t)|)ν3(|x(t)|),

where ν3(|·|) is aK-function majorizing f(·, d) for all d ∈ Ω. Then, since |x| ≤ ρ(|h(x)|)
for all x ∈ X, we have

d

dt
V (x(t)) ≤ −ν(|x(t)|)ν3(|x(t)|) + 2ν(ρ(|h(x(t))|))ν3(ρ(|h(x(t))|)) .

So, V satisfies inequality

∇V (x) · f(x, d) ≤ −α3(|x|) + γ(|h(x)|) ∀x ∈ X, ∀ d ∈ Ω

(with α3(·) = ν(·)ν3(·) and γ(·) = [2ν ◦ ρ(·)][ν3 ◦ ρ(·)]), which is the same as (2.4) for
systems of type (2.14).

Suppose now that D �= X. Recall that we have defined, for each ξ �∈ D and d ∈
MΩ, λξ,d = inf {t ∈ [0, tmax) : x(t, ξ,d) ∈ D} , with the convention λξ,d = tmax(ξ,d)
if the trajectory never enters D.

The GASMO property then implies

|x(t, ξ,d)| ≤ λ(|ξ| , t) ∀ ξ ∈ E , ∀d ∈MΩ, ∀ t ∈ [0, λξ,d)(4.2)

for some λ ∈ KL.
Note that, because of property (4.2), the system cannot have any equilibrium in

E , that is,
f(ξ, d) �= 0

for every ξ ∈ E and every d ∈ Ω. Moreover, replacing ρ(s) by cρ(s) for some c > 1 if
necessary, one may also assume that f(ξ, d) �= 0 for all ξ ∈ ∂D \ {0} and all d ∈ Ω.
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We introduce an auxiliary system Σ̂ which slows down the motions of the original
one:

ż = f̂(z, d) =
1

1 + |f(z, d)|2 + κ(z)
f(z, d),(4.3)

where κ is any smooth function X→ [0,∞) with the property that

κ(ξ) ≥ 2max
d∈Ω

|∇(ρ ◦ |h|)(ξ) · f(ξ, d)|(4.4)

whenever |h(ξ)| ≥ 1. (Recall that ρ was assumed, without loss of generality, to be

smooth for positive arguments.) For each disturbance d̂ (defined on R≥0) denote by

z(s, ξ, d̂)

the value at time s of the solution of the equation ż = f̂(z, d̂) with initial state ξ.

Observe that, as f̂ is bounded, this solution exists for all nonnegative s.
Claim 1. For each ξ and each d,

x(t, ξ,d) = z(σξ,d(t), ξ,d ◦ σξ,d−1) ∀ t ∈ [0, tmax(ξ,d)),(4.5)

where σξ,d : [0, tmax(ξ,d))→ R≥0 is defined by

σξ,d(t) =

∫ t

0

[
1 + |f(x(s, ξ,d),d(s))|2 + κ(x(s, ξ,d))

]
ds.

Moreover, σξ,d(t) → ∞ as t → tmax(ξ,d), so, we can define σξ,d(tmax(ξ,d)) := +∞
for convenience.

Proof of Claim 1. Indeed, writing s = σξ,d(t) and computing the derivative of
x(σξ,d

−1(s), ξ,d) with respect to s, one has

f(x(t, ξ,d),d(t)) =
d

dt
x(t, ξ,d) =

d

dt
x(σξ,d

−1 ◦ σξ,d(t), ξ,d)

=
d

ds
x
(
σξ,d

−1(s), ξ,d
) · d

dt
σξ,d(t)

=
d

ds
x(σξ,d

−1(s), ξ,d)
[
1 + |f(x(t, ξ,d),d(t))|2 + κ(x(t, ξ,d))

]
.

Therefore

d

ds
x(σξ,d

−1(s), ξ,d) =
f(x(t, ξ,d),d(t))

1 + |f(x(t, ξ,d),d(t))|2 + κ(x(t, ξ,d))

=
f
(
x(σξ,d

−1(s), ξ,d),d ◦ σξ,d−1(s)
)

1 + |f (x(σξ,d−1(s), ξ,d),d ◦ σξ,d−1(s))|2 + κ (x (σξ,d−1(s), ξ,d))

= f̂
(
x
(
σξ,d

−1(s), ξ,d
)
,d ◦ σξ,d−1(s)

) ∀ 0 ≤ s < σξ,d(tmax(ξ,d)).

Thus, the functions z(s, ξ,d◦σξ,d−1) and x(σξ,d
−1(s), ξ,d) satisfy the same differential

equation (4.3) with initial state ξ on [0, σξ,d(tmax(ξ,d))), therefore they coincide on
[0, σξ,d(tmax(ξ,d))).
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To show the limit property of σξ,d, suppose

lim
t→tmax(ξ,d)

σξ,d(t) = b <∞

(note that the limit exists because σξ,d(·) is increasing). Let
K = {z(s, ξ,d ◦ σξ,d−1) : 0 ≤ s < b}.

Then K is bounded, so K̄ is compact, and by (4.5), x(t, ξ,d) ∈ K ⊆ K̄ for all
t ∈ [0, tmax(ξ,d)), contradicting the maximality of tmax(ξ,d).

For each initial state ξ and each disturbance function d, define

θξ,d = inf {t ≥ 0 : z(t, ξ,d) ∈ D} ,(4.6)

where θξ,d =∞ if z(t, ξ,d) /∈ D for all t ≥ 0. Note that θξ,d > 0 for all d ∈ MΩ and
all ξ ∈ E because E is open. Observe also that if d1 = d ◦ σξ,d,

θξ,d = σξ,d1
(λξ,d1

).

Claim 2. System Σ̂ satisfies the GASMO property.
Proof. According to (4.2) and (4.5), we have, for every ξ ∈ E and each d,

|z(t, ξ,d)| = ∣∣x(σξ,d1

−1(t), ξ,d1)
∣∣

≤ λ(|ξ| , σξ,d1

−1(t)) ≤ ϑ(|ξ|),
for all t ∈ [0, θξ,d), where ϑ(s) = λ(s, 0), and d1 is such that d = d1 ◦σξ,d1

−1. Let

Mr = 1 + max
d∈Ω,|ξ|≤ϑ(r)

|f(ξ, d)|2 + max
|ξ|≤ϑ(r)

κ(ξ).

Then, for any ξ ∈ E with |ξ| ≤ r, it holds that

σξ,d1
(t) =

∫ t

0

[
1 + |f(x(s, ξ,d1),d1(s))|2 + κ(x(s, ξ,d1))

]
ds ≤ Mrt

for all t ∈ [0, λξ,d1), and hence, σξ,d1
−1(t) ≥ t

Mr
for all |ξ| ≤ r, t ∈ [0, θξ,d). Conse-

quently, we have

|z(t, ξ,d)| ≤ λ̂(|ξ| , t) ∀ t ∈ [0, θξ,d),(4.7)

where λ̂(s, t) = λ(s, t
Ms

) is clearly of class KL. Therefore, this shows that system Σ̂ is
GASMO.

From now on, we let the function λ of class KL be as in Definition 2.9 for the
system Σ̂, that is, the following estimate holds for system (4.3):

|z(t, ξ,d)| ≤ λ(|ξ| , t) ∀ t ∈ [0, θξ,d),(4.8)

for all ξ ∈ E , and all d ∈MΩ.
According to Proposition 7 in [38], there exist K∞-functions µ1 and µ2 such that

λ(r, t) ≤ µ1(µ2(r)e
−t) ∀ r, t ≥ 0.(4.9)

Define

Ξ(s) := µ−1
1 (s).(4.10)



1898 M. KRICHMAN, E. D. SONTAG, AND Y. WANG

The proof will now develop as follows. We first construct a continuous Lyapunov-
like function V0, defined on the set E1. Next V0 is approximated by a Lipschitz
continuous function (by the methods of nonsmooth analysis). The resulting function
is then approximated by a smooth function V1. Finally we extend V1 to the rest of the
state space, obtaining a Lyapunov-like function, smooth away from the origin, which
is then approximated by a smooth Lyapunov function.

4.2. Definitions and basic facts on relaxed controls. Recall that our dis-
turbances d are measurable functions R≥0 → Ω, a compact, convex subset of Rm.

Let P (Ω) be the set of all Radon probability measures on Ω. Bishop’s theorem
furnishes a weak norm on P (Ω), whose corresponding metric topology coincides with
the weak star topology on P (Ω) (see [51, pp. 40 and 267]).

For any T > 0, we define ST to be the set of all measurable functions from [0, T ]
to P (Ω), and S to be the set of all measurable functions from R≥0 to P (Ω). We
topologize ST by weak convergence: {νk(·)} → ν(·) in ST if and only if∫ T

0

∫
Ω

g(t, ω)d[νk(t)](ω) dt→
∫ T

0

∫
Ω

g(t, ω)d[ν(t)](ω) dt

for all functions g : [0, T ] × Ω → R which are continuous in ω, measurable in t, and
such that

max {|g(t, ω)| , ω ∈ Ω}

is integrable on [0, T ]. We say that {νk} → ν weakly in S if, for every T > 0, the
sequence

{
νk|[0,T ]

}
of restrictions of νk to [0, T ] converges to ν|[0,T ] in ST .

Notice that, since every element of Ω can be identified with the δ-measure, con-
centrated in it, Ω can be embedded into P (Ω), MΩ into S, and MT

Ω into ST in the
obvious way, where MT

Ω is the set of functions in MΩ restricted to [0, T ].
For each ν ∈ P (Ω), we denote

f(x, ν) =

∫
Ω

f(x, r) dν(r) .(4.11)

Notice that for any relaxed control ν(·), the function f(·, ν(·)) : (x, t)→ f(x, ν(t)) is
Lipschitz in x and measurable in t. Moreover, as for all x ∈ X and all ν ∈ P(Ω), we
have a bound

|f(x, ν)| ≤ max
d∈Ω

|f(x, d)| ,

the solution of the “system” ẋ(t) = f(x(t), ν(t)) exists for any initial condition ξ and
relaxed control ν on some maximal interval [0, tmax(ξ, ν)). Write x(·, ξ, ν) to denote
this solution. Just as in the case with ordinary controls, we will define

λξ,ν := inf {t ≤ tmax : x(s, ξ, ν) ∈ D} .(4.12)

The basic three facts we will be using in the next section are as follows.
Fact 1. For any T > 0, the space ST is sequentially compact (see [51, Thm IV.2.1,

p. 272]). Consequently, S is sequentially compact by a diagonalization argument.
Fact 2. For any T > 0, the set MT

Ω of ordinary controls on [0, T ] is dense in
ST (see [5, p. 691], also [51]). Consequently, MΩ is dense in S. The topology of S
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induces a topology on the subspaceMΩ. This topology is stronger than the topology
of Lp for any positive p: in fact, {dk(t)} → d would imply∫ T

0

g(dk(t))dt→
∫ T

0

g(d(t)) dt

for any continuous function g : U → R and any positive T .
Fact 3. For any T > 0, the mapping (t, ξ, ν(·)) %→ z(t, ξ, ν) is continuous on

[0, T ]×X× ST (see [1, Lemma 3.12]).
Some relevant immediate consequences of Facts 1, 2, and 3 are as follows.
Claim 1. The function (ξ, ν) → λξ,ν , mapping initial states and disturbances to

the first hitting times as defined in (4.12), is lower semicontinuous on both ν and ξ.
(This easily follows from continuous dependence on initial conditions and control, and
from the fact that the set D is closed.)

Claim 2. If system (2.14) is GASMO, then, for any initial value ξ ∈ E , a relaxed
disturbance ν ∈ S, and time T ≤ λξ,ν we have an estimate

x(T, ξ, ν) ≤ λ(|ξ|, T ).
Proof. Pick ξ ∈ X and ν ∈ S. Let {dk} be a sequence of ordinary disturbances,

converging to ν in S. Then, for large enough k we have tmax(ξ,dk) > T , and x(·, ξ,dk)
converge to x(·, ξ, ν) uniformly on [0, T ]. Also, by Claim 1, lim infk→∞ λξ,dk ≥ λξ,ν .
Since we assume the system to be GASMO, the estimate (2.17) holds for d := dk for
all large enough k and for all t ≤ T , so the claim follows.

With the previous claim in mind, we can say that the system (2.14) with d ∈ S is
GASMO (this is a slight abuse of terminology because, strictly speaking, (2.14) with
relaxed disturbances is not really a “system,” as that would mean, by definition, that
disturbances take values in a finite dimensional space). Consequently, the auxiliary
system (4.3) is also GASMO for d ∈ S. Thus, we can assume that (4.8) holds for all
ξ ∈ E and all d ∈ S.

4.3. Constructing a continuous Lyapunov-like function on E1. In sec-

tion 4.1 we introduced the system Σ̂ : ż = f̂(z, d) := f(z,d)

1+|f(z,d)|2+κ(z)
, which slows

down the motions of the original system Σ. Recall also that D := {ξ : |ξ| ≤ ρ(|h(ξ)|)},
and define the set

B := {ξ : ρ(|h(ξ)|) ≤ |ξ| ≤ 1.5ρ(|h(ξ)|)} .
Let f0 : X→ R be defined by

f0(ξ) = max
d∈Ω

∣∣∣f̂(ξ,d)∣∣∣ .
Note that f0 is locally Lipschitz, and recall that we have assumed with no loss of
generality that Σ has no equilibria on the set {x ∈ X : |x| ≥ ρ(|h(x)|)} (otherwise
replace ρ(·) by cρ(·), where c > 1). In particular, f0(ξ) �= 0 for any ξ ∈ ∂D \ {0}. Let
φ : X \ {0} → [0, 1] be smooth and

φ(x) =

{
1, x ∈ D,
0, x ∈ X \ (D ∪ B).

Now introduce another system, on the state space X \ {0},
Σ̃ : ż = f̃(z, d, v),
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where disturbances d are as before, and auxiliary controls v are measurable functions
of time, taking values in [−1, 1]n (note that the dimension of the control set for v’s is
the same as that of X), where, for each i = 1, 2, . . . , n,

f̃i(z, d, v) := f̂i(z, d) + 2φ(z)f0(z)vi.

For each T > 0, let WT denote the set of the auxiliary controls defined on [0, T ]
(i.e., measurable functions v : [0, T ]→ [−1, 1]n) equipped with the weak convergence
topology; that is, “{vk} converges weakly to v in WT ” means∫ T

0

ϕ(s)vk(s) ds →
∫ T

0

ϕ(s)v(s) ds

for all functions ϕ that are integrable over [0, T ]. With the weak topology, WT is
sequentially compact (cf. [39, Proposition 10.1.5]). Consequently, given any sequence
{vk} of controls defined on [0,∞), there exist some control v and a subsequence {vkj}
such that vkj → v weakly on every interval [0, T ].

We denote the set of the auxiliary controls defined on [0,∞) byW. Let {vk} ⊂ W
and v ∈ W. We say that {vk} weakly converges to v if, for every T > 0, the sequence
of restrictions {vk|[0,T ]} weakly converges to v|[0,T ] in WT .

Recall that z(t, ξ,d) denotes the solution of Σ̂. Write z(t, ξ,d,v) for the value at

time t of the solution of Σ̃ with initial state ξ �= 0, disturbance d ∈MΩ, and auxiliary
control v ∈ W.

Observe the following.
• Σ̃ is affine in v.
• since for any ξ ∈ X and d ∈ [−1, 1]m, |f̂(ξ, d)| ≤ 1, we have |f̃(ξ, d, v)| ≤ 3

for any ξ, d and v. In particular, this implies that Σ̃ is forward complete.
• Suppose ξ �∈ D ∪ B and pick d ∈MΩ and v ∈ W. Then there is some t0 > 0
such that z(t, ξ,d) �∈ D ∪ B for all t ∈ [0, t0], and z(t, ξ,d,v) ≡ z(t, ξ,d) on
[0, t0].

To extend the definition of z(t, ξ,d,v) to the case when d ∈ S, we let, for a fixed
d ∈ S and v ∈ W,

gd,v(z, t) := f̂(z,d(t)) + 2φ(z)f0(z)v(t)

(where f(z,d(t)) is as defined in (4.11) for ν := d(t) ∈ P(Ω)). Then gd,v : X \
{0} × R≥0 → X is locally Lipschitz in its first variable, and |gd,v(z, t)| ≤ 3 for all
(z, t) ∈ X \ {0} ×R≥0. Hence, the solution of

ż(t) = gd,v(z, t),

z(0) = ξ

exists for all ξ ∈ X \ {0} and t ≥ 0. We will denote it by z(t, ξ,d,v).

Observe that f̃ : X \ {0} × Ω × [−1, 1]n → Rn is continuous, and f̃(z, d, v) is

locally Lipschitz in z on X \ {0} uniformly on (d, v) ∈ Ω × [−1, 1]n. The system Σ̃

evolves in the state space X \ {0}. As |f̃ | ≤ 3 everywhere, trajectories are defined
and unique for each initial value ξ ∈ X \ {0} and each pair of inputs d,v. Moreover,
if z(·) is a maximal such trajectory, then either z(t) is defined for all t ≥ 0, or there
is some T > 0 such that limt→T z(t) = 0. We prove next that this last case cannot
happen.
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Lemma 4.1. For every ball U around 0, there is a constant c such that for any
ξ ∈ U , ξ �= 0, d ∈ S, v ∈ W, and t ≥ 0, we have a lower bound

|z(t, ξ,d,v)| > 1

2
|ξ| e−ct.(4.13)

Proof. Since f̂ is locally Lipschitz in x uniformly in d, and f̂(0, d) = 0 for all d,

we can find a positive constant c, such that |f̂(z, d)| ≤ c|z|/3 for all z ∈ U and all
d ∈ Ω. Then also |f0(z)| ≤ c|z|/3; therefore∣∣∣f̃(z, d, v)∣∣∣ ≤ ∣∣∣f̂(z, d)∣∣∣+ 2 |f0(z)| ≤ c|z|

for all v ∈ [−1, 1]n, all d ∈ Ω, and hence, all d ∈ P(Ω). Now fix ξ ∈ U \ {0}, d ∈ S,
and v ∈ W, and write z(t) := z(t, ξ,d,v). Note that the inequality (4.13) holds for
t = 0; therefore it holds for all small enough t > 0. Suppose that (4.13) fails at some
t2 > 0, so that

|z(t2)| ≤ 1

2
|ξ| e−ct2 < |ξ| .(4.14)

Then there exists a t1 < t2 such that |z(t1)| = |ξ| and |z(t)| ≤ |ξ| for all t ∈ [t1, t2].
Let

w(t) := |z(t)|2 /2.

Then, for almost all t ∈ [t1, t2]

|ẇ(t)| = |z(t) · ż(t)| ≤ c |z(t)|2 = 2cw(t).

In particular, this implies that ẇ(t) + 2cw(t) ≥ 0. So, for all t ∈ [t1, t2] we have

0 ≤ e2ct(ẇ(t) + 2cw(t)) =
d(e2ctw(t))

dt
,

implying that e2ctw(t) ≥ e2ct1w(t1) for all t ∈ [t1, t2]. Thus,

1

2
|z(t2)|2 = w(t2) ≥ e2ct1w(t1)e

−2ct2 =
1

2
|z(t1)|2 e−2c(t2−t1) ≥ 1

2
|ξ|2 e−2ct2 ,

so that |z(t2)| ≥ e−ct2 |ξ|, contradicting (4.14).
Corollary 4.2. For every r > 0 and T > 0 there is a σ = σ(r, T ) > 0 such that

for any d ∈ S, v ∈ W, |ξ| ≥ r, and t ≤ T we have

|z(t, ξ,d,v)| ≥ σ.

Lemma 4.3. For each d ∈ ST and each v ∈ WT , if ξk → ξ in X \ {0}, dk → d
in ST , and vk → v in WT , {z(t, ξk,dk,vk)} converges to z(t, ξ,d,v) uniformly on
[0, T ].

Proof. Assume without loss of generality that ξk ∈ U := B |ξ|
2

(ξ). Since |f̃ ≤ 3|
and by Corollary 4.2, RT (U) ⊆ B1.5|ξ|+3T (0) \ Bσ(0), where σ = σ(|ξ| /2, T ) is as

in Corollary 4.2. Let M1 and M2 be Lipschitz constants for f̂(·, d) (uniformly for
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d ∈ Ω) and 2f0 φ, respectively, on B1.5|ξ|+3T (0) \ Bσ(0). Write z(t) := z(t, ξ,d,v),
and zk(t) := z(t, ξk,dk,vk). Now, for all t ∈ [0, T ] we have

|z(t)− zk(t)| =
∣∣∣∣ξk − ξ +

∫ t

0

(
f̃(zk(t),dk(t),vk(t))− f̃(z(t),d(t),v(t))

)
dt

∣∣∣∣
≤ |ξk − ξ|+

∣∣∣∣∫ t

0

(
f̃(z(t),dk(t),vk(t))− f̃(z(t),d(t),v(t))

)
dt

∣∣∣∣
+

∫ t

0

∣∣∣f̃(zk(t),dk(t),vk(t))− f̃(z(t),dk(t),vk(t))
∣∣∣ dt

≤ |ξk − ξ|+
∣∣∣∣∫ t

0

(
f̂(z(t),dk(t))− f̂(z(t),d(t))

)
dt

∣∣∣∣(4.15)

+2

∣∣∣∣∫ t

0

(f0(z(t))φ(z(t))vk(t)− f0(z(t))φ(z(t))v(t)) dt

∣∣∣∣(4.16)

+

∫ t

0

(M1 +M2) |zk(t)− z(t)| dt.

The integrals in (4.15) and (4.16) tend to 0 because of the convergence of {dk(·)} to
d in S and the weak convergence of vk to v. So, for any ε > 0 we can find a K such
that, for all k ≥ K,

|ξk − ξ|+
∣∣∣∣∣
∫ T

0

(
f̂(z(t),dk(t))− f̂(z(t),d(t))

)
dt

∣∣∣∣∣
+ 2

∣∣∣∣∫ t

0

(f0(z(t))φ(z(t))vk(t)− f0(z(t))φ(z(t))v(t)) dt

∣∣∣∣ ≤ εe−(M1+M2)T .

Then, for all k ≥ K and t ∈ [0, T ] we have, by the Gronwall inequality,

|z(t)− zk(t)| ≤ εe−(M1+M2)T e(M1+M2)t ≤ ε.

As ε was arbitrary, this proves uniform convergence.
Also, since for any ξ ∈ ∂D \ {0}, f0(ξ) �= 0, and f0(ξ) ≥ |f̂(ξ, d)| for any d ∈ Ω,

we have the following controllability property on ∂D \ {0}.
Lemma 4.4. Let ξ �= 0 be on ∂D. Then, for each τ > 0, there exists a neighbor-

hood U of ξ, such that for any η ∈ U and any d ∈MΩ, there is some control v, and
some 0 ≤ t1 ≤ τ , such that z(t1, η,d,v) = ξ and z(t, η,d,v) ∈ U for all 0 ≤ t ≤ t1.

Proof. Since φ(ξ) f0(ξ) �= 0 and the function φ(·) f0(·) is continuous, we can find
a ball U1 centered at ξ and a constant c1 such that φ(z)f0(z) > c1 for every z ∈ U1.
Since φ(ξ) = 1 and φ is continuous, one could also find a ball U2 ⊆ U1 centered at ξ,
so that ∣∣∣f̂(z, d)∣∣∣ ≤ 1.5φ(z)f0(z) ∀z ∈ U2, d ∈ Ω.

Fix τ > 0 and let B(ξ) be the ball of radius τc1/2 centered at ξ. Define U := B(ξ)∩U2.
Pick a point η ∈ U . Then |ξ − η| < τc1/2, so,

v̄2 :=
2(ξ − η)

τc1

has norm smaller than 1. Consider the “feedback law”

k(z, d) =
1

2
(1.5k1(z, d) + 0.5v̄2),
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where

k1(z, d) := − f̂(z, d)

1.5φ(z)f0(z)
.

Notice that for all z ∈ U and d ∈ Ω we have |k1(z, d)| ≤ 1 and

f̃(z, d, k(z, d)) = f̂(z, d) + 2φ(z)f0(z)k(z, d)

= f̂(z, d) + 1.5φ(z)f0(z)k1(z, d) + 0.5φ(z)f0(z)v̄2

= 0.5φ(z)f0(z)v̄2 =
(ξ − η)φ(z)f0(z)

τc1
.

Thus, with any initial condition η ∈ U and disturbance d ∈ MΩ, if the control
v(t) := k(z(t), d(t)) is applied, then the trajectory of the system Σ̃ will be the line
segment, connecting ξ and η, transversed with a velocity greater than (ξ − η)/τ . So,
there exists a t0 ≤ τ such that z(t0, η,d,v) = ξ and, since U is convex, z(t, η,d,v) ∈ U
for all t ≥ t0.

For each d ∈ S, let
θd(ξ,v) = inf {t ≥ 0 : z(t, ξ,d,v) ∈ D} ,

where as before, θd(ξ,v) =∞ if the trajectory never reaches D.
Lemma 4.5. The map (ξ,v,d) %→ θd(·, ·) is lower semicontinuous on E ×W ×S.
Proof. Let {ξk} ⊂ E , {vk} ⊂ W and {dk} ⊂ S be such that ξk → ξ,vk → v, and

dk → d for some ξ ∈ E , v ∈ W, and d ∈ S. We need to show that

θd(ξ,v) ≤ lim inf
k→∞

θdk(ξk,vk).(4.17)

Let θk = θdk(ξk,vk). Without loss of generality, we may assume that

lim inf
k→∞

θk = θ0 <∞.

Passing to a subsequence if necessary, we assume that θk → θ0. Thus, there exists
some K such that θk ≤ θ0 + 1 for all k ≥ K. Since {z(t, ξk,dk,vk)} converges to
z(t, ξ,d,v) uniformly on [0, θ0 + 1], it follows that

z(θ0, ξ,d,v) = lim
k→∞

z(θk, ξk,dk,vk).

Since D is closed and z(θk, ξk,dk,vk) ∈ D for each k, we know that z(θ0, ξ,d,v) ∈ D,
and hence, θd(ξ,v) ≤ θ0.

Define, for ξ ∈ E ,d ∈ S, and v ∈ W,

Vv(ξ,d) :=

∫ θd(ξ,v)

0

Ξ(|z(t, ξ,d,v)|) dt

(where Ξ is as in (4.10)) and, for ξ ∈ E and d ∈ S,
Ṽ0(ξ,d) := inf

v∈W
Vv(ξ,d).

Note that for some v and d, Vv(ξ,d) may take ∞ as its value, but Ṽ0(ξ,d) is always
finite, since

Ṽ0(ξ,d) ≤ VO(ξ,d),(4.18)
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where O(·) is the control identically equal to 0. Recall that by definition of Ξ we have
then, for all ξ ∈ E1 and d ∈ S,

VO(ξ,d) =

∫ θd(ξ,O)

0

Ξ(|z(t, ξ,d, O)|) dt

=

∫ θd(ξ,O)

0

Ξ(|z(t, ξ,d)|) dt ≤
∫ ∞

0

Ξ(µ1(µ2(|ξ|)e−t))dt ≤ µ2(|ξ|),(4.19)

where µ1 and µ2 are as in (4.9).
Lemma 4.6. The function V(·)(·, ·) : E ×S ×W → R≥0 is lower semicontinuous.
Proof. Let (ξ,d,v) ∈ E × S ×W, and let {ξk} → ξ, {dk} → d and {vk} → v,

where ξk ∈ E for all k.
Case 1. Vv(ξ,d) < ∞. In this case, for any ε > 0, there exists some 0 < T <

θd(ξ,v) such that

Vv(ξ,d) =

∫ θd(ξ,v)

0

Ξ(|z(t, ξ,d,v)|) dt ≤
∫ T

0

Ξ(|z(t, ξ,d,v)|) dt+ ε.

Without loss of generality we can assume that all ξk are within the unit distance
from ξ. Recall that the reachable set from the unit ball around ξ is bounded. Since
z(t, ξk,dk,vk) converges to z(t, ξ,d,v) uniformly on [0, T ], and Ξ(·) is uniformly con-
tinuous on compacts, there exists some K > 0 such that

|Ξ(|z(t, ξ,d,v)|)− Ξ(|z(t, ξk,dk,vk)|)| < ε

1 + T
∀k > K, ∀t ∈ [0, T ].

This implies that∫ T

0

Ξ(|z(t, ξk,dk,vk)|) dt ≥
∫ T

0

Ξ(|z(t, ξ,d,v)|) dt− ε

for all k ≥ K. By Lemma 4.5, there exists some K1 ≥ K such that θdk(ξk,vk) > T
for all k ≥ K1. Thus, for all k ≥ K1,

Vvk(ξk,dk) ≥
∫ T

0

Ξ(|z(t, ξk,dk,vk)|) dt

≥
∫ T

0

Ξ(|z(t, ξ,d,v)|) dt− ε ≥ Vv(ξ,d)− 2ε.

As ε was arbitrary, we conclude that

Vv(ξ,d) ≤ lim inf Vvk(ξk,dk).

Case 2. Vv(ξ,d) =∞.
In this case, θd(ξ,v) =∞. Fix an integer k ≥ 0. There exists some Tk such that∫ Tk

0

Ξ(|z(t, ξ,d,v)|) dt ≥ k.

Repeating the same argument used above, one sees that∫ Tk

0

Ξ(|z(t, ξl,dl,vl)|) dt ≥ k − 1
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for all l ≥ L0 for some L0. By Lemma 4.5, there is some L1 ≥ L0 such that
θdl(ξl,vl) ≥ Tk for all l ≥ L1. Consequently, for all l ≥ L1,

Vvl(ξl,dl) ≥
∫ Tk

0

Ξ(|z(t, ξl,dl,vl)|) dt ≥ k − 1.

Since k > 0 can be picked arbitrarily, it follows that

lim inf Vvl(ξl,dl) =∞.

In both cases, we have shown that lim inf Vvl(ξl,dl) ≥ Vv(ξ,d). The lower semicon-
tinuity property follows readily.

Lemma 4.7. For every ξ ∈ E, d ∈ S, there exists a control v̄ such that

Vv̄(ξ,d) = Ṽ0(ξ,d).(4.20)

Proof. Let vk be a sequence of controls such that Vvk(ξ,d)↘ Ṽ0(ξ,d). Without
loss of generality we are assuming that all these controls are defined for all positive
t (by letting them equal to 0 where they are not defined). Extract from {vk} a
subsequence {vkl} converging weakly to some limit v̄ in W. Without relabeling, we
assume that vk → v̄. By Lemma 4.6,

Vv̄(ξ,d) ≤ lim
k→∞

Vvk(ξ,d) = Ṽ0(ξ,d).

Combining this with the fact that Ṽ0(ξ,d) ≤ Vv(ξ,d) for all v ∈ W, one thus proves
(4.20).

Corollary 4.8. For any ξ ∈ E ,d ∈ S,v ∈ W, and 0 ≤ T < θd(ξ,v), it holds
that

Ṽ0(ξ,d) ≤
∫ T

0

Ξ(|z(s, ξ,d,v)|) ds+ Ṽ0(z(T, ξ,d,v),dT ),(4.21)

where dT (t) = d(t+ T ) for all t ≥ 0.
Proof. Suppose the assertion is not true. Then there exist ξ ∈ E , T > 0, v ∈ W,

and d ∈ S such that (4.21) fails. By Lemma 4.7, one can find a control v1 such that

Ṽ0(z(T, ξ,d,v),dT ) = Vv1(z(T, ξ,d,v),dT ). Define v̄ to be the concatenation of v
and v1. Then, letting θ := θdT (z(T, ξ,d,v),v1) and noticing that θd(ξ, v̄) = θ + T ,
we get, by our assumption,

Ṽ0(ξ,d) >

∫ T

0

Ξ(|z(s, ξ,d,v)|) ds+ Ṽ0(z(T, ξ,d,v),dT )

=

∫ T

0

Ξ(|z(s, ξ,d,v)|) ds+
∫ θ

0

Ξ(|z(t, z(T, ξ,d,v),dT ,v1)|) dt

=

∫ θ+T

0

Ξ(|z(s, ξ,d, v̄)|) ds,

which contradicts with the minimality of Ṽ0(ξ,d).
Lemma 4.9. For each ξ ∈ ∂D, the following holds:

lim
η→ξ

Ṽ0(η,d) = 0(4.22)
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uniformly in d ∈ S, that is, for any ε > 0, there is a neighborhood U of ξ such that
Ṽ0(η,d) < ε for all η ∈ U ∩ E and all d ∈ S.

Proof. If ξ = 0, the result follows from (4.18) and (4.19). Suppose now that ξ �= 0.
Let ε > 0 be given. Let τ = ε

Ξ(|ξ|+1) . Find a neighborhood U of ξ as in Lemma 4.4.

Shrinking U if necessary, we assume that |ξ − η| ≤ 1 for all η ∈ U .
Suppose η ∈ U ∩ E and d ∈ MΩ. By the controllability property, there is some

control v such that z(t1, η,d,v) = ξ ∈ ∂D for some t1 ∈ [0, τ ], and that z(t, η,d,v) ∈
U for all t ∈ [0, t1]. Thus,

Vv(η,d) ≤
∫ t1

0

Ξ(|z(s, η,d,v)|) ds ≤ τ · Ξ(|ξ|+ 1) ≤ ε,

from which it follows that Ṽ0(η,d) ≤ ε.

The above shows that Ṽ0(η,d) ≤ ε for all nonrelaxed d ∈ MΩ, η ∈ U ∩ E . Pick
a relaxed d ∈ S. Then there exists a sequence {dk} ⊂ MΩ such that dk → d in

the topology of relaxed controls. Let η ∈ U ∩ E . Let vk be such that Ṽ0(η,dk) =
Vvk(η,dk). By weak sequential compactness of W, one may assume, after taking a
subsequence, that vk → v̄ for some v̄. By Lemma 4.6,

Vv̄(η,d) ≤ lim inf
k→∞

Vvk(η,dk) ≤ ε,

and consequently, Ṽ0(η,d) ≤ ε. This shows that Ṽ0(η,d) ≤ ε for all η ∈ U ∩E and all
d ∈ S.

To prove the continuity of Ṽ0, we also need the following result.
Lemma 4.10. Suppose for some ξ ∈ E, d ∈ S, and v ∈ W, Vv(ξ,d) <∞. Then

there exists some ξ0 ∈ ∂D such that

lim
t→θd(ξ,v)

z(t, ξ,d,v) = ξ0.(4.23)

Proof. Suppose Vv(ξ, ν) <∞. This means that∫ θν(ξ,v)

0

Ξ(|z(s, ξ, ν,v)|) ds <∞.(4.24)

If θd(ξ,v) < ∞, then (4.23) follows from the continuity of z(·, ξ, ν,v) with ξ0 =
z(θd(ξ,v)).

Suppose now that θd(ξ,v) =∞. Since the integral in (4.24) converges, it follows
that ∫ ∞

t

Ξ(|z(s, ξ,d,v)|) ds→ 0 as t→∞.

Consider the family of functions {xt(·), t > 0}, defined by xt(s) := z(t + s, ξ,d,v),
It = [0,∞). By Lemma 4.1, the trajectory z(s, ξ,d,v) does not reach the origin in
finite time, hence, there exists a positive, strictly decreasing function ϕ such that
ϕ(s) < |z(s, ξ,d,v)| for all s > 0. Find a K∞-function κ such that

κ(ϕ(t)) >

∫ ∞

t

Ξ(|z(s, ξ,d,v)|) ds =

∫ ∞

0

Ξ(|xt(s)|) ds.

Then the family {xt(·), t > 0} satisfies all the conditions of Proposition 3.9 (with
χ := Ξ). Take r := |ξ|. Then, for any ε > 0, |z(t, ξ,d,v)| < ε for all t > Tr,ε. So, the
conclusion of the lemma follows.
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Proposition 4.11. The function Ṽ0 : E × S → R is continuous.
Proof. Fix ξ ∈ E , d ∈ S. Suppose ξk → ξ,dk → d, where ξk ∈ E . Let {kj} be a

subsequence of {k} such that

lim
j→∞

Ṽ0(ξkj ,dkj ) = lim inf
k→∞

Ṽ0(ξk,dk).(4.25)

For each k, let vk be such that Ṽ0(ξk,dk) = Vvk(ξk,dk). Notice that limk→∞ Vvk(ξk,dk)
exists, because of (4.25).

By sequential compactness of W, there exists a subsequence of {vkj} converging
to some v̄ ∈ W. Without relabeling, we assume that vkj → v̄. It then follows from
Lemma 4.6 that

Vv̄(ξ,d) ≤ lim Vvkj
(ξkj ,dkj ) = lim inf Ṽ0(ξk,dk).

Consequently, Ṽ0(ξ,d) ≤ lim inf Ṽ0(ξk,dk). To complete the proof, we will show that

Ṽ0(ξ,d) ≥ lim sup
k→∞

Ṽ0(ξk,dk).(4.26)

Let v be a control such that Ṽ0(ξ,d) = Vv(ξ,d). Let ε > 0 be given. By
Lemma 4.10, there is some ξ0 ∈ ∂D such that (4.23) holds. By Lemma 4.9, there is a
neighborhood U of ξ0 such that

Ṽ0(η, ν) < ε/4 ∀η ∈ U ∩ E , ∀ν ∈ S.(4.27)

Let 0 < T < θd(ξ,v) be such that z(T, ξ,d,v) ∈ U . Then, since {z(t, ξk,dk,v)}
converges to z(t, ξ,d,v) uniformly on [0, T ], it follows that z(T, ξk,dk,v) ∈ U for
k ≥ K1 for some K1. By Lemma 4.5, one may assume that T < θdk(ξk,v) for all
k ≥ K1. Consequently, η = z(T, ξk,dk,v) is also in E , so, applying (4.27) with
ν = (dk)T , we have

Ṽ0(z(T, ξk,dk,v), (dk)T ) < ε/4 ∀ k ≥ K1,

where (dk)T (t) = dk(T + t). By the uniform convergence property of {z(t, ξk,dk,v)},
it follows that there is some compact set K such that z(t, ξk,dk,v) ∈ K for all k and
all t ∈ [0, T ]. Using also the uniform continuity of Ξ(·) on compacts, one sees that
there is some K2 ≥ K1 such that∫ T

0

Ξ(|z(s, ξk,dk,v)|) ds ≤
∫ T

0

Ξ(|z(s, ξ,d,v)|) ds+ ε/2

for all k ≥ K2. Thus, (4.21) implies

Ṽ0(ξk,dk) ≤
∫ T

0

Ξ(|z(s, ξk,dk,v)|) ds+ Ṽ0(z(T, ξk,dk,v), (dk)T )

≤ Vv(ξ,d) + ε/2 + ε/2 = Ṽ0(ξ,d) + ε

for all k ≥ K2. From this it follows that

Ṽ0(ξ,d) ≥ lim sup Ṽ0(ξk,dk)− ε.

Letting ε→ 0, one proves (4.26).
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For each ξ ∈ E , define
V0(ξ) := sup

d∈MΩ

Ṽ0(ξ,d).(4.28)

Note that the supremum is finite for each ξ ∈ E ; in fact, by (4.18) and (4.19), we have
the upper bound

V0(ξ) ≤ µ2(|ξ|) ∀ ξ ∈ E ,(4.29)

where µ2 is as in inequality (4.9). Also observe that the same function V0 results if
the supremum in (4.28) is taken over the set S. This follows from the fact that MΩ

is dense in S and the continuity property of Ṽ0.
By sequential compactness of S and by continuity of Ṽ0, we get the following.
Corollary 4.12. For any ξ in E there exists a (possibly relaxed) disturbance d

such that V0(ξ) = Ṽ0(ξ,d), that is, V0(ξ) = maxd̄∈S Ṽ0(ξ, d̄). Moreover, V0 : E → R
is continuous.

Proof. Fix ξ ∈ E . By definition of V0, there exists a sequence of disturbances
{dk(·)} such that Ṽ0(ξ,dk)↗ V0(ξ). By sequential compactness of S, we can extract

a subsequence {dki}, converging in S to some d. By continuity of Ṽ0,

V0(ξ) = lim
i→∞

Ṽ0(ξ,dki) = Ṽ0(ξ,d),

proving the first statement of the corollary.
Now fix ξ ∈ E . Take any sequence {ξk} ∈ E , converging to ξ and such that the

sequence {V0(ξk)} converges. Let dk(·) and d ∈ S be maximizing disturbances for ξk
and ξ, respectively, that is,

V0(ξk) = Ṽ0(ξk,dk) and V0(ξ) = Ṽ0(ξ,d).

Extracting a subsequence if necessary, let d̂ be a limit of {dk} in S. Then, by

continuity of Ṽ0 and by definition of V0, we have

V0(ξ) ≥ Ṽ0(ξ, d̂) = lim
k→∞

Ṽ0(ξk,dk) = lim
k→∞

V0(ξk).

Consequently, if {ξi} ⊂ E is any sequence, converging to ξ, then

V0(ξ) ≥ lim sup
i→∞

V0(ξi),

proving upper semicontinuity of V0.
On the other hand, again by continuity of Ṽ0, we have

lim inf
k→∞

V0(ξk) ≥ lim
k→∞

Ṽ0(ξk,d) = V0(ξ),

showing the lower semicontinuity of V0. Thus we conclude that V0 is continuous on
E .

Lemma 4.13. There exists a K∞-function α such that

α(|ξ|) ≤ V0(ξ)

for all ξ ∈ E1.
Notice that if |ξ| ≥ 1.6ρ(|h(ξ)|) and ξ �= 0, then ξ ∈ E , because |ξ| > |ξ| /1.6 ≥

ρ(|h(ξ)|). To prove Lemma 4.13, we first prove a technical lemma.
Lemma 4.14. Suppose Σ : ż = g(z, d), y = h(z) is a system of type (2.14), and

p(·) is a smooth function of class K∞, such that the following conditions hold:
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• |g(ξ, d)| ≤ 1 for all ξ ∈ X and d ∈ Ω,
• |∇(p ◦ |h|)(ξ) · g(ξ, d)| ≤ 1 for all d ∈ Ω and all ξ with |h(ξ)| ≥ 1,
• p(s) ≥ s for all s > 0.

Pick any constant a > 0 and define K0 = p(1) + (2 + a)/a+ 1. Then for each ξ ∈ X
such that

|ξ| ≥ (1 + a)p(|h(ξ)|) and |ξ| ≥ K0,

it holds that

|z(t, ξ,d)| > p(|h(z(t, ξ,d))|)
for all t ∈ [0, 1) and any d ∈MΩ.

Proof. Fix a, ξ, and d as in the formulation of the lemma, and define

θ := min {t : |z(t, ξ,d)| ≤ p(|h(z(t, ξ,d))|)}
with the convention θ = +∞ if the inequality never holds for t ≥ 0. Assume the
lemma is false, so that θ < 1.

Let η = z(θ, ξ,d), and let d̂ be the shift of d by θ, that is, d̂(t) = d(t+ θ). Since
|g(z, d)| ≤ 1 for all z ∈ X and all d ∈ Ω, it holds that |η| ≥ |ξ| − θ ≥ K0 − 1. By the
definitions of η and θ, one has

p(|h(η)|) = |η| ≥ K0 − 1,(4.30)

so also |h(η)| ≥ p−1(K0 − 1) > 1. Thus, |h(z(s, η, d̂))| > 1 for all s near zero.

Claim. |h(z(s, η, d̂))| > 1 for all s ∈ [−1, 0].
Assume the claim is false. Then there must exist some −1 ≤ s0 < 0 so that

s0 = max
{
s ≤ 0 : |h(z(s, η, d̂))| ≤ 1

}
.

We have that for each s ∈ (s0, 0], |h(z(s, η, d̂))| > 1.
Recall that |∇(p ◦ |h|)(z)f(z, d)| ≤ 1 for all z with |h(z)| ≥ 1 and all d ∈ Ω.
Thus ∣∣∣∣ ddsp(∣∣∣h(z(s, η, d̂))∣∣∣)

∣∣∣∣ ≤ 1 ∀ s ∈ (s0, 0].

This, in turn, implies that

p
(∣∣∣h(z(s0, η, d̂))

∣∣∣) ≥ p(|h(η)|) + s0 ≥ K0 + s0 − 1 > p(1),

and so, since p is strictly increasing, |h(z(s0, η, d̂))| > 1, thus contradicting the defi-
nition of s0. This proves the claim.

It follows from the claim that |h(z(s, ξ,d))| > 1 for all s ∈ [0, θ]. Thus,

p(|h(η)|) = |η| ≥ |ξ| − θ

≥ (1 + a)p(|h(ξ)|)− θ ≥ (1 + a)p(|h(η)|)− (1 + a)θ − θ.

(The last inequality used the fact that
∣∣ d
dsp(|h(z(s, ξ,d))|)

∣∣ ≤ 1 for all s ∈ [0, θ].) It
follows that p(|h(η)|) ≤ 2+a

a θ, so from (4.30) we know that

K0 ≤ 1 + p(|h(η)|) ≤ 1 +
2 + a

a
θ,
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contradicting the choice of K0. This shows that it is impossible to have θ < 1.
Proof of Lemma 4.13. Recall that if ξ �∈ D ∪ B, then f̃(ξ, d, v) = f̂(ξ, d) for any d

and v, so that∣∣∣∇(1.5ρ ◦ |h|)(ξ) · f̃(ξ, d, v)
∣∣∣ = 1.5 |∇(ρ ◦ |h|)(ξ) · f(ξ, d)|

1 + |f(ξ, d)|2 + κ(ξ)
≤ 1,

where the last inequality follows from (4.4). Therefore the assumptions of Lemma 4.14

are satisfied with p := 1.5ρ and f(ξ, d) := f̃(ξ, d, v) = f̂(ξ, d). By Lemma 4.14, we
can find a constant K0 such that if |ξ| > K0 and |ξ| ≥ 1.6ρ(|h(ξ)|), then z(t, ξ,d, v) �∈
D ∪ B for all t ∈ [0, 1). In particular, for such a ξ we will have θd(ξ,v) > 1 and
|z(t, ξ,d,v)| > |ξ| − 1 for all positive t < 1 . Hence, the inequality

Ξ(|z(t, ξ,d,v)|) > Ξ(|ξ| − 1) ∀t ∈ [0, 1)

holds for any d ∈MΩ, v ∈ W, and any ξ such that

|ξ| > max {K0 + 1, 1.6ρ(|h(ξ)|)} .(4.31)

Therefore, for any ξ as in (4.31) and any d ∈MΩ, the following estimate holds:

V0(ξ) ≥ Ṽ0(ξ,d) ≥
∫ 1

0

Ξ(|z(t, ξ,d,v)|)dt ≥ Ξ(|ξ| − 1).

Next, notice that V0 is strictly positive on E . Indeed, |f̃(ξ, d, v)| ≤ 3 for any ξ ∈ E ,
d ∈ Ω, and v ∈ [−1, 1]n, so that

|z(s, ξ,d,v)− ξ| ≤ 1

2
dist(ξ,D) ∀ s ≤

1
2dist(ξ,D)

3
, d ∈MΩ, v ∈ W.

Therefore θd(ξ,v) ≥ 1
6dist(ξ,D) and |z(s, ξ,d,v)| ≥ ξ − 1

2dist(ξ,D) for all s ≤
1
6dist(ξ,D), all d ∈MΩ, and v ∈ W. So, we have

Vv(ξ,d) ≥
∫ dist(ξ,D)/6

0

Ξ (|z(s, ξ,d,v)|) ds ≥ dist(ξ,D)
6

Ξ(|ξ| − dist(ξ,D)/2).

This shows that

inf
d∈MΩ

inf
v∈W

Vv(ξ,d) ≥ dist(ξ,D)
6

Ξ

(
|ξ| − dist(ξ,D)

2

)
.(4.32)

Thus also the supd∈MΩ
infv∈W Vv(ξ,d) satisfies (4.32), and hence the same inequality

holds for V0.
Since V0 is lower semicontinuous, it attains its minimum on any compact set. For

each positive l define

rl :=
1

l
max {K0 + 1, 1.6ρ(|h(ξ)|)} and ml = inf {V0(z) : z ∈ E1, rl ≤ |z| ≤ r1} .

Since the sequence {ml} is nonincreasing and positive, and Ξ is of class K∞, we can
find a K∞-function α such that

α(s) < ml ∀ s ∈ [rl, rl−1], ∀ l > 1
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and

α(s) < Ξ(s− 1)∀ s ≥ max {K0 + 1, 1.6ρ(|h(ξ)|)} .

By construction, α will be a lower bound for V0 on E1.
Combining Lemma 4.13 with (4.29), we get the following, using ᾱ := µ2:

α(|ξ|) ≤ V0(ξ) ≤ ᾱ(|ξ|) ∀ ξ ∈ E1.(4.33)

The following lemma and corollary summarize the dissipation properties for V0.
Lemma 4.15. For any ξ ∈ X \ (D ∪ B) and d ∈ MΩ, and any t0 such that

z(t, ξ,d) �∈ D ∪ B for all t ∈ [0, t0], the following dissipation inequality holds:

V0(z(t, ξ,d))− V0(ξ) ≤ −
∫ t0

0

Ξ(|z(t, ξ,d)|) dt.

Proof. Fix ξ ∈ X \ (D∪B), d ∈MΩ, and any positive t0 as in the formulation of
the lemma. Let ε > 0 be given. Find d1 such that

V0(z(t0, ξ,d))− Ṽ0(z(t0, ξ,d),d1) < ε,

and let v1 ∈ W be a control such that Ṽ0(z(t0, ξ,d),d1) = Vv1(z(t0, ξ,d),d1). Let d̃
be defined by

d̃(t) =

{
d(t) if 0 ≤ t ≤ t0,
d1(t− t0) if t > t0.

Then z(t, z(t0, ξ,d),d1,v1) = z(t+ t0, ξ, d̃, ṽ) for all t ≥ 0. By assumption,

z(t, ξ,d) �∈ D ∪ B ∀ t ∈ [0, t0],

and therefore we have

z(t, ξ,d) = z(t, ξ,d,v) ∀ t ∈ [0, t0], ∀ v ∈ W.(4.34)

Notice also that (4.34) implies that θ
d̃
(ξ,v) > t0 for all v ∈ W and

Ṽ0(ξ, d̃) = min
v∈W

∫ θ
d̃
(ξ,v)

t0

Ξ
(∣∣∣z(s, ξ, d̃,v)∣∣∣) ds

=

∫ t0

0

Ξ
(∣∣∣z(s, ξ, d̃)∣∣∣) ds+ min

v∈W

∫ θ
d̃
(ξ,v)

t0

Ξ
(∣∣∣z(s, ξ, d̃,v)∣∣∣) ds

=

∫ t0

0

Ξ(|z(s, ξ,d)|)ds+ min
v∈W

∫ θd1
(z(t0,ξ,d),v)

0

Ξ(|z(s, z(t0, ξ,d),d1,v)|)ds

=

∫ t0

0

Ξ(|z(s, ξ,d)|)ds+ Ṽ0(z(t0, ξ,d),d1).

Consequently, one has

Ṽ0(z(t0, ξ,d),d1) = Ṽ0(ξ, d̃)−
∫ t0

0

Ξ (|z(s, ξ,d)|) ds.
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Thus,

V0(z(t0, ξ,d)) ≤ Ṽ0(z(t0, ξ,d),d1) + ε

= Ṽ0(ξ, d̃)−
∫ t0

0

Ξ(|z(s, ξ,d)|) ds+ ε

≤ V0(ξ)−
∫ t0

0

Ξ(|z(s, ξ,d)|) ds+ ε.

Letting ε→ 0, we get the desired inequality.
Thus, we have proven that the UOSS dissipation inequality holds for V0 along the

trajectories of the slower system Σ̂ which are entirely contained in X \ (D ∪ B). It
follows immediately that the same estimate holds along the trajectories of the original
system Σ.

Corollary 4.16. For any ξ ∈ X \ (D ∪ B) and d ∈ MΩ, and any t0 such that
x(t, ξ,d) �∈ D ∪ B for all t ∈ [0, t0], the following dissipation inequality holds:

V0(x(t, ξ,d))− V0(ξ) ≤ −
∫ t0

0

Ξ(|x(t, ξ,d)|) dt.(4.35)

Proof. Pick an initial state ξ ∈ X \ (D ∪ B), a disturbance d ∈ MΩ, and an
appropriate t0. Then

V0(x(t0, ξ,d))− V0(x(ξ))

= V0(z(σξ,d(t0), ξ,d ◦ σξ,d−1))− V0(z(σξ,d(t1), ξ,d ◦ σξ,d−1))

≤ −
∫ σξ,d(t0)

0

Ξ(
∣∣z(s, ξ,d ◦ σξ,d−1)

∣∣) ds
= −

∫ t0

0

Ξ(
∣∣z(σξ,d(t), ξ,d ◦ σξ,d−1)

∣∣) dσξ,d(t)
= −

∫ t0

0

Ξ(|x(t, ξ,d)|) d

dt
σξ,d(t) dt

= −
∫ t0

0

Ξ(|x(t, ξ,d)|)[1 + |f(x(t, ξ,d),d(t))|2 + κ(x(s, ξ,d))] dt

≤ −
∫ t0

0

Ξ(|x(t, ξ,d)|) dt.

4.4. Some definitions and facts from nonsmooth analysis.
Definition 4.17. A vector ζ ∈ Rn is a proximal subgradient (respectively,

proximal supergradient) of the function V : Rn → (−∞,+∞] at x if there exists
some positive σ such that, for all x′ in some neighborhood of x,

V (x′) ≥ V (x) + ζ · (x′ − x)− σ|x′ − x|2(4.36)

(correspondingly, V (x′) ≤ V (x) + ζ · (x′ − x) + σ|x′ − x|2).(4.37)

The (possibly empty) set of all proximal subgradients (respectively, supergradients)
of V at x is called the proximal subdifferential and is denoted ∂PV (x) (respectively,
proximal superdifferential, denoted ∂PV (x)). Note that the definitions imply that if
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the function V is differentiable at x, then both the subdifferential and superdifferential
sets must be subsets of the {∇V (x)}.

Lemma 4.18. Let Σ be a system of type (2.14), ξ be a vector in X, d̄ ∈ Ω, and
V : X → R. Then, if there exist some continuous αξ : R≥0 → R and ε > 0 such
that the following inequality holds for all τ < ε,

V (x(τ, ξ,d))− V (ξ) ≤
∫ τ

0

αξ(t)dt(4.38)

(where d is the constant disturbance equal to d̄), then for any ζ ∈ ∂PV (ξ) the proximal
form of inequality (4.38) holds:

ζ · f(ξ, d̄) ≤ αξ(0).(4.39)

Proof. It follows from (4.36) and (4.38) that, for all τ close enough to 0 we have∫ τ

0

αξ(t)dt ≥ V (x(τ, ξ,d))− V (ξ) ≥ ζ · (x(τ, ξ,d)− ξ)− σ|x(τ, ξ,d)− ξ|2.

Dividing by τ and passing to the limit as τ tends to 0, we get (4.39).

4.5. Smoothing out a continuous Lyapunov function. The next result
shows how to approximate a continuous function V by a locally Lipschitz one in a
weak C1 sense. The function V is assumed to be bounded below, or up to a translation
by a constant, nonnegative.

Lemma 4.19. Let Σ : ẋ = f(x, d) be a system, with x ∈ X = Rn and d ∈ Ω,
a compact metric space, so that f(x, d) is locally Lipschitz in x uniformly on d and
jointly continuous in x and d. Assume that we are given

• an open subset O of X;
• a continuous, nonnegative function V : O → R satisfying

ζ · f(x, d) ≤ Θ(x, d) ∀x ∈ O, ζ ∈ ∂PV (x), d ∈ Ω(4.40)

with some continuous function Θ : O × Ω→ R;
• two positive, continuous functions Υ1 and Υ2 on O.

Then there exists a function Ṽ : O → R, locally Lipschitz on O, such that

0 ≤ V (x)− Ṽ (x) ≤ Υ1(x) ∀x ∈ O(4.41)

and

Lfd Ṽ (x) ≤ Θ(x, d) + Υ2(x) ∀d ∈ Ω and for almost all x ∈ O,(4.42)

where fd is the vector field defined by fd = f(·, d).
Note that, by Rademacher’s theorem, the directional derivative Lfd Ṽ (x), given

by ∇V (x) ·f(x, d), is defined for almost all x because Ṽ is locally Lipschitz. The proof
will follow closely along the lines of the proof of the similar result for CLFs, found in
[9] or [40].

We will first prove a “local” version of the result. For any K which is a compact
subset of O and r > 0, we introduce the following notations:

• B̄r(K) := {x ∈ X : ∃ξ ∈ K with |x− ξ| ≤ r}, the closed r-fattening of K,
for r > 0,

• β(K) := supx∈K V (x),
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• mK := 1
4 min {Υ2(x) : x ∈ K} ,

• AK := a Lipschitz constant for f with respect to x in K, that is,

|f(x, d)− f(x′, d)| ≤ AK |x− x′| ∀d ∈ Ω, ∀x ∈ K,

• ωK(·) := the modulus of continuity of V on K, that is,

ωK(δ) := sup {V (x)− V (x′) : |x− x′| ≤ δ;x, x′ ∈ K} ,
• πK(·) := the modulus of continuity of Θ on K × Ω, that is,

πK(δ) := sup{Θ(x, d)−Θ(x′, d′) : |x− x′|+ dist (d, d′) ≤ δ;

x, x′ ∈ K, d, d′ ∈ Ω}.
To approximate the given continuous function V by a locally Lipschitz one, we

would like to use the notion of “Iosida–Moreau inf-convolution,” well known in convex
analysis. Fix a parameter α ∈ (0, 1]. Suppose for the moment that V is defined on
the whole X. Define

Vα(x) := min
y∈X

[
V (y) +

1

2α2
|y − x|2

]
.

For each fixed x, the set of points y where the minimum is attained is nonempty
because V is bounded below. Denote one of them by yα(x).

Fix a compact K and α ∈ (0, 1], let

Kα := B̄
α
√

2β(K)
(K).

The following four claims summarize some of the useful properties of Vα, proven in
[9], [40] (or see the primary sources such as [8]).

Claim 1. For all x ∈ K,

|yα(x)− x|2 ≤ min
{
2α2β(K), 2α2ωKα

(
α
√
2β(K)

)}
.

Proof of Claim 1. By definition of Vα and β(K), we have

1

2α2
|yα(x)− x|2 ≤ V (x)− V (yα(x)) ≤ V (x) ≤ β(K),(4.43)

so that |yα(x)− x|2 ≤ 2α2β(K). On the other hand, the first inequality in (4.43)
implies also that

|yα(x)− x|2 ≤ 2α2(V (x)− V (yα(x)))

≤ 2α2ωKα (|yα(x)− x|) ≤ 2α2ωKα

(
α
√

2β(K)
)
,

proving the claim.
Let

ζα(x) =
x− yα(x)

α2
.

Claim 2. For any x ∈ X,

ζα(x) ∈ ∂PV (yα(x)) and(4.44)
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ζα(x) ∈ ∂PVα(x).(4.45)

Claim 3. For any x ∈ K,

Vα(x) ≤ V (x) ≤ Vα(x) + ωKα

(
α
√
2β(K)

)
.

Claim 4. Vα is locally Lipschitz.
Now recall that, in our setting, V is defined on an open subset O ofX, so, we can’t

minimize the expression in the definition of Vα over the whole state space. However,
for any compact subset K of O we can choose α small enough so that

Kα ⊂ O,

hence, for any x in K we could define Vα minimizing over y ∈ O, and the same
function Vα results on K.

Lemma 4.20. Assume that V satisfies (4.40), a compact K is fixed, and α ∈ (0, 1]
is chosen to satisfy

• Kα = B̄
α
√

2β(K)
(K) ⊂ O,

• πKα

(
α
√
2β(K)

)
≤ mK , and

• 2AKαωKα

(
α
√

2β(K)
)
≤ mK .

Then the function

Vα(x) := inf
y∈O

[
V (y) +

1

2α2
|y − x|2

]
(4.46)

will possess the following property:
∀ x ∈ K,∀ d ∈ Ω, and ∀ ζ ∈ ∂PVα(x),

ζ · f(x, d) ≤ Θ(x, d) + 2mK .

Proof. Fix any x ∈ K. The choice of α ensures that the infimum in (4.46) is a
minimum, and it is achieved at some yα(x) ∈ Kα. The definition of ζα(x) and Claim
1 imply that

|ζα(x)||yα(x)− x| = |yα(x)− x|2
α2

≤ 2ωKα

(
α
√

2β(K)
)
.(4.47)

Using again the fact that yα(x) ∈ Kα,

|f(x, d)− f(yα(x), d)| ≤ AKα |x− yα(x)|.
Combining the last inequality with (4.47) we obtain

|ζα(x)||f(x, d)− f(yα(x), d)| ≤ 2AKαωKα

(
α
√
2β(K)

)
.(4.48)

Now, by Claim 2, ζα(x) ∈ ∂PV (yα(x)). Hence,

ζα(x) · f(yα(x), d) ≤ Θ(yα(x), d)

≤ Θ(x, d) + πKα(|x− yα(x)|)
≤ Θ(x, d) + πKα

(
α
√

2β(K)
)

≤ Θ(x, d) +mK .
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So, by the last inequality, (4.48), and the choice of α, we have

ζα(x) · f(x, d) = ζα(x) · f(yα(x), d) + ζα(x) · (f(x, d)− f(yα(x), d))

≤ Θ(x, d) +mK +mK .(4.49)

Next, we show that ∂PVα(x) ⊆ {ζα} for all x ∈ K. Pick any ζ ∈ ∂PVα(x). By
definition of the proximal subgradient, the inequality

ζ · (y − x) ≤ Vα(y)− Vα(x) + o(|y − x|)(4.50)

holds for all y near x. Since ζα(x) is a proximal supergradient of Vα at x, we also
have

−ζα(x) · (y − x) ≤ −Vα(y) + Vα(x) + o(|y − x|).(4.51)

Adding (4.50) and (4.51), we get

(ζ − ζα(x)) · (y − x) ≤ o(|y − x|)(4.52)

for all y sufficiently close to x. Substituting y = x+h(ζ− ζα(x)) in (4.52) and letting
h tend to 0, we arrive at ζ = ζα(x).

Now we are ready to prove the main lemma of the section.
Proof of Lemma 4.19. For every x ∈ O find an rx > 0 small enough so that

B̄rx(x) ⊂ O. Then the collection of open balls {Brx(x), x ∈ O} forms an open cover-
ing of O. By paracompactness of O we can find a locally finite refinement {Bi, i ∈ N}
of {Brx(x), x ∈ O} (cf. [6, Lemma 4.1]). Moreover, since ∪x∈OBrx = O, we also have
∪iBi = O. Let {ϕi, i ∈ N} be a partition of unity, subordinate to {Bi}. For each
index i, let

Ji = {j ∈ N : Bi ∩Bj �= ∅} .
Notice that Ji is finite for all i, because of local finiteness of the covering {Bi}. For
every i ∈ N define

Mi := sup |∇ϕi(x)||f(x, d)|,
where the supremum is taken over all x ∈ ∪j∈JiB̄j and all d ∈ Ω; and

Ni = max
j∈Ji

card(Jj),

that is, Ni denotes the maximum cardinality of Jj for j such that Bj intersects
Bi. Next, for each compact K = B̄i, i ∈ N, choose an αi as in the formulation of
Lemma 4.20, satisfying the following two additional conditions:

Ni ωKαi

(
αi

√
2β(B̄i)

)
Mi <

1

2
inf
x∈B̄i

Υ2(x)(4.53)

and

ωKαi

(
αi

√
2β(B̄i)

)
<

1

2
inf
x∈B̄i

Υ1(x)(4.54)

(where Kαi denotes B
αi
√

2β(B̄i)
(B̄i)).
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Next, for each i ∈ N, define Vαi on B̄i as in (4.46) (this can be done, because, by
the choice of αi, Kαi ⊆ O). Since Vαi is locally Lipschitz, it is differentiable almost
everywhere by Rademacher’s theorem. Lemma 4.20 implies that for almost all x ∈ B̄i

and all d ∈ Ω

LfdVαi(x) ≤ Θ(x, d) + Υ2(x)/2.

Define

Ṽ :=

+∞∑
i=1

Vαiϕi.

Strictly speaking, this does not make sense, because Vαi is not defined outside B̄i,
but that does not matter because ϕi vanishes outside Bi anyway.

Since each Vαi(x) ≤ V (x) for all x ∈ Bi and ϕi’s add up to 1, the definition of Ṽ

shows that Ṽ (x) ≤ V (x) for all x ∈ O. It is also clear from the definition of Ṽ that

Ṽ is locally Lipschitz on O.
We claim that for almost all x ∈ O and all d ∈ Ω the following hold:
1. 0 ≤ V (x)− Ṽ (x) ≤ Υ1(x);

2. ∇Ṽ (x) · f(x, d) ≤ Θ(x, d) + Υ2(x).
Take any x ∈ O and find i ∈ N such that x ∈ Bi. Define also Jx := {j ∈ N : x ∈ Bj}.
Note that Jx ⊆ Ji and that Ṽ (x) :=

∑
j∈Jx Vαj (x)ϕj(x). Then Claim 3 and the

choice of αj (condition (4.54)) imply

V (x)− Vαj (x) ≤ ωKαj

(
αj

√
2β(B̄j)

)
≤ Υ1(x)/2

for all j ∈ Jx. Thus,

V (x)− Ṽ (x) = V (x)−
+∞∑
j=1

Vαjϕj

= V (x)−
∑
j∈Ji

Vαjϕj

≤ V (x)− min
j∈Jx

{
Vαj (x)

}∑
j∈Jx

ϕj(x)


= V (x)− min

j∈Jx

{
Vαj (x)

}
≤ Υ1(x)

2
,

proving the first statement.
To prove the second statement, write

Lfd Ṽ (x) =
∑
j∈Jx

LfdVαj (x)ϕj(x) +
∑
j∈Jx

Vαj (x)Lfdϕj(x)

=
∑
j∈Jx

LfdVαj (x)ϕj(x) +
∑
j∈Jx

Vαj (x)Lfdϕj(x)− V (x)
∑
j∈Jx

Lfdϕj(x)(4.55)

≤ max
j∈Jx

LfdVαj (x)
∑
j∈Jx

ϕj(x) +
∑
j∈Jx

(
Vαj (x)− V (x)

)
Lfdϕj(x)
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≤ Θ(x, d) + Υ2(x)/2 +
∑
j∈Ji

∣∣Vαj (x)− V (x)
∣∣ |Lfdϕj(x)|

≤ Θ(x, d) + Υ2(x)/2 +
∑
j∈Ji

MjωKαj

(
αj

√
2β(B̄j)

)
(4.56)

≤ Θ(x, d) + Υ2(x)/2 +
∑
j∈Ji

Υ2(x)

2Nj
(4.57)

≤ Θ(x, d) + Υ2(x)/2 + Υ2(x)/2(4.58)

≤ Θ(x, d) + Υ2(x),

where the equality (4.55) follows from the fact that
∑

j∈Jx Lfdϕj(x) = 0, inequal-
ity (4.56) follows from Lemma 4.20 and Claim 3; inequality (4.57) follows from the
choice of αi (condition (4.53)); and (4.58) is implied by the fact that

cardJi ≤ Nj ∀j ∈ Ji.

This completes the proof of the lemma.
The lemma we have just proved will provide the “continuous ⇒ locally Lipschitz

away from zero” step in the smoothing process. To obtain a smooth Lyapunov func-
tion, we will use the following simple smoothing result. The proof is given, for the
special case when α does not depend on d, in [25], but the general case (α depends
on d) is proved in exactly the same manner, so we omit the proof here.

Lemma 4.21. Let O be an open subset of Rn, and let Ω be a compact subset of
Rl, and assume the following as given:

• a locally Lipschitz function Φ : O → R;
• a continuous map f : Rn × Ω → Rn, (x, d) %→ f(x, d) which is locally
Lipschitz on x uniformly on d;

• a continuous function α : O × Ω→ R and continuous functions µ, ν : O →
R>0

such that for each d ∈ Ω,

LfdΦ(ξ) ≤ α(ξ, d) almost everywhere ξ ∈ O ,(4.59)

where fd is the vector field defined by fd = f(·, d) (recall that ∇Φ is defined almost
everywhere, since Φ is locally Lipschitz by Rademacher’s theorem). Then there exists
a smooth function Ψ : O → R such that

|Φ(ξ)−Ψ(ξ)| < µ(ξ) ∀ ξ ∈ O
and for each d ∈ Ω,

LfdΨ(ξ) ≤ α(ξ, d) + ν(ξ) ∀ ξ ∈ O .

The next result immediately follows by Lemma 4.21.
Corollary 4.22. Under the assumptions of Lemma 4.19 there also exists a

smooth function V̂ on O, satisfying inequalities∣∣∣V (x)− V̂ (x)
∣∣∣ ≤ Υ1(x) ∀x ∈ O(4.60)

and

Lfd V̂ (x) ≤ Θ(x, d) + Υ2(x) ∀d ∈ Ω, ∀x ∈ O.(4.61)
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Proof. Suppose that O, V , Υ1, Υ2 are given and the assumptions of Lemma 4.19
hold. Replacing Υ1 by Υ1/2 and Υ2 by Υ2/2, and applying Lemma 4.19, we can

find a locally Lipschitz function Ṽ , defined on O and satisfying (4.41) and (4.61) with
Υ1/2 and Υ2/2 instead of Υ1 and Υ2. Next, Lemma 4.21, applied with the same O
and with Φ := Ṽ , α := Θ + Υ2/2, µ := Υ1/2, and ν := Υ2/4, furnishes a smooth
function V̂ := Ψ as needed.

In section 4.3 we have constructed a function V0, satisfying inequalities (4.33) on
E1 and (4.35) along all trajectories of Σ, contained in E1. Therefore, by Lemma 4.18,
the proximal inequality (4.39) holds for V0 at any interior point of E1. Then Corol-
lary 4.22, applied with O := int E1, Υ1(·) := α(|·|)/2, Υ2(·) := Ξ(|·|)/2, Θ(x, d) :=
Ξ(|x|), provides a smooth function

V1 : int E1 → R>0; V1 := V̂0,

satisfying the following two conditions for all ξ ∈ int E1:
α(|ξ|)/2 ≤ V1(ξ) ≤ ᾱ(|ξ|) + α(|ξ|)/2

(we will replace α(|·|)/2 by α(·) and ᾱ(|·|) + α(|·|)/2 by ᾱ(|·|) from now on to avoid
cluttering the notation),

LfdV1(ξ) ≤ −Ξ1(|ξ|) ∀d ∈ Ω,(4.62)

where Ξ1(·) ≡ Ξ(·)/2.
4.6. Extending to the rest of X and smoothing at the origin. To con-

struct a UOSS-Lyapunov-like function defined on the whole X, we must “patch” V1

with some smooth, proper, and positive definite function such that the dissipation
inequality still holds.

Lemma 4.23. Suppose Σ is a system of type (2.14), and ρ is a function of class
K∞. Define E1 := {x ∈ X : |x| > 2ρ(|h(x)|)} and suppose that V1 : E1 → R≥0 is a
smooth function satisfying, with some suitable K∞ functions, the inequality

α(|ξ|) ≤ V1(ξ) ≤ ᾱ(|ξ|)(4.63)

and inequality (4.62) on E1. Then there exist a Lyapunov-like function V2 for Σ,
smooth away from the origin, and a class K∞ function Φ, such that

V2(x) = Φ ◦ V1(x) ∀ x such that |x| > 3ρ(|h(x)|),
and the following dissipation inequality holds with some α̌3 ∈ K∞, γ̌ ∈ K:

∇V2(ξ) · f(ξ, d) ≤ −α̌3(|ξ|) + γ̌(|h(ξ)|) ∀ξ �= 0, ∀d ∈ Ω.(4.64)

Proof. Let

E2 := {ξ : |ξ| > 3ρ(|h(ξ)|)} .
Since the sets {ξ : |ξ| ≥ 3ρ(|h(ξ)|)} and {ξ : |ξ| ≤ 2ρ(|h(ξ)|)} are disjoint and closed
in the topology of X \ {0}, one can find a smooth function φ : X \ {0} → [0, 1] with
the property that

φ(ξ) =

{
1 if |ξ| ≥ 3ρ(|h(ξ)|),
0 if |ξ| ≤ 2ρ(|h(ξ)|)
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and φ is nonzero elsewhere. It is easy to see that |∇φ(x)| is bounded above by a
K-function ν2 of |x| outside the unit ball centered at 0. One can also find a smooth,
strictly increasing function ν1 : [0, 1]→ R≥0, such that ν1(0) = 0 and |∇φ(x)| ≤ 1

ν1(|x|)
for all x such that 0 < |x| ≤ 1.

Let ν3 be a K-function such that maxd∈Ω |f(ξ, d)| ≤ ν3(|ξ|). Take any smooth
function π1: [0, ᾱ(1)]→ R≥0 with π′

1(s) > 0 for all s ∈ (0, ᾱ(1)), such that

π1(ᾱ(r))

ν1(r)
< s(r),

π1(r
2)

ν1(r)
< s(r)

for some K-function s and all 0 < r ≤ 1. Let π2 be any K-function such that
π2(r) ≤ π′

1(r) for all nonnegative r ≤ 1.

Let Φ(r) =
∫ r
0
π2(r1)dr1. Then Φ(r) ≤ π1(r) for all r ≤ 1, so that Φ(ᾱ(r))

ν1(r)
< s(r)

and Φ(r2)
ν1(r)

< s(r) for all r ∈ (0, 1].

Now let

V2(ξ) = φ(ξ)Φ(V1(ξ)) + (1− φ(ξ))Φ(|ξ|2).(4.65)

If |ξ| > 3ρ(|h(ξ)|), then V2 ≡ Φ ◦V1 in a neighborhood of ξ, so that, for all d ∈ Ω,

∇V2(ξ) · f(ξ, d) = Φ′(V1(ξ))[∇V1(ξ) · f(ξ, d)] ≤ −π2(α(|ξ|))Ξ1(|ξ|).(4.66)

On the other hand, if |ξ| ≤ 3ρ(|h(ξ)|), then
∇V2(ξ) · f(ξ, d) = [∇φ(ξ) · f(ξ, d)] Φ(V1(ξ)) + φ(ξ) Φ′(V1(ξ)) [∇V1(ξ) · f(ξ, d)]

−[∇φ(ξ) · f(ξ, d)] Φ(|ξ|2) + (1− φ(ξ)) 2Φ′(|ξ|2) [ξ · f(ξ, d)]
≤ |∇φ(ξ)| |f(ξ, d)| Φ(V1(ξ)) + |∇φ(ξ)| |f(ξ, d)| Φ(|ξ|2)

+ 2 |(1− φ(ξ))| Φ′(|ξ|2) |ξ| |f(ξ, d)|
≤ |∇φ(ξ)| |f(ξ, d)| Φ(ᾱ(|ξ|)) + |∇φ(ξ)| |f(ξ, d)| Φ(|ξ|2)

+2Φ′(|ξ|2) |ξ| |f(ξ, d)| ,
where the first inequality follows from the fact that φ(ξ) Φ′(V1(ξ)) [∇V1(ξ)·f(ξ, d)] ≤ 0.
Next, the definition of Φ provides the following bounds for the three terms in the
right-hand side of the last inequality:

Φ(ᾱ(|ξ|)) |∇φ(ξ)| |f(ξ, d)| ≤ max {s(|ξ|),Φ(ᾱ(|ξ|))ν2(|ξ|)} ν3(|ξ|),

2Φ′(|ξ|2)[|ξ| |f(ξ, d)|] ≤ 2π2(|ξ|2) |ξ| ν3(|ξ|),

Φ(|ξ|2) |∇φ(ξ)| |f(ξ, d)| ≤ max
{
s(|ξ|),Φ(|ξ|2)ν2(|ξ|)

}
ν3(|ξ|).

Define α̌3, γ̌, α̌1, and α̌2 by

α̌3(r) := π2(α(r))Ξ1(r),

γ̌(r) := 2π2((3ρ(r))
2)3ρ(r)ν3(3ρ(r))

+max
{
s(3ρ(r)),Φ((3ρ(r))2)ν2(3ρ(r))

}
ν3(3ρ(r)) + α̌3(3ρ(r)),
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α̌1(r) = min
{
Φ(r2),Φ ◦ α(r)} ,

and

α̌2(r) = max
{
Φ(r2),Φ ◦ ᾱ(r)} .

Then inequalities

α̌1(|x|) ≤ V2(x) ≤ α̌2(|x|) ∀x �= 0(4.67)

and (4.64) hold for V2. Define V2(0) := 0. Then inequality (2.3) holds for V2 with
α1 := α̌1, α2 := α̌2 on X, and in particular implies that V2 is continuous as 0. Then,
V2 is a UOSS-Lyapunov-like function for Σ, smooth away from the origin.

Recall that V2(ξ) ≡ Φ(V1(ξ)) for all ξ with |ξ| > 3ρ(|h(ξ)|). Therefore inequal-
ity (4.62) implies that

∇V2 · f(ξ, d) ≤ −α3(|ξ|) ∀ |ξ| > 3ρ(|h(ξ)|), ∀d ∈ Ω.(4.68)

Proposition 4.24. Suppose that a system Σ of type (2.14) admits a continu-
ous UOSS-Lyapunov-like function V2, smooth away from 0 and satisfying inequali-
ties (4.67), (4.64), and (4.68). Then Σ admits a UOSS-Lyapunov function.

The basic idea used to obtain a Lyapunov function, smooth on the whole X, is
composing V2 with some appropriately chosen K∞-function β. This technique was
previously utilized in [25]. We will need the following generalization of Lemma 4.3
from [25], where this function β is constructed. In our setting we also need the
derivative of β to be of class K∞, which was not required in [25]. The proof is only a
slight modification of the proof of the mentioned lemma.

Lemma 4.25. Assume that V : Rn −→ R≥0 is C0, positive definite, and the
restriction V |Rn\{0} is C∞.

Then, given any m ∈ N there exists a K∞-function βm, smooth on (0,∞), satis-
fying the following conditions:

• β
(i)
m (t)→0 as t→0+ for each i = 0, 1, . . .,

• β
(i)
m ∈ K∞ ∀i ≤ m,

• Wm:=β ◦ V is a C∞ function on all of Rn.
We now return to the proof of Proposition 4.24.
Proof. Take the function V2, and apply Lemma 4.25 to get a function β1, with

derivative in class K, such that

V3 := β1 ◦ V2

is smooth onX. Let α1(·) := β1(α̌1(·)/2), α2(·) := β1(α̌2(·)+α̌1(·)/2). Then αi ∈ K∞
and

α1(|x|) ≤ V3(x) ≤ α2(|x|).

Furthermore, for any x ∈ X \ {0} we have

LfdV3(x) = β′
1(V2(x)) [LfdV2] (x)

≤ β′
1(V2(x)) (−α3(|x|)/2 + γ̌(|h(x)|))

≤ −β′
1(α̌1(|x|)/2)α̌3(|x|)/2 + β′

1(α̌2(|x|) + α̌1(|x|)/2)γ̌(|h(x)|).
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Recall that, because of (4.68), the γ̌ term in the last estimate can be dropped if
|x| > 3ρ(|h(x)|), so that we can write

LfdV3(x) ≤ −β′
1(α̌1(|x|)/2)α̌3(|x|)/2+β′

1(α̌2(3ρ(|h(x)|))+ α̌1(3ρ(|h(x)|))/2)γ̌(|h(x)|).

Thus V3 is a smooth UOSS-Lyapunov function, satisfying the dissipation inequal-
ity with

α3(·) := β′
1(α̌1(·)/2) α̌3(·)/2

and

γ(·) := β′
1(α̌2(3ρ(·)) + α̌1(3ρ(·)))/2) γ̌(·).

This completes the construction.

5. Norm-observers. As conjectured in [45] and proved in this presentation,
every IOSS system admits an IOSS-Lyapunov function. One of the main motivations
for the notion of IOSS, and for deriving Lyapunov characterizations, is the fact that
a Lyapunov function enables us to get insights into the behavior of control systems.
In particular, it may be useful to have an estimate of how far the system is from
the equilibrium at any given time, and in some situations this “norm-estimate” is
sufficient for the design of a stabilizer. We next provide a construction for a norm-
observer in the most general case—for systems of type (2.1), assuming that we have
a smooth UIOSS-Lyapunov function at our disposal.

5.1. Exponential decay Lyapunov functions.
Definition 5.1. Let Σ be a system of type (2.1). A C1-function V : X → R≥0

is an exponential decay UIOSS-Lyapunov function for Σ if it satisfies (2.3) with some
α1 and α2, and the following version of inequality (2.4):

∇V (x) · f(x, u, w) ≤ −V (x) + σ1(|u|) + σ2(|h(x)|) ∀x ∈ X, u ∈ U, w ∈ Γ(5.1)

holds with some σ1 and σ2 ∈ K.
Lemma 5.2. Suppose V is a UIOSS-Lyapunov function for a system Σ of type (2.1),

satisfying inequality (2.4). Then there exists a K∞-function ρ such that a function
W := ρ ◦ V is an exponential decay UIOSS-Lyapunov function for Σ.

Proof. Assume that system (2.1) admits a UIOSS-Lyapunov function with αi

(i = 1, 2) as in (2.3) and with α, σ1, σ2 as in (2.4). Replacing α by α ◦ α−1
2 , we have

d

dt
V (x(t, ξ,u)) ≤ −α(V (x(t, ξ,u))) + σ1(|u(t)|) + σ2(|y(t, ξ,u)|)(5.2)

for almost all t ∈ [0, tmax(ξ, u)). According to Lemma 12 in [32], there exists some
function ρ ∈ K∞ which can be extended as a C1-function to a neighborhood of

[0, ∞) such that ρ′(r)α(r)
2 ≥ ρ(r) for all r ≥ 0. Consider the function W (ξ) :=

ρ(V (ξ)). Observe that W is again proper and positive definite. Along any trajectory
x(t) := x(t, ξ,u) (with y(t) := y(t, ξ,u)), at any point where (2.4) holds, one has that
d
dtW (x(t)) = ρ′(V (x(t))) d

dtV (x(t)) is upper bounded by

−ρ′(V (x(t)))
α(V (x(t)))

2
+ ρ′(V (x(t)))

(
−α(V (x(t)))

2
+ σ1(|u(t)|) + σ2(|y(t)|)

)
,
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which in turn is bounded by

−ρ(V (x(t)) + ρ′(V (x(t)))

(
−α(V (x(t)))

2
+ σ1(|u(t)|) + σ2(|y(t)|)

)
.(5.3)

Observe that when V (x(t)) ≥ α−1(2σ1(|u(t)|) + 2σ2(|y(t)|)) it holds that

ρ′(V (x(t)))

(
−α(V (x(t)))

2
+ σ1(|u(t)|) + σ2(|y(t)|)

)
≤ 0,(5.4)

while if instead V (x(t)) ≤ α−1(2σ1(|u(t)|) + 2σ2(|y(t)|)), then
ρ′(V (x(t))) (σ1(|u(t)|) + σ2(|y(t)|)) ≤ σ̂1(|u(t)|) + σ̂2(|y(t)|)(5.5)

for some K∞-functions σ̂1 and σ̂2 (using here the fact that ρ′(s) is a continuous func-
tion). Combining (5.4) and (5.5), one concludes from the estimate (5.3) on d

dtW (x(t))
that

d

dt
W (x(t)) ≤ −W (x(t)) + σ̂1(|u(t)|) + σ̂2(|y(t)|)

for almost all t ∈ [0, tmax).

5.2. Construction of a norm-observer.
Proposition 5.3. Suppose that a system Σ admits an exponential decay UIOSS-

Lyapunov function V . Then the pair (Σn.o, k), where

Σn.o : ṗ = −p+ σ1(|u|) + σ2(|y|),(5.6)

with σ1 and σ2 as in (5.1) and k(·, ·) defined by k(s, r) = s, is a norm-estimator for
Σ.

Proof. Assume without loss of generality that the function α2 in the definition of
V satisfies r ≤ α2(r) for all nonnegative r.

The system (5.6) is ISS with respect to u and y, since it can be seen as an asymp-
totically stable linear system driven by the input (σ1(|u|), σ2(|y|)), so, inequality (2.7)
obviously holds. Pick any initial states ξ, ζ of Σ and (5.6), respectively, any control u,
and any disturbance w. Consider the resulting trajectory (x(t), p(t)) of the composite
system. Property (5.1) implies that

d

dt
(V (x(t))− p(t)) ≤ −(V (x(t))− p(t))(5.7)

for almost all t ∈ [0, tmax(ξ,u,w)). Thus

V (x(t)) ≤ p(t) + e−t(V (ξ)− ζ) ≤ |p(t)|+ 2e−tα2(|ξ|+ |ζ|)
(using r ≤ α2(r)). This can be written as (2.8) with ρ := α−1

1 (2(·)) and β(s, t) :=
α−1

1 (4e−tα2(s)).
Implication 2 ⇒ 3 of Theorem 2.4 now follows from Lemma 5.2 and Proposi-

tion 5.3.
We now turn to the proof of implication 3 ⇒ 1 of Theorem 2.4.
Proof. Assume that (Σn.o, k) is some norm-estimator for Σ. Choose any initial

state ξ for Σ, any input u, disturbance w, and the special initial state ζ = 0 for Σn.o.
Then inequality (2.7) becomes

|k(p(t, 0,u,yξ,u,w), y(t, ξ,u,w))| ≤ γ̂1

(∥∥u|[0,t]∥∥)+ γ̂2

(∥∥yξ,u,w|[0,t]∥∥)(5.8)
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for all t ∈ [0, tmax), with some class-K functions γ̂1 and γ̂2 (the KL-term vanishes
because ζ = 0). Then, combining (5.8) with the estimate (2.8) we get

|x(t, ξ,u,w)| ≤ β(|ξ| , t) + ρ(|k(p(t, 0,u,yξ,u,w), y(t, ξ,u,w))|)
≤ max

{
2β(|ξ| , t), 4ρ(γ̂1(

∥∥u|[0,t]∥∥)), 4ρ(γ̂1(
∥∥yξ,u,w|[0,t]∥∥))} .

This proves the UIOSS property for Σ.

6. Pointers for future research.

6.1. Integral variants of UIOSS. The UIOSS property gives uniform esti-
mates of the states in terms of the uniform bounds on outputs and essential bounds
on controls. A natural question to ask is what property will result if instead of the
uniform (or essential) bounds we use other “finite energy” concepts, such as, for exam-
ple, Lγ-type norms (defined by

∥∥g|[σ,τ ]

∥∥
γ
=
∫ τ
σ
γ(|g(t)|)dt) of inputs and/or outputs,

where the “γ’s” for inputs and outputs are some appropriately chosen functions of
class K∞, which depend on the system. For systems without controls, the iiUOSS
property provides a “finite energy outputs ⇒ finite energy state” characterization,
which is “almost” equivalent to UOSS (see Theorem 2.16). Searching for the uni-
form estimate of the states in terms of Lγ-norms of inputs and outputs leads to the
following definition.

Definition 6.1. A system of type (2.1) is uniformly integral input-output-to-
state stable (UiIOSS) if there exist functions αx ∈ K∞, β ∈ KL, γ1, and γ2 ∈ K such
that

αx (|x(t, ξ,w,u)|) ≤ β(|ξ| , t) +
∫ t

0

(γ1(|u(s)|) + γ2 (|y(s, ξ,w,u)|)) ds(6.1)

for all ξ ∈ X, all w and u, and all t ∈ [0, tmax(ξ,u,w)).
This general definition may be adjusted in obvious manners to all the particular

cases of system (2.1).
Remark 6.1. It is easy to see that estimate (6.1) is equivalent to the following

estimate (with different bounding functions, of course):

|x(t, ξ,w,u)| ≤ max

{
β(|ξ| , t), γ

(∫ t

0

(γ1(|u(s)|))ds
)
,

γ

(∫ t

0

γ2(|y(s, ξ,w,u)|)ds
)}

,(6.2)

In the particular case of systems without outputs and disturbances, a Lyapunov
characterization of the UiIOSS property, reduced to integral input-to-state stability
(iISS), was obtained in [4]. By repeating the proof of the implication 1 ⇒ 2 of
Theorem 1 in [4] one can show that a system of type (2.1) will be UiIOSS if it
admits a smooth, proper Lyapunov function V : X→ R≥0, satisfying inequality (2.4)
with some σ1 and σ2 of class K, and a positive definite function α. Whether or not
this sufficient condition is also necessary for UiIOSS is not known. Notice, however,
that this condition is weaker than the corresponding property for UIOSS, as the
dissipation condition for a UIOSS-Lyapunov function requires α to be of class K∞.
Thus, any UIOSS system will also be UiIOSS. The converse implication is not true,
as demonstrated in the following example.

Example 6.2. The construction is similar to the one used in Remark 3.1, so, we
recall that φε(·) denotes a C∞-bump function as in (3.12), and 1A(·) is the indicator
function of a set A.



INPUT-OUTPUT-TO-STATE STABILITY 1925

Choose εf = 0.1 and any εh < (1− εf )e
−1, and consider the autonomous system

Σ1 : ẋ = f(x); y = h(x)

with

f1(x) = x
[
1(−∞,−1](x)(1− φεf (x+ 1)) + 1[1,+∞)(x)(1− φεf (x− 1))

]
−x
[
1(−1,1)(x)(1− φεf (x+ 1))(1− φεf (x− 1))

]
,

and

h1(x) = 1− φεh(x)

evolving in X = R. We claim that Σ1 is iOSS but not OSS.
Consider also an autonomous system Σ2 on R with

f2(x) = x; h2(x) ≡ 1.(6.3)

This system cannot serve as a counterexample, because h2(0) �= 0. However, its
behavior away from 0 is identical to that of Σ1, so that considering it will simplify
the presentation.

Let xi(t, ξ), i = 1, 2, denote the solutions of Σi, starting at ξ, and let yi(t, ξ)
denote the corresponding output trajectories. It is easy to see that both Σ1 and Σ2

are forward complete.
Since the dynamics of Σ1 and Σ2 are odd functions and outputs are even (but only

the magnitudes of outputs are involved in the estimates), we need only to consider
trajectories starting from the positive initial states, as the same estimates will work
for trajectories contained in the other half-line.

Since f1(x) < f2(x) for all x ∈ (0, 1+εf ) and f1(x) = f2(x) for x ≥ 1+εf , we have,
for all t > 0, x1(t, ξ) < x2(t, ξ) for any ξ ∈ (0, 1 + εf ), and x1(t, ξ) = x2(t, ξ) = ξet

if |ξ| ≥ 1 + εf . In particular, this shows that Σ1 is not OSS, because the trajectory
diverges to +∞, but h1(ξe

t) is bounded.
However, observe that when t ≤ |ξ|,

|x2(t, ξ)| ≤ |ξ| e|ξ| ≤ e2|ξ| |ξ| e− t
1+|ξ| ,

whereas when t > |ξ|, we have

|x2(t, ξ)| ≤ tet.

Letting

β(r, t) := re2r− t
1+r ; γ2 := Id; γ(t) := tet,

and noticing that ∫ t

0

γ2(|y2(s, ξ)|)ds = t,

we conclude x2(t, ξ) satisfies estimate (6.2).
Now observe that
• If ξ ≥ 1, then 1 ≤ x1(t, ξ) ≤ x2(t, ξ) for all t ≥ 0, so that y1(t, ξ) = y2(t, ξ) = 1

and x1(t, ξ) satisfies (6.2).
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• If ξ ∈ [0, 1− εf ], then

x1(t, ξ) = ξe−t ≤ β(|ξ| , t).
• Finally, if ξ ∈ (1− εf , 1), then

– for all t ≥ 0 it holds that |x1(t, ξ)| < 1;
– for all t ∈ [0, 1] it holds that |x1(t, ξ)| > (1− εf )e

−1 > εh, so that
y1(t, ξ) = 1 = y2(t, ξ).

Therefore x1(t, ξ) satisfies (6.2) for all t ≤ 1 and∫ t

0

γ2(|y2(s, ξ)|)ds ≥ 1 ≥ x1(t, ξ) ∀ t ≥ 1.

This shows that x1(t, ξ) satisfies (6.2) for all ξ and t ≥ 0, thus, Σ1 is, indeed,
iOSS.

It could also be of interest to consider yet another property, providing a uniform
estimate for the state in terms of the uniform norm of the output and Lγ-norm of the
input.

Definition 6.2. A system of type (2.1) satisfies the U(iI)OSS property if there
exist functions αx ∈ K∞, β ∈ KL, γ1, and γ2 ∈ K such that

αx (|x(t, ξ,w,u)|) ≤ β(|ξ| , t) +
∫ t

0

γ1(|u(s)|)ds+ γ2

(∥∥yξ,w,u|[0,t]
∥∥)(6.4)

for all ξ ∈ X, all w and u, and all t ∈ [0, tmax(ξ,u,w)).
Deriving a Lyapunov characterization for this property may be a challenge. It

would be logical to expect that a good candidate for a U(iI)OSS-Lyapunov function
can be a proper function V : X→ R≥0, satisfying inequality (2.4) with α being either
positive definite or class K∞. However, we can see right away that neither of these two
possibilities is the right guess. Indeed, notice that both OSS and iISS are particular
cases of the U(iI)OSS property. If a U(iI)OSS-Lyapunov function would satisfy (2.4)
with α of class K∞ (as required by OSS), it would follow that every disturbance-free
U(iI)OSS system without outputs is ISS, which is not true (see [4] for an example
of an iISS system, which is not ISS). On the other hand, if a U(iI)OSS-Lyapunov
function satisfied (2.4) with α positive definite (as required by iISS), it would imply
that having such a dissipation function is sufficient for OSS, which is not so, because
this would mean that every iOSS system is OSS.

6.2. Incremental IOSS. As mentioned in the introduction, the detectability
property for nonlinear systems is not equivalent to zero-detectability. In searching for
a correct notion for nonlinear detectability one could think of the following general-
ization of UIOSS.

Definition 6.3. A system (2.1) is incrementally uniformly input-output to state
stable (∆UIOSS) if there exists some β ∈ KL and γ1, γ2 ∈ K such that, for every two
initial states ξ1 and ξ2, any two controls u1 and u2, and any disturbance w,

|x(t, ξ1,u1,w)− x(t, ξ2, u2,w)| ≤ max
{
β(|ξ1 − ξ2| , t),

γ1

(∥∥(u1 − u2)|[0,t]
∥∥) , γ2

(∥∥(yξ1,u1,w − yξ2,u2,w)|[0,t]
∥∥) }(6.5)

for all t in the common domain of definition.
Deriving a right Lyapunov characterization for this property may lead to a con-

struction of a full-order observer.
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SIAM J. CONTROL OPTIM. c© 2001 Society for Industrial and Applied Mathematics
Vol. 39, No. 6, pp. 1929–1951

Abstract. In this work we define the concept of relative flatness of a system with respect to
a subsystem. The subsystem associated to a set of outputs of a system is constructed, and called
here output subsystem. It is shown that the relative flatness of a system with respect to the output
subsystem implies the flatness of the corresponding implicit system obtained by setting these outputs
to zero. A sufficient condition of relative flatness based on a relative derived flag is presented. Based
on these results, a sufficient condition for the flatness of a class of nonlinear implicit systems is
obtained.

Key words. nonlinear systems, implicit systems, time-varying systems, flatness, relative flat-
ness, feedback linearization
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1. Introduction and motivation. The aim of this paper is to present the
notion of relative flatness with respect to a subsystem. We show that this concept
may be useful for control systems theory, in particular for studying the structure
of nonlinear implicit systems. Our approach is based on the infinite dimensional
geometric setting recently introduced in control theory [17, 40, 19] in combination
with the ideas presented in [50, 48, 53]. Our sufficient conditions for flatness of
implicit systems may be regarded as a generalization of the conditions obtained in
[50] for explicit systems. Our setting has some connections with the ideas of [47],
which has considered a different class of implicit systems.

Feedback linearization is an important problem in nonlinear control theory. This
problem was completely solved in the static-state feedback case [25, 23] but necessary
and sufficient conditions for feedback linearizability by dynamic state feedback are
not yet known (see [5, 48, 6, 20, 51, 53, 1, 44, 52, 22, 41, 54]).

The notion of differential flatness was introduced by Fliess et al. [16, 18] and is
strongly related to the problem of feedback linearization. This concept corresponds
to a complete and finite parametrization of all solutions of a control system by a
differentially independent family of functions called flat output.

Linear singular (or implicit) systems are an important class of control systems and
many papers and books on this subject are found in the literature [4, 31].1 Solvability
of nonlinear implicit differential equations is considered in [2, 43]. Other problems like
controllability [29], stabilization [32, 7], canonical forms [45], and feedback control [8]
have already been considered.
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1Note that the module theoretic approach of [15] is also valid for implicit systems.
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✲

✲ ✻
S/S1

S1

u2

u1

SYSTEM S

Fig. 1.1. Structure of a system S with respect to a subsystem S1.

✲

✲
S2 (flat)

S1

u2

u1

SYSTEM S

Fig. 1.2. Structure of a system S that is relatively flat with respect to a subsystem S1. Note
that S2 is flat.

Feedback linearization of implicit systems has been studied for instance in [30,
26]. These works consider the problem of finding a state transformation and a state
feedback such that the closed loop system is a linear singular system. In this work we
tackle the problem of finding sufficient conditions for flatness of a class of time-varying
implicit systems of the form2

ẋ(t) = f(t, x(t), u(t)),(1.1a)

y(t) = h(t, x(t), u(t)) = 0,(1.1b)

where x(t) ∈ R
n, y(t) ∈ R

p, u(t) ∈ R
m and all the components of f(x) and g(x)

are analytical functions of x. We stress that a set of implicit differential equations of
arbitrary order can be put into the form (1.1a)–(1.1b) [39].

We now present, without being precise, a summary of the ideas and the results
of this paper. Roughly speaking, a subsystem S1 of a system S is some part of S
that may be considered as a system by itself. Note that S1 may affect the “quotient
system” S/S1, but it is not affected by S/S1 as depicted in Figure 1.1.

Remark 1.1. We stress that, in Figure 1.1, S/S1 is not a subsystem.
Recall that a system is flat if and only if there exists a differentially independent

set of functions y = (y1, . . . , ym), called the flat output, such that every variable of the
system is a function of the flat output and its derivatives. A system S is said to be
relatively flat with respect to a given subsystem S1 if, after a convenient endogenous
feedback, S is decomposed into two independent subsystems S1 and S2 such that S2 is
a flat system3 (see Figure 1.2). We stress that the fact that the system is decomposed
into two independent subsystems is not artificial since the same structure occurs for
the algebraic counterpart of this definition (see Remark 5.1).

In this paper, a sufficient condition for relative flatness is given (see Theorem 8.2).
One can easily conclude that a system S that is relatively flat with respect to a flat
subsystem is also flat,4 leading to a sufficient condition of flatness of system S.

Now, let y be the output (not necessarily a flat output) of system S. We will
show that one can construct a subsystem Y of S such that Y contains only the
“information” of time and of y and its derivatives y(k), k ∈ N (see Theorem 4.3).
Subsystem Y will be called output subsystem.

2This class is more general than the one considered by [30, 26].
3See Definition 5.1 for a precise statement of relative flatness.
4See Proposition 5.2 for a precise statement of this idea.
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✲
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Fig. 1.3. Structure of a system S with respect to the output subsystem Y .

The structure of the implicit system obtained from S by setting y to be equal
to zero (see Figure 1.3) is directly related to the properties of S with respect to the
output subsystem Y . Under some regularity assumptions, if S is relatively flat with
respect to Y , then the implicit system obtained from S by including the constraint
y = 0 is also flat.5

The paper is organized as follows. In section 2 the notation and some math-
ematical background are presented. The infinite dimensional differential geometric
approach of [19] is briefly summarized in section 3. The notion of subsystem is pre-
sented in section 4. The existence and some properties of local output subsystems
are also discussed in section 4. The concept of relative flatness is discussed in section
5. In section 6 it is shown that, under regularity assumptions, an implicit system
(1.1a)–(1.1b) may be considered as a system that is immersed in the explicit system
(1.1a). In section 7, the results of the previous sections are used to derive a sufficient
condition for flatness of implicit systems. A sufficient condition for relative flatness
based on relative derived flags is developed in section 8. Some examples are discussed
in section 9. Finally, some auxiliary results and proofs are presented in Appendices
A and B.

2. Preliminaries and notation. The field of real numbers is denoted by R

and N stands for the set natural numbers (including zero). The subset {1, . . . , k} of
N is denoted by �k�. Given a set W , then card W stands for the cardinality of W .
We adopt the standard notations of differential geometry and exterior algebra in the
finite and infinite dimensional case [55, 57]. Let us briefly recall the main definitions
of the infinite dimension setting introduced in control systems theory [17, 40, 19].
This approach is mainly based on the differential geometry of jets and prolongations
(see, for instance, [27, 57]), whereas the approach of [24] and [34] is based on finite
dimensional differential geometry [55].

Let A be a countable set. Denote by R
A the set of functions from A to R. One

may define the coordinate function xi : R
A → R by xi(ξ) = ξ(i), i ∈ A. This set can be

endowed with the Fréchet topology (i.e., an inverse limit topology [57]). A basis of this
topology is given by the subsets of the form B = {ξ ∈ R

A | |xi(ξ)− δi| < εi, i ∈ F},
where F is a finite subset of A, δi ∈ R, and εi is a positive real number for i ∈ F . A
function φ : R

A → R is smooth if φ = ψ(xi1 , . . . , xis), where ψ : R
s → R is a smooth

function. Only the dependence on a finite number of coordinates is allowed.
From this notion of smoothness, one can easily state the notions of vector fields

and differential forms6 on R
A and smooth mappings from R

A to R
B . The notion of

an R
A-manifold can be also established easily as in the finitely dimensional case [57].

5See Theorem 7.2 for a precise statement of this sufficient condition of flatness.
6We stress that the forms are finite combinations of the form

∑
i aIidxIi , where Ii is the multi-

index (ji,1, . . . , ji,ri ), the aIi are smooth functions, dxIi = dxji,1 ∧ · · · ∧ dxji,ri . On the other hand,

the fields are (possibly) infinite sums of the form
∑

i∈A ai
∂

∂xi
.
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Given an R
A-manifold P, C∞(P) denotes the set of smooth maps from P to R.

LetQ be an R
B-manifold and let φ : P → Q be a smooth mapping. The corresponding

tangent and cotangent mapping will be denoted, respectively, by φ∗ : TpP → Tφ(p)Q
and φ∗ : T ∗

φ(p)Q → T ∗
pP.

The map φ : P → Q is called an immersion if, around every ξ ∈ P and φ(ξ) ∈ Q,
there exist local charts of P and Q such that, in these coordinates, φ(x) = (x, 0). The
map φ is called a submersion if, around every ξ ∈ P and φ(ξ) ∈ Q, there exist local
charts of P and Q such that, in these coordinates, φ(x, y) = x.

In the finite dimensional case, immersion and submersions are locally character-
ized, respectively, by the injectivity and surjectivity of the tangent mappings. How-
ever, in the infinite dimensional case this is no longer true. Moreover, the inverse
function theorem and the classical Frobenius theorem (for distributions) do not hold
and a field does not admit a flow in general [57].

Given two forms η and ξ in Λ(P), then η ∧ ξ denotes their wedge multiplication.
The exterior derivative of η ∈ Λ(P) will be denoted by dη. Note that the graded
algebra Λ(P), as well as its homogeneous elements Λk(P) of degree k, have a structure
of C∞(P)-module. See [55, 3] for details. Given a family ν = (ν1, . . . , νk) of a C∞(P)-
module, then span {ν1, . . . , νk} stands for the span over C∞(P).

Given a field f and a 1-form ω on P, we denote ω(f) by 〈ω, f〉. The set of smooth
k-forms on P will be denoted by Λk(P) and Λ(P) = ∪k∈NΛk(P).

The following useful result of finite dimensional differential geometry is known as
the “Cartan lemma” [55, Ex. 16, p. 80]. Let {ω1, . . . , ωr} ⊂ Λ1(P) be independent
pointwise. Assume that there exist 1-forms η1, . . . , ηr such that

∑r
i=1 ηi∧ωi = 0. Then

there exist functions aij ∈ C∞(P), with aij = aji, such that ηi =
∑r
j=1 aijωj (i =

1, . . . , r). The same result is also valid pointwise, i.e.,
∑r
i=1 ηi ∧ ωi|p = 0 implies that

ηi(p) =
∑r
j=1 aijωj(p) (i = 1, . . . , r) for convenient aij = aji ∈ R.

A smooth codistribution J is a C∞(P)-submodule J ⊂ T ∗P. Given a submodule
S of Λ(P) and p ∈ P, then S(p) denotes the R-linear subspace of Λ1(P)|p given
by span

R
{ζ(p)| ζ ∈ S}. In particular, if J is a codistribution, then J(p) denotes the

subspace of T ∗
pP given by span

R
{ω(p)| ω ∈ J}.7

Assume that a codistribution I is locally generated by η1, . . . , ηk and that Ψ =
{xi| i ∈ A} is a local coordinate system around some open set U ⊂ P. Then one
may apply to I the standard techniques of differential geometry, for instance, the
Frobenius theorem, by “pulling back” the results that hold on the finite dimensional
case (see [40] and [36, section 2]).

3. Diffieties and systems. In this section we recall the main concepts of the
infinite dimensional geometric setting of [17, 40, 19]. We have chosen to present a
simplified exposition. For a more complete and intrinsic presentation the reader may
refer to the cited literature.

3.1. Diffieties. A diffiety M is an R
A-manifold equipped with a distribution ∆

of finite dimension r, called Cartan distribution. A section of the Cartan distribution
is called a Cartan field. An ordinary diffiety is a diffiety for which dim∆ = 1 and
a Cartan field ∂M is distinguished and called the Cartan field. In this paper we will
consider only ordinary diffieties, which will be called simply by diffieties.

A Lie–Bäcklund mapping φ : M → N between diffieties is a smooth mapping
that is compatible with the Cartan fields, i.e., φ∗∂M = ∂N ◦ φ. A Lie–Bäcklund

7One can also define a codistribution as a map p �→ J(p), where J(p) is a subspace of T ∗
pP.
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immersion (resp., submersion) is a Lie–Bäcklund mapping that is an immersion (resp.,
submersion). A Lie–Bäcklund isomorphism between two diffieties is a diffeomorphism
that is a Lie–Bäcklund mapping.

Context permitting, we will denote the Cartan field of an ordinary diffiety M
simply by d

dt . Given a smooth object φ defined on M (a smooth function, field, or

form), then L d
dt
(φ) will be denoted by φ̇ and Ln

d
dt

(φ) by φ(n), n ∈ N. In particular, if

ω is a 1-form given by ω =
∑

finite
αidxi, then ω̇ =

∑
finite

(α̇idxi + αidẋi).

3.2. Systems. The set of real numbers R has a trivial diffiety structure with the
Cartan field defined by the operation of differentiation of smooth functions. A system
is a triple (S,R, τ) where S is a diffiety equipped with Cartan field d

dt , the mapping

τ : S → R is a Lie–Bäcklund submersion, and d
dt (τ) = 1. The function τ represents

time that is chosen once and for all. Context permitting, the system (S,R, τ) is
denoted simply by S. A Lie–Bäcklund mapping between two systems (S,R, τ) and
(S′,R, τ ′) is a time-respecting Lie–Bäcklund mapping φ : S → S′, i.e., τ ′ = τ ◦ φ.
The previous condition means that the notion of time of both systems coincide. This
notion of system is time-varying, as will be explained below.

3.3. State representation. We present a simplified definition of state represen-
tation that introduces the state and the input and its derivatives as a local coordinate
system (see [17, 19] for a more intrinsic presentation).

A local state representation of a system (S,R, τ) is a local coordinate system ψ =

{t, x, U}, where x = {xi, i ∈ �n�}, U = {u(k)
j | j ∈ �m�, k ∈ N}, where u

(k)
j = L k

d
dt

uj ,

and τ = t. The set of functions x = (x1, . . . , xn) is called state and u = (u1, . . . , um)
is called input. In these coordinates the Cartan field is locally written by

d

dt
=

∂

∂t
+

n∑
i=1

fi
∂

∂xi
+
∑
k∈N

∑
j∈�m�

u
(k+1)
j

∂

∂u
(k)
j

.(3.1)

Note that fi may depend on t, x, and a finite number of elements of U . In this sense,
the state representation defined here is said to be generalized, since one accepts that
fi may depend on the derivatives of the input. If the functions fi depend only on
{t, x, u} for i ∈ �n�, then the state representation is said to be classical. A state
representation of a system S is completely determined by the choice of the state x
and the input u and will be denoted by (x, u). A state representation is said to be
analytic if the fi are all analytic.8

3.4. Output. An output y of a system S is a set y = (y1, . . . , yp) of smooth
functions defined on S. If (x, u) is a state representation of S, then it is clear that

yj = yj(t, x, u, . . . , u
(αj)), j ∈ �p�.(3.2)

If the yj depend only on {t, x, u} for j ∈ �p�, then the output is said to be classical
with respect to the state representation (x, u). A state representation (x, u) with
output y is said to be analytic if the functions fi and the yj are all analytic with
respect to its arguments x and {u(j) | j ∈ N}.

8This definition is coordinate dependent since only smooth atlases are considered on diffieties
[57].
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3.5. System associated to differential equations. Now assume that a con-
trol system is defined by a set of equations

ṫ = 1,
ẋi = fi(t, x, u, . . . , u

(αi)), i ∈ �n�,
yj = yj(t, x, u, . . . , u

(βj)), j ∈ �p�.
(3.3)

One can always associate to these equations a diffiety S of global coordinates ψ =
{t, x, U} and Cartan field given by (3.1).

3.6. Flatness. We present now a simple definition of flatness in terms of coor-
dinates.9 A system S equipped with Cartan field d

dt and time function t = τ is locally
flat around ξ ∈ S if there exists a set of smooth functions y = (y1, . . . , ym), called flat

output, such that the set {t, y(j)
i | i ∈ �m�, j ∈ N} is a (local) coordinate system of S

around ξ ∈ S, where y
(j)
i = Ljd

dt

yi. Note that the Cartan field is locally given by

d

dt
=

∂

∂t
+
∑
j∈N

∑
i∈�m�

y
(j+1)
i

∂

∂y
(j)
i

.

Let Ψ : S → T be a Lie–Bäcklund isomorphism between two systems. Then S
is flat if and only if T is flat also. If y = (y1, . . . , ym) is a flat output of T , then
{y1 ◦Ψ, . . . , ym ◦Ψ} is a flat output of S.

3.7. Endogenous feedback and coordinate changes. Since a local state
representation (x, u) is by definition a local coordinate system, a new local state
representation (z, v) induces a coordinate change from {t, x, (u(i) : i ∈ N)} to
{t, z, (v(j) : i ∈ N)}. The coordinate changes of this kind are called endogenous
feedbacks.10

An example of endogenous feedback is static-state feedback. Two state represen-
tations (x, u) and (z, v) defined around ξ ∈ S are said to be linked by (time-varying)
static-state feedback if we locally have

span {dt, dx} = span {dt, dz} ,(3.4a)

span {dt, dx, du} = span {dt, dz, dv} .(3.4b)

Let (x, u) be a classical state representation and let z and v be family of smooth
functions such that card x = card z and card u = card v. Then it is easy to show
that, if (3.4) locally holds, then (z, v) is a local state representation that is linked to
(x, u) by static-state feedback [36, Prop. 3.2].

Another example of endogenous feedback is putting integrators in series with the
first k inputs of the system (3.3). This procedure induces a local state representation
(z, v) of the system S, where z = (x1, . . . , xn, u1, . . . , uk) and v = (u̇1, . . . , u̇k, uk+1,
. . . , um), called dynamic extension of the state.

4. Subsystems. A (local) subsystem Sa of a given system S is a system Sa such
that there exists a surjective11 Lie–Bäcklund submersion π : U ⊂ S → Sa, where U is
an open subset of S. A (local) subsystem will be denoted by (Sa, π) or simply by Sa.

9For more intrinsic definitions and some variations, see [17, 19].
10See [17] for a definition of endogenous feedback that considers an equivalence relation between

systems.
11Since submersions are open maps, one can always consider that Sa = π(U) by restricting Sa to

the image of π.
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4.1. State equations adapted to subsystems. Assume that there exists a
local classical state representation (x, u) of a system S of the form

ẋa = fa(t, xa, ua),(4.1a)

ẋb = fb(t, xa, xb, ua, ub),(4.1b)

where x = (xa, xb) and u = (ua, ub). Assume that (4.1a) represents the state equations
of a subsystem Sa and π : S → Sa is such that π(t, x, U) = (t, xa, Ua), where U denotes
the set (u(j)| j ∈ N) and Ua denotes the set (ua

(j)| j ∈ N). A state representation
of S the form (4.1a)–(4.1b) is said to be adapted to the subsystem Sa. In the end of
this section we show that state equations adapted to a subsystem can be generically
constructed (see Proposition 4.4).

4.2. Relative static-state feedback. We will consider now a special case of
endogenous feedback that will be called by relative static-state feedback. Consider
that ((xa, xb), (ua, ub)) is a local state representation for system S such that the state
equations are of the form (4.1a)–(4.1b). A relative state feedback is a new state
representation ((xa, zb), (ua, vb)) such that

zb = zb(t, xb, xa, ua, . . . , ua
(r)),

vb = vb(t, xb, ub, xa, ua, . . . , ua
(r+1)),

(4.2)

where r is a convenient integer and similar equations do exist for xb, ub as functions
of xa, zb, ua, vb and the derivatives of ua. In other words, this is an invertible time-
varying feedback. The next definition renders this notion more intrinsic.

Definition 4.1. Let S be a system and let (π, Sa) be a (local) subsystem of S. Let
(x, u) and (z, v) be two (local) state representations of S. Let Σ be the codistribution
defined by the pull-back12 Σ = π∗(T ∗Sa). Then (x, u) and (z, v) are linked by a relative
static-state feedback with respect to the subsystem Sa if span {dx}+Σ = span {dz}+Σ
and span {dx, du}+Σ = span {dz, dv}+Σ.

Proposition 4.2. Let S be a system with local state representation (x, u) defined
on Vξ ⊂ S, where x = (xa, xb), and u = (ua, ub) are such that the state equations
are of the form (4.1a)–(4.1b). Let Sa be the (local) subsystem associated to equation
(4.1a). Consider the set of smooth functions z = (xa, zb) and v = (ua, vb) defined
on Vξ, where card x = card z = n and card u = card v = m. Then the following
statements are equivalent:

(i) (z, v) is a local state representation around ξ and (x, u) and (z, v) are linked
by relative static-state feedback.

(ii) span {dx}+Σ = span {dz}+Σ and span {dx, du}+Σ = span {dz, dv}+Σ.
Proof. See [39].
Remark 4.1. The proof of the Proposition 4.2 shows that (i) implies that condition

(4.2) is satisfied for a subsystem Sa defined by (4.1a). It will be shown (see Proposition
4.4) that all subsystems admit adapted state equations of the form (4.1a)–(4.1b), up
to relative static-state feedbacks.

4.3. Output subsystem. Given a system S with output y, a (local) output
subsystem is a (local) subsystem π : U ⊂ S → Y such that π∗(T ∗

π(ξ)Y )

= span
{
dt, dy(k) : k ∈ N

} |ξ, ξ ∈ U .

12Note that span {dt} ⊂ Σ.
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4.4. Existence of local output subsystems. Without loss of generality, as-
sume that (x, u) is a classic state representation with output y. If it is not the case, we
can add integrators in series with the input until the required properties are fulfilled.
The next theorem shows that local output subsystems can be constructed generically
and they admit adapted state equations up to relative static-state feedback. Further-
more, they are unique up to Lie–Bäcklund isomorphisms.

Theorem 4.3 (existence and uniqueness of output subsystems). Let S be a
system and let (x, u) be a classical analytical state representation defined on an open
neighborhood W ⊂ S. Let y be a classical output of S. Let n = card x. Let U ⊂
W be the set of regular points of the codistributions Yk,Yk, k ∈ �n�, where Yk =
span

{
dt, dy, . . . , dy(k)

}
and Yk = span

{
dt, dx, dy, . . . , dy(k)

}
. Then, around any ξ ∈

U , there exists an open neighborhood Vξ of ξ and a local classical state representation
(z, v) = ((za, zb), (va, vb)) of the system S, defined on Vξ, such that:

(i) The (local) state equations are

ża = fa(t, za, va),(4.3a)

żb = fb(t, za, zb, va, vb).(4.3b)

(ii) Let Y be the local subsystem associated to (4.3a) and let π : Vξ → Y
be the corresponding Lie–Bäcklund submersion. We have π∗(T ∗Y ) = span

{dt, dza, (dv(k)
a : k ∈ N)} = span

{
dt, dy(k) : k ∈ N

}
. In particular, Y is an out-

put subsystem of S. Let Z = {za, (v(k)
a : k ∈ N)} and Y = {y(k)

j : j ∈ �p�, k ∈ N}.
Then Z ⊂ Y.

(iii) The state representations (x, u) and (z, v) are linked by relative static-state
feedback with respect to the subsystem Y associated to (4.3a).

Furthermore, two local output subsystems around any ξ ∈ S are (locally) Lie–
Bäcklund isomorphic.

Proof. See Appendix A.1.
We state now the result that assures that a subsystem can be generically repre-

sented by state equations of the form (4.1a)–(4.1b).
Proposition 4.4. Assume that Sa is a subsystem of S and that there exist local

state representations for Sa and S around every point of Sa and S. Then, generically,
there exists local state representations of S of the form (4.1a)–(4.1b) in a way that
(4.1a) is a state representation of Sa.

Proof. Let π : S → Sa be the corresponding Lie–Bäcklund submersion. Take a
local state representation (za, ea) of Sa around π(ξ) ∈ Sa. We abuse notation and
denote za ◦ π and ea ◦ π, respectively, by za and ea. Now, consider system S with
output y = (za, ea) and construct, possibly by extending the state with derivatives of
the input, a classical state representation of S such that y is a classical output. The
result follows easily from the application of Theorem 4.3 and the fact that T ∗Sa =

span{dt, dz(k)
a , de

(k)
a , k ∈ N}.

If the outputs are differentially independent, the next result shows that local
output subsystems are generically flat.

Proposition 4.5. Let U be the open and dense subset of Theorem 4.3. Assume
that the (explicit) system (1.1a) with output y = h(t, x, u) is right-invertible, i.e., the
output rank ρ is equal to the number of output components.13 Let π : Vξ ⊂ S → Y be
a local output subsystem with Vξ ⊂ U . Then Y is (locally) flat with flat output y.

Proof. See [39].

13See Appendix B for the definition of the output rank ρ.
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5. Relative flatness. We now state the concept of relative flatness.
Definition 5.1. Let S be a system and (π1, S1) and (π2, S2) be two subsystems of

S. The system S is said to be locally decomposed by S1 and S2 if, around ξ ∈ S, there
exists local coordinates (t, x1) for S1, (t, x

2) for S2, and (t, x1, x2) for14 S such that
πi(t, x

1, x2) = (t, xi), i = 1, 2. A system S is said to be (locally) relatively flat with
respect to a subsystem S1 if there exists a flat subsystem S2 such that S is (locally)
decomposed by S1 and S2.

The next proposition states a sufficient condition for flatness. It can be shown
that it is not a necessary condition [39].

Proposition 5.2. Let S1 be a (locally) flat subsystem of a system S. Assume
that S is relatively flat with respect to S1. Then S is (locally) flat.

Proof. The union of flat outputs of S1 and S2 is a flat output of S.
Remark 5.1. In the differential algebraic approach of [14] (see also [21]) one can

define a subsystem of a system K/k as a field extension L/k such that L is a subfield
of K. Then a system K/k is relatively flat with respect to L if the system K/L is
flat, considering L as the ground field (see [11] for a result similar to Proposition
5.2.). However, these algebraic notions are not suitable for our purposes because
integrability conditions are not available in this algebraic context.

It can be shown that, if K/k is relatively flat with respect to L, then K/k can
be decomposed into two independent subsystems L/k and F/k, where F/k is flat
(see [56]). In this sense, the assumption that the system is decomposed into two
independent subsystems in the definition of relative flatness is not restrictive with
respect to the algebraic definition (see also [35] for similar facts that occur when L
corresponds to the noncontrollable subsystem.)

The following proposition is a necessary and sufficient condition for completing a
given output y into a flat output (see [42] for related results).

Proposition 5.3. Let S be a system and let S1 be a flat subsystem of S. Let y
be a (local) flat output for S1. Then there exists a set z of smooth functions such that
S is locally flat with flat output (y, z) if and only if S is relatively flat with respect to
the subsystem S1.

Proof. The necessity is obvious. The sufficiency follows from the proof of Propo-
sition 5.2.

6. Implicit systems regarded as Lie–Bäcklund immersions. Let S be the
nonconstrained system defined by (1.1a). We show that, under some regularity as-
sumptions, (1.1a)–(1.1b) may be regarded as a system that is immersed in S. We
construct a system Γ and a Lie–Bäcklund immersion ι : Γ→ S such that every inte-
gral curve σ(t) of the Cartan field of S, respecting the constraints y(t) ≡ 0, is of the
form σ(t) = ι ◦ γ(t) for a suitable integral curve γ(t) of the Cartan field of Γ.

Consider the explicit (nonconstrained) system S defined by (1.1a) with output

y = h(t, x, u), global coordinates {t, x, (u(j)
i : i ∈ �m�; j ∈ N)}, and Cartan field (3.1).

Consider now the following assumptions.
A1. Existence and regularity assumption. Let Γ = {ξ ∈ S | y(k)(ξ) =

0 for all k ∈ N}. Assume that Γ �= ∅ and furthermore, Γ ⊂ U , where U is the open
and dense subset of the system S such that the statement of Theorem 4.3 holds.15 In
other words, around every point ξ ∈ Γ, we can construct a local output subsystem.

14We abuse notation and denote xi ◦ πi simply by xi.
15Note that in this case the state representation (1.1a) is globally defined. According the proof

of Theorem 4.3 we have that U is the open and dense set of regular points of the codistributions
Yk = span

{
dt, dy, . . . , dy(k)

}
and Yk = span

{
dt, dx, dy, . . . , dy(k)

}
for k ∈ {0, 1, . . . , n}.
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A2. Time interval assumption. For every ξ ∈ Γ and every open neighborhood
U ⊂ S of ξ, there exists some ε ≥ 0 such that τ(Γ ∩ U) contains an open interval
(τ(ξ)− ε, τ(ξ) + ε).

Remark 6.1. Note that assumption A2 means that Γ “does exist” during an
interval of time. If the system is time-invariant it is easy to verify that assumption
A2 is not needed. Note also that the set Γ may be empty, and in this case the implicit
system has no solution. For instance, let y1 = x1 + 1 and y2 = x2

1 + 2. Then y1 = 0
implies that y2 �= 0. A problem of this nature may occur with output derivatives.

When the assumptions A1, A2 hold, the set Γ ⊂ S may be endowed with the
structure of an immersed Fréchet manifold by choosing the subset topology, as shown
by the following proposition.

Proposition 6.1. Suppose that assumptions A1 and A2 are satisfied for system
S. Then the subset Γ ⊂ S has a structure of immersed manifold in S. Let ι : Γ→ S
be the canonical insertion. We can define a Cartan field ∂Γ on Γ by the equation
ι∗∂Γ(γ) =

d
dt ◦ ι(γ), γ ∈ Γ. Equipped with this Cartan field, Γ is a system such that

ι is a Lie–Bäcklund immersion. Furthermore, all the solutions ξ(t) of (1.1a) obeying
the restriction (1.1b) are of the form ξ(t) = ι ◦ ν(t), where ν(t) is a solution of Γ.

Proof. We show first that Γ is an immersed manifold. For this, consider
the topological subspace Γ ⊂ S with the subset topology. For each point ξ ∈ Γ,
Theorem 4.3 gives local charts φ : Û → Ũ ⊂ R

A, where φ = {t, za, Va, zb, Vb}, Va =

{v(k)
a : k ∈ N}, Vb = {v(k)

b : k ∈ N}, and we have span {dt, dza, dVa} = span

{dt, dy(k) : k ∈ N}. This local chart is adapted to a local output subsystem π : Û → Y ,
and is such that π(t, za, Va, zb, Vb) = (t, za, Va). Furthermore, by part (ii) of Theo-
rem 4.3, the functions of the set Z = {za, Va} are such that Z ⊂ Y, where Y =
{y(k) : k ∈ N}. By construction, if ν ∈ Û ∩ Γ, then y(k)(ν) = 0 for all k ∈ N.
This implies that all the components of Z are also null in ν. If we show that the
functions in W = Y − Z are also null in ν ∈ Γ ∩ Û , we will show that a point ν
is in Γ ∩ Û if and only if za = 0 and Va = 0 in ν. In fact, note first that, since
span {dt, dZ} = span {dt, dY}, all the functions θ in Y can be locally written in the
form θ = θ(t, za, Va). By assumption A2, if we restrict Ũ to a basic open set of the
form Iτ(ξ) ×W , where Iτ(ξ) = (τ(ξ) − ε, τ(ξ) + ε), we may assume that, for every

t̄ ∈ Iτ(ξ), then Û ∩ Γ contains a point ξt̄ = (t̄, za, Va, zb, Vb) = (t̄, 0, 0, zb, Vb). For any

fixed t̄ ∈ Iτ(ξ), since ξt̄ ∈ Γ ∩ Û , we have that θ(ξt̄) = θ(t̄, 0, 0) = 0. Since this is true
for all t̄ ∈ Iτ(ξ), we have shown our claim.

Now consider the map µ : Γ ∩ Û → µ(Γ ∩ Û) ⊂ R
B such that µ(t, 0, 0, zb, Vb) =

(t, zb, Vb). We shall show that these maps form a smooth atlas of Γ. By construction
it is clear that these maps are homeomorphisms. Hence it suffices to show that
these charts are C∞ compatible. For convenience denote the functions of the chart
φ by {t,X, Z} and the functions of the chart µ by {t, Z}, where X = {za, Va} and
Z = {zb, Vb}.

Now let µi : Γ ∩ Ui → Ṽi, i = 1, 2, be two local charts constructed in that
way, based, respectively, on the local charts of S given by φi = {t,Xi, Zi}, i = 1, 2.
In particular, it follows that µi ◦ φi(t, 0, Zi) = (t, Zi), i = 1, 2. Without loss of
generality, assume that U1 = U2. Consider the local coordinate change (t,X1, Z1) =
φ1 ◦φ−1

2 (t,X2, Z2). Note that the map θ : Ṽ2 → Ṽ1 such that (t, Z1) �→ (t, Z2) defined
by (t, 0, Z1) = φ1 ◦ φ−1

2 (t, 0, Z2) is a local diffeomorphism with inverse defined by
(t, 0, Z2) = φ2 ◦ φ−1

1 (t, 0, Z1). Since θ = µ1 ◦ µ−1
2 , we conclude that such charts are

C∞ compatible.
Now let ι : Γ → S be the insertion map. In the coordinates φ and µ previously



RELATIVE FLATNESS 1939

constructed, we have ι(t, Z) = (t, 0, Z). In particular, ι is an immersion between R
A-

manifolds and so ι∗(ζ) is injective for all ζ ∈ Γ. Remember that any function η of the
set X = {za, Va} ⊂ Y is such that η̇|ν = 0 for every ν ∈ Γ∩ Û . In particular, we have
that the image of ι∗(ν) contains d

dt (ι(ν)) for every ν ∈ Γ∩ Û . So we can define ∂Γ by

the rule ι∗∂Γ = d
dt ◦ ι. By definition, it follows that ι is a Lie–Bäcklund immersion.

The last affirmation of the statement is a consequence of the first one.
Remark 6.2. Let φ = (t, xa, Va, xb, Vb) and µ = (t, xb, Vb) be, respectively, the

coordinates of S and Γ constructed above. In this coordinates we have

∂Γ =
∂

∂t
+

nb∑
i=1

fbi(t, 0, 0, xb, Vb)
∂

∂xbi
+

mb∑
i=1

∑
j∈N

u
(j+1)
bi

∂

∂u
(j)
bi

,(6.1)

where fbi =
d
dt (xbi) = fbi(t, xa, Va, xb, Vb), i ∈ �nb�. In other words, (xb, ub) is a state

representation of Γ.
It is easy to show that the pull-back (by ι) of a relative static-state feedback for

S with respect to a local output subsystem Y induces a static-state feedback for Γ if
one considers the state representation ((xa, xb), (ua, ub)) for S and (xb, ub) for Γ.

7. Flatness of implicit systems. In this section we will derive a sufficient
condition for flatness of implicit systems. Let us begin with an auxiliary result.

Proposition 7.1. Let Γ, S, and Y be systems, where Γ is immersed in S and Y is
a subsystem of S. Let ι : Γ→ S and π : S → Y be, respectively, the corresponding Lie–
Bäcklund immersion and submersion. Assume that there exist local coordinates (t, γ)
of Γ, (t, γ, y) of S, and (t, y) of Y such that ι(t, γ) = (t, γ, 0) and16 π(t, γ, y) = (t, y).
Assume that S is relatively flat with respect to Y . Then Γ is (locally) flat.

Proof. Let S2 be a flat subsystem of S such that S2 and Y decomposes S (see
Definition 5.1). Let π2 : S → S2 be the corresponding Lie–Bäcklund submersion.
Recall that there exists coordinates (t, z, ỹ) of S, (t, ỹ) of Y , and (t, z) of S2 such
that π2 : (t, z, ỹ) = (t, z) and π : (t, z, ỹ) = (t, ỹ). Since the coordinate change map
(t, y) → (t, ỹ) is a local diffeomorphism, we may assume without loss of generality
that ỹ = y. With a possible restriction of domains, we can consider the coordinate
change mapping φ(t, γ, y) = (t, z, y). Note that the map φ0(t, γ) = (t, z) such that
φ(t, γ, 0) = (φ0(t, γ), 0) = (t, z, 0) is a local diffeomorphism. Let Ψ : Γ → S2 be such
that Ψ = π2 ◦ ι. By definition, Ψ is a Lie–Bäcklund mapping since it is a composition
of Lie–Bäcklund mappings. In the coordinates (t, z) for S2 and (t, γ) for Γ we have
Ψ(t, γ) = φ0(t, γ). Hence Ψ is a local Lie–Bäcklund isomorphism and so Γ is flat. In
particular if θ is a flat output of S2, then θ ◦Ψ is a flat output of Γ.

The following result is a sufficient condition for flatness of an implicit system. It
can be shown that it is not a necessary condition [39].

Theorem 7.2. Let S be the explicit system defined by (1.1a). Let y = h(t, x, u) be
an output for system S and let Y be the corresponding output subsystem of S. Suppose
that assumptions A1–A2 of the previous section hold for the system (1.1a) with the
constraints (1.1b). According to Proposition 6.1, (1.1a)–(1.1b) define a system Γ that
is immersed in S. Assume that the explicit system (1.1a) is (locally) relatively flat
with respect to the subsystem Y . Then the implicit system Γ is locally flat around all
ξ ∈ Γ.

Proof. Let ι : Γ→ S be the insertion map and let π : U ⊂ S → Y be the canonical
submersion onto the local output subsystem Y . According to the proof of Proposition

16We assume that (t, y) is inside the domain of our local chart of Y for y = 0.
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6.1, we can define local charts φ = (t,X, Z) of S, µ = (t, Z) of Γ and Ψ = (t,X) of Y
such that ι(t,X) = (t, 0, Z) and π(t,X, Z) = (t,X). Hence, by Proposition 7.1 (for
γ = Z and y = X) the result follows.

Let (1.1a) be a flat (explicit) system and assume that the output y of (1.1b) is
part of the flat output of the explicit system (1.1a). Then next result shows that the
implicit system (1.1a)–(1.1b) is flat.

Corollary 7.3. Assume that S is locally flat with flat output y = (y1, . . . , ym).

Assume that the local coordinate system {t, y(j)
i : i ∈ �m�, j ∈ N} is defined on open

set V whose image is a basic open set Ṽ .17 Let Γ ⊂ V defined by {ξ ∈ V |y(j)
i (ξ) =

0, i ∈ �r�, j ∈ N}. Assume that Γ is nonempty. Then Γ is an immersed system in
V ⊂ S. Furthermore, Γ is (locally) flat with flat output yr+1, . . . , ym.

Proof. Consider system S with output ỹ = (yr+1, . . . , ym). Let x̃ = ∅ and
ũ = (ỹ1, . . . , ỹm). Then (x̃, ũ) is a local state representation of S. Let Ỹr = span
{dt, dy, . . . , dy(k)} and Ỹr = span {dt, dx̃, dy, . . . , dy(k)}. Then Ỹr = Ỹr are
nonsingular codistributions on S for r ∈ N and hence assumption A1 of section 6
holds. Since Ṽ is a basic open set, it is also clear that assumption A2 holds. By
Theorem 4.3, the output subsystem Ỹ is well defined, and by Proposition 4.5, it
follows that Ỹ is locally flat. By Proposition 5.3, S is relatively flat with respect to
Ỹ . The desired result follows from Theorem 7.2.

8. A sufficient condition for relative flatness. Consider a system S and a
subsystem S1 of S given by (4.1a)–(4.1b), where (4.1a) represents S1. Let dimxa =
na, dimxb = nb, dimua = ma, and dimub = mb. For this system one can define the
relative derived flag as follows.

Definition 8.1. The relative derived flag of the system (4.1a)–(4.1b) is the
sequence of codistributions I(k) defined by I(−1) = span {(dxb − fbdt), (dub − u̇bdt)},
and I(k)(p) = span{ω(p) | ω ∈ I(k−1), dω(p) mod (I(k−1) + J)|p ≡ 0}, k ∈ N, where

J = span
{
(dxa − ẋadt), (dua

(j) − ua
(j+1)dt)| j ∈ N

}
.(8.1)

Remark 8.1. In the proof of Proposition 8.3 it is shown that if I(k) is nonsingular,

then it is smooth (otherwise I(k+1) is not well defined). The 1-forms in span
{
d
dt

}⊥
are

called contact forms [40]. Let π : S → Sa be the Lie–Bäcklund submersion of S onto
subsystem Sa (see section 4.1). Then it is easy to show that J is the codistribution

generated by the contact forms of Sa, i.e., J = π∗(T ∗Sa)∩span
{
d
dt

}⊥
. It follows that

J is invariant by coordinate changes, and in particular, it is invariant by endogenous
feedback. In [39] it is shown that

I(0) = span {dxb − ẋbdt} .(8.2)

By construction we have dim I(−1) = nb + mb and dim I(0) = nb. Note also that

I(k) + J ⊂ I(−1) + J ⊂ span
{
d
dt

}⊥
, k ∈ N. We will show that the relative derived

flag carries an intrinsic structural information, at least if one restricts the class of
transformations to relative static-state feedback (see Corollary 8.4).

Theorem 8.2. Assume that the codistributions span
{
I(k), dt, J

}
are involutive,

that I(k) are nonsingular for all k ∈ N, and that I(N) = 0 for N big enough. Then
the system S is (locally) relatively flat with respect to S1.

17Recall that a basic open set is of the form Ṽ = {ξ ∈ S | |y(j)
i (ξ) − ȳ

(j)
i | < εij , (i, j) ∈ ∆}, where

∆ is a finite subset of �m� × N, ȳ
(j)
i ∈ R, and εij ∈ R

+.
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Remark 8.2. It is easy to verify that J is involutive, i.e., that dω mod J ≡ 0 for
all 1-forms ω ∈ J . Furthermore, the codistribution span

{
I(k), dt, J

}
is involutive if

and only if span
{
I(k), dt, Jρk

}
is involutive for ρk big enough, where

Jl = span
{
(dxa − fadt), (dua

(j) − ua
(j+1)dt)| j ∈ �l�

}
.(8.3)

To prove Theorem 8.2 we need the following auxiliary result whose proof is de-
ferred to Appendix A.2.

Proposition 8.3. Assume that the conditions of the Theorem 8.2 are satisfied
on an open neighborhood Vξ of ξ in S. Then, for every p ∈ Vξ and k ∈ N we
have dim(I(k) + J)|p/J(p) = dim I(k)(p). Assume that I(k−1) + J has a local basis
B = B̄ ∪BJ , where BJ is a local basis of J and B̄ is of the form

B̄ =
{
ω

(j)
i : i ∈ �s�, j ∈ {0, . . . , ri}

}
,(8.4)

where ωi = dθi − θ̇idt, θi ∈ C∞(S), i ∈ �s� (or B̄ = ∅). Assume that the subset

{ω(ri)
i : i ∈ �s�} is linearly independent mod {I(k) + J}. Let Ḃ = {ω(ri+1)

i : i ∈ �s�}.
Then we may complete the set B ∪ Ḃ with a set B̂ = {ωi, i = s + 1, . . . , σ}, where
ωi = dθi − θ̇idt in a way that B ∪ Ḃ ∪ B̂ is a basis of I(k−2) + J such that Ḃ ∪ B̂ is
linearly independent mod {I(k−1) + J}.

Proof (of Theorem 8.2).18 Let N ∈ N be the smallest integer such that I(k) =
I(k+1) = 0 for all k ≥ N . Let BN be a basis for J = I(N) + J given by BN =
{η, µl| l ∈ N}, where η = (dxa − ẋadt) and µl = (dua

(l) − ua
(l+1)dt), l ∈ N.

Since span
{
I(N−1), J, dt

}
is involutive and I(N−1) is nonsingular, by Proposition 8.3

with B̄ = ∅, we can construct a local basis BN−1 of I(N−1) + J of the form BN−1 =
AN−1 ∪ BN , where AN−1 = {(dθ1,i1 − d

dtθ1,i1dt)| i1 ∈ �sN−1�} . Let ȦN−1 =

{(dθ(1)
1,i1
−θ

(2)
1,i1

dt), i1 ∈ �sN−1�}. By Proposition 8.3, we may construct a set ÂN−1 =

{(dθ2,i2 − d
dtθ2,i2dt)| i2 ∈ �sN−2�} in a way that BN−2 = AN−2 ∪ BN is a basis of

I(N−2) + J , where AN−2 = ÂN−1 ∪ ȦN−1 ∪ AN−1 = {(dθ(j−1)
k,ik

− θ
(j)
k,ik

dt)| k ∈ �2�,
ik ∈ �sN−k�, j ∈ �2 − k + 1�}. Note also that, by Proposition 8.3, it follows that

the set ÂN−1 ∪ ȦN−1 = {(dθ(2−k)
k,ik

− θ
(2−k+1)
k,ik

dt)| k ∈ �2�, ik ∈ �sN−k�} is linearly

independent mod I(N−1) + J .
Continuing in this way, using Proposition 8.3, we may construct in the rth step,

a basis for I(N−r) + J of the form

BN−r = AN−r ∪ BN ,(8.5)

where AN−r = ÂN−r+1 ∪ ȦN−r+1 ∪AN−r+1 and

AN−r+1 = {(dθ(j−1)
k,ik

− θ
(j)
k,ik

dt)| k ∈ �r − 1�, ik ∈ �sN−k�, j ∈ �r − k�}

ÂN−r+1 ∪ ȦN−r+1 = {(dθ(r−k)
k,ik

− θ
(r−k+1)
k,ik

dt)| k ∈ �r�, ik ∈ �sN−k�}
(8.6)

and where ÂN−r+1 ∪ ȦN−r+1 is linearly independent mod {I(N−r+1) + J} for r ∈
�N + 1�. From Proposition 8.3, note that dim(I(k)(p) + J(p))/J(p) = dim I(k)(p),
k ∈ N.

18Most of the techniques that are necessary for the proof of our sufficient condition of relative
flatness are very similar to the techniques of the proof of the main result of [35].
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Taking r = N + 1 in (8.6) we obtain a basis B−1 = A−1 ∪ BN , where A−1 =
Â0 ∪ Ȧ0 ∪A0 and

A0 = {(dθ(j−1)
k,ik

− θ
(j)
k,ik

dt) | k ∈ �N�, ik ∈ �sN−k�, j ∈ �N − k + 1�},

Â0 ∪ Ȧ0 = {(dθ(N−k+1)
k,ik

− θ
(N−k+2)
k,ik

dt) | k ∈ �N + 1�, ik ∈ �sN−k�},
(8.7)

where the set Â0 ∪ Ȧ0 is independent mod I(0) + J . Since dim I(0) = nb and
dim I(−1) = nb +mb we have card Â0 ∪ Ȧ0 = mb. Now define the set w of nb (state)
functions and the set v of mb (input) functions given by

w = {wlk,ik | wlk,ik = θ
(l−1)
k,ik

: k ∈ �N�, ik ∈ �sN−k�, l ∈ �N − k + 1�},

v = {vk,ik | vk,ik = θ
(N−k+1)
k,ik

: k ∈ �N + 1�, ik ∈ �sN−k�}.

By construction of B0 and B−1 it is clear that I(0) + J + span {dt} = span {dt, dxa,
dw} + J = span {dt, dxa, dxb} + J and I(−1) + J + span {dt} = span {dt, dxa,
dw, dua, dv} = span {dt, dxa, dxb, dua, dub} + J . Since card xb = card w and
card vb = card v then, by Proposition 4.2 we conclude that ((xa, w), (ua, v)) is a state
representation that is linked to ((xa, xb), (ua, ub)) by relative static-state feedback.

Since I(k) ⊂ span
{
d
dt

}⊥
, the equations 〈(dθ(j)

k,ik
− θ

(j+1)
k,ik

dt), ddt 〉 = 0, k ∈ �N�, ik ∈
�sN−k�, j ∈ �N − k + 1�, imply the following closed loop state equations:

ṫ = 1,
ẋa = fa(xa, ua)

ẇ1
k,ik

= w2
k,ik

,

ẇ2
k,ik

= w3
k,ik

,
...

ẇN−k+1
k,ik

= vk,ik ,

k ∈ �N�, ik ∈ �sN−k�.
(8.8)

Remark 8.3. Note that, if s−1 > 0, then the inputs {vk,ik | k = N+1, ik ∈ �s−1�}
are completely decoupled from the state of system (8.8), i.e., (8.8) is not well formed
in this case [46]. Note also that, if one restricts the coordinate transformations to
the class of relative static-state feedback (see Definition 4.1), then the conditions of
Theorem 8.2 are necessary and sufficient. This follows from the invariance of the
relative derived flag with respect to relative static-state feedback (see Corollary 8.4)
and after (tedious) calculations of the relative derived flag of a system of the form
(8.8).

Corollary 8.4. Consider the system S of equations (4.1a)–(4.1b). Let x =

(xa, xb) and J be defined by (8.1). Let Î(−1) = span {dx− ẋdt, du− u̇dt} + J and

Î(k)(p) = span{ω(p) | ω ∈ Î(k−1), dω(p) mod Î(k−1)|p ≡ 0} for k ∈ N. Assume that

the codistributions span{Î(k), dt} are involutive, dim Î(k)(q)/J(q) is (locally) constant

for k ∈ N, and that Î(N) = J for N big enough. Then the system S is (locally)

relatively flat with respect to S1. Furthermore, the codistributions Î(k), k ∈ N, are
invariant by relative static-state feedback with respect to the subsystem defined by
(4.1a).

Proof. We show first that Î(k) = I(k) +J for k ∈ {−1}∪N. This is obviously true

for k = −1. Assume that this is true for k − 1 and let ω̂ ∈ Î(k−1). Then ω̂ = ω + µ,
where ω ∈ I(k−1) and µ ∈ J . As J is involutive, then dω̂ mod Î(k−1) ≡ 0 if and
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only if dω mod (I(k−1) + J) ≡ 0. In particular, ω̂ ∈ Î(k) if and only if ω ∈ I(k). It

follows that Î(k) = I(k) + J , showing our claim. Hence, the first affirmation follows
easily from Theorem 8.2. To show the invariance of the flag Î(k), let (x̃, ũ) be a
state representation of S that is linked to (x, u) by relative static-state feedback. Let

Ĩ(−1) = span {dx̃ − ˙̃xdt, dũ − ˙̃udt} + J . Since J + span {dt} = Σ = π∗(T ∗Sa), by
Definition 4.1 it follows Ĩ(−1) + span {dt} = Î(−1) + span {dt}. Hence, ω̃ ∈ Ĩ(−1) if

and only if ω̃ = ω̂ + βdt, where ω̂ ∈ Î(−1). Now note that Ĩ(−1) and Ĩ(−1) are both

contained in span
{
d
dt

}⊥
. In particular, 〈ω̃, ddt 〉 = 〈ω̂, ddt 〉 = 0 implies that β = 0. We

conclude that Ĩ(−1) = Î(−1). Since the computation of Ĩ(k) follows the same rule as
the computation Î(k) and J is invariant by endogenous feedback (see Remark 8.1), we

conclude that Ĩ(k) = Î(k), k ∈ N.
Remark 8.4. Let U = span {dx}⊥ and H = J⊥. Let G0 = U ∩ H and let

Gk+1 = Gk + [ ddt , Gk]. It can be shown [9] that the conditions of Theorem 8.2 for
time-invariant systems are equivalent to the involutivity of the distributions Gi and
the existence of k such that Gi = H for all i ≥ k.

8.1. Flatness and local output subsystems. Theorem 8.5 is a sufficient con-
dition for relative flatness with respect to a local output subsystem.

Theorem 8.5. Let S be the explicit system (1.1a) with state representation (x, u)
and output y = h(t, x, u). Let U be the open and dense set where Theorem 4.3 holds.

Let Î(0) = span {dx− ẋdt} + J , where J = span{dy(k−1)− y(k)dt : k ∈ N}. Con-

sider the relative derived flag Î(i)(p) = span{ω(p) | ω ∈ Î(i−1), dω(p) mod Î(i−1)(p)

≡ 0}. Assume that, in U , the codistributions span{Î(k), dt} are involutive, and that

dim Î(k)(q)/J(q) is (locally) constant dimensional for k ∈ N and Î(N) = J for N big
enough. Then S is (locally) relatively flat with respect to the output subsystem Y
around every ξ ∈ U .

Proof. By Theorem 4.3 there exists a local output subsystem Y of S and new
state representation ((za, zb), (va, vb)) linked to (x, u) by a relative static-state feed-
back, such that the closed loop state equations are given by (4.3a)–(4.3b), where

span{dt, dza, dv(k)
a : k ∈ N} = span

{
dt, dy(k) : k ∈ N

}
= J + span {dt}. Let J̃ =

span{(dza − ża), (dv
(k)
a − v

(k+1)
a ) : k ∈ N}. It follows easily that J̃ + span {dt} =

J + span {dt}. Using the fact that J ⊂ span
{
d
dt

}⊥
and J̃ ⊂ span

{
d
dt

}⊥
(see the

arguments of the proof of Corollary 8.4), it follows that J̃ = J . Then the result
follows from Corollary 8.4.

9. Examples.

9.1. An academic example. Consider the implicit system

ẋ1 =
x2

2

(1 + x2
3)

2
+ ex3u1, ẋ2 = (1 + x2

3)u1 +
2x2x3

(1 + x2
3)
u2, ẋ3 = u2,(9.1a)

y = x1 = 0.(9.1b)

Let S be the (explicit) system (9.1a) with output y = x1. It is easy to verify that the
codistributions Yk = span

{
dt, dy, . . . , dy(k)

}
and Yk = span{dt, dx, dy, . . . , dy(k)} of

Lemma B.1 are nonsingular everywhere for k ∈ N, and σk = 1, k ≥ 1. Note also that
Γ = {ξ ∈ S | y(k)(ξ) = 0} is nonempty because Γ contains the point ξ ∈ S defined

by x1(ξ) = x2(ξ) = x3(ξ) = u
(k)
1 (ξ) = u

(k)
2 (ξ) = 0, k ∈ N (for any t). Since the

system is time-invariant then the assumptions A1 and A2 of section 6 are satisfied.
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By Proposition 6.1, the implicit system is an immersed system in the nonconstrained
system. Let J = span{dy(k) − y(k+1)dt : k ∈ N} and let Î(0) = span {dx− ẋdt} + J .

Using condition (A.3), some calculations show that19 Î(1) = span{η− 〈η, d
dt 〉dt}+

J , where η = dx2 − 2x2x3

(1+x2
3)
dx3 and Î(2) = J . Since dη = 2x3

(1+x2
3)
(η ∧ dz3), it follows

from Theorem 8.5, for every local output subsystem Y , that the explicit system S
is relatively flat with respect to Y . By Theorem 7.2, the implicit system Γ defined
by (9.1a)–(9.1b) is locally flat around every point ξ ∈ Γ. By the proof of Theorem
8.2 and the construction of Γ in section 6, a flat output of the implicit system can
be constructed by finding a function ψ such that dφ = αη. A possible solution is
ψ = x2

(1+x2
3)
.

By Propositions 4.5 and 5.3, one may complete the output y into a flat output
(y, z) for system S. In this case one may take z = ψ.

9.2. Constrained robots. Constrained robots are robots whose movement is
restricted by some physical contact surfaces. Such restrictions can be represented by
adding r holonomic constraints φi(q) = 0 (i = 1, . . . , r) to its original equations.

The following model can be obtained by taking into account the contact forces
[28]:

d

dt

(
q
q̇

)
=

(
q̇

−M−1H

)
+

(
0 0

M−1(Jφ)T M−1

)(
λ
τ

)
,(9.2a)

0 = φi(q), i = 1, . . . , r,(9.2b)

where q ∈ R
n, Jφ(q) = ∂φ/∂q, λ = (λ1, . . . , λr)

T is a vector corresponding to the
contact forces, M(q) is the symmetric positive definite mass matrix, and H(q, q̇)
corresponds to Coriolis and gravity forces. We will assume that ∂φ/∂q has rank r for
all q in the operation region of the robot. Note that system (9.2a)–(9.2b) is in the
form (1.1a)–(1.1b).

Let ψ = (ψ1, . . . , ψn−r) be chosen in a way that map q �→ (φ, ψ) is a local
diffeomorphism. Considering only the explicit system S defined by (9.2a), it is easy
to show that (q, λ) is a flat output for S. In particular, (φ, ψ, λ) is also a flat output
for S. From Corollary 7.3, it follows that (ψ, λ) is a flat output for the constrained
robot. Note now that ψ are local coordinates of the constraint surface. In particular,
the simultaneous tracking of the position along the constraint surface and the contact
forces are possible. The reader may refer to [38] for details and the presentation of
the design of a flatness based control, including the underactuated case. Another
approach for the solution of this problem is considered, for instance, in [28].

10. Conclusions. In this paper we show that the concept of relative flatness,
introduced here, is directly related to the flatness of implicit systems. Sufficient
conditions of relative flatness are provided (see Theorem 8.5). This result can be
combined with Theorem 7.2 in order to study flatness of implicit systems (1.1a)–
(1.1b), as illustrated in the example of section 9.1.

We show, under regularity assumptions, that an implicit system (1.1a)–(1.1b)
defines a system Γ (in the sense of section 3.2) that admits state space representations
and is immersed in the (explicit) system S defined by (1.1a) (Proposition 6.1). This
immersion is in fact an embedding since the topology of the immersed system is the

19The application of part (ii) of Lemma A.2 is the easiest way for computing relative derived flags,
and lead to linear equations with coefficients that are functions defined on S as shown in the proof
of Lemma A.2.
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subset topology. This result may be regarded as a generalization of the fact that
equation f(x) = 0, where f : R

n → R
p, defines implicitly an embedded submanifold

of R
n when the Jacobian matrix Jf(x) has constant rank in the solutions of f(x) = 0.
Although it is assumed that system (1.1a)–(1.1b) is analytic, this hypothesis is

only needed to assure that the output rank ρ of the explicit system (1.1a) with output
y = h(x, u, t) is a global invariant, at least in the subset U ⊂ S of nonsingular points
of the codistributions Yk and Yk for k = 0, . . . , n (see Lemma B.1). Note that the
differential dimension20 of the implicit system Γ defined by (1.1a)–(1.1b) is m̃ = m−ρ,
where m = card u. Hence the assumption of analyticity implies that m̃ is an invariant.
All the results of this paper could be rewritten in the smooth case (see [36, Lemma
6.2] for a smooth version of Lemma B.1), but in this case the differential dimension
of Γ may depend on the working point. In the same way, it is easy to restrict our
results to the time-invariant case (see [36, Lemma 8.1]).

All the definitions and results of this paper are local (note that the time-varying
notions are also local in time). The only exception is the construction of the system
Γ in section 6 (see Proposition 6.1), that is, a “global” construction.

Appendix A. Proof of auxiliary results.

A.1. Proof of Theorem 4.3. In this proof we use the results and the notations
of Lemma B.1. Let n = dimx. By that lemma, around ξ ∈ U , there exists a local
state representation (xn, un) defined in Vξ such that

span {dt, dxn} = span
{
dt, dx, dy, . . . , dy(n)

}
,(A.1a)

span {dt, dxn, dun} = span
{
dt, dx, du, dy, . . . , dy(n+1)

}
,(A.1b)

and where un = (ȳ
(n+1)
n , ûn). Now choose a subset za of {y, . . . , y(n)} in a way

that {dt, dza} is a local basis of span
{
dt, dy, . . . , dy(n)

}
and choose zb in a way that

{dt, dza, dzb} is a local basis of span
{
dt, dx, dy, . . . , dy(n)

}
around ξ. Let ua = ȳ

(n+1)
n

and ub = ûn. By construction, ((za, zb), (ua, ub)) is a local state-representation of S
around ξ, since it is linked to (xn, un) by local static-state feedback (see (3.4)).

By Lemma B.1 part 8, it follows that span {dża} ⊂ span {t, za, ua} and that (i)
and (ii) hold. Now note that (iii) follows easily from Definition 4.1 and conditions
(A.1).

To show that two output subsystems are Lie–Bäcklund isomorphic, let πi : V
i
ξ →

Yi be local output subsystems for i = 1, 2. Assume that V 1
ξ ∩ V 2

ξ �= ∅. We will show
that there exist a local Lie–Bäcklund isomorphism δ : W1 → W2, where H is some
open neighborhood of ξ for which H ⊂ V 1

ξ ∩ V 2
ξ and Wi = πi(H), i = 1, 2.

Since the πi are Lie–Bäcklund submersions for i = 1, 2, there exists local charts
of φi = (t,Xi, Zi), i = 1, 2, defined in some H ⊂ S and local charts ψi = (t,Xi),
of Yi, i = 1, 2, defined on Wi = πi(H) such that, in these coordinates φi ◦ π−1

i ◦
ψi(t,Xi, Zi) = (t,Xi), i = 1, 2. Since Y1 and Y2 are both local subsystems we have
span {dt, dXi} = span

{
dt, dy(k) : k ∈ �N�}, for i = 1, 2. In particular, it follows

that the local coordinate change (t,X1, Z1) = φ1 ◦ φ−1
2 (t,X2, Z2) is such that X1 =

θ(t,X2) and X2 = θ̃(t,X1). So the map µ defined by (t,X2) �→ (t, θ(t,X2)) is a local

20The local differential dimension is the cardinal of the input of a local state representation. Note
that a differential dimension m̃ of a connected smooth system that admits a local state representation
around every point is a global invariant [17], [36, Corollary 7.2].
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diffeomorphism.21 Let δ : W2 ⊂ Y2 → W1 ⊂ Y1 be the local diffeomorphism defined
by δ = ψ−1

1 ◦µ ◦ψ2. To complete the proof it suffices to show that δ is Lie–Bäcklund.
For this, we show first that δ ◦ π2|H = π1|H . In fact, note that

ψ1 ◦ (δ ◦ π2) ◦ φ−1
1 (t,X1, Z1) = ψ1 ◦ (δ ◦ π2 ◦ φ−1

2 ) ◦ (φ2 ◦ φ−1
1 )(t,X1, Z1)

= (ψ1 ◦ δ) ◦ π2 ◦ φ−1
2 (t,X2, Z2) = (µ ◦ ψ2) ◦ π2 ◦ φ−1

2 (t,X2, Z2)

= µ ◦ (ψ2 ◦ π2 ◦ φ−1
2 )(t,X2, Z2) = µ(t,X2)

= (t,X1) = ψ1 ◦ π1 ◦ φ−1
1 (t,X1, Z1).

From the first and the last terms above, we have that δ ◦ π2|H = π1|H . Denote by
∂i the Cartan fields, respectively, of Yi for i = 1, 2. By definition, π∗

i
d
dt = ∂i ◦ πi. In

particular, ∂1 ◦ δ ◦ π2 = ∂1 ◦ π1 = (π1) ∗ d
dt = (δ ◦ π2)∗ ddt = δ∗(π2)∗ ddt = δ∗∂2 ◦ π2. As

π2 is surjective it follows that ∂1 ◦ δ = δ∗∂2, showing that δ is Lie–Bäcklund.

A.2. Proof of Proposition 8.3. In order to prove Proposition 8.3 we need the
following lemmas.

Lemma A.1. For all integers k ≥ 0, r ≥ 0 and for every point p ∈ S, we have

(i)
(
I(k) + Jr + span {dt})∣∣

p
∩ span { ddt}⊥ ⊂ I(k)(p)+Jr. The same result also

holds when replacing Jr by J ;
(ii) span

{
I(k), J, dt

} |p = I(k)(p)⊕ J(p)⊕ span {dt} (p).
Proof. See [39].
Lemma A.2. Assume that the conditions of Theorem 8.2 are satisfied on an open

neighborhood Vξ of ξ in S. Then I(k), k ∈ N, is a smooth codistribution and for every
p ∈ Vξ and k ∈ N we have the following:

(i) For all k ∈ N there exists a set of covector fields Ω = {ω1, . . . , ωrk} ⊂
I(k) + J , where rk = dim I(k), ωi = (dθi − θ̇idt), with θi ∈ C∞(S), and an open
neighborhood V of ξ such that the canonical projections of the elements of Ω(ν) form
a basis for (I(k)(ν) + J(ν)) mod J(ν) for all ν in V .

(ii) If ω is of the form (dθ− θ̇dt) for a function θ ∈ C∞(S), then ω ∈ I(k+1)+J
if and only if ω̇ ∈ I(k) + J . In particular, I(k) + J ⊃ I(k+1) + d

dtI
(k+1) + J .

(iii) Let {ω1, . . . , ωr} ⊂ I(k−1)+J be a set of 1-forms such that ωi = (dθi− θ̇idt),
where θi ∈ C∞(S). Assume that the set {ω1(p), . . . , ωr(p)} is linearly independent22

mod I(k)(p)+J(p). Then {ω̇1(p), . . . , ω̇r(p)} ⊂ (I(k−2)(p)+J(p)) is linearly indepen-
dent mod (I(k−1) + J + span {dt})|p.

Proof. Assume by induction that I(j), j = −1, 0, . . . , k is smooth. We will show
first that (i) and (ii) holds.

(i) We now show that, for an integer lk big enough, span
{
I(k), Jlk , dt

}
is in-

volutive (see (8.3)). In fact, since I(k) is nonsingular and finite dimensional, there
exist a local basis {ω̃i : i ∈ �rk�} of I(k). By part (ii) of Lemma A.1, it fol-

lows that the set {(ω̃i : i ∈ �rk�), dxa, dua, . . . , du(lk)
a , dt} is a local basis of I(k) +

Jlk + span {dt}. Since the codistribution span
{
I(k), J, dt

}
is involutive, then dω̃i =∑rk

j=1 ηij ∧ νij for convenient 1-forms ηij , νij with νij ∈ span
{
I(k), J, dt

}
. Hence

νij ∈ span{(ω̃i : i ∈ �rk�), dxa, dua, . . . , du(sij)
a , dt}. Let l∗k = maxi,j{sij}. Then

span
{
I(k), Jlk , dt

}
is involutive for every lk ≥ l∗k. By the Frobenius theorem and part

21We stress that we are not using the inverse function theorem, but only the existence of the
inverse of the coordinate change map.

22The linear independence of the set {ω1(p), . . . , ωr(p)} mod (I(k)(p) + J) for some p ∈ S means
that (

∑r
i=1 αiωi(p) + ω(p))

∣∣
p

= 0 for ω ∈ I(k) + J and αi ∈ R implies that ω(p) = 0 and αi = 0.
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(ii) of Lemma A.1, we see that span
{
I(k), Jlk , dt

}
is spanned by linearly independent

1-forms {dθ1, . . . dθrk , dxa, dua, . . . , dua
(lk), dt}, where dim I(k) = rk. Now note that

ωi = (dθi − θ̇idt) ∈ span
{
d
dt

}⊥
. Since ωi ∈ span

{
I(k), Jlk , dt

}
, by Lemma A.1 part

(i) it follows that ωi ∈ I(k) + Jlk . Let K = span {Jlk , dt} |p and L = span {J, dt}p.
By construction the canonical projection of the set {ωi, i ∈ �rk�} on (I(k)(p) +K)/K
forms a basis of (I(k)(p)+K)/K. By part (ii) of Lemma A.1, it is easy to see that the
map Ψ : (I(k)(p) +K)/K → (I(k)(p) +L)/L such that ω(p) mod K �→ ω(p) mod L is
an isomorphism. In particular, the canonical projections of the ωi on (I(k)(p) +L)/L
also form a basis.

(ii) It is easy to verify by direct computation that (see [39])

dω(p) mod (I(k)(p) + J(p)) ≡ − ω̇ ∧ dt|p mod (I(k)(p) + J(p))(A.2)

for all p ∈ S.
Now we will show that, for all p ∈ S and ω ∈ I(k), we have

ω(p) ∈ I(k+1)(p) ⇔ ω̇(p) ∈ span
{
I(k), J, dt

}
(p).(A.3)

Let {dt, (ωi : i ∈ �rk�), η, (µj : j ∈ �lk�)} be a basis for span
{
I(k), Jlk , dt

}
. Notice that

ω̇ ∧ dt|p mod (I(k)(p) + J(p)) ≡ 0 means that ω̇ ∧ dt|p +
∑rk
i=1 ζi ∧ ωi|p + ξ ∧ η|p +∑lk

j=i ρj ∧ µj |p = 0 for convenient 1-forms ζi, ξ, ρj . From the Cartan lemma (see

section 2), we conclude that ω̇(p) ∈ span
{
I(k), Jlk , dt

}
(p). Then, (A.3) follows from

(A.2) and Definition 8.1. It is easy to show that the same arguments and the fact
that J is involutive imply that

ω(p) ∈ I(k+1)(p) + J(p) ⇔ ω̇(p) ∈ span
{
I(k), J, dt

}
(p).(A.4)

If ω = dθ − θ̇dt then ω̇ ∈ span
{
d
dt

}⊥
. By (A.4) and from Lemma A.1 part (i),

it follows that ω̇ ∈ I(k) + J . Now note that, by (i), I(k+1) + J has a basis for this
particular form. This completes the proof of (ii). We show now that our induction
hypothesis (i.e., that I(j) is smooth for j = −1, 0, . . . , k) implies that I(k+1) is smooth.
In fact, by the proof of (i), given a local basis {ω̃i : i ∈ �rk�} of I(k), there exists

a local basis {(ω̃i : i ∈ �rk�), dxa, (du(k)
a : k ∈ N), dt} of Wk = span

{
I(k), J, dt

}
.

Note that Wk ⊂ W0 = span {dxb, J, dt}. In particular, we have ω̃i = ω̂i + γi, where
ω̂i ∈ span {dxb} and γi ∈ span {J, dt} = T ∗Sa. Note that µi = γ̇i ∈ span {J, dt} and
we may replace ω̃i by ω̂i in the basis of Wk , obtaining another basis of Wk. Note also

that there exists a subset x̂b of xb such that {dx̂b, dub, (ω̃i : i ∈ �rk�), dxa, (du(k)
a : k ∈

N), dt} is a basis of W−1. Let z = (x̂b, ub). Let ˙̃ωi = ˙̂ωi + γ̇i =
∑
j aijdzj + µi, where

µi ∈ span {J, dt}. Denote the matrix formed by the functions aij by A. By (A.3),
ω(p) =

∑
j αiω̃i ∈ I(k+1)(p) if and only if

∑
j(α̇iω̃i + αi ˙̃ωi)|p ∈ Wk(p). Denoting

by α the column vector with components αi, then ω(p) ∈ I(k+1)(p) if and only if
A(p)α(p) = 0. Then I(k+1) is nonsingular if and only if A(p) has (locally) constant
rank and in this case it is clear that I(k) is smooth.23

(iii) To prove (iii), assume that there exists ω in I(k−1) + J and functions αi ∈
C∞(S) such that for p ∈ S, then (ω + α0dt+

∑r
i=1 αiω̇i)|p = 0. Hence,

{[ω − ∑r
i=1(α̇i)ωi]+ α0dt+

d
dt (
∑r
i=1 αiωi)}

∣∣
p

= 0. Since [ω − ∑r
i=1(α̇i)ωi](p) ∈

I(k−1)(p) + J(p), it follows that d
dt (
∑r
i=1 αiωi)

∣∣
p
∈ span

{
I(k−1), J, dt

}
(p). It follows

23This proof also shows that one may compute the relative derived flag by solving linear equations.
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from (A.4) that (
∑r
i=1 αiωi)(p) ∈ I(k)(p)+J(p) and hence the set {ω1, . . . , ωr} is not

linearly independent mod I(k) + J(p) in p ∈ S.
Proof (of Proposition 8.3). Since ωi = dθi − θ̇idt, i ∈ �s�, by part (ii) of Lemma

A.1, the set B = {(dθ(j)
i , j ∈ {0, . . . , ri}, i ∈ �s�), dxa, dua, . . . , du(lk−1)

a , dt} is a local
basis of I(k−1) + Jlk−1

+ span {dt} for any lk−1 > l∗k−1 for some l∗k−1.

By part (iii) of Lemma A.2, Ḃ is linearly independent mod {I(k−1) + J +

span {dt}}. Hence B ∪ Ḃ = {(dθ(j)
i , j ∈ {0, . . . , ri + 1}, i ∈ �s�), dxa, dua, . . . ,

du
(lk−1)
a , dt} is linearly independent for all lk−1.
From the proof of part (i) of Lemma A.2, we also have that there exists a local

basis {(θ̃i : i ∈ �r�), dxa, dua, . . . , du(lk−2)
a , dt} of I(k−2) +Jlk−2

+span {dt} for every
lk−2 ≥ l∗k−2. Let lk−1 = lk−2 = max{l∗k−1, l

∗
k−2}.

As I(k−1) ⊂ I(k−2), we may complete B∪Ḃ with a subset B̂ = {θi, i = s+1, . . . , σ}
of {θ̃i : i ∈ �r�} in order to form a basis of I(k−2) + Jlk−2

+ span {dt}. By the same

reasoning of the end of the proof of part (i) of Lemma A.2, it follows that B∪ Ḃ∪ B̂ is
a basis of I(k−2) + J . The fact that Ḃ ∪ B̂ is linearly independent mod (I(k−1) + J +
span {dt}) implies that Ḃ ∪ B̂ is also linearly independent mod (I(k−1) + J).

Appendix B. Geometric interpretation of the dynamic extension algo-
rithm.

In [13] it was shown, using an algebraic approach, that the output rank (the
number of differentially independent outputs [14]) can be computed by the structure
algorithm [49] and the dynamic extension algorithm [12, 33]. This interpretation was
developed further in [10] in order to study control synthesis problems by quasi-static
state feedback. In [36], the algebraic results of [13, 10] are translated to the differential
geometric approach of [19], giving the following lemma.

Lemma B.1 (see [36, Lemma 8.2]). Consider the analytic (explicit) system S
defined by (1.1a) with analytic output y = h(t, x, u). Let Sk be the open and dense
set of regular points of the codistributions Yi = span

{
dt, dy, . . . , dy(i)

}
and Yi =

span {dt, dx, dy, . . . , dy(i)}. In the kth step of the dynamic extension algorithm, one
may construct a partition24 y = (ȳk, ŷk) and a new local classical state representation

(xk, uk) of the system S with state xk = (x, ȳ
(0)
0 , . . . , ȳ

(k)
k ) and input uk = (y

(k+1)
k , ûk),

defined in an open neighbourhood Vξ of ξ ∈ Sk, such that
1. span {dt, dxk} = span

{
dt, dx, dy, . . . , dy(k)

}
.

2. span {dt, dxk, duk} = span
{
dt, dx, dy, . . . , dy(k+1), du

}
.

3. It is always possible to choose ȳ
(k+1)
k+1 in a way that ȳ

(k+1)
k ⊂ ȳ

(k+1)
k+1 .

4. It is always possible to choose ûk+1 ⊂ ûk.
5. Let D(C) denote the generic dimension of a codistribution C generated by the

differentials of a finite set of analytic functions. The sequence σk = D(Yk)−D(Yk−1)
is nondecreasing, the sequence ρk = D(Yk) − D(Yk−1) is nonincreasing, and both
sequences converge to the same integer ρ, called the output rank, for some k∗ ≤ n =
dimx.

6. Sk = Sk∗ for k ≥ k∗.
7. Yk ∩ span {dx}|ν = Yk∗−1 ∩ span {dx}|ν for every ν ∈ Sk∗ and k ≥ k∗.
8. Around ξ ∈ Uk, one may choose, ȳk = ȳk∗ for k ≥ k∗. Furthermore, Yk+1 =

Yk + span{ȳ(k+1)
k } for k ≥ k∗.

24Including a possible reordering of the outputs.
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Proof. A complete proof of this result can be found in [36] (see [13, Theorem 2.5]
and [10, Lemma 4.1.6] for similar results in algebraic contexts).
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Abstract. This paper is concerned with the coordinate-free approach to control systems. The
coordinate-free approach is a factorization approach but does not require the coprime factorizations
of the plant. We present two criteria for feedback stabilizability for multi-input multi-output (MIMO)
systems in which transfer functions belong to the total rings of fractions of commutative rings. Both
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the stabilizability of a causal plant in terms of the coprimeness of the generalized elementary factors.
As an example, a discrete finite-time delay system is considered.
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1. Introduction. In this paper we are concerned with the coordinate-free ap-
proach to control systems. This approach is a factorization approach but does not
require the coprime factorizations of the plant.

The factorization approach to control systems has the advantage that it embraces,
within a single framework, numerous linear systems such as continuous-time as well
as discrete-time systems, lumped as well as distributed systems, one-dimensional as
well as n-dimensional systems, etc. [14]. This factorization approach was patterned
after Desoer et al. [3] and Vidyasagar, Schneider, and Francis [14]. In this approach,
when problems such as feedback stabilization are studied, one can focus on the key
aspects of the problem under study rather than be distracted by the special features
of a particular class of linear systems. A transfer function of this approach is given as
the ratio of two stable causal transfer functions, and the set of stable causal transfer
functions is a commutative ring. For a long time, the theory of the factorization ap-
proach had been founded on the coprime factorizability of transfer matrices, which is
satisfied in the case where the set of stable causal transfer functions is such a commu-
tative ring as a Euclidean domain, a principal ideal, or a Bézout domain. However,
Anantharam in [1] showed that there exist models in which some stabilizable plants
do not have right-/left-coprime factorizations.

Recently, Shankar and Sule in [10] have presented a theory of feedback stabi-
lization for single-input single-output (SISO) transfer functions having fractions over
general integral domains. Moreover, Sule in [11, 12] has presented a theory of the
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feedback stabilization of strictly causal plants for multi-input multi-output (MIMO)
transfer matrices, in which transfer functions belong to the total rings of fractions of
commutative rings, with some restrictions. Their approach to the control systems is
called a “coordinate-free approach” [10, p. 15] in the sense that they do not require the
coprime factorizability of transfer matrices. Our objective in this paper is to decrease
the restrictions in order to make further comprehensive theory of the coordinate-free
approach, so that the theory can be applied to more and more linear control models
including ones not yet well understood.

The main contribution of this paper consists of providing two criteria for feedback
stabilizability for MIMO systems in which transfer functions belong to the total rings
of fractions of commutative rings: the first criterion is expressed in terms of modules
((ii) of Theorem 3.3) and the other in terms of ideals called generalized elementary
factors ((iii) of Theorem 3.3). They are more general than Sule’s results in the fol-
lowing sense: (i) our results do not require that plants are strictly causal; (ii) we do
not employ the restriction of commutative rings. Further, we will not use the theory
of algebraic geometry.

The paper is organized as follows. In section 2, we give mathematical preliminar-
ies, set up the feedback stabilization problem, present the previous results, and define
the causality of the transfer functions. In section 3, we state our main results. As
a preface to our main results, we also introduce there the notion of the generalized
elementary factor of a plant. In section 4, we give intermediate results which we will
utilize in the proof of the main theorem. In section 5, we prove our main theorem.
In section 6, we discuss the causality of the stabilizing controllers. Also, in order to
make the contents clear, we present examples concerning a discrete finite-time delay
system in sections 3, 4, and 5 consecutively.

2. Preliminaries. In the following we begin by introducing the notations of
commutative rings, matrices, and modules commonly used in this paper. Then we
give the formulation of the feedback stabilization problem and the previous results.

2.1. Notations.

Commutative rings. In this paper, we consider that any commutative ring has the
identity 1 different from zero. Let R denote a commutative ring. A zerodivisor in R
is an element x for which there exists a nonzero y such that xy = 0. In particular,
a zerodivisor x is said to be nilpotent if xn = 0 for some positive integer n. The
set of all nilpotent elements in R, which is an ideal, is called the nilradical of R.
A nonzerodivisor in R is an element which is not a zerodivisor. The total ring of
fractions of R is denoted by F(R).

The set of all prime ideals of R is called the prime spectrum of R and is denoted
by SpecR. The prime spectrum of R is said to be irreducible as a topological space
if every nonempty open set is dense in SpecR.

We will consider that the set of stable causal transfer functions is a commutative
ring, denoted by A. From the sense of the transfer functions we consider that the
commutative ring A satisfies the invariant basis property (cf. [6]). In addition to A,
we will use the following three kinds of rings of fractions:

(i) The first one appears as the total ring of fractions of A, which is denoted
by F(A) or simply by F ; that is, F = {n/d |n, d ∈ A, d is a nonzerodivisor}. This
will be considered to be the set of all possible transfer functions. If the commutative
ring A is an integral domain, F becomes a field of fractions of A. However, if A is not
an integral domain, then F is not a field, because any zerodivisor of F is not a unit.
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(ii) The second one is associated with the set of powers of a nonzero element
of A. Suppose that f denotes a nonzero element of A. Given a set Sf = {1, f, f2, . . .},
which is a multiplicative subset of A, we denote by Af the ring of fractions of A with
respect to the multiplicative subset Sf ; that is, Af = {n/d |n ∈ A, d ∈ Sf}. We point
out two facts here: (a) In the case where f is nilpotent, Af becomes isomorphic to {0}.
(b) In the case where f is a zerodivisor, even if the equality a/1 = b/1 holds over Af
with a, b ∈ A, we cannot say in general that a = b over A; alternatively, a = b + z
over A holds with some zerodivisor z of A such that zfω = 0 with a sufficiently large
integer ω.

(iii) The last one is the total ring of fractions of Af , which is denoted by F(Af );
that is, F(Af ) = {n/d |n, d ∈ Af , d is a nonzerodivisor ofAf}. If f is a nonzerodivisor
of A, F(Af ) coincides with the total ring of fractions of A. Otherwise, they may not
coincide.

The reader is referred to Chapter 3 of [2] for the ring of fractions and to Chapter 1
of [2] for the prime spectrum.

In the rest of the paper, we will use R as an unspecified commutative ring and
mainly suppose that R denotes either A or Af .

Matrices. Suppose that x and y denote sizes of matrices.

The set of matrices over R of size x × y is denoted by Rx×y. In particular, the
set of square matrices over R of size x is denoted by (R)x. A square matrix is called
singular over R if its determinant is a zerodivisor of R and nonsingular otherwise.
The identity and the zero matrices are denoted by Ex and Ox×y, respectively, if the
sizes are required, otherwise they are denoted simply by E and O. For a matrix A
over R, the inverse matrix of A is denoted by A−1 provided that det(A) is a unit
of F(R). The ideal generated by R-linear combination of all minors of size m of
a matrix A is denoted by ImR(A).

Matrices A and B over R are right-coprime over R if there exist matrices X̃
and Ỹ over R such that X̃A+ Ỹ B = E. Analogously, matrices Ã and B̃ over R are
left-coprime over R if there exist matrices X and Y over R such that ÃX+ B̃Y = E.
Note that, in the sense of the above definition, even if two matrices have no common
right-(left-)divisors except invertible matrices, they may not be right-(left-)coprime
over R. (For example, two matrices [ z1 ] and [ z2 ] of size 1 × 1 over the bivariate
polynomial ring R[z1, z2] over the real field R are neither right- nor left-coprime over
R[z1, z2] in our setting.) Further, a pair (N,D) of matrices N and D is said to be a
right-coprime factorization of P over R if (i) the matrix D is nonsingular over R, (ii)
P = ND−1 over F(R), and (iii) N and D are right-coprime over R. Also, a pair

(Ñ , D̃) of matrices Ñ and D̃ is said to be a left-coprime factorization of P over R
if (i) D̃ is nonsingular over R, (ii) P = D̃−1Ñ over F(R), and (iii) Ñ and D̃ are
left-coprime over R. As we have seen, in the case where a matrix is potentially used
to express left fractional form and/or left coprimeness, we usually attach a tilde “˜”
to a symbol; for example Ñ , D̃ for P = D̃−1Ñ and Ỹ , X̃ for Ỹ N + X̃D = E.

Modules. For a matrix A over R, we denote by Mr(A) (Mc(A)) the R-module
generated by rows (columns) of A.

Suppose that A, B, Ã, B̃ are matrices over R and X is a matrix over F(R)
such that X = AB−1 = B̃−1Ã with B and B̃ being nonsingular. Then the R-
module Mr([A

t Bt ]
t
) (Mc(

[
Ã B̃

]
)) is uniquely determined up to isomorphism

with respect to any choice of fractions AB−1 (B̃−1Ã) of X as shown in Lemma 2.1
below. Thus for a matrix X over F(R), we denote by TX,R and WX,R the mod-
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Fig. 2.1. Feedback system Σ.

ules Mr([A
t Bt ]

t
) and Mc(

[
Ã B̃

]
), respectively. If R = A, we write simply TX

andWX for TX,A andWX,A, respectively. We will use, for example, the notations TP ,
WP , TC , and WC for the matrices P and C over F .

An R-module M is called free if it has a basis, that is, a linearly independent
system of generators. The rank of a free R-module M is equal to the cardinality of
a basis of M , which is independent of the basis chosen. An R-module M is called
projective if it is a direct summand of a free R-module, that is, there is a module N
such that M ⊕ N is free. The reader is referred to Chapter 2 of [2] for the module
theory.

Lemma 2.1. Suppose that X is a matrix over F(R) and is expressed in the form

of a fraction X = AB−1 = B̃−1Ã with some matrices A, B, Ã, B̃ over R. Then the
R-module Mr([A

t Bt ]
t
) (Mc(

[
Ã B̃

]
)) is uniquely determined up to isomorphism

with respect to any choice of fractions AB−1 (B̃−1Ã) of X.
Proof. Without loss of generality, it is sufficient to show that Mr([A

t
1 b1E ]

t
) 

Mr([A
t
2 Bt2 ]

t
), where b1 ∈ R and A1(b1E)

−1 = A2B
−1
2 . Since b1 is a nonzero-

divisor and B2 is nonsingular, we have Mr([A
t
1 b1E ]

t
)  Mr([A

t
1 b1E ]

t
B2) 

Mr([A
t
2 Bt2 ]

t
b1E)  Mr([A

t
2 Bt2 ]

t
). The other isomorphism can be proved anal-

ogously.

2.2. Feedback stabilization problem. The stabilization problem considered
in this paper follows that of Sule in [11], who considers the feedback system Σ [13,
Chapter 5, Figure 5.1] as in Figure 2.1. For further details, see [13]. Let a commutative
ring A represent the set of stable causal transfer functions. The total ring of fractions
of A, denoted by F , consists of all possible transfer functions. The set of matrices of
size x × y over A, denoted by Ax×y, coincides with the set of stable causal transfer
matrices of size x× y. Also the set of matrices of size x× y over F , denoted by Fx×y,
coincides with all possible transfer matrices of size x× y. Throughout the paper, the
plant we consider has m inputs and n outputs, and its transfer matrix, which itself is
also called simply a plant, is denoted by P and belongs to Fn×m. We will occasionally
consider matrices over A (F) as ones over Af or F (F(Af )) by natural mapping.

Definition 2.2. Define F̂ad by

F̂ad = {(X,Y ) ∈ Fx×y ×Fy×x | det(Ex +XY ) is a unit of F ,
x and y are positive integers}.

For P ∈ Fn×m and C ∈ Fm×n, the matrix H(P,C) ∈ (F)m+n is defined by

H(P,C) =

[
(En + PC)−1 −P (Em + CP )−1

C(En + PC)−1 (Em + CP )−1

]
(2.1)
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provided (P,C) ∈ F̂ad. This H(P,C) is the transfer matrix from [ut1 ut2 ]
t
to [ et1 et2 ]

t

of the feedback system Σ. If (i) (P,C) ∈ F̂ad and (ii) H(P,C) ∈ (A)m+n, then we say
that the plant P is stabilizable, P is stabilized by C, and C is a stabilizing controller
of P .

Here we define the causality of transfer functions, which is an important physical
constraint, used in this paper. We employ the definition of causality from Vidyasagar,
Schneider, and Francis [14, Definition 3.1] and introduce two terminologies later used
frequently.

Definition 2.3. Let Z be a prime ideal of A, with Z �= A, including all zerodi-
visors. Define the subsets P and Ps of F as follows:

P = {n/d ∈ F |n ∈ A, d ∈ A\Z}, Ps = {n/d ∈ F |n ∈ Z, d ∈ A\Z}.
A transfer function in P (Ps) is called causal (strictly causal). Similarly, if every
entry of a transfer matrix over F is in P (Ps), the transfer matrix is called causal
(strictly causal). A transfer matrix is said to be Z-nonsingular if the determinant is
in A\Z and to be Z-singular otherwise.

In [14], the ideal Z is not restricted to a prime ideal in general. On the other
hand, in [11], the set of the denominators of causal transfer functions is a multiplica-
tively closed subset of A. This property is natural since the multiplication of two
causal transfer functions should be considered as causal one. Note that this multi-
plicativity is equivalent to Z being prime provided that Z is an ideal. By following
the multiplicativity, we consider in this paper that Z is prime.

In this paper, we do not assume that the prime spectrum of A is irreducible and
the plant P is strictly causal as in [11]. Alternatively, in the rest of the paper we
assume only the following:

Assumption 2.4. The given plant is causal in the sense of Definition 2.3.
One can represent a causal plant P in the form of fractions P = ND−1 = D̃−1Ñ ,

where the matrices N , D, Ñ , D̃ are over A, and the matrices D, D̃ are Z-nonsingular.
It should be noted that when using “a stabilizing controller,” we do not guarantee

the causality. However, in the classical case of the factorization approach, once we
restrict ourselves to strictly proper plants, it is known that any stabilizing controller
of strictly causal plant is causal (cf. Corollary 5.2.20 of [13], Theorem 4.1 of [14]).
One can see, in fact, that many practical systems are strictly causal. On the other
hand, including noncausal stabilizing controllers seems to make the theory easy and
simple from the mathematical viewpoint. From these observations, we have accepted
the possibility of the noncausality of stabilizing controllers.

In our case, the fact “any stabilizing controller of strictly causal plant is causal”
still holds (Proposition 6.2). Further we will show that for any causal plant there
exists a causal stabilizing controller (Proposition 6.1).

2.3. Previous results. In [11] Sule gave the results of the feedback stabilizabil-
ity. We show them after introducing the notion of the elementary factor which is used
to state his results.

Definition 2.5 (elementary factors [11, p. 1689]). Assume that A is a unique
factorization domain. Denote by T the matrix [N t dEm ]

t
and by W the matrix

[N dEn ] over A, where P = Nd−1 with N ∈ An×m, d ∈ A. Let {T1, T2, . . . , Tr}
be the family of all nonsingular m × m submatrices of the matrix T , and for each
index i, let fi be the radical of the least common multiple of all the denominators
of TT−1

i . The family F = {f1, f2, . . . , fr} is called the family of elementary factors
of the matrix T . Analogously let {W1,W2, . . . ,Wr} be the family of all nonsingular
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n × n submatrices of the matrix W , and for each index j let gj be the radical of the
least common multiple of all the denominators of W−1

j W . Let G = {g1, g2, . . . , gl}
denote the family of elementary factors of the transposed matrix W t. Now let H =
{figj | i = 1, . . . , r, j = 1, . . . , l}. This family H is called the elementary factor of the
transfer matrix P .

Then, Sule’s two elegant results can be rewritten as follows. The first result
assumes that the prime spectrum of A is irreducible. The second one assumes that A
is a unique factorization domain.

Theorem 2.6 (see [11, Theorem 1]). Suppose that the prime spectrum of A is
irreducible. Further suppose that a plant P of size n×m is strictly causal, where the
notion of the strictly causal is defined as in [12] (rather than [11]). Then the plant P
is stabilizable if and only if the following conditions are satisfied:

(i) The module TP is projective of rank m.
(ii) The module WP is projective of rank n.

Recall that for a matrix X over F we use the notations TX and WX to denote A-
modules generated by using the matrix X. Further it should be noted that the defini-
tions of TP andWP in [11] are slightly different from those of this paper. Nevertheless
this is not a problem by virtue of Lemma 2.1.

Theorem 2.7 (see [11, Theorem 4]). Suppose that A is a unique factorization
domain. The plant P is stabilizable if and only if the elementary factors of P are
coprime, that is,

∑
h∈H(h) = A.

3. Main results. To state our results precisely we define the notion of gen-
eralized elementary factors, which is a generalization of the elementary factors in
Definition 2.5. Then the main theorem will be presented.

Generalized elementary factors. Originally, the elementary factors have been de-
fined over unique factorization domains as in Definition 2.5. We enlarge this concept
in the case of commutative rings.

Before stating the definition, we introduce several symbols used in the definition
and widely in the rest of this paper. The symbol I denotes the set of all sets of m
distinct integers between 1 and m + n (recall that m and n are the numbers of the
inputs and the outputs, respectively). Normally, an element of I will be denoted by I,
possibly with suffixes such as integers. We will use an element of I as a suffix as well
as a set. For I ∈ I, if i1, . . . , im are elements of I in ascending order, that is, ia < ib
if a < b, then the symbol ∆I denotes the m× (m+ n) matrix whose (k, ik)-entry is 1
for ik ∈ I and zero otherwise.

Definition 3.1 (generalized elementary factors). Let P ∈ Fn×m, and N and D
are matrices over A with P = ND−1. Denote by T the matrix [N t Dt ]

t
. For each

I ∈ I, define the ideal ΛPI of A by

ΛPI = {λ ∈ A | ∃K ∈ A(m+n)×m λT = K∆IT}.

We call the ideal ΛPI the generalized elementary factor of the plant P with respect
to I.

Whenever we use the symbol Λ with some suffix, it will denote a generalized
elementary factor. We will also frequently use the symbols λ and λI with I ∈ I
as particular elements of ΛPI . Note that in Definitions 2.5 and 3.1, the matrices
represented by T are different in general. However this difference is not a problem
since the generalized elementary factors are independent of the choice of the fractions
ND−1 as shown below.
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Lemma 3.2. For any I ∈ I, the generalized elementary factor of the plant P
with respect to I is independent of the choice of matrices N and D over A satisfying
P = ND−1.

Proof. Let N , N ′, D be matrices over A and d′ be a scalar of A such that
P = ND−1 = N ′d′−1

hold. Further, let

ΛPI1 = {λ ∈ A | ∃K ∈ A(m+n)×m λ [N t Dt ]
t
= K∆I [N

t Dt ]
t},

ΛPI2 = {λ ∈ A | ∃K ∈ A(m+n)×m λ [N ′t d′Em ]
t
= K∆I [N

′t d′Em ]
t}.

In order to prove this lemma it is sufficient to show that the ideals ΛPI1 and ΛPI2
are equal. Suppose that λ is an element of ΛPI1. Then there exists a matrix K such
that λ [N t Dt ]

t
= K∆I [N

t Dt ]
t
. Multiplying d′Em on the right of both sides,

we have λ [N ′t d′Em ]
t
D = K∆I [N

′t d′Em ]
t
D. Since the matrix D is nonsin-

gular, we have λ [N ′t d′Em ]
t
= K∆I [N

t d′Em ]
t
, so that λ ∈ ΛPI2, which means

that ΛPI1 ⊂ ΛPI2. The opposite inclusion relation ΛPI1 ⊃ ΛPI2 can be proved analo-
gously.

Note also that for every I in I, the generalized elementary factor of the plant
with respect to I is not empty since it contains at least zero. In the case where the
set of stable causal transfer functions is a unique factorization domain, the general-
ized elementary factor of the plant with the matrix ∆IT being nonsingular becomes
a principal ideal and the generator of its radical an elementary factor of the matrix T
(in Definition 2.5) up to a unit multiple. Analogously, the elementary factor of the
matrix W (in Definition 2.5) corresponds to the generalized elementary factor of the
transposed plant P t.

Main results. We are now in position to state our main results.
Theorem 3.3. Consider a causal plant P . Then the following statements are

equivalent:
(i) The plant P is stabilizable.
(ii) The A-modules TP and WP are projective.
(iii) The set of all generalized elementary factors of P generates A; that is,∑

I∈I
ΛPI = A.(3.1)

In the theorem, (ii) and (iii) are criteria for feedback stabilizability. Comparing
the theorem above with Theorems 2.6 and 2.7, we observe the following: (ii) and (iii)
can be considered as generalizations of Theorems 2.6 and 2.7, respectively. For (ii),
we do not assume as mentioned earlier that the prime spectrum of A is irreducible
and the plant P is strictly causal. The rank conditions of TP and WP are deleted.
For (iii), the commutative ring A is not restricted to a unique factorization domain.
The elementary factors are replaced by the generalized elementary factors. Although
two matrices T and W in Definition 2.5 are used to state Theorem 2.7, only one
matrix T in Definition 3.1 is used in (iii).

We will present the proof of the theorem in section 5.
To make the notion of the generalized elementary factors familiar, we present here

an example of the generalized elementary factors.
Example 3.4. Some synchronous high-speed electronic circuits such as computer

memory devices often cannot have nonzero small delays (see [5], for example). We
suppose here that the system cannot have the unit delay as a nonzero small delay.
Further we suppose that the impulse response of a transfer function being stable is
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finitely terminated. Thus the set A becomes the set of polynomials generated by z2

and z3, that is, A = R[z2, z3], where z denotes the unit delay operator. Then A is not
a unique factorization domain but a Noetherian domain. The total field F of fractions
of A is R(z2, z3), which is equal to R(z). The ideal Z used to define the causality
is given as the set of polynomials in R[z2, z3] whose constant terms are zero; that is,
Z = z2A+ z3A = {az2 + bz3 | a, b ∈ A}. Thus the set of causal transfer functions P
is given as n/d, where n, d are in A and the constant term of d is nonzero; that is,
P = {n/(a + bz2 + cz3) |n ∈ A, a ∈ R\{0}, b, c ∈ A}. Further the set of strictly
causal transfer functions Ps is given as Ps = {(a1z2 + b1z3)/(a2 + b2z2 + c2z3) | a2 ∈
R\{0}, a1, b1, b2, c2 ∈ A}.

Since some factorized polynomials are sometimes expressed more compactly and
are thus easier to understand than the expanded ones, we here introduce the following
notation: a polynomial in R[z] surrounded by “〈” and “〉” indicates that it is in A as
well as in R[z] even though some factors between “〈” and “〉” may not be in A.

Let us consider the plant below:

P :=

[
(1− z3)/(1− z2)
(1− 8z3)/(1− 4z2)

]
∈ P2×1.(3.2)

The representation of the plant is not unique. For example, the (1,1)-entry of the
plant has an alternative form (1 + z2 + z4)/(1 + z3) different from the expression in
(3.2). Consider parameterizing the representation of the plant. To do so we consider
the plant P over R(z) rather than over F . Thus P can be expressed as

P =

[
(1 + z + z2)/(1 + z)

(1 + 2z + 4z2)/(1 + 2z)

]
over R(z).(3.3)

However, the coefficients of all numerators and denominators in (3.3) of z with degree 1
are not zero. To make them zero, we should multiply them by (a1(1−z)+b1z2+c1z3)
or (a2(1− 2z) + b2z

2 + c2z
3) with a1, b1, c1, a2, b2, c2 ∈ A as follows:

P =

[ 〈(1+z+z2)(a1(1−z)+b1z2+c1z3)〉
〈(1+z)(a1(1−z)+b1z2+c1z3)〉

〈(1+2z+4z2)(a2(1−2z)+b2z
2+c2z

3)〉
〈(1+2z)(a2(1−2z)+b2z2+c2z3)〉

]
.(3.4)

Every expression of the plant is given in the form of (3.4) with a1, b1, c1, a2, b2, c2 in A
provided that the denominators are not zero. From this, we have two observations.
One is that the plant P does not have its right- and left-coprime factorizations over A
(even so, it will be shown later that the plant is stabilizable). The other is that the
elementary factor of this plant cannot be consistently defined over A. Thus we employ
the notion of the generalized elementary factor.

In the following, we calculate the generalized elementary factors of the plant. We
choose the following matrices as N , D, and T used in Definition 3.1:[

n1

n2

]
:= N :=

[
(1− z3)(1− 4z2)
(1− 8z3)(1− z2)

]
,

[ d ] := D := [ (1− z2)(1− 4z2) ] , T := [N t Dt ]
t
.

Since m = 1 (the number of inputs) and n = 2 (the number of outputs), the set I is
given as I = {{1}, {2}, {3}} and we let I1 = {1}, I2 = {2}, I3 = {3}.

Let us calculate the generalized elementary factor ΛPI1 . Let i1 = 1 so that
I1 = {i1}. Then the (1, i1)-entry of the matrix ∆I1 is 1 and the other entries are zero.
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Thus we have ∆I1 = [ 1 0 0 ]. The generalized elementary factor ΛPI1 is originally
given as follows:

ΛPI1 = {λ ∈ A | ∃K ∈ A(m+n)×m λT = K∆I1T}
= {λ ∈ A | ∃k1, k2 ∈ A λ [n2 d ]

t
= n1 [ k1 k2 ]

t}.(3.5)

Consider (3.5) over R[z] instead of A. Then the matrix equation in the set of (3.5)
can be expressed as

λ

[
(1− z)(1 + z)(1− 2z)(1 + 2z + 4z2)

(1− z)(1 + z)(1− 2z)(1 + 2z)

]
=

(1− z)(1− 2z)(1 + 2z)(1 + z + z2)

[
k1
k2

]
.(3.6)

The set of λ’s such that there exist k1, k2 ∈ R[z] satisfying (3.6) is given as {(1 +
2z)(1 + z + z2)a | a ∈ R[z]}, denoted by L1. Then the intersection of L1 and A is
given as follows:

L1 ∩ A = {〈(1 + 2z)(1 + z + z2)(a(1− 3z) + bz2 + cz3)〉 ∈ A | a, b, c ∈ A}.(3.7)

This is equal to ΛPI1 as shown below. First it is obvious that L1 ∩ A ⊃ ΛPI1 . For
each (1 + 2z)(1 + z + z2)(a(1 − 3z) + bz2 + cz3) with a, b, c ∈ A, we have k1 and k2
as follows from (3.6):

k1 = (1 + z)(1 + 2z + 4z2)(a(1− 3z) + bz2 + cz3),

k2 = (1 + z)(1 + 2z)(a(1− 3z) + bz2 + cz3).

Both k1 and k2 are in A. Hence L1 ∩ A ⊂ ΛPI1 and so L1 ∩ A = ΛPI1 . By (3.7),
we can also consider that ΛPI1 is generated by 〈(1 + 2z)(1 + z + z2)(1 − 3z)〉, 〈(1 +
2z)(1 + z + z2)z2〉, and 〈(1 + 2z)(1 + z + z2)z3〉.

Analogously, we can calculate the generalized elementary factors ΛPI2 and ΛPI3
of the plant with respect to I2 and I3 as follows:

ΛPI2 = {〈(1 + z)(1 + 2z + 4z2)(a(1− 3z) + bz2 + cz3)〉 ∈ A | a, b, c ∈ A},
ΛPI3 = {〈(1 + z)(1 + 2z)(a(1− 3z) + bz2 + cz3)〉 ∈ A | a, b, c ∈ A}.

Observe now that

ΛPI1 � 〈(1 + 2z)(1− 3z)(1 + z + z2)〉 =: λ0I1 ,

ΛPI2 � 〈(1 + z)(1 + 2z + 4z2)(1− 3z + z2)〉 =: λ0I2

and further

αI1λ0I1 + αI2λ0I2 = 1,

where

αI1 = −4233−23646z2−39836z3−201780z4−113016z5+75344z6

5852 ∈ A,
αI2 = 10085+18418z2+121140z3+131852z4+113016z5

5852 ∈ A.
Now let

λI1 := αI1λ0I1 ∈ ΛPI1 , λI2 := αI2λ0I2 ∈ ΛPI2 .(3.8)

Thus ΛPI1 + ΛPI2 = A and λI1 + λI2 = 1. Hence by Theorem 3.3, the plant P is
stabilizable.
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4. Intermediate results. In this section we provide intermediate results which
will be used in the proof of our main theorem stated in the preceding section. This
section consists of three parts. We first show that a number of modules generated
from plants, controllers, and feedback systems are isomorphic to one another. Next we
develop the results which will help to show the existence of a well-defined stabilizing
controller. We then give the coprime factorizability of the plant over Af , where f is
an element of the generalized elementary factor of the plant.

Relationship in terms of modules between transfer matrices P , C, and H(P,C).
The first intermediate result is the relations, expressed in terms of modules, among
the matrices P , C, and H(P,C) as well as their transposed matrices. A number of
modules are isomorphic to one another as follows.

Proposition 4.1. Suppose that P and C are matrices over F(R). Suppose
further that det(En + PC) is a unit of F(R).

(i) The following R-modules are isomorphic to one another:
TP,R ⊕ TC,R, TH(P,C),R, TH(P t,Ct)t,R, WH(P t,Ct),R, TH(C,P ),R.

(ii) The following R-modules are isomorphic to one another:
WP,R⊕WC,R, WH(P,C),R, WH(P t,Ct)t,R, TH(P t,Ct),R, WH(C,P ),R.

Further for a matrix X over F(R),
(iii) TX,R  WXt,R and WX,R  TXt,R.

Note here that in the proposition above, the controller C need not be a stabilizing
controller. For the case where C is a stabilizing controller, see Lemma 2 of [11].

We can consider that the proposition above, especially the relations TP,R⊕TC,R 
TH(P,C),R  TH(C,P ),R, gives an interpretation of the structure of the feedback system
in the sense that the module generated by the feedback system is given as the direct
sum of the modules generated by the plant and the controller. In the proof ((i)→(ii))
of Theorem 3.3, this proposition will play a key role.

Proof. We first prove (iii). Let A and B be matrices over R with X = AB−1.
Then we have TX,R  Mr([A

t Bt ]
t
)  Mc([A

t Bt ])  W(B−1)tAt,R  WXt,R.
The other relation WX,R  TXt,R can be proved in a similar way.

Next we prove (i). Suppose that det(En+PC) is a unit of F(R). We prove the fol-
lowing relations in order: (a) TP,R⊕TC,R  TH(P,C),R, (b) TH(P,C),R  TH(P t,Ct)t,R,
(c) TH(P t,Ct)t,R  WH(P t,Ct),R, (d) TH(P,C),R  TH(C,P ),R.

(a) of (i). The proof of (a) follows mainly the proof of Lemma 2 in [11]. By virtue
of Lemma 2.1, it is sufficient to show the relation TP,R⊕TC,R Mr([N

t
H dHEm+n ]

t
)

with NH ∈ (R)m+n, dH ∈ R, where H(P,C) = NHd
−1
H . Let N , NC be matrices

over R and d, dC be in R with P = Nd−1 and C = NCd
−1
C . Further, let

Q =

[
dCEn N
−NC dEm

]
, S =

[
dCEn O
O dEm

]
.

From these we have TP,R ⊕ TC,R  Mr([Q
t St ]

t
). In addition, since det(En +

PC) is a unit of F(R), the matrix NH is nonsingular so that Mr([Q
t St ]

t
) 

Mr([Q
t St ]

t
(det(NH)Em+n)) holds. A simple calculation shows that

[
Q
S

]
(det(NH)Em+n) =

[
dHEm+n

NH

]
adj(NH)S.
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Because both matrices S and adj(NH) are nonsingular, we finally have that

TP,R ⊕ TC,R Mr

([
Q
S

])
Mr

([
Q
S

]
(det(NH)Em+n)

)
Mr

([
dHEm+n

NH

])
 TH(P,C),R.

(b) of (i). Observe that the following relation holds:

H(P t, Ct)t =

[
O Em
En O

]
H(P,C)

[
O En
Em O

]
.(4.1)

Let NH and dH be a matrix over R and a scalar of R, respectively, with H(P,C) =
NHd

−1
H . Then (4.1) can be rewritten as follows:

H(P t, Ct)t =

[
O Em
En O

]
NH

([
O Em
En O

]
dH

)−1

.

Hence, we have matrices A and B over R with H(P t, Ct)t = AB−1 such that

A =

[
O Em
En O

]
NH , B =

[
O Em
En O

]
dH .

This gives the relation TH(P,C),R  TH(P t,Ct)t,R.
(c) of (i). This is directly obtained by applying (iii) to the matrix H(P t, Ct)t.
(d) of (i). Between the matrices H(P,C) and H(C,P ), the following relation

holds:

H(C,P ) =

[
O −Em
En O

]
H(P,C)

[
O En
−Em O

]
.

Letting NH and dH be a matrix over R and a scalar of R with H(P,C) = NHd
−1
H as

in (b), we have matrices N ′
H and D′

H over R such that

[
N ′
H

D′
H

]
=


O −Em
En O

O

O O −Em
En O

[ NH
dHEm+n

]

holds. Since H(C,P ) = N ′
HD

′
H

−1
holds and the first matrix of the right-hand side of

the equation above is invertible, the relation TH(P,C),R  TH(C,P ),R holds.
Finally, arguments similar to (i) prove (ii).
Before moving to the next intermediate result, we prove an easy lemma useful to

give results for the transposed plants.
Lemma 4.2. A plant P is stabilizable if and only if its transposed plant P t is

stabilizable. Moreover, in the case where the plant P is stabilizable, C is a stabilizing
controller of P if and only if Ct is a stabilizing controller of the transposed plant P t.

Proof. (Only If) Suppose that a plant P is stabilizable. Let C be a stabilizing

controller of P . First, (P t, Ct) is in F̂ad, since (P,C) ∈ F̂ad and det(En + PC) =
det(Em + P tCt). From (4.1) in the proof of Proposition 4.1, if H(P,C) ∈ (A)m+n,
then H(P t, Ct) ∈ (A)m+n.

(If) Because (P t)t = P , the “If” part can be proved analogously.
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Z-nonsingularity of transfer matrices. In order to prove the stabilizability of the
given causal plant, which will be necessary in the proof of the main theorem (Theo-
rem 3.3), we should show the existence of the stabilizing controller. To do so, we will
need to show that the denominator matrix of the stabilizing controller is nonsingular.
The following result will help.

Lemma 4.3. Suppose that there exist matrices A, B, C1, C2 over A such that
the following square matrix is Z-nonsingular:[

A C1

B C2

]
,(4.2)

where the matrix A is square and the matrices A and B have same number of columns.
Then there exists a matrix R over A such that the matrix A+RB is Z-nonsingular.

Before starting the proof, it is worth reviewing some easy facts about the prime
ideal Z.

Remark 4.4. (i) If a is in A\Z and expressed as a = b+ c with b, c ∈ A, then at
least one of b and c is in A\Z. (ii) If a is in A\Z and b is in Z, then the sum a + b
is in A\Z. (iii) Every factor in A of an element of A\Z belongs to A\Z (that is, if
a, b ∈ A and ab ∈ A\Z, then a, b ∈ A\Z).

They will be used in the proofs of Lemma 4.3 and Theorem 3.3.
Proof of Lemma 4.3. This proof mainly follows that of Lemma 4.4.21 of [13].
If the matrix A itself is Z-nonsingular, then we can select the zero matrix as R.

Hence we assume in the following that A is Z-singular.
Since (4.2) is Z-nonsingular, there exists a full-size minor of [At Bt ]

t
in A\Z by

Laplace’s expansion of (4.2) and Remark 4.4(i), (iii). Let a be such a Z-nonsingular
full-size minor of [At Bt ]

t
having as few rows from B as possible.

We here construct a matrix R such that det(A + RB) = ±a + z with z ∈ Z.
Since A is Z-singular, the full-size minor a must contain at least one row of B from the
matrix [At Bt ]

t
. Suppose that a is obtained by excluding the rows i1, . . . , ik of A and

including the rows j1, . . . , jk of B, where both i1, . . . , ik and j1, . . . , jk are in ascending
order. Now define R = (rij) by ri1j1 = · · · = rikjk = 1 and rij = 0 for all other i, j.
Observe that det(A + RB) is expanded in terms of full-size minors of the matrices
[E R ] and [At Bt ]

t
from the factorization A + RB = [E R ] [At Bt ]

t
by the

Binet–Cauchy formula. Every minor of [E R ] containing more than k columns of R
is zero. By the method of choosing the rows from [At Bt ]

t
for the full-size minor a,

every full-size minor of [At Bt ]
t
having less than k rows of B is in Z. There is only

one nonzero minor of [E R ] containing exactly k columns of R, which is obtained by
excluding the columns i1, . . . , ik of the identity matrix E and including the columns
j1, . . . , jk of R; it is equal to ±1. From the Binet–Cauchy formula, the corresponding
minor of [At Bt ]

t
is a. As a result, det(A + RB) is given as a sum of ±a and

elements in Z. By Remark 4.4(ii), the sum is in A\Z and so is det(A + RB). The
matrix A+RB is now Z-nonsingular.

Coprimeness and generalized elementary factors. We present here that for each
nonnilpotent element λ of the generalized elementary factors, the plant has a right-
coprime factorization over Aλ. This will be independent of the stabilizability of the
plant.

Lemma 4.5 (cf. Proposition 2.2 of [9]). Let ΛPI be the generalized elementary
factor of the plant P with respect to I ∈ I and further let

√
ΛPI denote the radical of

ΛPI (as an ideal). Suppose that λ is in
√
ΛPI but not nilpotent. Then, the Aλ-module

TP,Aλ is free of rank m.
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Proof. Let T,N,D be the matrices over A as in Definition 3.1. Recall that TP,Aλ
denotes the Aλ-module generated by rows of the matrix T . By Definition 3.1, there
exists a matrix K over A such that λrT = K∆IT holds for some positive integer r.
Then we have a factorization of the matrix T over Aλ as T = (λ−rK)(∆IT ), where
all entries of the matrix λ−rK are in Aλ. In order to show that the Aλ-module
TP,Aλ is free of rank m, provided that λ is not nilpotent, it is sufficient to prove
the following two facts: (i) The matrix ∆IT is nonsingular over Aλ. (ii) There is
a matrix X such that the matrix [λ−rK X ] is invertible over Aλ and the matrix
equation T = [λ−rK X ] [ (∆IT )

t O ]
t
holds.

(i). Observe that the matrix D is nonsingular over Aλ as well as over A. Since
D = ∆{n+1,...,m+n}T = (λ−r∆{n+1,...,m+n}K)(∆IT ) holds (note that the suffix of
the symbol ∆ is an ordered set of m distinct integers between 1 and m+ n as before
Definition 3.1), the matrix ∆IT is also nonsingular over Aλ provided that λ is not
nilpotent.

(ii). Let i1, . . . , in be n distinct integers in ascending order between 1 and m+ n
excluding the integers in I. Then let X be the matrix whose (ik, k)-entry is 1 for
each ik and zero otherwise. Then the determinant of [λ−rK X ] becomes ±1 since
the matrix λ−r∆IK is the identity matrix of (Aλ)m.

The lemma below will be used in the proof ((ii)→(iii)) of the main theorem by
letting R = Af , where f is an element of the generalized elementary factor of the
plant but not nilpotent.

Lemma 4.6. If R-module TP,R (WP,R) is free of rank m (n), there exist ma-

trices A and B (Ã and B̃) over R such that (A,B) is a right-coprime factorization

((Ã, B̃) is a left-coprime factorization) of the plant P (∈ F(R)n×m) over R.
Proof. This lemma is an analogy of the result given in the proof of Lemma 3

of [11]. See this proof.
Example 4.7. Here we continue Example 3.4. Let us follow Lemmas 4.5 and 4.6

with the plant of (3.2). Let the notation be as in Example 3.4.
First we proceed along the proof of Lemma 4.5. As an example, we pick I1 ∈ I

as I and λI1 ∈ ΛPI1 as λ in the proof of Lemma 4.5. Recall that for each λ ∈ ΛPI ,
there exists a matrix K such that λT = K∆IT holds. In the case of λI1 ∈ ΛPI1 , the
matrix K is given as

K =

 k1k2
k3

 =

 λI1
αI1〈(1 + z)(1− 3z)(1 + 2z + 4z2)〉
αI1〈(1 + z)(1 + 2z)(1− 3z)〉

 .(4.3)

Thus we have the factorization T = (λ−rK)(∆I1T ): (1− z3)(1− 4z2)
(1− 8z3)(1− z2)
(1− z2)(1− 4z2)

 =

 1
λ−1
I1
αI1〈(1 + z)(1− 3z)(1 + 2z + 4z2)〉
λ−1
I1
αI1〈(1 + z)(1 + 2z)(1− 3z)〉

 [ (1− z3)(1− 4z2) ] ,

where r = 1 and ∆I1T = [ (1− z3)(1− 4z2) ]. As shown in part (i) of the proof of
Lemma 4.5, ∆I1T = [ (1− z3)(1− 4z2) ] is nonsingular.

The matrix X in part (ii) of the proof of Lemma 4.5 is given as X = [ 0 1 0
0 0 1 ]

t by

letting i1 = 2 and i2 = 3 according to I1 = {1}. We can see that the matrix

[λ−1K X ] =

 1 0 0
λ−1
I1
αI1〈(1 + z)(1− 3z)(1 + 2z + 4z2)〉 1 0

λ−1
I1
αI1〈(1 + z)(1 + 2z)(1− 3z)〉 0 1

(4.4)
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is invertible. Therefore the AλI1 -module TP,AλI1 is free and its rank is 1. (However,

we will see that the A-module TP is not free. See Example 5.2.)

From (4.4) and the matrix equation T = [λ−rK X ] [ (∆I1T )
t O ]

t
, we let

[
NI1
DI1

]
:=

 1
λ−1
I1
αI1〈(1 + z)(1− 3z)(1 + 2z + 4z2)〉
λ−1
I1
αI1〈(1 + z)(1 + 2z)(1− 3z)〉

 = λ−1
I1
K,(4.5)

[
ỸI1 X̃I1
× ×

]
:=

 1 0 0
−λ−1

I1
αI1〈(1 + z)(1− 3z)(1 + 2z + 4z2)〉 1 0

−λ−1
I1
αI1〈(1 + z)(1 + 2z)(1− 3z)〉 0 1

 ,
= [λ−1

I1
K X ]

−1
,(4.6)

where NI1 ∈ A2×1
λI1

, ỸI1 ∈ A1×2
λI1

, DI1 , X̃I1 ∈ (AλI1 )1, and × denotes some matrix.

Then (NI1 , DI1) is a right-coprime factorization of the plant over AλI1 with ỸI1NI1 +

X̃I1DI1 = E1, which is consistent with Lemma 4.6.

5. Proof of main results. Now we give the proof of the main theorem.

Proof of Theorem 3.3. We prove the following relations in order: (a) “(i)→(ii),”
(b) “(ii)→(iii),” and (c) “(iii)→(i).”

(a) “(i)→(ii)”: Suppose that C is a stabilizing controller of the plant P . Then,
the A-module TH(P,C) is obviously free. By the relation TP,R ⊕ TC,R  TH(P,C),R
in Proposition 4.1(i), we have that the A-module TP is projective. By using Propo-
sition 4.1(iii) and Lemma 4.2, the projectivity of the A-module WP can be proved
analogously.

(b) “(ii)→(iii)”: Suppose that (ii) holds, that is, the modules TP and WP are
projective. We let T,N,D be the matrices over A as in Definition 3.1. According to
Theorem IV.32 of [7, p. 295], there exist finite sets F1 and F2 such that (1) each of
them generates A, and (2) for any f ∈ F1 (f ∈ F2) the Af -module TP,Af (WP,Af ) is
free. Let F be the set of all f1f2’s with f1 ∈ F1 and f2 ∈ F2. Then F generates A
again, and the Af -modules TP,Af and WP,Af are free for every f ∈ F . We suppose
without loss of generality that the sets F1, F2, and F do not contain any nilpotent
element because 1 + x is a unit of A for any nilpotent x (cf. [2, p. 10]). (However,
we note that other zerodivisors cannot be excluded from the set F .) The rank of the
freeAf -module TP,Af ism, sincem rows of the denominator matrixD are independent
over Af as well as over A. Analogously the rank of WP,Af is n.

In order to show that (iii) holds, it suffices to show that the relation
∑
f∈F (f

ξ) ⊂∑
I∈I ΛPI holds for a sufficiently large integer ξ. Once this relation is obtained, since∑
f∈F (f

ξ) = A holds, we have
∑
I∈I ΛPI = A.

Let f be an arbitrary but fixed element of F . Let Vf be a square matrix of size m

whose rows are m distinct generators of the Af -module Mr([N
t Dt ]

t
) ( TP,Af ).

We assume without loss of generality that Vf is over A, that is, the denominators of
all entries of Vf are 1. Otherwise if Vf is over Af but not over A, Vf multiplied by fx,
with a sufficiently large integer x, will be over A, so that we can consider such Vff

x

as “Vf .” Thus the following matrix equation holds over A:

fνT = KfVf(5.1)

with a nonnegative integer ν and a matrix Kf ∈ A(m+n)×m.
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In order to prove the relation
∑
f∈F (f

ξ) ⊂ ∑
I∈I ΛPI , we will first show the

relation

ImA(fνKf ) ⊂
∑
I∈I

ΛPI(5.2)

and then

(fξ) ⊂ ImA(fνKf ).(5.3)

Observe first that det(fν∆IKf ) ∈ ΛPI because

det(fν∆IKf )T = fmνKf adj(∆IKf )∆IT.

Since every element of ImA(fνKf ) is an A-linear combination of det(fν∆IKf )’s for
all I ∈ I, we have (5.2).

We next present (5.3). Let N0 and D0 be matrices with Kf = [N t
0 Dt0 ]

t
. Since

each row of Vf is generated by rows of [N t Dt ]
t
over Af , there exist matrices Ỹ0

and X̃0 over Af such that Vf =
[
Ỹ0f

ν X̃0f
ν
]
[N t Dt ]

t
. Thus, since Vf is nonsin-

gular over Af , we have
[
Ỹ0 X̃0

]
[N t

0 Dt0 ]
t
= Em, which implies that (N0, D0) is

a right-coprime factorization of the plant P over Af . Recall here that WP,Af is free

of rank n. Thus by Lemma 4.6 there exist matrices Ñ0 and D̃0 such that (Ñ0, D̃0)
is a left-coprime factorization of the plant P over Af . Let Y0 and X0 be matrices

over Af such that Ñ0Y0 + D̃0X0 = En holds. Then we have the following matrix
equation: [

Ỹ0 X̃0

−D̃0 Ñ0

] [
N0 −X0

D0 Y0

]
=

[
Em −Ỹ0X0 + X̃0Y0

O En

]
.(5.4)

Denote by R the matrix [−Xt
0 Y t0 ]

t
. Then the matrix [Kf R ] is invertible over Af

since the right-hand side of (5.4) is invertible. For each I ∈ I, let I be the ordered set
of n distinct integers between 1 and m+n excluding m integers in I and let i1, . . . , in
be elements of I in ascending order. Let ∆I ∈ Am×(m+n) denote the matrix whose

(k, ik)-entry is 1 for ik ∈ I and zero otherwise. Then, by using Laplace’s expansion,
the following holds:

det([Kf R ]) =
∑
I∈I

(±det(∆IKf ) det(∆IR)),

which is a unit of Af . From this and since the ideal ImAf (Kf ) is generated by
det(∆IKf )’s for all I ∈ I, we have ImAf (Kf ) = Af . This equality over Af gives (5.3)
for a sufficiently large integer ξ.

From (5.2) and (5.3), the relation
∑
f∈F (f

ξ) ⊂ ∑I∈I ΛPI holds. Therefore we
conclude that the relation

∑
I∈I ΛPI = A holds.

(c) “(iii)→(i)”: To prove the stabilizability, we will construct a stabilizing con-
troller of the causal plant P from right-coprime factorizations over Af with some f ’s
in A. Let N and D be matrices over A such that P = ND−1 and D is Z-nonsingular.
From (3.1), there exist λI ’s such that

∑
λI = 1, where λI is an element of generalized

elementary factor ΛPI of the plant P with respect to I in I; that is, λI ∈ ΛPI . Now
let these λI ’s be fixed. Further, let I� be the set of I’s of these nonzero λI ’s; that
is,
∑
I∈I� λI = 1. As in (b), we can consider without loss of generality that for every
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I ∈ I�, λI is not a nilpotent element of A. For each I ∈ I�, the AλI -module TP,AλI
is free of rank m by Lemma 4.5. As in (b) again, let VλI be a square matrix of size m
whose rows are m distinct generators of the AλI -module Mr([N

t Dt ]
t
) ( TP,AλI )

and assume without loss of generality that VλI is over A. Then there exist matrices

X̃I , ỸI , NI , DI over AλI such that

[N t Dt ]
t
= [N t

I DtI ]
t
VλI ,

[
ỸI X̃I

]
[N t Dt ]

t
= VλI ,

ỸINI + X̃IDI = Em
(5.5)

with P = NID
−1
I over F(AλI ).

We here present a formula of a stabilizing controller which is constructed from the
matrices X̃I and ỸI . For any positive integer ω, there are coefficients aI ’s in A with∑
I∈I� aIλ

ω
I = 1. Let ω be a sufficiently large integer. Thus the matrices λωIDIX̃I

and λωIDI ỸI are over A for every I ∈ I�. The stabilizing controller we will construct
has the form

C =

∑
I∈I�

aIλ
ω
IDIX̃I

−1∑
I∈I�

aIλ
ω
IDI ỸI

 .(5.6)

In the following we first consider that the matrix (
∑
I∈I� aIλ

ω
IDIX̃I) is Z-nonsingular

and show that the plant is stabilized by the matrix C of (5.6). After showing it, we

will be concerned with the case where the matrix (
∑
I∈I� aIλ

ω
IDIX̃I) is Z-singular.

Suppose that the matrix (
∑
I∈I� aIλ

ω
IDIX̃I) is Z-nonsingular. To prove that C

is a stabilizing controller of P , it is sufficient to show that (P,C) ∈ F̂ad and that four
blocks of (2.1) are over A.

We first show that (P,C) ∈ F̂ad. The following matrix equation holds:

Em + CP = Em +

∑
I∈I�

aIλ
ω
IDIX̃I

−1∑
I∈I�

aIλ
ω
IDI ỸI

ND−1

=

∑
I∈I�

aIλ
ω
IDIX̃I

−1

∑
I∈I�

aIλ
ω
IDIX̃I

D +

∑
I∈I�

aIλ
ω
IDI ỸI

N
D−1.

By the (1,1)-block of (5.8), we have

Em + CP =

∑
I∈I�

aIλ
ω
IDIX̃I

−1

.(5.7)

This shows that det(Em + CP ) is a unit of F so that (P,C) ∈ F̂ad.
Next we show that four blocks of (2.1) are over A. The (2, 2)-block is the inverse

of (5.7):

(Em + CP )−1 =
∑
I∈I�

aIλ
ω
IDIX̃I .
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Similarly, simple calculations show that other blocks are also over A as follows:
(2, 1)-block:

C(En + PC)−1 =
∑
I∈I�

aIλ
ω
IDI ỸI ,

(1, 1)-block:

(En + PC)−1 = En −
∑
I∈I�

aIλ
ω
INI ỸI ,

(1, 2)-block:

−P (Em + CP )−1 = −
∑
I∈I�

aIλ
ω
INIX̃I .

To finish the proof, we proceed to deal with the case where the matrix
(
∑
I∈I� aIλ

ω
IDIX̃I) is Z-singular. To make the matrix Z-nonsingular, we reconstruct

the matrices X̃I and ỸI with an I ∈ I�.
Since the sum of aIλ

ω
I ’s for I ∈ I� is equal to 1, by Remark 4.4(i, iii) there exists

at least one summand, say, aI0λ
ω
I0

with an I0 ∈ I�, such that both aI0 and λI0 belong

to A\Z. Let RI0 be a parameter matrix of Am×n
λI0

. Then the following matrix equation

holds over AλI0 :

(ỸI0 +RI0D̃I0)NI0 + (X̃I0 −RI0ÑI0)DI0 = Em,

where D̃I0 = det(λωI0DI0)En and ÑI0 = λωI0NI0 adj(λ
ω
I0
DI0). Since ω is a sufficiently

large integer, the following matrix equation is over A:

(λωI0(ỸI0 +RI0D̃I0))(λ
ω
I0
NI0)

+(λωI0(X̃I0 −RI0ÑI0))(λωI0DI0) = λ2ω
I0
Em,

where the matrices surrounded by “(” and “)” in the left-hand side are over A.
From the first matrix equation of (5.5), det(D) = det(DI) det(VλI ) over AλI for every
I ∈ I�. Thus by Remark 4.4(iii) the matrix λωI0DI0 is Z-nonsingular and so is the

matrix D̃I0 (= det(λωI0DI0)En).
Consider now the following matrix equation over A:[ ∑

I∈I� aIλ
ω
IDIX̃I

∑
I∈I� aIλ

ω
IDI ỸI

−aI0λωI0 det(λωI0DI0)ÑI0 aI0λ
ω
I0
det(λωI0DI0)D̃I0

] [
D O
N En

]
=

[
D

∑
I∈I� aIλ

ω
IDI ỸI

O aI0λ
ω
I0
det(λωI0DI0)D̃I0

]
.

(5.8)

The (1, 1)-block of (5.8) can be understood in the following way. From the last matrix
equation in (5.5) we have the following matrix equation over AλI :

DI ỸIN +DIX̃ID = D.

Considering the above equation multiplied by aIλ
ω
I over A, we have the following

equation over A:
aIλ

ω
IDI ỸIN + aIλ

ω
IDIX̃ID = aIλ

ω
ID + aIλ

ω
I Z,(5.9)
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where Z is a matrix overA such that λxIZ is the zero matrix for some positive integer x.
Since ω is a large positive integer, we can consider that the matrix aIλ

ω
I Z in (5.9)

becomes the zero matrix. Therefore, the (1, 1)-block of (5.8) holds. Then the matrix
of the right-hand side of (5.8) is Z-nonsingular since both of the matrices D and

aI0λ
ω
I0
det(λωI0DI0)D̃I0 in the right-hand side of (5.8) are Z-nonsingular. Hence the

first matrix of (5.8) is also Z-nonsingular by Remark 4.4(iii). By Lemma 4.3 and (5.8),
there exists a matrix R′

I0
of Am×n such that the following matrix is Z-nonsingular:∑

I∈I�
aIλ

ω
IDIX̃I − aI0λ2ω

I0 DI0 adj(λ
ω
I0DI0)R

′
I0ÑI0 .(5.10)

Now let RI0 := λωI0 adj(λ
ω
I0
DI0)R

′
I0
, X̃I0 := X̃I0 − RI0ÑI0 , and ỸI0 := ỸI0 + RI0D̃I0 .

Then the matrix
∑
I∈I� aIλ

ω
IDIX̃I becomes equal to (5.10) and Z-nonsingular.

Remark 5.1. From the proof above, if (i) we can check (3.1) and if (ii) we can
construct the right-coprime factorizations of the given causal plant over AλI for every
I ∈ I�, then we can construct stabilizing controllers of the plant, where λI is an
element of the generalized elementary factor of the plant. For (i), if we can compute,
for example, the Gröbner basis [4] over A and if the generalized elementary factors
of the plant are finitely generated, (3.1) can be checked. For (ii), it is already known
by Lemmas 4.5 and 4.6 that there exist the right-coprime factorizations of the plant
over AλI .

Let us give an example concerning the Gröbner basis. Consider the generalized
elementary factors of Example 3.4. They are expressed as

ΛPI1 = (〈(1 + 2z)(1 + z + z2)(1− 3z)〉) + (〈(1 + 2z)(1 + z + z2)z2〉)
+(〈(1 + 2z)(1 + z + z2)z3〉),

ΛPI2 = (〈(1 + z)(1 + 2z + 4z2)(1− 3z)〉) + (〈(1 + z)(1 + 2z + 4z2)z2〉)
+(〈(1 + z)(1 + 2z + 4z2)z3〉),

ΛPI3 = (〈(1 + z)(1 + 2z)(1− 3z)〉) + (〈(1 + z)(1 + 2z)z2〉)
+(〈(1 + z)(1 + 2z)z3〉).

Hence each of them has three generators and so is finitely generated. Suppose here
that we can calculate the Gröbner basis over A (of Example 3.4). Then as above the
plant is stabilizable if and only if the Gröbner basis of the nine generators contains 1.

In the following two examples we follow the proof of Theorem 3.3. In the first
one, we construct a stabilizing controller with part (c). In the other example, we
follow part (b). On the other hand we do not follow part (a) since it can be followed
easily with part (a) of (i) in the proof of Proposition 4.1.

Example 5.2. We continue Example 3.4 (and 4.7) and construct a stabilizing
controller of the plant as in (iii)→(i) of the proof above. Let the notation be as in
Examples 3.4 and 4.7.

Since, in this example, ΛPI1 + ΛPI2 = A holds, I� = {I1, I2}. For I1 ∈ I�, the
matrices NI1 , DI1 , X̃I1 , and ỸI1 of (5.5) over AλI1 have been calculated as (4.5) and

(4.6). For I2 ∈ I�, the matrices NI2 , DI2 , X̃I2 , and ỸI2 of (5.5) over AλI2 can be
calculated analogously as follows:

NI2 =

[
λ−1
I2
αI2〈(1 + 2z)(1− 3z + z2)(1 + z + z2)〉

1

]
,

DI2 = [λ−1
I2
αI2〈(1 + z)(1 + 2z)(1− 3z + z2)〉 ] ,
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ỸI2 = [ 0 1 ] , X̃I2 = [ 0 ] .

Then the following matrices are over A:

λI1DI1X̃I1 = [ 0 ] , λI1DI1 ỸI1 = [αI1〈(1 + z)(1 + 2z)(1− 3z)〉 0 ] ,

λI2DI2X̃I2 = [ 0 ] , λI2DI2 ỸI2 = [ 0 αI2〈(1 + z)(1 + 2z)(1− 3z + z2)〉 ] .

Hence in this example, we can let ω = 1 as a sufficiently large integer and aI = 1 for
all I ∈ I� (since ∑I∈I� λ

ω
I = 1).

Note here that the matrix λI1DI1X̃I1 +λI2DI2X̃I2 is Z-singular. Hence we should

reconstruct the matrices ỸIi and X̃Ii with i being either 1 or 2 as in the proof of
Theorem 3.3. Since, in this example, both λI1 and λI2 are nonzerodivisors, we can

choose each of 1 and 2. This example proceeds by reconstructing the matrices ỸI1
and X̃I1 , which means that I1 is used as I0 in the proof of Theorem 3.3. The actual
reconstruction is done by following the proof of Lemma 4.3.

Consider the first matrix of (5.8). Recall that ÑI0 = λωI0NI0 adj(λ
ω
I0
DI0) and

D̃I0 = det(λωI0DI0)En. In this example, they are given as

ÑI1 = (ÑI0 =)

[
λI1

αI1〈(1 + z)(1− 3z)(1 + 2z + 4z2)〉
]
,

D̃I1 = (D̃I0 =)αI1〈(1 + z)(1 + 2z)(1− 3z)〉E2.

One can check that the first matrix of (5.8) is Z-nonsingular. Then we construct a ma-
trix R′

I0
of A1×2 such that (5.10) is Z-nonsingular. To do so, we follow temporarily

the proof of the Lemma 4.3.
Consider the first matrix of (5.8) as the matrix of (4.2), that is,

A =
∑
I∈I�

aIλ
ω
IDIX̃I = [ 0 ] ,

B = −aI0λωI0 det(λωI0DI0)ÑI0
= −αI1λI1〈(1 + z)(1 + 2z)(1− 3z)〉

[
λI1

αI1〈(1 + z)(1− 3z)(1 + 2z + 4z2)〉
]
.

Then we choose a full-size aminor of [At Bt ]
t
having as few rows from B as possible.

In this example, we can choose both entries in B. Here we choose the (1, 1)-entry
of B, so that

a = −αI1λ2
I1〈(1 + z)(1 + 2z)(1− 3z)〉.(5.11)

Thus we have k = 1, i1 = 1, and j1 = 1, where the notations k, i1, . . . , ik, and j1, . . . , jk
are as in the proof of Lemma 4.3. Hence R in the proof is given as R = [ 1 0 ]. We
can confirm that A+RB = [ a ] which is Z-nonsingular by observing that every factor
of the right-hand side of (5.11) has a nonzero constant term.

From here on we proceed with following again the proof of Theorem 3.3. The
notation R used above corresponds to the notation R′

I0
in the proof of Theorem 3.3

(that is, R′
I0

= [ 1 0 ]). The matrix RI1 is given as follows:

RI1 = (RI0 =)λωI1 adj(λ
ω
I1DI1)R

′
I1 = λI1 [ 1 0 ] .
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Then new X̃I1 and ỸI1 are given as follows:

X̃I1 := X̃I1 −RI1ÑI1 = [−λ2
I1
] ,

ỸI1 := ỸI1 +RI1D̃I1 = [ 1 + αI1λI1〈(1 + z)(1 + 2z)(1− 3z)〉 0 ] .

Therefore, a stabilizing controller C of the form (5.6) is obtained as

C = (λI1DI1X̃I1 + λI2DI2X̃I2)
−1(λI1DI1 ỸI1 + λI2DI2 ỸI2)

=
−1

αI1λ
2
I1
〈(1 + z)(1 + 2z)(1− 3z)〉[

αI1〈(1 + z)(1 + 2z)(1− 3z)〉(1 + αI1λI1〈(1 + z)(1 + 2z)(1− 3z)〉)
αI2〈(1 + z)(1 + 2z)(1− 3z + z2)〉

]t
.

The matrix H(P,C) over A with the stabilizing controller C above is expressed
as follows:

H(P,C) =

h11 h12 h13

h21 h22 h23

h31 h32 h33

 ,
where

h11 = −αI1λ2
I1〈(1 + z)(1 + 2z)(1− 3z)〉

+αI2〈(1 + z)(1− 3z + z2)(1 + 2z + 4z2)〉,
h12 = −αI2〈(1 + 2z)(1 + z + z2)(1− 3z + z2)〉,
h13 = λ3

I1 ,

h21 = −αI1〈(1 + z)(1− 3z)(1 + 2z + 4z2)〉
(1 + λI1αI1〈(1 + z)(1 + 2z)(1− 3z)〉),

h22 = αI1(〈(1 + 2z)(1− 3z)(1 + z + z2)〉(1 + αI1λI1〈(1 + z)(1 + 2z)(1− 3z)〉)
−λ2

I1〈(1 + z)(1 + 2z)(1− 3z)〉),
h23 = αI1λ

2
I1〈(1 + z)(1− 3z)(1 + 2z + 4z2)〉,

h31 = αI1〈(1 + z)(1 + 2z)(1− 3z)〉(1 + αI1λI1〈(1 + z)(1 + 2z)(1− 3z)〉),
h32 = αI2〈(1 + z)(1 + 2z)(1− 3z + z2)〉,
h33 = −αI1λ2

I1〈(1 + z)(1 + 2z)(1− 3z)〉.
Before finishing this example, let us show that the A-module TP is not free. We

show it by contradiction. Suppose that TP is free. Then the A-module Mr(T ) is also
free. Since the matrix D, a part of T , is nonsingular, the rank of Mr(T ) is m. Let V
be a matrix in (A)m whose rows are m distinct generators of Mr(T ). As in (5.5), we

have matrices Ỹ , X̃, N ′, D′ over A such that

[N t Dt ]
t
= [N ′t D′t ]t V,

[
Ỹ X̃

]
[N t Dt ]

t
= V, Ỹ ′N ′ + X̃ ′D′ = E1.

However, the last matrix equation is inconsistent with the fact that the plant P
does not have coprime factorization. Therefore, TP is not free. Nevertheless we note
that TP is projective by Theorem 3.3.

Example 5.3. Let us follow part (b) in the proof of Theorem 3.3. Suppose that
(i) of Theorem 3.3 holds, that is, the modules TP and WP are projective.
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Consider again the plant P of (3.2). Let F1 = {λI1 , λI2}, where λI1 and λI2
are given as in (3.8). Then we have known that Σf∈F1f = 1 and that there exists
a right-coprime factorization of the plant over Af for every f ∈ F1. By Lemma 4.2,
the transposed plant P t is stabilizable. We can construct its stabilizing controller by
analogy to Example 5.2. Further we see that for both λI1 and λI2 , the transposed
plant P t has right-coprime factorizations over AλI1 and AλI2 ; that is, P has left-
coprime factorizations over AλI1 and AλI2 . Thus let F2 = {λI1 , λI2}. For λI1 ∈ F2,

we have the matrices ÑI1 D̃I1 , YI1 , XI1 over AλI1 such that ÑI1YI1 + ÑI1XI1 = E2

and

ÑI1 = [ 10 ], YI1 = [ 1 0 ] , XI1 = [ 0 0
0 1 ],

D̃I1 =

[
λ−1
I1
αI1〈(1 + z)(1 + 2z)(1− 3z)〉 0

λ−1
I1
αI1〈(1 + z)(1− 3z)(1 + 2z + 4z2)〉 1

]
.

On the other hand, for λI2 ∈ F2, we have the matrices ÑI2 D̃I2 , YI2 , XI2 over AλI2
such that ÑI2YI2 + ÑI2XI2 = E2 and

ÑI2 = [ 10 ], YI2 = [ 1 0 ] , XI2 = [ 0 1
0 0 ],

D̃I2 =

[
0 λ−1

I2
αI2〈(1 + z)(1 + 2z)(1− 3z + z2)〉

1 −λ−1
I2
αI2〈(1 + 2z)(1 + z + z2)(1− 3z + z2)〉

]
.

Now we let F = {λ2
I1
, λI1λI2 , λ

2
I2
} (= {f1f2 | f1 ∈ F1, f2 ∈ F2}). Then F still gener-

ates A since λ2
I1

+ 2λI1λI2 + λ
2
I2

= 1.
In the following we consider the case f = λ2

I1
. Then using the matrix K of (4.3),

we have (5.1) with ν = 1, Kf = K, and Vf = λI1∆I1T .
Then the ideal ImA(fνKf ) is generated by

λ3
I1 , αI1λ

2
I1〈(1 + z)(1− 3z)(1 + 2z + 4z2)〉, αI1λ2

I1〈(1 + z)(1 + 2z)(1− 3z)〉.

Thus since each of them is in ΛPI1 , (5.2) holds. Further we can observe that for any
integer ξ greater than 1, (5.3) holds since λ3

I1
∈ ImA(fνKf ).

For the other cases f = λI1λI2 and f = λ2
I2
, we can follow the relations of (5.2)

and (5.3) analogously. Details are left to interested readers.
Remark 5.4. Since Anantharam’s example in [1] is artificial, we do not present

here the construction of a stabilizing controller. However, we can construct it as
part (c) in the proof of Theorem 3.3 (Since Anantharam in [1] did not consider the
causality, we let Z = {0} so that P = F .)

6. Causality of stabilizing controllers. In this section, we present two facts:
(i) for a stabilizable causal plant, there exists at least one stabilizing causal con-
troller and (ii) the stabilizing controller of the strictly causal plant is causal, which
inherits Theorem 4.1 in section III of [14, p. 888] and Proposition 1 of [11].

Proposition 6.1. For every stabilizable causal plant, there exists at least one
stabilizing causal controller of the plant.

Proof. In the construction of the stabilizing controller in part (c) of the proof
of Theorem 3.3, the denominator matrix of (5.6) is Z-nonsingular. Suppose that the

obtained stabilizing controller is expressed as B̃−1Ã with the matrices Ã and B̃ over A
such that B̃ is Z-nonsingular. Then since the relation B̃−1Ã = (det(B̃)Em)−1(adj(B̃)Ã)

holds, every entry of B̃−1Ã is causal.
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Proposition 6.2. For every stabilizable strictly causal plant, all stabilizing con-
trollers of the plant must be causal.

Proof. Suppose that the plant P is stabilizable and strictly causal. Suppose fur-
ther that C is a stabilizing controller of P . We employ the notation from part (c) of

the proof of Theorem 3.3. Thus aI0 , λI0 ∈ A\Z and ỸI0NI0 +X̃I0DI0 = Em with P =
NI0D

−1
I0
∈ F(AλI0 ) from (5.5). Let ZλI0 = {z/1·u ∈ AλI0 | z ∈ Z, u is a unit of AλI0}.

Then this ZλI0 is again a principal ideal of AλI0 .
Observe here that Lemma 8.3.2 of [13] and its proof hold even over a general

commutative ring. According to its proof, there exist matrices Ã and B̃ over AλI0
such that C = B̃−1Ã and ÃNI0 + B̃DI0 = Em (Ã and B̃ correspond to T and S,
respectively, in the proof of Lemma 8.3.2 of [13]). Observe also that every entry of NI0
is in ZλI0 . Thus reviewing the proof of Lemma 3.5 of [14], in which the calligraphic H

and K in [14] correspond to AλI0 and ZλI0 , respectively, we have det B̃ ∈ AλI0\ZλI0 .
This implies that B̃−1Ã ∈ Pm×n by noting that λI0 ∈ A\Z. Thus C is causal.

7. Further work. In this paper we have presented criteria for feedback stabi-
lizability. We have also presented a construction of a stabilizing controller to which
Sule’s method cannot be applied. Recently the first author [8] has developed a pa-
rameterization of stabilizing controllers, which is based on the results of this paper
and which does not require coprime factorizability. This can be applied to models to
which Youla parameterization cannot be applied.
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